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Preface

The Discovery Science Conference is an open forum for in-depth discussions of inno-
vative ideas related to the development and analysis of artificial intelligence methods
for discovering scientific knowledge. The conference’s scope includes methods from
machine learning, data mining, intelligent data analysis, big data analytics, and their
application in various domains.

This volume contains the papers selected for presentation at the 26th International
Conference on Discovery Science (DS 2023), held in Porto, Portugal, during October
9–11, 2023. DS 2023 received 133 international submissions. Each submission was
reviewed by at least three Program Committee (PC) members in a single-blind man-
ner. The PC decided to accept 37 regular papers and 10 short papers. This resulted
in an acceptance rate of 35% for regular papers. The conference also included three
keynote talks. Mihaela van der Schaar (University of Cambridge) contributed a talk
titled “Time: The next frontier in discovery science”; Amílcar Cardoso (University of
Coimbra) contributed a talk titled “Computational Creativity: from autonomous gen-
eration to co-creation”; Nathalie Japkowicz (American University) contributed a talk
titled “Lifelong Anomaly Detection”. The invited talks’ abstracts are included in these
proceedings’ frontmatter.

We are grateful to Springer for their continued long-term support. Springer publishes
the conference proceedings, as well as a regular special issue of the journal Machine
Learning onDiscovery Science. The latter offers authors a chance to publish significantly
extended and reworked versions of their DS conference papers in this prestigious journal,
while being open to all submissions on DS conference topics. This year, Springer also
supported a best student paper award.

On the program side, we would like to thank all the authors of the submitted papers
and the PC members for their efforts in evaluating the submitted papers, as well as the
keynote speakers. A word of appreciation to the Publicity Chairs, Carlos Abreu Ferreira,
Ricardo Cerri, and Wenbin Zhang who helped in the dissemination and contributed to
the high level of the submissions. On the organization side, we would like to thank all
the members of the Organizing Committee, in particular José Pedro Amorim, Ricardo
Cardoso Pereira, JoanaCristo Santos,MiriamSeoane Santos, andBrunoVeloso, for their
help in all conference-associated activities. We are also grateful to the people behind
Microsoft CMT for developing the conference organization system that proved to be an
essential tool in the paper submission and evaluation process.

August 2023 Albert Bifet
Ana Carolina Lorena

Rita P. Ribeiro
João Gama

Pedro H. Abreu
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Plenary Talks

DS 2023 had three plenary talks. The organizing committee is thankful for the
presentation of the invited speakers and fruitful discussions.



Time: The Next Frontier in Discovery Science

Mihaela van der Schaar

University of Cambridge, UK

Abstract. In this talk, Prof. van der Schaar illuminated an underempha-
sized yet critical dimension in machine learning: time. Time harbors the
potential to revolutionize machine learning methodologies, particularly
within healthcare. The presentation underscored the opportunities and
challenges that emerge from integrating temporal dynamics into machine
learningmodels, enriching prediction accuracy, inference robustness, and
conceptual understanding.

In this talk, Prof. van der Schaar aimed to answer questions such as:

– What new challenges are we encountering as we try to uncover
dynamical systems over time and can we overcome them?

– Howmight the increased precision and accuracy in early disease detec-
tion afforded by integrating temporal dynamics into machine learning
models reduce healthcare costs and improve the quality of life for
patients?

– How can we effectively balance the robustness of Bayesian meth-
ods with the necessary frequentist guarantees when predicting and
managing uncertainties over time?

– How can learning from informative sampling over time help us coun-
teract biases inherent in non-random data collection methods? Could
this method be the key to unraveling the subtle, yet critical temporal
patterns in health data?

– How might our approach to causal deep learning need to change as
we incorporate temporal data?



Computational Creativity: From Autonomous Generation
to Co-creation

Amílcar Cardoso

University of Coimbra, Portugal

Abstract. Computational Creativity (CC) is a field of research in Artifi-
cial Intelligence that focuses on the study and exploitation of computers’
potential to act as autonomous creators and co-creators. The field is a con-
fluencepoint for contributions frommultiple disciplines, such asArtificial
Intelligence, which provides most of its methodological framework, and
also Cognitive Science, Psychology, Social Sciences, and Philosophy, as
well as creative domains like the Arts, Music, Design, Poetry, etc. In
this talk, a historical perspective on the field was presented, along with
key concepts and abstract models to characterize some common modes
of creativity, providing context for understanding how these concepts
are being applied in the development of creative systems, particularly in
co-creative contexts, in light of the latest advances in AI.



Lifelong Anomaly Detection

Nathalie Japkowicz

American University, USA

Abstract.This talk presented a task-agnostic unsupervised lifelong learn-
ing scheme for anomaly detection. The approach builds a long-termmem-
ory through hierarchical growth and uses change-point detection to set
thresholds autonomously for new concepts and anomaly detection. A new
change-point detection method designed for high-dimensional settings
and for performing identification in addition to detection was introduced.
Finally, a version of the system outfitted with memory consolidation,
memory summarization, and experience replay was presented. The dif-
ferent versions of the system and its components are tested on cyberse-
curity, energy, weather prediction, and gravitational wave data as well as
on the TCPD Benchmark for change-point detection.
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Abstract. Quantification is a supervised Machine Learning task that
estimates the class distribution in an unlabeled test set. Quantification has
practical applications in various fields, including medical research, envi-
ronmental monitoring, and quality control. For instance, medical research
often estimates the prevalence of a particular disease in a population.
Despite being a thriving research area, most existing quantification meth-
ods are limited to binary-class problems. Moreover, recent experimental
evidence suggests that modern state-of-the-art quantifiers do not perform
well for multi-class problems, which are prevalent in quantification. This
paper proposes two novel multi-class ensemble quantifiers, FMC-SQ and
FMC-MQ, that use data fusionmethods at the classifier and quantifier lev-
els. We conducted experiments with 12 state-of-the-art (single and ensem-
ble) quantifiers to evaluate our models on 31 multi-class datasets. Our
experimental results indicate that FMC-MQ is the best-performing quan-
tifier outperforming other single and ensemble methods. Also, aggregating
quantifier outputs seem to be a more promising research direction than
aggregating classification scores for quantification.

Keywords: Quantification · prevalence estimation · class probability
estimation · ensembles · multi-class · machine learning

1 Introduction

Quantification is a supervised learning task that proposes methods to predict
the class distribution for an unlabeled test set [1]. Quantification learning finds
applications in several real-world domains that involve predicting the behaviour
of groups. One well-known example is sentiment analysis, in which the main
objective is to predict how the collective opinion about a product, person or
institution varies across time [2].

A simple approach to the quantification problem is to count a classifier’s out-
put by class labels, a method known as Classify & Count (CC) [3]. A perfectly
accurate classifier results in an equally perfect quantifier. However, Forman [3]

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bifet et al. (Eds.): DS 2023, LNAI 14276, pp. 3–17, 2023.
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shows that CC is a biased quantifier for application domains in which the classi-
fication is imperfect. CC’s prediction error linearly increases as the actual class
prevalence moves away from the distribution it perfectly quantifies. This phe-
nomenon often makes CC inaccurately predict the most extreme distributions.
This flaw has motivated a thriving research community to propose new quantifi-
cation algorithms that can accurately count across the whole spectrum of class
prevalences.

Recent experimental evidence has shown that modern state-of-the-art quanti-
fiers do not perform well for multi-class problems [4]. However, multi-class prob-
lems are dominant in quantification. For instance, sentiments are often classified
into “positive”, “negative” and “neutral”. A promising solution to this problem
is using ensembles of multi-class quantifiers [5,6]. However, no previous work in
the literature has made an in-depth study of how the ensemble architecture and
design decisions impact the performance of quantifiers.

In this paper, we make three contributions to the use of ensembles in quan-
tification learning: (i) we introduce two novel ensembles of quantifiers, (ii) we
assess the fusion of classifier scores only, and (iii) we evaluate combined fusion
of classifiers and quantifiers. Our results show that fusing quantification prob-
abilities is a more promising research direction than aggregating classification
scores for quantification.

This paper is organized as follows. Section 2 introduces concepts and notation
used throughout this paper. Section 3 reviews the related work. Section 4 presents
the proposed architecture of ensembles for quantification. Section 5 describes the
experimental setup to evaluate the ensembles’ performance. Section 6 discusses
the experimental results for multi-class settings. Section 7 analyses the influence
of the fusion operators. Finally, Sect. 8 presents our conclusions and directions
for future work.

2 Background

A dataset D is a collection of samples such that D = {(x1, y1), . . . , (xn, yn)},
where xi ∈ X is an instance in the m-dimensional feature space, yi ∈ Y =
{c1, . . . , cl} is the corresponding class label of xi.

We can train a predictive model from a dataset D. The classification goal
is to accurately predict the class labels of unlabeled instances based on their
feature values. Hence, the classifier is a predictive model hc induced from D
such that:

hc : X → Y
In the quantification task, a quantifier is a supervised model that learns to

estimate from dataset D the relative frequency of classes in an unlabelled set of
instances. Therefore, the quantifier is a function hq such that:

hq : 2X → Δl

where 2X is the power set of X , i.e., the set with all possible sets of samples
under the representation X , and Δl is the l-probability simplex defined as:



Ensembles with Data Fusion for Quantification Learning 5

Δl = {{pi}li=1|pi ∈ [0, 1],
l∑

i=1

pi = 1}

Given an unlabeled set S ∈ 2X , hq outputs a vector p̂ = [p̂(c1), . . . , p̂(cl)],
with the estimated class prevalences, subject to the constraints p̂(ci) ≥ 0 and∑l

i=1 p̂(ci) = 1. The objective is to minimize the difference between the predicted
probabilities p̂(c1), . . . , p̂(cl) and the true classes prevalence p(c1), . . . , p(cl) in S.

Comparing hc and hq, classification and quantification tasks use the same
data representation and a labeled attribute-value dataset D to train their models.
However, their objectives are distinct. A classifier predicts a class label for each
input instance, whereas a quantifier predicts the class prevalence for a given
sample of instances.

The instances are independent of each other in both classification and quan-
tification so that the occurrence of one instance does not change the probability
of the other instances. However, training and test samples are not identically
distributed in quantification problems, as we expect that the class distribution
will change.

Also, we define a scorer since several quantifiers employ it as an intermediate
step in their computation. A scorer is a model induced from D such that:

hs : X −→ R
l

For a given input instance, a scorer produces a vector s = [s1, . . . , sl] of real
values called scores. Each score si has a positive correlation with the posterior
probability of the class yi, i.e., P (Y = yi|x). Consequently, a higher si value
means an increased chance for an instance belonging to the class yi.

3 Related Work

This section reviews the most relevant work in quantification and ensemble learn-
ing. Quantification research has a thriving community that has proposed sev-
eral methods in the last decade. A recent survey by González at al. [7] catego-
rized quantifiers into three groups: classify, count & correct, adaptations of tradi-
tional classification algorithms, and distribution matching. Classify, count & cor-
rect methods use a classifier to label each instance. Then these methods count
the number of instances predicted in each class and calculate the class ratios.
These methods often apply a correction factor to their predictions to improve the
quantification accuracy. Adaptations of traditional classification algorithms are
approaches that modify the mechanics of traditional classification learning meth-
ods so that they become quantifiers. These methods use loss functions adapted
to quantification tasks such as SVM-K (KLD loss) [8] and SVM-Q (Q-measure-
loss) [9]. Distribution matching algorithms parametrically model the training dis-
tribution and later search the parameters that produce the best match against the
test distribution. In the following, we provide a brief explanation of the baseline
quantifiers and the ones we utilized in our experiment.
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CC. The Classify & Count (CC) method is a straightforward approach for quan-
tification. This method trains a classifier using a dataset and a standard
learning algorithm. Once the classifier is trained, it can be used to classify
the items in a sample set S. By counting the fraction of examples in the
sample that are predicted to belong to each class, we can estimate the class’s
prevalence. This estimation process corresponds to the computation of the
following equation:

p̂CC(y = ci) =
|{x ∈ S | h(x) = ci}|

|S| (1)

Forman [10] shows that CC contains a systematic bias. This flaw has moti-
vated the community to propose more accurate quantifiers.

ACC. Adjusted Classify & Count (ACC) [3] is a binary-class quantifier that
applies a correction factor to the output of CC. The correction factor for the
positive class (⊕) is defined as:

p̂ACC(y = ⊕) =
p̂CC(y = ⊕) − fpr

tpr − fpr
(2)

where tpr and fpr are the true and false positive rates.
ACC is often implemented using cross-validation to obtain unbiased tpr and
fpr estimates from training data. Forman [3] shows that ACC is a perfect
quantifier if the true tpr and fpr are known, but inaccuracies introduced by
the estimation process can make ACC often less accurate than the state-of-
the-art quantifiers.

PCC and PACC. Probabilistic Classify & Count (PCC) and Probabilistic
Adjusted Classify & Count (PACC) [11] are variations of CC and ACC,
respectively, using a probabilistic classifier. PCC averages the probabilities
to estimate the class prevalence, and PACC uses Eq. 2 to correct PCC’s esti-
mate. PCC and PACC suffer from chicken-and-egg problem as getting cal-
ibrated probability estimates requires knowing the class distribution in the
test sample [10].

GACC and GPACC. The Generalized Adjusted Classify & Count (GACC)
and Generalized Probabilistic Adjusted Classify & Count (GPACC) are multi-
class extensions of ACC and PACC, respectively [12]. The methods utilize a
system of equations and apply constrained least-squares regression to solve
them.

FM. Friedman’s method (FM) [13] constructs a system of equations similar
to GPACC, but FM focuses only on a subset of test instances that have
probabilities greater than the training class prevalences.

EMQ. The Expectation-Maximization Quantifier (EMQ) [14] uses the classic
EM algorithm to adjust the outputs of a probabilistic classifier in the presence
of distribution shift between the training and test data. While the primary
objective of this method is classification, it can also obtain the target class
prevalence as a by-product.
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3.1 Ensembles

An ensemble is a widely used strategy to improve classification performance.
Ensembles are a machine learning approach to combine a set of models, each
of which solves the same original task, to obtain a solution that outperforms
that obtained from using a single model [15]. The models are referred to as base
estimators or base learners. Ensemble methods assume that each model performs
well in certain domains while being sub-optimal in others [16]. The main reason
to use an ensemble method over a single model is to make better predictions by
reducing the variance component of the prediction error and by adding bias to
the model [17].

A key point of an ensemble learning method is combining the predictions
from multiple models. It is a data fusion perspective and depends heavily on the
contributing models to the ensemble and the prediction problem. In the classifi-
cation, voting is the most popular combination method for crisp class labels [16].
In the case of predicted class scores or probabilities [17], the independently pre-
dicted probabilities can be combined directly by an algebraic function as the
median. However, if labels are needed, the combined probabilities can be con-
verted to a class label using a softmax function. In regression or quantification
tasks, combining numerical predictions often involves using simple statistical
methods, and the average is the most common combination method for numeric
outputs.

An essential property of an accurate ensemble is the diversity of the pre-
dictions made by multiple contributing models. One of the ways to promote
diversity is to consider models of different natures. An intuitive explanation for
why an ensemble produces accurate models is that when models are combined,
uncorrelated errors of individual models can be eliminated. Thus, we propose
the usage of ensembles of multiple base models in two different levels (classifiers
and quantifiers) to expand diversity for the quantification problem.

Although ensembles are a well-known technique used in many Machine Learn-
ing tasks, their application in quantification learning is relatively recent. The cur-
rent research involving ensembles of quantifiers is limited but has shown promis-
ing results. To our knowledge, only two ensemble methods have been proposed
for quantification [5,6]. Next, we review these two approaches.

Figure 1a illustrates the ensemble of quantifiers proposed by Pérez-Gállego et
al. [6]. The idea is to train a set of classifiers using different class distributions,
thus promoting diversity. The same classifier C is replicated several times, with
each replication training in a data sample Di with a distinct class distribution
to model the class prevalence shift. Each training set Di is generated using sub-
sampling. A single base quantifier Q transforms the output of each classifier into
a quantification prediction, producing a prediction matrix M:

M =

⎡

⎢⎢⎢⎣

p̂1,1 p̂1,2 · · · p̂1,l
p̂2,1 p̂2,2 · · · p̂2,l
...

...
. . .

...
p̂b,1 p̂b,2 · · · p̂b,l

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

p̂1

p̂2

...
p̂b

⎤

⎥⎥⎥⎦
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where b is the number of base classifiers trained with different class distribu-
tions. The final quantification is obtained by applying an aggregation function
F , such as median or average, over the columns of matrix M to produce a single
prediction, which is normalized with the function N for the class prevalences
sum to 1. We refer to it as the class-prevalence ensemble (CPE). The authors
showed that using an ensemble outperforms the results of using a single classifier
for quantification learning.

(a) CPE. (b) MC-SQ.

Fig. 1. Existing ensembles architectures for quantification.

Donyavi et al. [5] conducted a study on the performance of multi-class quan-
tifiers and proposed an ensemble approach to enhance their performance. The
architecture, as shown in Fig. 1b, consists of c base classifiers, each paired with
a base quantifier Q of a single type. To reduce the number of parameters,
Donyavi et al. [5] suggests c = 7 and the following base classifiers: Random For-
est (RF), Näıve Bayes (NB), Gradient Boosting (GB), Support Vector Machines
(SVM), Linear Discriminant Analysis (LDA), Light Gradient Boosting Machines
(LGBM), and Logistic Regression (LR). The final output combines the outcomes
of all classifier-quantifier pairs using the median and then normalizes the results.
Unlike the CPE method, this model trains all classifiers using training data
without changing the class distribution. This ensemble approach is referred to
as MC-SQ, representing Multiple Classifiers with Single Quantifier.

Inspired by MC-SQ, our novel ensemble approach uses data fusion to merge
the classifiers’ outputs and base quantifiers of different types to improve the final
quantification.

4 Proposed Approaches

We propose two new ensembles for quantification. Both approaches are exten-
sions of our previous work, MC-SQ [5]. The proposals have in common an
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aggregation of the classification scores1 into a single score tensor S. The dif-
ference between the two proposals is that the first uses a single base quanti-
fier Q, while the second uses q quantifiers Q1, . . . , Qq. Figure 2 illustrates both
approaches.

(a) FMC-SQ. (b) FMC-MQ.

Fig. 2. Proposed ensemble architectures.

Our simplest proposal is named Fusioned Multiple Classifiers with Single
Quantifier (FMC-SQ). It comprises a collection C = {C1, C2, ..., Cc} of c differ-
ent classifiers. Each classifier Ci provides a score matrix Sn×l for the n examples
in the test sample:

S =

⎡

⎢⎢⎢⎣

s1,1 s1,2 · · · s1,l
s2,1 s2,2 · · · s2,l
...

...
. . .

...
sn,1 sn,2 · · · sn,l

⎤

⎥⎥⎥⎦

where si,j is the score assigned to the i-th test example and j-th class label.
The output of the c classifiers are combined in a tensor Sc×n×l in the following

form:

S =

⎡

⎢⎢⎢⎣

S1

S2

...
Sc

⎤

⎥⎥⎥⎦

where Si is the score matrix provided by the classifier Ci.
Our approach uses a fusion operator F to convert the c matrices Si into

a single score matrix which is provided to a quantifier to estimate the class
distribution. As we work with normalized scores, the normalization function N

1 Although we use the term classification score, in our experiments we use classification
probabilities, i.e. normalized scores in the range [0, 1] such that the scores for all
classes sum to 1.
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is also applied to guarantee the scores for all class labels of a single instance sum
to 1. Therefore:

S̄ = N (F(S)) (3)

A single quantifier is applied to the fused classification scores in order to
compute the final quantification.

Figure 2b shows our second ensemble architecture. Like FMC-SQ, it has
a collection of classifiers C, whose classification scores are merged into a sin-
gle output matrix S̄. However, such a matrix is evaluated by a collection
Q = {Q1, Q2, ..., Qq} of q quantifiers, generating multiple quantifications. These
outputs are then aggregated again to deliver the final quantification. We denomi-
nate this model Fusioned Multiple Classifiers with Multiple Quantifiers (FMC-
MQ).

The aggregation operation of multiple outputs may be required at one or two
processing steps, depending on the architecture of the ensemble. Thus, there are
two possibilities: i) aggregation of the classifiers’ outcomes, and ii) aggregation
of the quantifiers’ outcomes. Each aggregation step is composed by two func-
tions: a data fusion operation (F) and a normalization function (N ). The fusion
operation combines continuous-value outcomes delivered by all classifiers or by
all quantifiers for each class, producing a unique output. A typical combiner is
average. The normalization function scales the output values to sum to 1.

This work evaluates the influence of the fusion operators at classification
and quantification levels. We assess FMC-SQ and FMC-MQ architectures with
different fusion operators and compare their results with the state-of-the-art
ensembles.

5 Experimental Setup

We use the Artificial Prevalence Protocol (APP) [18,19] to evaluate quantifica-
tion methods on classification datasets. APP modifies the class distribution in
the training and test samples through random sampling without replacement.
We extend the experimental setup used in [4] by considering different train-
ing/test ratios {(0.1, 0.9), (0.3, 0.7), (0.5, 0.5), (0.7, 0.3)}. Table 1 shows all used
distributions. We repeat each run ten times and report the average results.

Table 2 presents the 31 multi-class datasets used in the experiments. These
datasets were collected from various repositories, including UCI2, Kaggle3, UEA
& UCR4 and USP5 We employ 17 multi-class datasets (3 and 4 classes) from [4,5]
and 14 new datasets (5, 6, 7, and 10 classes) to evaluate quantifier performance
across a wider range of classes. Also, we apply pre-processing steps from [4],
including feature encoding, attribute rescaling, and missing value removal for
the new datasets.
2 https://archive.ics.uci.edu/ml/datasets.php.
3 https://www.kaggle.com/datasets.
4 https://timeseriesclassification.com/dataset.php.
5 https://sites.google.com/view/uspdsrepository.

https://archive.ics.uci.edu/ml/datasets.php
https://www.kaggle.com/datasets
https://timeseriesclassification.com/dataset.php
https://sites.google.com/view/uspdsrepository
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Table 1. List of training distributions PTrain(Y ) and test distributions PTest(Y ).

Classes PTrain(Y ) PTest(Y )

3 (0.2, 0.5, 0.3),
(0.05, 0.8, 0.15),
(0.35, 0.3, 0.35)

(0.1, 0.7, 0.2),
(0.55, 0.1, 0.35),
(0.35, 0.55, 0.1),
(0.4, 0.25, 0.35),
(0, 0.05, 0.95)

4 (0.5, 0.3, 0.1, 0.1),
(0.7, 0.2, 0.1, 0.1),
(0.25, 0.25, 0.25, 0.25)

(0.65, 0.25, 0.05, 0.05),
(0.2, 0.25, 0.3, 0.25),
(0.45, 0.15, 0.2, 0.2),
(0.2, 0, 0, 0.8),
(0.3, 0.25, 0.35, 0.1)

5 (0.2, 0.15, 0.35, 0.1, 0.2),
(0.35, 0.25, 0.15, 0.05, 0.1),
(0.2, 0.2, 0.2, 0.2, 0.2)

(0.15, 0.1, 0.65, 0.1, 0),
(0.45, 0.1, 0.3, 0.05, 0.1),
(0.2, 0.25, 0.25, 0.1, 0.2),
(0.35, 0.05, 0.05, 0.05, 0.5),
(0.05, 0.25, 0.15, 0.15, 0.4)

6 (0.1, 0.2, 0.1, 0.1, 0.25, 0,25),
(0.05, 0.1, 0.3, 0.4, 0.1, 0.05),
(017, 0.16, 0.16, 0.17, 0.16, 0.16)

(0.15, 0.1, 0.55, 0.1, 0, 0.1),
(0.4, 0.1, 0.25, 0.05, 0.1, 0.1),
(0.2, 0.2, 0.2, 0.1, 0.2, 0.1),
(0.35, 0.05, 0.05, 0.05, 0.05, 0.45),
(0.05, 0.25, 0.15, 0.15, 0.1, 0.3)

7 (0.2, 0.3, 0.2, 0.15, 0.05, 0.05, 0,05),
(0.05, 0.1 0.05, 0.05, 0.25, 0.3, 0.2),
(015, 0.14, 0.14, 0.15, 0.14, 0.14, 0.14)

(0.1, 0.1, 0.1, 0.5, 0.1, 0, 0.1),
(0.4, 0.1, 0.2, 0.05, 0.1, 0.1, 0.05),
(0.15, 0.2, 0.15, 0.1, 0.2, 0.1, 0.1),
(0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.45),
(0.05, 0.25, 0.1, 0.15, 0.1, 0.3, 0.05)

10 (0.05, 0.2, 0.05, 0.1, 0.05, 0.25, 0.05, 0,05, 0.1, 0.1),
(0.15, 0.05, 0.2, 0.05, 0.1, 0.05, 0.2, 0.1, 0.05, 0.05),
(0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)

(0.1, 0.2, 0.1, 0.1, 0.2, 0.1, 0, 0.1, 0.05, 0.05),
(0.2, 0.05, 0.15, 0.05, 0.1, 0.15, 0.05, 0.05, 0.1, 0.1),
(0, 0.1, 0.05, 0.1, 0.05, 0.1, 0.1, 0.15, 0.15, 0.2),
(0.05, 0.05, 0.05, 0.35, 0.15, 0.05, 0, 0.1, 0.1, 0.1),
(0.05, 0.1, 0.1, 0.15, 0.1, 0.15, 0.05, 0.1, 0.1, 0.1)

Our experiments utilize the same base classifiers as in [5]: Logistic Regres-
sion (LR), Linear Discriminant Analysis (LDA), Random Forest (RF), Sup-
port Vector Machine (SVM), Light Gradient Boosting Machine (LGBM), Gra-
dient Boosting (GB), and Naive Bayes (NB). We use these classifiers with their
default parameter values provided by the Scikit-learn library [20] to simplify
the experimental setup. Also, we employ the base quantifiers EM, FM, GACC,
and GPACC, since these were the best performing multi-class quantifiers in [4].
These methods require computing scores from training examples, so we use 10-
fold cross-validation on the training set to obtain unbiased scores. Additionally,
our paper website [21] stores code, figures, tables, and detailed results, including
for the binary datasets not included in this paper.

Our proposals, FMC-SQ and FMC-MQ, use all seven mentioned base clas-
sifiers. FMC-MQ also incorporates all four base quantifiers (EM, FM, GACC,
GPACC). On the other hand, CPE and MC-SQ employ a single base quantifier,
so we execute these methods four times, each time with a different quantifier, to
report the corresponding quantification errors. CPE uses LR as the base classi-
fier, following the implementation in [6]. LR is trained with 50 samples having
diverse class distributions, as recommended by the CPE authors. Our experi-
ments utilize the CPE implementation available in QuaPy [22]. Additionally, for
a comprehensive comparison, we include standalone quantifiers Single Classifier
with Single Quantifier (SC-SQ), where LR is employed as the base classifier fol-
lowing [4].

We use absolute error (AE) as the evaluation measure to assess the results.
AE is easily interpreted and restrained in the interval [0, 2] independently of the
number of classes [23]. AE is defined according to Eq. 4.
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Table 2. Description of the multi-class datasets.

Dataset (Abbreviation) # Features # Instances # Labels Source

Spoken Arabic Digit (arab) 27 8800 10 UCI

Dry Bean (beans) 16 13611 7 UCI

Bike Sharing Dataset (bike) 59 17379 4 UCI

BlogFeedback (blog) 280 52397 4 UCI

Concrete Compressive Strength (conc) 8 1030 3 UCI

Superconductivity Data (cond) 89 21263 4 UCI

Contraceptive Method Choice (contra) 13 1473 3 UCI

SkillCraft1 Master Table (craft) 18 3338 3 UCI

Electric Devices (device) 96 24348 7 UEA & UCR

Diamonds (diam) 22 53940 3 Kaggle

Drug Consumption (drugs) 136 1885 3 UCI

Appliances Energy Prediction (ener) 25 19735 3 UCI

Epileptic Seizure Recognition (epil) 178 11500 5 Kaggle

FIFA 19 Complete Player Dataset (fifa) 117 14751 4 Kaggle

Gas Sensor Array Drift (gasd) 128 13910 6 UCI

Gesture Phase Segmentation (gest) 32 10356 5 UCI

Human Activity Recognition with Smartphones (hars) 562 10166 6 Kaggle

Insects (insec) 49 5325 5 USP

Insect Sound (insecs) 600 25000 10 UEA & UCR

Microbes (micro) 24 18176 7 Kaggle

News Popularity in Multiple Social Media Platforms (news) 60 39644 4 UCI

Nursery (nurse) 27 12960 3 UCI

Optical Recognition of Handwritten Digits (optd) 63 5620 5 UCI

Pen-Based Recognition of Handwritten Digits (pend) 16 10992 10 UCI

Rice MSC (rice) 106 5000 5 Kaggle

Statlog (Landsat Satellite) (satel) 36 6435 6 UCI

First-order Theorem Proving (thrm) 51 6117 3 UCI

Turkiye Student Evaluation (turk) 31 5820 3 UCI

Video Game Sales (vgame) 133 6825 4 Kaggle

Wine Quality (wine) 14 6497 4 UCI

Yeast (yeast) 9 1484 4 UCI

AE(p, p̂) =
1
l

l∑

i=1

|p̂[i] − p[i]| (4)

where p and p̂ are the vectors with true and predicted prevalence, respectively.

6 Results and Discussion

This section compares the performance of the proposed FMC-SQ and FMC-MQ
ensemble methods to the competing CPE, MC-SQ ensembles, and base quanti-
fiers. We execute all ensembles with fusion operators to eliminate parameters.
FMC-SQ and FMC-MQ use the median for the fusion of classification scores.
MC-SQ and FMC-MQ use the median fusion operator to estimate quantifica-
tion. CPE uses the average as a fusion operator following the recommendations
of [6]. Section 7 investigates the impact of fusion operators on the performance
of the proposed methods.

Due to a lack of space, we only include numerical results for multi-class
datasets. As pointed out by [4], multi-class quantification is a much more complex
problem than binary quantification. Table 3 presents the results for the multi-
class datasets. The results show that the ensemble methods often outperform
the individual base quantifiers. CPE has, on average, smaller MAE values than
the associated single quantifier (SC-SQ). One exception is CPE with EM, which
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Table 3. Experimental results for multi-class datasets for all architectures.

Dataset SC-SQ CPE (avg) MC-SQ (median) FMC-SQ (median) FMC-MQ

EM GACC GPACC FM EM GACC GPACC FM EM GACC GPACC FM EM GACC GPACC FM (median, median)

arab 0.205 0.113 0.088 0.215 0.381 0.075 0.088 0.166 0.061 0.066 0.062 0.077 0.094 0.069 0.069 0.069 0.058

beans 0.424 0.179 0.095 0.254 0.512 0.106 0.089 0.121 0.046 0.048 0.047 0.050 0.097 0.052 0.052 0.052 0.045

bike 0.082 0.113 0.073 0.102 0.117 0.101 0.096 0.104 0.096 0.068 0.059 0.065 0.208 0.070 0.070 0.070 0.058

blog 0.196 0.360 0.236 0.285 0.256 0.238 0.249 0.264 0.167 0.173 0.115 0.122 0.277 0.125 0.125 0.125 0.173

conc 0.498 0.486 0.473 0.510 0.410 0.407 0.381 0.389 0.256 0.275 0.266 0.245 0.407 0.239 0.239 0.239 0.253

cond 0.059 0.155 0.066 0.088 0.085 0.078 0.064 0.074 0.054 0.054 0.045 0.047 0.199 0.062 0.062 0.062 0.047

contra 0.396 0.600 0.515 0.512 0.409 0.468 0.411 0.402 0.391 0.470 0.424 0.419 0.568 0.485 0.485 0.485 0.419

craft 0.191 0.296 0.190 0.190 0.271 0.264 0.206 0.218 0.225 0.186 0.168 0.156 0.413 0.179 0.179 0.179 0.172

device 0.228 0.384 0.242 0.340 0.345 0.271 0.291 0.343 0.156 0.129 0.115 0.127 0.362 0.117 0.117 0.117 0.114

diam 0.214 0.197 0.098 0.118 0.183 0.196 0.110 0.100 0.042 0.029 0.027 0.027 0.282 0.030 0.030 0.030 0.030

drugs 0.218 0.256 0.199 0.181 0.229 0.250 0.252 0.259 0.204 0.206 0.181 0.163 0.364 0.194 0.194 0.194 0.168

ener 0.131 0.273 0.115 0.129 0.161 0.225 0.120 0.130 0.158 0.108 0.084 0.084 0.424 0.094 0.094 0.094 0.092

epil 0.796 0.887 0.858 0.704 0.681 0.501 0.530 0.474 0.384 0.268 0.224 0.247 0.361 0.213 0.213 0.213 0.239

fifa 0.127 0.313 0.181 0.216 0.198 0.182 0.202 0.211 0.117 0.145 0.111 0.104 0.228 0.135 0.135 0.135 0.126

gasd 0.212 0.097 0.064 0.086 0.241 0.054 0.056 0.069 0.039 0.027 0.027 0.029 0.060 0.027 0.027 0.027 0.025

gest 0.464 0.501 0.422 0.474 0.350 0.394 0.310 0.316 0.211 0.170 0.158 0.174 0.418 0.182 0.182 0.182 0.172

hars 0.019 0.025 0.022 0.030 0.031 0.026 0.032 0.040 0.021 0.022 0.021 0.023 0.040 0.022 0.022 0.022 0.020

insec 0.076 0.070 0.063 0.075 0.127 0.061 0.062 0.073 0.058 0.052 0.051 0.052 0.119 0.055 0.055 0.055 0.047

insecs 0.438 0.702 0.695 0.849 0.517 0.416 0.489 0.647 0.390 0.342 0.299 0.397 0.404 0.256 0.256 0.256 0.316

micro 0.334 0.473 0.306 0.431 0.305 0.250 0.252 0.289 0.169 0.143 0.142 0.149 0.227 0.108 0.108 0.108 0.137

news 0.221 0.498 0.335 0.376 0.246 0.288 0.249 0.238 0.260 0.325 0.261 0.268 0.508 0.362 0.362 0.362 0.278

nurse 0.022 0.023 0.019 0.020 0.027 0.016 0.017 0.018 0.015 0.011 0.013 0.009 0.032 0.010 0.010 0.010 0.011

optd 0.053 0.050 0.044 0.059 0.097 0.046 0.053 0.065 0.031 0.031 0.032 0.035 0.043 0.034 0.034 0.034 0.028

pend 0.110 0.057 0.049 0.113 0.185 0.048 0.051 0.104 0.031 0.026 0.027 0.036 0.031 0.028 0.028 0.028 0.025

rice 0.041 0.016 0.015 0.024 0.062 0.012 0.019 0.029 0.007 0.009 0.009 0.010 0.005 0.008 0.008 0.008 0.007

satel 0.184 0.139 0.086 0.179 0.380 0.123 0.118 0.098 0.063 0.067 0.064 0.065 0.144 0.069 0.069 0.069 0.058

thrm 0.494 0.780 0.629 0.663 0.323 0.409 0.337 0.382 0.330 0.344 0.321 0.302 0.486 0.401 0.401 0.401 0.342

turk 0.277 0.525 0.342 0.392 0.365 0.402 0.338 0.348 0.432 0.408 0.315 0.339 0.616 0.447 0.447 0.447 0.344

vgame 0.322 0.520 0.460 0.474 0.375 0.358 0.364 0.371 0.315 0.397 0.391 0.358 0.337 0.372 0.372 0.372 0.375

wine 0.757 0.656 0.575 0.605 0.414 0.416 0.371 0.388 0.340 0.440 0.449 0.431 0.460 0.482 0.482 0.482 0.419

yeast 0.613 0.567 0.408 0.413 0.546 0.448 0.401 0.411 0.353 0.450 0.476 0.482 0.320 0.359 0.359 0.359 0.310

Mean 0.271 0.333 0.257 0.294 0.285 0.230 0.213 0.230 0.175 0.177 0.161 0.164 0.275 0.170 0.170 0.170 0.158

Rank 11.3 15.2 11.1 13.7 13.0 10.7 9.9 11.3 6.0 6.5 4.1 5.2 12.7 6.3 6.3 6.3 3.5

presented a slight increase in mean MAE than EM, resulting in a lower position
in the rank across all datasets.

MC-SQ outperforms CPE as previously observed in [5]. Conversely, FMC-SQ
did not outperform MC-SQ. The main difference between FMC-SQ and MC-SQ
is that FMC-SQ applies the fusion operator to the classifier scores while MC-SQ
applies the fusion operator to the quantification estimates. From our experience,
the multi-class quantification approaches present high variance, which means
that minor variations in the classifiers’ output can lead to significant changes in
the quantifier estimation. Thus, the results indicate that averaging the quantifi-
cation output is a better strategy to reduce variance.

Finally, FMC-MQ is the best-performing approach on average. This approach
uses multiple quantifiers to reduce the variance of the estimations further. Over-
all, using multiple classifiers and quantifiers is the most promising approach to
be explored in more complex ensemble architectures. Figure 3 provides the crit-
ical difference (CD) diagram for multi-class datasets according to the post hoc
Nemenyi test. FMC-MQ outperforms all other methods for multi-class datasets
but MC-SQ(GPACC) with statistically significant differences.

7 Analysis of the Data Fusion Operators

We assess nine fusion operators to aggregate the outcomes at the classifiers level
and five operators at the quantifiers level. Therefore, we evaluate 45 possible
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Fig. 3. CD diagrams comparing architectures for multi-class datasets.

combinations for implementing the FMC-MQ (as it uses all quantifiers at once)
and nine options for FMC-SQ (for each single quantifier).

Fusion operators for classifiers. We assess well-known algebraic operators,
including the arithmetic mean (avg), median, minimum (min), maximum
(max), algebraic product (prod), and Cosine similarity (cos). The operators
take as input a set of scores (one from each classifier) and output an aggre-
gated score. Also, we employ three other fusion techniques based on a one-hot
encoder, where the class with the best similarity is the fused decision, return-
ing 1 for it and 0 for the other classes. These fusion operators are Decision
templates (DT), Dempfster-Shafer method (DS), and Maximum Likelihood
(ML), as described in [24]. For DT, we use Euclidean distance as a similarity
measure.

Fusion operators for quantifiers. The assessed operators are arithmetic mean
(avg), median (med), minimum (min), maximum (max) and algebraic product
(prod), but using quantification vectors instead of scores vectors. The output
vector is normalized for the class prevalence to sum to 1.

Table 4 shows the averaged absolute error for multi-class datasets, considering
the use of each classification fusion operator for each quantifier in the FMC-SQ
model. DS has the best overall MAE averages. Notice that GACC, GPACC
and FM all have the same results for DT, DS and ML operators. This is not a
coincidence, as these methods find the same solutions given the one-hot output
of these operators and the optimization problem these algorithms solve.

Table 4. Averaged absolute errors of fusion operators for the classification scores and
FMC-SQ architecture.

Quantifier min max prod avg median cos DT DS ML

EM 0.477 0.632 0.474 0.398 0.272 0.281 0.264 0.275 0.344

GACC 0.302 0.289 0.269 0.214 0.221 0.220 0.174 0.170 0.208

GPACC 0.289 0.219 0.257 0.176 0.173 0.176 0.174 0.170 0.208

FM 0.291 0.239 0.263 0.200 0.191 0.205 0.174 0.170 0.208
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Figures 4 and 5 present the results of the combinations of fusion operators for
the FMC-MQ architecture, respectively, averaging absolute errors and rank. The
critical difference (CD) diagram (Fig. 5) is computed for ranking, employing the
non-parametric Friedman test with 95% confidence to determine the presence of
significant differences between the operators and the posthoc Nemenyi test to
infer which differences are significant.

Fig. 4. Averaged absolute errors of fusion operators for FMC-MQ architecture.

The best operators pair with the lowest absolute errors for multi-class
datasets with FMC-MQ is (median, avg). However, the best-ranked operators

Fig. 5. CD diagrams comparing fusion operators for FMC-MQ with multi-class
datasets.
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pair for multi-class datasets is (median, median). CD diagrams show no signif-
icant differences between (median, avg) and (median, median) for multi-class
datasets. Thus, we deduce that (median, median) is the best fusion operators
pair for a general case. The median is less liable to be distorted by outliers.

8 Conclusions

This work proposes two ensemble architectures for quantification and assesses
several fusion operators to aggregate classification scores and quantification
probabilities. Our results show that aggregating quantification probabilities per-
form better than aggregating classification scores. Thus, FMC-MQ generally out-
performs FMC-SQ across all datasets. Similarly, FMC-SQ does not outperform
MC-SQ considering each base quantifier, indicating that the fusion of classifica-
tion scores is not a promising research direction.

In future work, we will investigate other approaches and configurations of
ensembles. A promising direction is an ensemble of multiple classifiers and quan-
tifiers that aggregates quantification probabilities only without fusing classifica-
tion scores. In addition to binary and multi-class quantification, we also intend
to tackle the multi-label problem.
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Abstract. Recent machine learning breakthroughs in computer vision
and natural language processing were possible due to Deep Neural Net-
works (DNNs) learning capabilities. Even so, applying DNNs is quite chal-
lenging, as they usually have more hyperparameters than shallow models.
The higher number of hyperparameters leads to allocating more time for
model optimization and training to achieve optimal results. However, if
there is a better understanding of the impact of each hyperparameter on
the model performance, then one can decide which hyperparameters to
optimize according to the available optimization budget or desired per-
formance. This work analyzes the impact of the different hyperparame-
ters when applying dense DNNs to tabular datasets. This is achieved by
optimizing each hyperparameter individually and comparing their influ-
ence on the model performance. The results show that the batch size usu-
ally only affects training time, reducing it by up to 80% or increasing it
by 200%. In contrast, the hidden layer size does not consistently affect
the considered performance metrics. The optimizer can significantly affect
the model’s overall performance while also varying the training time, with
Adam being the generally the better optimizer. Overall, we show that the
hyperparameters do not equally affect the DNN and that some can be dis-
carded if there is a constrained search budget.

Keywords: Neural Networks · Hyperparameter Optimization · Neural
Architecture Search · Hyperparameter Importance · HPO · NAS

1 Introduction

Machine Learning (ML) has recently witnessed various breakthroughs in com-
plex tasks such as Computer Vision and Natural Language Processing (NLP).
The catalyst for these breakthroughs was the use of Deep Neural Networks
(DNNs) [1]. These DNNs differed significantly on various hyperparameters, such
as the optimizer, learning rate, number of layers, nodes per layer, or the node
type in each layer. Since DNNs have more hyperparameters than typical shallow
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models, achieving a suitable configuration is harder and can even directly limit
scientific progress [2]. With the trend of using ever deeper DNNs, these difficul-
ties become more noticeable, and manually optimizing a neural network becomes
less suitable. So researchers created automated approaches for hyperparameter
and architecture tuning to help them find efficient models [1].

Although results show that some automated approaches outperformed human
experts [1–3], they are computationally demanding [2,4]. This disadvantage is
the result of two factors. First, every time a configuration is tested, the entire
DNNs must be trained, which is, on its own, computationally demanding, espe-
cially when the DNNs have millions of parameters. Second, given the number of
hyperparameters and their possible values, the search space is enormous. Conse-
quently, some other models can be more suitable when the search budget is small.
For example, [5] shows how Random Forest (RF) models outperform DNNs in
tabular data using the same search budget.

To mitigate this considerable disadvantage, one must either reduce the train-
ing time or the search space. Since some hyperparameters have been shown to
have a suboptimal impact on other models’ performance [2,6], finding which
hyperparameters are meaningful to optimize in DNNs and removing the others
can significantly reduce the search space.

This paper provides a step in that direction, analyzing the impact of different
dense DNNs’ hyperparameters on six tabular datasets. We only consider tabular
datasets because the typical DNN used is dense, and the paper’s objective is to
understand the impacts of each hyperparameter in a dense DNN. We consid-
ered six datasets to obtain the average impact of each hyperparameter. After
analyzing the individual impact of seven hyperparameters on the performance,
training time, and prediction time, only one didn’t show a meaningful impact
on at least one of the metrics. The activation function presents the most signifi-
cant influence on performance and the batch size on the training and prediction
times.

The main contribution of this work is a list of the expected training and
prediction time and accuracy variance for each hyperparameter in a tabular
dataset when using a dense DNN, which can be used to guide the training of
dense DNN, considering the available search budget and the desired final model
performance.

The remainder of this paper is organized as follows. Section 2 presents an
overview of the various automated hyperparameter optimization approaches and
reviews previous work on hyperparameter relevance. Section 3 defines the experi-
ments, describing the datasets used, the base DNN, what hyperparameters were
considered, and the metrics used for evaluation. The results are presented in
Sect. 4, and their discussion is elaborated in Sect. 5. The conclusions are drawn
in Sect. 6.

2 Background

Automated hyperparameter tunning is vital for non-expert users to develop qual-
ity models [6]. Given its importance, several approaches have been proposed to
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improve its results. The difference between these approaches is how they ana-
lyze the hyperparameter space. In DNNs, besides the typical hyperparameters
like learning rate or optimizer, that can be changed independently, there are
interdependent architecture hyperparameters, which invalidate the use of some
approaches. To answer these constraints, the Neural Architecture Search (NAS)
subfield was proposed with dedicated algorithms to optimize DNNs architec-
ture [1].

Since the various algorithms are only concerned with searching a given space,
the space is usually left for the user to decide. To help aid in the search space
decision, several analyses have been performed on various models regarding their
hyperparameter importance.

Given that the focus of this paper is on the hyperparameter relevance and
not the algorithms used, this section introduces the most common techniques for
automated hyperparameter tuning, skipping the dedicated algorithms for NAS,
and presents previous studies on the importance of some ML model hyperpa-
rameters.

2.1 Automated Hyperparameter Optimization

Hyperparameter optimization aims to find a set of hyperparameters that return
the best performance of a model given a validation set [2]. This process’s automa-
tion consists of creating a searchable space, usually defined by what hyperpa-
rameters are optimized and the range of values they assume, and a way to
traverse the space to find the hyperparameters’ combination that presents the
best results.

Besides allowing non-experts to achieve good models, automated hyperpa-
rameter optimization provides better reproducibility, as there is an algorithm
behind the decisions made, and in some cases, even obtains better performance
by experimenting with new combinations. The optimization algorithms can be
divided according to how they search the space.

Model-Free Algorithms. Model-free algorithms do not leverage any model
to choose the next point in the search space to be tested, requiring brute force
to find a reasonable solution. Given their simplicity, they are the most common
approaches when developing a hyperparameter search. The two most common
methods are grid search [6] and random search [4].

