
Bridging the Gap
in Hybrid Decision-Making Systems

Federico Mazzoni1 , Roberto Pellungrini2 , and Riccardo Guidotti1 �

1University of Pisa, Italy, federico.mazzoni@phd.unipi.it,
riccardo.guidotti@unipi.it, 2Scuola Normale Superiore, Pisa, Italy,

roberto.pellungrini@sns.it

Abstract. We introduce Bridget, a novel human-in-the-loop system
for hybrid decision-making, aiding the user to label records from an un-
labeled dataset, attempting to “bridge the gap” between the two most
popular Hybrid Decision-Making paradigms: those featuring the human
in a leading position, and the other with a machine making most of the
decisions. Bridget understands when either a machine or a human user
should be in charge, dynamically switching between two statuses. In the
different statuses, Bridget still fosters the human-AI interaction, either
having a machine learning model assuming skeptical stances towards the
user and offering them suggestions, or towards itself and calling the user
back. We believe our proposal lays the groundwork for future synergistic
systems involving a human and a machine decision-makers.
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1 Introduction

Automated decision-making processes based on Machine Learning (ML) are still
not widely adopted for high-stakes decisions such as medical diagnoses or court
decisions [14]. In these fields, humans are aided but not replaced by Artificial
Intelligence (AI), resulting in Hybrid Decision-Makers (HDM) [7].

Ash the literature keeps growing, the term “Hybrid Decision-Makers” has
been used as an umbrella word for various different kinds of algorithms, often
with a different focus, and a proper consensus has not been reached yet. Punzi et
al. [8] notes two major HDM paradigms: Learning-to-Abstain where under cer-
tain conditions an ML model refuses to make a decision, and Learning Together,
where the human can interact with the training process of the ML model. Two
of the most representative approaches of the two paradigms are, respectively,
Learning-to-Defer (LtD) [4] systems, where the machine plays the primary role,
deferring decisions on records with a high degree of uncertainty to an external
human supervisor, and Skeptical Learning (SL), where an ML model learns “in
parallel” to the decisions taken by a human and queries them if it is “skepti-
cal” of the human decision [15, 16]. The two have vastly different scopes. LtD
assumes a cost to query the human user and aims to minimize that, leaving most
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of the decisions to the machine, while SL assumes the human user is always in
control but needs to be helped by a machine model to stay consistent over time.
Whereas SL posits a human expert who always has the final say but who can
albeit get confused and thus in need of the machine’s help, LtD assumes that
some decisions are better suitable either to the user or the machine. As such,
the model is trained not only to classify instances but to defer them [8]. Another
key difference is the training phase. SL training is continuous, i.e., the model
is always learning something from the user’s final decision, acting as ground
truth, whereas LtD employs a stationary dataset, thus resulting in a stationary
model, with different ground truths for the classification and the deferral policy.
Therefore, HDM systems can also be classified either following the role of the
primary decision-maker or their training process. Although Explanatory Inter-
active ML systems have been proposed [12], HDMs mostly focus on providing
decisions rather than explanations. With that said, CINCER can provide ex-
planations as contrastive and influential counterexamples [2], whereas FRANK
can show the model logic and provide them with real and synthetic examples
and counterexamples [6]. Both are based on SL.

Our proposal aims to “fill the gap” between human-driven HDMs, such as
SL, and machine-led ones, such as LtD, effectively creating a “bridge”, hence the
name Bridget, between the two paradigms, and an interpretable system able to
adapt to different scenarios. Following [2, 6], Bridget employs an Incremental
Learning (IL, or Continual Learning) model. IL is a ML paradigm where the
model is continuously trained on small data batches, potentially only one data
point, instead of the entirety of the training set [5,13]. Moreover, Bridget shares
a focus on explanation with other interactive ML methods [1, 6, 11,12].

