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Abstract. Missing data are quite common in real scenarios when using
Artificial Intelligence (AI) systems for decision-making with tabular data
and effectively handling them poses a significant challenge for such sys-
tems. While some machine learning models used by AI systems can
tackle this problem, the existing literature lacks post-hoc explainabil-
ity approaches able to deal with predictors that encounter missing data.
In this paper, we extend a widely used local model-agnostic post-hoc
explanation approach that enables explainability in the presence of miss-
ing values by incorporating state-of-the-art imputation methods within
the explanation process. Since our proposal returns explanations in the
form of feature importance, the user will be aware also of the importance
of a missing value in a given record for a particular prediction. Extensive
experiments show the effectiveness of the proposed method with respect
to some baseline solutions relying on traditional data imputation.

Keywords: Explainable AI · Local Post-hoc Explanation ·
Decision-Making · Missing Values · Missing Data · Data Imputation

1 Introduction

Missing data is a pervasive problem across various domains that arises when some
values in a dataset, typically tabular datasets, are unavailable due to factors such
as measurement errors, incomplete data collection, or the intrinsic nature of the
data [7,14]. The presence of missing values, and therefore the absence of some
information, can significantly affect the performance of Machine Learning (ML)
models used by Artificial Intelligence (AI) systems for decision-making in these
contexts, often resulting in biased outcomes and inferior accuracy [13]. In par-
ticular, issues related to missing values are particularly relevant in applications
where accurate data is critical for decision-making, such as medical diagnosis,
risk assessment, and credit scoring [17,38,46]. Hence, addressing missing values
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is crucial to improve the reliability and usefulness of ML models used by AI sys-
tems in real-world scenarios. In the last years, researchers realized various data
preprocessing methods to impute missing values [12,29], and designed predictive
ML models which can deal by design with datasets affected by missing values
such as XGBoost [8], LightGBM [26], and CatBoost [41].

Besides missing values, another issue against which researchers are fight-
ing nowadays is the eXplainability of AI systems (XAI), particularly when ML
techniques are employed to model the logic of the AI system in high-stakes
decision fields [20,28]. Indeed, some of the most effective ML predictors are con-
sidered “black-box” models [20,37] due to their complexity, which causes the
non-interpretability of the decision process [28,34]. However, explainability is a
fundamental requirement in sensitive domains where the AI system is meant to
offer support to experts instead of making decisions for them [15,33].

Even though the current research in XAI is flourishing [1,5,30,50], there is an
apparent research vacuum at the intersection between these two issues in AI and
ML, i.e., XAI approaches able to deal with missing values. To understand a real
practical scenario in which it may be important to have an explanation method
also working in the presence of missing values, we can think of a predictive
model in the healthcare context that tries to assess the severity of a disease or
to recommend a treatment plan. Indeed, models in such contexts are typically
trained and applied on incomplete patient data due to missing values [17,38,
46]. For instance, the record describing a patient can be incomplete because
they cannot undergo particular medical examinations. In such cases, the AI
recommendation should be questioned and inspected thoroughly to check the
correctness of the decision process. In addition, even if the model’s performance
may appear promising, the model might be biased towards a particular group of
patients due to missing data and thus make incorrect predictions and recommend
wrong treatments. Consequently, an explainer working in this context is needed
to verify the decision logic learned and applied by the AI system.

Since the literature shows a lack of efforts toward the design of XAI meth-
ods able to handle missing values, we extend one of the most widely used and
applied post-hoc explanation approaches. In this paper, we propose limemv for
Local Interpretable Model-Agnostic Explanations with Missing Values. limemv
extends lime [42] by removing the need for imputing missing data before explain-
ing the record under analysis. Indeed, limemv handle missing values within the
explanation process by employing state-of-the-art imputation methods. Specif-
ically, (i) we replace the synthetic data generation performed by lime with a
neighborhood generation strategy creating synthetic records with missing data,
and (ii) we substitute the linear model adopted by lime with a surrogate model
able to handle missing values. As a result, limemv is able to return an expla-
nation in the form of feature importance for a record with missing values, for a
predictive model working on missing values, and for considering a dataset with
missing values. We highlight that our proposal for a missing-value-compliant
explanation method can be easily adapted to extend and improve other model-
agnostic explainers like lore [19], or shap [31]. However, we restrict our investi-
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gation and the enabling of the native treatment of missing values into the expla-
nation extraction process of lime due to the easiness of the integration. Our
experiments on various datasets show that limemv explanations are relatively
similar to those of lime and that it approximates well the decisions taken by the
black-box classifier without impacting the fidelity in mimicking the black-box.

The rest of this paper is organized as follows. Section 2 describes the state-
of-the-art related to missing values and XAI. Section 3 formalizes the problem
treated and recalls basic notions for understanding our proposal that is defined
in Sect. 4. Section 5 presents experimental results. Conclusions, limitations and
future works are discussed in Sect. 6.

2 Related Works

In this section, we provide the reader with a brief review of XAI approaches,
taking into account missing values and lime, that is at the basis of our proposal.

In [2] are presented the challenges of imputation in XAI methods showing
different settings where AI models with imputation can be problematic, as opti-
mizing for explainability with post-hoc models while simultaneously optimizing
for performance via imputation may lead to unsafe results. Our proposal can be
adapted to answer many issues raised in this paper. In [25] is confirmed that the
presence of missing values is among the common issues faced by data scientists
working with explainability. However, despite the presence of many researchers
both in the fields of missing values [7,14] and XAI [15,20,28,33,34] there is a clear
lack of effort at the intersection of these two fields. To the best of our knowledge,
we can refer to decision trees [49] as interpretable-by-design approaches dealing
with missing data. Indeed, during training, if an attribute a has missing values
in some of the training instances associated with a node, a way to measure the
gain in purity for a is to exclude instances with missing values of the records of a
in the counting of instances associated with every child node generated for every
possible outcome. Further, suppose a is chosen as the attribute test condition at
a node. In that case, training instances with missing values of a can be propa-
gated to the child nodes by distributing the records to every child according to
the probability that the missing attribute has a particular value. The same can
be done at query time. Obviously, such approaches, despite being interpretable,
are only sometimes effective for solving complex decision problems. Another pos-
sibility for decision trees is the CHAID approach [24] that treats missing values
as separate categorical values. Also, the BEST approach [4] selects a certain fea-
ture to split the dataset only when in the current partition there are no missing
values. Furthermore, CART trees [47] employ recursive partitioning based on
feature thresholds to split data into homogeneous subsets. Recently, in [22] has
been presented a procedure for data imputation based on different data type
values and their association constraints that not only imputes the missing val-
ues but also generates human-readable explanations describing the significance
of attributes used for every imputation.

