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Abstract. The large and diverse availability of mobility data enables
the development of predictive models capable of recognizing various
types of movements. Through a variety of GPS devices, any moving
entity, animal, person, or vehicle can generate spatio-temporal trajec-
tories. This data is used to infer migration patterns, manage traffic in
large cities, and monitor the spread and impact of diseases, all critical
situations that necessitate a thorough understanding of the underlying
problem. Researchers, businesses, and governments use mobility data to
make decisions that affect people’s lives in many ways, employing accu-
rate but opaque deep learning models that are difficult to interpret from
a human standpoint. To address these limitations, we propose Geolet,
a human-interpretable machine-learning model for trajectory classifica-
tion. We use discriminative sub-trajectories extracted from mobility data
to turn trajectories into a simplified representation that can be used as
input by any machine learning classifier. We test our approach against
state-of-the-art competitors on real-world datasets. Geolet outperforms
black-box models in terms of accuracy while being orders of magnitude
faster than its interpretable competitors.

Keywords: Trajectory Classification · Interpretable Machine
Learning · Mobility Data Analysis · Explainable AI

1 Introduction

The increasing diffusion of GPS-capable electronic devices, such as mobile phones,
vehicles, and trackers, contributes to generating massive amounts of mobility
data [9]. In general, any moving entity can generate spatio-temporal trajectories,
which companies, governments, and researchers use to address many crucial appli-
cations [1]. Thus, mobility data affect the livelihoods of millions of people.

One of the most common tasks in this field is trajectory classification, i.e.,
predicting the class label of an object based on its movement [5,9,14]. Trajectory
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classifiers, for example, can differentiate between cars, taxis, buses, pedestrians,
and bikes, recognize the movement of various animals, and infer people’s jobs
based on their routines. In [14] it is presented a survey comparing state-of-the-
art trajectory classification approaches. The authors emphasize the main chal-
lenges in this field, namely the need for robust experimental evaluations across
multiple datasets and the lack of advances in the state-of-the-art. Moreover,
the majority of surveyed works are based on complex, black-box models such
as Support Vector Machines (SVM), Multilayer Perceptrons (MLP), and deep
Convolutional Neural Networks (CNN), which are inherently not interpretable
from a human standpoint [7]. This can be a significant problem in high-stakes
applications where the explanation aspect of machine learning models is critical
for establishing trust in automated decision systems [11].

EXplainable Artificial Intelligence (XAI) for trajectories is an extremely
under-explored topic in the literature. For this reason, we take inspiration from
studies on XAI from time series [18], and specifically shapelets [22] to present
the GEOgraphic ShapeLET classifier Geolet, an interpretable classification
approach for trajectory data. First, Geolet uses geographic partitioning to
segment the input data into subtrajectories. These subtrajectories are normal-
ized and filtered in order to take only the most discriminative ones. They are
then exploited to convert the input trajectories into a simplified, interpretable
representation that can be used as input by any machine learning classifier. We
evaluate Geolet on five datasets and against state-of-the-art alternatives, con-
sidering multiple quantitative metrics. Furthermore, we qualitatively show that
the proposed approach produces interpretable and easy-to-read explanations.

2 Related Works

The problem of trajectory classification consists in building a predictive model
from labeled historical trajectories to classify new ones [6,9]. Trajectory classifiers
can be divided into different families. Classical approaches usually extract global,
or local features from the data, whereas modern approaches tend to directly pro-
cess the raw trajectories with complex, deep learning-based models.

Global features-based approaches extract features like velocity change, dura-
tion, speed, etc. from the whole trajectory [14]; they can be highly effective for
simple datasets, where similar properties are maintained throughout the entire
path. However, these methods are insufficient for more articulated trajectories
in which the target class is linked to an event occurring in a trajectory portion.