2 Setting the Stage

In the following we report a brief overview of concepts necessary to understand
our proposal. We indicate with H and M the Human user and the Machine of
the system, and with X,Y a dataset where X ∈ X is a set of n records in feature
space X , while Y ∈ Y is the set of the target variable in the target space Y. For
classification problems, yi ∈ {1, . . . , l} = L, where L is the set of different class
labels and l, is the number of the classes. We indicate a trained decision-making
model with a function f : X → Y that maps data instances x from the feature
space X to the target space Y. We represent the user decision process as an
analogous function h : X → Y. We write f(xi) = ỹi to denote the decision ỹi
taken by f , h(xi) = ŷi to denote the decision ŷi taken by h.

Skeptical Learning. Given a ML model f and a dataset X, the user is
tasked to assign a label yi to each record xi ∈ X. In SL, the user assigns the
label ŷi and, independently from them, f assigns the label ỹi. The ML model
f can be pre-trained on a small training set. If ŷi ̸= ỹi and f is skeptical (see
below), the user is asked if they want to accept ỹi as yi. If they do, yi takes
the value ỹi. If the user refuses, if ŷi = ỹi or if the model is not skeptical, yi is
assigned ŷi. f is then incrementally trained on xi and yi.
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Fig. 1. Bridget looping between its potential phases.

The model’s skepticality is related to the model’s epistemic uncertainty [11],
which is independent of the notion of prediction probability towards a certain
decision. As the model is exposed to enough data, its epistemic uncertainty, i.e.,
its ignorance, should be minimized, assuming consistency in the labels [3]. Since
few models allow access to epistemic uncertainty [2,3], it has been approximated
by SL with the Empirical Accuracy (EA) of past predictions, both of the user and
the model, i.e., the ratio between the number of times a label has been proposed
by the user/predicted by the model, and the times it has been accepted as yi [15].
Let Xp ⊆ X be the set of past-seen instances and Yp ⊆ Y the respective ground
truths. Let δf(x),y be the Kronecker Delta measuring accurate prediction of f(x)
w.r.t ground truth y. We calculate Skepticality as:

skp(xi, ỹi, ŷi, Xp, Yp) = cf (xi, ỹi) · eaf (ỹi, Xp, Yp)− cf (xi, ŷi) · eah(ŷi, Xp, Yp)

where cf (xi, ỹi) and cf (xi, ŷi) are the model prediction probabilities towards ỹi
and ŷi, and eaf (ỹi, Xp, Yp) =

1
|Xp|

∑
{xp∈Xp|f(xp)=ỹi} δf(xp),yp

is the empirical ac-

curacy of the model f toward label ỹi, and eah(ŷi, Xp, Yp) =
1

|Xp|
∑

{xp∈Xp|h(xp)=ŷi}
δh(xp),yp

is the empirical accuracy of the user function h toward label ŷi. Thus,
each possible label l ∈ L has two EA values – following the user’s and the model’s
track record (e.g., in binary classification with |L| = 2, we have 4 EA values, 2
for M and 2 for H) [15].

3 A Bridget System

Bridget, whose pseudocode is reported in Algorithm 1, assumes two potential
statuses, depicted in Figure 1:

– A Human-in-Command (HiC) phase where the human H and the machine
M are into a co-evolutionary relationship [6]. H takes all the decisions, and
M offering suggestions and explanations if skeptical.

– A Machine-in-Command (MiC) phase where M takes most of the decisions,
but it can call H back if uncertain, and it is able to explain why.

The Bridget system can loop between the two phases, accommodating the
user’s needs, potential fallouts in the model’s accuracy, or novelties in the data.

3.1 Human-in-Command

Bridget starts in the HiC phase and requires a set of records X, to be label
one by Once a new record xi is received, H makes its decision as well as M ,
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Algorithm 1: Bridget

Input : X - records, α - skeptical threshold, β - belief threshold
1 Xp, Yp, Ỹ , Ŷ , f, k, p, phase← initialize; // sets initialization