Again to the best of our knowledge, there are no post-hoc local explanation
approaches able to handle natively missing values. Consequently, we decided to
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extend lime [42], the most well-known model-agnostic explainer that returns
local explanations as feature importance vectors. Further details about lime
are presented in Sect. 3. Although lime is effective and straightforward, it has
several weak points. A possible downside is the required transformation of any
data into a binary format claimed to be human-interpretable. Another aspect
worth highlighting is that the random perturbation method results in shifts in
data and instability in explanations. Indeed, for the same record and prediction,
lime can generate different explanations over several iterations [51]. This lack
of stability is among the main weaknesses of an interpretable model, especially
in critical domains [51]. Lastly, in [16] is shown that additive explanations like
those returned by lime cannot be trusted in the presence of noisy interactions
introduced in the reference set used to extract the explanations.

Over recent years, numerous researchers have analyzed lime limitations and
proposed several subsequent works extending or improving it. Most of the mod-
ifications have been in selecting relevant data for training the local interpretable
model. For instance, klime [21] runs the K-Means clustering algorithm to par-
tition the training data and then fit local models within each cluster instead
of perturbation-based data generation around an instance being explained. A
weakness of klime is that it is non-deterministic, as the default implementation
of K-Means picks initial centroids randomly. In [23] is proposed lime-sup that
approximates the original lime better than klime by using supervised parti-
tioning. Furthermore, kl-lime [40] adopts the Kullback-Leibler divergence to
explain Bayesian predictive models. Within this constraint, both the original
task and the explanation model can be arbitrarily changed without losing the
theoretical information interpretation of the projection for finding the expla-
nation model. alime [45] presents modifications by employing an autoencoder
as a better weighting function for the local surrogate models. In qlime [6],
the authors consider nonlinear relationships using a quadratic approximation.
Another approach proposed in [44] utilizes a Conditional Tabular Generative
Adversarial Network (CTGAN) to generate more realistic synthetic data for
querying the model to be explained. Theoretically, GAN-like methods can learn
possible dependencies. However, as empirically demonstrated in [9], these rela-
tionships are not directly represented, and there is no guarantee that they are
followed in the data generation process. In [51] is proposed dlime, a Determinis-
tic Local Interpretable Model-Agnostic Explanations. In dlime, random pertur-
bations are replaced with hierarchical clustering to group the data. After that,
a kNN is used to select the cluster where the instance to be explained belongs.
The authors showed that dlime is superior to lime with respect to three medi-
cal datasets. We highlight that, besides this deterministic enhancement, clusters
may have a few points affecting the fidelity of explanations. In [52] is presented a
Bayesian local surrogate model called bay-lime, which exploits prior knowledge
and Bayesian reasoning to improve both the consistency in repeated explanations
of a single prediction and the robustness to kernel settings. Finally, in [10] is pre-
sented calime, a causal-aware version of lime that discover causal relationships
and exploits them for the synthetic neighborhood generation.
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Although a considerable number of solutions proposed to overcome the limi-
tations of lime, no state-of-the-art variants allow to handle missing values. This
research vacuum motivates our interest in developing such a methodology.

3 Setting the Stage

In this paper, we address the problem of designing a XAI method able to solve
the black-box outcome explanation problem [20] in the presence of incomplete
data. A black-box classifier is defined as a function b : X (m) → Y that maps
data instances x = {(a1, v1), . . . , (am, vm)} from a feature space X (m) with m
input features (where ai is the attribute name and vi is the corresponding value)
to a decision y in a target space Y of size l = |Y|, i.e., y can assume one of the l
different labels (l = 2 is binary classification, l > 2 is multi-class classification).
We write b(x) = y to denote the decision y taken by b, and b(X) = Y as a
shorthand for {b(x) | x ∈ X} = Y . A classifier b is black-box when its internals are
unknown to the observer or they are known but uninterpretable by humans. If b
is a probabilistic classifier, we denote with bp(x) the vector of probabilities for the
different labels. Hence, b(x) = y is the label with the highest probability among
the l values in bp(x). In this paper, we assume that (i) some values vi of the
records used to train the classifier b can be missing, i.e., vi = ∗, (ii) b can return a
decision y = b(x) even when values vi = ∗ in x are missing. Let A = {a1, . . . , am}
be the set of all the features. We name M(x) = {aj |∀j = 1, . . . m ∧ vj = ∗} the
set of features with a missing value for a record x, and ¬M(x) = A − M(x) the
set of features for which values are not missing. We write M(X), respectively
¬M(X), as a shorthand to indicate the set of features for which at least a record
has a missing value in X. Thus, we can model the input domain of a predictive
model b as X (m) = (A1 ∪ {∗}) × · · · × (Am ∪ {∗}) where Ai identifies the set of
known values for attribute ai. We complete our formalism using |X| to indicate
the size of a dataset X, and Xj to indicate the jth feature, i.e., column, of X.

Given a black-box b and an instance x classified by b, i.e., b(x) = y, the black-
box outcome explanation problem aims at providing an explanation e belonging to
a human-interpretable domain. According to the domain, in our work, we focus
on feature importance modeling the explanation as a vector e = {e1, e2, . . . , em},
in which the value ei ∈ e is the importance of the ith feature for the decision made
by b(x). To understand each feature’s contribution, the sign and the magnitude of
ei are considered. If ei < 0, the feature ai contributes negatively to the outcome
y; otherwise, the feature ai contributes positively. The magnitude represents how
significant the feature’s contribution is to the prediction.

In this context, our aim is to design an explanation method that can return
a valid and meaningful explanation e even in the presence of missing values in
x and/or X without requiring any a priori imputation.

We keep this paper self-contained by summarizing in the following the key
concepts necessary to comprehend our proposal.