Gradient-Based Algorithms. One approach to consider the previous values
tried is to use gradient descent. This traditional optimization technique uses the
gradients of variables to find a promising direction. This approach always finds
a local minimum given enough epochs, and when the optimization function is
convex, the local minimum is the global minimum. The main disadvantage of
this approach is that it only supports continuous hyperparameters, as other
hyperparameters, like categorical ones, do not have a gradient direction [4].
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Bayesian Optimization Algorithms. Similarly to gradient-based algorithms,
the Bayesian optimization ones consider previously tried configurations when
deciding which values to try next. The decision on which configuration to try
next relies on two key components: the surrogate model, which fits the currently-
observed points into the objective function, and the acquisition function, which
determines the next point to evaluate by balancing the trade-off between explo-
ration and exploitation [7]. Depending on the objective function, different surro-
gate models can be used. The three main approaches are Bayesian Optimization
- Gaussian Process, Bayesian Optimization - Random Forest, and Bayesian Opti-
mization - Tree-structured Parzen estimator [4].

Multi-fidelity Optimization Algorithms. As we mentioned in the introduc-
tion, the main disadvantage of automated hyperparameter optimization is that
it is computationally demanding. Multi-fidelity optimization techniques tackle
this problem by leveraging low-fidelity and high-fidelity evaluations [8]. In low-
fidelity evaluations, only a subset of the search space and dataset are evaluated.
This provides results at a low cost, although with low generalization. In high-
fidelity evaluations, a more extensive set of the dataset is used for evaluation,
providing a better generalization, although at a higher cost. The optimization
algorithm aims to perform multiple low-fidelity optimizations in the complete
search space and a few high-fidelity ones on the best-performing low-fidelity
results. Two typical algorithms are successive halving and Hyperband [4].

Metaheuristics Algorithms. Based on biological theories, metaheuristics
algorithms are widely used for optimization, with their main advantage being the
capability to solve a wide range of problems [9]. One major category of these algo-
rithms is the Population-based optimization algorithms, where the algorithms
start by creating a population and then update it consecutively based on the
best-performing individuals until it reaches the global optimum. In hyperparam-
eter optimization, two popular approaches are genetic algorithms and particle
swarm optimization [4].

2.2 Hyperparameter Importance

Although approaches such as Bayesian optimization algorithms provide good
results for most models, blind reliance on these methods can deprive users of
valuable information on the importance of each hyperparameter [2]. In turn, to
ensure good results, every hyperparameter must be optimized, and their ranges
must be considerably broad. When considering a Support Vector Machine (SVM)
implemented using Scikit-learn, which has seven hyperparameters (when using
the ‘rbf’ kernel), and the hyperparameters have a relatively small range of val-
ues, the search space is small enough that the impact of this approach is not
significant. On the other hand, when considering DNNs, which has more than
seven hyperparameters and an optimizable architecture, the search space can
reach sizes of up to 1020 [1].
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Although, to the best of the authors’ knowledge, there are no studies per-
formed on DNNs hyperparameter importance, several studies provide insights on
the hyperparameter importance for other models such as RFs [10] and SVMs [3].
The insights extracted from these studies are outside this paper’s scope. How-
ever, the tools used to obtain them are still relevant. For instance, one can borrow
from the field of feature selection and adapt the sensitivity analysis metrics used
to decide which features are relevant to find which hyperparameters present the
highest variability [6]. The problem with these approaches is that they only
consider the impact of individual hyperparameters. The Functional Analysis of
Variance (fANOVA) algorithm [10] aims to tackle this problem using the predic-
tion marginals of an RF trained on the output from the hyperparameter search.
Another approach based on the feature selection algorithm Relief that can eval-
uate the impact of hyperparameters interaction is the N-RReliefF algorithm [3].
This algorithm uses a similar approach to the fANOVA to obtain the initial
dataset composed of hyperparameter configurations and obtained performance.
However, instead of relying on the RF to obtain the hyperparameter importance,
it adapts the Relief algorithm to infer importance based on a continuous value
instead of a class and infer the importance of interaction between hyperparam-
eters instead of only assessing it individually.

3 Experiments

To understand if the importance of the hyperparameters is generalizable, one
must use various datasets. Furthermore, besides the model’s accuracy, other
performance metrics are relevant. This section describes the experiments per-
formed, stating which datasets were used, the base models, the hyperparameters
evaluated, and finally, the performance metrics considered.

The results presented were obtained on a virtual machine with 24 VCPUs,
32 GBs of RAM, and one GPU (NVIDIA RTX 2080), and the neural networks
were implemented with the Keras API from Tensorflow in Python. The source
code is publicly available on GitHub1.

3.1 Dataset Description

As mentioned in the introduction, we considered six tabular datasets in the
experiments, three for classification tasks and three for regression tasks. These
datasets are part of a more extensive benchmark presented in [5], which selected
the datasets based on various criteria, such as difficulty to solve and amount
of data. Please refer to the original paper for further discussion on how the
benchmark was created. Since the initial criteria to select the datasets provided a
varied benchmark. The subset selected was based on the amount of data available
(small, medium, and large number of examples) and the features available, where
the priority was datasets with categorical and numeric features. Table 1 presents

1 https://github.com/rgtzths/mlp_hpp_analysis..

https://github.com/rgtzths/mlp_hpp_analysis
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a summary of the characteristics of the datasets. If the dataset has more than
100 000 examples in the training set, then similarly to [5], the training set is
truncated to 100 000 examples.

Table 1. Datasets’ specifications. (‘-’ in No classes means that it is not applicable)

Regression
Dataset Name Total examples No Features No Classes

Bike Sharing 17379 11 -
Abalone 4177 8 -
Delays Zurich Transport 5465575 8 -
Classification
Dataset Name Total examples No Features No Classes

Compass 4966 11 2
Covertype 423680 54 2
Higgs 940160 24 2

3.2 Baseline Models

Since we needed a base model for each dataset with good performance, the
baseline models were obtained through a simple random search that only varied
architecture hyperparameters. Figure 1 presents the search space considered for
the networks. The random search performed 100 trials, and the network was
trained for 200 epochs in each trial. The data used for training was 80% of the
complete dataset, where 20% was used as validation data. Given that the focus of
the paper is on the hyperparameters’ influence, not the models, the final baseline
model for each dataset will not be discussed and is presented in Appendix B.
The performance of said models and the comparison with the best and worst
performing ones is available on the project’s GitHub (See Footnote 1).

Fig. 1. DNN random search space definition to obtain the baseline models.
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3.3 Hyperparameter Search Space

Since the paper’s objective is to obtain the importance of each hyperparame-
ter, the search space must be as broad as possible to avoid misleading results
because the search space did not include the optimal solution. The complete
list of hyperparameters analyzed and their ranges are presented in Table 2. All
hyperparameters were analyzed individually except for two cases: the number
of layers and layer sizes, as these are usually related, and their relationship is
not linear (a network with double the layers with half the size each is not equiv-
alent to the original network) [11], and the loss function and activation layer
for the classification datasets, as otherwise the neural network would not work.
Furthermore, the values available for each hyperparameter were chosen based
on availability. If it was a possible option, then we used it, even in cases that
might not make sense. Although it might seem an unfair approach to evalu-
ate the importance, if the hyperparameter search is done by someone with no
background on DNNs, the search would follow a similar approach.

Table 2. Hyperparameter values considered.

Hyperparameter Values

General
Activation function
(hidden layers)

relu, sigmoid, softmax, softplus, softsign, tanh,
selu, elu

Batch Size 64, 128, 256, 512, 1024, 2048, 4096
Learning rate 0.00001, 0.0001, 0.001, 0.01, 0.1
Optimizer Adam, SGD, RMSprop, Adadelta, Adagrad,

Adamax, Nadam, Ftrl
Hidden layer size 64, 128, 256, 512, 1024
No hidden layers 4, 5, 6, 7, 8
Classification
Loss function Binary crossentropy, Sparse categorical

crossentropy, Categorical crossentropy
Activation function (last
layer)

Softmax, Sigmoid

Regression
Loss function Mean squared error, Mean absolute error, Mean

absolute percentage error, Mean squared
logarithmic error, Cosine similarity

3.4 Performance Metrics

Considering that only some DNNs will be run on a high-end machine and that
only some users have a powerful cluster to train the DNNs, taking into account
only the model’s accuracy as the metric on which we base the importance of the
hyperparameter leaves out important information. To that extent, we considered
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Mathews Correlation Coefficient (MCC) and Mean Squared Error (MSE) as
model accuracy metrics for the classification and regression tasks and the model
training and inference time as metrics to regard when aiming to develop models
on constrained scenarios.

3.5 Individual Hyperparameter Testing

To evaluate the individual hyperparameter importance, the baseline model was
changed one hyperparameter at a time and trained in a cross-validation setting
of five over the complete training dataset during 200 epochs with early stop-
ping with ten epochs of patience. The final result was the average score of the
performance metrics over the five runs.

4 Results

This section presents the results of the individual hyperparameter importance
testing averaged over all the datasets and by dataset type. The fANOVA [10]
metric was considered to evaluate the hyperparameter importance. This metric
performs a functional analysis of variance by dividing the observed variance of
the algorithm’s performance (accuracy, training time, or prediction time) into
various components (the hyperparameters or their combination). The analysis
of the hyperparameter importance for each dataset and the model performance
will not be addressed due to page limitations, although the results obtained can
be consulted in the Appendix A or in the project GitHub (See Footnote 1).

4.1 General Importance

Aggregating the importance of each hyperparameter for every dataset allows
us to find the most impactful hyperparameters that should be prioritized when
improving the model. The results from the aggregation are presented in Table 3,
where the activation functions were the most critical hyperparameter for model
accuracy and batch size was the most important for training and prediction time.
Besides these, the loss functions impacted the accuracy. Similarly, the optimizer
was also relevant in the accuracy, although it also affected the training time. The
learning rate presented significant results in accuracy and the number of hidden
layers in the prediction time.

4.2 Importance by Dataset Type

Ideally, the results are generalizable to every dense DNN. However, depending
on the dataset and its characteristics, different hyperparameters might be more
important than others. One characteristic that might change the importance of
the hyperparameters is the type of task it solves. Table 4 presents the results
of the hyperparameter importance grouped by task. From this table, it is clear
that, indeed, the relevance of most hyperparameters varies. However, batch size
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Table 3. Hyperparameter general importance. (Bold indicates the best result)

Hyperparameter Importance (%)
Accuracy Training time Prediction time

Activation function (hidden layers) 18.42 3.20 6.99
Batch Size 0.95 55.94 37.67
Loss function 12.23 0.33 2.1
Optimizer 14.88 5.17 2.16
Learning rate 17.65 3.38 1.34
No hidden layers 3.94 3.85 16.62
Hidden layer size 3.94 3.61 6.29

continues to be the hyperparameter with the most impact on the training and
prediction time, and the importance of the activation function in accuracy is
very similar. The hyperparameter whose relevance varied the most was the loss
function in accuracy, where the results changed from 19.51% to 9.16%, followed
by the optimizer, whose impact on the accuracy in the classification tasks is
much more significant.

5 Discussion

Although some results were expected, such as the relevance of the optimizer
or learning rate in the accuracy or the batch size in the training time, others,
like the poor significance of the No of hidden layers and the hidden layer sizes
in the accuracy and training time, were surprising. To understand why some
results were against expectations, this section discusses the results presented in
the previous section.

The most striking result was, as just mentioned, the importance of the hidden
layer hyperparameters for accuracy and training time. By intuition, one would
think that the model size would significantly affect performance. However, adding
more layers will not be very useful if a smaller model can already solve the
problem presented. That said, factors like the learning rate or optimizer that
can lead an excellent model to perform extremely badly end up having a more
significant impact. The same goes for the activation functions in the hidden
layers, as a bad combination can make the model perform poorly. For example,
using the exact same model, but instead of the ‘relu’ activation function, the
‘linear’ one is used, then the model losses all its non-linear capability, and in
a non-linear problem, it will perform poorly. Regarding the training time, the
results are most likely a consequence of the early stopping, as the deeper DNNs
likely use fewer epochs to train, making a trade-off between the number of epochs
and time per epoch. When the models are compared directly in the prediction
time, the number of layers starts to matter, as each model analyzes the same
amount of data, and fewer layers are faster to compute.

Another interesting result was the difference between the accuracy’s impor-
tance of the loss function in the regression and classification. This can be justified
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Table 4. Hyperparameter importance by task. (Bold indicates the best result)

Regression
Hyperparameter Importance (%)

Accuracy Training time Prediction time

Activation function (hidden layers) 23.66 2.87 15.98
Batch Size 4.49 64.87 37.22
Loss function 19.51 0.12 0.01
Optimizer 7.4 8.33 0.12
Learning rate 18.09 1.38 3.26
No hidden layers 2.1 2.2 12.22
Hidden layer size 3.32 1.48 4.18
Classification
Hyperparameter Importance (%)

Accuracy Training time Prediction time

Activation function (hidden layers) 17.59 2.91 2.28
Batch Size 1.31 57.3 37.43
Loss function 9.16 0.01 3.76
Optimizer 17.11 3.78 4.53
Learning rate 21.4 4.69 0.01
No hidden layers 6.13 0.67 19.37
Hidden layer size 3.04 5.2 8.54

by looking in detail at the individual results. In classification, the three loss func-
tion options all perform similarly, while in regression, one of the loss functions
performs poorly in all the datasets, creating a stronger relationship between the
performance and the loss function used.

With the unexpected results analyzed, one question remains: “What hyper-
parameters to optimize?”. The answer to this question is highly constrained by
the budget available for optimization. The key idea is to optimize as many hyper-
parameters as the budget allows. However, some decisions must be made when
on a limited budget. First, one must define the optimization objectives. If the
aim is to improve the model results, optimizing the learning rate and optimizer
are two promising approaches. If the objective is to improve training time, then
experimenting with increasing batch size is the best approach. Similarly, for
improvements in the prediction time, having a bigger batch size can be helpful.
However, that is not always possible, so experimenting with a reduced number
of hidden layers or layers with smaller sizes can help.

Nevertheless, although the results do not show a meaningful reason to exper-
iment with the model architecture, if the baseline model architecture used is
not as solid as the ones presented, optimizing it can significantly improve the
performance and training times.
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6 Conclusion

Hyperparameter optimization is crucial to any ML pipeline and is usually the
most time-consuming part. If the optimized model is a DNN, hyperparameter
optimization can take even longer. This paper analyzed individual hyperparam-
eter importance for DNNs in tabular datasets to understand which hyperparam-
eters could be discarded from optimization to reduce the time spent on it.

Six tabular datasets with different characteristics and baseline models were
considered during the experiments, and seven hyperparameters were analyzed.
From them, the activation function presented the most impact on the model
accuracy, followed by the loss function, optimizer, and learning rate. Although
the regression datasets highly influence the results of the loss function. The batch
size was the most significative hyperparameter for the training and prediction
time, followed by the optimizer in the training time and the number of hidden
layers in the prediction time.

These results show that for accuracy improvement, one should focus on ana-
lyzing the optimizer, learning rate, and activation functions. On the other hand,
if the training and prediction times need refinement, then increasing the batch
size, experimenting with other optimizers, or reducing the number of layers can
significantly improve results.

Nonetheless, there are still more hyperparameters to evaluate, especially
related to the model architecture. In future work, we intend to increase the
number of hyperparameters considered and analyze their relationship on a set
of datasets with different characteristics (images, time series, etc.).

Acknowledgements. This work is supported by the European Union/Next Genera-
tion EU, through Programa de Recuperação e Resiliência (PRR) [Project Nr. 29: Route
25].

A Hyperparameter Importance per Dataset

See Table 5.

Table 5. Hyperparameter importance by dataset. (Bold indicates the best result)

Hyperparameter Importance (%)
Accuracy Training time Prediction time

Abalone

Activation function (hidden layers) 14.77 1.39 4.39
Batch Size 0.55 56.72 21.61
Loss function 0.0 1.62 0.0
Optimizer 2.96 7.99 3.5
Learning rate 30.02 6.9 0.07

(continued)
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Table 5. (continued)

Hyperparameter Importance (%)
Accuracy Training time Prediction time

No hidden layers 7.16 0.12 15.69
Hidden layer size 11.55 4.35 11.04

Bike Sharing

Activation function (hidden layers) 51.26 0.59 24.54
Batch Size 0.74 72.21 29.71
Loss function 0.06 0.0 0.0
Optimizer 17.86 6.28 0.02
Learning rate 11.6 5.17 7.14
No hidden layers 0.0 1.98 14.41
Hidden layer size 2.62 1.16 0.82

Compass

Activation function (hidden layers) 3.4 0.4 0.08
Batch Size 1.16 43.0 6.23
Loss function 33.98 0.19 0.0
Optimizer 21.68 4.02 4.16
Learning rate 9.59 6.06 0.02
No hidden layers 0.76 2.92 49.31
Hidden layer size 3.61 7.49 20.06

Covertype

Activation function (hidden layers) 29.22 12.77 4.01
Batch Size 0.77 56.92 41.6
Loss function 0.06 0.0 10.34
Optimizer 8.29 1.65 4.67
Learning rate 23.64 0.32 0.17
No hidden layers 13.27 0.2 3.32
Hidden layer size 1.84 4.79 0.62

Delays Zurich

Activation function (hidden layers) 0.37 3.57 5.2
Batch Size 0.0 58.2 57.82
Loss function 39.27 0.0 0.01
Optimizer 14.39 2.42 0.0
Learning rate 0.18 0.58 0.5
No hidden layers 2.37 10.18 12.22
Hidden layer size 3.81 0.48 3.92

Higgs

Activation function (hidden layers) 11.51 0.49 3.73
Batch Size 2.46 48.6 69.07
Loss function 0.01 0.14 2.25
Optimizer 24.08 8.67 0.63
Learning rate 30.84 1.22 0.15
No hidden layers 0.09 7.68 4.75
Hidden layer size 0.18 3.39 1.25
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B Baseline Models Architecture

See Figs. 2, 3, 4, 5, 6 and 7.

Fig. 2. Baseline model used for the Abalone dataset.

Fig. 3. Baseline model used for the Bike Sharing dataset.

Fig. 4. Baseline model used for the Delays Zurich dataset.

Fig. 5. Baseline model used for the Compass dataset.
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Fig. 6. Baseline model used for the Covertype dataset.

Fig. 7. Baseline model used for the Higgs dataset.
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Abstract. Many current AutoML platforms include a very large space
of alternatives (the configuration space) that make it difficult to identify
the best alternative for a given dataset. In this paper we explore a method
that can reduce a large configuration space to a significantly smaller one
and so help to reduce the search time for the potentially best workflow.
We empirically validate the method on a set of workflows that include
four ML algorithms (SVM, RF, LogR and LD) with different sets of
hyperparameters. Our results show that it is possible to reduce the given
space by more than one order of magnitude, from a few thousands to tens
of workflows, while the risk that the best workflow is eliminated is nearly
zero. The system after reduction is about one order of magnitude faster
than the original one, but still maintains the same predictive accuracy
and loss.

Keywords: Configuration spaces · Portfolios of workflows · Reduction
of complexity

1 Introduction

One of the common machine learning problems, and more specifically in the
areas of metalearning and AutoML, is elaborating a workflow for a specific task.
The aim is to come up with a workflow that has the potentially best performance
(measured, for instance, by predictive accuracy). Many platforms exist nowadays
that facilitate the task of constructing workflows. The AutoML systems can
explore the space of alternatives, often referred to as a configuration space to
come up with good workflows [8,9,15]. One problem with this approach is that
the configuration space may include alternatives that are not useful for any task.
This has the consequence that the system may spend a long time searching for
the right alternative. The methods that can reduce a large configuration space to
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a significantly smaller one help to reduce the search time for the potentially best
workflow. It is important, however, that the potentially best workflows are not
eliminated in this process. If this happened, this would affect the performance on
new tasks. In the past, various authors have examined the usefulness of different
algorithms (workflows) in a given portfolio, while taking into account a given set
of tasks [2]. The previous methods had, however, various shortcomings, which
were corrected in this paper. Also, in this paper the configuration space explored
is much larger than in the previous work.

The rest of this paper is organized as follows. Section 2 describes some related
work in this area. Section 3 starts by discussing different reductions methods
for the given portfolio of workflows. This is followed by a description of the
system used to search through the given set of workflow for the potentially best
workflow. The final subsection describes the experiments carried out and the
results. Section 4 presents a discussion, future work and conclusions.

2 Relation to Other Work

The problem of determining which hyperparameters or algorithms are important
has been studied by various researchers in the past. In this section we reviews
some of these approaches.

Establishing Hyperparameter Importance. Ablation analysis [7], for
instance, requires that the best possible hyperparameter setting for a given algo-
rithm is determined first. Then all hyperparameters are considered, one at a time,
and for each one, the optimal setting is substituted by the default value and the
effect on performance is recorded. Functional ANOVA [12,14] determines how
much each hyperparameter (or their combination) contributes to the variance of
the performance. Many of studies were carried out in a post-hoc manner, i.e.,
determine which settings led to the best performance. This knowledge cannot,
however, be used directly by the recommendation system to determine the most
promising workflows.

Marginal Contribution of Algorithms/Workflows. The aim of so-called
marginal contribution of algorithms/workflows is to determine how much the
performance of an existing portfolio of algorithms/workflows can be improved by
adding a new algorithm/workflow to it [17]. A more general notion is the notion of
a Shapley value that determines a marginal contribution of a algorithm/workflow
with respect to a given portfolio or any of its subsets [10].

Learning Multiple Defaults for ML Algorithms. Pfisterer et al. [13] have
investigated the problem of defining a set of defaults for some ML algorithms.
These represent discrete choices that can be reused in future problems. The
authors have shown that this has advantages over the random search method
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applied to the full space of alternatives. The work assumes the existence of pre-
defined number of alternative defaults (the maximum is 6). Our work has shown
that for some algorithms we may need more settings than others. Also, this
method does not deal with situations when several ML algorithms are used at
the same time.

Reduction of Portfolio of Algorithms. The method proposed by Abdulrah-
man et al. [2] (see also [5]) involves two phases, similarly as the method proposed
in this paper. In the first one, the aim is to identify the most competitive algo-
rithms for each dataset used in the past.

The second phase used a so-called covering method whose aim was to asso-
ciate one workflows with each dataset. The assumption was that one workflow
would be sufficient. Our analysis showed that this assumption was wrong, as this
strategy could omit the potentially best workflow, and consequently end up with
a rather significant loss. We use a similar approach here, but the second phase
is different. The aim is to admit more workflows for each dataset, but at the
same time try to reduce their number by eliminating redundant variants. Our
experimental results show that the final loss of the new method is either zero
or rather negligible. The work of [11] was concerned with the task of reducing
the given workflows that included outlier elimination method (OEM) step in
preprocessing. The first step was similar to the method presented here, but the
second step was different. The aim was to eliminate all workflows which include
rather infrequent OEM variants (i.e., those that appear in less than P% work-
flows). This strategy enabled the authors to identify three most important OEM
methods out of the initial set of twelve methods.

3 Reducing the Configuration Space of Workflows

3.1 Variants of the Reduction Method Considered

The configuration space, represented by the initial portfolio of workflows, can
be very large. Pruning the search space can be useful to accelerate such search.
Our method is somewhat similar to [2] but it overcomes some of its shortcom-
ings. Pruning eliminates the workflows with low performance (step PL) and in
addition also the workflows potentially redundant (step PR). Both steps are
described in more detail below.

Eliminating Workflows with Low Performance. The aim of the pruning
step is to eliminate (prune out) workflows with low performance. This is done by
considering the set of existing set of workflows and identifying, for each dataset,
the top P% (e.g., 5%) of workflows based on the chosen performance measure.
These workflows can be regarded as specialists for the particular dataset in
question. All other workflows are pruned out.

Regarding the performance measure used in this process, one possibility is
to use the normalized accuracy discussed further on. However, if the aim is to
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include also fast, but not necessarily the most accurate workflows, it is possible
to also include the top P% of workflows using A3R measure that combines
accuracy and time [1,4]. Our preliminary experiments provided evidence that
this is a good option and hence we have decided to use it in all the experiments
reported further on in the paper.

After the PruneLow (PL) step has been completed, the system returns a list
of datasets, in which each element is accompanied by top performing workflows.
So each element in this list is of the form (Di,

−→
Wj), where Di represents a

dataset and
−→
Wj the list of top performing workflows.

Identifying the Generally Useful Workflows. In general, the most useful
workflows are those that are are top performers in many datasets. So the list dis-
cussed above is rearranged by identifying, for each workflow, the top performers.
Each element in this rearranged list is of the form (Wi,

−→
Dj), where Wi represents

a workflow and
−→
Dj the vector of datasets in which this workflow achieved the

top performance.
In the following we will sometimes use the phrase “Wi covers datasets

−→
Dj”

as a shorthand for “Wi is a top performer in datasets
−→
Dj”. In order to give

preference to generally useful workflows, the list of pairs is reordered according
to the size of the set of datasets covered.

Eliminating Redundant Workflows Using a Cover Test. The goal of elim-
inating redundant workflows, is achieved by constructing a list of non-redundant
workflows WS in a gradual fashion starting with an empty list. This method is
referred to as PL.PR.C.

Let us see the method in more detail. The pairs (Wi,
−→
Dj) are processed

sequentially, one by one. Each workflow Wi is included in WS only if it extends
the coverage of WS. If this situation is verified, it is taken as an indication that
the new workflow Wi is non-redundant and so it is added to WS, and DS is
updated to include all the datasets covered. If the workflowWi did not extend
the coverage, it is assumed that it is potentially redundant, and no updates are
made. This test is of course not totally reliable, and so we will discuss another
alternative further on.

Let us consider an example. Suppose at some point of processing we have WS
= {W1} and DS = {d1, d2, d3} and workflow W2 is encountered whose coverage
is Cov(W2) = {d2, d3}. As the datasets associated with W2 do not extend the
coverage of DS, this workflow is ignored. Suppose that, in the next step, we
encounter W3 and Cov(W3) = {d2, d4}. As this workflow would introduce a
new element to DS, the following updates are made: WS = {W1, W3} and DS
= {d1, d2, d3, d4}. The relationship between WS and DS can be captured by
Cov(WS) = DS.

Using an Additional Accuracy Test. As we have mentioned before, the cover
method is not entirely reliable. The problem can occur when the new workflow
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does not extend the current coverage of WS. The cover method would not add
this workflow to WS under the assumption that it is potentially redundant.
However, the new workflow may not, in fact, be redundant. This can occur, when
the new workflow and one of the existing workflows exhibit different performance
on some dataset. This problem can be avoided by an additional step which tests
whether the average performance values on all datasets are virtually the same
within a given tolerance limit ε. This method is referred to as PL.PR.A.

Scheduling Reduction Using Batch/Incremental Mode. In practice, the
given workflows may be separated out into different subsets. For instance, one
subset may include workflows that include SVM, another Logistic Regression
(LogR) etc. There are basically two ways we can proceed when dealing with a set
of workflows that includes various subsets. One can be regarded as a batch mode,
where all the possible workflows are joined into one large set and the reduction
is carried out on this set. This can be captured by the function PL.PR.Cb (see
Algorithm 1). The symbol WS represents the initial set of workflows, and WR
the reduced set.

Algorithm 1. Function PL.PR.Cb
1: WS ′ ← ∪n

i=1WS
2: WR ← PL.PR.C(WS ′)
3: end

The other possibility is to do this in an incremental way. In each iteration,
the additional (not yet reduced) workflows are added to the already reduced
ones, and the combined set is reduced further. This can be captured by function
PL.PR.Ci (see Algorithm 2).

Algorithm 2. Function PL.PR.Ci
1: WR ← {}
2: for all Wi ∈ WS do
3: WR′ ← WR ∪ PL.PR.C(Wi)
4: WR ← PL.PR.C(WR′)
5: end for
6: end

The incremental mode is particularly useful when we are dealing with work-
flows that include different classification algorithms with their hyperparameters
and settings. The incremental scheme permits to reduce each subsets of work-
flows to a smaller one before joining it to the other workflows. All three methods
discussed earlier can be applied either in batch or incremental mode.
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Concluding Remarks. Eliminating workflows is potentially beneficial, as we
end up with a simpler configuration space which facilitates search for the truly
best workflows. Eliminating workflows has however a disadvantage that the truly
best workflows can be wrongly eliminated affecting loss on new tasks. So, a
question arises which of these variants should be used in practical settings. The
experiments presented further on shed light on this issue.

3.2 Using a Given Configuration of Workflows for Recommendation

In this section we discuss how the recommendation are obtained, and also
describe the evaluation methodology.

Using the Average Ranking Method for Recommendation. The given
set of workflows (sometimes called a portfolio of workflows) is normally used
by a given metalearning system to generate recommendations for the target
dataset. Here we use a system based on the average ranking method (AR) to
provide recommendations [1,4]. We have opted to use this method because of its
simplicity. It uses metadata in the form of test results of a given set of algorithms
on a given set of datasets.

The method calculates an average rank for each algorithm based on a given
performance measure (accuracy, A3R etc.). The ranks are used to construct the
average ranking. The average ranking would normally be followed on the new
target dataset: first, the algorithm with rank 1 is evaluated and used to initialize
the so-called current best algorithm (sometimes called the incumbent). Then the
algorithm in rank 2 is evaluated and if its performance is better than that of
the current best algorithm, it is used as the new current best algorithm. This
process is repeated for all algorithms in the ranking, or until a given termination
condition has been achieved. The average ranking can thus be regarded to as
the recommended ranking for the target dataset.

Normalization of Performance Values. As accuracy values are normally
not comparable across datasets (e.g., 90% accuracy can be a good result in one
dataset but bad in other), it is common to adopt measures to avoid this problem.
Here we re-scale all values obtained into an interval spanning between 0 to 1. The
lowest possible accuracy for a given dataset is the default accuracy equivalent
to accuracy obtained by selecting the majority class.

Accnorm = (Acc − Accdef )/(1 − Accdef ) (1)

where Acc represents the measured accuracy, Accdef the default accuracy and
Accnorm the normalized accuracy. If the default accuracy was, for instance, 0.5%,
the measured accuracy 0.9%, then the normalized value would be 0.8%.

Evaluation Methodology. We are interested to evaluate the effects of reducing
portfolios of workflows on a target dataset. This can be done by comparing the
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loss at corresponding time points for two recommendations, where one is based
on a full (non-reduced) portfolio and the other one on the reduced one. We can
of course do this for different pairs of time points and this way obtain two loss
curves. Ideally, the loss curve relative to the reduced portfolio should exhibit a
lower loss or be within ε distance of the reference curve, relative to the original
(non-reduced) portfolio.

To obtain a non-biased result, we take care that the target dataset is different
from the datasets used to obtain the metadata used by the AR method. So, to do
this, we use a leave-one-out (LOO) approach in conjunction with N datasets. In
each LOO cycle one dataset is selected as the target dataset and the remaining N
− 1 datasets are used to obtain the test results (metadata) that is used both by
the reduction method and the recommendation system. So, this process results
in N pairs of loss curves. As it is difficult to analyze all these curves before
carrying out the analysis, we follow the usual strategy and elaborate a curve
representing a mean at each time point.

The curve can be characterized by various measures. One is mean interval
loss (MIL) representing effectively the area under the curve. Another measure
is the loss at some time point that is considered as the extreme time point (e.g.,
at 106 s). The aim is that this loss is as low as possible, ideally zero, indicating
that the potentially best workflow was identified.

3.3 Experiments

Experimental Setup. The experimental setup included workflows that con-
sist of various ML algorithms shown in Table 1. All algorithms were retrieved
from scikit-learn python library. All hyperparameter settings followed a given
grid determined before running all experiments. So, for instance, there were 300
workflows that included SVM algorithm, each one relative to particular hyper-
parameter setting. More details about the settings used for each algorithm are
given in several tables listed in the last column of Table 1. As for the hyperpa-
rameter settings of SVM, for instance, we see that we should consult Table 2. All
experiments were carried on 41 datasets, representing a subset of 72 datasets of
benchmarking suite OpenML-CC18 [16]. The list of these datasets is shown in
the Appendix.

Table 1. Metadatabase of workflows

Classif. Alg. Description #Workflows Details

SVM SVM 300 Table 2

LogR Logistic Regression 220 Table 3

LD Linear Discriminant 90 Table 4

RF Random Forest 1080 Table 5
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Table 2. Metadatabase of 300 workflows that include SVM

#WFs kernel c gamma degree

168 rbf [0.01–1000] 12 settings [1x106 − 1] 14 settings -

120 poly - idem - - [0–9] 10 settings

12 linear - idem - - -

Table 3. Metadatabase of 220 workflows that include LogR

#WFs (solver, penalty) c

40 [(lbfgs, l2), (lbfgs, none)] [0.0001–10000] 20 settings logspace

40 [(liblinear, l1), (liblinear, l2)] - idem -

40 [(newton-cg, l2), (newton-cg, none)] - idem -

40 [(sag, l2), (sag, none)] - idem -

60 [(saga, l1), (saga, l2), (saga, none)] - idem -

Experiments. In this section we report on the experiments carried out with
all variants of the reduction methods discussed earlier in Sect. 3. The methods
are listed in the first column of Table 6. The first line in this table refers to the
initial situation before applying any of the reduction methods. For instance, the
number of initial workflows that includes SVM is 300.

Various subsequent columns show the sizes of the subsets of workflows that
include a particular ML algorithm before and after reduction. The methods are
ordered starting with the least aggressive reduction methods. The most aggres-
sive reduction method is PL.PR.Ci that is shown in the last line. We note that
from the initial 300 workflows for SVM only 24 were retained after reduction
with this method.

The total number of workflows for all four ML algorithms is shown in column
“Size total”. We can see that the initial number of 1690 workflows was reduced
to 45 by the most aggressive method, representing only 2.7% of the original
workflows (see column “Size %”).

Column “MIL %” characterizes the corresponding loss curve, as it shows
the so-called mean interval loss in the interval between 1 and 106 s. We note
that all reduction methods reduce this value. Low MIL value indicates that good
workflows were identified early. The method that reduces the number of work-
flows most is PL.PR.Ci. However, the methods PL.PR.Cb and PL.PR.Ai are
not far off. The benefit of using these three methods can be seen also from Fig. 1
that shows the mean loss curves discussed before (see Evaluation Methodology).
The loss curves of the three methods are far below the loss curve of the initial
portfolio with 1690 workflows.

Column “Loss 106%” shows the mean loss at that time point. Ideally, this
loss should be 0, as this would indicate that the potentially best workflow was
identified. A non-zero value indicates that the reduction method was too aggres-
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Table 4. Metadatabase of 90 workflows that include LD

#WFs solver tol shrinkage

8 svd 0.0001, 0.0005, 0.001, 0.005
0.01, 0.05, 0.1, 0.5

-

41 lsqr - [0.01–0.975] step 0.025

41 eigen - - idem -

Table 5. Metadatabase of 1080 workflows that include Random Forest (RF)

#WFs bootstrap max depth max features min sample min sample

split

num

estimators

1080 [True, False] [10, 20, 50,

70, 100, None]

[auto, sqrt] [1, 2, 4] [2, 5, 10] [200, 400, 800

1000, 2000]

sive and eliminated incorrectly some workflow that would be useful if kept. We
note that the final loss is 0 for PL, PL.PR.Ab and PL.PR.Cb and very small (a
fraction of %) for the other the reduction methods (PL.PR.Ai and (PL.PR.Ci).

Applying Reduction Iteratively. It is interesting to observe how the iterative
reduction methods proceed, as more workflows specific to a given ML algorithms
are added to the current reduced set. Figure 2 relative to the method PL.PR.Ci.
The figure shows mean values across all folds of LOO procedure; the numbers
differ somewhat from one fold to another of the LOO cycles. We note that, for
instance, the 300 initial workflows of SVM with different hyperparameters and
their settings were reduced to 59 workflows, when using just SVM alone. In this
step of iterative reduction the SVM workflows were competing against other
SVM workflows. This competition is not as stringent as the one when other
ML algorithms are considered. When LogR is added, this number was reduced
further. The process of reduction continued when the other ML algorithms were
added. The final number of SVM workflows was 24. This means that the more
stringent competition with other ML algorithms eliminated further 35 workflows
(59–24). Similar observations can be made about all the other ML algorithms
used in this work. Similarly, Fig. 3 shows the progress relative to the method
PL.PR.Ai. This method shows a similar trend as the previous method.

Qualitative Analysis of Reduced Workflows. We have examined the work-
flows that remained after the reduction to obtain better understanding of the
composition of the reduced sets and the choices made by the reduction methods.
We observed that, in general, the reduced sets include different values of the
discrete space of the each hyperparameter spread sparsely over the original grid.

As an example, we present a brief analysis of one of the subsets of the 45
workflows obtained by the PL.PR.Ci reduction method (see Table 6) namely the
SVM subset of 24 workflows, representing a significant proportion of the total.
These workflows consist of 14 RBF kernel configurations with 6 different values
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Table 6. Comparison of different reduction methods

Reduction method Size SVM Size LogR Size LD Size RF Size total Size % MIL % Loss 106 %

No reduction 300 220 90 1080 1690 100.0 6.57 0.00

PL 247 202 70 729 1248 73.8 6.30 0.00

PL.PR.Ab 216 81 37 137 471 27.9 3.26 0.00

PL.PR.Ai 124 41 17 88 270 16.0 2.57 0.02

PL.PR.Cb 25 1 3 25 54 3.1 2.99 0.00

PL.PR.Ci 24 2 4 15 45 2.7 2.40 0.01

Fig. 1. Loss curves for different reduction methods

of hyperparameter C. As the original grid includes 12 settings, we see that half of
these was included in reduced subset. Similar observations can be made about
the hyperparameter gamma and other kernels types, namely poly and linear
kernel, with 8 and 2 configurations respectively. These results confirm that SVM
is a rather difficult algorithm to use, as it requires that different settings are
considered on a new task. Still, the original number of 300 was reduced to a
much smaller number (24) by the proposed approach.

Ablation Analysis. The given workflows can be regarded as a composition
of several subgroups, each corresponding to the use of a particular classification
algorithm (e.g., SVM). So we are interested to examine how the particular group
contributes towards the overall performance. Ablation analysis enables us to do
just that [7]. The aim is to determine how much the performance degrades when
this group is eliminated. This is done by first eliminating a subset of workflows
from the initial set and then running the chosen reduction method. Here we
consider two measures that characterize the overall performance. The first one
is the mean interval loss, MIL, and the second one, loss at 106.
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Fig. 2. Applying the iterative reduction method PL.PR.Ci

Fig. 3. Applying the iterative reduction method PL.PR.Ai

Table 7 shows the effects of eliminating the subgroups that include the chosen
classification algorithms on MIL. The value of MIL for the full set of workflows
is shown in the first column (column “Elim.None”). The second column (column
“Elim.SVM”) shows how much the value of MIL increases when the correspond-
ing workflows are dropped. For instance, for the reduction method PL.PR.Ci the
MIL increases to 8.46% when all workflows with SVM are dropped. This is the
largest increase when considering different ML algorithms. The ML algorithms
can be ordered according to the contribution they have on MIL. The ordering is
(SVM, RF, LogR, LD).

Table 8 shows the effects of eliminating certain classification algorithms on
the loss at 106. This table is organized in a similar way as the previous one but
instead of MIL is shows the final loss. The values in this table confirm the results
on the relative importance of workflows pertaining to given ML algorithms. The
workflows that include SVM appear to be most important, as they affect the
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final loss most. It is possible to order again the ML algorithms according to the
effects on the final loss. We note that the ordering is the same as the one based
on MIL that was shown before.

Table 7. Effects of eliminating given ML algorithms on mean interval loss (MIL)

Reduction method Elim. None Elim. SVM Elim. LogR Elim. LD Elim. RF

No reduction 6.57 7.99 6.72 6.65 3.83

PL 6.30 7.78 6.50 6.36 3.83

PL.PR.Ab 3.26 7.37 3.24 3.35 3.80

PL.PR.Ai 2.57 8.68 4.87 4.90 5.54

PL.PR.Cb 2.99 7.17 3.15 3.08 3.88

PL.PR.Ci 2.40 8.46 5.14 5.13 5.86

Table 8. Effects of eliminating given ML algorithms on loss at 106 s

Reduction method Elim. None Elim. SVM Elim. LogR Elim. LD Elim. RF

No reduction 0.00 2.14 0.26 0.11 1.07

PL 0.00 2.14 0.26 0.12 1.07

PL.PR.Ab 0.00 2.17 0.27 0.15 1.07

PL.PR.Ai 0.02 4.96 2.53 2.39 3.50

PL.PR.Cb 0.00 2.41 0.58 0.50 1.75

PL.PR.Ci 0.01 5.25 2.78 2.64 3.86

4 Discussion, Future Work and Conclusions

4.1 Discussion and Future Work

In this work we have used four ML algorithms hyperparameters whose settings
followed a fixed grid. Some people argue that the usage of fixed grid has disad-
vantages, as it can miss good settings that may exist between the settings on
the grid [3]. This is true particularly when the grid is rather sparse. A fine grid
has disadvantages too, as it may require many tests to be carried out.

Various testing strategies could be employed for this task, including ran-
dom testing, or more intelligent ones based on the work in AutoML and multi-
armed bandits. These strategies could suggest tests of configurations that do not
coincide with the grid used by the reduction approach. This problem could be
resolved by training a surrogate model [6], and using this model to estimate the



Exploring the Reduction of Configuration Spaces of Workflows 45

performance values on our fixed grid. We have carried a preliminary study that
shows the potential of this approach.

The work presented could be extended to include not only other ML algo-
rithms with the corresponding hyperparameters and their setting, but also by
including certain preprocessing operations, such as, feature selection. We have
initiated this work and will report the results in future publications.

4.2 Conclusions

We have presented a method that can reduce a large configuration space to a
significantly smaller one and consequently help to reduce the search time for the
potentially best workflow. Unlike many previous approaches, the method deals
with different types of workflows at the same time. The workflows used include
four different ML algorithms and the corresponding hyperparameters with their
settings. Our results show that it is possible to reduce the given space by more
than one order of magnitude, from a few thousands to tens of workflows, while
the risk that the best workflow is eliminated is nearly zero.

We have presented several variants of the basic approach. Some carry out the
reduction in a kind-of batch mode, others in an incremental mode. The methods
that employ a simple test (cover test) to detect redundant workflows lead to
fewer workflows that the methods that use more elaborate test (both the cover
and accuracy test) for this task.

Our results show that if we consider each ML algorithm alone with its possible
hyperparameters and settings, the proposed method can identify a subset that
can resolve the given set of tasks as well as the full set. The size of the final subset
differs from algorithm to algorithm. For instance, Fig. 2 shows that the set of
final SVM workflows is larger (24) than the final set of workflows with LogR
(2). This means that if the number of workflows associated with a particular
algorithm were fixed to some specific relatively small value (e.g. 5 as in [13]),
the potentially best workflow could be omitted and consequently, we could end
up with rather high loss.

It is interesting to note that if we use more than one ML algorithm in con-
junction with their hyperparameters in a given portfolio, reduce each one and
then join the reduced subsets, it is possible to apply reduction again. The work-
flows in different subsets compete with one another for the place in the final set
and only the most competitive workflows “survive” so to speak.

The results of ablation analysis can be used to determine the relative impor-
tance of different ML algorithms in a given portfolio. As we have shown, the
algorithms ordered by their importance are SVM, RF, LogR and LD.

The proposed method could also be used to reorder the given hyperparam-
eters according to their importance. As we have mentioned before (in Sect. 2)
various studies exist whose aim was to determine the importance of hyperpa-
rameters of a given ML algorithm [14]. This work does not show, however, how
to convert these results into a useful set of workflows. The proposed approach
discussed in this paper has the advantage that it does just that.
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Appendix

List of 41 datasets, represented by OpenML-Dataset-Name (OpenML-Dataset-
ID), used in the experiments. This set is subset of 72 datasets of the benchmark-
ing suite OpenML-CC18 (https://docs.openml.org/benchmark/#openml-cc18):

kr-vs-kp (3), letter (6), balance-scale (11), mfeat-factors (12),
mfeat-fourier (14), mfeat-karhunen (16), cmc (23), optdigits (28),
pendigits (32), diabetes (37), splice (46), tic-tac-toe (50),
vehicle (54), electricity (151), satimage (182), vowel (307),
isolet (300), analcatdata authorship (458), analcatdata dmft (469),
Bioresponse (4134), wdbc (1510), phoneme (1489), qsar-biodeg (1494),
wall-robot-navigation (1497), semeion (1501), ilpd (1480), madelon (1485),
ozone-level-8hr (1487), cnae-9 (1468), PhishingWebsites (4534),
GesturePhaseSegmentationProcessed (4538), har (1478), texture (40499),
climate-model-simulation-crashes (40994), wilt (40983), car (40975),
segment (40984), mfeat-pixel (40979), Internet-Advertisements (40978),
dna (40670), churn (40701).
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10. Fréchette, A., Kotthoff, L., Rahwan, T., Hoos, H., Leyton-Brown, K., Michalak, T.:
Using the Shapley value to analyze algorithm portfolios. In: 30th AAAI Conference
on Artificial Intelligence (2016)
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Abstract. The task of feature ranking has received considerable atten-
tion across various prediction tasks in the batch learning scenario, but
not in the online learning setting. Available methods that estimate fea-
ture importances on data streams have thus far focused on ranking the
features for the tasks of classification and occasionally multi-label clas-
sification. We propose a novel online feature ranking method for online
multi-target regression, iSOUP-SymRF, which estimates feature impor-
tance scores based on the positions at which a feature appears in the trees
of a random forest of iSOUP-Trees. By utilizing iSOUP-Trees, which can
address multiple structured output prediction tasks on data streams,
iSOUP-SymRF promises feature ranking across a variety of online struc-
tured output prediction tasks. We examine the robustness of iSOUP-
SymRF and the feature rankings it produces in terms of the methods’
parameters: the size of the ensemble and the number of selected features.
Furthermore, to show the utility of iSOUP-SymRF and its rankings we
use them in conjunction with two state-of-the-art online multi-target
regression methods, iSOUP-Tree and AMRules, and analyze the impact
of adding features according to the rankings.