2 xi ← receive record(X); // receive a new un-label record

3 if phase = HiC then // if Human-in-Command

4 ŷi ← h(xi); ỹi ← f (xi); // get user decision and model prediction

5 if ŷi ̸= ỹi ∧ skp(xi, ỹi, ŷi, Xp, Yp) > α then // if clash & skepticism

6 if is expl desired(xi , ỹi) then // if an explanation for ỹi is desired

7 ei ← get and show expl(xi, ỹi, f,Xp); // return explanation ei

8 if accept label change(xi, ỹi) then yi ← ỹi; // ỹi is accepted

9 else yi ← ŷi; // ỹi is refused

10 else yi ← ŷi; // otherwise ŷi is accepted

11 Ỹ , Ŷ , f, p← update; // model and parameter updates

12 if check(h, f, p) then phase = MiC, p = 0; // phase change

13 else // if Machine-in-Command

14 ỹi ← f (xi); b← compute(f, xi, ỹi, Y, Ỹ ); // ỹi and M’s belief towards it

15 if b < β then // if b is low, user is called back

16 ui ← get and show unr(xi, ỹi, f,Xp); // show explanation ui

17 ŷi ← h(xi); yi ← ŷi; // ŷi accepted

18 else if random check(b) then yi ← ỹi; // probablistic check, ỹi accepted

19 else // if user is called back

20 if is expl desired(xi , ỹi) then // if an explanation for ỹi is desired

21 ei ← get and show expl(xi, ỹi, f,Xp); // return explanation ei

22 ŷi ← h(xi); yi ← ŷi; // ŷi accepted

23 h, f, p← update; // model and parameter updates

24 if check(h, f, p) then phase = HiC, k = 0; // phase change

25 Xp, Yp ← update(xi , yi); // recording final decision

following SL (line 4 of Alg. 1). To compute skepticality, we propose Fading
Empirical Accuracy (FEA) as a replacement for EA. While computing M and
H’s track record, instead of assigning the same weight to each previously-seen
record and the respectively assigned label, our metric weights each record w.r.t.
its temporal distance to the current one (remember that Ỹ , Ŷ , Y and the other
sets are ordered w.r.t. their appearance). In other words, older records weigh
less. This is consistent with the idea of EA as an ever-evolving, more accurate
proxy for the model’s epistemic uncertainty, i.e., its current status. For example,
with FEA the model’s early errors are de-emphasized. FEA is employed for H as
well, as their behavior might also change over time. Then, we define the Fading
Skepticality of M towards the user decision ŷi as:

skp(xi, ỹi, ŷi, Xp, Yp) = cf (xi, ỹi)·feaf (xi, ỹi, Xp, Yp)−cf (xi, ŷi)·feah(xi, ŷi, Xp, Yp)

where feaf (xi, ỹi, Xp, Yp) =
1

|Xp|
∑

{xp∈Xp|f(xp)=ỹi} δf(xp),yp
d(xp, xi) and by anal-

ogy feah(xi, ŷi, Xp, Yp) =
1

|Xp|
∑

{xp∈Xp|h(xp)=ŷi} δh(xp),yp
d(xp, xi). Here d(xp, xi)

is a distance function between the current data point xi and previously seen data
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point xp. If fskp is higher than a certain threshold α, M is skeptical of H’s de-
cision (line 5), and the user is prompted if they want to change them.

Before making the final decision, H can request an explanation for the sug-
gestion, such as (counter-)exemplar records, local decision rules or an overview
of the model’s logic (lines 6-7). As in [6], the explanations are generated following
the latest updated version of the model and the training data, and thus evolving
over time. By exploiting in Bridget the CAIPI model [12], H can also teach
M if the decision is right but for the wrong reason. After a decision is taken,
M ’s internal model f and the various sets are updated (line 11), following H’s
decision, who always holds full veto power. This co-evolutionary phase ensures
a profitable human-machine interaction both for H, as they might receive useful
suggestions, and M , since the model is progressively updated.