LIMEMV 261

3.1 Missing Values Imputation

In statistics [43], the mechanisms of missing values are categorized into three
types depending on the relationship between M(X) and ¬M(X).

First, Missing Completely At Random (MCAR) if M(X) is independent of
A, i.e., when the probability of a record having a missing value for an attribute
does not depend on either the known values or the missing data itself.

Second, Missing At Random (MAR) if M(X) depends only on ¬M(X),
i.e., when the probability of a record having a missing value for an attribute
may depend on the value of other attributes without missing values. In other
words, MAR occurs when the distribution of a record having missing values for
an attribute depends on the observed data. Considering missing data as MAR
instead of MCAR is a safer assumption since any analysis valid for MAR data,
e.g., multiple imputations, is correct also if the data is MCAR [39].

Finally, Missing Not At Random (MNAR) if M(X) depends on M(X), i.e.,
MNAR occurs when the probability of a record having a missing value for an
attribute may depend on the value of that attribute. MNAR data is also called
“non-ignorable” since treating it with techniques designed to work on MCAR
or MAR, like imputation, will produce misleading results. A peculiar case of
MNAR is when data is structurally missing, i.e., data that is missing for a
logical reason. A typical example can be a survey where some questions are
only asked participants who answered in a certain way to previous questions.
In this case, the mechanism is easy to analyze, while MNAR data can pose
more of a challenge since the logic behind the missing data might be difficult to
understand. We conduct experiments with the MCAR mechanism only, as most
researchers are reported doing in the survey in [29]. The extensive adoption of
the MCAR approach underlines its credibility and efficacy in addressing missing
data, making it a compelling and well-founded choice for our investigations. In
future works, we intend to explore also other settings such as MAR or MNAR.

In the following, we summarize two missing values imputation approaches
that we adopted as competitors and as a component of our proposal.

K-Nearest Neighbours. k-Nearest Neighbours (kNN) is a supervised ML
method widely employed with good results for imputing missing values [29].
KNN identifies the nearest neighbors of an instance based on a distance func-
tion, e.g., the Euclidean distance. The distance computation is performed w.r.t.
the features in ¬M(x). A majority vote is then conducted among the top k
neighbors to determine the most appropriate value for replacing the missing
one.

MICE. Multivariate Imputation by Chained Equations (MICE) [3] is a multiple
imputation method [36] that can be used whenever missing data is assumed to
be MAR or MCAR. MICE works by imputing values in multiple copies of the
dataset and then pooling together the results. On each copy of the available data,
MICE performs an iterative process in which, at each iteration, a feature in the
dataset is imputed using the knowledge of the other attributes. In particular, at
each iteration, the first step replaces the missing values in M(X) with placeholder
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Algorithm 1: lime(x, b, X, k, N)
Input : x - instance to explain, b - classifier, X - reference dataset,

k - nbr of features N - nbr of samples
Output: e - features importance

1 Z ← ∅, Z′ ← ∅, W ← ∅, S ← ∅; // init. empty synth data, weights, ad stats

2 for j ∈ [1, m] do
3 S ← S ∪ {(μ(Xj), σ(Xj))}; // compute statistics

4 for i ∈ [1, . . . , N ] do
5 z ← sampling(x, S); // random permutation

6 z′ ← {(aj , 1(xvj = zvj ))|j = 1, . . . , m}; // features changed

7 Z ← Z ∪ {z}; Z′ ← Z′ ∪ {z′}; // add synthetic instance

8 W ← W ∪ {exp(−π(x,z)2

σ2 )}; // add weights

9 e ← solve Lasso(Z′, bp(Z), W, k); // get coefficients

10 return e;

values that do not consider the other features, e.g., the mean of the available
data for that attribute or random values. Then, let X ′ ⊂ X, for each attribute
a ∈ M(X ′), MICE imputes it with a linear regression model trained on another
slice of the dataset X ′′ ⊂ X such that a ∈ ¬M(X ′′). An iteration is completed
when all the features are processed. This process is repeated up to a user-specified
number of times or until convergence is reached.

3.2 LIME

A widely adopted, local, model-agnostic, post-hoc explanation method is lime
(Local Interpretable Model-Agnostic Explanations) [42], which acts as a foun-
dation for our proposal. The main idea of lime is that the explanation can be
derived locally from records generated randomly in the synthetic neighborhood
Z of the instance x that has to be explained.

Algorithm 1 illustrates the pseudo-code of lime. In line 1, two empty sets
Z and Z ′ are initialized. Z will be populated with the synthetic data sampled
around the instance x represented in the real domain, while Z ′ will contain a
representation of the synthetic records in Z in a binary version signaling the
features that have been changed, i.e., given z′ ∈ Z ′ and z ∈ Z, the value of
the jth features in z′ is equal to one (z′

vj
= 1) if zvj

= xvj
, z′

vj
= 0 otherwise.

The vector W will contain the weights associated with the records Z generated,
expressed in terms of their distance from x. S will contain the statistics of every
feature j with j = {1, . . . , m} where m is the number of features. Indeed, the
loop in lines 2–3 populates S with the mean μ and standard deviation σ of every
feature Xj . Subsequently, lime runs N times a loop (lines 4–8), populating
Z,Z ′ and W at each iteration with a new synthetic instance. lime randomly
samples N instances similar to x by drawing values according to the statistics
S (line 5). The function 1(condition) in line 6 returns one when the condition
is verified, zero otherwise. It highlights how lime creates the binary version Z ′

of the synthetic records Z. Then, lime weights proximity of the records z′ with
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x w.r.t. a certain distance function π and store the result in W (line 8). Finally,
lime adopts the perturbed sample of instances Z to fed to the black-box b and
obtain the classification probabilities bp(Z) with respect to the class b(x) = y.
The binary synthetic instances Z ′ with the weights W are used to train a linear
regressor with Lasso regularization using the classification probabilities bp(Z) as
the target variable and considering only the top k most essential features (line
9). The k coefficients of the linear regressor are returned as explanation e.

4 Local Explainability with Missing Values

We present limemv (Local Interpretable Model-Agnostic Explanations with
Missing Values). limemv extends lime [42] with the ability to handle incom-
plete data during the explanation process. This eliminates the need of imputing
missing values both on the training dataset and on the records for which the
explanation is required. The presence of the missing values in X impacts the
calculus of the statistics S used to generate the synthetic neighborhood (line
3, Algorithm 1), while missing values in the record x to be explained impacts
the sampling function generating the synthetic records z (line 5, Algorithm 1).
limemv is able to deal with both of these issues.