Keywords: online learning · feature ranking · multi-target regression

1 Introduction

Predictive modelling tasks are often addressed in both the batch and online
learning settings, as predictive models immediately provide a highly desirable
ability to predict some values on new unseen examples, potentially bypassing
the need to perform timely and/or costly measurements. Less often considered,
particularly in the online learning setting, are the related feature ranking tasks.
In feature ranking for a predictive modelling task, such as classification, regres-
sion or more complex tasks of structured output prediction, we wish to determine
which of the descriptive variables, i.e., features, are most important to the pre-
dictive modelling task at hand. By including only the most informative features,
c© The Author(s) 2023
A. Bifet et al. (Eds.): DS 2023, LNAI 14276, pp. 48–63, 2023.
https://doi.org/10.1007/978-3-031-45275-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45275-8_4&domain=pdf
https://doi.org/10.1007/978-3-031-45275-8_4


iSOUP-SymRF: Symbolic Feature Ranking with RF in Online MTR 49

we can reduce the need for computational resources as well as eliminate the need
and cost of measuring less informative features.

A feature ranking method is thus closely related to the underlying predic-
tive task. In predictive modelling, a model is learned using incoming examples
to best predict one or more target values, i.e., to generalize the dependence
between descriptive and target values. In feature ranking, however, the model
that is learned is tasked with ranking the descriptive features in terms of their
importance for accurate prediction in the underlying predictive modelling task.
Ideally, features that have a higher impact on the prediction should be ranked
higher than those with lesser impact. Thus a feature ranking method is a learn-
ing procedure that produces a ranking based on the available data examples;
in the online learning setting, this process is continuous and the ranking can
change with time as potential drift occurs.

Formally, a feature ranking is a list of all features ordered according to their
informativeness (importance for predictive modelling), i.e., starting with the
most informative feature and ending with the least informative. However, meth-
ods for feature ranking often produce a more informative result, where each
feature is assigned a numeric score estimating its importance. A ranking can be
trivially obtained by sorting the features according to their scores.

In the batch learning setting, a plethora of methods for feature ranking are
available across a variety of predictive modelling task, both simple, like classifi-
cation and regression, as well as structured prediction tasks, such as multi-label
classification, multi-target regression, etc. In the online learning setting, how-
ever, fewer methods for feature ranking exist, all of which exclusively focus on
simple predictive modelling tasks.

A common approach in structured output prediction tasks is to decompose
the problem into multiple simple (single-target) sub-problems, e.g., multiple
binary classification sub-problems in multi-label classification or multiple single-
target regression sub-problems in multi-target regression. Each sub-problem is
then addressed using a simple single-target predictor and the predictions of all
of these models are the used to solve the original structured problem.

Methods that address the structured problem in its entirety have been shown
to have various advantages over this local decomposition approach, but in fea-
ture ranking they provide an additional benefit. Applying the local approach to
feature ranking would yield a ranking per each of the targets. While these could
be combined using various aggregation approaches, e.g., averaging, this intro-
duces a non-trivial facet into the feature ranking procedure. Thus, we focus on
approaches that consider the complex task as a monolith, i.e., without attempt-
ing to decompose it into smaller sub-problems.

In this paper we introduce the symbolic random forests with iSOUP-Trees
(iSOUP-SymRF) feature ranking method, which utilizes the structure of a ran-
dom forest of trees to produce the ranks of the observed features. While initially
targeted at feature ranking for online multi-target regression, due to the versa-
tility of the base iSOUP-Tree [15] method, the method we propose can be easily
extended to other online structured output prediction tasks, such as online multi-
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label classification [14] or hierarchical multi-target regression [16], as well as to
other learning contexts, such as semi-supervised learning [17]. To the best of our
knowledge, this paper is the first effort towards online feature ranking for any
structured output prediction task.

The rest of this paper is structured as follows. Section 2 presents relevant
related work and Sect. 3 introduces the symbolic random forest approach for
online feature ranking. Section 4 continues by describing the experimental setup
that we use to evaluate the proposed method, while Sect. 5 presents the experi-
ments’ results. Finally, Sect. 6 concludes the paper with a summary of the find-
ings and presents avenues for further work.

2 Related Work

In the batch learning setting, there is a variety of feature ranking methods for the
classification and regression tasks [26]. Methods for structured output prediction
tasks, such as multi-target regression [21] are rarer. However, for the related task
of feature selection, where a set of features needs to be selected, not necessarily
ranked, several methods for multi-label classification are available [19].

Feature ranking is not addressed often as a standalone task in the online set-
ting. It commonly encompassed under the name of feature weighing as part of
a method for classification that weighs the input features [3,4,8,23,28]. Perkins
et al. [20] introduced the grafting method that combines multiple types of reg-
ularization to estimate the importances of features and uses a logistic function
of the binomial negative loss function to calculate the probabilities of the class
presence. More recently, Razmjoo et al. [22] rank features based on a sensitivity
analysis of the performance of a classifier under a potential feature removal.

Several methods that do address online feature ranking have been proposed.
Katakis et al. [11,12] introduce a feature-based classifier that uses a system for
incremental feature selection (IFS) and explore how IFS impacts the predictive
performance of simple online classification methods, such as, e.g., näıve Bayes.
Another method that specifically addresses online feature ranking is I-RELIEF
[27], which stands for iterative RELIEF, and is an adaptation of the Relief [13]
method for batch feature ranking to the online learning setting. Both of these
methods operate in the online predictive modeling scenario.

On the other hand, Yoon et al. [29] introduced a method for online fea-
ture selection that is unsupervised, i.e., it is not directly tied to a predictive
modelling scenario. Their method utilizes the CLeVer method for principal com-
ponent analysis. Recently, Duarte et al. [5] introduced methods for online feature
ranking, designed specifically for methods that use the Hoeffding inequality and
used them with AMRules [6], while Karax et al. [10] address the feature ranking
for online classification by exploiting heuristic information of decision trees.

Other examples of online feature ranking come from related fields, such com-
puter vision [2] and online image retrieval [9].
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3 Symbolic Feature Ranking with Random Forests

In this paper, we adapt the symbolic approach to feature ranking with ran-
dom forests to the online learning setting. This method was first introduced in
the batch learning setting [21]. Petković et al. introduce several feature ranking
methods for multi-target regression based on tree ensembles in the batch learn-
ing setting. In addition to the symbolic ranking with random forests, the authors
introduce the Genie3 ranking method, which calculates the feature importance
score based on the heuristic scores produced by the split nodes in the ensemble
members, as well as the random forest score feature ranking method, which cal-
culates the scores of the features by looking at the out-of-bag errors and feature
value permutations. Note that the Genie3 method employs a method of scoring
as similar to that of Karax et al. [10].

Of these three approaches, only the symbolic1 random forest ranking method
is directly applicable to the online learning scenario. To calculate the Genie3
feature importance scores, we need access to the splitting heuristic scores, which
are easily accessed in the batch scenario. In online learning, the heuristic score
of a split is calculated only on a small sample of the data, and is only partially
indicative of the feature importance scores on the entire dataset. The random
forest scoring method permutes the values of out-of-bag examples for each tree
and observes how the error changes from the original, unpermuted example. This
requires the permutation of many example values, after which many predictions
must be calculated to estimate the error. While this approach could technically
be applied to online learning, it would incur high consumption of computational
resources, particularly in terms of processing time.

Symbolic random forest feature ranking with iSOUP-Trees (iSOUP-
SymRF), however, calculates the feature importance scores using only the struc-
ture of trees which are the members of the ensemble. As we are targeting the task
of feature ranking for online multi-target regression, we use iSOUP-Trees [15] as
a base ensemble model. iSOUP-Tree is a state-of-the-art online learning method
that has been applied to a variety of online structured output prediction tasks
in addition to multi-target regression, such as multi-label classification [14] and
hierarchical multi-target regression [16], thus extending the possible coverage of
iSOUP-SymRF to feature ranking for these predictive modelling tasks as well.

Ensemble Construction. As in random forests utilized in batch learning, the
main idea is to induce an ensemble of diverse randomized trees. Tree randomiza-
tion is achieved in two ways, the first of which is example sampling as commonly
used in online bagging [18], where each member of the ensemble is updated using
a given example for a random number of times drawn from the Poisson distri-
bution. The second way in which the trees are randomized is the selection of
feature subspaces in each node when growing the tree. In particular, whenever a

1 Symbolic refers to the fact that the method relies only on the qualitative structure
of the trees in the random forest and not on other quantitative measures that the
remaining proposed methods are based on.
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new leaf node is constructed, i.e., at the beginning of the learning procedure or
when a leaf node is split into two new leaf nodes, a subset of the input features
is randomly selected. The new leaf node only considers those input features for
ranking split candidates; thus, statistics are recorded only for the selected input
features.

Feature Score Calculation. iSOUP-SymRF is based on the following observa-
tion: if a feature’s values are important for accurate prediction, the feature will
get selected in splits often. More accurately, it will get selected often when it can
be, as it is not always considered for candidate splits due to the random forest
learning process. If the base ensemble was constructed using a regular online
bagging approach, the variety in the models would be considerably lesser, as the
trees would always be able to select the best feature(s). This would over-focus
the scores to only the top features. In random forest tree construction, the best
features are sometimes left out of the candidate feature pool, thus allowing the
estimation of the importance scores of the remaining (less important) features.

To estimate the importance of a feature we make two observations: (a) the
more often a feature appears in the split nodes in the random forest, the more
important it is, and (b) the closer to the root of the tree the feature appears, the
higher its importance. The first observation follows the reasoning, that, despite
the random selection, a feature appearing more often means that splits along this
feature increase the predictive performance of the tree, according to standard
tree-learning methodology. The second observation is based on the fact that
split nodes closer to the tree root will affect more examples than those positioned
further from the root. For example, a split at the root node will affect all incoming
examples, while a split in one of its children will (on average) only affect half of
the examples, i.e., the ones for which the root split node directed them toward
this particular child and not the other.

Quantitatively, to calculate a feature importance score of a feature A, we
first calculate the feature importance score of A for a given ensemble member
T , which is defined as

I(A, T ) =
∑

N∈T (A)

wdepth(N ),

where w is a predefined weight and T (A) is the set of all split nodes of tree T
which have splits on feature A. The total feature importance of feature A is then

I(A,E) =
1

|E|
∑

T∈E

I(A, T ) =
1

|E|
∑

T∈E

∑

N∈T (A)

wdepth(N ),

where E is the ensemble of trees. We adapt this method to online learning, as
the calculation of the scores is quick, since it requires only the traversal of each
tree in the ensemble.

As the scores iSOUP-SymRF calculates are exclusively dependent on the
structure of the trees of the random forest, no predictions are needed, which
significantly reduces the operational time of the method. Notably, the process of
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(a) Tree T1

A1 ≤ v1

A2 ≤ v2

L1 L2

A2 ≤ v3

L3 L4

(b) Tree T2

A2 ≤ v1

A1 ≤ v2

L1 L2

A1 ≤ v3

L3 L4

Fig. 1. Sample trees motivating the selection of the weight parameter w.

calculating the feature ranking is fairly quick and can be executed at any time
during the learning process, so the ranking is always available.

What remains is the choice of the weight factor w. When considering its
possible values, we note that w < 1 gives higher scores to features which appear
closer to the root, and, consequently, affect the larger parts of the input space.
To settle on a particular value of w, we observe the following example. Consider
a leaf in which two best features A1 and A2 have the exact same heuristic score.
In the first case, we split on the first feature and likewise in the second case, we
split on the second feature. Afterwards, in the first case we split both leaves on
A2, and in the second case on A1 (see Figs. 1a and 1b, respectively).

In both cases, all example traversal paths include splits on A1 and on A2.
This implies that A1 and A2 should have equal importance scores, as they affect
the same sets of examples. Under this assumption it follows that

I(A1, T1) = I(A1, T2)

wd = wd+1 + wd+1

1 = 2w
0.5 = w,

where d is the depth of the initial twice-split leaf. Hence, we choose w = 0.5.
In choosing w = 0.5, we note that the total contribution of any level in

the tree will equal to 1 and, consequently, the total of all scores of a tree will
be about equal to its average depth. Thus, the total scores of a tree (and the
random forest) will increase over time as the trees grows.

Parameters. As is standard practice with random forest methods, we define
two method parameters for iSOUP-SymRF, ensemble size and subspace size.
The first determines the number of base models included in the ensemble, while
the second determines how many features are considered as split candidates in
each leaf. Ensemble size commonly ranges between 10 and 100, while we use
two selection methods for subspace size, either randomly selecting 1 + �logN�
or 1 + �√N� features in each leaf, where N is the number of all features.

Learning Context. iSOUP-SymRF notably does not have an explicit change
detection and adaptation mechanism. While trees have a small innate change
adaptation ability, by just growing additional nodes that adhere to the new
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Table 1. Datasets used for online feature ranking for multi-target regression.

Dataset No. of examples No. and type of features Targets

Bicycles 17379 12 numeric 3

SCM1d 9803 280 numeric 16

SCM20d 8966 61 numeric 16

concept, this is likely not enough to capture the drift in a reasonable time frame.
Thus, in the context of this paper we consider learning (and experiments) in the
static context, i.e., we assume no concept drift in the data stream.

4 Experimental Setup

4.1 Datasets

In the interest of brevity, we have selected three multi-target regression datasets,
based on their size, primarily looking for diversity in the number of input fea-
tures. A summary of the datasets and their properties is shown in Table 1, while
brief descriptions of the datasets are provided below.

The Bicycles dataset is concerned with the prediction of demand for rental
bicycles on an hour-by-hour basis [7]. The three targets represent the number
of casual (non-registered) users, the number of registered users and the total
number of users for a given hour, respectively.

The SCM1d and SCM20d are datasets derived form the Trading Agent Com-
petition in Supply Chain Management (TAC SCM) conducted in July 2010 [25].
The data examples correspond to daily updates in a tournament – there are 220
days in each game and 18 games per tournament. The 16 targets are the predic-
tions of the next day and the 20 day mean price for each of the 16 products in
the simulation, for the SCM1d and SCM20d datasets, respectively.

The Bicycles dataset is available at the UCI Machine Learning Repository2,
the SCM1d and SCM20d datasets are available at the Mulan multi-target regres-
sion dataset repository3.

Even though iSOUP-SymRF is not equipped with explicit change detection
and adaptation mechanisms, these datasets do contain drift. As this provides an
additional challenge to properly estimating the feature importances, the obtained
results are pessimistic estimates of the method’s performance in the static con-
text we presuppose in our experiments. Performance on static data streams (or
more realistically, in periods without drift) would thus possibly be improved over
what is shown in the results of our experiments.

2 URL: https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset (accessed
2018/01/22).

3 URL: http://mulan.sourceforge.net/datasets-mtr.html, (accessed 2018/01/22).

https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
http://mulan.sourceforge.net/datasets-mtr.html
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4.2 Experiment: Parameter Stability

In this experiment, we explore which parameter settings produce good rank-
ings, in particular, we are interested in parameter configurations that produce
stable rankings that “converge” fairly quickly. Notably, this is not a concern in
the batch learning scenario, where the learned ranking is static. We perform a
small-scale grid-search on the two parameters, ensemble and subspace size. We
consider ensembles of sizes 10, 20, 50 and 100, as well as subspaces of logarithmic
and square root size. In terms of resource consumption, smaller ensemble and
subspace sizes are naturally preferable, thus, the smallest parameter configura-
tion (10 models with logarithmic subspaces) will take the baseline role in this
experiment.

To evaluate the rate of convergence, we define the time to final ranking
(TTF), i.e., how many examples it takes for the ranking to reach the same order
as the final ranking. Thus, lower values of TTF are more desirable. Notably, TTF
considers the ranking only in terms of the feature ranks, ignoring the finer detail
of the scores themselves. Furthermore, TTF is not particularly bad at evaluating
rankings on data streams that exhibit drift, as the ranking is likely to fluctuate
any time a drift occurs. As TTF considers all features equally (according to
their rank), it can have large values due to changes in the tail end of the feature
ranking. As we are generally more interested in the top ranked features, we also
define TTFn which only considers the top n features. We will then observe TTF5

to determine how quickly the top five features settle.
Notably, these measures only make sense in a static context. Were drift to

occur, the actual importances would possibly get rearranged and the estimated
importances would again take time to converge. In the drifting scenario, obser-
vation of these two measures would only make sense between drift points.

4.3 Experiment: Ranking Utility

To estimate the utility of the rankings obtained by iSOUP-SymRF, we use for-
ward feature addition (FFA) [24]. Forward feature addition is performed by
observing the performance of a predictive model, while adding features from
best to worst. In particular, we first observe the performance of a model learned
only using the best ranked feature, then using the two best features, then the
three best features, etc.

In the batch learning scenario, observing the performances of the models in
these scenarios is fairly simple, as the performance of a model can be easily
expressed as a single number, e.g., root mean squared error over a test set. In
the online learning setting, this kind of generalization is less informative. Thus,
in this paper we examine the progression of the performance (in terms of error)
of the observed models.

Furthermore, even though iSOUP-SymRF can produce feature rankings at
any point in the learning process (rankings can change throughout the process),
for FFA, we need to consider only one static ranking4. While this is not ideal,
4 In the batch scenario, this is not an issue as only one ranking is ever obtained.
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demonstrating the utility of the rankings is notoriously difficult and using an
imperfect method to directly show the impact on the learning process still pro-
vides considerable insight into the applicability of the proposed method. To this
end, we take the final feature ranking obtained by iSOUP-SymRF, i.e., the rank-
ing after all of the examples have been processed. This biases the results towards
optimistic, as in a practical use scenario this information would not be available
during learning.

In our case, we select two methods for online multi-target regression to eval-
uate the rankings obtained by iSOUP-SymRF. In particular, we use a single
iSOUP-Tree [15] and AMRules [6], with default learning parameters. As iSOUP-
Tree is the method that iSOUP-SymRF is based on, it is natural to expect that
this combination will yield better results than when combining iSOUP-SymRF
with AMRules. To estimate the error of these models we use the average relative
mean absolute error (RMAE or aRMAE) [15]:

RMAE =
1
M

M∑

j=1

RMAEj

where M is the number of targets and RMAEj is the relative mean absolute
error of the j-th target, defined as

RMAEj =
∑n

i=1 |yji − ŷji |∑n
i=1 |yji − ȳj(i)|

where yji and ŷji are the values of target j for data example i, real and predicted
by the evaluated model, respectively, while ȳj(i) is the average of the seen values
of the j-th target so far.

As some datasets have many features, we limit ourselves to reporting FFA
plots only for the 5 top and 5 bottom features. Using a good ranking, adding
the top features in FFA should considerably increase model performance, while
adding bottom features should barely affect performance (or even worsen it).

5 Results

5.1 Parameter Stability

The results of the parameter stability experiment are presented in Table 2. The
winning result in terms of ensemble size with regards to each of TTF and TTF5

are presented in bold text, while the winning results in terms of subspace size
are underlined (a dotted underline indicates a tie).

In terms of TTF, a square root size of the random space is generally preferred,
while in terms TTF5 no particular generalization can be made, as logarithmic
and square root subspace size win 6 of the contests each. For the Bicycles dataset,
we observe that the TTF5 values are generally considerably lower than the TTF
values, indicating that the top features converge faster, while the ranks of the
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Table 2. The results in terms of TTF and TTF5.

Size TTF TTF5

Log Sqrt Log Sqrt

Bicycles

10 16835 12504 9809 12504

20 14437 12495 12173 7620

50 16951 11109 2600 3019

100 12703 15866 2167 4133

SCM1d

10 9670 9460 8770 9151

20 9799 9550 8171 7684

50 9787 9773 9741 8342

100 9803 9788 9655 9355

SCM20d

10 8911 8846 8676 7731

20 8962 8951 7989 8025

50 8964 8964 8771 8735

100 8934 8956 7970 8373

remaining features continue to get perturbed. Even though the Bicycles dataset
exhibits strong seasonal effects (i.e., drift), the top ranked features appear not
to change between seasons, as they stabilize early through the data.

On the other hand, for the SCM1d and SCM20d datasets the TTF5 are much
closer to the TTF values. This indicates that the rankings are turbulent through
the entirety of these datasets. Any obtained final rankings are thus possibly not
close to converging to the actual underlying feature importances.

The results are even less clear regarding the preferred ensemble size. Larger
sizes of the ensemble produce better results on the Bicycles dataset, while smaller
ensembles perform better on the SCM1d and SCM20d datasets, with the excep-
tion of TTF5 for 100 trees with a logarithmic subspace size.

A key factor that may influence these results is the total number of features.
Regarding the feature set size, in the Bicycles dataset, which is smaller with a
total of 12 features, any feature is likelier to get selected as a feature candidate
even though the subspace size is relatively large compared to the number of
all features (4 vs 12 features for logarithmic, and 5 vs 12 for square root size).
This makes it easier to identify key features in this case, resulting in low TTF5

values. On the other end, SCM1d has 280 features, and the subspaces are of
sizes 7 and 18 for logarithmic and square root, respectively. While such low sizes
are desirable in the context of random forests to reduce resource consumption,
they make it more difficult to identify top features using a random forest based
feature ranking method such as iSOUP-SymRF.
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(a) 10 trees (b) 20 trees

(c) 50 trees (d) 100 trees

Fig. 2. Feature score progression on the Bicycles dataset in terms of ensemble size. All
plots show square root subspace size.

In this context, we can also examine the actual scores and their progression
through the learning process. With only 12 features, we can observe the feature
scores of the Bicycles dataset directly, as seen in Fig. 2. In addition to the score
progression, the plots also show the TTF and TTF5 points. Over all ensemble
sizes iSOUP-SymRF identifies ‘hr’, ‘hum’, ‘workingday’, ‘temp’, ‘atemp’, ‘week-
day’ and ‘weathersit’ as the top features, though there is some disagreement
about their final ranks. Here, we can see the decreased disambiguation power of
smaller ensemble sizes, particularly, in the case of 10 and 20 trees. In these cases,
the scores indicate the best features, but their ordering takes longer to establish.
Larger ensembles, on the other hand, fairly quickly establish the order, which
(for the most informative features) then remains stable. Notably, the choice of
the top observed features, i.e., the 5 in TTF5, also impacts the results. Clearly,
choosing a lower number lowers the TTF value, but in some cases we could also
have observed a larger number of top features and lost little confidence, i.e.,
TTF7 would be the same as TTF5 in the case of 100 trees.

Ultimately, this experiment does not unilaterally indicate which parameter
choices to make. While square root, i.e., larger, subspace sizes seem to be pre-
ferred, no clear statement can be made about ensemble size. Thus, motivated by
the Bicycles dataset example above, we choose square root subspace size with
ensemble size of 100 for our further experiments.
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5.2 Ranking Utility

The results using the FFA methodology are presented in Fig. 3. The plots
are interpreted in the following way: lines labeled with positive numbers n ∈
{1, 2, 3, 4, 5} depict the RMAE of models trained on the top n features; lines
labeled with negative numbers n ∈ {−5,−4,−3,−2,−1} depict the RMAE of
models trained with all but the last |n| features.

(a) iSOUP-Tree on the Bicycles dataset (b) AMRules on the Bicycles dataset

(c) iSOUP-Tree on the SCM1d dataset (d) AMRules on the SCM1d dataset

(e) iSOUP-Tree on the SCM20d dataset (f) AMRules on the SCM20d dataset

Fig. 3. RMAE of iSOUP-Tree and AMRules using FFA.

In terms of the top features, we wish to see the largest increase when adding
higher ranked features, e.g., the increase in performance should be larger when
we add the second best feature than the third best. All iSOUP-Tree models
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exhibit this behaviour, as do the AMRules models, with the exception of the
Bicycles dataset. This exception is most likely to AMRules change detection and
adaptation mechanism which significantly modifies the model during learning.

Conversely, regarding bottom ranked features, the desired effect is either triv-
ial improvement or even decrease in performance. This is shown in all datasets
and methods. In the case of the iSOUP-Tree models, for example, we can see
that, both on the Bicycles and SCM1d datasets, adding features toward the
bottom actually hurts the overall performance of the model, i.e., all negative
labeled lines are above (have higher errors) the highest positively labeled line.
On the SCM20d dataset, the addition of the bottom features only has marginal
effect. These results are mirrored in quality for the AMRules models, though
the effect sizes are considerably different. On the Bicycles dataset, adding the
lowest ranked features is either detrimental or has little to no effect on the error
of the model, while on the SCM1d and SCM20d datasets we observe the same
behaviour as with iSOUP-Tree, except that the decrease in the performance
on the SCM1d dataset is significantly higher, where as slight increases on the
SCM20d dataset are observed as compared to those in the iSOUP-Tree models.

Naturally, using a tree-based feature ranking method such as iSOUP-SymRF
provides good results when used alongside another tree-based method such as
iSOUP-Tree. However, iSOUP-SymRF also shows encouraging (if worse) results
using the different learning framework in AMRules. Notably, these experiments
also indicate that some of the features included in these datasets can be actively
detrimental when learning with these two learning methods.

6 Conclusions and Further Work

In this paper, we have introduced a novel method for feature ranking for online
multi-target regression called iSOUP-SymRF. It utilizes a random forest of
iSOUP-Trees to determine the feature importance scores (and consequently the
feature ranking), based on the features’ appearance in the split nodes of the trees
in the of the forest. We have conducted experiments on a collection of multi-
target regression datasets, aiming to (a) determine the methods stability against
the values of its parameters and (b) show that the obtained rankings have some
utility for increasing the predictive performance of online-multi target regressors.

Our experiments first focused on determining the methods stability over var-
ious parameter values. While the experiments were not fully conclusive, we sug-
gest the use of larger subspace sizes (such as square root), while the random
forest ensemble size should be further analyzed. The experiments that seek to
show the utility in using feature rankings obtained with iSOUP-SymRF show
promising results using two different learning methods for online multi-target
regression, iSOUP-Tree and AMRules. As expected, the results were better for
the related tree-based iSOUP-Tree method, though the feature ranking obtained
by iSOUP-SymRF still provided ample utility in terms of predictive performance
improvement when used in combination with AMRules.

We identify three key avenues for further work: the main effort will be to
equip the iSOUP-SymRF with a change detection and adaptation mechanism,
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e.g., ADWIN [1]. This will allow us to more accurately capture the evolution of
the feature rankings, especially in the presence of concept drift. Another avenue
is the adaptation of iSOUP-SymRF to feature ranking for other online struc-
tured output prediction tasks, such as online multi-label classification and/or
hierarchical multi-target regression, by utilizing the broad coverage of the base
iSOUP-Tree method [14,16]. This would also allow a comparison of a wider vari-
ety of learners, as methods for online multi-label classification are quite plenti-
ful. Finally, we wish to explore and improve the experimental setup, focusing on
better and more concise approaches for the evaluation of feature rankings in the
online learning setting.

Acknowledgements. This work was supported by grants funded by the Slovenian
Research Agency (P2-0103, J2-2505) and by the European Commission (H2020 TAI-
LOR 952215).
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Abstract. Learning processes by exploiting restricted domain knowl-
edge is an important task across a plethora of scientific areas, with
more and more hybrid methods combining data-driven and model-based
approaches. However, while such hybrid methods have been tested in
various scientific applications, they have been mostly tested on dynam-
ical systems, with only limited study about the influence of each model
component on global performance and parameter identification. In this
work, we assess the performance of hybrid modeling against traditional
machine learning methods on standard regression problems. We com-
pare, on both synthetic and real regression problems, several approaches
for training such hybrid models. We focus on hybrid methods that addi-
tively combine a parametric physical term with a machine learning term
and investigate model-agnostic training procedures. We also introduce
a new hybrid approach based on partial dependence functions. Experi-
ments are carried out with different types of machine learning models,
including tree-based models and artificial neural networks. Our Python
implementations of the hybrid methods are available at https://github.
com/yannclaes/kg-regression.

Keywords: Knowledge-guided machine learning · Physics-guided
machine learning · Supervised regression · Tree-based methods · Neural
networks · Partial dependence plot · Hybrid modeling

1 Introduction

For the past decades, machine learning (ML) models have been developed to
tackle a variety of real-life problems, complementing/replacing model-based
(MB) approaches, which mostly remain approximations that make stringent
assumptions about the system under study. Traditional ML approaches are said
to be data-driven, i.e. their prediction model is solely built from some learning
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dataset, let it be (deep) neural networks or regression trees. While their design
comes with great expressiveness, they are likely to be subject to over-fitting with-
out enough training examples and to show a lack of robustness on unseen sam-
ples, with predictions that can be inconsistent w.r.t. domain knowledge [5,6,31].
To overcome this generalization issue, hybrid approaches have been introduced
to incorporate a priori domain knowledge within statistical models, which can
be leveraged in a multitude of ways (see [16,25,27] for reviews). The success of
these hybrid methods have been shown empirically on a range of synthetic and
real-world problems [1,7,18,31]. However, while these models have been mostly
applied to dynamical systems, they have not been thoroughly studied in the con-
text of standard regression problems. Furthermore, the majority of ML models
that have been considered in these approaches are neural networks and variants
of the latter, leaving aside other methods. Our contributions are the following:

– We investigate empirically the performance and benefits of hybrid methods
against data-driven methods on static regression problems (in opposition to
dynamical problems). The static context removes a layer of complexity related
to the temporal correlation between observed states, which makes it easier
to assess the impact and interaction between the MB and ML components.
Specifically, we focus on hybrid models that combine in an additive way a
parametric physical term with an ML term.

– We compare different approaches for training such hybrid additive models.
We highlight specific assumptions under which these approaches are expected
to work well and relate the differences in terms of prediction and parameter
recovery performance. We focus on model-agnostic approaches, where the ML
term can be of any type, and we compare tree-based methods against neural
networks. Tree-based methods have several advantages over neural networks,
which motivate their use on static regression problems: they have much less
hyperparameters to tune, appear robust to the presence of irrelevant features
and have been shown to outperform neural networks on tabular data [12].

– We introduce a new hybrid approach based on partial dependence functions,
which makes it easier to find the right balance between the MB and ML
components, makes less assumptions than other approaches, and is shown to
be competitive in our experiments.

2 Problem Statement

Let us define a regression problem, with y ∈ R and x ∈ R
d, with d ∈ N+,

drawn from a distribution p(x, y) such that y = f(x) + ε with f : R
d �→ R the

partially known generating function and ε ∼ N (0, σ2) the noise term. We focus
on problems such that f(x) can be decomposed as:

Assumption 1 (A1, Additivity)

y = fk(xk) + fa(x) + ε,
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where xk is a subset of K ≤ d input variables. We assume partial knowledge of
the generating function through some known algebraic function hθk

k (xk) ∈ Hk

with tunable parameters θk, such that for the optimal parameters θ∗
k we have

h
θ∗
k

k = fk. The residual term fa(x) is unknown and is approximated in this work
through an ML component hθa

a ∈ Ha, with parameters θa
1. The final model

h ∈ H is denoted h(x) = hθk

k (xk) + hθa
a (x), with the function space H defined

as Hk + Ha. A1 is common when MB methods and ML models are combined
[7,22,26,30].

Given a learning sample of N input-output pairs LS = {(xi, yi)}N
i=1, drawn

from p(x, y), we seek to identify a function h = hθk

k +hθa
a , i.e. parameters θk and

θa, that minimizes the following two distances:

d(h, y) = E(x,y)∼p(x,y){(h(x) − y)2}, (1)

dk(hθk

k , fk) = Exk∼p(xk){(hθk

k (xk) − fk(xk))2}. (2)

The first distance measures the standard generalization error of the global model
h. The hope is that taking hk into account will help learning a better global model
than fitting directly a pure data-driven model on y, especially in the small sample
size regime. The second distance dk measures how well the tuned hk approxi-
mates fk. The main motivation for this second objective is interpretability: one
expects that the algebraic form of hk will be derived from first principles by
domain experts, who will be interested in estimating the parameters of this
term from data. An alternative to dk is a loss that would compare the estimated
and optimal parameters θ̂k and θ∗

k (e.g., ||θ̂k − θ∗
k||2). dk however has the advan-

tage not to require θ∗
k to be fully identifiable, i.e. there can exist several sets of

parameters θ∗
k such that h

θ∗
k

k = fk. In our experiment, we will report both dk

and the relative mean absolute error on the estimated parameters.
The following approximation of (1) can be used as training objective:

d̂(h, y;LS) =
1
N

N∑

i=1

(h(xi) − yi)2. (3)

Minimizing the distance in (2) is expected to be challenging and sometimes even
ill-posed. Indeed, if ha is too powerful, it could capture f entirely and leave little
room for the estimation of fk. Finding the right balance between hk and ha is
thus very challenging, if not impossible, using only guidance of the learning sam-
ple LS. Unlike (1), (2) cannot be estimated from a sample of input-output pairs
and hence cannot be explicitly used to guide model training. There are however
several scenarios that will make the problem easier. In the following, we will
discuss the optimality of the hybrid methods under two additional assumptions:

Assumption 2 (A2, Disjoint features). Let xa be a subset of features dis-
joint from xk (xk ∩ xa = ∅). There exists a function fr

a (xa) such that fa(x) =
fr

a(xa) for all x.

1 In the following, hθk
k and hθa

a will sometimes be denoted simply as hk and ha to
lighten the notations.
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Assumption 3 (A3, Independence). Features in xk are independent from
features in xa (xk ⊥⊥ xa).

A2 makes the problem easier as fk captures all the dependence of y on xk.
In the absence of A3, it might be hard to distinguish real contributions from xk

to f from those due to correlations with features not in xk.

3 Related Work

Hybrid additive modeling methods emerged several decades ago, combining first-
principles models with different ML models. Already in the 1990’s, approaches
in [14,17,24] complemented physics-based models with neural networks, weight-
ing contributions of both components (e.g. through radial basis function net-
works), to achieve enhanced physical consistency with better generalization
properties. More recently, other works applied the same principles to model
dynamical systems in various domains, still massively relying on neural net-
works [21,22,26,30]. In a more standard regression setting, [3,32,33] combined
a linear parametric term with a tree-based ML term.

Previous works have introduced regularization of the ML term to reduce
parameter identification issues in the decomposition [13,15,28]. Further works on
this matter introduced physically-motivated constraints in the learning objective
to better control contributions of the MB/ML components [7,31]. Elements of
discussion about the well-posedness of this additive decomposition have been
introduced in previous works: [31] showed the existence and uniqueness of an
optimal pair (hk, ha) when the contributions of ha are constrained to be minimal,
and [7] demonstrated the convergence of an algorithm alternating between the
optimization of hk and the optimization of ha, without however any guarantee
about convergence points.

4 Methods

We focus on model-agnostic approaches, i.e. that can be applied with any algebraic
function hk and any type of ML model ha. For both terms, we only assume access
to training functions, respectively denoted fithk , fithk+γ , and fitha , that can esti-
mate each model parameters, respectively θk, (θk, γ) and θa, so as to minimize the
mean squared error (MSE) over LS (see below for the meaning of γ), where para-
metric methods rely on gradient descent. Pseudo-codes of methods in Sects. 4.1
and 4.2 and additional illustrations are given on the paper’s GitHub2.

4.1 Sequential Training of hk and ha

This baseline approach first fits hk on the observed output y, then fits ha on
the resulting residuals, as done in [33]. More precisely, we first train hθk

k on y by
introducing a constant term γ ∈ R, such that

(θ̂k, γ̂) = fithk+γ(LS). (4)
2 https://github.com/yannclaes/kg-regression.

https://github.com/yannclaes/kg-regression
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Our motivation for introducing the term γ will be explained below. Afterwards,
we fit ha on the output residuals: θ̂a = fitha{(xi, yi − hθ̂k

k (xi) − γ̂)}N
i=1.

Let F̂k be the set of all functions f̂k mapping xk ∈ Xk to some value y ∈ R,
i.e. F̂k = {f̂k : Xk �→ R}. Under A2 and A3, it can be shown that f̂∗

k =
arg minf̂k∈F̂k

d(f̂k, y) is such that f̂∗
k (xk) = fk(xk) + C, for every xk ∈ Xk, with

C = Exa
{fr

a(xa)} (see Appendix A). Hence, this approach is sound at least
asymptotically and justifies the introduction of γ. Note however that even under
A2 and A3, we have no guarantee that this approach produces the best estimator
for a finite sample size, as fr

a(xa) + ε acts as a pure additive noise term that
needs to be averaged out during training. The approaches described in Sects. 4.2
and 4.3 try to overcome this issue by fitting hθk

k on corrected outputs that are
expected to be closer to fk(xk). Without A2 and A3, the quality of the estimation
of fk by hθ̂k

k , according to (2), is not guaranteed as there are regression problems
satisfying A1 such that:

�γ ∈ R : arg min
f̂k∈F̂k

d(f̂k, y) = fk + γ. (5)

An example will be given in Sect. 5.2.

4.2 Alternate Training of hk and ha

A hybrid additive approach was proposed in [7] that alternates between updating
hk and updating ha, using neural networks for ha. Such alternate training was
also proposed in [3,32] with a single decision tree as ha and a linear hk. We
include this approach in our comparison, but also investigate it with random
forests [2] and tree gradient boosting [9]. θ̂k is initialized by (fully) fitting hθk

k +γ

on y. Then, we alternate between: (1) a single epoch of gradient descent on hθk

k +γ
and (2) either a single epoch for ha (in the case of neural networks, as in [7]) or
a complete fit of ha (in the case of tree-based models).

While some theoretical results are provided in [7], convergence of the alter-
nate method towards the optimal solution is not guaranteed in general. Despite
an initialization favoring hk, it is unclear whether a too expressive ha will not
dominate hk and finding the right balance between these two terms, e.g. by reg-
ularizing further ha, is challenging. Under A2 and A3 however, the population
version3 of the algorithm produces an optimal solution. Indeed, hk will be ini-
tialized as the true fk, as shown previously, making the residuals y − hk at the
first iteration, as well as ha, independent of xk. hk will thus remain unchanged
(and optimal) at subsequent iterations.

3 i.e., assuming an infinite training sample size and consistent estimators.



Knowledge-Guided Additive Modeling for Supervised Regression 69

4.3 Partial Dependence-Based Training of hk and ha

We propose a novel approach relying on partial dependence (PD) functions [8]
to produce a proxy dataset depending only on xk to fit hk. PD measures how a
given subset of features impact the prediction of a model, on average. Let xk be
the subset of interest and x−k its complement, with xk ∪ x−k = x, then the PD
of a function f(x) on xk is:

PD(f,xk) = Ex−k
[f(xk,x−k)] =

∫
f(xk,x−k)p(x−k)dx−k, (6)

where p(x−k) is the marginal distribution of x−k. Under A1 and A2, the PD of
f(x) = fk(xk) + fr

a(xa) is [8]:

PD(f,xk) = fk(xk) + C, with C = Exa
{fr

a(xa)}. (7)

The idea of our method is to first fit any sufficiently expressive ML model ha(x)
on LS and to compute its PD w.r.t. xk to obtain a first approximation of fk(xk)
(up to a constant). Although computing the actual PD of a function using (6)
requires in principle access to the input distribution, an approximation can be
estimated from LS as follows:

P̂D(ha,xk;LS) =
1
N

N∑

i=1

ha(xk,xi,−k), (8)

where xi,−k denotes the values of x−k in the i-th sample of LS. A new dataset
of pairs (xk, P̂D(ha,xk;LS)) can then be built to fit hk. In our experiments, we
consider only the xk values observed in the learning sample but P̂D(ha,xk;LS)
could also be estimated at other points xk to artificially increase the size of the
proxy dataset.

In practice, optimizing θk only once on the PD of ha could leave resid-
ual dependence of xk on the resulting y − hθ̂k

k (xk) − γ̂. We thus repeat the
sequence of fitting ha on the latter residuals, then fitting hk on the obtained
P̂D(hθ̂a

a ,xk;LS)+hθ̂k

k (xk)+ γ̂, with θ̂k and θ̂a the current optimized parameter
vectors (see Algorithm 1).

The main advantage of this approach over the alternate one is to avoid dom-
ination of ha over hk. Unlike the two previous approaches, this one is also sound
even if A3 is not satisfied as it is not a requirement for (7) to hold. One drawback
is that it requires ha to capture well the dependence of f on xk so that its PD
is a good approximation of fk. The hope is that even if it is not the case at the
first iteration, fitting hk, that contains the right inductive bias, will make the
estimates better and better over the iterations.

5 Experiments

We compare the different methods on several regression datasets, both simulated
and real. Performance is measured through estimates of (1) and (2) (the latter
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Algorithm 1. Partial Dependence Optimization
Input: LS = (xi, yi)

N
i=1

θ̂a ← fitha(LS)

(θ̂k, γ̂) ← fithk+γ({(xk,i, ̂PD(hθ̂a
a ,xk,i; LS))}N

i=1)
for n = 1 to Nrepeats do

θ̂a ← fitha({(xi, yi − h
θ̂k
k (xk,i) − γ̂)}N

i=1)

(θ̂k, γ̂) ← fithk+γ({(xk,i, h
θ̂k
k (xk,i) + γ̂ + ̂PD(hθ̂a

a ,xk,i; LS))}N
i=1)

end for
θ̂a ← fitha({(xi, yi − hθ̂k

k (xk,i) − γ̂)}N
i=1)

only on simulated problems) on a test set TS, respectively denoted d̂(h, y;TS)
and d̂k(hθk

k , fk;TS). In some cases, we also report rMAE(θ∗
k, θk), the relative

mean absolute error between θ∗
k and θk (lower is better for all measures). For

the hybrid approaches, we use as ha either a multilayer perceptron (MLP), gra-
dient boosting with decision trees (GB) or random forests (RF). We compare
these hybrid models to a standard data-driven model that uses only ha. We also
compare fitting ha with and without input filtering, i.e. respectively removing
or keeping xk from its inputs, to verify convergence claims about hk in Sect. 4.2.
Architectures (e.g. for MLP, the number of layers and neurons) are kept fixed
across training methods to allow a fair comparison between them, and are given
in Appendix B. We use early stopping of gradient descent training by monitoring
the loss on a validation set (except for pure tree-based models, which are trained
in the standard way, hence not using gradient descent).

5.1 Friedman Problem (A2 and A3 Satisfied)

We consider the following synthetic regression problem:

y = θ0 sin(θ1x0x1) + θ2(x2 − θ3)2 + θ4x3 + θ5x4 + ε,

where xj ∼ U(0, 1), j = 0, . . . 9, and ε ∼ N (0, 1) [10]. We generate 10 different
datasets using 10 different sets of values for θ0, . . . , θ5, each with 300, 300 and
600 samples for respectively the training, validation and test sets. For the hybrid
approaches, we use the first term as prior knowledge, i.e. fk(xk) = θ0 sin(θ1x0x1).

We see in Table 1 that all hybrid training schemes outperform their data-
driven counterpart. They come very close to the ideal fk → ha method, and
sometimes even slightly better, probably due to chance. Sequential fitting of hk

and ha performs as well as the alternate or PD-based approaches, as A2 and A3
are satisfied for this problem (see Sect. 4.1). Filtering generally improves the per-
formance of hybrid schemes as A2 is verified. PD-based optimization yields good
approximations of fk (as shown by a low d̂k). The alternate approach follows
closely whereas the sequential one ends up last, which can be expected as fitting
hk only on y induces a higher noise level centered around Exa

{fa(xa)}, while
the other approaches benefit from reduced perturbations through ha estimation,
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Table 1. Results on the Friedman problem. We report the mean and standard deviation
of d̂ and d̂k over the 10 test sets (TS). “fk → ha” fits ha on y − fk(xk). “Unfiltered”
indicates that all the features are used as inputs of ha, while “Filtered” indicates that
the features xk are removed from the inputs of ha.

Method
d̂(h, y; TS) d̂k(h

θk
k , fk; TS)

Unfiltered Filtered Unfiltered Filtered

MLP

fk → ha 1.58 ± 0.33 1.23 ± 0.10 –

Sequential 1.54 ± 0.31 1.43 ± 0.13 0.18 ± 0.16

Alternate 1.43 ± 0.09 1.32 ± 0.09 0.10 ± 0.09 0.02 ± 0.02

PD-based 1.54 ± 0.12 1.38 ± 0.09 0.06 ± 0.07

ha only 2.62 ± 0.75 –

GB

fk → ha 1.73 ± 0.09 1.75 ± 0.12 –

Sequential 1.74 ± 0.11 1.81 ± 0.14 0.18 ± 0.16

Alternate 1.79 ± 0.11 1.78 ± 0.15 0.91 ± 1.45 0.06 ± 0.06

PD-based 1.77 ± 0.13 1.78 ± 0.12 0.03 ± 0.02

ha only 3.43 ± 0.94 –

RF

fk → ha 2.03 ± 0.18 1.96 ± 0.17 –

Sequential 2.11 ± 0.23 2.05 ± 0.24 0.18 ± 0.16

Alternate 2.03 ± 0.19 1.98 ± 0.17 0.04 ± 0.03 0.04 ± 0.04

PD-based 2.16 ± 0.27 2.09 ± 0.26 0.16 ± 0.15

ha only 5.58 ± 1.91 –

as explained in Sect. 4.1. Filtering vastly decreases d̂k for alternate approaches,
supporting claims introduced in Sect. 4.2, while this measure remains unimpaired
for sequential and PD-based training by construction.

5.2 Correlated Input Features (A3 Not Satisfied)

Correlated Linear Model. Let y = β0x0 + β1x1 + ε, with β0 = −0.5, β1 = 1,x ∼
N (0, Σ), and ε ∼ N (0.52, 1). We generate 50, 50 and 600 samples respectively
for the training, validation and test sets. We use as known term fk(xk) = β0x0.
Regressing y on x0 yields the least-squares solution [11]:

E

[
β̂0

]
= β0 +

cov(x0, x1)
var(x0)

β1. (9)

We set cov(x0, x1) = 2.25 and var(x0) = 2 so that (9) reverses the sign of β0 and
(5) is satisfied. The sequential approach should hence yield parameter estimates
of β0 close to (9) while we expect the others to correct for this bias.

From Table 2, we observe that, contrary to the PD-based approach, the
sequential and alternate methods return very bad estimations of β0, as A3 is
no longer verified. Filtering corrects the bias for the alternate approach but
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Table 2. Results for the correlated linear problem. We report d̂ and rMAE(β∗
0 , β̂0),

over 10 different datasets.