As mentioned, for traditional EA, both M and H have as many FEA values
as |L|, i.e., 2 in a binary classification task. As SL assumes an expert user, the
average of the model’s FEA values can provide an esteem of its overall closeness
to the user at any given point in time. As such, FEA also plays a key role
in transitioning towards the machine-led phase, and after each labelled record,
Bridget checks if a transition towards the MiC phase is possible (line 12). The
transition happens if all the following set of conditions tM is met:

1. during the co-evolutionary phase, more than kmax records have been seen;

2. the model’s average FEA is higher than a certain threshold;

3. H designates M as the primary decision-maker.

The first point employs SL’s co-evolutionary phase as the traditional ML training
step. Compared to LtD training, it assumes only one user, i.e., H, who is deemed
reliable and who provides knowledge to M . The second point focuses on the
quality of the model itself, i.e., to what extent it is aligned with the final decisions
taken by H at the current time. Combined, those two points lead to avoiding
training a separate deferral system for the MiC phase, as it is assumed M is a
good approximation of H. With that said, the third point ensures H willingly
agrees with putting the machine in command.

3.2 Machine-in-Command

If tM is triggered, Bridget transitions to a state where M is in command,
labelling incoming records individually. As soon as a new record xi is received,
M ’s f computes its belief, i.e., its prediction probability, b ∈ [0, 1] towards its
prediction (line 14), following the first part of the fading skepticality:

b(xi, ỹi, Y, Ỹ ) = cf (xi, ỹi) · feaf (xi, ỹi, Xp, Yp)

If b is lower than a user-defined threshold β, M ’s stance towards xi is con-
sidered unreliable, and H is immediately called back to make their own decision
ŷi (lines 15 and 17). In this state, M can explain why it is unreliable by provid-
ing, for instance, a small set of real or synthetic records with a low prediction
probability similar to that achieved on xi (line 16).
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Otherwise, if b > β, in order to prevent machine overreliance [9], i.e., a
common drawback of MiC systems, Bridget engages the user to check the
model prediction on randomly selected record, not only those with a low belief.
As a simple implementation, Bridget draws a random number r ∈ [0, 1]. If
r < β, M ’s prediction ỹ is accepted as xi’s label (line 18), otherwhise the user
H is called back (line 19). Also, in the MiC phase, due to the reasonable level of
reliability according to the high b, Bridget can provide the user with the same
forms of explanations as in the HiC phase (lines 20-21).

Finally, the behaviour of M ’s model f after accepting a label differs between
the HiC and MiC phases. Whereas f is always updated after each decision origi-
nated either from H or M in the HiC phase, in the MiC phase f and the various
sets are only updated when the user is called back (line 23). This allows Brid-
get to notify the user if it reaches a critical status, i.e., if at least one of the
following conditions is met (line 24):

1. the user has been called back due to M ’s low b for more than pmax times;
2. the model’s average FEA is now lower than a certain threshold.

The user can then decide to come back in command, reverting to the HiC
phase. These checks indicate a decrease in model reliability, potentially imply-
ing concept-drift. Effectively, this doubles as a function commonly found in LtD
systems, i.e., rejection of novelties and ambiguities [8].

4 Conclusion and Future Works

We have presented Bridget, an approach designed to bridge the two main Hy-
brid Decision-Making paradigms. Bridget uses a co-evolutionary process to
train a ML model to closely mimic the user’s behavior. This interactive dynamic
between the human and machine agents allows for continual system parameter
updates, resulting in alternating phases where either the human or the machine
takes the lead. We plan to extensively test Bridget against stand-alone LtD
systems and also consider in the implementation different data types, such as
time series easily providing alternative types of explainability [10], and more
in-depth functions such as fairness checks [6]. Moreover, we reckon Bridget
should give a deeper focus on concept drift during phase transitions, as shifts in
data are common reasons for a model’s fall down. Lastly, the current iteration
of Bridget was designed around two principles – employing FEA values as a
model-agnostic proxy of the model’s current status, and avoiding training an in-
dependent deferral system. Other approaches are possible, e.g., supplanting FEA
values with the model’s internal epistemic uncertainty or comparing the number
of leaves of an incremental decision tree at two different points in time to assess
the model’s changes. Moreover, the user-provided decisions could effectively be
used to train a deferral system at the end of the co-evolutionary phase.
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