Before outlining the details of limemv, we aim at clarifying when this app-
roach is crucial. Given a dataset X with missing values, a user can decide (i) to
adopt a model b which is not able to handle missing values, such as a SVM or
a Neural Network, (ii) to use a model b able to handle missing values, such as
XGBoost and LightGBM. In the first case, in order to train b, the user needs to
preprocess X by applying a data imputation approach. As a consequence, given
a test record x possibly having missing values, the same imputation approach
should be applied on x before querying b to obtain the decision y = b(x). Thus,
if an explanation e is desired for the decision y = b(x), the classic lime approach
can be used. Instead, in the second case, the dataset X can be directly used to
train b, and any test record x can be passed to b without requiring any data
imputation. However, if an explanation e is desired, for the decision y = b(x),
the classic lime approach cannot be used, as it cannot work in the presence of
missing data. A naive solution consists in applying an imputation approach on X
and x before passing them to lime (see Algorithm 1). However, in this case, the
explainer is applied to a dataset and on a record that differ from those adopted
by the decision model b. On the other hand, with limemv, the user does not
need to apply any imputation approach, and it can be used directly to obtain
the explanation e for the decision y = b(x) in the presence of missing data.

The pseudo-code of limemv is reported on Algorithm 2, with the main differ-
ences from lime highlighted in blue. In the following, we detail such differences.
Also, Fig. 1 visualizes with an example the various steps of limemv.

4.1 Input Parameters

First, we can notice that (i) limemv does not require the user to specify the
number of important features k as these are identified by design by the surrogate
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Algorithm 2: limemv(x, b, X, k, N)
Input : x - instance to explain, b - classifier, X - reference dataset,

N - nbr of samples, ψ - imputation function
Output: e - features importance

1 Z ← ∅, W ← ∅, S ← ∅; // init. empty synth data, weights, ad stats

2 for j ∈ [1, m] do
3 X ′

j ← {(ai, vi)|∀i = 1, . . . , |X| ∧ vi �= ∗}; // consider only non missing values

4 S ← S ∪ {(μ(X ′
j), σ(X ′

j), 1−|X ′
j |/|X|)}; // compute statistics

5 for i ∈ [1, . . . , N ] do
6 z ← sampling imputation(x, ψX , S); // random permutation with imputation

7 Z ← Z ∪ {z}; // add synthetic instance

8 W ← W ∪ {exp(−π′(x,z)2

σ2 )}; // add weights

9 T ← train tree(Z, bp(Z), W )); // train regressor tree

10 e ← tree feature imp(x, T ); // get coefficients

11 return e;

model adopted; (ii) it requires as input an imputation function ψ, i.e., a function
that given a dataset X fills the missing values using a certain strategy. Examples
of ψ functions are kNN [29] and MICE [3]. Other naive approaches may consist
in using the mean (or the mode) of each feature to fill in missing values.

4.2 Dataset Statistics

The next difference is in the loop computing the statistics (lines 3–4). Indeed,
rather than of calculating the mean and standard deviations for the complete
set of features Xj , it calculates them on a subset X ′

j ⊆ Xj such that Xj only
contains not missing values (as formalized in line 3). This setting solves the
possible presence of the missing values in X. Another difference w.r.t. lime is
an addition to the set of computed statistics, i.e., the information about the
distribution of missing values in each attribute. Since a priori we need to assume
MCAR data, this boils down to the relative number of missing values for each
feature, i.e., 1−|X ′

j |/|X|. However, when dealing with MAR data, information
about the relationships with other features can be exploited if available. Figure 1
shows an example of S content resulting from a dataset.

4.3 Synthetic Neighborhood Generation

The knowledge stored in S is then applied when generating the synthetic neigh-
borhood in the subsequent loop (lines 5–8) that is responsible for the synthetic
neighborhood generation, where the sampling function has been changed w.r.t.
lime (line 6, Algorithm 2) to fix the possible presence of missing values in the
record x. The problem we face is relative to how to sample values around a
coordinate that is absent from x. A naive strategy consists in generating the N
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Fig. 1. limemv takes as input the reference dataset X, the instance to explain x
and the black-box b, and returns as output a feature importance explanation e. The
workflows highlights the statistics S calculated considering missing values and shows
the synthetic neighborhood Z before and after the imputation with ψ. Finally, e is
returned as feature importance extracted from a local regressor tree using as target
variable the probability bp(x) for the decision y = b(x).

synthetic neighbors Z only considering the features in ¬M(x). This would prac-
tically remove those attributes from the explanation, thus preventing the user
from understanding the impact of features with missing values. On the other
hand, the sampling imputation adopted by limemv works as follows. The val-
ues for the features in ¬M(x) are drawn as in the classic approach exploiting the
means and standard deviations in S, while for the features in M(x) the values
are set as missing ∗. After that, an imputation function ψ is used to fill a number
of missing values in z proportionate with the ratio stored in S, i.e., 1− |Xj |/|X|
for feature j. We implemented ψ as kNN [29] and MICE [3]. In other words,
with limemv we obtain a set Z of synthetic records where the features without
missing values in ¬M(x) are randomly sampled around the observed values or
left the same, while some of the records of some of the features with missing
values in M(x) are filled w.r.t. the records in X, i.e., with plausible values for
non missing features. Hence, in this way, the imputation is performed exclusively
at explanation time and to generate a plausible synthetic dataset in the prox-
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imity of x and respect the missing values in X. Figure 1 shows an example of
a synthetic neighborhood Z before and after the application of the imputation
function ψ. We notice that the number of missing values per feature remains
coherent with those in the observed dataset X and captured by S.

Like in lime, the importance of the synthetic records in Z is stored in W
and it is evaluated w.r.t. their proximity with x. Differently from lime, since the
synthetic records z have missing values, we employ a function (π′) calculating
the Euclidean distances in the presence of missing values by ignoring features
with a missing value in both x and z and scaling the result as m divided by the
features without missing values [11], i.e., |(¬M(x)) ∩ (¬M(z))|.