Local features-based approaches try to mitigate these problems by segmenting
the trajectory into subtrajectories and extracting features from them. In [21],
the authors extract statistical features from the segments of the trajectory, first
globally and then locally. Finally, they compare Random Forest, Gradient Boost-
ing Decision Tree and XGBoost as classification models. In [20], it is proposed
a semi-supervised clustering approach coupled with a majority voting ensem-
ble classifier to learn a metric that brings similar data closer and distances
elements with different labels. The first two methods can be viewed as pseudo-
interpretable procedures, depending on the classification model used after the
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dataset transformation. A Random Forest, for example, can be used to deter-
mine the average importance of each variable. However, the main issue is that
interpretability varies depending on the complexity of the extracted features and
the number of weak learners in the ensemble. To the best of our knowledge, the
only fully interpretable trajectory classifier is Movelets [5]. Indeed, the idea
behind Movelets is to extract discriminative segments from the trajectory and,
similarly to the shapelet transform for time series [22], convert the dataset into
a new representation that stores the shortest distances between each trajectory
and subtrajectory. In line with shapelets, subtrajectories can be used to under-
stand the logic of the classifier [18]. While promising, the proposed method is
computationally complex as it generates all possible subtrajectories and is not
suitable for large datasets. Furthermore, only the space dimension is used to
compute the distance between trajectories and subtrajectories. Thus, the tra-
jectories must be resampled to constant time intervals, and only equal-length
subtrajectories can be compared.

Recently, neural networks have been used in trajectory classification
approaches to achieve superior performance in a faster manner. Recurrent Neural
Networks (RNN) and Convolutional Neural Networks (CNN), often used with
time series data, can be easily extended to trajectories. In [8], the authors pro-
pose TraClets, a CNN-based method that represents a trajectory as an image and
uses a CNN to solve the trajectory classification task. MARC [13] deals with tra-
jectories augmented with semantic textual dimensions, exploiting the GPS data
and information in the textual dimensions. Finally, Rocket [4], the state-of-the-
art classifier for multivariate time series, can be easily applied to trajectories to
achieve fast and extremely accurate performance. Unfortunately, Rocket, RNN,
and CNN models lead to a non-interpretable prediction. For this reason, several
XAI approaches have been proposed to address the issue. Still, they can only
output explanations as saliency maps [3,15], highlighting the importance of each
observation towards the classification.

Given the limitations of the literature, we propose a method for classifying
trajectories based on local feature extraction. Geolet attempts to overcome
the interpretability limitations of black-box models, and optimize accuracy and
runtime, which is often the main problem of feature extraction-based methods.

3 Background and Problem Setting

In this section, we define all the concepts necessary to understand our proposal.
We define a trajectory as follows:

Definition 1 (Trajectory). A trajectory X is a sequence of spatio-temporal
points X = {(�x1, t1), . . . , (�xm, tm)} ∈ Rm×3 where the spatial vectors �xj =
(latj , longj) are sorted by increasing time tj , i.e., ∀1 ≤ j < m we have tj < tj+1.

In a sense, trajectories can be viewed as multivariate time series containing
two signals, i.e., the latitude and longitude, recorded at non-constant sampling
rates [5,8,19]. A trajectory classification dataset is a set of trajectories with a
vector of labels attached. Formally:
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Definition 2 (Trajectory Classification Dataset). A trajectory classification
dataset D = (X ,y) ∈ Rn×m×3 is a set of n trajectories, X = {Xi . . . , Xn},
with a vector of assigned labels (or classes), y = {y1, y2, . . . , yn} ∈ Nn.

For simplicity of notation, we use a single symbol m to denote the lengths of the
trajectories, even if a trajectory dataset can contain instances having a differ-
ent number of observations. We define the trajectory classification problem as
follows:

Definition 3 (Trajectory Classification). Given a trajectory classification
dataset D, trajectory classification is the task of training a function f from
the space of possible inputs to a probability distribution over the class values in
y.

The resulting trajectory classification function f takes as input a trajectory
X and returns y according to what f learned, i.e., y = f(X). In general, y can
either be a discrete label or the probability of X belonging to a specific class.

Thus, given a trajectory classification dataset D, our objective is to solve a
trajectory classification problem by realizing an interpretable trajectory classifi-
cation function f that allows to understand the reasons for a decision y = f(X).