Method
d̂(h, y; TS) rMAE(β∗

0 , β̂0)

Unfiltered Filtered Unfiltered Filtered

MLP

Sequential 0.30 ± 0.03 0.74 ± 0.09 224.14 ± 13.48

Alternate 0.30 ± 0.02 0.31 ± 0.04 186.65 ± 21.31 15.53 ± 13.57

PD-based 0.30 ± 0.03 0.29 ± 0.02 26.47 ± 17.32

GB

Sequential 0.59 ± 0.06 1.38 ± 0.11 224.14 ± 13.48

Alternate 0.57 ± 0.06 0.60 ± 0.09 148.75 ± 67.35 24.58 ± 12.20

PD-based 0.56 ± 0.05 0.64 ± 0.13 36.05 ± 17.50

RF

Sequential 0.53 ± 0.05 0.90 ± 0.07 224.14 ± 13.48

Alternate 0.43 ± 0.04 0.42 ± 0.04 111.04 ± 52.78 45.38 ± 22.39

PD-based 0.41 ± 0.03 0.43 ± 0.04 57.47 ± 15.55

degrades the MSE performance for the sequential method as it removes the
ability to compensate for the hk misfit.

Correlated Friedman Problem. The structure is identical to the one in Sect. 5.1
but with correlated inputs drawn from a multivariate normal distribution where
μi = 0.5 and var(xi) = 0.75,∀i, and cov(xi, xj) = ±0.3,∀i �= j (the covariance
sign being chosen randomly). Sizes of the training, validation and test sets are
identical to those of Sect. 5.1. Inputs are then scaled to be roughly in [−1, 1].
Here again, we use fk(xk) = θ0 sin(θ1x0x1).

As in Sect. 5.1, Table 3 shows that hybrid models outperform their data-
driven equivalents. PD-based methods usually yield more robust hk estimations
in the general unfiltered case, but struggle to line up with the alternate scheme
in terms of predictive performance, except for GB-related models. For RF, this
can be explained by a worse hk estimation while for MLP we assume that it
is due to ha overfitting: in the alternate approach, it is optimized one epoch
at a time, interleaved with one step on hk, whereas that of PD-based meth-
ods is fully optimized (with identical complexities). Sequential and alternate
approaches undergo stronger hk misparameterization without filtering since A3
is not met, but the latter mitigates this w.r.t. the former, as was already observed
in Sect. 5.1. Input filtering degrades predictive performance for the sequential
methods as they cannot counterbalance a poor hk.

5.3 Overlapping Additive Structure (A2 and A3 Not Satisfied)

Let y = βx2
0+sin(γx0)+δx1+ε with ε ∼ N (0, 0.52), β = 0.2, γ = 1.5, δ = 1 and x

sampled as in the correlated linear problem. We generate 50, 50 and 600 samples
respectively for the training, validation and test sets. We define fk(xk) = βx2

0

and fa(x) = sin(γx0) + δx1 + ε. Hence, A2 and A3 do not hold. Even with
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Table 3. Results for the correlated Friedman problem.

Method
d̂(h, y; TS) d̂k(h

θk
k , fk; TS)

Unfiltered Filtered Unfiltered Filtered

MLP

fk → ha 1.64 ± 0.23 1.51 ± 0.17 –

Sequential 2.07 ± 0.40 2.68 ± 1.38 1.35 ± 1.42

Alternate 1.95 ± 0.33 1.62 ± 0.24 0.49 ± 0.44 0.14 ± 0.19

PD-based 2.24 ± 0.31 1.78 ± 0.30 0.17 ± 0.23

ha only 2.77 ± 0.73 –

GB

fk → ha 2.58 ± 0.45 2.53 ± 0.44 –

Sequential 2.90 ± 0.39 3.91 ± 1.49 1.35 ± 1.42

Alternating 2.67 ± 0.38 2.62 ± 0.43 0.51 ± 0.53 0.22 ± 0.25

PD-based 2.54 ± 0.35 2.47 ± 0.36 0.03 ± 0.02

ha only 4.49 ± 0.66 –

RF

fk → ha 3.02 ± 0.45 2.93 ± 0.45 –

Sequential 3.78 ± 0.78 4.04 ± 1.30 1.35 ± 1.42

Alternating 3.06 ± 0.39 2.99 ± 0.38 0.14 ± 0.16 0.15 ± 0.18

PD-based 3.24 ± 0.38 3.16 ± 0.37 0.27 ± 0.20

ha only 6.70 ± 1.47 –

β̂ = β∗, ha still needs to compensate for sin(γx0). Filtering is thus expected to
degrade performance for all hybrid approaches as ha(x1) will never compensate
this gap, which is observed in Table 4. Results for RF are not shown for the sake
of space, but are similar to GB.

Table 4. Results for the overlapping problem.

Method

d̂(h, y; TS) d̂(h, y; TS)

Unfiltered Filtered Unfiltered Filtered

MLP GB

fk → ha 0.35 ± 0.02 0.54 ± 0.04 0.51 ± 0.04 1.00 ± 0.12

Sequential 0.35 ± 0.01 0.59 ± 0.05 0.55 ± 0.07 1.07 ± 0.11

Alternate 0.35 ± 0.02 0.56 ± 0.05 0.54 ± 0.09 1.01 ± 0.11

PD-based 0.34 ± 0.02 0.56 ± 0.05 0.53 ± 0.05 0.99 ± 0.12

ha only 0.37 ± 0.02 0.55 ± 0.07

5.4 Real Regression Problems

We now apply all methods on two real-world static datasets. As algebraic term
hk, we chose to use a linear prior on xk, where xk is the feature with the highest
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importance score in a RF model trained on the full dataset (assumed to be inac-
cessible at training time). As there is no guarantee that any of our assumptions
are met (and in particular A1), we do not measure the distance dk in (2) as it
is deemed irrelevant.

We consider two settings for each dataset, inspired by [33]. In the first setting
(INT), the training and test sets are sampled from the same distribution p(x, y)
whereas the second one (EXT) evaluates extrapolation performance for samples
with unseen target values. If the linear prior is a reasonable assumption or, at
the very least, the target increases or decreases monotonically with xk, then we
can expect hybrid methods to yield better results in the latter setting. In the
INT setting for each dataset, we randomly select 100 samples for the learning
set, 100 samples for the validation set and keep the rest as test set. For the
EXT setting, we select the samples (one fourth of the dataset) with the lowest
output values as test set. From the remaining samples, we randomly select 100
samples for the learning set and 100 samples for the validation set. For both INT
and EXT settings, performance metrics are averaged over 10 different splits. We
standardize both input and output variables.

The features for both datasets are described in Table 5. The Combined Cycle
Power Plant (CCPP) dataset [23] collects 9,568 measurements of net hourly
electrical energy output for a combined cycle power plant, along with four hourly
average input variables. The Concrete Compressive Strength (CCS) dataset [29]
is composed of 1,030 samples relating amounts of concrete components with
the resulting compressive strength. As done in [33], we introduce a new feature
corresponding to the cement-to-water ratio.

Table 5. Variables used for the real-world datasets. For each dataset, the variable
indicated in bold type is the one used in the linear prior (xk).

Dataset Name Description

CCPP T Ambient temperature [◦C]

AP Ambient pressure [mbar]

RH Relative humidity [-]

V Exhaust vacuum [cmHg]

CCS Cement Amount of cement in the mixture [kg/m3]

Blast Furnace Slag Amount of blast furnace slag in the mixture [kg/m3]

Fly Ash Amount of fly ash in the mixture [kg/m3]

Water Amount of water in the mixture [kg/m3]

Superplasticizer Amount of superplasticizer in the mixture [kg/m3]

Coarse Aggregate Amount of coarse aggregate in the mixture [kg/m3]

Fine Aggregate Amount of fine aggregate in the mixture [kg/m3]

Age Day (1–365)

Cement/Water Cement to water ratio [-]
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Table 6. Results for the real-world datasets. We report the mean and standard devi-
ation of d̂ over the test sets.

Method
CCPP CCS

INT EXT INT EXT

MLP

Sequential 0.07 ± 0.01 0.23 ± 0.13 0.25 ± 0.04 0.74 ± 0.24

Alternating 0.07 ± 0.01 0.24 ± 0.10 0.24 ± 0.03 0.89 ± 0.36

PD-based 0.07 ± 0.01 0.07 ± 0.01 0.25 ± 0.03 0.38 ± 0.04

ha only 0.07 ± 0.01 0.36 ± 0.21 0.25 ± 0.05 0.83 ± 0.30

GB

Sequential 0.08 ± 0.01 0.35 ± 0.07 0.21 ± 0.02 0.91 ± 0.24

Alternating 0.08 ± 0.01 0.41 ± 0.17 0.20 ± 0.03 0.85 ± 0.28

PD-based 0.08 ± 0.02 0.10 ± 0.01 0.22 ± 0.02 0.31 ± 0.06

ha only 0.10 ± 0.01 0.95 ± 0.18 0.25 ± 0.02 1.54 ± 0.28

RF

Sequential 0.07 ± 0.01 0.28 ± 0.07 0.20 ± 0.02 1.06 ± 0.31

Alternating 0.07 ± 0.01 0.32 ± 0.12 0.20 ± 0.02 1.00 ± 0.32

PD-based 0.07 ± 0.01 0.08 ± 0.01 0.20 ± 0.02 0.30 ± 0.08

ha only 0.08 ± 0.01 0.99 ± 0.19 0.25 ± 0.02 1.89 ± 0.39

From Table 6, it seems that introducing a linear prior does not yield any
benefit in the interpolation setting, as all models perform equally well, which
suggests that either the prior is not adequate or that A1 is not verified. In
the extrapolation scenario, we can however observe that the linear prior allows
to mitigate the impact of moving out of the distribution compared to data-
driven models. Indeed, compared to the INT setting, the performance of all
purely data-driven methods degrades in the EXT scenario, especially for GB
and RF as their output predictions are bounded by the minimum target value
observed in the training set. PD-based hybrid methods consistently outperform
other hybrid approaches and are only slightly impacted, while sequential and
alternating methods attain similar results.

6 Conclusion

We study several hybrid methods on supervised regression problems modeled
in an additive way, using neural network models and tree-based approaches. We
empirically show that trends observed for neural networks also apply for the non-
parametric tree-based approaches, in terms of predictive performance as well as
in the estimation of the algebraic known function. We introduce claims related to
the convergence of these hybrid approaches, under mild assumptions, and verify
their soundness on illustrative experiments. We present a new hybrid approach
leveraging partial dependence and show its competitiveness against sequential
and alternate optimization schemes on both synthetic and real-world problems.
We highlight its benefits in estimating the parametric prior and show that it
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alleviates both the risk of the ML term to dominate the known term and the
need for assuming independent input features sets.

As a more general conclusion, hybrid methods are shown in our experiments
to improve predictive performance with respect to ML-only models, although not
always very significantly. The main benefit of the alternate and PD-based meth-
ods over the simple sequential approach is that they provide better estimators of
the physical term, especially when filtering can be applied. Why this advantage
does not always translate into better overall predictive performance remains to
be analyzed as future work. We also plan to investigate further the theoretical
properties of the PD-based approach and extend it to dynamical problems.

A Optimal Model Under A2 and A3

Let us recall the regression problem, where y ∈ R can be decomposed into the
addition of two independent terms:

y = fk(xk) + fr
a(xa) + ε, ε ∼ N (0, σ2), xk ∪ xa = x,xk ∩ xa = ∅,xk ⊥⊥ xa.

For clarity, let us denote by Ex the subsequent expectations over the input space
Ex∼p(x) {·}. We have:

f̂∗
k = arg min

f̂k∈F̂k

d(f̂k, y) = arg min
f̂k∈F̂k

Ex,ε

{(
f̂k(xk) − fk(xk) − fr

a(xa) − ε
)2

}

= arg min
f̂k∈F̂k

Exk

{
(f̂k(xk) − fk(xk))2

}
+ Exa,ε

{
(fr

a (xa) + ε)2
}

− Ex,ε

{
2(f̂k(xk) − fk(xk))(fr

a (xa) + ε)
}

.

The second term is independent w.r.t. f̂k and thus has no impact on the mini-
mization. Moreover, since xk ⊥⊥ xa, the last term writes as the product of two
expectations, one of which is constant w.r.t. f̂k. We thus have:

f̂∗
k = arg min

f̂k∈F̂k

Exk

{
(f̂k(xk) − fk(xk))2

}
− 2CExk

{
(f̂k(xk) − fk(xk))

}
, (10)

with C = Exa,ε {(fr
a(xa) + ε)} = Exa

{fr
a(xa)}. Cancelling the derivative of (10)

w.r.t. f̂k, we obtain the optimal model f̂∗
k (xk) = fk(xk) + C, for every xk ∈ Xk.

B Model Architectures

Model hyperparameters are reported in Table 7. We used PyTorch [19] for MLP,
scikit-learn [20] for RF and xgboost [4] for GB. Unspecified parameters keep
their default values. Learning rates for training hk and MLP are set to 0.005. H
is the number of hidden layers in MLP and W the number of neurons per hidden
layer. T is the number of trees in GB and RF, d the maximum tree depth and
mss the minimum number of samples required to split an internal tree node.
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Table 7. Model hyperparameters, for each experiment.

Problem MLP GB RF

(Correlated) Friedman H = 2, W = 15 T = 700, d = 2 T = 500, mss = 5

Linear & Overlap H = 2, W = 10 T = 400, d = 2 T = 500, mss = 5

Real-world problems H = 2, W = 30 T = 300, d = 2 T = 200, mss = 5

References

1. Ayed, I., de Bézenac, E., Pajot, A., Brajard, J., Gallinari, P.: Learning dynami-
cal systems from partial observations. In: Machine Learning and the Physical Sci-
ences: Workshop at the 33rd Conference on Neural Information Processing Systems
(NeurIPS) (2019)

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/A:1010933404324

3. Chen, J., Yu, K., Hsing, A., Therneau, T.M.: A partially linear tree-based regres-
sion model for assessing complex joint gene-gene and gene-environment effects.
Genet. Epidemiol. Off. Publ. Int. Genet. Epidemiol. Soc. 31(3), 238–251 (2007)

4. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2016, pp. 785–794. ACM, New York (2016)

5. Daw, A., Karpatne, A., Watkins, W., Read, J., Kumar, V.: Physics-guided neural
networks (PGNN): an application in lake temperature modeling. arXiv preprint
arXiv:1710.11431 (2017)
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Abstract. As live video streaming has become an everyday activity,
influential users on video streaming platforms are taking on the role of
billboards for product services. Predicting channel growth would be use-
ful for advertising marketing. In this study, we propose a method for
predicting future bipartite links between users and channels by treating
the relationship between sending and receiving comments as a dynamic
bipartite graph. The text information posted by a user is expected to
express the user’s interests. Since user interests are also a factor in the
growth process of a channel, it is an important research topic to verify
whether it is possible to predict the growth of a channel using textual
information. Specifically, the comments sent by users to live streaming
are assumed to be the user’s feature vector, and comments received on
videos uploaded after live streamings are assumed to be the channel’s
feature vector, and the relationship between sending and receiving com-
ments is assumed to be a bipartite graph link. The comments are con-
verted into feature vectors by topic extraction using Latent Dirichlet
Allocation. Then, a matrix that transforms the feature vectors is learned
so that the inner product between the latent vectors of users and chan-
nels in the link relationship becomes large. The learned transformation
matrix is then used to predict the presence or absence of future links. In
our experiments, we evaluate 1. the validity of the bipartite link predic-
tion method for predicting channel growth, 2. the validity of the proposed
method for constructing feature vectors from comment data, and 3. the
accuracy of link prediction using real data collected from YouTube.

Keywords: Bipartite Graph · Link Prediction · Latent Dirichlet
Allocation · Video Streaming

1 Introduction

In recent years, there has been a rapid increase in the number of users utilizing
services that allow individuals to livestream video content, such as YouTube,
Nico Live, and Twitch. Many people participate in these platforms as viewers or
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streamers. The scale of these video streaming platforms can reach over 100,000
viewers for popular streamers. These streamers have a significant impact on the
internet and society, possessing substantial influence as influencers. As a result,
companies often leverage influencers in their advertising strategies. Therefore,
the effectiveness of advertising in video streaming, the extraction of suitable
influencers, and the study of video streaming properties and influencer extraction
are important research topics that contribute to a company’s profits. Extensive
research has been conducted in these areas.

Additionally, there are numerous tasks related to graph prediction, includ-
ing link prediction and prediction of new nodes. Studies on link prediction have
proposed methods that calculate generation probabilities based on the similarity
between nodes [4], methods specialized in link prediction for specific nodes [1],
and methods that utilize the Holt-Winters method to learn trends in latent vec-
tor groups for link prediction [6]. However, these approaches do not consider data
in which the presence or absence of nodes may change. Furthermore, studies have
addressed this issue by predicting the probabilities of future node appearance,
disappearance, and reappearance for use in prediction [7], and by learning dis-
tributed representations of unknown node sets [8]. Nevertheless, there has been
no research utilizing text information associated with video streaming. In this
study, we focus on the problem of link prediction using text information from
user posts, based on the assumption that the interests of users are reflected in
their posted texts. There are three key reasons highlighting the importance of
handling text information posted by users. Firstly, user profiles and demographic
attributes are often unavailable or difficult to obtain, making it challenging to
reflect the evolving interests of users. Secondly, compared to similarity calcu-
lations among all users commonly used in information recommendation, the
calculation cost of user interest vectors is relatively low. Thirdly, even in cases
where past network structures are not available, the network structure can be
predicted solely based on user interest vectors.

This study aims to predict channel growth to enable companies to identify
influencers early on. In YouTube, parameters such as the number of channel
subscribers and views exist as indicators of growth. The former is unobtainable
through third-party sources, and the latter is difficult to predict due to various
factors, such as the influence of content types on YouTube. In this study, we
attempt to predict channel growth by predicting the number of messages directed
from viewers who only appear during live broadcasts to streamers. Specifically, as
shown in Fig. 1, we formulate the problem as a link prediction task in a dynamic
bipartite graph, determining which users watch which channels. User comments
during live channel broadcasts serve as user feature vectors, while comments on
uploaded video content after the broadcast serve as channel feature vectors. By
treating the sender-receiver relationship between users and channels as links in
a bipartite graph, we aim to learn a transformation matrix from feature vectors
to latent vectors, ensuring that the dot product between the vectors of linked
users and channels is large, while the dot product between vectors of unlinked
user-channel pairs is small. Using the learned transformation matrix, we predict
whether users will link to the next live broadcast, i.e., send comments.
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Fig. 1. Modeling as a Dynamic Bipartite Graph Based on Comment Sender-Receiver
Relationships

2 Related Work

2.1 Video Streaming

Nonaka et al. proposed a method that uses the page views, edit counts, and
inbound link counts of Wikipedia as indicators of content popularity, creates
similarity vectors between contents based on individual users’ editing histories,
and predicts popularity using a multilayer neural network (MLP) [2]. While
this method predicts popularity based on content similarity, it differs from this
research in terms of link prediction in bipartite graph structures. Additionally,
this research focuses on estimating content similarity rather than predicting the
users’ time-series data.

Okada et al. proposed a system that uses Juman and BERT-CRF to infer and
label the meaning of viewer chats during live streams [3]. Although their pro-
posal includes real-time processing and evaluation experiments, the relevance to
this research lies in the labeling method. The evaluation experiments combining
Juman and BERT-CRF showed lower estimation accuracy for seven out of eight
labels compared to the combination of MeCab and CRF. While overfitting was
mentioned as a possible cause, this research utilizes MeCab for morphological
analysis. Additionally, since the labeling does not aim to characterize each user,
CRF labeling is not suitable for this research.

2.2 Link Prediction

Shimura et al. experimentally demonstrated that combining the Generalized
Linear Preference (GLP) model, an effective growth model verified by Wang et
al.’s experiment [5], with a link prediction index based on network structure
improves prediction accuracy [4]. In the GLP model, with a probability of p,
m links are generated between existing nodes, and with a probability of 1 −
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p, m links are generated between new nodes and existing nodes. By adopting
this growth model, it is possible to generate networks with scale-free properties
similar to those of real networks. Additionally, the proposed link prediction index
reflects the structural characteristics of the network and predicts future links
with high accuracy. This research differs from previous research in terms of the
proposed index, as well as the application of the GLP model.

Nakajima et al. proposed a method for link prediction in time-evolving graph
structures using Non-negative Matrix Factorization (NMF) [1]. The method rep-
resents each adjacency matrix at each time step in a group of adjacency matrices
(tensor) that represents the temporal changes in the graph structure. It uses
NMF to represent nodes with low-dimensional latent vectors (matrices) and
learns the trends of the latent vector group using the Holt-Winters method, a
forecasting technique for periodic time series data. The method then predicts the
adjacency matrices based on the obtained future latent vector group. The valida-
tion experiments have been conducted on data where the number of appearing
nodes is fixed, meaning the size of the adjacency matrix is fixed, and it has
shown good performance and ease of handling. However, experiments have not
been conducted on data where the presence or absence of nodes changes.

Yamaguchi et al. proposed a method that focuses on link prediction for spe-
cific nodes, such as corporate accounts in SNS, which is different from predicting
links for the entire network [6]. In this method, links are sampled through ran-
dom walks starting from the target node, and a loss function is designed using
weights based on the distance from the target node. The model is then trained
using this loss function. The objective of this method aligns with the goal of this
study, which attempts to predict the number of viewers for the target channel.

3 Proposed Method

In this study, we model the relationship between sending and receiving com-
ments on a user’s live streaming channel as a bipartite graph, and attempt to
approximate the number of viewers by predicting the future graph structure
based on the past link states and posted comments.

3.1 Bipartite Graph and Feature Vector

We model the relationship between the user set U and the channel set V in video
streaming sites using a dynamic bipartite graph B(t) = (U (t),V(t), E(t)). At time
step t, B(t) is a bipartite graph, where the link set is defined as E(t) ⊂ U (t)×V(t).
Specifically, we represent the relationship where a user u ∈ U (t) sends a comment
during the live streaming of channel v ∈ V(t) as a link e = (u, v) ∈ E(t). We refer
to these comments during the live streaming as dynamic comments. The set of
words contained in all dynamic comments posted by user u at time step t is
denoted as X (t)

u .
On the other hand, we define comments on recorded videos uploaded after

the live streaming of channel v as static comments. The set of words contained
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Fig. 2. Prediction model

in the static comments on the videos streamed by channel v at time step t is
denoted as Y(t)

v . Based on the word frequencies in the comments, we extract
I topics for users and J topics for channels using Latent Dirichlet Allocation,
representing users and channels with vectors that consist of topic probabilities
as their features:

– x(t)
u ← LDA(X (t)

u ;X , I),
– y(t)

v ← LDA(Y(t)
v ;Y, J),

where we use the corpus X =
⋃T

t=1

⋃
u∈U(t) X (t)

u and Y =
⋃T

t=1

⋃
v∈V(t) Y(t)

v to
train the LDA. X consists of all dynamic comments from all users across all
time steps, while Y consists of all static comments from all channels across all
time steps. We arrange the I-dimensional and J-dimensional row vectors for
each user and channel, respectively, into feature matrices X(t) = [x(t)

u ]u∈U(t)

and Y(t) = [y(t)
v ]v∈V(t) . From these matrices, we predict the link a

(t)
u,v indicating

whether user u commented on channel v at time step t.

3.2 Prediction Model

Figure 2 depicts an overview of our algorithm. In the proposed prediction model,
we pass the feature vectors of users and channels through separate input lay-
ers. We perform dimensionality reduction on these feature vectors using weight
matrices W(II′) and W(JJ ′), respectively.

– x̃(t)
u ← REDUCE(x(t)

u ;W(II′)) = x(t)
u W(II′),

– ỹ(t)
v ← REDUCE(y(t)

v ;W(JJ ′)) = y(t)
v W(JJ ′),
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where I ′ and J ′ are the number of dimensions after dimension compression and
W(II′) and W(JJ ′) are matrices updated by learning.

The obtained x̃(t)
u and ỹ(t)

v are vectors consisting of separately extracted fea-
tures for users and channels. Therefore, the dimensions of the vectors do not
directly correspond to each other, making it impossible to perform similarity
calculations using simple dot products. To address this, we follow the following
steps to transform the feature vectors into corresponding feature vectors with
aligned dimensions. For each link e ∈ E(t−1) in the bipartite graph B(t−1) pre-
dicted in the previous step, we construct a vector by concatenating the feature
dimensions i and j of the endpoint node pair (u, v) = e. We calculate the cor-
relation coefficient for each combination of features, resulting in a correlation
coefficient matrix R(t):

– r
(t)
ij ← CORRCOEF(

⎛

⎜
⎜
⎝

...
x̃
(t)
ui
...

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

...
ỹ
(t)
vj
...

⎞

⎟
⎟
⎠ )

– R(t) = [r(t)ij ]1≤i≤I′

1≤j≤J ′

The number of concatenated node pairs is denoted as L(t−1) = |E(t−1)|. Addition-
ally, when the correlation coefficient r

(t)
ij is high, it indicates a strong relationship

between the reduced-dimensional topics corresponding to dimensions i and j.
We transform the feature vectors of users and channels, which are obtained

separately as I ′-dimensional user feature vectors and J ′-dimensional channel fea-
ture vectors, into a common H-dimensional vector. To achieve this, we decom-
pose the matrix R(t), which consists of the correlations between I ′ features and
J ′ features, into W(I′H) and W(J ′H) as follows:

– R(t) → W(I′H)WT
(J ′H)

Then, we transform the user feature vector x̃(t)
u and the channel feature vector

ỹ(t)
v as follows:

– z(t)u ← ASSOCIATE(x̃(t)
u ;W(I′H)) = x̃(t)

u W(I′H),
– z(t)v ← ASSOCIATE(ỹ(t)

v ;W(J ′H)) = ỹ(t)
v W(J ′H).

The resulting vectors z(t)u and z(t)v have dimensions that correspond to a common
meaning.

Finally, we calculate the similarity between user u and channel v by taking
the dot product of the obtained vectors:

– s
(t)
u,v ← DOT(z(t)u , z(t)v ).

We use the sigmoid function to compute the link existence probability between
user u and channel v based on the obtained dot product:

– â
(t)
u,v ← σ(s(t)u,v) = 1

1+exp(−s
(t)
u,v)

.
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3.3 Learning Algorithm

We aim to learn various parameters by minimizing the cross-entropy between
the actual link existence (comment exchange relationship) a

(t)
u,v and the predicted

probability â
(t)
u,v. The objective function is defined as:

F (X(t),Y(t);A(t)) =
∑

u∈U(t)

∑

v∈V(t)

{−a(t)
u,v log(â(t)

u,v)−(1−a(t)
u,v) log(1− â(t)

u,v)}. (1)

By extracting the term related to user u and channel v, we have:

F (t)
u,v = −a(t)

u,v log(â(t)
u,v) − (1 − a(t)

u,v) log(1 − â(t)
u,v). (2)

Differentiating the error function and the activation function (sigmoid function)
with respect to the input s

(t)
u,v, we obtain:

∂F
(t)
u,v

∂s
(t)
u,v

=
∂F

(t)
u,v

∂â
(t)
u,v

· ∂â
(t)
u,v

∂s
(t)
u,v

= −a
(t)
u,v

â
(t)
u,v

+
1 − a

(t)
u,v

1 − â
(t)
u,v

· â(t)
u,v(1 − â(t)

u,v)

= â(t)
u,v − a(t)

u,v.

Furthermore, by differentiating the DOT layer’s output s
(t)
u,v with respect to x(t)

u

and y(t)
v , respectively, we obtain:

– ∂s(t)
u,v

∂x
(t)
u

= WT
(I′H)W

T
(II′),

– ∂s(t)
u,v

∂y
(t)
v

= WT
(J ′H)W

T
(JJ ′).

Using these gradients, we update various parameters through backpropagation.
Then, using the learned parameters at time step t, we predict â

(t+1)
u,v ← σ(s(t)u,v)

for time step t + 1.

4 Experimental Settings

4.1 Dataset

In this study, we evaluate the effectiveness of the proposed method using real
data collected from YouTube through the API. The target channels in this study
consist of 40 individual channels that engage in more video streaming than video
posting.

The data collection period spans six months from October 1, 2021, to March
31, 2022. For this experiment, we obtained chat data by crawling the chat of
archived videos streamed on YouTube. Additionally, since viewers can post com-
ments on archived videos after the broadcast, we used the YouTube Data API to
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retrieve this data. In this study, we distinguish between these two types of text
data: the former is referred to as dynamic comments, and the latter as static
comments. These data include user IDs uniquely assigned to YouTube users,
allowing us to obtain the following statistics: During the target period, there
were 6,327,958 commenters and a total of 354,126,994 comments for dynamic
comments. For static comments, there were 858,130 commenters and a total of
2,002,441 comments. It should be noted that if either dynamic or static com-
ments cannot be retrieved due to channel settings or other reasons, we do not
use the corresponding data as it would be inappropriate.

Next, to treat dynamic comments as user feature vectors and static comments
as channel feature vectors, we processed the data using the following steps:

1. Removal of emojis, URLs, symbols, and conversion of full-width characters
to half-width, as well as conversion of uppercase to lowercase.

2. Word segmentation using MeCab with the mecab-ipadic-NEologd dictionary.
3. Removal of unnecessary words using the stopwords listed below.
4. Removal of words with a frequency of less than 50 from the obtained set of

words.
5. Creation of a dictionary from the obtained set of words.
6. Creation of a corpus using doc2bow from the obtained set of words.
7. Construction of an LDA model using the created dictionary and corpus.

The input to the LDA model obtained above is processed as follows based on
the set of words obtained in step 4:

– For dynamic comments: Concatenate the text of the chat a user had on that
day and input it.

– For static comments: Concatenate all the texts commented on an archive for
a specific date and input it.

In this study, as described above, we represent channel features using text
data. However, since it is expected that the viewers differ for each channel, it
is necessary to evaluate whether the channel features can express the same or
different characteristics among channels with the same or different viewer demo-
graphics. Therefore, as a preliminary experiment, we prepare for a comparison
to determine if there is a correlation between the channel feature vectors gen-
erated by LDA and the game titles played by the channels. The number of
times games were played during the experimental period is as follows for the
top 10 games: Apex Legends: 8,743, Minecraft: 2,218, VALORANT: 1,095, Ark:
Survival Evolved: 930, PUBG: 649, Mario Kart 8 Deluxe: 427, Mahjong Soul:
410, Monster Hunter Rise: 297, Pokémon Brilliant Diamond/Shining Pearl: 266,
Shadowverse: 264.

4.2 Comparison Method

For a bipartite graph structure B(t) = (U (t),V(t), E(t)) at time step t, the latent
vectors of users and channels are computed using Singular Value Decomposition
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(SVD), Non-negative Matrix Factorization (NMF), and Matrix Factorization.
The link existence at time step t + 1 is predicted using the inner product of
these vectors. Let M (t) = |U (t)| be the number of users and N (t) = |V(t)| be the
number of channels. The adjacency matrix of users versus channels at time step
t is represented by a matrix A(t) of size M (t) × N (t).

–Singular Value Decomposition:
In SVD, the adjacency matrix A(t) is decomposed into a matrix P containing
left singular vectors, a matrix Σ with K singular values in decreasing order
on the diagonal, and a matrix Q containing right singular vectors. Here, K
is at most the rank of matrix A, but in this paper, we experiment with
K = 10 to match the dimensionality of the proposed method. Thus, each
user is represented by a 10-dimensional left singular vector pu, each channel
is represented by a 10-dimensional right singular vector qv, and the prediction
is made using â

(t+1)
u,v ← ∑K

k=1 σk · pu,k · qv,k.
–Non-negative Matrix Factorization:

In NMF, two non-negative matrices P and Q of size M (t) ×K and N (t) ×K,
respectively, are computed such that the Frobenius norm of the product of
the adjacency matrix A(t) and these matrices is minimized, i.e.,

min
P∈R

M(t)×K
≥0 ,Q∈R

N(t)×K
≥0

∑

u∈U(t)

∑

v∈V(t)

(
a(t)

u,v − 〈pu,qv〉
)2

–Matrix Factorization:
In MF, K-dimensional latent vectors pu and qv are computed for each link
(u, v) ∈ E(t), minimizing the error

∑

(u,v)∈E(t)

(

au,v −
K∑

k=1

pu,k · qv,k

)2

+ λ
(‖P‖2F + ‖Q‖2F

)

where λ
(‖P‖2F + ‖Q‖2F

)
is the regularization term to prevent overfitting.

5 Experimental Results

5.1 Evaluation of Channel Feature Vectors

Figure 4 is a heatmap representation of dissimilarity between channels. The aver-
age feature vector ȳv ← 1

T

∑T
t=1 y(t)

v for channel v is obtained by averaging the
feature vectors y(t)

v at each time step t. The dissimilarity between channel pairs
(u, v) ∈ V × V is calculated using the L1 distance between their average feature
vectors, given by dL1(ȳu, ȳv) =

∑J
j=1 |ȳuj − ȳvj |. In the heatmap, values closer

to white indicate smaller L1 distances and hence closer dissimilarities between
channels. This means that the average feature vectors are similar, indicating a
higher likelihood of being similar channels. Based on this figure, several examples
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Fig. 3. Inter-channel game title similarity (Cosine similarity)

were identified through the investigation of the actual channel content, revealing
similarities or differences between channels.

Channels 4, 5, 7, 13, 18, 20, 21, 22, 24, 25, 26, 30, 33, 37, 38, and 39 appear
relatively darker, indicating that they have different content compared to chan-
nels 8 to 12. Among these channels, excluding 7, 33, 37, and 38, the remaining
12 channels belong to the same agency A, and it can be observed that the L1
distances between them are low. Since there are no other channels belonging to
agency A in the dataset, this distinct feature can be attributed to their affil-
iation with the agency. On the other hand, channels 7, 33, 37, and 38, which
show different characteristics from agency A’s content, were confirmed to have
distinct features through the actual investigation.

Particularly, channel 6, which includes pairs with low values, has interesting
findings. The pair between channel 6 and channel 19 belongs to agency B and
collaborates frequently. The pair between channel 6 and channel 34 has different
agencies and forms, but they often share similarities in terms of closeness and
collaboration, indicating similar content.

Next, a comparison was made to determine whether there is a correlation
between the feature vectors obtained from channel titles and the feature vec-
tors generated by LDA. Figure 5 plots the cosine similarity cos(u, v) from Fig. 3
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Fig. 4. L1 distance between channel vectors

on the x-axis and the L1 distance dL1(u, v) from Fig. 4 on the y-axis, showing
the correlation coefficient. Figure 4 represents the L1 distances (dissimilarity)
between channels, while Fig. 3 represents the cosine similarity between channels.
Therefore, as the correlation coefficient of the numerical pairs approaches −1,
both measures indicate similar properties. The obtained correlation coefficient
in this experiment is −0.5, indicating a slight correlation. Thus, it can be con-
cluded that the feature vectors obtained using LDA from static comments are
sufficiently suitable for representing the similarity based on the game titles that
channels played.

Figure 6 depicts the transition of similarity among sets of users who posted
comments during consecutive broadcasts for each channel. The similarity of user
sets is calculated using the Jaccard coefficient |Γ (v)(t)∩Γ (v)(t+1)|

|Γ (v)(t)∪Γ (v)(t+1)| , where Γ (v)(t)

represents the set of commenting users for channel v during time step t. Three
randomly selected channels are displayed in the figure, showing that all Jaccard
coefficients have small values. It can be observed that the user sets vary consid-
erably between consecutive broadcasts, making it difficult to predict the user set
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Fig. 5. Correlation between L1 distance (dissimilarity) between channel vectors and
cosine similarity of game titles

for the next time step using information from the previous time step. Although
not shown in the figure, similar patterns were observed for other channels as
well.

5.2 Prediction Accuracy Comparison

Figure 7 illustrates the prediction accuracies of the proposed method and various
comparison methods. The x-axis represents each time step, which, in this case,
is set to daily intervals. Thus, the prediction results cover a period of 181 days
from October 2, 2021, to March 31, 2022. Looking at the figure, we can observe
that the proposed method, represented by the red line, consistently achieves
high accuracy. On the other hand, the SVD method (green line) and the NMF
method (blue line) occasionally exhibit higher prediction accuracy than the pro-
posed method, but on average, they yield lower results. The MF method (yellow
line) shows very low prediction accuracy in the given dataset. Finally, the LDA
method (pink line) represents the accuracy when using the node’s feature vector
directly for prediction, and as expected, it yields low values.
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Fig. 6. Transition of similarity of comment posting user group

Fig. 7. Prediction accuracy (Color figure online)

Based on these results, it can be concluded that methods that generate topic
vectors from text information for prediction are more effective than approaches
using adjacency matrices. Furthermore, it suggests that the text information
posted by users reflects their interests.
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6 Conclusion

In recent times, live streaming of videos has become increasingly common, and
influential users on video streaming platforms are taking on the role of brand
ambassadors for various products and services. Therefore, predicting channel
growth would be valuable in advertising and marketing.

In this study, we treated the comment exchange relationship between users
and channels as a dynamic bipartite graph and addressed the problem of pre-
dicting future graph links. Specifically, we represented the comments sent by
users during live streams as user feature vectors and the comments received on
videos uploaded after the live stream as channel feature vectors, considering the
comment exchange relationship as bipartite graph links. We used Latent Dirich-
let Allocation for topic extraction to vectorize the comments’ features. Then, we
learned transformation matrices to modify the feature vectors to increase the
dot product between the latent vectors of linked users and channels.

For the experiments, we used real-world data collected from YouTube to
evaluate: 1) the validity of constructing feature vectors based on comment data
in our proposed method, 2) the validity of channel growth prediction through
bipartite graph link prediction, and 3) the accuracy of link prediction.

Regarding 1), the correlation coefficient between cosine similarity based on
the frequency of mentioned game titles and L1 distance between the generated
feature vectors of channels was approximately -0.5, indicating that the channel
feature vectors were reasonable. Regarding 2), the correlation coefficient between
the number of views on streamed videos and the number of comments during
the stream was approximately 0.71, demonstrating that link prediction serves
as a pseudo channel growth prediction. Regarding 3), we compared our method
based on matrix factorization with several existing methods and showed that
our method consistently achieved higher prediction accuracy. This demonstrates
that it is possible to predict whether a user will view a channel in the next time
step based on the textual information they have posted. Thus, the hypothesis
that the user’s interests are reflected in the text information they post holds true,
even when treating the user’s feature vectors in the dynamic bipartite graph.

In this study, we directly used the latent vectors calculated at time step t
to predict the link existence at time step t + 1. However, it is generally more
accurate to predict the latent vectors at t + 1 based on multiple past time steps
and then predict the link existence based on those vectors. Therefore, in the
future, we plan to explore predictions that incorporate past information.
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Abstract. Current stance inference methods use topic-aligned train-
ing data, leaving many unexplored topics due to the lack of training
data. Zero-shot approaches utilizing advanced pre-trained Natural Lan-
guage Inference (NLI) models offer a viable solution when training data is
unavailable. This work introduces theTweets2Stance - T2S framework, an
unsupervised stance detection framework based on Zero-Shot Learning. It
detects a five-valued user’s stance on social-political statements by analyz-
ing their Twitter timeline. The ground-of-truth user’s stance is obtained
from Voting Advice Applications (VAAs), online tools that compare polit-
ical preferences with party political stances. The T2S framework’s gen-
eralization potential is demonstrated by measuring its performance (F1
and MAE scores) across nine datasets. These datasets were built by col-
lecting tweets from competing parties’ Twitter accounts in nine political
elections held in different countries from 2019 to 2021. Through compre-
hensive experiments, an optimal setting was identified for each election.
The results, in terms of F1 and MAE scores, outperformed all baselines
and approached the best scores for each election. This showcases the abil-
ity of T2S to generalize across different cultural-political contexts.

Keywords: user stance detection · transfer learning · unsupervised ·
Twitter · text content · elections · vaa

1 Introduction

Stance detection (SD) is a text-mining approach that infers the expression of a
user’s point of view and perception toward a given statement [3]. Unlike senti-
ment analysis, which categorizes a text as positive, negative, or neutral regardless
of a specific target, stance detection focuses on classifying a text based on the
user’s attitude toward a predetermined target. It is commonly applied in two
areas: inferring user agreement/disagreement in social media debates across var-
ious contexts (such as political, ideological, and social), and assessing public
opinion on products and services [8,15].

ALDayel et al. [2] proposed a recent taxonomy of stance detection tasks.
Firstly, the level at which stance is computed must be determined, whether it
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bifet et al. (Eds.): DS 2023, LNAI 14276, pp. 96–110, 2023.
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involves detecting the stance expressed in a piece of text or inferring the stance
of a user towards a specific target based on their posted content and context.
Secondly, the targets for detecting the stance need to be identified. These targets
can be single (e.g., a specific topic), multi-related (where expressing a stance
towards one target implies a stance towards similar targets), or claim-based
(determining whether a text or user confirms a claim).

In this study, we focus on the investigation and measurement of public opin-
ion on several issues as user stance detection on multiple unrelated targets. The
analysis of texts extracted from social media users’ posts provides valuable infor-
mation for making such inferences. However, existing literature proposes mixed
approaches that partially exploit text analysis in conjunction with user behaviour
analysis, such as likes, retweets, and the network of contacts [1,10]. Additionally,
user stance detection on unrelated targets poses computational challenges [2].
Limitations in content-based stance detection approaches include the inherent
difficulty of processing natural language, the need for large annotated corpora of
tweets and language-specific resources, the lack of unsupervised transfer learning
to generalize across unrelated targets, and the requirement of training separate
classifiers for each target. State-of-the-art research often focuses on two (sup-
port, against) or three levels of stance (including the neutral class1), and existing
unsupervised methods based on clustering techniques in user networks are not
suitable for inferring a user’s stance for different unrelated targets.

Therefore, in an attempt to address these issues and focus solely on a content-
based approach, we present Tweets2Stance(T2S), an unsupervised framework
for stance detection. T2S analyzes the content of a user’s social media (e.g.,
Twitter) timeline using Zero-Shot Classification (ZSC) techniques [21] to detect
their stance towards specific socio-political statements (targets), considering five
levels of agreement (completely disagree, disagree, neither disagree/nor agree,
agree, completely agree).

To sum up, this work investigates a completely unsupervised solution to
user-stance detection by answering the following research questions:
RQ1 – What are the performances and insights of a completely unsupervised
user-stance detection framework leveraging zero-shot classification capabilities
on textual contents only? Here, we also compare T2S’s performance when used
to detect either five or three stance classes.
RQ2 – Is there a general framework that performs well across different political
contexts? Here, we explore the generalizing capabilities of T2S.

Contributions. To the best of our knowledge, we filled the gap of investigat-
ing an unsupervised content-based-only model leveraging an advanced Natural
Language Processing technique (that is the Zero-Shot Classification) to detect
a five-level stance of a user on multiple and diverse targets (the socio-political
statements on different political contexts). Furthermore, the framework can be
adapted for various scenarios, extending beyond the specific political context

1 The neutral level indicates that the user or text did not express a stance on that
target or does not take a stance at all.
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addressed in this study. Additionally, we offer a set of labeled datasets that
can assist other researchers in their endeavors involving unsupervised stance-
detection techniques at the user level.

The remainder of this paper is organized as follows: Sect. 2 discusses related
work. In Sect. 3, we define the user stance-detection task and dataset collec-
tion. Section 4 details the Tweets2Stance framework and experiment settings.
Section 5 summarizes and discusses the results, highlighting limitations. Finally,
Sect. 6 concludes and suggests future work.

2 Related Work

In the classical definition [3], user-level stance detection involves detecting a
user’s stance on a given topic based on their authored text. In the following
paragraphs, we summarize the literature on user-based stance detection in social
media, considering the features used and the learning approach.

Content and Behavioural Features. Rashed et al. (2021) [17] focused on user-
based stance detection using content features alone. They employed Google’s
Multilingual Universal Sentence Encoder (MUSE) and a pre-trained CNN to
extract tweet embeddings. User representation was obtained by averaging these
embeddings and projected onto a two-dimensional plane using the Uniform Man-
ifold Approximation and Projection (UMAP) technique. The authors utilized
hierarchical density-based clustering (HDBScan) to classify users into pro and
anti stances, achieving an F1 score of 0.86 on a dataset of 168k users. More-
over, interaction patterns and historical behaviour on social media, in addition
to content features, can be used as well: Darwish et al. (2020) [4] successfully
clustered users based on feature similarities such as retweets, common hashtags,
and retweeted accounts; Aldayel et al. (2019) [1] achieved an F1 score of 0.72
by leveraging users’ online behaviour cues; Thonet et al. (2017) [18] considered
both text and social interactions to uncover topics, user viewpoints, and dis-
course; Magdy et al. (2016) [14] focused on elements such as retweets, replies,
mentions, URLs, and hashtags to predict unexpressed stances (a stance that may
or may not have transpired yet), not to detect them (an existing stance in past
data) (See footnote 1). Lastly, Fraiser et al. (2018) [6] used content-based and
social-based proximities in a multi-layer graph, achieving an F1 score of 0.95.

Supervised and Unsupervised Learning. Stance detection techniques using super-
vised learning rely on large annotated datasets [16]. User-based stance detection
has received less attention in these competitions, but notable studies include
Aldayel et al. [1] and Magdy et al. (2016) [14]. Aldayel et al. (2019) trained a
stance detector for each topic using the SemEval2016 dataset with 3, 000 users.
Magdy et al. (2016) collected timelines of 44, 000 users discussing the Paris ter-
rorist attack, while Fraiser et al. (2018) [6] applied a proximity-based two-level
stance detector to different datasets related to political events and gun control.
More recently [9,11], the trend in language processing for stance-detection tasks



Tweets2Stance 99

relies on language representation models (e.g., BERT [5]) pre-trained on large
un-annotated corpora and fine-tuned on labelled and domain-specific datasets
[5,21]. The work of Devlin et al. (2018) [5] demonstrated how BERT led to con-
siderable performance improvements for NLP tasks such as sentiment analysis.
Ghosh et al. (2019) [9] reported BERT’s successful use in stance detection com-
pared to other techniques. Here, the BERT model takes the text as input to
generate representations of the words through multiple transformer layers, and
then the system is fine-tuned on the task-specific data. Lately, Zang et al. (2023)
[22] leveraged ChatGPT for text-based stance detection, achieving state-of-the-
art or similar performance on SemEval-2016 [16] and PStance [13] datasets.

To the best of our knowledge, no unsupervised technique for user-based stance
detection has yet utilized advanced Transformer-based language models. Existing
unsupervised methods, such as Darwish et al. (2019) [4], Trabelsi et al. (2018)
[19], and Fraiser et al. (2018) [6], rely on standard linguistic features like n-grams
and keyword counts. Recognizing this gap and the increasing use of pre-trained
models in stance detection, we propose Tweets2Stance, the first stance detector
to work on a five-level stance. We evaluated T2S across diverse political contexts,
achieving satisfactory results despite the challenging task.