4.4 Local Interpretable Surrogate Model

At this stage, differently from lime, the synthetic neighborhood Z contains
missing values. As a consequence, the linear Lasso regression model cannot be
used as it is not capable of handling training sets containing missing values.
Thus, inspired by [19], we decided to employ a decision tree T that is able to
deal with missing data by design [49] (line 9). As a side effect, in limemv there is
no need for the user to specify the number of important features k for which the
explanation is required as the explanation e is going to be formed only by the
features appearing in the branch of T responsible for the decision on x. However,
differently from lime instead of training the surrogate tree regressor T on Z ′,
i.e., the binary version of Z modeling the changes w.r.t. x, like in [19], we train
the surrogate T directly on Z, permitting in this way to understand in terms
of values, and not in terms of presence/absence, the dependencies between the
features Z and the prediction probability of the target label bp(Z).

4.5 Explanation with Missing Values

Finally, limemv extracts the explanation e of x in terms of feature importance
with the function tree feature imp as follows. First, as the magnitude of the
feature importance ej , it is used the normalized total reduction of the impurity
criterion brought by the jth feature, i.e., the Gini importance1 [49]. Second, as
the sign of the feature importance ej , limemv adopts the sign of the difference
between the average value on the qth node in the tree (with q = 0 indicating the
root) and the subsequent one w.r.t. the path from the root to the leaf followed
on T for the prediction of the record x, i.e., sign(Tq(x) − Tq+1(x)), where Tq(x)
indicates the average value on the qth node T for the prediction of x. Thus,
each feature j receives a score that depends on the decision path followed on x.
We should note that, while considering ej could be reasonable, it requires more
investigation and might also be of interest outside the missing data domain.

For example, suppose that a certain local surrogate tree T for the record x
in the root separates the data using the attribute aj =age. If the normalized

1 The Gini importance could be biased regarding cardinality as pointed out in [48]
but its effect is mitigated from the normalization.
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Gini importance of aj is 0.4, and, for x, T0(x) − T1(x) < 0, than, we will have
ej = −0.4, meaning that age has a negative contribution of 0.4 in the decision
taken by b on x. We underline that, according to our definition, the value of age
for x might also be unspecified in this setting. However, we still have access to
its local importance for the decision y = b(x).

5 Experiments

We report here the experiments carried out to validate limemv2. We present
the evaluation measures adopted, the datasets used, the experimental setup,
and the explainers selected as baselines. Then, we demonstrate that limemv
outperforms lime used in pipeline with standard imputation approaches. Since
it is not generally possible to access the ground truth for explanations [18], we
decided to adopt a controlled experiment to check the validity of the explanations
returned by limemv and by the baseline competitors to judge their effectiveness.

In particular, we adopt datasets without missing data in which we insert
missing values in a controlled way. Formally, let X be the original dataset, and
X̃ the same dataset where some records are modified by inserting missing values
for certain features according to a procedure detailed in the following sections.
Let b be the black-box able to deal with missing trained on X and b̃ the same
black-box trained on X̃. Also, let x be a record to predict and explain and x̃ the
same record but with some missing values. Given an explanation method expl
that is implemented in the experiments by limemv or by one of the baselines, we
name e and ẽ the feature importance explanations returned by expl(x, b,X) and
expl(x̃, b̃, X̃), respectively. Then, by comparing sets of e and ẽ, i.e., the expla-
nations obtained for records with and without missing values, we can establish
the impact of the treatment of the missing values in the explanation process:
the lower the discrepancy between the explanations, the less impactful is the
treatment of the missing values made by the explainer.

5.1 Evaluation Measures and Explanations Normalization

In order to compare explanations expressed as feature importance, we normalize
the magnitude ei of the values present in each explanation e. Given an explana-
tion e, we aim at guaranteeing that the following property holds

∑m
j=1 |ej | = 1.

Thus, we normalize the value ej obtaining the normalized value e′
i as

e′
i = ei/

m∑

j=1

|ej |.

We underline that this normalization is useful not only to compare explanations,
but also to make the explanations more intuitive for human users. In the fol-
lowing, we assume that all the explanations returned by the different explainers
tested are normalized as described in this section.
2 The implementation is available here: https://github.com/marti5ini/LIMEMV..

https://github.com/marti5ini/LIMEMV.
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Table 1. Datasets statistics and classifiers accuracy. Specifically, we present the number
of samples of each dataset (n), the number of features (m), the number of labels that
can assume the class (l), the number of training records for the black-box (Xb) and
the number of records for which we seek predictions (Xt). Additionally, we report the
accuracy of the black-box without missing values (b) and with missing values (b̃) across
various levels of missingness (p).

n m l |Xb| |Xt| b b̃

p = 10 p = 20 p = 30 p = 40 p = 50

adult 32561 13 2 2600 50 .88 .87 ± .01 .87 ± .01 .70 ± .01 .87 ± .01 .87 ± .01

compas 6907 11 2 1381 50 .81 .79 ± .01 .79 ± .02 .80 ± .01 .79 ± .01 .79 ± .02

diabetes 768 8 2 154 50 .73 .73 ± .02 .70 ± .03 .71 ± .04 .69 ± .02 .70 ± .04

fico 10459 22 2 1822 50 .67 .70 ± .01 .70 ± .00 .70 ± .00 .70 ± .01 .69 ± .01

german 1000 20 2 200 50 .83 .79 ± .02 .77 ± .03 .77 ± .02 .77 ± .04 .76 ± .02

iris 150 4 3 30 30 1.0 .96 ± .03 .99 ± .02 .95 ± .08 .98 ± .03 .96 ± .04

titanic 715 4 2 143 50 .78 .77 ± .02 .78 ± .02 .76 ± .02 .76 ± .02 .76 ± .02

Given a couple of normalized explanations with and without missing values e
and ẽ, we adopted the Cosine Similarity (CS) [49] and the Kendall Tau (KT) [27]
to measure their similarity. The CS ranges in [−1, 1], the closer to one the better
it is. In addition, inspired by [16,32], we measure the discrepancy between two
explanations by calculating the Absolute Deviation (AD) as feature-wise and
record-wise means of the vector of differences δ = {|e1 − ẽ1|, . . . , |em − ẽm|}. The
AD ranges in [0,+∞], the closer to zero the better it is. In particular, we group
the features to analyze the differences between the features contained in M(X̃)
versus those contained in ¬M(X̃). We use ADW to indicate the AD for features
W ith missing values, and ADO for the AD of features with Out missing values.