A fundamental aspect to introduce our proposal is the notion of subtrajectory :

Definition 4 (Subtrajectory). Given a trajectory X of length m, a subtrajec-
tory S = {(�sj , tj), . . . , (�sj+l, tj+l)}, of length l ≤ m, is an ordered sequence of
consecutive values such that 1 ≤ j ≤ m − l + 1.

Subtrajectories can be used for classification purposes, similarly to shapelets, by
selecting the most discriminative ones w.r.t. the target label, depending on some
statistical measure. Mutual Information [17] is commonly used for classification
purposes, measuring the dependency between continuous and discrete variables.
Once the most discriminative subtrajectories are found, the dataset can be trans-
formed in a simpler representation, via the subtrajectory transform. Formally:

Definition 5 (Subtrajectory Transform). Given a trajectory dataset X and a
set S containing h subtrajectories, the Subtrajectory Transform converts X ∈
Rn×m×3 into a real-valued matrix T ∈ Rn×h, obtained by taking the Best Fitting
of each trajectory X ∈ X , and each subtrajectory S ∈ S.

Usually, the best fitting of S in each X is computed by taking the minimum
distance via a sliding window of length l. The most used distance functions to
compare sequential data are the Euclidean distance and Dynamic Time Warp-
ing [2]. However, both have drawbacks when applied to trajectories. First, the
Euclidean distance requires trajectories to have the same number of points, which
is uncommon in real data. Secondly, both DTW and Euclidean distance implic-
itly need a constant sampling rate, which is not always guaranteed. For this rea-
son, in our proposal, we adopt a distance specifically designed for trajectories,
i.e., the Interpolated Route Distance (IRD) [19], which allows the comparison of
trajectories having different lengths and sampling rates. IRD uses the temporal
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Fig. 1. Examples of partitioning. From left to right: original trajectory, Geohash, SAX.

dimension to align two trajectories and, if two observations do not occur at the
same time-step, values are projected by interpolating the information. In other
words, given two trajectories, IRD calculates the distance between them for each
timestamp. If a timestamp is not present in the other time series, IRD uses the
neighboring timestamps to interpolate the values and estimate a position.

4 Geolet

This section presents the GEOgraphic ShapeLET classifier (Geolet), an inter-
pretable classification approach for trajectory data. Geolet is our answer to
the problem of designing an interpretable trajectory classification function f for
a trajectory classification task. Geolet first partitions trajectories into multiple
segments, yielding candidate subtrajectories. Secondly, it normalizes and filters
them to produce a set of prototypical subtrajectories. Then, Geolet transforms
the dataset using the Subtrajectory Transform. Finally, any interpretable clas-
sification model can be used to classify the transformed data.

Partitioning. Several approaches can be used to partition a trajectory: binning
approaches like Symbolic Aggregate Approximation (SAX) [10], or geographical
ones like Geohash [16] (Fig. 1). SAX [10] is a discretization technique to convert
time series into a sequence of symbols. It is usually applied by sliding window [12],
creating a collection of SAX words that can be interpreted as time series subse-
quences. We extend SAX to trajectories by applying the approach independently
to latitude and longitude signals, converting both into symbol sequences. In lay-
man’s terms, multiple coordinates in a trajectory are binned into a single symbol
that represents an area. The converted signals are then used to generate a new
symbol for each pair of observed symbols. The specific hyperparameters’ config-
urations are detailed in Sect. 5. Another partitioning approach is Geohash [16],
an indexing system encoding a rectangular geographic area into strings of letters
and digits. Geohash divides the Earth into 32 regions via a bit array, associat-
ing each area with one of the symbols in [0-1a-z]. Then the process is repeated
recursively until the algorithm reaches the desired accuracy.

Normalization. Following the partitioning phase, the segments must be nor-
malized so that the domains of the various partitions overlap. This can be
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accomplished with a Geohash normalization or a FirstPoint normalization. In
the Geohash normalization, the bottom-left vertex latitude and longitude of the
Geohash cell are subtracted from the coordinates of each point of the subtrajec-
tories. Intuitively, this is equivalent to overlapping each rectangle of the Geohash
partitioning. On the other hand, in the FirstPoint normalization, the latitude
and longitude of the first point of the subtrajectory are subtracted from the
coordinates of each point of the subtrajectory. Intuitively, this is equivalent to
overlapping the first point of each subtrajectory.