Comparing the T2S framework to state-of-the-art user-based stance detec-
tion methods presents several challenges. Firstly, existing methods (e.g., Rashed
et al., 2021 [17]) filtered tweets by removing mentions of specific targets, which
is incompatible with our work as our topic lacks a well-defined person or organi-
zation. Additionally, these methods rely on timelines of users connected through
specific keywords, while T2S aims to infer stance for any random user on any
topic without leveraging shared features like retweets or common mentions.
Unlike existing methods, updating context for new users in Tweets2Stance does
not require recomputing networks and clusters. Moreover, the unavailability of
public datasets used by state-of-the-art methods prevents us from evaluating T2S
on those datasets. Furthermore, the lack of publicly available labelled datasets
for five-level stance further limits the comparison.

3 Task Definition

The task is to detect the stance Au
s of a Social Media User u with respect to a

socio-political statement (or sentence) s making use of the User’s textual con-
tent timeline (sequence of textual posts) on the considered social media (e.g.,
the Twitter timeline). The stance Au

s represents a five-level categorical label:
completely agree (5), agree (4), neither disagree nor agree (3), disagree (2), com-
pletely disagree (1). The integer mappings used by the Tweets2Stance framework
are shown in parentheses. The label neither disagree nor agree encompasses both
a not expressed and neutral stance. We refer to the agreement/disagreement level
(or label) as the stance level (or label). The desired ground-of-truth (GoT) is
the label Gu

s , which represents the known agreement/disagreement level of User
u regarding sentence s. The GoT is solely used for evaluating our proposed
framework and optimizing its parameters; no training step is involved. In this
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Table 1. Details of the nine elections under study with the total number of tweets. Di

contains i months of tweets. Values between round brackets are the average number of
tweets per Party.

Election no. of parties no. of statements D3 D4 D5 D7
Alberta Provincia
Election (AB19)

5 18 5119 (1024) 5701 (1140) 6755 (1351) 8502 (1700)

Australian Federal
Election (AU19)

3 17 2538 (846) 3130 (1043) 3368 (1123) 4582 (1527)

Canadian Federal
Election (CA19)

6 16 7460 (1243) 9284 (1547) 10750 (1792) 12903 (2151)

Great Britain Election v 5 20 9135 (1827) 10783 (2157) 12074 (2415) 15145 (3029)
British Columbia
(BC20)

3 20 3560 (1187) 3751 (1250) 3969 (1323) 4448 (1483)

Saskatchewan Provincial
Election (SK20)

2 17 1070 (535) 1245 (623) 1557 (779) 1982 (991)

New Foundland and
Labrador Provincial
Election (NFL21)

3 12 930 (310) 986 (322) 1070 (357) 1293 (431)

New Scotia Provincial
Election (NS21)

3 17 859 (286) 1027 (342) 1454 (485) 1727 (579)

Canadian Federal
Election (CA21)

6 16 6752 (1125) 7756 (1293) 8734 (1456) 10931 (1822)

study, users are assumed to be Twitter accounts of various political parties from
different countries, as described in the subsequent section.

3.1 Data Collection

A Voting Advice Application (VAA) is an established online tool that helps
citizens determine their political leaning by comparing their stance on socio-
political statements (e.g., “Brexit was an error”) with the positions of political
parties. To analyze the Parties’ stances, we collected data from eight politi-
cal elections held between 2019 and 2021 VoteCompass2, including the 2019
Great Britain Election WhoGetsMyVoteUK 3. The statements and correspond-
ing Ground-Of-Truths (GoTs) for each election and Party can be found in the
provided repository4.

For our analysis, we collected the Twitter timelines of the competing Parties
using the Full-archive search Twitter API. Since some Parties had significantly
fewer tweets compared to others, we removed certain Parties from the analysis
and focused on those listed in Table 1. Di represents the collection of tweets
posted within i months before the election day (further details in the Method-
ology section).

2 https://www.votecompass.com/.
3 https://www.whogetsmyvoteuk.com/#!/.
4 https://github.com/marghe943/Tweets2Stance_generalization.

https://www.votecompass.com/
https://www.whogetsmyvoteuk.com/#!/
https://github.com/marghe943/Tweets2Stance_generalization
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4 Methodology

Fig. 1. Our Tweets2Stance framework to compute the agreement/disagreement level
Au

s of User u in regard to sentence s. The inputs are the Twitter timeline TLu extracted
from a certain time-period dataset Di, the sentence s, the topic tp associated with s, a
language model LM , a threshold th and an algorithm Alg. The highlighted components
are the parameters that we’ll vary during our experiments, as explained in Sect. 4.3.

This section presents the proposed Tweets2Stance (T2S) framework (Fig. 1) to
detect the stance Au

s of a Twitter User u in regard to a sentence s, exploiting its
Twitter timeline TLu = [tw1, ..., twn].

A User might either not talk about a specific political argument (here
expressed with sentence s), or debate on an issue not risen by our pre-defined set
of statements. For these reasons, our framework executes a preliminary Topic
F iltering step, exploiting a Zero-Shot Classifier (ZSC) to get only those tweets
talking about the topic tp of the sentence s. A ZSC is a language-model-based
method that, given a text and a set of labels (e.g., topics), assigns a classification
probability score to each label [21]. The higher the score assigned to a label, the
higher the likelihood that the input text pertains to that specific label. ZSC does
not require further fine-tuning on the target dataset. After obtaining the in-topic
tweets Iutps

through Topic Filtering, the Agreement Detector module employs the
same ZSC to detect the user’s agreement/disagreement level.

Figure 1 colour-codes the four parameters of the T2S framework to be tuned:

1. the language model (LM) used for Zero-Shot Classification (ZSC) in the
Topic F iltering and Agreement Detector modules to gauge topic agreement
and sentence relevance, respectively,

2. the dataset Di from which extracting the timeline TLu,
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3. the algorithm Alg to use in the Agreement Detector module,
4. the threshold th to get the in-topic tweets Iutps

in the Topic Filtering module.

The next subsections provide detailed descriptions of the Topic Filtering and
Agreement Detector modules. We will focus on a specific political scenario where
the Twitter accounts of interest are those of the political Parties mentioned in
Sect. 3.1, and the User u corresponds to the Party p. The choice of the dataset’s
time period (Di) as one of the parameters to tune is motivated by the use of
T2S for stance detection during political elections, where the proximity to the
elections may impact the likelihood of users discussing socio-political topics.

4.1 Topic Filtering

The Topic F iltering module extracts the in-topic tweets Iptps
from the Twitter

Timeline TLp of Party p, using the topic tps associated with sentence s (e.g., the
topic for the sentence “overall, membership in the EU has been a bad thing for the
UK ” can be “UK membership in EU ”). The topic definitions for all considered
sentences can be found in the linked repository. The module utilizes the ZSC C
to retrieve the in-topic tweets Iptps

and their corresponding topic scores T p
tps

.

Iptps
= {tw1, ..., twm|C(twi, tps) >= th} (1)

T p
tps

= {C(twi, tps)|twi ∈ Iptps
} (2)

C(twi, tps) ∈ [0, 1] indicates the degree to which tweet twi is associated with
topic tps. The filtering threshold value th was varied to determine the best and
optimal parameter set.

4.2 Agreement Detector

The Agreement Detector module (Fig. 1 - Module 2) computes the final five-
valued label Ap

s through an algorithm Alg(T p
tps

, Sp
s ), defining

Sp
s = {C(twi, s)|twi ∈ Iptps

} (3)

as the C scores of tweets Iptps
with respect to sentence s, each one indicating the

relevance and agreement of tweet twi with sentence s.
Each employed algorithm Alg exploits one of the following mapping func-

tions:

M1(s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if s ∈ [0, 0.2)
2 if s ∈ [0.2, 0.4)
3 if s ∈ [0.4, 0.6)
4 if s ∈ [0.6, 0.8)
5 if s ∈ [0.8, 1]

(4) M2(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if s ∈ [0, 0.25)
2 if s ∈ [0.25, 0.5)
3 if s ∈ [0.5, 0.75)
4 if s ∈ [0.75, 1]

(5)

where M1(s) ranges from 1 to 5, corresponding to the five agree-
ment/disagreement labels defined in Sect. 3. Similarly, M2(s) ranges from 1
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to 4, representing an intermediate agreement/disagreement scale. Specifically,
M2(s) = {1, 2} has the same meaning as in Sect. 3, while M2(s) = 3 indicates
agreement and M2(s) = 4 represents complete agreement. The rationale behind
this intermediate mapping is explained in Algorithm 4 (Subsect. 4.2).

The proposed algorithms ordered by complexity are the followings:

Algorithm 1 [Alg1] The label Ap
s is computed as

Ap
s =

⎧
⎪⎨

⎪⎩

M1(
∑|Iptps |

i=1 si·ti
∑|Iptps |

i=1 si

) if | Iptps
|�= 0

3 otherwise
(6)

where si ∈ Sp
tps

and ti ∈ T p
tps

.
Algorithm 2 [Alg2] First, it maps each tweet twi ∈ Iptps

into the label li ∈
{1, 2, 3, 4, 5} using its sentence score si ∈ Sp

s

li = M1(si) (7)

then, Ap
s is

Ap
s =

⎧
⎨

⎩

⌊∑|Iptps |
i=1 li
|Ip

tps
|

⌉
if | Iptps

|�= 0

3 otherwise
(8)

The step of assigning li to each tweet twi ∈ Iptps
(Eq. 7) aims to achieve a fairer

Ap
s . Tweet normalization aids in aggregating the contribution of each tweet (li)

through standard mean, employing macro aggregation. Macro-metric aggre-
gation is preferred in multi-class classification setups when class imbalance
is suspected. In the current context, the values of li are unbalanced with
respect to sentence s. Typically, if Party p agrees with a sentence, there will
be numerous tweets in agreement (many li = 4 or li = 5), and few or no
tweets in disagreement (few labels li = 1, or li = 2, or li = 3), and vice-versa.

Algorithm 3 [Alg3] Like Alg2, but Ap
s is computed with a slight modification.

Introducing Vl as the number of voters for the integer label l ∈ {1, 2, 3, 4, 5}

Vl = |{li : li = l}|Ip
tps

|
i=1 | (9)

where li are the labels computed from Eq. 7. Let’s define v = max(Vl), then

Ap
s =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l if |{l : Vl = v}| = 1 (10a)
⌊∑|Ip

tps
|

i=1 li
|Iptps

|
⌉

if |{l : Vl = v}| > 1 (10b)

3 otherwise (10c)

where
⌊
...

⌉
is the rounding function. Majority voting (case 10a) poten-

tially contributes more to assigning correct labels than the plain standard
mean (case 10b taken from Eq. 8 of Alg2) as it effectively accounts for class
imbalance.
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Algorithm 4 [Alg4] The previous algorithms consider the neutral label nl = 3
(neither disagree, nor agree) even when | Iptps

|�= 0. However, we explored the
scenario where nl is only considered when | Iptps

|= 0. In such cases, the user
might not have taken a position on the sentence s yet, and determining Ap

s

based on a single tweet may lack significance. Hence, Alg4 extends Alg3 with
the following modifications:

li = M2(si) (11)

where li ∈ {1, 2, 3, 4}. Then, we define

aps =

⎧
⎪⎨

⎪⎩

3 if | Iptps
|< m

majority voting (case 10a)
rounded standard mean (case 10b)

(12)

Here, m is the minimum number of tweets required to activate either the
majority voting algorithm or the standard mean. The output labels {3, 4}
from M2(s) correspond to the final labels agree and completely agree, and
they are mapped to the integer labels 4 and 5 as defined in Sect. 3.

Ap
s =

{
aps if aps = 1 ∨ aps = 2
aps + 1 if aps = 3 ∨ aps = 4

(13)

4.3 Experiment Settings

To validate the T2S’s performance we had to choose i) the set of values for each
of the four parameters to tune (the dataset size Di, the language model LM
for ZSC, the algorithm Alg, and the topic-filtering threshold th - Fig. 1), ii) the
baselines to which compare T2S, and iii) the evaluation metrics.

T2S Parameters. We chose three to seven months of tweets (Di), a filtering
threshold from 0.5 to 0.9, four algorithms for the Agreement Detector module
(Sect. 4.2), and three language models for the ZSC. The chosen filtering threshold
range was set higher than 0.5 to ensure better agreement between a text and
a topic. The language models we adopted are5: a) BART-large [12] fine-tuned
on the MultiNLI dataset [20], b) DeBERTa-v3-base-mnli-fever (DeBERTa), and
c) covid-twitter-bert-b1-fever-anli (Covid-twitter-BERT ). Since the majority of
collected tweets are in English, we used English language models. Non-English
tweets were translated using Google Translate6. Our attempts to employ Multi-
Language Models resulted in worse performances [7]. BART and DeBERTa were
adapted to handle tweets by removing mentions, hashtags, and emojis, while
Covid-twitter-BERT, which is already trained on tweets, was evaluated with
and without those structures.

5 From huggingface.co: a) facebook/bart-large-mnli, b) MoritzLaurer/DeBERTa-v3-
base-mnli-fever-anli, c) digitalepidemiologylab/covid-twitter-bert-v2-mnli.

6 https://github.com/lushan88a/google_trans_new.

https://github.com/lushan88a/google_trans_new
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Baselines. To validate T2S’s abilities, we compared its performance with two
bare baselines: (i) Random: the final agreement/disagreement label Ap

s is set
to a random integer picked from a discrete uniform distribution of int ∈ [1, 5];
(ii) Assign-highest-value: Ap

s is always assigned the highest label (completely
agree) since our datasets are skewed towards the agree and completely agree
values.

Evaluation Metrics. In assessing the performance of the detection model for this
stance detection task, traditional error metrics such as MSE, MAE, R2 Score,
Residual Plots, and Macro Averaged Mean Absolute Error are commonly used.
However, a custom error metric is needed to account for the varying importance
of errors among the stance classes. For example, misclassifying as agree instead
of completely disagree is considered a more acceptable error than misclassifying
as neither disagree, nor agree instead of agree, even though both errors have a
magnitude of one. In the absence of such a metric, MAE is the most appropriate
choice. Additionally, the F1 weighted score is employed due to the integer nature
of the detected labels and the imbalanced distribution of the Ground-of-Truth
values among the agreement/disagreement labels.

5 Results and Discussion

Figure 2 shows the F1 and MAE scores over all nine elections respectively. Table 2
indicates the four general optimal settings across the elections by varying the
number of labels and the metric considered.

Table 2. The four optimal settings over no. of labels and metric.

no. of
labels

metric Di model alg th avg F1 avg MAE

5 F1 D3 DeBERTa alg4 min no.
of tweets: 3

0.9 0.29 1.56

5 MAE D4 Covid-
twitter-
BERT with
# and emojis

alg3 0.9 0.20 1.43

3 F1 D3 DeBERTa alg4 min no.
of tweets: 3

0.6 0.53 0.85

3 MAE D5 DeBERTa alg3 0.9 0.49 0.82
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(a) F1 with 5 labels (b) F1 with three labels

(c) MAE (d) MAE with three labels

Fig. 2. F1 and MAE scores for all nine elections across baselines (assign-highest-value
and random), best and worst setting for each election, and general optimal setting.
The green boxes display the best setting for each election. (Color figure online)

5.1 RQ1: What are the Performances and Insights of T2S?

The best setting for each of the nine elections was chosen in two steps: firstly, by
varying the algorithm Alg and the threshold th according to Fig. 1, we selected
the Di and LM with the minimum (maximum) MAE (F1), giving priority to
MAE. Then we proceeded to choose the filtering threshold (th) and the algorithm
(Alg) in a similar manner, while keeping the dataset size and language model
fixed. The performance results in Fig. 2 demonstrate that T2S is a strong user
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stance detection model, surpassing random and assign-highest-value baselines.
The best setting for T2S varies across the nine elections, with F1 scores ranging
from 0.23 to 0.49 and MAE scores (for five-labelled stance) ranging from 0.94
to 1.45. The selected algorithm alternates between Alg3 and Alg4, indicating
that aggregating the tweet contributions (li) yields higher detection precision
than directly averaging the sentence scores (si). However, the chosen filtering
threshold, dataset time period, and language model for ZSC differ significantly
across the nine datasets.

These differences can be attributed to two intertwined factors: i) the diverse
topic knowledge of different language models and ii) the manner and timing of a
user’s (political party’s) expression on social media, which influences T2S stance
detections. The choice of the language model is crucial, as models not trained
or fine-tuned on the topics in the dataset struggle to assign accurate scores to
texts containing those topics. This issue could potentially be addressed by using
more advanced models like GPT3 or ChatGPT, which have demonstrated state-
of-the-art performance on text stance detection [22]. As for how a user expresses
themselves on social media, there are three issues: first, if T2S attempts to
detect a user’s stance on a socio-political statement they haven’t tweeted about
but have discussed in a conference, T2S may incorrectly assign the neither agree,
nor disagree label. Second, if a user tweets about a statement using expressions
(e.g., acronyms) that T2S’s language model hasn’t been trained on, T2S is likely
to detect an incorrect stance value. Conversely, if another user tweets about
the same statement using more common words, T2S is more likely to detect
the correct stance. Lastly, the significant variation in the dataset time periods
(Di) suggests that a user may discuss a certain topic either close to or far from
the election date. Therefore, obtaining the user’s entire timeline, rather than
limiting data collection to specific time periods, could be beneficial. In a previous
study, we extensively discussed how the writing style of Italian political parties
influences T2S’s performance [7]. Similar considerations can be made for the
results of the three-labelled stance detection. Noticeably, the F1 scores vary less
and are closer (around 0.6) to the best F1 score (0.95) of supervised and semi-
supervised text-based techniques in the literature [9,16].

To sum up, although T2S’s performance is still distant from state-of-the-art
user-based stance detection, we believe it represents a valuable starting point
for addressing the research gap in unsupervised content-based models leveraging
an advanced Natural Language Processing technique (ZSC) to detect a five-level
stance of the user on multiple and diverse targets (the socio-political statements
on different political contexts).

5.2 RQ2: Can T2S Generalize over Diverse Political Contexts?

Figure 2 demonstrates that T2S effectively captures the complex five-level stance
across diverse political contexts. However, the optimal settings vary for each
election. To identify a potential optimal setting, we calculated the average F1
or MAE performance across all nine election datasets. We selected the four best
settings based on the metric (F1 or MAE) and the number of stance values (five
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or three). Analyzing the selected optimal settings (Table 2), we observed that
the dataset’s time period (Di) and the filtering threshold value (th) have less
influence. Effective algorithms involve majority voting and assign the neutral
label based on the presence of a minimum number of in-topic tweets. The best-
performing language models for ZSC are either fine-tuned on a larger number of
hypothesis-premise pairs or pre-trained on tweets. The inclusion or exclusion of
leading mentions, hashtags, and emojis does not significantly affect the results.

Overall, the four optimal settings closely approach the best setting for each
election, surpassing the performance of baselines and worst settings, with few
exceptions. Despite a fixed setting, T2S exhibits considerable performance vari-
ation among the nine election datasets, with a maximum variance of approxi-
mately 0.2 points for F1 and 0.8 points for MAE. This variability is attributed
to how a user (in our case, a political party) expresses its election program on
social media platforms such as Twitter.

In summary, although sacrificing some performance, a general framework
setting can achieve satisfactory results across different political contexts, consis-
tently outperforming random and assign-highest-value baselines.

5.3 Potential and Limitations

The Tweets2Stance framework was tested on political parties during election
campaigns to detect a user’s political orientation. It has potential applications
in identifying radicalization and extremism, particularly on topics like vaccines
or immigration. The framework can also be applied to social media platforms
other than Twitter, such as Facebook. However, T2S has limitations when used in
unknown scenarios and different topics, such as the need for domain adaptation,
as pre-trained models may not perform well when applied to different domains.
Data bias is another issue, as pre-trained models may be biased toward certain
topics or demographics, leading to inaccurate stance detections and reinforcing
biases. Limited vocabulary is a challenge, as pre-trained models may not under-
stand or classify texts with domain-specific words or phrases. Overfitting can
occur when fine-tuning on small datasets, resulting in poor performance on new
data. Multilingualism is also a limitation, as pre-trained models trained on one
language may not work well for another, requiring multilingual training or alter-
native methods like automatic translation. Finally, T2S faces a major limitation
in transfer-learning as it cannot detect stances when users are not discussing a
specific socio-political topic. In these cases, T2S detects a middle stance, which
may indicate either neutrality or insufficient data for accurate analysis.

6 Conclusions

The main purpose of this work was to devise and probe the specific and general-
izing capabilities of Tweets2Stance, an unsupervised stance detection framework
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based on Zero-Shot Learning that detects a five-labelled user’s stance about spe-
cific social-political statements by analyzing content-based analysis of its Twit-
ter timeline only. T2S outperformed the baselines (random and assign-highest-
stance-value) on all nine election datasets and demonstrated its ability to gen-
eralize across diverse political contexts with a minimum MAE of 0.95 and a
maximum F1 of 0.6. However, the scarcity of relevant posts to socio-political
statements and the language model’s limitations (domain adaptation, data bias,
and limited vocabulary) pose constraints on the T2S framework’s capabilities.

T2S fills the SOTA gap of unsupervised stance detection models of multiple
unrelated targets using content features and innovative language models. While
SOTA user-based methods achieve higher F1 scores, they focus on simpler tar-
gets (e.g., pro or anti-Trump) with limited stance levels (from two to three);
besides, they use a straightforward filtering approach (e.g., excluding tweets
mentioning a specific person or organization) or focus on interconnected users
through keywords, URLs, and hashtags. In contrast, the T2S framework detects
the five-labelled stance of a user on multiple and diverse targets in various con-
texts, leveraging the unfiltered social media timeline (filtering applied automat-
ically). Lastly, future research could overcome T2S’s limitations by employing
an advanced language model like GPT-4 or conversational AI like ChatGPT as
the ZSC for Topic Filtering and Stance Detector steps, since they showed robust
text stance detection capabilities.
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Abstract. Spam reviews contain untruthful content created with
malevolent intent, to affect the overall reputation of a product, ser-
vice or company. This content is commonly made by malicious users or
automated programs (i.e., bots) that mimic human behaviour. With the
recent boom of online review systems, performing accurate review spam
detection has become of primary importance for a review platform, to
mitigate the effect of malicious users responsible for untruthful content.
In this work, we propose a review spam classification approach, named
GLORIA, that adopts a graph representation of review data and trains
a graph convolutional neural network for edge classification as a review
spam detection model. In particular, GLORIA represents both users (i.e.,
authors of reviews) and products (i.e., reviewed items) as nodes of a het-
erogeneous graph, while it represents reviews as graph edges that connect
each author of a review to the reviewed item. Features of users, products
and reviews are associated with nodes and edges, respectively.

Experiments performed on publicly available review datasets prove
the effectiveness of the proposed approach compared with some state-of-
the-art approaches.

Keywords: Review Spam Detection · Graph Convolutional
Networks · Heterogeneous Graph Learning · Edge Classification

1 Introduction

With the continuous development of technology and the ubiquitous presence
of network-based services in our everyday life, it has become very common to
make online purchases of products and services. With the rapid spread of e-
commerce services, user reviews have become one of the most influential factors
in purchase decisions of customers [14]. Consequently, e-commerce marketplaces
are nowadays the most important target of spammers, which have the malicious
goal of manipulating the reputation of products and brands, to either promote
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or criticize products and services. Positive and negative opinions can greatly
influence a company’s business. For this reason, review spam detection is a crucial
problem to address for guaranteeing the reliability of products and services.

Spam reviews are described as untruthful or deceptive opinions that are
posted on online commerce platforms in an attempt to manipulate the pub-
lic perception (in a positive or negative manner) of specific products or services
presented on the affected platforms [11]. In the last years, automatic review spam
detection has attracted the attention of machine learning, natural language pro-
cessing and deep learning researchers due to the difficulty of recognizing fake
reviews by manually reading their content [9]. On the other hand, over a few
years, professional spammers have greatly increased and improved their writing
techniques, to evade detection tools that base review spam detection on the anal-
ysis of text content only. Most of the existing review spam detection approaches
focus on extracting robust, engineered features from both review contents and
reviewer behaviours [2,7,17,23], but in the past decade, several approaches have
been developed, to leverage the social interaction between users and enhance the
feature space of review spam detection problems with contextual information.

In this paper, we perform a step forward in this “social” research direction.
In fact, we investigate the use of a heterogeneous graph representation of review
data, to capture the relationships between products, users and reviews and gain
accuracy in problems of review spam detection. For this purpose, we propose a
Graph Convolutional Network (GCN) approach, named GLORIA (Graph con-
voLutiOnal Network for RevIew spAm), that learns spatial convolutions on
the graph representation of review data, to take advantage of the expressive
structural information enclosed in graphs. In particular, the proposed approach
implements a heterogeneous bipartite graph used as input to a Crystal GCN [28].
This architecture has been proven effective in the context of chemical material
property prediction [8]. Traditional GNN algorithms perform convolutions using
a shared weight matrix for all neighbours of a node by neglecting the difference
of interaction between neighbours. Instead the Crystal GNN first aggregates
neighbour vectors and then performs convolutions on the aggregated neighbour
vectors. To the best of our knowledge, this is the first study that explores the
use of Crystal GCN in review spam detection problems by showing how the pro-
posed approach can gain accuracy compared to shallow and deep neural models
trained neglecting the graph structure of data. An issue of review spam detec-
tion problems is that spam data are highly skewed. The imbalance of malicious
data is a common condition in several cybersecurity problems (e.g., malware
[4], fraud [22] or intrusion [3] detection), as well as in remote sensing problems
(e.g., [6]). In this study, we handle the imbalanced condition of review spam
data by training the Crystal GCN model with the sigmoid focal loss. This choice
bases on [20] that shows how the sigmoid focal loss can help a neural model in
focusing on rare samples. In this study, we show that the sigmoid focal loss is
better suited than the traditional cross-entropy loss, to handle the imbalance
condition of review spam data. Finally, we analyse the topological structure of
graphs by showing how the exploration of the centrality of products and users in
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the graph representation of review data may disclose useful knowledge to explain
characteristics of reviews and possible spam patterns.

The paper is organized as follows. Section 2 overviews the related work.
Section 3 describes the proposed approach. Section 4 describes the benchmark
data collections adopted in the experimental study, describes the experimental
setting and discusses the relevant results. Finally, Sect. 5 draws conclusions and
outlines the future directions of this work.

2 Related Work

The research in the field of review spam detection has received great attention in
the last years. Several machine learning approaches have been recently designed
to disentangle spam reviews from non-spam reviews [9,16]. In particular, the
seminal study of [17] started the investigation of the task of review spam detec-
tion in the context of product reviews.

Recent research trends have started exploring deep learning approaches in
problems of review spam detection [2,5,7,24,31]. In [2,5] a multi-view, deep
learning approach is described for review spam detection. The proposed approach
combines embeddings of textual features, extracted with Word2Vec and BERT
models, and behavioural reviewer features to improve the accuracy of a review
classifier trained through a multi-input, deep neural network. [7] describes a
combination of Word2Vec and Convolutional Neural Networks (CNNs), to learn
a document-level representation of reviews. Finally, a Bi-directional LSTM is
used for review classification. The work in [24] adopts word embeddings trained
on an Amazon review dataset using the Continuous Bag-of-Words (CBOW)
algorithm. Finally, it trains a review classification model that combines CNNs
and Gated Recurrent Neural Networks. A CNN is also trained in [31], to extract
semantic information from the text of reviews by exploiting convolution and
pooling operations.

Although all the above studies describe feature-based approaches that rely on
an effective way to extract and learn features (from both reviews and reviewers),
they ignore relationships between users, products and reviews. On the other
hand, a few recent studies have started the investigation of the effectiveness of
graphs as data modelling approaches of review spam data. The study of [27]
first adopts a heterogeneous graph to represent reviewers, reviews and stores,
through different categories of nodes. The review graph is used to infer the
truthiness of reviews, honesty of reviewers and reliability of stores. [26] explores
an unsupervised review spam detection approach that resorts to clustering, to
identify communities of users with similar spam behaviours. [25] describes the
use of a heterogeneous graph to connect users to reviews and analyses how graph
meta-paths may help in recognizing review spam.

The recent studies that have adopted a graph representation of review data
have also paved the way for leveraging GCNs in review spam detection problems.
Although GCNs have recently gained great attention in several domains (e.g.,
recommendation systems [29] and chemical properties predictions [28]), a few
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studies have explored GCNs in review spam detection problems [1,19,30]. [1]
trains a GCN for node classification in spam bot detection problems. This study
adopts a social graph representation of relationships between Twitter users (rep-
resented as nodes) and leverages both feature nodes and relationships between
neighbour nodes for training a GCN that addresses spam bot detection as a prob-
lem of graph node classification. A social graph of Twitter user relationships is
also adopted in [30] in combination with an Attention-based Graph Neural Net-
work trained for spam bot detection. So both these studies consider a problem
of graph node classification, and train a GCN to recognize spam bot commu-
nities. They label all messages produced by the member of bot communities in
the spam class. Differently, our study accounts that a malicious user does not
necessarily only produce review spam. Based upon this consideration, we focus
on classifying reviews, instead of classifying reviewers.

Finally, [19] studies the review spam detection problem for Xianyu, that is one
of the largest second-hand goods apps in China. In Xianyu, reviews are commu-
nication tools for buyers and sellers and the review action usually happens before
purchases. As recognised by the authors of [19], this is different from the com-
mon use of reviews in other e-commerce systems, also considered in this study,
where reviews are usually made by customers who have bought the products.
Accounting for the peculiar characteristics of reviews in Xianyu, [19] adopts two
graph representations of Xianyu reviews: a heterogeneous graph modelling rela-
tionships between users and review items and a homogeneous graph modelling
similarities between review items. A review item denotes a review topic (e.g.,
“iPhone 6s”) that is associated in Xianyu with a sequence of review comments
produced by (multiple) users on the specific topic. The nodes of the homogeneous
graph are associated with the content features extracted from review items. [19]
concatenates embeddings extracted through the GCN trained on two graphs to
obtain the feature vector for the final classification of the review item. Differ-
ently, we consider the traditional e-commerce perspective with reviews written
by users on products. So we use a single heterogeneous graph to represent reviews
as relationships between users and products, and we associate review features to
edges, while characteristics of users and products to nodes. Finally, we train a
GCN model for graph edge classification, to classify each single review message.

3 The Proposed Method

In this Section, we describe the GLORIA approach. It adopts a graph representa-
tion of review data, where users and products are represented as heterogeneous
graph nodes and the reviews as graph edges. Hence, GLORIA implements a GCN
for edge classification in heterogeneous graphs.

Let us consider the input graph representation of review data as a hetero-
geneous bipartite graph defined as G = (U,P,R), where U , P and R corre-
spond to the set of user nodes, product nodes and edges, respectively. Each edge
r = (i, j) ∈ R with R ⊆ (U × P ) ∪ (P × U) defines the undirect relationship
between a user node and a product node to express that the user reviewed the
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product (and the product is reviewed by the reviewer). In addition, let us con-
sider three mapping functions: φU : U → XU that associates each node u ∈ U
to a feature vector in XU, φP : P → XP that associates each node p ∈ P to
a feature vector in XP and φR : R → XR that associates each edge r ∈ R to
a feature vector in XR. We process this graph representation of review data to
train a GCN for edge classification.

The GCN takes both node feature vectors, edge feature vectors and adjacency
matrix as input and passes them through a series of L layers. At each layer l,
node embeddings are updated according with the Eq. 1 to create an intermediate
hidden representation hl. In particular, at each hl, the GCN of GLORIA applies
a crystal graph convolutional operator [28]. For each node i ∈ U ∪ P , for each
layer l, this operator learns a function hl

i = hl−1
i + f(i) defined on the previous

hidden l − 1 layer. f() is formulated as follows:

f(i) = AGG(j∈N (i))k(σ
(
zl(i,j)kW

l
σ + bl

σ

) � g
(
zl(i,j)kW

l
g + bl

g

)
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where N (i) is the set of neighbours of node i (i.e., N (i) = {j|(i, j) ∈ R})
and zl(i,j)k = hl

i ⊕ hl
j ⊕ φR(i, j)k is the concatenation of embeddings computed

at layer l for the feature vectors associated with node i, neighbour node j ∈
N (i) and the feature vector associated with the k-th edge between i and j. If
l = 0 then embeddings return original feature vectors computed with φU and
φP for user nodes and product nodes, respectively. � denotes the element-wise
multiplication, Wσ and Wg denote the convolution weight matrix at layer l,
while bσ and bg denote the bias at layer l, for both σ and g functions. In fact,
each layer of the Crystal GCN applies both a sigmoid function (σ) [13] and a
softplus function (g) [10]. Finally, the operator of aggregation (AGG) denotes the
aggregation scheme used for grouping node embeddings generated by different
edges relating multiple neighbours j to the same node i. In this study, we use
the mean as the aggregation operator.

In particular, GLORIA comprises two graph convolutional layers (i.e., l =
1, 2). During the message-passing phase at layer l, the information of each node
of the graph is updated based on the aggregation of the messages received from
their immediate neighbours achieved in two hops. As such, each message-passing
layer increases the receptive field of the GCN by one hop. As we perform two hops
in GLORIA, we are able to model relationships between pairs of users, as well as
relationships between pairs of products, in addition to the review relationships
between users and products.

Figure 1 reports an example of the message-passing realized by GLORIA by
considering the user node u1 as target node. At l = 0, all neighbour nodes
of u1 are assigned to initial node feature vectors (by φU or φP ). At l = 1,
the information of both node features and edge features are concatenated and
aggregated, while h1

p1
and h1

p2
are updated based on f() (Eq. 1). In order to

get the node embeddings available for target node u1 at l = 2, embeddings of
neighbour nodes h1

p1
and h1

p2
are concatenated and aggregated to update h2

u2
.

Therefore, each node in the graph learns from all the neighbour nodes transitively
achieved in two hops.
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f f
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Fig. 1. Example of message-passing with user node u1 as target in a Crystal GCN with
two-hop neighbourhood

Finally, to deal with the expected imbalanced condition of review data in
review spam detection problems, we use a sigmoid focal loss [20] for the final
prediction:

SF = −
K∑

k=1

α(1 − ŷ)γ log ŷ (2)

where K corresponds to the number of classes in the dataset (i.e., spam, non-
spam) and parameter γ adjusts the rate and reduces the loss for well-classified
samples, to focus learning on hard misclassified samples. α is a weighting factor
in range (0, 1) to balance spam versus non-spam samples.

4 Experimental Setup

We performed experiments on two benchmark review datasets described in
Sect. 4.1. The implementation details of GLORIA architecture, adopted in the
experiments, are illustrated in Sect. 4.2. The experimental results are discussed
in Sect. 4.3.

4.1 Data

We considered two datasets, namely Hotel and Restaurant, described in [23]. The
two datasets contain reviews across 72 hotels and 129 restaurants, respectively,
in the Chicago area. Each dataset contains reviews recorded by Yelp.com – a
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Table 1. Summary of characteristics of Hotel and Restaurant datasets

Dataset #spam reviews #non-spam reviews #reviewers #products

Hotel 779 5078 5123 72

Restaurant 8301 58716 16941 129

well-known large-scale online review site. In addition, both datasets were pro-
vided with ground-truth labels (spam and non-spam) in [23]. So they can be used
for the evaluation of the accuracy of review spam detection approaches. Both
datasets include information about products (e.g., category, price range, rating)
and reviewers (e.g., number of friends, number of reviews), as well as plain-text
reviews. Each review is associated with a reviewer and a product. In this study,
we adopted the feature-vector representation of plain-text reviews described in
[5]. In this study, each dataset was processed separately, as each domain has spe-
cific characteristics to take into account for the review spam analysis. A summary
of the characteristics of both datasets is reported in Table 1. We note that the
class distribution is imbalanced in both datasets with the “spam” minority class.

To perform the experimental study, we adopted the same split used in [5]
with reviews sorted by the post date and the 80% of the oldest reviews selected
for the training stage and the 20% of the newest reviews selected for the testing
stage.

4.2 Implementation Details

We implemented GLORIA in Python 31. In particular, the GCN architecture was
realized using PyTorch Geometric (PyG) 2.3, a geometric deep learning exten-
sion library for PyTorch. For each dataset, we conducted an automatic hyper-
parameter optimization, using the tree-structured Parzen estimator algorithm,
as implemented in the Hyperopt library. In particular, we selected the configu-
ration of the hyper-parameters that achieved the highest F1 computed on the
validation set extracted using 20% of the entire training according to the Pareto
Principle, by considering spam as the positive class The values of the search
space of the hyper-parameters, automatically explored with the tree-structured
Parzen estimator, are reported in Table 2.

The neural architecture of GLORIA comprises two Graph Convolutional Lay-
ers, a Dense layer and a Sigmoid layer [13] used for the final edge classification.
The standard Rectified Linear Unit (ReLU) [12] was selected as the activation
function for each hidden layer. A dropout layer was placed before each Graph
Convolutional layer, to perform data regularisation and prevent overfitting. The
neural network was trained with mini-batches by back-propagation, while the
gradient-based optimization was performed using the Adam update rule [18].
The maximum number of epochs was set equal to 300. The early stopping app-

1 https://github.com/robertogasbarro/GLORIA.

https://github.com/robertogasbarro/GLORIA
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Table 2. Hyper-parameter search space for the multi-input neural network

Hyper-parameter search-space values

Mini-batch size {25, 26, 27, 28, 29}
Learning rate [0.0001, 0.001]

Dropout [0, 1]

γ [0, 1]

α [1, 4]

Table 3. F1 spam, F1 non-spam, Macro-F1 and AUC-ROC of GLORIAby using both
BCE loss and SF loss for learning the GCN model. The best results are in bold.

Dataset Loss F1 spam F1 non-spam Macro-F1 AUC-ROC

Hotel BCE 0.586 0.898 0.742 0.878

SF 0.596 0.910 0.751 0.886

Restaurant BCE 0.615 0.937 0.776 0.917

SF 0.640 0.931 0.785 0.924

roach based on the lowest loss on the validation set was used, to obtain the best
classification model.

4.3 Results and Discussion

We evaluate the performance of GLORIA to answer the following research ques-
tions:

Q1 How does the accuracy of the proposed GCN-based approach change by
varying the cost function?

Q2 Does the defined GCN model gain accuracy compared to state-of-the-art
review spam detection algorithms that neglect the graph structure of review
data?

Q3 Can the graph representation of review data disclose useful knowledge to
explain the review domain better?

The accuracy performance of the analysed methods was measured in terms of
F1 score computed on both the “spam” class and “non-spam” class, respectively
(i.e., F1 spam and F1 non-spam), Macro-F1 (i.e., the average of F1 spam and
F1 non-spam) and AUC-ROC. All these metrics were computed on the testing
reviews of each dataset.

Sensitivity Analysis. We explored the sensitivity of the accuracy performance
of GLORIA to the cost function adopted to learn the GCN model. To this aim, we
compare the accuracy results obtained by using the binary cross-entropy (BCE)
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Table 4. Competitor analysis: F1 spam, F1 non-spam, Macro-F1 and AUC-ROC of
GLORIA, SVM and EUPHORIA. The best results are in bold.

Dataset Method F1 spam F1 non-spam Macro-F1 AUC-ROC

Hotel SVM 0.530 0.853 0.692 0.779

EUPHORIA 0.592 0.887 0.740 0.813

GLORIA 0.596 0.910 0.751 0.886

Restaurant SVM 0.351 0.751 0.551 0.692

EUPHORIA 0.372 0.781 0.576 0.706

GLORIA 0.640 0.931 0.785 0.924

(defined as BCE =
∑K

k=1 y log ŷ) and the sigmoid focal (SF) loss (defined in
Eq. 2), to perform the training stage of GLORIA.

Table 3 reports the F1 (spam), F1 (non-spam), Macro-F1 and AUC-ROC mea-
sured on the testing data by using both SF and BCE as loss function in both
datasets. The results show that the use of the SF loss can help the GCN model
to gain accuracy in both datasets. These results confirm the ability of the SF
loss to improve the accuracy performance of a deep neural model in the presence
of data showing a strong imbalanced condition. In fact, we can observe that
the use of SF loss increases almost all the accuracy metrics in both the experi-
mented datasets. The only exception is observed in the F1 (non-spam) calculated
in Restaurant dataset, where the BCE loss performs better than SF loss. This is
an expected outcome since the BCE loss is a cost function that considers samples
of the two classes to have equal weights. Thus, the neural model can be learned
with the BCE loss to recognise the majority class better (e.g., non-spam review
in this study).

Competitor Analysis. We compare the accuracy performance of GLORIA to
that of two competitors: SVM that learns a Support Vector Machine classifier
and EUPHORIA that learns a multi-input deep neural model for review spam
detection. We consider the SVM as a classification algorithm for this comparison
since it has been already adopted in multiple related studies on review spam
detection (e.g., [15,21,23]). On the other hand, EUPHORIA is a recent method
described in [5] for review spam detection. Both competitors ignore the graph
structure of review data.

Table 4 reports the F1 spam, F1 non-spam, Macro-F1 and AUC-ROC, of SVM,
EUPHORIA and GLORIA, respectively. The results show that the highest accu-
racy is achieved by GLORIA, with EUPHORIA as runner-up of this experiment in
both datasets. These results contribute to showing the effectiveness of resorting
to a graph representation of review data and leveraging the graph structure of
data to learn relationships between users and products, to improve the ability
of the classification model to predict accurately the review spam.
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(a) User - Hotel (b) Product - Hotel

(c) User - Restaurant (d) Product - Restaurant

Fig. 2. Betweenness centrality (centrality, axis Y) with respect to the number of edges,
which are labeled with the class “spam” on each node of the review graph (�spam axis
X). Figures 2a and 2c refer to users, while Figs. 2b and 2d refer to products, in the
review graphs of Hotel and Restaurant, respectively.

Qualitative Graph Analysis. Finally, we explore how the graph representa-
tion of the review data can disclose useful knowledge to explain the relationships
between users, products and reviews in the spam class in the considered datasets.
For this purpose, we analyse the betweenness centrality of users and products.
The betweenness centrality of a node in a graph measures the amount of influ-
ence of the node on the flow of information in the graph. In particular, for a
given node within a graph, the betweenness centrality of the node is computed
as the number of the shortest paths in the graph, which connect any pair of
nodes passing through the node under study, on the total number of the short-
est paths which connect any pair of nodes in the graph. A node with a high value
of betweenness centrality can be seen as a bridge that, if removed, could disrupt
connections between other nodes in the graph.

Due to the main focus of this problem on the class “spam”, Fig. 2 shows
the betweenness centrality (axis Y) plotted with respect to the number of edges
labelled with the class “spam” on each graph node. As GLORIA adopts a het-
erogeneous graph, we show the betweenness centrality for both users (Figs. 2a
and 2c) and products (Figs. 2b and 2d). These results show that the betweenness
centrality of a node tends to increase as the number of spam reviews involving
the node increases. This trend is more evident in the products than in the users,
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(a) User “3873” - Hotel (b) User “3873” - Hotel
(spam sub-graph)

(c) User “33826” - Restau-
rant

(d) User “33826” - Restau-
rant (spam sub-graph)

Fig. 3. Sub-graphs rooted in the users: “3873” of Hotel and “33826” of Restaurant.
Both sub-graphs are produced with two hop levels. Figures 3b and 3d report the projec-
tion of sub-graphs shown in Figs. 3a and 3c on the edges labeled with the class “spam”.

since there is a large number of users who produced zero spam reviews, while a
small number of products received zero spam reviews.

Figure 3 shows the sub-graphs rooted in the users: “3873” of Hotel and
“33826” of Restaurant. These users are identified according to the plots reported
in Figs. 2b for Hotel and 2d for Restaurant as the users who produced the high-
est number of reviews labeled in the class “spam” in the two datasets. The
two sub-graphs are produced with two hop levels. In particular, Figs. 3a and
3c show the entire sub-graphs rooted in the selected users “3873” and “33826”,
respectively. Figures 3b and 3d show the projection of these sub-graphs on the
edges labeled in the class “spam”. The sub-graphs rooted in the users “3873”
and “33826” show the products for which these two users are spammers into
Hotel and Restaurant, respectively. In both cases, the sub-graphs highlight that
“multiple” reviewers produced spam reviews on the same target products. This
suggests that several spammer profiles co-operated to produce malicious spam
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(a) 5082 (b) 5083 (c) 5084

Fig. 4. Subgraphs of products “5082”, “5083” and “5084” of Hotel dataset. These
products have achieved the higher number of spam as reported in Fig. 2b.

on the same target products. Hence, the activity of a spammer on a product
may attract the attention of further spammers on the same target product.

Figure 4 shows the sub-graphs rooted in products “5082”, “5083” and “5084”
of Hotel, which are the three products that received the highest number of spam
reviews in Fig. 2b. We note that the product “5082” has the highest betweenness
centrality in Fig. 4. Instead, the product “5084” has a low betweenness centrality,
while the product “5083” has a medium betweenness centrality in Fig. 4. Consis-
tently with this analysis of betweenness centrality, the node density is higher in
the sub-graph rooted in product “5082” than in the sub-graphs rooted in prod-
uct “5083” and product “5084”, respectively. In addition, the sub-graph rooted
in product “5084” shows that all reviews produced on this product belong to the
class “spam”. These malicious reviews were produced by users who created these
single reviews (with the exception of two users who created two reviews and both
these reviews were spam). This suggests that a possible malicious behaviour is
observable in products with low betweenness centrality.

5 Conclusion

In this paper, we illustrate a GCN approach for review spam detection, which
takes advantage of relationships between users, products and reviews by resort-
ing to a graph-based representation of review data and training GCN model
for edge classification of reviews. The experiments performed on two benchmark
datasets prove the accuracy of the proposed approach compared with two base-
lines that are SVM and a multi-view deep learning-based approach, respectively.
In addition, we show that the analysis of the betweeness centrality of products
and users allows us to extract useful knowledge to explain review data by dis-
closing possible review spam patterns. As future work, we plan to continue the
investigation of how knowledge explaining the review graph topology can be
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used during the GCN training stage, to help the learned classification model
gain accuracy in detecting review spam. In addition, we plan to investigate the
use of the graph-based representation of review data in an online setting, to
explore how changes occurring over time in the graph topology may help to keep
high accuracy detecting review spam in real-time. Finally, we plan to extend
our approach to perform a link prediction task to predict future behaviours of
spammers.
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Abstract. Every day, many people use social media platforms to share
information, thoughts, narratives and personal experiences. The vast vol-
ume of user-generated content offers valuable insights into the latest news
and trends but also poses serious challenges due to the presence of a
lot of false information. In this paper we focus on analyzing the online
conversation on Twitter to identify and unveil false information related
to COVID-19. To address this challenge, we devised a semi-supervised
approach that combines false information detection with a neural topic
modeling algorithm. By leveraging a small amount of labeled data, a
BERT-based classifier is fine-tuned on the false information detection
task and then is used to annotate a large amount of COVID-related
tweets, organized in a topic-based clustering structure. This approach
allows for effectively identifying the degree of false information in each
discussion topic related to COVID-19. Specifically, our approach allows
for investigating the presence of false information from a topical per-
spective, enabling us to examine its impact on specific topics underly-
ing the online discussion. Among the topics with the highest incidence
of false information, we found allergic reactions, microchips in vaccines,
and 5G- and lockdown-related conspiracy theories. Our findings highlight
the importance of leveraging social media platforms as valuable sources
of information but at the same time how essential it is to identify and
mitigate the impact of false information in online communities.