Furthermore, in line with the literature in XAI [5,20], we measure the Fidelity
(FI) of the local surrogate models in approximating the behavior of the black-
box as the difference between the predicted probability of the black-box for the
decision, i.e., bp(x), and the prediction of the surrogate, i.e., T . We measure the
FI as 1 − |bp(x) − T (x)| such that it is in [0, 1], the closer to one the better it is.

Finally, we also report the Explanation Time (ET) expressed in seconds.

5.2 Datasets and Experimental Setting

We experimented on seven benchmarking datasets from UCI Machine Learn-
ing Repository and Kaggle3, namely iris, titanic, adult, german, diabetes,
compas, and fico, which belong to diverse yet critical real-world applications.
These datasets have very different properties in terms of number of records and
features and type of features, i.e., their attributes are numeric, categorical, or
mixed. Table 1 (left) presents a summary of each dataset. The datasets are pre-
processed by removing all the records with missing values, and normalized using

3 https://archive.ics.uci.edu/ml/index.php, https://www.kaggle.com/.

https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/
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the Z-Score normalization [49]. Categorical features are label encoded. We split
each dataset into two partitions: Xb, is the set of records to train the black-box
models b and b̃ when trained on the training with and without missing values,
respectively, while is Xt the partition that contains the records for which we
want a prediction b and b̃ and an explanation from the explainers detailed in
the following section. We highlight that both Xb and Xt are used at training
and explanation time in the two versions with and without missing values. We
underline that Xb is used to train the black-box but also by limemv and by the
baselines tested to gather information to generate the synthetic neighborhood.

Our objective is to re-create a scenario in which missing values are present
both in the observable data and in the records for which the explanation is
required4. In this work, we experiment with the MCAR setting, which is typ-
ically assumed in the presence of missing values when additional knowledge is
unavailable. We leave the study on MAR and MNAR for future work.

Since often the most important features for individual predictions are in
overlap with features globally important for the classifier, we aim at stressing
the experimental scenario by inserting missing values among the features most
important globally. Thus, for each dataset, we train a Random Forest (RF)
classifier on Xb with default hyper-parameters. We exploit the RF to obtain a
ranking of the m features {j1, . . . , jm}, where jr says that the jth features is
ranked rth w.r.t. its importance, which is determined using Gini importance.
Thus, we randomly select p% features among the most important ones with
respect to the ranking obtained with p ∈ {10, 20, 30, 40, 50}, i.e., |M(X)| =
|X|∗p/100. Then, for each feature in M(X) we select the percentage q of missing
values with q ∈ {4, 8, 16, 32}. Hence, we are able to observe the impact of different
configurations of missing values in the explanation process.

As black-box we trained an XGBoost [8] implemented as the xgboost library5

using default parameters both in the training set with and without missing values
to avoid possible biases. The partitioning sizes and the classification accuracy
in presence of missing values and without them are in Table 1 (right). When in
presence of missing values for a certain percentage of features p, it is reported the
average accuracy w.r.t. the various percentages of missing values in the features
q. We notice that, even in presence of missing values with various p, the accuracy
of the various black-boxes b̃ remains close to the accuracy of b.

5.3 Baseline Explainers

We compare limemv against some naive approaches that can be adopted to solve
the problem faced in this paper without requiring a novel implementation. These
solutions consist in using a data imputation approach on the dataset Xb and on

4 In preliminary experimentation considering missing values present only in the observ-
able data Xb or only in the explained records Xt we noticed that the overall per-
formance are similar to those reported in this paper. Thus we preferred to illustrate
and discuss results only for the most realistic and complex scenario.

5 https://xgboost.readthedocs.io/en/stable/.

https://xgboost.readthedocs.io/en/stable/
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the test record x, and then relying on the explanation returned by the classic
lime version since there are no missing values disturbing the explanation process.
As data imputation approaches we experiment with the mean value of the feature
with missing values, kNN, and MICE. We adopt the names lb-m, lb-k, and
lb-c, to refer to these baseline explainers relying on mean, kNN, and MICE
imputations and lime, respectively. On the other hand, we use lmv-k and lmv-
c to refer to the two versions of limemv implementing the imputation function
ψ with kNN and MICE, respectively. For future work, it could be also interesting
to investigate lime with a tree-based local model and pre-hoc imputation as a
competitor. To make the lime and limemv methods comparable, since limemv
automatically selects the most important features that will appear with non-
zero features importance, for lime we set k = m such that all the features are
considered by the surrogate Lasso regressor. For all the explainers we keep the
size of the synthetic neighborhood as in the original lime implementation, i.e.,
N = 5000. We remark on the fact that with p and q we refer to the percentages
of features among the most important ones and those with missing values and
they do not impact with k.

5.4 Case Study Explanation

Before presenting the experimental results, we show in Fig. 2 a case study expla-
nation for a record of the adult dataset where missing values are inserted among
p = 50% of the most important features according to a RF and such that there
are at least q = 20% missing values for each feature with missing. The features’
importance of the explanations is reported as bars for the features having a
value ej different from zero. Thus, the taller the bar, the higher the magnitude
of the feature importance ej . For completeness, we also report the values. The
plot on the left shows the feature importance returned by lime using kNN as
data imputation method at the preprocessing time, while the one on the right
shows the feature importance returned by limemv using kNN as an imputation
function ψ.

In this particular example, the record has two missing values for the
attributes age and relationship. By comparing the two plots, we immediately
realize two aspects. First, due to the usage of the Lasso regressor as a local
surrogate, lime returns much more features than limemv with non-zero feature
importance ej

6. On the other hand, the local surrogate tree regressor adopted by
limemv is able to identify by-design the most important features, and indeed,
due to the experimental setting adopted, among them, we find also age and
relationship. Second, we visually see a clear discrepancy between the feature
importance of the explanations with and without missing values when lime or
limemv are adopted. Indeed, limemv is considerably more adherent than lime
to the explanation without missing values as to capital-gain is assigned almost

6 Such an outcome is due to the choice of k = m. However, regardless of how we set
k, the same result occurs when k is smaller than m and greater than the minimum
number of features required to obtain a high-performing linear regressor surrogate.
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Fig. 2. Explanations of a record of the adult dataset with and without missing values
for lime using kNN as imputer at preprocessing time, and limemv using kNN as
imputation function ψ. Normalized/missing values (*) of the record are on the x-axis.

the same value. Furthermore, also for the features with missing values, we notice
a minor discrepancy for the explanation of limemv: age passes from 0.023 to
0.025 for limemv while it changes from −0.14 to −0.58 for lime, relationship
passes from −0.004 to 0.00 for limemv while it changes from −0.003 to −0.046
for lime.