Filtering. After the partitioning and normalization phases, depending on the
dimensionality of the data, we might end up with an enormous amount of sub-
trajectories. As a result, a filtering phase is carried out to reduce computational
complexity and produce a smaller set of relevant subtrajectories. In this phase,
subtrajectories are filtered by selecting a subset following some specific criterion.
In the shapelet literature, these criteria can be unsupervised, such as random
sampling and clustering, or supervised using statistical approaches, such as the
Mutual Information or the Chi-squared test [12], that are used to find the subse-
quences that better discriminate between different classes. We experiment with
both unsupervised and supervised approaches in Sect. 5.

Transform. Once a set of representative subtrajectories is found, the subtrajec-
tory transform can be applied, transforming trajectories in a simpler represen-
tation, containing the Best Fitting (BF) between each trajectory in the original
dataset and each extracted subtrajectory. For time series, the distance of choice is
usually the Normalized Euclidean Distance (ED), however, as detailed in Sect. 3,
this is not always the best choice for trajectories. Therefore, given a trajectory
X of length m and a subtrajectory S of length l, the BF can be computed in
different ways. For the Normalized Euclidean distance, a sliding window of size
l is used to compare S with each subtrajectory of X. Formally,

BFED(X,S) =
m−l+1
min
j=1

(ED(Xj:j+l, S))

where Xj:j+l denotes a subtrajectory of X from j to j + l. On the other hand,
defining the notion of best-fitting with DTW is not trivial. Indeed, using the
same approach adopted for ED would limit the purpose for which DTW exists.
Hence, we propose a similar approach, but where we use an expanded sliding
window of length l′ > l:

BFDTW(X,S) =
m−l′+1
min
j=0

(DTW(Xj:j+l′ , S)).

Finally, since IRD exploits the time dimension to interpolate points when two
time series do not have the same sampling rate, we calculate the sliding window
size not w.r.t. the number of observations, but w.r.t. the time interval between
the first observation of the subtrajectory S and its last timestamp tl. Formally,

BFIRD(X,S) =
m−l+1
min
j=1

(IRD(Xj:j+tl , S)).
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Table 1. Datasets description.

animals vehicles seabirds geoLife taxi

# trajectories 102 381 108 5,977 121,312

avg length (std) 173 (56) 601 (230) 2,904 (1162) 8,100 (15178) 55 (22)

avg Δtime (std) 3.75 (6) 83 (596) 100 (0) 3.88 (12) 15 (0)

Δ time min-75%-max 0-4-258 0-30-53,857 100-100-100 0-2-665 15-15-15

Target class (#classes) species (3) category (2) species (3) transport (2) call type (3)

This formula describes the calculation of the best fitting with IRD, using a
sliding window where the length is defined not as the number of features but as
the time interval. The sliding window length must correspond to the minimum
number of points necessary so that the trajectory time interval from j to j + tl
is as close as possible to the subtrajectory’s length.

Independently of the distance function adopted, the original dataset X is
transformed in a simplified matrix representation T . We experiment both with
continuous and discretized subtrajectories in Sect. 5. The transformed dataset T
can be paired with any classification algorithm, having the advantage of a more
interpretable data representation.

5 Experiments

We experiment with Geolet quantitatively on five datasets and we report visual
examples to show the benefits of an interpretable-by-design trajectory classifier.

Datasets. The trajectory classification datasets are described in Table 1. For
animals the task consists in recognizing different species. For vehicles we want
to distinguish between buses and trucks. For seabirds the task is recognizing fly-
ing trajectories of three species of seabirds. For geolife, due to the high number
of classes and to the unbalancing, we simplify the problem to recognizing tra-
jectories of public vs private means of transport. Finally, for taxi, the objective
is to distinguish among different types of taxi calls within one month of obser-
vations. We highlight that, state-of-the-art interpretable classification methods
are experimented only on very small datasets like animal and vehicles. Each
dataset is divided in train/test with a ratio 70/30%.