Keywords: False information · Misinformation · Disinformation ·
Neural Topic Modeling · COVID-19 · Natural Language Processing ·
BERT

1 Introduction

In today’s digital age, social media has become an integral part of our lives,
revolutionizing the way we communicate, share information, and interact with
the world around us. With the increasing number of active users across different
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platforms such as Facebook, Instagram, and Twitter, social media has emerged
as a vast and rich repository of valuable data [4,36]. This data, generated by
billions of users worldwide, holds immense significance and potential for different
fields, including business, marketing, research, and even governance [3]. The
importance of social media data lies in its ability to provide real-time insights into
people’s thoughts, opinions, preferences, and behaviors, enabling organizations
and individuals to make data-driven decisions and gain a deeper understanding
of society at large.

As the influence of social media continues to grow, so does the challenge of
dealing with misinformation and fake news, or more generally, false information
[21]. False information is false or inaccurate information that is disseminated,
either intentionally or unintentionally, leading to confusion, mistrust, and even
harm. Detecting and combating false information has become a critical concern,
and social media platforms play a central role in this process. For this rea-
son, in recent years more and more researchers and companies are increasingly
analyzing this phenomenon, trying to provide new solutions for detecting and
mitigating the spread of false information. In this field of research, online dis-
cussions on COVID-19 represent one of the main case studies for analyzing and
proposing solutions aimed at mitigating the dissemination of false information
[35]. False information encompasses a wide range of topics, including vaccine
efficacy and safety issues, conspiracy theories on 5G network connection, false
claims on the origins of the virus, and many others, that have the potential to
spread rapidly and undermine public trust in vaccination efforts. The impact of
these falsehoods extends beyond the realm of social media, as they can influence
individual decision-making regarding vaccine acceptance and ultimately affect
public health outcomes.

In this paper we focus on analyzing the online conversation on Twitter to
identify and unmask false information related to COVID-19, interpreting it from
a topical viewpoint. To address this challenge, we exploited a semi-supervised
approach that combines false information detection with a neural topic modeling
algorithm. Our approach is divided into three main phases. Firstly, we exploit
a small amount of labeled data to fine-tune a BERT-based false information
detection model. Therefore, transfer learning is used to tailor the model to rec-
ognize false information in social media tweets about COVID, by adapting its
pre-trained features. Subsequently, a neural topic modeling algorithm, namely
BERTopic, is used to extract the main topic underlying Twitter discourse related
to COVID-19, starting from a large set of unlabeled data. Lastly, we utilize the
fine-tuned BERT-based classifier to determine the presence of false information
for the different unlabeled posts, organized in a topic-based clustering structure
through BERTopic. This process provides detailed information about the nature
and extent of false information in the analyzed data, allowing us to quantita-
tively assess the presence of false information in the main topics discussed by
users.
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In contrast to state-of-the-art approaches that handle the false information
problem within the large and comprehensive scope of COVID-19 discussions as
a single entity [10,25,33], our approach allows for more fine-grained analysis, by
taking a topical perspective. Specifically, our approach enables us to examine
the impact of false information on specific topics generated during discussions.
Consequently, we gain a deeper understanding of how false information influences
and shapes discussions surrounding particular topics within the broader context
of COVID-19. Our findings highlight the importance of leveraging social media
platforms as valuable sources of information while addressing the challenges
posed by false information. Furthermore, by employing a combination of false
information detection and topic modeling, our work can contribute to mitigating
the impact of false information in online communities.

The structure of the paper is as follows. Section 2 discusses related work in
the fields of false information detection and topic modeling. Section 3 describes
the devised approach. Section 4 discusses the achieved results. Finally, Sect. 5
concludes the paper.

2 Related Work

Social media plays a crucial role in information extraction and staying updated
on current trends and discussions. However, the reliability of news circulating
on social platforms is often questionable and susceptible to various biases. Con-
sequently, we adopt an approach that focuses on effectively identifying topics of
discussion while assessing the impact of false information on them, thus char-
acterizing the presence of misleading and false user-generated content from a
topical perspective. Therefore, our approach resides at the intersection of false
information identification and topic detection. We analyze the main techniques
present in the state for both research lines.

2.1 False Information Detection

With the huge amount of user-generated content on social media, assessing the
reliability of online published content has become increasingly difficult in recent
years. This issue derives from the presence of false information, which can come in
different forms. In particular, misinformation refers to false information shared
unintentionally, while disinformation implies the intentional dissemination of
false or misleading information, usually for a specific purpose. Furthermore, the
term fake news is also often used, which is a form of disinformation consisting
of fabricated news aimed at deceiving public opinion.

Among the main works in the literature, addressing the detection of either
misinformation or fake news, several deep learning-based approaches were pro-
posed, leveraging convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) [28,39]. Additionally, natural language processing (NLP) tech-
niques have been increasingly used to detect false information, through the analy-
sis of the linguistic characteristics of news articles or social media posts [15,30]. In
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this context, the most recent works in the literature leverage transformer-based
language representation models such as BERT (Bidirectional Encoder Repre-
sentation from Transformers) [7]. Such models have proven successful in a wide
range of downstream tasks, by demonstrating superior performance in natural
language processing and understanding. Among the main examples in the litera-
ture, FakeBERT [17] combines deep convolutional neural networks with BERT,
while in [19] authors propose a combined approach that jointly leverages BERT
and RNNs. In [16], a BERT-based model for fake news detection is presented,
which relies on the contextual relationship between the headline and the body
text of news. Furthermore, besides assessing the fake content of online news,
Transformer-based architectures were also employed for fact-checking and for
providing explanations. In particular, in [38] authors proposed a two-stage fake
news detection system, that can both estimate the reliability of COVID-19-
related claims and provide users with pertinent information about them, in the
form of a textual explanation.

2.2 Topic Detection

In recent years topic modeling has emerged as a powerful technique for uncover-
ing latent trends and topics and extracting valuable insights from large text cor-
pora. A wide range of topic modeling techniques have been developed, effectively
applicable to a wide range of domains, such as information retrieval, document
clustering, and trend detection. Among the first introduced techniques Latent
Semantic Analysis (LSA) [6] uses the Singular Value Decomposition (SVD) to
compute a low-rank approximation of a document term matrix (DTM) repre-
senting the corpus. LSA is simple and efficient, but it assumes a probabilistic
generative model where words and documents are Gaussian distributed, which
may not align with reality. To address this issue Probabilistic LSA (pLSA) was
introduced, which relies on a multinomial generative model [14]. Another method
is non-negative matrix factorization (NMF), it is similar to SVD but the decom-
position must lead to non-negative values [23]. Latent Dirichlet Allocation (LDA)
relies on the concept of mixtures of distributions to model documents as a mix-
ture of latent topics, each of which constitutes a mixture of terms from the
corpus vocabulary [18]. Among the main variants of LDA, in [1] a fuzzy ver-
sion is proposed that relies on the concept of fuzzy Bag-of-Words. This fuzzy
representation maps each document to a vector of keywords, where each key-
word is assigned to every document with a certain membership degree. This
allows for a more nuanced representation of the connections between terms and
topics, accommodating the inherent ambiguity of the analyzed corpus. Another
variant of LDA, which follows a deep learning approach, is LDA2Vec [27]. It
mixes LDA with Word2Vec [26] by learning topic representations and latent
vector representations of words simultaneously. This is achieved by modifying
the standard Skip-gram model, integrating into the pivot word learnable topical
information. Most recent topic modeling techniques, falling into the neural-based
category, harness the power of pre-trained transformer-based Large Language
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Models (pLLMs) to achieve meaningful semantically-rich sentence representa-
tions. Among them, Top2Vec [2] relies on Doc2Vec [22], while BERTopic [12] uses
Sentence-BERT [31], based on siamese network architecture. Both approaches
rely on the clustering of sentence-level representations projected into a low-
dimensional space. Dimensionality reduction is performed using Uniform Mani-
fold Approximation Projection (UMAP), while the HDBSCAN algorithm is used
for clustering. Finally, topic representations are extracted from the topic-based
clustering structure by selecting the nearest neighbors of the cluster centroid,
in the case of Top2VEc, and by applying a class-based tf-idf, in the case of
BERTopic.

3 Proposed Approach

This work focuses on the analysis of user-generated content on Twitter to iden-
tify and investigate false information related to COVID-19. For this purpose, we
devised a semi-supervised approach that leverages a combination of false infor-
mation detection and topic modeling, to achieve a topic-oriented representation
of false information. Specifically, a BERT classifier is fine-tuned on a small set
of annotated data, to make it able to identify false information present in a
given post. Then, unlabeled data are used to unveil the main COVID-related
topics of discussion underlying social media conversation. Specifically, this step
relies on BERTopic, one of the most used neural topic modeling methods in the
literature, which leverages semantically-rich sentence representations achieved
through pre-trained LLMs. Finally, a false information score is computed for
each topic identified by BERTopic, through the use of the fine-tuned false infor-
mation detection model. This process allows for a topic-oriented quantification
of the impact of false information on Twitter conversations about COVID-19.
Hence, by following this approach, we can highlight the main discussion topics
that are most affected by false information, from a quantitative viewpoint, while
also finding concrete examples of misinformed user-generated content related to
these topics. In the following, we provide a detailed description of the main steps
of our approach, whose execution flow is depicted in Fig. 1.

3.1 Fine-Tuning of the False Information Detection Model

In this step, a BERT model is fine-tuned for the false information detection task.
Specifically, starting from a small set of labeled posts, we train a binary classi-
fier to detect false information using a transfer learning approach. Indeed, Large
Language Models (LLMs) like BERT have proven successful in a wide range
of downstream tasks, through the adaptation of pre-trained features to spe-
cific purposes. Besides BERT, other optimized variants exist, each introducing
improvements in both the architecture and the pre-training phase. Due to this,
we tested several BERT-like models, including BERT, ALBERT, BERTWEET,
DISTILBERT, and ROBERTA, to find out the best trade-off between classifi-
cation accuracy and training/inference times. The BERT model as well as the
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Fig. 1. Execution flow of the proposed approach.

evaluated variants was fine-tuned for detecting false information in social media
posts. Specifically, during this step, pre-trained weights are slightly adapted to
the binary downstream task under consideration, by using a binary cross-entropy
loss, the ADAM optimization algorithm, and a small learning rate, which is cru-
cial to correctly transfer knowledge from BERT by avoiding pre-trained weights
to be distorted by large weight updates.

3.2 Topic Detection

In this step, starting from a large set of unlabeled posts, we use topic model-
ing to extract the main discussion topics underlying social media conversation.
To this purpose, we leveraged BERTopic, a neural topic modeling technique
that relies on Transformer-based pLLMs to generate semantically-rich vector
representations of the sentences in a corpus. As recently demonstrated in the
literature, the use of neural approaches like BERTopic for topic modeling leads
to superior performance in terms of coherence and diversity [9,11,12]. In par-
ticular, in BERTopic Sentence-BERT is utilized for sentence embedding, which
uses siamese neural network structures to generate semantically meaningful and
comparable sentence representations. Then, such representations are projected
in a low-dimensional space using UMAP (Uniform Manifold Approximation and
Projection), and clustered into semantically-related groups via HDBSCAN. Fol-
lowing this approach, BERTopic can identify a topic-based clustering structure
from which topic representations are computed, one for each cluster, using a
class-based version of tf-idf.

3.3 Topic Annotation

Our approach adopts a topic-oriented perspective to thoroughly analyze the
impact of false information within social media conversations. Therefore, in this
step, we identify the discussion topics that are most affected by false information
and quantify the extent of false information prevalent within them.
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Specifically, the false information detection model fine-tuned previously is
used to determine a false information probability for each unlabeled sentence.
Thus, given a cluster, i.e., a topic, a false information score S(c) associated with
that topic is computed as follows.

S(c) =

∑

s∈c
pcs · pfis
∑

s∈c
pcs

, where c ∈ C (1)

In the above formula, pcs indicates the degree of membership of sentence s to the
cluster c, while pfis is the sigmoid output of BERT, which specifies a soft-label
for the sentence s measuring its degree of false information. Therefore, the false
information score S(c) for cluster c is determined as the average false information
of the sentence contained in that cluster, weighted on the probability of those
sentences.

4 Experimental Results

The COVID-19 pandemic has not only had a profound impact on society but has
also led to the widespread dissemination of false information on social media,
resulting in increased vaccine hesitancy and the proliferation of conspiracy the-
ories. Therefore, as stated in Sect. 1, the goal of this work is to detect the main
false information present in COVID-related discussions, characterizing it from a
topical perspective. To this purpose, we applied our approach to the ANTi-Vax
dataset [13], composed of tweets from December 1, 2020, until July 31, 2021
related to the COVID-19 (SARS-CoV-2) pandemic. The dataset consists of a
small portion of labeled data (about 15K) and a large set of unlabeled data
(about 15M). Labeled data was manually annotated and validated by health
medical experts, into two classes: false information for all those tweets that
contain common myths and misinformation (e.g., the vaccine contains track-
ing device), or reliable content. It must be noted that all sarcastic and humorous
tweets have not been included as false information. Among all unlabeled data, we
focused on posts generated in the month of January 2021, encompassing 303,541
tweets. In the following, the experimental results we achieved will be comprehen-
sively discussed, focusing on: (i) the choice of the best-suited transformer-based
model to be fine-tuned for the false information detection task; (ii) the main
identified topics that drove COVID-related discourse on Twitter; (iii) the anal-
ysis of COVID-related false information from a topical perspective.

4.1 Model Selection for False Information Detection

Among the main alternative models that can be effectively used for the binary
task of false information detection, describe in detail in Sect. 2.1, we choose to
follow a transfer-learning approach, by fine-tuning a BERT-based classifier on
our downstream task. To select the most suitable model for our purposes, we
conducted a comparative analysis of the following models.
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– BERT: it is a pre-trained language representation model based on the trans-
former architecture [7].

– ALBERT: it is a lightweight variant of BERT. It introduces some improve-
ments such as factorized embedding parameterization, and inter-sentence
coherence loss, by replacing the Next Sentence Prediction with the Sentence
order prediction task during pre-training [20].

– BERTWEET: it is a Twitter-specific variant of BERT, trained on Twitter
text data. It manages unique Twitter features such as hashtags, mentions,
URLs, and emojis [29].

– DISTILBERT: it is a distilled version of BERT, with about 40% fewer
parameters. This reduction in size, achieved through a knowledge distillation
approach, allows for faster training, making the model less resource-intensive
[34].

– ROBERTA: it is an improved version of BERT, which removes the Next
Sentence Prediction (NSP) task from the pre-training phase and introduces
dynamic masking to vary the masked tokens during language modeling [24].

The performance evaluation of the different BERT-like models (i.e., BERT,
ALBERT, BERTWEET, DISTILBERT, ROBERTA) was conducted on a held-
out test set, encompassing 3000 samples, considering four metrics: score loss,
AUC (Area Under the Curve), binary accuracy, and training time (measured in
seconds per epoch). Figure 2 shows the scores obtained from different models for
each considered metric.

(a) Loss. (b) AUC.

(c) Binary Accuracy. (d) Seconds for epoch.

Fig. 2. BERT-based model comparison for false information detection.
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Figure 2(a) shows the loss values achieved by each model, computed with
a binary cross-entropy. Models such as BERT, DISTILBERT, and ROBERTA
demonstrate lower loss values, indicating a better fit to the test data. Figure 2(b)
and Fig. 2(d) display the Area Under the Curve (AUC) values and the binary
accuracy for each model, which measure the model’s ability to correctly dis-
tinguish between negative and positive classes. Also in this case, we observe
that BERT, DISTILBERT, and ROBERTA exhibit the highest values. Finally,
Fig. 2(c) shows the time required by each model to complete an epoch dur-
ing training. The DISTILBERT model stands out as the fastest among the
compared models, showcasing its capability for fast and efficient training. All
achieved results are summarized in Table 1, showing the average values obtained
from multiple experiments, which exhibit a negligible variance. Summing up,
what emerges from our evaluation is that the DISTILBERT model achieves the
best trade-off between accuracy and training time. Consequently, we utilized the
DISTILBERT model as the reference model for false information classification
throughout all the subsequent experiments.

Table 1. BERT-based model comparison for false information detection.

Model Version Loss AUC Binary
accuracy

Seconds per
epoch

BERT bert-base-uncased 0.050 0,998 0.982 215

ALBERT albert-base-v2 0.066 0.994 0.980 195

BERTWEET bertweet-base 0.131 0.988 0.957 230

DISTILBERT distilbert-base-uncased 0.052 0.997 0.986 146

ROBERTA roberta-base 0.047 0.997 0.983 210

4.2 COVID-Related Detected Topics

The topic detection phase, as described in Sect. 3.2, relies on BERTopic, which
has proven effective in identifying discussion topics in social media data [11,
12]. In our experiments, the application of BERTopic led to the identification
of several topics that shaped the COVID-related discussion on Twitter. These
topics will be used in the final step, to characterize the identified false information
from a topical perspective.

Among the main identified topics, within the broader topic of COVID vac-
cines we found the discussion about the efforts and strategies of the US pres-
ident Joe Biden and the former UK prime minister B. Johnson. Additionally,
the online conversation focused on specific vaccines such as the Pfizer vaccine
and Johnson & Johnson, discussing their effectiveness and side effects, such as
allergic reactions and the risks related to pregnancy and breastfeeding. The Twit-
ter discourse was also centered on the European Union’s approach to managing
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the pandemic and anti-contagion rules such as mask wearing and lockdown, also
debating the effects on major sporting events like the Olympic Games and NBA.
Furthermore, users discussed the long-term effects of COVID, especially on older
individuals, and other conspiracy theories about the presence of microchip inside
vaccines. Other identified topics include Dr. A. Fauci, vaccine passports, the
impact of COVID-19 in Florida, school-related issues, and the challenges faced
by workers and employers.

To evaluate the identified topics we used Topic coherence and diversity.
Coherence measures how closely related and meaningful are the words within
a topic, thus giving an estimate of how well they express a specific theme or
concept. Among the main coherence metrics, we used CV [32] and Normalized
Pointwise Mutual Information (NPMI) [5], achieving a value of 0.51 and 0.09
respectively. Differently, topic diversity assesses how different and unrelated the
topics are from each other, which is necessary to comprehensively represent the
corpus. We used the Percentage of Unique Words (PUW) [8] and the average
pairwise Jaccard Distance (JD) [37], achieving a value of 0.97 and 0.99 respec-
tively. Similarly to the experimental evaluation present in [12], we computed each
metric by averaging across 10 different runs. In addition, for each run, metrics
are averaged by varying the number of topics from 10 to 50, with steps of 10.

4.3 Topic-Oriented False Information Detected in COVID
Discussions

In contrast to state-of-the-art approaches that treat the false information prob-
lem within the large and comprehensive scope of COVID-19 discussions as a
single entity, our approach allows for more granular analysis. Specifically, our
approach enables us to examine the impact of false information on the Twitter
discourse from a topical perspective. Figure 3 shows the discussion topics ordered
according to the level of false information present in them. Specifically, for each
topic, we computed a false information score, i.e., S(c) as defined in Sect. 3.3,
which quantifies the extent of false information present in it.

From Fig. 3 it can be observed that there is a varying range of false informa-
tion levels across the different topics. In the following we report three of these
topics, characterized by the minimum, maximum, and median value of false
information, according to the distribution of the S(c) score.

– Olympic games and NBA: this topic refers to the Tokyo Olympics, held in
Japan, and specifically to Olympic athletes and NBA basketball players.

– Dr. A. Fauci : this topic refers to Dr. Anthony Fauci, a renowned infec-
tious disease expert in the United States, addressing conspiracy theories and
spreading scientific information about vaccinations.

– Allergic reactions: this topic refers to severe side effects and physical symp-
toms that may occur after receiving a vaccine injection.

For each of the highlighted topics, we also show the distribution of the out-
put achieved by the fine-tuned DistilBERT classifier. This model, as described
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Fig. 3. False information score for each identified topic.

in Sect. 3, computes a probability value, i.e. pfis , indicating how likely it is that
a given content is false information. Therefore, given a sentence s a value of pfis
close to 0 indicates a low probability that this sentence contains false informa-
tion, while values close to 1 represent the opposite case. The achieved results,
shown in Fig. 4, are in line with the false information scores computed previ-
ously. In particular, Fig. 4(a) referred to the Olympic Games and NBA, shows a
distribution whose values are predominantly concentrated toward 0, indicating a
higher prevalence of non-false information predictions. A similar unimodal distri-
bution is achieved in Fig. 4(b), related to the topic of Dr. A. Fauci. Differently,
by observing Fig. 4(c), related to the topic with the highest false information
score (i.e., allergic reactions), a bimodal distribution clearly emerges, indicat-
ing a non-negligible presence of predictions very close to 1. This translates into
a greater presence of user-generated content identified by DistilBERT as false
information, mainly related to untested hypotheses about serious health side
effects caused by vaccines.

(a) Olympic games and NBA. (b) Dr. A.Fauci. (c) Allergic reactions.

Fig. 4. Examples of distribution pfis of topics with low, medium and high levels of false
information score.
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As a final analysis, we focused on the top-3 topics with the highest misinfor-
mation score:

– Allergic reactions, already described above. False information score: 0.35.
– Microchip vaccine: the topic refers to conspiracy theories regarding the pres-

ence of microchips in vaccines. False information score: 0.25.
– Lockdown: the topic refers to lockdown measures imposed during the COVID-

19 pandemic. False information score: 0.24.

For enriching the description of these topics, Fig. 5 presents the word clouds
referring to them, which allows for highlighting their main keywords and con-
cepts in a graphical manner. Among the most significant words we found: (i)
allergic reaction, vaccine, severe allergic, modern, and anaphylaxis for the aller-
gic reaction topic; (ii) microchip, vaccine, 5g, and track for the microchip topic;
(iii) lockdown, vaccine, government, and restriction for the lockdown topic.

(a) Lockdown. (b) Microchip vaccine. (c) Allergic reactions.

Fig. 5. Word cloud representations of the top-3 topics per false information.

For the sake of completeness, in Table 2 we report an example of detected
false information, for each of the three topics. For each example, we indicate the
related topic, the text of the tweet, the false information probability given by
DistilBERT (pfis ), and the degree of membership to the assigned cluster (pcs).

Table 2. Example tweets, identified as false information, for each of the top-3 topics
per false information score.

Topic Example of tweets pfis pcs

Lockdown Gee it’s almost like lockdowns are not so
much about a virus but are part of a
deliberate global financial and social
destruction reorganization strategy

0.96 0.99

Microchip vaccine The new vaccine is going to be a tracking
device that emits 5g into your brain!!!

0.98 1.00

Allergic reactions The vaccine leads to serious allergic crises
maybe it’s better not to get vaccinated you
risk your life less

0.98 0.98
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The reported tweets express (i) skepticism and concerns about lockdown
measures and COVID-19 vaccines; (ii) conspiracy theories, including the belief
that vaccines emit harmful 5g waves and contain surveillance microchips; (iii)
serious side effects of vaccines and no-vax instigations.

5 Conclusion

Social media has revolutionized the way we communicate and share informa-
tion, providing valuable data with high potential for many fields of application.
However, alongside these benefits, there has been an alarming surge in the pro-
liferation of false information and fake news, necessitating urgent measures to
mitigate their impact.

This paper focuses on the analysis of Twitter conversations to uncover and
address false information pertaining to COVID-19. Employing a semi-supervised
strategy and harnessing the capabilities of a BERT-based classifier, the study
effectively identifies and annotates different topics present in online conversa-
tions, while evaluating the extent of false information associated with each topic.
These encompass allergic reactions, microchips in vaccines, 5G conspiracy theo-
ries, and the impact of lockdown measures.

In contrast to state-of-the-art approaches that treat the false information
problem within the large and comprehensive scope of COVID-19 discussions
as a single entity, our approach allows for a finer-grained analysis, enabling us
to examine the impact of false information on specific topics generated during
discussions. Through the employment of transfer learning for false information
detection and neural topic modeling, our work not only aids in identifying spe-
cific instances of false information but also provides insights into the underlying
factors and dynamics contributing to its spread. This understanding is crucial
for developing targeted interventions and strategies that effectively combat the
dissemination of false information, ultimately strengthening the reliability and
trustworthiness of information shared on social media platforms.
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T., Kashyap, R. (eds.) ICACDS 2019. CCIS, vol. 1046, pp. 577–587. Springer,
Singapore (2019). https://doi.org/10.1007/978-981-13-9942-8 54

2. Angelov, D.: Top2vec: distributed representations of topics. arXiv preprint
arXiv:2008.09470 (2020)

3. Belcastro, L., Cantini, R., Marozzo, F.: Knowledge discovery from large amounts
of social media data. Appl. Sci. 12(3) (2022)

https://doi.org/10.1007/978-981-13-9942-8_54
http://arxiv.org/abs/2008.09470


Unmasking COVID-19 False Information on Twitter 139

4. Belcastro, L., Cantini, R., Marozzo, F., Talia, D., Trunfio, P.: Learning political
polarization on social media using neural networks. IEEE Access 8, 47177–47187
(2020)

5. Bouma, G.: Normalized (pointwise) mutual information in collocation extraction.
Proc. GSCL 30, 31–40 (2009)

6. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

8. Dieng, A.B., Ruiz, F.J., Blei, D.M.: Topic modeling in embedding spaces. Trans.
Assoc. Comput. Linguist. 8, 439–453 (2020)

9. Egger, R., Yu, J.: A topic modeling comparison between LDA, NMF, Top2Vec,
and BERTopic to demystify Twitter posts. Front. Sociol. 7 (2022)

10. Enders, A.M., Uscinski, J.E., Klofstad, C., Stoler, J.: The different forms of Covid-
19 misinformation and their consequences. Harvard Kennedy School Misinforma-
tion Review (2020)

11. Gabarron, E., Dorronzoro, E., Reichenpfader, D., Denecke, K.: What do autistic
people discuss on Twitter? An approach using BERTopic modelling (2023)

12. Grootendorst, M.: BERTopic: neural topic modeling with a class-based TF-IDF
procedure. arXiv preprint arXiv:2203.05794 (2022)

13. Hayawi, K., Shahriar, S., Serhani, M.A., Taleb, I., Mathew, S.S.: ANTi-Vax: a novel
Twitter dataset for Covid-19 vaccine misinformation detection. Public Health 203,
23–30 (2022)

14. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 50–57 (1999)

15. Jarrahi, A., Safari, L.: Evaluating the effectiveness of publishers’ features in fake
news detection on social media. Multimed. Tools Appl. 82(2), 2913–2939 (2023)

16. Jwa, H., Oh, D., Park, K., Kang, J.M., Lim, H.: exBAKE: automatic fake news
detection model based on bidirectional encoder representations from transformers
(BERT). Appl. Sci. 9(19), 4062 (2019)

17. Kaliyar, R.K., Goswami, A., Narang, P.: FakeBERT: fake news detection in social
media with a BERT-based deep learning approach. Multimed. Tools Appl. 80(8),
11765–11788 (2021)

18. Korshunova, I., Xiong, H., Fedoryszak, M., Theis, L.: Discriminative topic modeling
with logistic LDA. In: Advances in Neural Information Processing Systems, vol. 32
(2019)
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Abstract. Key-phrase extraction concerns retrieving a small set of
phrases that encapsulate the core concepts of an input textual document.
As in other text mining tasks, current methods often rely on pre-trained
neural language models. Using these models, the state-of-the-art super-
vised systems for key-phrase extraction require large amounts of labelled
data and generalize poorly outside the training domain, while unsuper-
vised approaches generally present a lower accuracy. This paper presents
a multilingual unsupervised approach to key-phrase extraction, improv-
ing upon previous methods in several ways (e.g., using representations
from pre-trained Transformer models, while supporting the processing
of long documents). Experimental results on datasets covering multiple
languages and domains attest to the quality of the results.

Keywords: Key-phrase extraction · Multilingual text processing ·
Transformers

1 Introduction

Key-Phrase Extraction (KPE) can be defined as the task of retrieving a small
set of phrases from a given textual document, to best describe its main concepts.
The task is useful in the context of discovery science and, similarly to other text
mining tasks, recent methods involve the use of text representations produced
through neural network models.

Supervised approaches for KPE require quantity and quality of in-
domain annotated data, motivating work on transfer learning [18,42], weakly-
supervised [40], or unsupervised [5,12,36,38,44] methods, that do not require
the usage of expensive annotations nor extensive training procedures to obtain
strong results. For instance, EmbedRank [5] was created as a simple, yet very
effective, unsupervised KPE method that can be broken down into three main
steps: (1) candidate phrase extraction using patterns over parts-of-speech (POS)
tags, selecting phrases with zero or more adjectives followed by one or more
nouns; (2) using Sent2Vec1 or Doc2Vec2 sentence embeddings to represent both
1 https://github.com/epfml/sent2vec.
2 https://github.com/jhlau/doc2vec.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bifet et al. (Eds.): DS 2023, LNAI 14276, pp. 141–155, 2023.
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the candidate phrases and the analyzed document; (3) ranking candidate phrases
using the cosine similarity measure between representations for each candidate
phrase and the document. Results showed that despite its simplicity, EmbedRank
could outperform previous unsupervised methods for KPE, mostly based on
graph-ranking approaches [13,23].

SIFRank [38] shares the same methodology of EmbedRank for extracting
and ranking candidate phrases, but changes how the candidate phrases and the
document are embedded. The ELMo [27] pre-trained language model, based on a
deep recurrent neural network, is used to create the embeddings, and instead of
directly comparing embeddings SIFRank uses a word weight balancing operation
based on contextual information, which compares the domain corpus of the input
document and a baseline common corpus, seeking to adapt the model to the
specific domain at hand.

Both EmbedRank and SIFRank rely on the assumption that the similarity
between a candidate phrase and a document is a good measure of how relevant
that candidate phrase is. MDERank [44] subverts this assumption, testing the
hypothesis that a relevant candidate phrase maximizes the difference in a docu-
ment when it is absent. To do so, MDERank ranks candidate phrases by replacing
their occurrences in the document with a special [MASK] token, afterwards repre-
senting the document by embedding it using a Bidirectional Encoder Represen-
tation from Transformers (BERT) pre-trained language model [10]. The cosine
distance towards the original document is measured, and candidate phrases hav-
ing a higher distance are finally ranked as better.

Despite achieving strong empirical results, there are also limitations in pre-
vious unsupervised methods. For instance most previous studies focused their
evaluation only on the English language, while it would be interesting to see
if similar approaches can also generalize across languages. Problems also arise
when considering large documents, as pre-trained language models often strug-
gle to process long input sequences (e.g., the base BERT model has a 512 token
limit).

This paper explores KPE in an unsupervised multilingual scenario, adapt-
ing and re-configuring pre-existing methods (i.e., EmbedRank and MDER-
ank) to work with representations produced with a multilingual Sentence-
Transformers [31] model, at the same time also supporting the processing of long
documents by converting the Sentence-Transformers model into a Long Docu-
ment Transformer (Longformer) [4]. The proposed KPE methods were evaluated
on different domains (i.e., involving texts of different sizes, types, and languages),
and the results show that they offer good generalization and improvements over
previous approaches. The source code supporting the experiments is available
from a public Github repository3.

The rest of the paper is organized as follows: Sect. 2 details the proposed
approaches, while Sect. 3 presents the experimental evaluation methodology and
the obtained results. Section 4 summarizes our contributions and discusses pos-
sibilities for future work.

3 https://github.com/araag2/KP_Extraction.

https://github.com/araag2/KP_Extraction
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Fig. 1. The bi-encoder architecture for assessing similarity between two textual inputs.

2 The Proposed Approaches

Given a text document d belonging to a dataset D, we seek to extract a set C of
candidate phrases c that contains as many relevant key-phrases as possible, for
describing the contents of d. After extracting C, our second goal is to rank the
top-k candidates within that set.

The first task is addressed using models from the spaCy4 library, accord-
ing to the language of the documents within dataset D, to tokenize and perform
parts-of-speech tagging of each document d. A regular expression over sequences
of universal parts-of-speech tags (<PROPN|NOUN|ADJ>*<PROPN|NOUN>+<ADJ>*) is
used as a heuristic method to extract candidate phrases, relying only on a simple,
although coarse, parts-of-speech tagset that is common to different languages [28].
We also perform lemmatization to join candidates with slight differences into a
single representation, through the simplemma5 library which offers complete
multilingual options. We keep a mapping between each possible form and the
corresponding lemmatized candidates, so that matches in the text can be aggre-
gated into the lemmatized versions.

On what regards the ranking task, we first need to find suitable representa-
tions for the documents and the candidate phrases, adhering to some constraints:
computational efficiency to perform multiple comparisons between documents
and candidate phrases, support for multilingual textual contents, and adequate
handling of potentially large documents.

2.1 Text Representations from a Longformer Model Built
from a Multilingual Sentence-Transformer

Transformer encoder models like BERT [10] and RoBERTa [21] can produce effec-
tive text representations, but they are also computationally demanding. They
can be used as cross-encoders to assess the similarity between a pair of input
texts (i.e., processing the concatenation of both texts, and directly outputting
a similarity score), but a more efficient approach is to instead consider a bi-
encoder setting, in which the texts to be compared are modeled separately, and
then a similarity score is computed over aggregates (e.g., token averages) from

4 https://spacy.io/models/.
5 https://github.com/adbar/simplemma/.

https://spacy.io/models/
https://github.com/adbar/simplemma/
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Fig. 2. Regular self-attention versus the attention patterns in a Longformer model.

the resulting representations – see Fig. 1. Moreover, these models also struggle
when processing long documents, due to the quadratic complexity associated
to the self-attention mechanism computed over all pairs of positions from input
sequences. Approaches such as the Longformer [4] or BigBird [43] address this
limitation, slightly changing the self-attention operations in order to limit how
the different positions interact – see the illustration on Fig. 2.

In our Key-Phrase Extraction (KPE) methods, we use text representa-
tions obtained with a multi-lingual model based on RoBERTa, adapted from
a model available from the Sentence-Transformers library6 and pre-trained as
a bi-encoder for assessing multilingual sentence similarity [31]. The RoBERTa-
based model was adapted into a Longformer without any additional training,
extending the input sequence limit to 4096 tokens (i.e., initializing the additional
position embeddings by copying and interpolating from the embeddings of the
first positions) and changing the implementation of the self-attention operations
within the different layers, while keeping the pre-trained model parameters.

In brief, Sentence-Transformers bi-encoders process strings independently
through the same Transformer encoder, followed by mean pooling aggregation
to create fixed-sized sentence embeddings. These models are trained either to
directly predict sentence similarity scores as given in training data correspond-
ing to annotated sentence pairs, or to predict similarity relations between sen-
tences (e.g., given an anchor sentence a, a positive sentence p with high similarity
towards a, and a negative sentence n, we can consider a loss function that tunes
the network such that the distance between a and p is smaller than the distance
between a and n). We specifically started from the Sentence-Transformers model
named paraphrase-multilingual-mpnet-base-v2, i.e. a pre-existing model
built from a multi-lingual RoBERTa and trained to mimic the results of another
mono-ligual Sentence-Transformers bi-encoder, through a knowledge distillation
objective [32]. This model was then adapted through the procedure described in
the Longformer paper to build a Long Document Transformer starting from a
RoBERTa checkpoint [4].

As can be seen in Fig. 2, three attention patterns can be combined within
the Longformer architecture: sliding window, focusing on the local context and
examining a fixed-size window w around each token; dilated sliding window,
which adds a gap of size d between each token considered in the sliding window,

6 https://www.sbert.net/.

https://www.sbert.net/
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with d varying across layers and attention heads; and global attention, in which
some specific input locations (e.g., the initial [CLS] token) will attend to (and
be attended by) all other tokens.

Our Longformer model employs a sliding window attention with window size
of 512 tokens, thus involving approximately the same amount of computation
as a standard RoBERTa, and also behaving like RoBERTa when the input has
fewer than 512 tokens. One additional attention pattern was also considered, in
which the specific positions corresponding to tokens associated to the occurrences
of the key-phrase candidates were also considered for global attention, when
representing candidates or documents.

In the remaining parts of this paper, we refer to the proposed text represen-
tation model as the Multilingual Sentence-Longformer (MSL). Using the word
representations from MSL, we built different approaches to address the candidate
ranking problem for KPE.

2.2 LMEmbedRank

Longformer Multilingual EmbedRank (LMEmbedRank) corresponds to an adap-
tation of EmbedRank [5] that represents documents through MSL embeddings,
and candidate phrases as the average of all MSL token embeddings that form
the multiple occurrences of the candidate (first averaging the token representa-
tions from each occurrence, and then averaging across occurrences). As seen in
Fig. 3, where colored words represent the tokens that are considered, LMEm-
bendRank averages all token representations in order to create the embedding
representation of a document, whilst to embed a candidate phrase (e.g., core
concepts) it performs an average pooling operation over all tokens that form
each occurrence over the document, and then averages over all occurrences. For
candidates that only occur after the first 4096 tokens (i.e., the Longformer limit
for input sequences), we still manage to generate a representation with a back-
off procedure that processes the candidate string alone, without any additional
contextual information.

Following the standard EmbedRank procedure, we use the cosine measure
to rank candidate phrases according to the similarity of their representations
towards the document representation, in descending order of similarity.

2.3 LMMaskRank

Longformer Multilingual MaskRank (LMMaskRank) corresponds to an adaption
of MDERank [44] that also represents documents and candidate phrases through
MSL embeddings. As can be seen again in Fig. 3, where colored words represent
the considered tokens, in order to create the embedding representation of a
document LMMaskRank uses the same mechanism as LMEmbedRank, whilst to
embed a candidate phrase (e.g., core concepts) the method starts by replacing all
of the candidate occurrences by the [MASK] token, and then embeds the entirety
of the document. As described in the original paper, candidate phrases are then
ranked using the cosine distance measure, in descending order of distance (i.e.,
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Fig. 3. Overview on how LMEmbedRank and LMMaskRank represent the candidate
key-phrase corresponding to core concepts.

candidate representations that are further away from the representation of the
input document are preferred).

It is interesting to note that the most computationally expensive opera-
tion, in both the LMEmbedRank and LMMaskRank methods, corresponds to
obtaining the MSL embeddings (i.e., one forward pass over the Longformer
model). LMMaskRank is thus much more demanding, given that LMEmbedRank
only needs to compute MSL embeddings once for each input document, while
LMMaskRank needs a separate computation for each candidate (i.e., replacing
the candidate occurrences with [MASK] tokens, before computing the correspond-
ing text representations through a forward pass).

2.4 Combining Both Ranking Approaches

Longformer Multilingual Rank (LMRank) corresponds to a hybrid approach that
uses weighted averages of scores obtained by both previous methods, based on the
hypothesis that each method would be better suited to handle different types of
textual documents, and thus together they could probably perform better. This
general approach can be implemented through different combination schemes,
and we tested both the arithmetic and harmonic averages of LMEmbedRank
and LMMaskRank scores.

3 Experimental Evaluation

This section starts by introducing the datasets that were used in the exper-
iments, together with the considered evaluation metrics. It then follows with
an overview on the experimental results across all datasets. We also provide a
comparison with previous methods, as well as against ablated versions of the
proposed approaches.
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Table 1. Statistics for the considered datasets.

Dataset Language Average Candidate Absent Average #Docs.
#KPs Recall KPs #Words

DUC EN 8 87.2% 6.8% 740 308
NUS EN 11 88.2% 4.3% 5201 209
Inspec EN 10 58.7% 35.6% 128 2000
SemEval EN 16 95.0% 3.2% 8332 243
PubMed EN 15 80.2% 15.8% 3992 1320
PT-KP PT 24 53.6% 5.2% 304 110
CACIC ES 5 72.3% 7.3% 3985 888
WICC ES 5 74.3% 5.9% 1955 1640
FR-WIKI FR 12 79.1% 4.4% 293 100
TeKET DE 5 93.5% 0.0% 11524 10

3.1 Metrics and Datasets

To evaluate the performance of our models in different languages and domains,
we relied on a wide variety of datasets used in previous unsupervised key-
phrase extraction studies: five English datasets, namely NUS [25], DUC-2001 [39],
Inspec [15], SemEval [19] and PubMed [3]; an European Portuguese dataset
named 110-PT-BN-KP (PT-KP) [22]; two Spanish datasets, namely CACIC
and WICC [2]; a French dataset named WikiNews (FR-WIKI) [7]; and a Ger-
man dataset (TeKET) [29]. Basic statistical information about each dataset is
presented in Table 1, and the reader can refer to the original publications, intro-
ducing each of the datasets, for additional details.

The candidate-phrase extraction component was initially evaluated in terms
of recall, by comparing our extractions with the ground truth key-phrases of each
document. Notice that without a high recall it will be impossible to accurately
rank the key-phrase candidates so as to recover the ground truth, as the correct
key-phrases will not be available to be ranked.

It is interesting to note that there exists an upper bound on the possible recall
value, as the candidate extraction method is unable to find correct key-phrases
that do not appear within the input text documents (although the lematization
operation does help in this regard). The candidate extraction recall, for each
dataset, is also shown in Table 1, together with the percentage of ground-truth
key-phrases that do not occur in the text.

Overall, we can see that the proposed candidate extraction method is able to
correctly find a large percentage of the ground-truth key-phrases in the majority
of the datasets, with exceptions for Inspec (where we also have a very large
number of absent key-phrases from the textual contents of the documents) and
PT-KP. In this latter case, our regular expression pattern was unable to find
many of the ground-truth key-phrases, which do not always correspond to a
noun phrase in the input text.
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Using the set of extracted candidates, we can then evaluate the ranking of
the candidates in terms of its ability to place relevant key-phrases in the top
positions. The candidate rankings are handled as an ordered list, and a specific
cut-off point k can then be defined, comparing the top k ranked candidates with
the ground-truth key-phrases. The performance on the ranking task is measured
with the F1-score (F1,k) metric, at the cut-off points k = {5, 10, 15}. Additionally,
we also use the Normalized Discounted Cumulative Gain (nDCG) metric over
the complete ranked list of candidate key-phrases.

Following most previous studies in the area, both the extracted and the
ground-truth key-phrases are processed through a stemming algorithm, prior to
performing comparisons for ranking evaluation.

3.2 Experimental Results over the Different Datasets

Table 2 presents experimental results over the multiple datasets, comparing the
alternatives discussed in the previous section. The lines named MRankavga and
LMRankavgh correspond to using an arithmetic or harmonic average of LMEm-
bedRank and LMMaskRank scores, as described in Subsect. 2.4.

Although the different evaluation metrics mostly agree on how the methods
should be ranked according to result quality, different methods can perform
slightly better on some of the datasets:

– LMEmbedRank, which is also the simpler and computationally more effective
method, performs clearly better than LMMaskRank on the DUC, Inspec, and
CACIC datasets.

– In turn, LMMaskRank clearly performs better than LMEmbedRank on the
Pubmed, PT-KP, WICC, FR-WIKI, and TeKET datasets.

– Datasets like NUS, SemEval, PubMed, and particularly TeKET, feature very
long documents, going beyond the 4096 token limit in Longformer. In these
cases, LMMaskRank tends to perform better, although the relation between
result quality and the characteristics of the documents (e.g., size, language,
or candidate recall) is not entirely clear. Note that LMMaskRank is biased
towards preferring candidates in the first 4096 tokens, since occurrences
beyond this limit will not impact the representations (i.e., the representa-
tions for these key-phrase candidates are exactly equal to those from the
documents, and hence they will be ranked below the other candidates).

– The combination of both approaches, particularly when considering the har-
monic mean, is beneficial in most cases. In the NUS, SemEval, PubMed,
WICC, and FR-WIKI datasets, the best results are achieved with a com-
bined method. On the other datasets, the combination performs similarly
to the best method, improving over the LMEmbedRank or LMMaskRank
strategies.

3.3 Results for Ablation Experiments

Table 3 presents results for ablated versions of the LMEmbedRank,
LMMaskRank, and LMRankavgh methods, specifically assessing the impact of



Unsupervised Key-Phrase Extraction from Long Documents 149

the different ideas introduced in our proposal. The following alternatives were
tested on 5 of the datasets also seen in Table 2:

– Using the regular Sentence-Transformers model based on a multi-lingual
RoBERTa, instead of converting the model into a Longformer. In the case
of LMEmbedRank, the candidates that occur after the maximum token limit
of the model were also represented with the back-off procedure that processes
the candidate string alone;

– Using a standard English Longformer7, instead of the Sentence-Transformers
model pre-trained only for Masked Language Modeling (MLM). This way, we
can assess the impact of model pre-training with sentence similarity tasks,
noting also that previous studies such as MDERank [44] have only explored
the use of regular Transformer encoders pre-trained for MLM.

– Removing the lemmatization procedure that aggregates similar candidates
appearing in the text with a slightly different surface form;

– Removing the Longformer attention pattern that considers a global attention
for the tokens that correspond to candidate occurrences, instead leaving only
the [CLS] token with the global attention over all other tokens.

The results show that all the four previous aspects, and particularly the
pre-training over sentence similarity tasks (i.e., using an adapted Sentence-
Transformers model) and the conversion of the Sentence-Transformers model
into a Longformer, contribute to improved results. Higher differences in the result
quality are also seen in the case of the datasets involving longer documents.

Besides the aforementioned ablations, we also considered extensions over the
methods in Table 2, leveraging ideas advanced in previous studies. These included
(a) post-processing the document/candidate embeddings prior to computing sim-
ilarities [14,16,33,37], or (b) weighting the individual tokens when computing the
representations within LMEmbedRank, e.g. proportionally to attention scores
produced by the Longformer model [12]. Still, results were consistently worse,
and we decided not to report these scores.