In the next section, we observe numerically these phenomena on various
datasets and with various settings for inserting missing values.

5.5 Results

According to our experimental setting, we are able to evaluate the explanations
with the measures previously presented for each record in Xt of each dataset,
for each explanation method, and for each couple of parameters p and q tested.
Table 2 reports the mean and standard deviations for the various settings where
the measures obtained for the local explanations of the records in Xt of each
setting are aggregated using the interquartile range mean, i.e., the mean of the
values in the range defined by the 25th and 75th percentile. The score of the best
performer for each dataset and measure is highlighted in bold.

We immediately realize that lmv-k exhibits superior performance in all qual-
itative measures for adult, compas, and titanic. Furthermore, lmv-k is always
the best performer in terms of ADO, i.e., it is the explainer treating missing val-
ues with a smaller impact on features without missing values. This characteristic
is particularly significant since missing values are usually a minority among the
records in a dataset, and therefore, their importance should remain unchanged
regardless of their presence or absence. On the contrary, limemv adopting MICE,
i.e., lmv-c, is often among the worst in terms of ADO. This underlines how the
choice of a certain imputation function ψ can affect the explanation process that
is not necessarily the best with more advanced imputation functions.

Concerning the similarity measures CS and KT we notice that there is not a
clear winner. Indeed, regarding CS for three datasets, the best approach is lmv-
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Table 2. Mean and standard deviation of the evaluation measures observed for each
dataset, explainer, and setting of missing values w.r.t. the number of features with
missing and percentage of missing values. The best performer is highlighted in bold.

CS ↑ KT ↑ ADW ↓ ADO ↓ FI ↑ ET ↓
adult lb-m .024 ± .38 .271 ± .05 .299 ± .20 .029 ± .02 .691 ± .11 .047 ± .00