Competitors. We compare Geolet against two state-of-the-art methods, i.e.,
Movelets [5] and Rocket [4]. Movelets, similarly to Geolet, is an inter-
pretable trajectory classifier that extracts discriminative subtrajectories and uses
them to transform the dataset. The Movelets algorithm requires setting the
minimum and maximum length of the generated subtrajectories. We use the
default implementation values for animals and vehicles. Furthermore, we limit
the maximum length to the logarithm of the number of maximum observations
per trajectory for seabirds, geolife, and taxi. Rocket is a not interpretable
time series classifier that transforms the dataset by applying random convo-
lutional kernels to generate multiple feature maps that capture different data
trends. The only hyperparameter to choose for Rocket is the number of con-
volutional kernels, which is set to 10, 000 as recommended by the authors [4].

https://shorturl.gg/rHWqbP
https://shorturl.gg/rHWqbP
https://shorturl.gg/6UvNY8f
https://shorturl.at/hRW09
https://shorturl.gg/nwjOx
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Geolet Parameters Setting.1 For Geolet, we use Geohash as a partition-
ing algorithm, FirstPoint normalization, Mutual Information (as implemented
by scikit-learn) for filtering subtrajectories, and IRD as a distance measure.
With this configuration, Geolet requires two hyperparameters: the Geohash pre-
cision (prec), and the number of subtrajectories to extract (ns). We set the
optimal parameters via grid-search on the training set2.

Geolet Alternative Implementations. For a fair benchmarking of Geolet,
we devise some alternative versions that are still interpretable but extract expla-
nations using different processes.

First, we compare the geographic-based segmentation of Geolet against a
purely SAX-based approach. For this purpose, we apply the SAX approximation,
as detailed in Sect. 4. We name this baseline MrSQM-T because, as part of the
filtering phase, we adopt MrSQM [12], a time series approach that extracts the
top symbolic subsequences using the Chi-squared test. MrSQM-T randomly
generates k configurations of the triples l, w, α where l is the size of the sliding
window, w is the SAX word length, and α is the alphabet size. MrSQM-T
generates these sets using the same seed to guarantee that the previous config-
urations remain the same as k increases. The optimal value of k is set to 25 for
animals and 11 for vehicles. In the experiments, we observe that MrSQM-T
achieves good accuracy but requires a great computational effort, resulting in
high runtimes, even for these relatively simple datasets.

Secondly, we aim at comparing the supervised subtrajectory selection of
Geolet and MrSQM-T against an unsupervised one. For this purpose, we use a
clustering approach to filter the extracted subtrajectories. Specifically, after Geo-
hash segmentation and partitioning, prototypical subtrajectories are extracted
through K-Medoid, using the Normalized Euclidean distance. Once the cluster
centroids are extracted, they are compared using a sliding window to the orig-
inal subsequences. Each trajectory is encoded with the identifier of the cluster
centroids it contains. We name this baseline TrAC, Trajectory Approximation-
based Classifier. TrAC requires four hyperparameters, i.e., the Geohash preci-
sion prec, the number of cluster k to use with K-Medoids (it also identifies the
number of symbols in the alphabet), the sliding window length w, and the num-
ber of symbols subsequences topss to select based on the Mutual Information
score. For each parameter, we performed a grid-search3.

We highlight that, besides Geolet, MrSQM-T and TrAC are original con-
tributions and do not exist in the literature as interpretable trajectory classifiers.

1 Code available at: github.com/cri98li/Geolet.
2 animals: prec = 2 ns = 21; vehicles: prec = 6 ns = 20; seabirds: prec = 5 ns = 50;
geolife: prec = 6 ns = 50; taxi: prec = 5 ns = 50.