One particular extension that we tested involves weighting the scores of the
LMEmbedRank and LMMaskRank methods prior to their combination, in an
attempt to further improve results. In a first step towards doing this, we started
by analyzing the distribution of the similarity scores between candidate and doc-
ument representations, for the two different methods (i.e., LMEmbedRank and
LMMaskRank) and over the different datsets. Figure 4 illustrates the results
of this analysis, specifically for the DUC, Inspec, NUS, and PT-KP datasets
(similar patterns could be observed also for the other datasets). The results
showed that LMEmbedRank produces similarity scores that are more evenly
spread, whereas LMMaskRank mostly produces results in the interval [0, 0.5].
Both methods also produce two peaks in terms of the distribution for the simi-
larity values, corresponding to a good distinction between the relevant and the
irrelevant candidates (i.e., the top charts in Fig. 4 correspond to the entire sets
of candidates, whereas the bottom charts show only the similarity scores for the
subset of relevant candidates).
7 https://huggingface.co/allenai/longformer-large-4096.

https://huggingface.co/allenai/longformer-large-4096
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With basis on the aforementioned analysis, we then tested a combination
method in which a constant of 0.5 is added to the scores from LMMaskRank
procedure, prior to the combination with LMEmbedRank. The results are shown
in the bottom row from Table 2, although no noticeable improvements were seen.
Overall, the proposed methods have also the interesting property of not involving
many parameters to tune, which is often the case with unsupervised approaches.

3.4 Comparison to Previous Methods

Table 4 compares the best proposed methods, specifically LMEmbedRank (i.e.,
the simplest and fastest method) and LMRankavgh , against the results reported
in publications presenting and using previous methods (including results for the
original EmbedRank [5] and MDERank [44] methods). We present results for
the datasets over which more previous methods have been tested (i.e., mostly
by re-using results presented on previous comparisons [44]), also including some
recent supervised approaches (i.e., the second set of rows in Table 4).

The results in Table 4 show that the proposed approaches are very competi-
tive within the realm of unsupervised KPE, outperforming most previous unsu-
pervised methods in the majority of the considered datasets and often by a very
large margin, while simultaneously being simple, multilingual, and thus easy to
generalize to different types of applications. Notice that the unsupervised meth-
ods considered for the comparison include representatives from different types of
approaches, including simple heuristics based on term-frequency statistics (e.g.,
TF-IDF [17] or YAKE! [8]), approaches based on graph ranking which are also
not limited in the processing of long documents (e.g., TopicRank [7] or Multi-
partite Ranking [6]), and approaches based on neural embeddings [5,38,44].

Notable exceptions correspond to the Inspec and the TeKET datasets. In the
specific case of Inspec, SIFRank [38] outperforms the proposed methods in F110
and F115, while KeyGames [34] (i.e., a recently proposed method that tackles
key-phrase extraction though a game-theoretic framework) performs even better
for all the metrics. This is likely due to the small size of the documents (128
words on average) which offset the advantages of using a Longformer approach.
On TeKET, YAKE! [8] outperforms the proposed approaches also in F110 and
F115, but in this case it is difficult to draw many conclusions because the dataset
only features 10 very long documents (11524 words on average), and hence the
results can be very noisy.

It is also important to notice that the differences towards recent supervised
methods are still very significant. Previous methods such as CDKGen [11], SEG-
NET [1], or SKE-Base-Rank [24] are, usually, still significantly better than the
best unsupervised approaches, although this also varies depending on character-
istics of the datasets (e.g., on Inspec, the best results in terms of F110 and F115
are obtained with unsupervised methods).
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4 Conclusions and Future Work

We proposed new unsupervised methods for key-phrase extraction, extending the
previous EmbedRank [5] and MDERank [44] approaches in different directions.
We tested the proposed approaches over multiple datasets, with results showing
a very competitive performance against state-of-the-art unsupervised methods,
while also generalizing across different languages and domains.

For future work, we can consider other text embedding models8, and other
methods for handling long inputs besides the Longformer (e.g., memory efficient
attention implementations [9,30], or other sparse attention patterns such as those
in the Hypercube Transformer [41]). We would also like to perform experiments
on scenarios that involve multi-document key-phrase extraction [35], this way
further stressing the length of the textual inputs that need to be analyzed.
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Abstract. Explainable AI refers to techniques by which the reasons
underlying decisions taken by intelligent artifacts are single out and pro-
vided to users. Outlier detection is the task of individuating anomalous
objects within a given data population they belong to. In this paper
we propose a new technique to explain why a given data object has
been singled out as anomalous. The explanation our technique returns
also includes counterfactuals, each of which denotes a possible way to
“repair” the outlier to make it an inlier.

Thus, given in input a reference data population and an object deemed
to be anomalous, the aim is to provide possible explanations for the
anomaly of the input object, where an explanation consists of a sub-
set of the features, called choice, and an associated set of changes to be
applied, called mask, in order to make the object “behave normally”. The
paper presents a deep learning architecture exploiting a features choice
module and mask generation module in order to learn both components of
explanations. The learning procedure is guided by an ad-hoc loss func-
tion that simultaneously maximizes (minimizes, resp.) the isolation of
the input outlier before applying the mask (resp., after the application of
the mask returned by the mask generation module) within the subspace
singled out by the features choice module, all that while also minimiz-
ing the number of features involved in the selected choice. We present
experiments on both artificial and real data sets and a comparison with
competitors validating the effectiveness of the proposed approach.

Keywords: Outlier Explanation · Explainable Artificial Intelligence ·
Deep Learning

1 Introduction

The anomaly detection problem is a main task in data analysis and has appli-
cations in several different real contexts. The huge interest on this problem is
witnessed by the number of papers appeared in the last years on the topic (see,
e.g., [2,6,7,26,33]). Among the application contexts in which the the outlier
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detection task is relevant we cite environmental monitoring [15,19,29], cyber-
security [18,37], fraud detection [1,14], healthcare [10,13] and others as well
[25].

On the other hand, anomalies (either known or computationally detected)
need to be explained for the user to get full understanding of their nature but this
specific aspect is much less explored in the literature. We refer to the problem
of finding which characteristics distinguish an anomalous point from a normal
one as the Outlier Explanation problem. Finding an explanation of an outlier is
important for many reasons: for instance, users benefit from explanations since
this will enhance their comprehension of the outliers, which is a crucial factor for
taking right decisions, domain experts can find new knowledge by the interpreta-
tion of the outliers since this can potentially retrieve unknown paths from data,
and so on. It is also worth noting that the outlier explanation problem can be
looked at from slightly different perspectives in terms of little differences in the
formal setting associated with explanations and several names have been corre-
spondingly adopted for the task, such as subspace selection, outlier explanation,
object explanation, outlier interpretation or outlying subspaces detection.

According to [27], there are many types of outlier explanations, and each of
them aims to ensure different desiderata and fit various use cases. In this work,
we focus on explanations defined as that of looking for feature subset(s) (and
related values) on which the given data point is anomalous w.r.t. the population
of data objects it belongs to [31].

In order to tackle the problem introduced above, we propose a new approach
which exploits a neural network trained by an ad-hoc Subspaces Density Con-
trastive Loss. Given in input a reference data population and an object deemed
to be anomalous, the aim is to provide possible explanations for the anomaly of
the input object, where an explanation consists of a subset of the features, called
choice, and an associated set of modifications to be applied to the outlier, called
mask, in order to make that object behave normally. In the rest of the paper
and whenever no ambiguities arise, we will use the terms “attribute”, “feature”
and “dimension” basically interchangeably. To summarize the contribution of
this work:

– A new perspective for the Outlier Explanation problem where a concept of
restoration is embedded inside the explanation is proposed.

– The technique Masking Models for Outlier Explanation, shortly M2OE,
is presented. An innovative aspect of this technique, closely related to the new
perspective adopted, is that the explanations also includes counterfactuals,
which shows possible ways to “repair” the outlier to make it an inlier.

– A study of the effectiveness of our proposal is performed considering synthetic
as well as real data sets, comparing its results with the ones achieved by
competitors.

The rest of the paper is organized as follows: Sect. 2 gives a brief description of
the state of the art, Sect. 3 expounds the M2OE technique, Sect. 4 comments on
the experimental results and, finally, Sect. 5 concludes this work.
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2 Related Works

In this section we give an overview of the techniques proposed in the literature
aimed at constructing an outlier explanation expressed as that those object
feature subsets which characterize the most a given point outlierness, since this
is the closest setting to the one considered in this work.

The user-centred perspective, which characterizes the anomaly explanation
task, originates from several definitions of the concept of explanation quality
[24,27], each of which is relevant to certain classes of users and such a variety
translates into different ways of tackling the considered problem.

According to [35], the class of outlier explanation methods that we are con-
sidering can be summarized into two macro-categories, which distinguish the
techniques based on feature selection from that based on a score-and-search.

Features selection approaches are widely used for dimensionality reduction in
order to improve model performances in classification tasks. Here, the goal is to
retrieve the most relevant features among the ones that characterise the samples.
In the considered context, this strategy is used with the objective of retrieving the
features that best characterize a given point outlierness. Subspace Outlier Degree
(SOD) [17] is an outlier detection technique that also returns the set of features
associated to the outlier selection. This is done using a reference set, which is
seen as a possible subspace cluster. Thus, if a point deviates considerably, as far
as the subspace which characterizes it is considered, from the other objects in
the reference set then it can be considered an outlier in that subspace, so that
subspace represents an explanation. The approach presented in [23] considers a
two-class classification problem and uses its outputs as a starting point to obtain
an explanation for outlier samples. The basic idea here is that a good explanatory
subspace determines a good separability between outliers and inliers and that a
good proxy for this concept is the accuracy reached in the classification problem.
Local Outliers with Graph Projection (LOGP), proposed in [8], considers both
the detection and the explanation problems, by exploiting concepts borrowed
from the spectral graph embedding theory and is based on the idea of projecting
data points into a space having lower dimensionality. In particular, by using an
invertible function, some subspaces of reduced dimensionality are constructed
(without changing the neighbourhood structure) in which the outlier is easily
recognisable. The paper [4] presents a technique that, given a categorical data
set and an oulier q, finds the top k attributes associated with the largest outlier
score for q. That approach is extended to numerical data in [3].

Score-and-search methodologies groups all the methods that use a measure
to choose the explanatorial features for an outlier so that, in this context, to each
retrieved feature a “relevance level” is associated. The High-dimensional Out-
lying Subspace Miner (HOS-Miner) [39] technique, which exploits an Outlying
Degree distance function to detect the most outlying subspace. Density is used
as subspace score criterion in [9], where a kernel-density estimation is employed
to rank the attribute subspaces. In [35] two dimensional-unbiased measures are
proposed: the Z-score and the Isolation Path score (iPath), which is inspired
by Isolation Forest outlier detection algorithm [20]. Together with them, it pro-
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poses a searching procedure which performs an exhaustive search for 1-D and
2-D subspaces and a beam search for subspaces with dimension greater than 2.
The method sGrid [36] uses a grid-based density estimator to search for anoma-
lous features, leveraging the results of [32]. Its objective is to speed up the mining
algorithm, which is attained at the cost of the estimation space unbiasedness. A
notable further form of score is the Simple Isolation score Using Nearest Neigh-
bor Ensamble (SiNNE) [30], whose definition is related to an outlier detection
algorithm named Isolation using Nearest Neighbor Ensembles(iNNE) [5]. COIN
[21], which stands for Contextual Outlier INterpretation, exploits the neighbour-
hood of anomalous points dividing it into clusters, then trains on each of them
a simple classification model, and finally computes a score for each attribute by
combining the learned parameters.

Finally, the technique proposed in [34] represents an hybrid [31], in that
it combines the characteristics of both features-selection-based and score-and-
search-based approaches. It consists of a two-stage approach where, in the first
stage, features are ranked according to their potential to make the query object
an outlier and then, in the second stage, which is optional, score-and-search
exploration is performed on a smaller subset of the top-ranked m features.

Outside this categorization there are two outlier explanation methods focused
on building explanations for group of anomalies. LookOut [12] which proposes
pictorical explanations based on 2D plot, and x-PACS [22] which is aimed to
cluster anomalies having the same characteristic subspace and to find rules which
describe the patterns associated to those clusters of anomalies.

3 The Proposed Technique

The purpose of this section is to describe our technique for solving the outlier
explanation problem introduced in Sect. 1.

We start by defining next what we mean by “explaining an outlier” in our
context.

Definition 1. Given a data set DS and an object o known to be an outlier,
the goal of outlier explanation problem is to find an explanation e for o. An
explanation e for o is a pair 〈c,m〉 where c denotes a set of attributes and m
denotes a set of values, one value for each element in c, such that for o to take
the values m for the attributes c would make o an inlier in DS.

Thus, among the various forms that an explanation could possibly take, in our
context the information content of e is represented by an attribute set c, called
choice and realized as a binary vector implementing c’s characteristic function
over the set of all attributes, and a value set m, called mask, which is realized
as a real valued vector of the same size as c specifying how much each attribute
value must be changed in order for the outlier o to become an inlier. In detail,
the binary values of c indicate if the corresponding attribute (aka, “feature” in
the following) of o is anomalous (1) or not (0), while the real values of m indicate
how to modify that feature to eliminate the point outlierness. The decision to
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decouple those two pieces of information has been taken to avoid possible biases
related to the magnitudes of the modifications in the outlying features selection
process. An example follows.

Example 1. Figure 1 depicts an example of what have been said above. The
anomalous data point (the red one) is anomalous on the dimension showed on
the ordinate but the magnitude of the modification that needs to be applied to
move the anomaly closer to the normal data points is higher on the abscissa
dimension compared to the ordinate one.

Fig. 1. An example in which
there is a possible bias related
to the magnitude of the modifica-
tion. Blue points represents normal
data, while the red point is the out-
lier. (Color figure online)

In this paper, in order to search for the
possible explanations associated to a given
input outlier o (there may exist more than
one), we propose the M2OE approach based
on the idea of exploiting an ad-hoc Neural
architecture which we have designed to com-
pute them, which is described next.

3.1 Architecture Pipeline Description

As just anticipated, M2OE uses a neural archi-
tecture in order to construct outlier expla-
nations. Figure 2 depicts the structure of the
pipeline underlying our proposal. This con-
sists of a concatenation of an operation and
two modules (each of them is in charge of con-
structing one of the two components required
to get an explanation), followed by a postpro-
cessing step.

Fig. 2. Model architecture.

Both modules are realized as neural networks. The first module, called Fea-
ture Choice, has the purpose of finding the outlying features. The latter one,
named Mask Generation module, is devoted to searching the associated mask val-
ues. The system is fed with a tuple containing a subset of inlier points (selected
via a suitable sampling over DS) and the outlier to be explained. The concate-
nation operation (displayed as a green rectangle in Fig. 2) rearranges those two
data collections and returns a 2-dimensional data structure as the output in
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Fig. 3. Feature choice module structure.

which each row contains an outlier-inlier pair. The 2d structure is then fed in
input to the modules Feature Choice and Mask Generation module.

As depicted in Fig. 3, the Feature Choice module consists in a three-layered
neural network in which the number of units for each layer is automatically
determined on the basis of the number of features d of the data points. More
in detail, for the first two layers, the number of neurons is equal to 3 times d
whereas, for the output layer, it is equal to d. We adopt the sigmoid as the
activation function (that notoriously returns values ranging from 0 to 1), which
are then converted into binary values through a thresholding operation. We will
refer to (real valued) output of the sigmoid as c̃, where c is, again, the {0, 1}-
valued choice vector.

Fig. 4. Mask generation module structure.

Figure 4 shows the structure of the Mask Generation module, which is similar
to that of the Feature Choice, except for the adopted activation functions: indeed,
in this module, each single layer is followed by a linear activation function.

As already stated, the output of the system denotes a transformation that,
if applied to the outlier o, would make o an inlier o′. In particular, o′ is obtained
from o by combining the information content carried by the explanation and
“applying” it to o as follows:

o′ = t(o, c,m) = o + c ∗ m (1)

where c is the choice, m is the mask and * denotes the element-wise product of
the elements in c and m.

Example 2. Considering again Example 1, the ideal explanation is the one in
which only the second feature (the one depicted in the ordinate of Fig. 1) is
highlighted as anomalous, so the desired choice vector is ce = [1, 0]. A pos-
sible mask could be the following: me = [0.5,−0.3]. Given the outlier point,
which is o = [7.25, 3.5], and the previously defined ce and me, the patched
sample o′ obtained from this transformation according to Equation (1) is
o′ = [7.25 + 0 ∗ 0.5, 3.5 + 1 ∗ (−0.3)] = [7.25, 3.2].

In the following section the explanation computation process is illustrated.
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3.2 Explanation Computation

Let a data set DS and a point o ∈ DS known to be an outlier be given. Moreover,
let Xn ⊂ DS be the set of inliers (aka, normal points in the following) in DS. To
find an explanation e for o, M2OE first computes a differences statistics vector s,
which contains the mean feature-wise squared differences between normal points.
Then, it selects the k-nearest normal points Xk

n ⊂ Xn to o using the euclidean
distance as proximity criteria and replicates the outlier o k times – we will refer
to the thus obtained structure as Xk

o . Finally, the tuple (Xk
o ,Xk

n) (see Fig. 2) is
the data used to train the architecture described in Sect. 3.1.

The training process is lead by the following loss function:

L(o, x, c̃,m) = α1

d∑

i=1

si · c̃i
(oi − xi)2 · c̃2i + ε

+α2

√∑d
i=1(pi − xi)2 · c̃i

d
+α3 · ||c̃|| (2)

where o ∈ Xk
o is the outlier to explain, x ∈ Xk

n is a normal point, c̃ is the
choice vector, m is the mask vector, s is differences statistics vector, ε is a small
constant to avoid division by 0 and, finally, p = t(o, c̃,m), where t(·) is the
transformation defined by Eq. (1). The first term of the loss aims at finding
the group of features that maximises the ratio between normal points distances,
codified by the s vector, and the distance between the outlier o and the normal
point x, so that this term leads the choice of outlying features. The second term
aims at minimizing the distance between the transformed version of the point
resulting from t(o, c,m) and xn, so that it guides the construction of the mask.
The last term of the loss has the purpose of reducing the number of selected
outlying features, in compliance with the Occam razor principle.

Once the two neural networks have been trained, to obtain the explanation,
the architecture is queried on the training data (Xk

o ,Xk
n) obtaining a list of

choices C and a list of masks M .

Explanation Post-processing. To combine the information gathered after
the training procedure, a post-processing procedure is carried out the goal of
which is to build the explanations to be returned to user. In particular, first of
all, an algorithm for frequent itemsets mining is executed on C to find the set
of features that commonly appear together as outlying features. Then, for each
set of features ci detected by this mining algorithm, the clustering algorithm
DBSCAN [11] is applied to all the normal points associated to tuples which
corresponding explanation contains ci. For each cluster j found by the algorithm,
M2OE finds its medoid, which is a representative point for the cluster, and
queries the model using the tuple containing the outlier and the medoid to
produce a mask mi

j related to that cluster.
The need for this additional clustering step arises from the chance to have

explanations characterized by masks with different, in some extreme cases oppo-
site, transformations. Figure 5 shows an example of this kind of situation. Clearly,
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the outlying feature is the one represented on the abscissa, but there are two pos-
sible ways to restore the outlier. The first one, in which the value on the abscissa
is lowered, is highlighted by the green arrow and the second one, in which the
value on the abscissa is increased, is represented by the red row. Each of these
two possible options brings the outlier near to one of the two clusters that are
present in the considered normal data (the blue points). Note that, if we were
to combine both explanations, it would be unclear how to disguise the point.
Another objective of the post-processing step is to summarize the information
collected in order to build diverse explanations for each outlier.

Fig. 5. A toy example in which
to the same points can be associ-
ated different explanations charac-
terized by the same group of fea-
tures but by masks with different
transformations.

The final outcome of the explanation pro-
cess is a list of tuples which contains a choose
vector ci and a “restored” version of the out-
lier pij , obtained though ci and the mask mi

j ,
which is a counterfactual that shows an exam-
ple supposed to be an inlier.

4 Experiments

In this section, an assessment of the qual-
ity of our technique is performed through an
experimental campaign which focuses both on
studying how hyper-parameter values affect
M2OE performances and comparing its results
with the one reached by its state-of-art com-
petitors, that are, ATON [38] and COIN [21].

We note that, since none of the techniques presented to date gives information
about how to modify the outlier (see Sect. 2), only the choice c is taken into
account for the comparison purposes.

For experiments, we consider both synthetic and real data sets. Synthetic
data comes from the collection of benchmarking data sets published in [16], which
contain subspace clusters and outliers generated in subspaces having dimensions
ranging from 2 to 5. These are used as ground truth for explanations. The
peculiarity of these data sets is that the outliers have been generated in such a
way that they are not observable in any lower dimensional sub-space projection,
which results in making building suitable explanations more challenging. This
collection contains data sets with 10, 20, 30, 40, 50 and 75 dimensions and, in
particular, it contains three data sets for each dimensions size. Each data set
consists of 100 data points including from 19 to 111 outliers.

For what real data are concerned, we have considered 5 data sets from the
ODDS repository [28], that are, cardio, breast, ionosphere, musk and arrhythmia,
which number of dimensions ranges from 21 to 274. More details about these
data sets are provided in Table 1.

The rest of the section is organized as follows: Sect. 4.1 describes the metrics
used for the evaluation, Sect. 4.2 shows the results of the parameter study and
Sect. 4.3 compare M2OE with its competitors.
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Table 1. Real data sets overview.

Name Dimensions Points Outliers Brief description

cardio 21 1831 176 Measurements of fetal heart rate
(FHR) and uterine contraction (UC)
features on cardiotocograms
classified by expert obstetricians

breast 30 569 212 Features are computed from a
digitized image of a fine needle
aspirate (FNA) of a breast mass.
They describe characteristics of the
cell nuclei present in the image

ionosphere 33 351 126 Radar data collected by a system in
Goose Bay, Labrador. This system
consists of a phased array of 16
high-frequency antennas

musk 166 3062 97 Set of 92 molecules of which 47 are
judged by human experts to be
musks or non-musks, its records
describe them depend upon the
exact shape, or conformation

arrhythmia 274 452 66 Data extracted from ECGs of
different patient which the aim of
distinguish the one containing
arrhytmia episodes

4.1 Employed Metrics

In order to globally evaluates our techniques, it is needed to measure both the
quality of the set of features retrieved and the effectiveness of the mask suggested
to obtain a normal point, so that the experimental campaign follows this two-
fold objective. Indeed, given an object o and an explanation e for o, in order
for e to be significant, o should be clearly an outlier in the subspace ec and the
object o′, obtained by transforming o through e, should be normal in ec and,
furthermore, ec should be as small as possible.

In order to evaluate the set of features highlighted as anomalous, it is neces-
sary to distinguish the situation where an annotation of which are the outlying
features is available from the case in which there are no available information
about it. In the first case, to evaluate the performances of our techniques, we
use the precision and recall measures

Prec(cp, ct) =
|cp ∩ ct|

|cp| and Rec(cp, ct) =
|cp ∩ ct|

|ct| .

where et is the true choice while ec is the choice predicted by the method.
Counter-wisely, if there are no information available about which are the

true choices (as it happens for the real data sets considered in this work) a
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proxy measure for subspaces outlierness is needed. In this work we employ the
iForest score [20] to evaluate the quality of the set of features retrieved in this
setting. The idea underlying this method is that anomalies are better isolated
from normal data so that, if binary trees are considered, they need fewer splits
to be isolated as compared to normal data.

The iForest score is used also to evaluate the quality of the transformation
suggested by the model (which gives an indication of mask effectiveness). Partic-
ularly, the score so of the outlier o and the score so′ of its “patched” version are
considered. A transformation is considered successful if the value so′ is lower then
so: indeed, in this situation, the transformation has lowered the point outlierness
of at least the 5% of the original value. For each of the considered data set, we
will take the percentage of successful transformation to measure the quality of
the mask.

4.2 Parameters Tuning

This section aims at illustrating how the performances of the method changes
for different hyper-parameters configuration. In particular, we consider the value
of α1, α2 and α3, which weights the terms of the loss function and consider all
the synthetic data sets. For each dimensionality value, we computed the result
as the arithmetic mean taken on all the data sets which points have that certain
number of features.

Figure 6 shows how precision and recall measures change for different values
of α1, α2 and α3. The values of the first two hyper-parameters range from 0.8 to
1.2, while the value of the latter one ranges from 0.1 to 0.5. Note that while within
the range of values associated to α1 and α2, no relevant difference in precision
and recall values is induced, when the value of α3 increases, the precision value
significantly increases. Conversely, large values of α3 produce a decrease in the
recall value (since adding too many features enhances too much the third loss
term). The trend of the transformation success is depicted in Fig. 7 which shows
that α2 and α3 affects most the value of this metric.

4.3 Comparison with ATOM and COIN

In this section we compare our techniques with two outlier explanation methods
ATOM and COIN referred to in Sect. 2. The evaluation is carried out first on the
same synthetic data sets used to study the behaviour of the method for different
hyper parameters and then on some real world data sets.

Synthetic Data Sets. We begin by considering again the HiCS data sets where
the ground truths for anomalous features are available so that performances are
computed in terms of precision and recall. Results are obtained following the
same methodology of Sect. 4.2.

The results displayed as Fig. 8 show that our technique outperforms its com-
petitors even when the dimensionality grows up. The quality of the results pro-
duced by all the considered methods shows a constant decreasing as the number
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(a) α1 (b) α2 (c) α3

Fig. 6. Trend of precision and recall measures for different values of α1 (a), α2 (b) and
α3 (c). Results are obtained by changing one hyper-parameters at a time, where their
default values, when fixed, are, respectively: α1 = 1.0, α2 = 1.0 and α3 = 0.3. Abscissa
shows the number of dimensions of the data considered.

(a) α1 (b) α2 (c) α3

Fig. 7. Trend of transformation success for different values of α1 (a), α2 (b) and α3 (c).
Results are obtained by changing one hyper-parameters at a time, where their default
values, when fixed, are, respectively: α1 = 1.0, α2 = 1.0 and α3 = 0.3. Abscissa shows
the number of dimensions of the data considered.

of the dimensions of the data sets increase. This can be explained by the presence
of some alternative subspaces, not listed in the ground truth, which also explain
the outlier.

Real Data Sets. Here we considered the real data sets introduced in Sect. 4 and
described in Table 1. Since in this setting no information related to the outlying
features are available, the iForest score is employed to perform evaluation, as
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Fig. 8. Precisions (on the left) and recalls (on the right) achieved by M2OE, ATOM
and COIN, on HiCS data set. Abscissa shows the number of dimensions of the data
considered.

described in Sect. 4.1. All the values are obtained by performing 5 runs and then
computing the mean and the standard deviation of the results.

Table 2. iForest score results for real data sets. The first column highlights the score
on the whole feature space, the other ones the score on the subsets retrieved by the
considered techniques. For each data set, the maximum value is highlighted in bold
while the second maximum is highlighted in italics.

Data set Global baseline ATOM COIN M2OE

Cardio 0.5158 ± 0.0007 0 .6734 ± 0 .0012 0.6402 ± 0.0012 0.6921± 0.0014

Breast 0.4563 ± 0.0027 0 .5393 ± 0 .0075 0.5354 ± 0.0007 0.5647± 0.0008

Ionosphere 0.5258 ± 0.0015 0.6160 ± 0.0030 0.6292± 0.0011 0 .6180 ± 0 .0027

Arrhythmia 0.4162 ± 0.0070 0.7077 ± 0.0174 0 .7518 ± 0 .0013 0.7577± 0.0018

Musk 0.5603 ± 0.0057 0.6864 ± 0.0038 0 .7419 ± 0 .0014 0.7674± 0.0027

Table 2 shows the quality score achieved by the subspaces retrieved by each
considered method. For each data set, the maximum value is highlighted in bold
while the second maximum is highlighted in italics, the global baseline value
represents the anomaly score computed in the whole feature space. From this,
it is possible to notice how M2OE almost always reaches the maximum score
among his competitors and, when this does not happen, it ranks second. We
also note that the value of all the techniques is greater than the global baseline.

Table 3. Percentage of outliers correctly fixed by M2OE for each real data set.

Cardio Breast Ionosphere Arrhythmia Musk

0.8872 ± 0.0159 0.8566 ± 0.0233 0.9104 ± 0.0150 1.0000 ± 0.0000 0.9913 ± 0.0092
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To check if M2OE is able to patch even real data set outliers, the percentage
of successfully-patched outliers is computed and results are reported in Table 3.
The table allows us to conclude that M2OE is able to correctly patch samples
even in this context.

5 Conclusions

In this paper a new technique which employs a deep neural-network to explain
why a given data object has been singled out as anomalous has been presented.
One main novelty of our proposal is that its explanations include counterfactu-
als, each of which denotes a possible way to “repair” the outlier to make it an
inlier, which can provide users with a deeper understanding of data point char-
acteristics. Thanks to the summarization performed by its post-processing step,
M2OE is able to provide diverse explanations which account for the peculiarities
of the outlier w.r.t the normal points leveraged for the explanation.

The experimental campaign carried out on synthetic and real data sets pro-
vide empirical evidence demonstrating the quality of the proposed technique
both for what concerns retrieved subspaces and for what concerns counterfactu-
als returned to users.

As future development, we consider to extend the technique to other data
types in order to enlarge its applicability and, furthermore to extend experiments
with user studies which might show how much returned explanations improves
data comprehension.

Acknowledgment. We acknowledge the support of the PNRR project FAIR - Future
AI Research (PE00000013), Spoke 9 - Green-aware AI, under the NRRP MUR program
funded by the NextGenerationEU.
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Abstract. Explainable AI (XAI) focuses on designing inference expla-
nation methods and tools to complement machine learning and black-box
deep learning models. Such capabilities are crucially important with the
rising adoption of AI models in real-world applications, which require
domain experts to understand how model predictions are extracted in
order to make informed decisions. Despite the increasing number of XAI
approaches for tabular, image, and graph data, their effectiveness in con-
texts with a spatial and temporal dimension is rather limited. As a result,
available methods do not properly explain predictive models’ inferences
when dealing with spatio-temporal data. In this paper, we fill this gap
proposing a XAI method that focuses on spatio-temporal geo-distributed
sensor network data, where observations are collected at regular time
intervals and at different locations. Our model-agnostic method performs
perturbations on the feature space of the data to uncover relevant fac-
tors that influence model predictions, and generates explanations for
multiple analytical views, such as features, timesteps, and node location.
Our qualitative and quantitative experiments with real-world forecast-
ing datasets show the effectiveness of the proposed method in providing
valuable explanations of model predictions.

Keywords: Explainable AI · graph data · sensor networks

1 Introduction

The large availability of sensor network data paves the way for its exploitation
for decision-making processes in many real-world sectors. Relevant examples of
machine learning and deep learning methods for sensor networks data analysis
have been adopted in traffic prediction [24], change detection in smart-grids
[5], pollution forecasting [11], and energy forecasting [7], to mention a few. A
large number of methods have been proposed in the last few years, reaching
remarkable prediction performance. However, the black-box nature of many of
these methods reduces their applicability in practical decision support processes.
End users, practitioners, and domain experts may require an explanation of
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model predictions to increase their confidence in the decision making process.
This capability is crucial in domains such as medical healthcare, smart grids, and
credit risk assessment, where a wrong decision may result in a strongly negative
impact on people’s health, result in damages to the underlying infrastructure,
or yield economic losses.

In this context, Explainable AI (XAI) approaches are becoming highly pop-
ular in recent years [20,26], since they complement model predictions with
explanations that make domain experts more confident about their decisions.
A large number of XAI approaches have been proposed for tabular, image, and
graph data. However, their effectiveness in contexts with spatial and tempo-
ral dimensions is rather limited. Approaches for tabular data include instance-
based methods [15,19], which present wide applicability in many domains, but
provide only local explanations for single observations. Some tabular methods
also offer global interpretability [16], providing a holistic understanding of the
overall model behavior by analyzing feature importance globally, but present an
extremely high computational cost [3]. Moreover, tabular approaches are unable
to consider spatial and temporal dimensions of the data. Image-based approaches
[12,21,22] are an excellent solution to explain predictions extracted by Convo-
lutional Neural Networks (CNNs) when using image datasets. However, their
adoption is cumbersome and not ideal in domains with time series data. Graph-
based approaches [10,25] take the spatial dimension into consideration, but they
are limited to the analysis of node features without the notion of a temporal
dimension. As a result, they are only suitable for static node prediction tasks.

Overall, available methods do not provide explanations at a sequence level
and, consequently, do not properly explain predictive model inferences when
dealing with spatio-temporal data. In this paper, we fill this gap by propos-
ing an XAI method that focuses on geo-distributed sensor network data, where
observations are collected at regular time intervals and at different locations.
Our model-agnostic method performs perturbations on the feature space of the
data to uncover relevant factors that influence model predictions and generates
explanations for multiple analytical views, such as features, timesteps, and node
location. Our qualitative and quantitative experiments with real-world forecast-
ing datasets show the effectiveness of the proposed method in providing valuable
explanations of model predictions. The paper is structured as follows. In Sect. 2
we review existing relevant works in the literature. In Sect. 3 we present the
proposed method. In Sect. 4 we describe the experimental setting and the con-
sidered datasets, and we discuss the experimental results. Finally, we draw our
conclusions and provide directions for further work in Sect. 5.

2 Background

2.1 XAI Methods

Approaches for tabular data include instance-based methods [15,19], which
present wide applicability in many domains, but provide only local explana-
tions for single observations. In this context, a popular approach is LIME [19],
which explains the predictions of any classifier by fitting a regression model
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on a single model’s prediction. This approach is general since it supports dif-
ferent models, such as random forests and neural networks. Some approaches
for tabular data with global interpretability capabilities [16] provide a holistic
understanding of the overall model behavior by analyzing feature importance
globally, but typically suffer from an extremely high computational cost [3].
Moreover, such approaches are unable to consider spatial and temporal dimen-
sions of the data. Image-based approaches are used in supporting decisions in
several domains [8,12,21,22]. Among them, gradient-based localization [8,21] is
a popular approach for image data which exploits the gradients flowing to the
final convolutional layer of the discriminator to generate a localization map high-
lighting the salient regions of the image that are responsible for the prediction.
A variant of this approach is proposed in [22], where variants of an image are
modified by adding noise and averaging the resulting sensitivity maps. Despite
the significant explainability capabilities that these methods provide for image
data, they are not appropriate for time series data.

Graph-based approaches [10,25] take the spatial dimension of data into con-
sideration. Such approaches study the importance of node features in the graph
typically resorting to the optimization of soft masks. The optimization process
usually seeks to maximize the mutual information between the predictions of the
original graph and the predictions of the masked graph. These methods treat
models as black-boxes, since they do not require access to their model specifi-
cations, and they represent a natural fit for graph neural networks. However,
they are designed for the node classification task, which lacks the notion of a
temporal dimension.

2.2 Forecasting Methods for Sensor Networks

Sensor networks give the opportunity to gather data observations for a set of
properties of interest in multiple geographical locations. In sensor networks, fore-
casting methods can be used to forecast future values for such properties, leading
to relevant decision support capabilities. Recent literature suggests that accu-
rate forecasting capabilities for geo-distributed sensor data require the ability
for the models to deal with spatio-temporal autocorrelation [1,6], which is typ-
ically achieved through multi-node analysis. However, a higher degree of model
sophistication to deal with this aspect also corresponds to increased challenges
from the explainability viewpoint. Initial attempts leverage attention maps as
indicators of relevance for time steps and features [9,13].

An interpretable flood forecasting method using temporal and spatial atten-
tion is proposed in [9]. In [13], an attention-based architecture combines multi-
horizon forecasting with interpretable insights using recurrent and self-attention
layers. A different approach [23] proposes multilevel wavelet decomposition to
embed frequency analysis in deep time series forecasting models. In [17] the
authors adopt series saliency, i.e. a mask learned using a perturbation strategy,
to improve both accuracy and interpretability.

One important limitation of these approaches is that visual artifacts are not
particularly easy to understand for end users and domain experts, and rarely lead
to actionable insights. Moreover, the quality of the explanations returned by such
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methods cannot be directly evaluated using quantitative metrics. Consequently,
model interpretability in the context of forecasting models learned from sensor
networks is still in its infancy.

3 Method

3.1 Spatio-Temporal Forecasting Setting

In this paper, we focus on the multi-node multivariate forecasting scenario, which
is characterized by time series consisting of observations generated at regular
time intervals by each node in a sensor network, where relationships of different
types are possible among nodes. Considering a network of N nodes, the generated
data has a 3-D time series structure, where a sequence xk at the time window k
can be defined as a tensor xk ∈ R

T×N×F , for a discrete number of time points
T determining the sequence length, and a number F of observed independent
features. Note that sequences at time point k are constructed from T consecutive
observations, arranged in a non-overlapping way. For example, T can represent
24 observations, one for each hour, and k can represent the index of the day.

Therefore, we can define the sequence of tensors X ∈ R
k×T×N×F , containing

contiguous and chronologically-ordered sequences:

X = [x0,x1, . . . ,xk−1],

which are used as training data for the models.
Given a new sequence xk, the observed forecast data for xk is described as

the corresponding sequence yk containing the subsequent T observations for the
target property of interest. The forecasting task consists in approximating the
function f : xk �→ yk using a model Ψ . The learning task can be formalized as
identifying the model that minimizes a given forecasting loss function

Ψ∗ = arg min
Ψ

L(
Ψ(X ), f(X )

)
,

where Ψ(X ) extracts forecasts ŷk for the target variable of interest of each input
sequence xk in X , and f(X ) is the ground truth on historical data for the target
variable of interest: y0,y1, . . . ,yk−1.

3.2 Explainability Problem Definition

The goal of our method is to provide human-interpretable explanations that
justify the forecasting output of an arbitrary model on a given input sequence.
For a model Ψ trained on historical time series X = [x0,x1, . . . ,xk−1], we define
the explanation process as a function E :

E(Ψ,xk) = M,

where M ∈ R
T×N×F constitutes the explanation for Ψ(xk) and it is a binary

mask tensor (Mt,n,f = 1 or Mt,n,f = 0, for 1 ≤ t
n
f

≤ T
N
Fl

) such that M �



178 M. Altieri et al.

xk highlights salient components across any axis of tensor xk, and � denotes
element-wise multiplication.

This explanation framework allows for the categorization of existing expla-
nation methods by imposing different constraints on the obtained explanation
M. Explanation methods that can natively only operate on tabular data, such
as LIME [19] position themselves within our framework using the following con-
straint on the resulting explanation:

(1) Mt,n,f = 1 ⇐⇒ Mt′,n′,f = 1, t 	= t′, n 	= n′,

which means that if a given feature is deemed relevant, it will be relevant for all
timesteps and nodes, and all entries will be selected. This behavior also implies
that the user is provided with a single explanation that only considers the feature
axis, without direct consideration of the temporal and spatial axes.

At the same time, graph-based and spatially aware explanation methods,
such as GNNExplainer [25], can be categorized using the same framework as
being generally constrained by:

(2) Mt,n,f = 1 ⇐⇒ Mt′,n,f ′ = 1, t 	= t′, f 	= f ′,

which means that a given node is highlighted as relevant considering all time
steps and features, and the user is provided with a single explanation that does
not analyze time points (i.e. t) and features (i.e. f) in isolation.

Similarly, explanations of methods that are not able to properly consider the
temporal dimension are constrained by:

(3) Mt,n,f = 1 ⇐⇒ Mt,n′,f ′ = 1, n 	= n′, f 	= f ′.

In all these methods, one or multiple axes of the explanation M are not
taken into consideration, and if a given dimension is highlighted by the explana-
tion method, it will be highlighted for all values of the other axes that are not
considered. On the contrary, our explanation method poses no such constraints
on M and it allows all dimensions of the spatio-temporal output sequence to
be highlighted independently, for a complete 3D multi-level explanation of the
inference process.

3.3 Multi-level Explanation Process

Our explanation method extracts inference explanations for the three levels (fea-
ture, timesteps and nodes) using a multi-stage process, focusing on one perspec-
tive at a time. The approach is model-agnostic, in that it supports any forecasting
model able to work with multivariate, multi-step, and multi-node sequences X ,
regardless of the model architecture. A graphical representation of our method
and its workflow is shown in Fig. 1. Additionally, our method is able to pro-
vide explanations for models that exploit the topology of the sensor network
in a spatially-aware way. Such a topology is usually defined using an adjacency
matrix A ∈ R

N×N to represent relationships among nodes, such that entries Aij
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Fig. 1. Graphical representation of our proposed explainable spatio-temporal graph
modeling method.

constitute a numerical property such as spatial closeness, correlation, etc., for a
given pair of nodes i and j. This feature is common in models such as Graph-
Convolutional Long-Short Term Memory (GCN-LSTM) neural networks. We
recall that our method always provides explanations for the node contributions
towards the final forecast, even for forecasting models that do not capture graph
topology or that fully ignore spatial information, e.g. LSTM, as long as they are
capable to process multi-node observations in a single inference step. However,
in the case of graph-based forecasting models, the node-level explanations gen-
erated by our method are potentially more meaningful, since node relationships
are explicitly represented and exploited to extract model predictions, allowing
our method to provide even greater insights to the end user.

Perturbations. Our explanation process is perturbation-based. We follow the
rationale that perturbing a relevant dimension of the input sequence should
generate a larger impact on model predictions compared to perturbing a less
relevant dimension, and monitoring the difference in model predictions should
allow us to uncover the relevance of each feature. This concept was shown to be
a feasible strategy in previous works [22]. However, existing approaches either
apply this technique on flat 2D tabular data [19], or node features in graph data
in the context of node classification [10]. In our method, we apply perturbations
to all axes of the input sequence, following a three-stage process.
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Starting with the feature axis, we perturb the original input sequence xk

to generate F new sequences x̃1
k, . . . , x̃F

k , where the perturbed sequence x̃f
k has

all entries for feature f perturbed. Specifically, in our perturbation strategy the
value for feature f in the perturbed sequence x̃f

k is determined with a random
sample from a Gaussian distribution, such that each value of matrix x̃f

k ∈ R
T×N

is set to:
x̃f

k;tini
∼ N (xf

k;tini
, σ),

where σ is a hyperparameter denoting the perturbation intensity. This perturba-
tion allows to obtain feature values within a reasonable boundary of the observed
phenomenon’s distribution. In our approach, we iteratively perform perturba-
tions with increasing values of σ, and assess their average impact on model’s
performance. By doing so, the method detects features that generate an impact
on model’s performance at different levels of perturbation intensity.

The same process is repeated during the timesteps and, subsequently, the
nodes stage, varying the axis to be perturbed to the time axis and the nodes
(spatial) axis, respectively. A key aspect of this cascading process is that the
input sequence for the perturbation process contains the perturbations applied
in the previous stage for the relevant dimensions identified in the previous stage.

Error Estimation. This process allows us to compare the magnitude of the
impact of perturbations on model’s prediction values for the entire sequence xk

(error estimation). Specifically, in our work we consider Mean Absolute Error
(MAE) since it is a standard metric for evaluating forecasting models. Following
the above-mentioned rationale, we measure the impact that perturbing each
dimension along the current axis brings to model predictions. We define the
impact as Δd = |Ψ(xk) − Ψ(x̃d

k)|, for d ≤ T,N or F depending on the axis
under analysis, such that arg maxd Δd is the most impactful, and thus relevant,
dimension.

Ranking and Selection. From the impact of each perturbation, our method
carries out a ranking process to sort dimensions in decreasing order of impact.
This ranking can be formalized as a permutation matrix R ∈ R

D×D, for D num-
ber of dimensions, that sorts the dimension vector in the appropriate descending
order with R · [1, 2, . . . ,D].

After ranking, the model selects the most relevant dimensions. To this aim,
the model evaluates the transition of consecutive values of feature importance,
analyzing their ratio of relevance. Let’s define with Δ = [Δ1,Δ2, . . . ,ΔD] the
vector of dimension impacts for each dimension along the current axis. Then,
the method computes the incremental relative decrements (RΔ)j

(RΔ)i
for each pair

of consecutive dimensions in the ranking (i, j) : j − i = 1, and selects the cutoff
dimension using:

dc = arg max
(i,j)

(RΔ)j
(RΔ)i

.

This behavior is conceptually similar to the adoption of an elbow rule for the
determination of the optimal number of clusters in previous research works [14],
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representing an effective heuristic in such scenarios. At this point, the set of
relevant dimensions is defined as S = {d : (RΔ)dc

< (RΔ)d}.
The whole process described in this subsection is repeated for the three con-

sidered levels: Feature, Time Steps, and Nodes, in a sequential manner. Specif-
ically, as we move from Feature to Time Steps explanations, the subset of rele-
vant features extracted by the Feature Explainer represents the input to the Time
Steps Explainer. By doing so, we are able to focus Time Steps perturbations and
the subsequent operations to the most relevant features, which are fixed. Simi-
larly, the subset of relevant Time Steps returned by the Time Steps Explainer,
represents the input to the Node Explainer, which restricts Node perturbations
to the subset of the most relevant Features and Time Steps, which are fixed by
the previous levels. This choice allows us to reduce the computational complex-
ity of our method, and to reduce the end user’s overhead, providing summarized
and actionable explanations. Overall, our method generates, for each evaluation
sequence, three visual explanations in the form of bar plots, which separately
highlight Feature, Time Steps, and Node relevances.

4 Experiments

In this section, we describe our experimental evaluation. Specifically, in the next
subsections, we first describe the considered datasets and the experimental set-
ting, including the considered competitor systems. Then, we report the obtained
results and discuss them.

4.1 Datasets

The datasets considered in our experiment consist of weather variables (such as
temperature, humidity, etc.) monitored at hourly granularity by sensors placed
on renewable energy plants, located in different geographical areas. In particular,
we consider the following datasets:

– Lightsource. Data observations related to energy production of 7 solar power
plants located in the United Kingdom. Values are aggregated hourly. [7]

– PV Italy. Data collected from 17 photovoltaic power plants. Values are aggre-
gated hourly (from 2:00 AM to 8:00 PM) and are collected during the period
from January 1st, 2012 to May 4th, 2014. More details about data prepro-
cessing steps can be found in [4].

– Wind NREL.Dataset generated using an environmental model by the Weather
Research & Forecasting (WRF). It consists of five power plants obtaining the
time series of wind speed and production. Values are aggregated hourly, and are
observed in the time period Jan 1st, 2005 to Dec 31st, 2006).