lb-k .465 ± .14 .396 ± .04 .211 ± .09 .026 ± .01 .796 ± .02 .048 ± .00

lb-c .132 ± .28 .304 ± .03 .276 ± .16 .027 ± .01 .697 ± .07 .577 ± .00

lmv-k .770 ± .06 .437 ± .08 .112 ± .05 .012 ± .01 .834 ± .02 8.75 ± 1.08

lmv-c .071 ± .28 .026 ± .06 .317 ± .18 .031 ± .01 .697 ± .07 .040 ± .00

compas lb-m .314 ± .11 .243 ± .09 .176 ± .04 .072 ± .02 .870 ± .02 .059 ± .01

lb-k .360 ± .07 .248 ± .07 .194 ± .05 .041 ± .01 .871 ± .04 .059 ± .01

lb-c .258 ± .06 .206 ± .05 .210 ± .05 .057 ± .01 .869 ± .02 .210 ± .01

lmv-k .380 ± .07 .387 ± .07 .071 ± .10 .028 ± .02 .858 ± 0.03 1.82 ± .26

lmv-c .311 ± 0.07 .119 ± .06 .301 ± .10 .058 ± .01 .871 ± .02 .039 ± .00

diabetes lb-m .235 ± .15 .143 ± .14 .284 ± .05 .087 ± .02 .772 ± .03 .037 ± .00

lb-k .315 ± .12 .228 ± .12 .266 ± .04 .060 ± .01 .771 ± .03 .041 ± .00

lb-c .316 ± .12 .215 ± .13 .261 ± .04 .069 ± .01 .774 ± .02 .099 ± .00

lmv-k .248 ± .17 .303 ± .10 .364 ± .17 .030 ± .03 .809 ± .05 .227 ± .03

lmv-c .210 ± .07 .165 ± .08 .400 ± .14 .076 ± .02 .774 ± .02 .035 ± .00

fico lb-m .340 ± .14 .334 ± .08 .094 ± .03 .023 ± .00 .816 ± .03 .086 ± .00

lb-k .681 ± .11 .466 ± .06 .066 ± .02 .018 ± .00 .842 ± .02 .093 ± .00

lb-c .731 ± .07 .500 ± .05 .062 ± .01 .018 ± .00 .844 ± .02 1.56 ± .00

lmv-k .491 ± .52 .129 ± .17 .223 ± .11 .010 ± .01 .781 ± .03 3.19 ± .40

lmv-c .273 ± .20 .047 ± .05 .141 ± .04 .038 ± .01 .844 ± .02 .081 ± .00

german lb-m .483 ± .10 .405 ± .07 .079 ± .01 .027 ± .00 .832 ± .03 .063 ± .00

lb-k .521 ± .11 .433 ± .09 .079 ± .01 .025 ± .00 .838 ± .02 .074 ± .00

lb-c .526 ± .11 .436 ± .08 .079 ± .02 .024 ± .00 .851 ± .03 .547 ± .00

lmv-k .445 ± .13 .396 ± .11 .126 ± .03 .012 ± .01 .849 ± .03 .345 ± .04

lmv-c .398 ± .07 .210 ± .04 .127 ± .02 .034 ± .01 .851 ± .01 .059 ± .00

iris lb-m .565 ± .24 .317 ± .22 .285 ± .11 .162 ± .06 .758 ± .07 .063 ± .00

lb-k .619 ± .18 .503 ± .11 .232 ± .09 .087 ± .03 .791 ± .04 .064 ± .00

lb-c .599 ± .22 .450 ± .16 .252 ± .11 .097 ± .02 .698 ± .06 .114 ± .00

lmv-k .525 ± .36 .446 ± .28 .337 ± .20 .050 ± .04 .834 ± .10 .110 ± .00

lmv-c .456 ± .17 .377 ± .12 .269 ± .13 .134 ± .05 .698 ± .06 .061 ± .00

titanic lb-m .156 ± .17 .151 ± .19 .558 ± .09 .168 ± .06 .618 ± .07 .053 ± .00

lb-k .172 ± .14 .157 ± .14 .542 ± .07 .113 ± .05 .658 ± .05 .054 ± .00

lb-c .151 ± .12 .133 ± .16 .541 ± .07 .110 ± .04 .630 ± .07 .080 ± .00

lmv-k .182 ± .11 .168 ± .16 .521 ± .09 .100 ± .11 .678 ± .05 .232 ± .02

lmv-c .086 ± .18 .075 ± .13 .663 ± .14 .116 ± .05 .630 ± .07 .051 ± .00

k, for the other three is lb-c, and for one is lb-k. On the other hand, for KT,
lmv-k is the winner on four datasets, lb-c on two, and for one dataset lb-k.
The insights from this analysis are the following. First, relying only on the mean
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at a preprocessing time does not guarantee at all coherence for explanations,
and using lmv-c can be even worse. Some approaches are favoring similarity
among the scores (measured in terms of CS), while others are favoring that the
ordering of the scores, i.e., the order of the importance, is respected. Overall,
adopting kNN as an imputation function is a reliable solution at a preprocessing
time with lime but is even better at explanation time with limemv.

Regarding the absolute deviation with missings (ADW), the situation is even
more unclear as it is considerably difficult to leave untouched the level of impor-
tance of a feature when the value is missing. A possible future research direction
might re-frame this measure into a loss function and learn an explanation model
from simulated situations of missing values (like the proposed experiment) such
that these errors can be avoided by relying on the other features with values to
estimate the importance of the features with missing values.

For the fidelity (FI) of the local surrogate, we observe that the proposed
approaches in the limemv family have always the best results. This is probably
due to the usage (i) of the regressor tree that is better in approximating the
behavior of the black-box, (ii) of a synthetic neighborhood that includes missing
values and resembles the real data where the black-box is trained and applied.

Finally, for the explanation time (ET), we observe that lmv-k is the slowest
approach compared to the others that always have an ET smaller than a second
for explaining a single instance. This is caused by the kNN imputation approach
that is applied for each instance in the synthetic neighborhood Z having at least
a missing value and every time it needs to calculate the distance with all the
other synthetic records in Z. Since the size of Z is N = 5000, this causes a not
negligible increment in the ET w.r.t. the other explainers for large datasets.

In Fig. 3 and Fig. 4, we observe the impact of the different percentages of fea-
tures with missing values (p) and different percentages of missing values in fea-
tures (q) on the evaluation measures CS, KT, ADW, and ADO, for the datasets
adult and german, respectively. Similar behaviors can be observed for the other
datasets. In particular, for compas, diabetes, titanic and iris results are
similar to adult, while for fico results are similar to german. We do not report
the same plots for FI and ET as the variation of p and q do not impact these
measures significantly enough.

As we know from the previous discussion and from Table 2, lmv-k is, on
average, the best performer for the adult dataset. However, Fig. 3 unveils that
this is not true for all combinations of p and q. Besides highlighting the best
performers, through these plots, we can understand that the situation is even
more variegated than expected, independently from the explainer we are inter-
ested in. Indeed, from Fig. 3, we can realize that for the explainers the increment
of the percentage of features with missing values p has an impact w.r.t. certain
measures. The measures more impacted by p are CS and ADW, as we observe
an increasing performance trend when p grows. Indeed, the explainers are more
coherent in explaining the corresponding record without missing values when
the number of missing values is smaller. This may seem surprising. However, it
makes sense that when there are fewer features with missing values, it is eas-
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Fig. 3. Impact on evaluation measures of the variation of percentage of features with
missing values (p) and percentage of missing values in features (q) for adult.

ier to create a discrepancy with the real importance value as by experimental
setting, these are the globally most important. In comparison, when there are
more features with missing values, their overall relative importance might be
balanced among them, and the measures suffer less from their incorrect evalua-
tion. A future research direction might consist in designing unbiased evaluation
measures. All the explainers gain an improvement of ADW with lmv-k being
constantly the best while concerning CS lmv-k and lb-k seem to be more robust,
and their performance remains constant when varying p. On the other hand, KT
and ADO are less impacted by the variation of p. Concerning q, we notice that
nearly all the plots have slight changes from left to right, except for q = 32 for
ADO. Indeed, in this case, especially for lb-m, we observe a degradation of the
performance in terms of discrepancy for the features without missing values, i.e.,
having 32% of missing values in the features negatively affects the estimation of
the importance of features without missing values.

In Fig. 4 are shown the same results reported in Fig. 3 but for german. In this
case, we can notice that the percentage of features with missing values p has a
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Fig. 4. Impact on evaluation measures of the variation of percentage of features with
missing values (p) and percentage of missing values in features (q) for german.

negligible impact w.r.t. almost measures. For ADO, we observe an improvement
in the performance when p grows, but this is not evident as it was in Fig. 3 for CS
and ADW. In addition, the scores of all the explainers are quite similar to each
other and do not follow a clear increasing or decreasing trend. Therefore, these
approaches are not very sensitive to the characteristics of the missing values for
german, for the configurations studied.

6 Conclusion

We have presented limemv, the first proposal in the research area of post-hoc
local model-agnostic explanation methods that is able to handle the presence of
missing values directly in the explanation process. An experimental evaluation
empirically proves that using limemv leads to more reliable explanations than
using any imputation approach in the pipeline with the classic lime regarding
coherence for features without missing values and fidelity of the local surrogate
model. However, we cannot state that limemv is always the best solution as
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it seems that various issues are tied to the type of dataset processed by the
black-box, with the type of missing values and how disruptive their presence is.

As future research direction, we would like to implement the missing value-
compliant version of other post-hoc explanation approaches such as shap [31],
lore [19] or dice [35] by following the same strategies used for limemv. Also, we
intend to study these techniques not only in the MCAR setting but also in MAR
and MNAR. Furthermore, we aim to adapt the neighborhood generation process
by extending its capability to handle categorical, continuous, and discrete data
simultaneously. Finally, to completely cover lime applicability, we would like to
study to which extent it is possible to handle missing data on data types different
from tabular data, such as images, textual data, and time series.
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