3 prec ∈ [4, 5, 6, 7]; k ∈ [2, 5, 20, 100]; w ∈ [2, 3, 5]; topss ∈ [1, 2, 10, 50] on the training
set. Hyperparameter choice does not significantly affect the method’s performance.
We found constant accuracy values for most of the hyperparameters tested. There
were, however, peaks in the accuracy score for some values. Thus, for animals we
set prec = 4, w = 3 and topss = 2. For the vehicles prec = 6, w = 3 and topss = 10.

https://github.com/cri98li/Geolet
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Table 2. Performance scores, best values in bold, second best in italic.

animals vehicles seabirds geolife taxi

accuracy Geolet 0.935 0.965 0.967 0.861 0.578

Rocket 0.871 0.928 0.667 0.733 0.566

Movelets 0.563 0.921 0.718 – –

MrSQM-T 0.677 0.887 – – –

TrAC 0.742 0.791 – – –

runtime Geolet 27.6 s 50.1 s 48 m 2.42 h 44 m

Rocket 2.4 s 31.5 s 15.7 s 29.1 m 13.3 m

Movelets 25.7 s 141 m 126.9 s – –

MrSQM-T 22.5 m 1.16 h – – –

TrAC 25.4 s 1.18 h – – –

5.1 Classification Performance

Since Geolet, Movelets, Rocket, MrSQM-T and TrAC perform a trans-
formation of the original data, any classification model can be applied to the
transformed dataset. To compare the transformations fairly, we adopted the
same effective model for all five approaches, i.e., a Random Forest classifier as
implemented by the scikit-learn library. The best hyperparameters are found via
grid-search with 10-fold cross-validation4 on the training set.

Results in terms of accuracy and runtime are reported in Table 25. We mea-
sure the execution time of each algorithm from the data preparation phase to
the end of the dataset transformation. Hence, we exclude the time for training
the final model. From a first glance, we can see that Rocket is the method
that takes the least time to execute. As for Movelets, we performed several
attempts with the geolife and taxi, but all the tests ended with an “insufficient
memory error”. In addition, we recorded anomalous results with the animals,
which we suspect was due to a bug in the original code. As for Geolet, we can
see that it manages to get the best results between these two methods, but it
takes a longer execution time. The weakness of Geolet compared to Rocket
and Movelets lies in the number of hyperparameters and configurations from
which one can choose, which is discussed in Sect. 5.3. TrAC and MrSQM-T
perform competitively w.r.t. Movelets in small datasets, but are both outper-
formed by Geolet and Rocket. Moreover, due to their high computational
cost, they are hardly usable when dealing with real-world datasets.

5.2 Geolet Interpretability

This section provides an example of the kind of interpretable classification that
Geolet can provide. We apply Geolet on vehicles with prec = 4 and Geo-
hash as partitioning method, FirstPoint normalization, Normalized Euclidean
4 n estimators = range(300, 1500, 300), criterion = [gini, entropy], max depth =

range(2, 20, 3).
5 Tests are performed on a machine with CPU: AMD Ryzen 9 3900X; RAM: 32 GB;

OS: EndeavourOS Linux. Due to resource limitations, we used 20% of geolife and
70% of taxi.

https://scikit-learn.org/stable/
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Fig. 2. Geolet’s Decision Tree for vehicles (left) and subtrajectories used (right).

Fig. 3. Examples of the Geolet explanation on two instances from vehicles. Left:
instance of the class Bus. Right: instance of the class Truck.

distance and Mutual Information for the transform. Finally, we use a Decision
Tree as a classification model as implemented by scikit-learn, which allows
us to visualize the resulting model graphically and extract rules summarizing
its decision boundaries. In particular, for vehicles, we identified the following
rules:

r1 = {dist(X,S4) is low ∧ dist(X,S0) is low} → Bus
r2 = {dist(X,S4) is low ∧ dist(X,S0) is high} → Truck
r3 = {dist(X,S4) is high ∧ dist(X,S6) is low} → Bus
r4 = {dist(X,S4) is high ∧ dist(X,S6) is high} → Truck

We highlight that, to ease the understanding, we report “is high”/“is low”
instead of the real distance because it is sufficient to understand the meaning
of the rule without accounting for the specific threshold numbers. Specifically,
“low” indicates that the distance measurement is below the split threshold value,
and “high” indicates that the value exceeds it For instance, dist(X,S4) ≤ 0.3 is
translated into dist(X,S4) is low. The decision tree and the subtrajectories are
illustrated in Fig. 2. These rules show that the most representative subtrajecto-
ries are those with indices 0, 4, and 6. We can now understand the decisions of
the classifier by visualizing where the subtrajectories fit within the trajectory.
Figure 3 presents the classification of Geolet for two instances. In particular,
the instance belonging to the class Bus has segments very similar to subtrajec-
tories 0 and 4, and are instead quite different from subtrajectory 6. On the other
hand, the Truck instance contains almost perfectly the subtrajectory 0, but it is
quite different from 4 and 6.
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Fig. 4. Top: accuracy of Geolet varying the number of subtrajectories. Bottom: com-
parison of the distance measures in terms of accuracy (left) and runtime (right). The
first two columns are the results obtained using Geohash-RND, and the last two
columns are the results obtained using Geohash-MIG.

5.3 Geolet Parameters Sensitivity

In general, it is extremely difficult to define a global heuristic for this app-
roach. For this reason, we describe here our implementation choices and analyze
how hyperparameters selection affects the Geolet’s results on animals and
vehicles, providing some practical insights and guidelines.

Partitioning. In Fig. 4 we study how Geohash precision and number of subtra-
jectories affect accuracy. Also, we determine the importance of selecting tra-
jectory using a well-founded criterion such as the Mutual Information Gain
(Geohash-MIG), instead of simply selecting them randomly (Geohash-RND).
IRD is used as distance, and FirstPoint is used as the normalization strategy.
From the results, we can observe that, although random selection (Geohash-
RND) leads to a worse result, it could be a great way to quickly determine the
best precision for Geohash partitioning. The average runtime of Geohash-RND
compared to Geohash-MIG turns out to be 13 times faster for animals and
two times faster for vehicles. On the other hand, by selecting subtrajectories
using Mutual Information (Geohash-MIG), we can achieve better results faster
and with fewer subtrajectories. Regarding animals, we note that increasing the
length of the subtrajectories improves the results.

Normalization. We study here the impact of using different normalization tech-
niques, i.e., Geohash (Geolet-GH) and FirstPoint (Geolet-FP). Our experi-
ments show that the accuracy of Geolet-GH is 0.677 for animals and 0.791 for
vehicles, while for Geolet-FP is 0.935 for animals and 0.965 for vehicles.
Therefore, we select FirstPoint as normalization for Geolet.

Distance. Finally, we analyze the impact of different distance metrics on per-
formance. Figure 4 (bottom) shows that the best distance for animals is DTW,
while the best distance for vehicles is ED. However, when the computation
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time for the dataset transformation is considered, it is clear that larger datasets
cannot use DTW. Thus, excluding DTW, IRD has the best accuracy score for
animals, while it performs negligibly worse than ED for vehicles. As a result,
our intuition is that: (i) for small datasets, the DTW is the best distance, (ii)
for large datasets with consistent sample rates, ED is the best choice, while (iii)
for large datasets with variegated sample rates, IRD is the best compromise
between accuracy and runtime.

In summary, the most sensible hyperparameter of Geolet is the precision.

6 Conclusion

We have presented Geolet, an interpretable classifier for trajectory data. Geo-
let is able to transform trajectory data into a simplified representation that any
classifier can use as an interpretable input source. We have shown that Geolet
outperforms state-of-the-art competitors in terms of accuracy while remaining
competitive in terms of runtime. Besides, Geolet is interpretable, returning
subtrajectory-based explanations that are easily interpretable from a human
standpoint. As future research directions, we intend to improve Geolet’s per-
formance in terms of accuracy, runtime, and explainability. In this sense, many
extensions are possible. Subtrajectories, can be improved by embedding proper-
ties such as scale and rotation invariance, resulting in a smaller set of prototypi-
cal and interpretable subsequences. Also, Geolet can be extended to work with
data that includes additional features like height and semantic textual dimen-
sions, as well as data that uses different coordinate systems. To accomplish this,
the modularity of the implementation can be used to introduce new distance
measures, filtering approaches, normalization techniques, and partitioning meth-
ods. Finally, we want to investigate the regression and forecasting tasks, which
are fundamental in this field but remain unexplored from an XAI standpoint.
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