For the three datasets, we consider the following features: latitude and lon-
gitude of the different power plant; day and time of the observation; altitude
and azimuth; several weather conditions, including ambient temperature, irra-
diance, pressure, wind speed, and several others. The weather conditions that
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complement the energy production are extracted from Forecast.io, except for
the expected altitude and azimuth, that are extracted from SunPosition, and
the expected irradiance (PV Italy dataset only), that is extracted from PVGIS.

4.2 Experimental Setup

In our experiments, we train a pool of base models (LSTM, GRU, SVD-LSTM,
CNN-LSTM, GCN-LSTM) using all available historical data for the three con-
sidered sensor network datasets. Taking into account the chronological order
of the data, predictions are extracted for the last sequence, and are fed to the
explainer to extract the results. We remark that our explainer is model-agnostic
and therefore does not favor the adoption of any specific model.

For all models, we use the following hyperparameter configuration: Light-
source: {batch size = 16, learning rate = 10−2}, PV Italy and Wind NREL:
{batch size = 16, learning rate = 10−2}. An early stopping criterion with a
patience of 20 epochs is adopted to prevent overfitting. We assess the effective-
ness of the proposed method using popular metrics XAI metrics [26]. Following
the idea that the explanations should identify input features that are relevant for
the model, the Fidelity+ [18] metric highlights the observed change in model pre-
dictions when a subset of the features is removed. On the contrary, the Fidelity−

metric assesses the change in model predictions when relevant input features are
kept and features deemed irrelevant are removed. Both Fidelity+ and Fidelity−

can be applied at the Model level (without any access to the ground truth) and
at the Phenomenon level (comparing model’s predictions with ground truth). In
the following, we use the M and the P subscripts to denote the two variants
applied at the Model and at the Phenomenon levels, respectively. Additionally,
the Sparsity metric indicates the ratio of features selected as important by expla-
nation methods over the entire number of available features. Conceptually, good
explanations should be sparse, since they are able to capture the most relevant
features while ignoring the irrelevant ones.

These metrics allow for the assessment and comparisons of different explain-
ability methods. Specifically, a XAI method that is able to discover relevant
features should present high values of Fidelity+ and low values of Fidelity−.

Fidelity+
M =

1
S

S∑

i=1

∣
∣Ψ (xi) − Ψ ((1 − Mi) � xi)

∣
∣

Fidelity−
M =

1
S

S∑

i=1

∣
∣Ψ (xi) − Ψ (Mi � xi)

∣
∣

Fidelity+
P =

1
S

S∑

i=1

∣
∣ |Ψ (xi) − yi| − |Ψ ((1 − Mi) � xi) − yi|

∣
∣

Fidelity−
P =

1
S

S∑

i=1

∣
∣ |Ψ (xi) − yi| − |Ψ (Mi � xi) − yi|

∣
∣
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Sparsity =
1
S

S∑

i=1

(
1 −

∑Mit,n,f

T · N · F

)
,

where xi denotes a test sequence for evaluation (made of features, nodes, and
timesteps), Mit,n,f

�xi denotes the non-zero entries corresponding to the subset
of relevant dimensions selected by the explanation method for the i-th sequence,
and S denotes the size of the batch of sequences under evaluation.

4.3 Results and Discussion

In Tables 1 and 2 we report all the results obtained in our experiments, comparing
the results obtained with our proposed method with two core baselines. The first
is a Random Forest (RF) model with permutation-based feature importance
as an explanation technique for the feature perspective. Feature importance is
defined as the decrease in the model’s classification performance when a single
feature value is randomly shuffled, and a reduction of performance is a signal
that such a feature is important for the model [2]. For evaluation, we leverage
the same feature importance cutoff approach described in Sect. 3.3 to select the
subset of the most relevant features. The second baseline is a LIME explainer
[19] paired with Linear Regression and Gradient Boosting regression models.
For the latter, we extract one explanation for each timestep and node in the
evaluation sequence, and average the obtained feature rankings. For evaluation,
we choose the 5 features with the highest ranking returned by the explainer.

Results in Table 1 show that our method coupled with either the GCN-
LSTM model or the GRU model achieves a significantly better performance than
RF in terms of Fidelity+ with all three datasets. LIME outperforms all other
approaches in terms of Fidelity+ (Model) with two out of three datasets (Light-
source, PV Italy). Our proposed method (GRU) outperforms LIME with Wind
NREL, while achieving the same results in terms for Fidelity+ (Phenomenon)
with PV Italy1. Such results should be seen as a preliminary investigation that
confirms the correctness and the calibration of the explanations extracted by
our method with respect to classical explainers. While RF and LIME explicitly
optimize explanations for the Feature perspective, our method focuses on the
holistic extraction of multi-perspective explanations also involving Time Steps,
and Nodes, which are neglected by other methods.

Results for the Time Steps and Nodes perspectives are shown in Table 2.
Considering Fidelity+ (Model), the best values for the Features perspective are
observed for LSTM (LightSource - 0.095), CNN-LSTM (0.135 - PV Italy), GRU
(0.242 - Wind NREL). However, considering these results in relationship with
the Sparsity metric, highlights very low values for the first two cases, which is
undesirable in practice. This behavior shows that low Sparsity may facilitate
achieving high results in terms of Fidelity+ (Model), and both metrics should
be considered in combination to properly assess different models. Considering

1 For brevity, we restrict our analysis of the Features comparison to Fidelity+ metrics.
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Table 1. Experimental results and comparison with methods restricted to the analysis
of the Features perspective. High values of F+ (Model/Phenomenon) and low values of
F− (Model/Phenomenon) indicate a better performance. High values of Sparsity are
preferred in combination with satisfactory values of F+ and F−. The best performance
for each metric and dataset is marked in bold.

Model Dataset Model Model Phenom Phenom Sparsity

F+ F− F+ F−

Random Forest
(Feature Importance)

Lightsource 0.023 0.043 0.017 0.043 0.545

PV Italy 0.109 0.107 0.067 0.106 0.583

Wind NREL 0.213 0.224 0.209 0.215 0.250

LIME
(Linear Regression)

Lightsource 0.055 0.066 0.044 0.053 0.545

PV Italy 0.230 0.026 0.093 0.022 0.583

Wind NREL 0.082 0.063 0.079 0.062 0.375

LIME
(Gradient Boosting)

Lightsource 0.082 0.009 0.046 0.008 0.545

PV Italy 0.178 0.018 0.094 0.017 0.583

Wind NREL 0.161 0.036 0.159 0.035 0.375

Proposed

(GCN-LSTM)

Lightsource 0.033 0.081 0.029 0.070 0.909

PV Italy 0.047 0.076 0.044 0.066 0.417

Wind NREL 0.089 0.230 0.083 0.208 0.375

Proposed (GRU)

Lightsource 0.025 0.042 0.019 0.034 0.364

PV Italy 0.116 0.026 0.094 0.024 0.583

Wind NREL 0.242 0.277 0.235 0.248 0.625

the Time Steps perspective, a satisfactory trade-off between Fidelity+ (Model)
and Sparsity is obtained by GRU (0.143 and 0.737 for PV Italy, respectively).
Considering the Nodes perspective, examples of satisfactory trade-offs between
Fidelity+ (Model) and Sparsity are obtained by SVD-LSTM (0.075 and 0.800
for Wind NREL and PV Italy, respectively), as well as CNN-LSTM (0.218 and
0.800 for Wind NREL and PV Italy, respectively).

Moving our focus to Fidelity+ (Phenomenon) the best values for the Features
perspective are LSTM (LightSource - 0.059), CNN-LSTM (0.111 - PV Italy),
GRU (0.235 - Wind NREL). These results confirm what we observed in terms
of Fidelity+ (Model). Considering the Time Steps perspective, a satisfactory
trade-off between Fidelity+ (Phenomenon) and Sparsity is achieved by LSTM
(0.220 and 0.417 for Wind NREL, respectively) and GRU (0.099 and 0.737 for
PV Italy, respectively). From the Nodes perspective, a notable result is GCN-
LSTM (0.134 and 0.600 for Wind NREL), as well as LSTM (0.089 and 0.471 for
PV Italy, respectively).

One general consideration is that, in the presence of large values of Sparsity,
similar values for Fidelity+ and Fidelity− should be regarded as a positive, even
if they deviate from the canonical case of high Fidelity+ and small Fidelity−. The
features identified by the explainer are in this case particularly relevant since,
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Table 2. Experimental results (proposed method - all perspectives). High values of F+
(Model/Phenomenon) and low values of F− (Model/Phenomenon) indicate a better
performance. High values of Sparsity are preferred.

Model Dataset Level Model F+ Model F- Phenom F+ Phenom F- Sparsity

L
S
T
M

Lightsource

Features 0.095 0.037 0.059 0.033 0.091

Timesteps 0.090 0.021 0.038 0.020 0.263

Nodes 0.090 0.028 0.053 0.026 0.143

PV Italy

Features 0.052 0.185 0.049 0.124 0.667

Timesteps 0.161 0.021 0.093 0.020 0.316

Nodes 0.117 0.129 0.089 0.109 0.471

Wind NREL

Features 0.059 0.236 0.056 0.222 0.625

Timesteps 0.236 0.035 0.220 0.035 0.417

Nodes 0.332 0.135 0.311 0.130 0.400

G
R
U

Lightsource

Features 0.025 0.042 0.019 0.034 0.364

Timesteps 0.053 0.011 0.041 0.009 0.632

Nodes 0.081 0.048 0.067 0.042 0.571

PV Italy

Features 0.116 0.026 0.094 0.024 0.583

Timesteps 0.143 0.063 0.099 0.056 0.737

Nodes 0.042 0.103 0.036 0.094 0.706

Wind NREL

Features 0.242 0.277 0.235 0.248 0.625

Timesteps 0.052 0.000 0.052 0.000 0.125

Nodes 0.062 0.154 0.059 0.149 0.600

S
V
D
-L

S
T
M

Lightsource

Features 0.032 0.059 0.027 0.045 0.455

Timesteps 0.030 0.046 0.026 0.034 0.895

Nodes 0.017 0.058 0.015 0.041 0.857

PV Italy

Features 0.066 0.113 0.063 0.101 0.333

Timesteps 0.152 0.002 0.120 0.002 0.158

Nodes 0.060 0.099 0.058 0.088 0.706

Wind NREL

Features 0.140 0.059 0.135 0.048 0.250

Timesteps 0.100 0.017 0.094 0.017 0.542

Nodes 0.075 0.136 0.074 0.129 0.800

C
N
N
-L

S
T
M

Lightsource

Features 0.071 0.046 0.047 0.039 0.455

Timesteps 0.049 0.067 0.039 0.048 0.842

Nodes 0.036 0.101 0.029 0.074 0.571

PV Italy

Features 0.135 0.042 0.111 0.041 0.167

Timesteps 0.149 0.000 0.093 0.000 0.105

Nodes 0.028 0.136 0.027 0.114 0.824

Wind NREL

Features 0.080 0.158 0.074 0.154 0.375

Timesteps 0.061 0.014 0.056 0.014 0.375

Nodes 0.218 0.110 0.212 0.106 0.800

G
C
N
-L

S
T
M

Lightsource

Features 0.033 0.081 0.029 0.070 0.909

Timesteps 0.081 0.008 0.061 0.007 0.263

Nodes 0.011 0.050 0.010 0.041 0.714

PV Italy

Features 0.047 0.076 0.044 0.066 0.417

Timesteps 0.072 0.059 0.064 0.055 0.737

Nodes 0.021 0.070 0.020 0.064 0.706

Wind NREL

Features 0.089 0.230 0.083 0.208 0.375

Timesteps 0.167 0.008 0.162 0.008 0.292

Nodes 0.137 0.067 0.134 0.064 0.600
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Fig. 2. Features, timesteps, and nodes relevance (Lightsource dataset - GCN-LSTM).

when removed (Fidelity+), they generate a numerically similar error to that
obtained when removing all the others (Fidelity−). For example, considering
the Timesteps perspective, an interesting example is GCN-LSTM, where the
value of Fidelity+ (Model) is close to that of Fidelity− (Model) (0.072 and
0.059, respectively) with PV Italy, with a high Sparsity value of 0.737. Similarly,
the value of Fidelity+ (Phenomenon) is close to that of Fidelity− (Phenomenon)
(0.064 and 0.055, respectively). Another case is provided by SVD-LSTM for the
Timesteps perspective, where the value of Fidelity+ (Model) is close to that
of Fidelity− (Model) (0.030 and 0.046, respectively) with Lightsource, with a
high Sparsity value of 0.895. Correspondingly, the value observed for Fidelity+
(Phenomenon) is close to that of Fidelity− (Phenomenon) (0.026 and 0.034,
respectively).

Figure 2 shows the visualizations of the output generated by our explainer
using a GCN-LSTM model2. Notably, our method returns visual explanations for
all three analytical views (Features, Timesteps, Nodes) instead of a single one as
in other approaches, providing an information-rich summary of the relevance of
different aspects for the currently predicted sequence. The visualization is easier
to interpret thanks to the normalization post-processing scheme adopted in our
method. It is also interesting to observe that, for the Timesteps perspective, the
most recent timesteps are highlighted as the most relevant for the prediction.
This behavior is in line with the GCN-LSTM model adopted for this result,
which consists of an encoder-decoder architecture. It is in fact in line with our
expectations that the last encoder steps have more influence for the decoding
phase, while least recent encoder steps present an increasingly reducing influence.
On the other hand, the Nodes perspective provide useful additional highlights,
supporting domain experts in the understanding of which nodes provided the
relevant information for predicting the current time series. The average execution
time of the proposed method was 110 s for the extraction of results for all
perspectives with a single dataset. We note that using different predictive models
does not significantly impact the execution time of our method, as they are pre-
trained and only used for inference.

2 Additional visual artifacts generated by our method (histograms, perturbation plots,
and rank plots) are available at: https://www.rcorizzo.com/graph-xai/.

https://www.rcorizzo.com/graph-xai/
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5 Conclusion

In this paper we tackled the problem of Explainable AI (XAI) in the context
of spatio-temporal graph data. Motivated by the shortcomings of available tab-
ular, image, and graph XAI approaches in this context, we proposed a novel
explainability method specialized for sensor network data observations collected
at regular time intervals and at different locations. Our experiments have shown
that our perturbation-based model-agnostic method is effective in uncovering rel-
evant factors influencing model predictions, generating useful explanations for
multiple analytical views, such as features, timesteps, and nodes. Limitations of
our work include the adoption of metrics that are cumbersome to interpret when
used in isolation and the lack of direct exploitation of fidelity in the explanation
algorithm. In future work, we will address the issue of jointly evaluating XAI
methods from multiple perspectives, through the design of appropriate metrics.
Moreover, we will investigate optimization approaches based on model fidelity.
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Abstract. A scoring system is a simple decision model that checks a set
of features, adds a certain number of points to a total score for each fea-
ture that is satisfied, and finally makes a decision by comparing the total
score to a threshold. Scoring systems have a long history of active use in
safety-critical domains such as healthcare and justice, where they pro-
vide guidance for making objective and accurate decisions. Given their
genuine interpretability, the idea of learning scoring systems from data
is obviously appealing from the perspective of explainable AI. In this
paper, we propose a practically motivated extension of scoring systems
called probabilistic scoring lists (PSL), as well as a method for learning
PSLs from data. Instead of making a deterministic decision, a PSL rep-
resents uncertainty in the form of probability distributions. Moreover, in
the spirit of decision lists, a PSL evaluates features one by one and stops
as soon as a decision can be made with enough confidence. To evaluate
our approach, we conduct a case study in the medical domain.

1 Introduction

Predictive models generated by modern machine learning algorithms, such as
deep neural networks, tend to be complex and difficult to comprehend, and may
not be appropriate in applications where a certain degree of transparency of a
model and explainability of decisions are desirable. Besides, depending on the
situation and application context, time and computational resources for applying
decision models might be limited. For example, a human’s resources to collect,
validate, and enter data might be scarce, or decisions must be taken quickly, in
the extreme case even by the human herself without any technical device.

Therefore, being interested in simple, genuinely interpretable model classes,
we focus on so-called scoring systems in this paper. In a nutshell, a scoring system
is a decision model that checks a set of features, adds (or subtracts) a certain
number of points to a total score for each feature that is satisfied, and finally
makes a decision by comparing the total score to a threshold. Scoring systems
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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have a long history of active use in safety-critical domains such as healthcare
(Six et al., 2008) and justice (Wang et al., 2022), where they provide guidance
for making objective and accurate decisions. Given their genuine interpretability,
scoring systems are appealing from the perspective of explainable AI, which is
why the idea of learning such systems from data has recently attracted attention
in machine learning.

In this paper, we propose a practically motivated extension of scoring systems
called probabilistic scoring lists (PSL), as well as a method for learning PSLs from
data. First, to increase uncertainty-awareness, a PSL produces predictions in
the form of probability distributions (instead of making deterministic decisions).
Second, to increase cost-efficiency, a PSL is conceptualised as a decision list : It
evaluates features one by one and stops as soon as a decision can be made with
enough confidence.

Following a brief overview of related work in the next section, we introduce
PSLs in Sect. 3 and address the problem of learning such models from data in
Sect. 4. To evaluate our approach, we conduct as case study in the realm of
medical decision making, which is presented in Sect. 5, prior to concluding the
paper with an outlook on extensions and future work in Sect. 6.

2 Related Work

In a series of papers, Ustun and Rudin developed the so-called Supersparse Lin-
ear Integer Model (SLIM) for inducing scoring systems from data, as well as an
extension called RiskSLIM (Ustun and Rudin, 2016; 2017; 2019). Their meth-
ods are based on formalising the learning task as an integer linear programming
problem, with the objective to find a meaningful compromise between sparsity
(number of variables included) and predictive accuracy. The problem can then
essentially be tackled by means of standard ILP solvers.

In several applied fields, one also finds methods of a more heuristic nature.
Typically, standard machine learning methods, such as support vector machines
or logistic regression, are used to train a (sparse) linear model, and the real-
valued coefficients of that model are then turned into integers, e.g., through
rounding or by taking the sign. Obviously, approaches of that kind are rather
ad-hoc, and indeed, can be shown to yield suboptimal performance in practice
(Subramanian et al., 2021). From a theoretical perspective, certain guarantees
for the rounded solutions can nevertheless be given (Chevaleyre et al., 2013).

A related research direction is the learning of simple decision heuristics that
are considered plausible from the perspective of cognitive psychology. Again,
however, this is a relatively unexplored field, in which only a few publications can
be found so far—Simsek and Buckmann (2017) collect and empirically compare
some of these heuristics.

Decision lists have been primarily used in inductive rule learning (Fürnkranz
et al., 2012), where each term consists of a conjunction of conditions, which are
sufficient to make a prediction in case the conditions are satisfied, or else con-
tinue with the next rule. They have been shown to generalize both, k-term CNF
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and DNF expressions, as well as decision trees with a fixed depth k (Rivest,
1987). Practically, they represent a simple way for tie-breaking in situations
where multiple rules cover the same example: in that case, the first rule in the
list is given priority. They can be easily learned, as their structure mirrors the
commonly covering or separate-and-conquer strategy (Fürnkranz, 1999), which
learns one rule at a time, typically by appending rules to the list, assuming
that most important rules are tried first, but prepending has also been tried
(Webb, 1994). While rules are typically used for classification, they may also be
viewed as simple probability estimators, using the class distribution among the
covered examples as the basis for various estimation techniques (Sulzmann and
Fürnkranz, 2009). However, these are known to be overly optimistic, because the
way the conditions are selected results in a bias towards the positive examples
during learning (Možina et al., 2018). Also, in decision lists in rule learning, the
probability estimates are derived from the last rule in isolation, practically ignor-
ing all previous rules, whereas, as will be seen later, the probability distributions
in PSLs are successively refined.

3 From Scoring Systems to Probabilistic Scoring Lists

Consider a scenario where decisions need to be made in different contexts, which
are characterised in terms of a set of variables or features F = {f1, . . . , fK}.
A concrete situation is specified by a vector x = (x1, . . . , xK), where xi is the
value observed for the feature fi, and the set of all conceivable vectors of that
kind forms the instance space X . Features can be of various kind, i.e., binary,
(ordered) categorical, or numeric. Decisions are taken from a decision space Y,
which is normally finite, typically comprising a small to moderate number of
alternatives to choose from.

A decision model is a mapping h : X −→ Y, i.e., y = h(x) is the decision
suggested by h in the context x. Note that such models can be represented in dif-
ferent ways. For the reasons already explained, we shall focus on scoring systems
in this paper. In a nutshell, scoring systems consist of a set of simple criteria
(presence or absence of certain characteristics or features) that are checked, and
if satisfied, contribute a certain number of points to a total score. The final deci-
sion is then based on comparing this score to one or more thresholds. Formally,
scoring systems can be seen as a specific type of generalised additive models
(Hastie, 2017) defined over a set of features.

Definition 1 (Scoring system). A scoring system over a set of (binary) can-
didate features F and score set S ⊂ Z is a triple h = 〈F, S, t〉, where F =
{f1, . . . , fK} ⊂ F is a subset of the candidate features, S = (s1, . . . , sK) ∈ SK

are scores assigned to the corresponding features, and t ∈ Z is a decision thresh-
old. For a given decision context x = (x1, . . . , xK), i.e., the projection of an
instance to the feature set F , the decision prescribed by h is given by

h(x) =

�
K∑

i=1

si xi ≥ t

�
, (1)
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where �·� is the indicator function1.

In the following, we generalise scoring systems in two ways: from deterministic
to probabilistic, and from a single decision model to a decision list.

As for the first extension, the idea is to return a probability distribution
over Y instead of a binary decision (1), i.e., to assign a probability p(y) to each
decision y ∈ Y. The latter can be interpreted as the probability that y is the
best or correct decision, which (implicitly) presupposes the existence of a kind of
ground truth. Without loss of generality, we can assume that the ground truth
distinguishes between a class of positive cases and a class of negative cases, and
that the decision is a prediction of the correct class. Therefore, we shall use the
terms “decision” and “class” interchangeably.

We contextualise the distribution p, not directly with x, but rather with the
total score T (x) assigned to x. In other words, we consider conditional probabil-
ities p(·|T (x)) on Y. This appears meaningful and is in line with the assumption
that the total score is indicative of the class—in fact, standard scoring systems
can be seen as a special case, returning probability 1 for the positive class when
exceeding the threshold and probability 0 otherwise.

Definition 2 (Probabilistic scoring system, PSS). A probabilistic scoring
system (PSS) over candidate features F and score set S ⊂ Z is a triple h =
〈F, S, q〉, where F = {f1, . . . , fK} ⊂ F , S = (s1, . . . , sK) ∈ SK , and q is a
mapping Σ −→ [0, 1],where

Σ ..=

{
T =

K∑

i=1

si xi

∣∣∣∣ s1, . . . , sK ∈ S, x1, . . . , xK ∈ {0, 1}
}

is the set of possible values for the total score that can be obtained by any
instance x ∈ X , and q(T ) = p(y = 1 | T ) is the (estimated) probability for the
positive class (y = 1) given that the total score is T (and hence 1 − q(T ) the
probability for the negative class).

Note that an increase in the total score should only increase but not decrease
the probability of the positive decision, so that probabilistic scoring systems
should satisfy the following monotonocity constraint:

∀T, T ′ ∈ Σ : (T < T ′) ⇒ q(T ) ≤ q(T ′) . (2)

This property is again in line with standard scoring systems and appears to
be important from an interpretability perspective: A violation of (2) would be
considered as an inconsistency and compromise the acceptance of the decision
model. Therefore, in the remainder of the paper, we consider only monotonic
probabilistic scoring systems.

Our second extension combines probabilistic scoring systems with the notion
of decision lists. The underlying idea is as follows: Instead of determining all K

1 �P � = 1 if predicate P is true (positive decision) and �P � = 0 if P is false (negative
decision).
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Stage —-0—- —-1—- —-2—- —-3—- —-4—-
Feature – f3 f1 f2 f4
Score – +1 −2 +1 +2
T = −2 − − 0.1 0.1 0.1
T = −1 − − 0.2 0.2 0.1
T = 0 0.3 0.2 0.5 0.6 0.2
T = +1 − 0.4 0.6 0.7 0.6
T = +2 − − − 0.9 0.7
T = +3 − − − − 0.9
T = +4 0.9

Fig. 1. Example of a PSL with feature set F = {x1, x2, x3, x4} and score set S =
{0,±1,±2}.

feature values xi right away, these values are determined successively, one after
the other, in a predefined order. Each time a new feature is added, the total
score T is updated, and the probability q(T ) of the positive class is determined.
Depending on the latter, the process is then continued or stopped: If the prob-
ability is sufficiently high or sufficiently low, the process is stopped, because a
decision can be made with enough confidence; otherwise, the process is continued
by adding the next feature.

Example 1. Figure 1 depicts a PSL with four features F = {f1, f2, f3, f4}. As
can be seen from the assigned scores, all features except f1 are indicative of the
positive class, i.e., the presence of f2, f3 or f4 increases the probability of the
positive class, wheres the presence of f1 decreases the probability.

The decision process starts with an empty feature set and a prior probability
of 0.3 for the positive class. After seeing the first feature f3 with a weight s3 =
+1, the possible scores are T = 0 if the feature does not hold (the value of the
feature is x3 = 0), or T = +1, if x3 = 1. In the former case, the probability for
the positive decision decreases to 0.2, in the latter case it increases to 0.4. The
next feature is f1 with a weight of s1 = −2, resulting in a total of four possible
scores, ranging from T = −2 (if x3 = 0 and x1 = 1) to T = +1 (if x3 = 1 and
x1 = 0). Note that the absence of f3, in this case, may increase the probability of
a positive score to 0.6. Adding the remaining features continues this process, until
we get a diverse set of seven probability estimates (five of which are different)
corresponding to the seven different score values we can obtain for the 24 = 16
possible instances. For example, the instance x = (1, 1, 1, 1) would be assigned
a probability of q(2) = 0.7, based on its total score of T (x) = +2.

Note the monotonicity (2) in the scores in each column (higher score values
result in higher probabilities for the positive decision). Also note that if the final
maximal probability of 0.9 is considered to be sufficiently high for making a
positive decision, the process could already have been stopped after seeing the
first three features for any instance x = (0, 1, 1, ∗), irrespective of its value x4

for the fourth feature f4.

Formally, we can define a probabilistic scoring list as follows:
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Definition 3 (Probabilistic scoring list, PSL). A probabilistic scoring list
over candidate features F and score set S ⊂ Z is a triple h = 〈F, S, p〉, where
F = (f1, . . . , fK) is a list of (distinctive) features from F , S = (s1, . . . , sK) ∈
SK , and q is a mapping

q :
K⋃

k=0

(k,Σk) −→ [0, 1] (3)

such that

∀ k ∈ {0, 1, . . . ,K}, T, T ′ ∈ Σk : (T < T ′) ⇒ q(k, T ) ≤ q(k, T ′) . (4)

Here, Σk is the set of possible values for the total score at stage k, i.e.,

Σk =

{
T =

k∑

i=1

si xi

∣∣∣∣ s1, . . . , sk ∈ S, x1, . . . , xk ∈ {0, 1}
}

.

A value q(k, T ) is interpreted as the probability of the positive decision if the
total score at stage k is given by T .

Note that k = 0 is included in (3). This case corresponds to the empty list,
where no feature has been determined at all. The corresponding value q(0, 0)
can be considered as a default probability of the positive class.

4 Learning Probabilistic Scoring Lists

While standard scoring systems have often been handcrafted by domain experts
in the past, more recent methods for the data-driven construction of scoring
systems aim to achieve a good trade-off between the complexity of models and
the quality of their recommendations (Ustun and Rudin, 2016). This is crucial for
the successful adoption of decision models in practice, as overly complex models
are difficult to analyse by domain experts and impede the manual application
by human practitioners.

Instead of learning standard scoring systems, we are interested in the task
of learning probabilistic scoring lists, i.e., in constructing a PSL h from training
data

D =
{
(xi, yi)

}N

i=1
⊂ X × Y . (5)

This essentially means determining the following components:

– the subset of features to be included and the order of these features;
– the score assigned to each individual feature;
– the probabilities for the resulting combinations of stage and total score.

A first question in this regard concerns the quality of a model h: What do we
actually mean by a “good” probabilistic scoring list? Intuitively, a good PSL
allows for making decisions that are quick and confident at the same time. Thus,
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we would like to optimise two criteria simultaneously, namely, to minimise the
number of features that need to be determined before a decision is made, and
to maximise the confidence of the resulting decision. This compromise could
be formalised in different ways, but regardless of how an overall performance
measure is defined, the problem of optimising that measure over the space of
possible PSLs will be computationally hard (Chevaleyre et al., 2013).

4.1 A Greedy Learning Algorithm

As a first attempt, we therefore propose a heuristic learning procedure that is
somewhat inspired by decision tree learning. Starting with the empty list, the
next feature/score combination (xk, sk) is added in a greedy way, i.e., so as to
improve performance the most2, and this is continued until no improvement is
obtained anymore. To this end, each (remaining) feature/score combination is
tried and evaluated in terms of the expected entropy : Suppose that, after adding
(xk, sk) in stage k, the set of possible values for the total score is Σk. The
expected entropy is then defined as

E =
∑

T∈Σk

NT

N
· H

(
q̂(k, T )

)
, (6)

where N = |D| is the total number of training examples, NT is the number of
training examples with total score T , the q̂(k, T ) are the estimated probabilities,
and H is the Shannon entropy

H(q) = −q · log(q) − (1 − q) log(1 − q) .

4.2 Probability Estimation

As for the estimation of the probabilities q(k, T ), the most obvious idea would
be a standard frequentist approach, i.e., to estimate them in terms relative fre-
quencies PT /NT , where NT is again the number of training examples with total
score T , and PT is the number of examples with total score T and class y = 1.
However, as these estimates are obtained independently for each score T , they
may violate the monotonicity condition (2). A better idea, therefore, is to esti-
mate them jointly using a probability calibration method (Silva Filho et al.,
2021). To this end, the original data D, or a subset Dcal specifically reserved for
calibration (and not used for training), is first mapped to the data

C ..=
{
(T (x), y) | (x, y) ∈ Dcal

} ⊂ Σk × Y ,

to which any calibration method can then be applied. In our approach, we make
use of isotonic regression (Niculescu-Mizil and Caruana, 2005) for that purpose,
2 As the importance of a feature xk, and hence the score sk, can only be decided

relative to other features, the choice of the score for the first feature is ambiguous;
assuming this feature to be important, we given it the largest score possible.
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Fig. 2. Example of calibration with isotonic regression, using the medical data set intro-
duced in Sect. 5. The values on the x-axis correspond to the total scores. As class labels
are either 0 or 1, the data points C are plotted with jittering for better visualisation.

which amounts to finding values q̂(k, T ) solving the following constrained opti-
misation problem:

minimise
∑

(T,y)∈C

(
q̂(k, T ) − y

)2

s. t. ∀T, T ′ ∈ Σk : (T < T ′) ⇒ (q̂(k, T ) ≤ q̂(k, T ′))

An illustration is shown in Fig. 2.
Note that, from a probability estimation point of view, the estimation of

one distribution per total score T ∈ Σk is a meaningful compromise between a
global probability estimate (not taking any context features into account) and a
per-instance estimation, i.e., the prediction of an individual distribution p(·|x)
tailored to any specific instance x. Obviously, the former is not informative
enough, while the latter is very difficult to obtain, due to a lack of statistical
information related to a single point (Foygel Barber et al., 2021). According
to our assumption, all instances with the same total score T share the same
probability. Therefore, those instances in the training data with the same score
form a homogeneous statistical subgroup

DT
..=

{
(xi, yi) ∈ D | T (x) = T

}
,

to which statistical estimation methods can be applied. While this is in line
with other local prediction methods, such as probability estimation trees (PETs)
(Provost and Domingos, 2003), the distinguishing feature here is the way in
which the instance space X is partitioned. For example, compared to PETs,
PSLs appear to have a more rigid structure, because the succession of tests
(features) is fixed and can not vary depending on the value of the features (like
in trees). Moreover, the size of the partition, |Σk|, will normally be smaller than
the (up to) 2k different leaf nodes in a tree (leaves with same scores are merged).
Both factors contribute to the increased interpretability of a single sequence of
k feature tests, as opposed to up to the 2k different paths through a PET.
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4.3 Beyond Probabilities: Capturing Epistemic Uncertainty

Going beyond standard probabilistic prediction, various methods have recently
been proposed in machine learning that seek to distinguish between so-called
aleatoric and epistemic uncertainty (Senge et al., 2014; Hüllermeier and Waege-
man, 2021). Broadly speaking, aleatoric uncertainty refers to inherent random-
ness and stochasticity of the underlying data-generating process. This type of
uncertainty is relevant in our case, because the dependence between total score
T and decision/class assignment y is presumably non-deterministic. Aleatoric
uncertainty is properly captured in terms of probabilities, i.e., by the approach
introduced above.

Epistemic uncertainty, on the other side, refers to uncertainty caused by a
lack of knowledge, e.g., the learner’s uncertainty about the true distribution
p = p(·|T ). In a machine learning context, this uncertainty could be caused by
insufficient or low-quality training data. Obviously, it is relevant in our case, too:
Proceeding further in the decision list, the training data will be more and more
fragmented, because the number of possible values for the total score increases.
Consequently, the estimation q̂ of a conditional probability p(y = 1 | T ) will be
based on fewer and fewer data points, so that the epistemic uncertainty increases
(even if the joint estimation of these probabilities for all scores T alleviates this
effect to some extent).

Representing this uncertainty is arguably important from a decision making
point of view. For example, proceeding in the list and adding another vari-
able may imply that the (predicted) distribution becomes better in the sense of
having lower entropy, but at the same time, the prediction itself may become
more uncertain. In that case, it is not clear whether the current stage should
be preferred or maybe the next one—the answer to this question will depend
on the attitude of the decision maker (toward risk), and probably also on the
application. Interestingly, a method for probability calibration has recently been
proposed that properly represents (epistemic) uncertainty by producing interval-
predictions, and these predictions come with a guarantee of correctness that can
be pre-specified by the user. This method, called Venn-ABERS predictors (Vovk
and Petej, 2014), generalises isotonic regression and can be seen as a special case
of the more general Venn predictors (Vovk et al., 2004).

5 A Case Study in Medical Decision Making

In this section, we present a case study in medical decision making meant as
a first evaluation of our approach. This case study is aimed at the diagnosis of
coronary heart disease.

5.1 Coronary Heart Disease Data

The data set for this case study has originally been used to evaluate the diagnos-
tic accuracy of symptoms and signs for coronary heart disease (CHD) in patients
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presenting with chest pain in primary care. Chest pain is a common complaint
in primary care, with CHD being the most concerning of many potential causes.
Based on the medical history and physical examination, general practitioners
(GPs) have to classify patients into two classes: patients in whom an underlying
CHD can be safely ruled out (the negative class) and patients in whom chest
pain is probably caused by CHD (the positive class).

Briefly, 74 general practitioners (GP) recruited consecutively patients aged
≥35 who presented with chest pain as primary or secondary complaint. GPs took
a standardised history and performed a physical examination. Patients and GPs
were contacted six weeks and six months after the consultation. All relevant
information about course of chest pain, diagnostic procedures and treatments
had been gathered during six months. An independent expert panel of one car-
diologist, one GP and one research staff member reviewed each patient’s data
and established the reference diagnosis by deciding whether or not CHD was the
underlying reason of chest pain. For details about the design and conduct of the
study, we refer to Bösner et al. (2010).

Overall, the data set is comprised of 1199 (135 CHD and 1064 non-CHD)
patients described by ten binary attributes: (f1) patient assumes pain is of car-
diac origin, (f2) muscle tension, (f3) age gender compound, (f4) pain is sharp,
(f5) pain depends on exercise, (f6) known clinical vascular disease, (f7) diabetes,
(f8) heart failure, (f9) pain is not reproducible by palpation, (f10) patient has
cough. Note that, by way of domain knowledge, all these features can be encoded
in such a way that the presence of a feature does always increase the likelihood of
the positive class. Therefore, scoring systems can be restricted to positive scores.

5.2 Expected Entropy Minimisation

Figure 3 visualizes an exemplary run of the greedy learning algorithm for PSLs
with a score set of S = {1, 2, 3}. The algorithm iteratively selects the feature-
score-pair that minimizes the expected entropy, as defined in Eq. 6, in the next
stage. As can be seen, the improvements diminish stage by stage, and almost
vanish after the fifth stage. Interestingly, this result is very much in agreement
with previous studies on this data, and the top-5 features in Fig. 3 exactly corre-
spond to those features that have eventually been included in the the “Marburg
Heart Score” (MHS), a decision rule that is now in practical use.3

As our algorithm minimises expected entropy on the training data in a greedy
way, one may wonder to what extent expected entropy is also minimised globally,
i.e., across all stages. To get an idea, we compared the expected entropy curve
produced by the greedy algorithm with the curves produced by all other PSLs on
the five top-features and with score set S = {1, 2}—a complete enumeration of
the resulting set of PSLs is still feasible. As can be seen from Fig. 4, the greedy
approach (shown in black) performs quite well, at least on this example, and
indeed leads to a globally optimal solution. Needless to say, this result cannot

3 https://www.mdcalc.com/calc/4022/marburg-heart-score-mhs.

https://www.mdcalc.com/calc/4022/marburg-heart-score-mhs
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Fig. 3. Example run of the greedy learning algorithm with the score set S = {1, 2, 3},
showing the decrease in expected entropy for the feature added in each stage (numbers
on the x-axis). Recall that no feature is used at stage zero.

be generalised, but at least suggests that scoring systems can be extended in a
greedy manner without losing too much in performance.

Fig. 4. Evaluation of the greedy learning algorithm (black line) on the top five top-
features from the coronary heart disease dataset. Expected entropy curves are shown
for all PSLs possible on these features and score set S = {1, 2}.

5.3 Expected Loss Minimisation

In medical diagnosis, the consequences of a false negative prediction, i.e., not
treating an ill patient, are typically far more severe than of a false positive. This
asymmetry can be captured by a loss function that assigns a loss of 1 to a false
positive and a loss of M � 1 to a false negative. In the medical domain, this
also goes under the notion of “diagnostic regret”, and various empirical methods
for eliciting preferences in decision-making (i.e., the cost factor M) have been
proposed in the literature (Tsalatsanis et al., 2010; Moreira et al., 2009).

Given M and a prediction p̂ for the positive class (and hence 1 − p̂ for nega-
tive), the risk-minimising decision is given by

ŷ =
{

1 if 1 − p̂ < M · p̂
0 otherwise ,
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Fig. 5. Average loss of the PSLs predictions for each stage of the PSL averaged over
50 MCCV repetitions.

and the (estimated) expected loss itself by E(ŷ) = min{1−p̂,M ·p̂}. This decision
strategy nicely emphasises the importance of (accurate) probabilistic predictions
and, more generally, uncertainty-awareness, in safety-critical domains.

To evaluate our learning algorithm for PSLs in terms of expected loss, we
conducted a Monte Carlo cross-validation (MCCV) with 50 repetitions, each
time using a fraction of 2

3 of the coronary heart disease data as training data
and 1

3 as test data. Missing feature values have been imputed using the mode,
representing the most frequent value of each feature. As a baseline, we also train
a logistic regression (LR) model, using the same features as PSL in each stage.
Note that, compared to PSL, LR is more flexible in the sense that scores are
real-valued and not restricted to (small) integers. On the other hand, it is more
restricted in the mapping from scores to probabilities: In LR, this mapping is
accomplished by a logit transformation, and hence of parametric nature, whereas
the isotonic regression in PSL is non-parametric.

Figure 5 shows the loss for M = 10, averaged over all 50 MCCV repetitions.
The PSL has been configured with three different score sets, S = {1}, S = {1, 2}
and S = {1, 2, 3}. We can see that all three PSL variants perform quite similarly,
with small improvements for larger score sets. Moreover, they are all on a par
with LR, sometimes even a bit better, which is quite remarkable. For all variants,
we observe a monotonic decrease in loss, up until the fifth feature is added.
Again, in the large majority of cases, the five top-features correspond to the
features also included in the Marburg heart score. Adding further features leads
to a slight deterioration for both PSL and LR. As more features increase the
capacity of the learner, this might be due to a standard overfitting effect. Note
that the deterioration is a bit more pronounced for PSL than for LR, which can
be explained as follows: While LR can modulate the influence of any additional
feature in a very flexible way, by appropriately tuning the weight coefficient,
PSL does not have this ability. Instead, it can only weight all features in (more
or less) the same way. Therefore, in cases where adding another feature might
be useful, but with a weight much smaller than the others, it might be better to
omit it completely instead of giving it the same influence as the more important
features.
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As another interesting observation, note that the steepest decrease of
expected loss is observed at the second stage, not at the first stage. Assum-
ing that the first feature is the most important one, this would actually be
expected—more generally, one may expect the loss curve to be convex. Here,
however, the first feature does actually not yield a significant improvement.
This can be explained by the fact that our learning algorithm is not specifically
tailored to the (cost-sensitive) loss used for evaluation. Instead, for the reason of
generality, we deliberately use expected entropy as an optimisation criterion for
constructing a PSL—very much like in decision tree learning. However, as sug-
gested by the experiments, tailoring the learner to a specific loss might be useful
in cases where such a loss is known beforehand and can be given as additional
input to the learner.

6 Summary and Conclusion

In this paper, we introduced probabilistic scoring lists, a probabilistic extension
of scoring systems. Their main advantage and intended use is that they not only
allow one to obtain probability estimates that correspond to the scores of the
underlying scoring system, but that these estimates can be gradually refined by
adding more features. This may, e.g., be important if features are expensive or
time-consuming to obtain, so that rough estimates can be obtained cheaply and
quickly, and be further refined once additional evidence comes in. In particular,
it also allows one to end the decision making process once a certain probability
threshold has been surpassed, thereby allowing a dynamic adjustment of the
number of features needed for a positive or negative decision.

Building on the approach presented in this paper, we plan to address the
following extensions in future work:

– Although the greedy learning algorithm proposed in this paper seems to per-
form quite well, more sophisticated algorithms for learning PSLs should be
developed, including algorithms tailored to specific loss functions.

– We would also like to try other calibration techniques, especially beta ca-
libration (Kull et al., 2017), which is parametric and hence less prone to
overfitting than isotonic regression, but at the same time more flexible than a
logit transform. Likewise meaningful is an extension toward more uncertainty-
aware (“epistemic”) calibration (cf. Sect. 4.3).

– Scoring systems check conditions in the form of binary features, which neces-
sitates a binarisation of numerical or categorical features; this binarisation
should not be done independently as a preprocessing step, but rather be inte-
grated with the learning of scoring systems.

– So far, we only considered the case of binary decisions, which is common
for scoring systems; yet, an extension to decision spaces of higher cardinality
(polychotomous classification) is practically relevant.
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Abstract. Many real-world data sets contain a temporal component or
include transitions from state to state. For exploratory data analysis, we
can present these high-dimensional data sets in two-dimensional maps,
using embeddings of data objects under exploration and representing
their temporal relations with directed edges. Most existing dimensional-
ity reduction techniques, such as t-SNE and UMAP, disregard the tem-
poral or relational nature of the data during embedding construction,
leading to cluttered visualizations obscuring potentially interesting tem-
poral patterns. To address this issue, we introduce Directional Coherence
Loss (DCL), a differentiable loss function that we can incorporate into
existing dimensionality reduction techniques. We have designed DCL to
highlight the temporal aspects of the data, revealing temporal patterns
that might otherwise remain unnoticed. By encouraging local directional
coherence of the directed edges, the DCL produces more temporally-
meaningful and less-cluttered visualizations. We demonstrate the effec-
tiveness of our approach on a real-world multivariate time-series data
set tracking the progression of the COVID-19 pandemic in Slovenia. We
show that incorporating the DCL into the t-SNE algorithm elucidates
the time progression of the pandemic in the embedding and reveals inter-
esting cyclical patterns otherwise hidden in standard embeddings.

Keywords: Temporal-data visualization · Dimensionality reduction ·
Data visualization

1 Introduction

A common method for analyzing the structure of high-dimensional data involves
representing it in two-dimensional, point-based visualizations. We can use dimen-
sionality reduction approaches such as principal component analysis, multi-
dimensional scaling, or t-SNE to obtain such data maps. Additionally, we can
overlay these data maps with arrows indicating temporal dependence between
data points to present temporal relations between data points. This approach has
been used extensively for the visualization of dynamic graphs [4], multi-variate
time-series [1], and gene-expression data [5].
c© The Author(s) 2023
A. Bifet et al. (Eds.): DS 2023, LNAI 14276, pp. 204–215, 2023.
https://doi.org/10.1007/978-3-031-45275-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45275-8_14&domain=pdf
http://orcid.org/0000-0002-6462-9372
http://orcid.org/0000-0002-5864-7056
https://doi.org/10.1007/978-3-031-45275-8_14


Refining Temporal Visualizations Using the Directional Coherence Loss 205

Existing approaches for visualizing temporal data via two-dimensional
embeddings rely primarily on off-the-shelf embedding techniques, which do not
incorporate the temporal aspects of the data. Commonly-used dimensionality
reduction approaches, however, may be semantically constrained. Principal com-
ponent analysis (PCA) [10], for example, relies on the linear transformation of
attribute space and may fail to reveal complex patterns with non-linear inter-
actions of input features. Non-linear data embedding techniques, such as multi-
dimensional scaling [3], t-SNE [6], and UMAP [7], may overcome this limitation
and introduce distortions into the embedding. None of these techniques, however,
explicitly incorporates the available temporal information into the embedding
construction process, resulting in embeddings that fail to reflect or even obscure
the temporal patterns in the underlying data.

This report introduces the directional coherence loss (DCL), which integrates
available temporal information into the embedding construction process. The
result of DCL is embeddings designed to facilitate the discovery of temporal
patterns in the two-dimensional embedding space. The DCL is differentiable, and
we can incorporate it into existing dimensionality reduction techniques. Adding
the DCL to the existing data embedding approach reveals temporal patterns in
the resulting embeddings, aiding in discovering temporal patterns in the data.

2 Related Work

There are a plethora of approaches that we can use for the visualization of
high-dimensional, temporal data. Rauber et al. [11] developed Dynamic t-SNE,
which constructs a series of t-SNE embeddings and stacks them stacked along a
third dimension corresponding to time. A similar approach has been proposed
for UMAP, termed AlignedUMAP [7].

Alternatively, van den Elzen et al. [4] portray the progression of time in two-
dimensional embeddings by connecting data points with arrows. Their approach
focuses on visualizing dynamic graphs. At each point in time, the graph adja-
cency matrix is treated as a high-dimensional data point. This high-dimensional
collection of graph snapshots is subsequently embedded into a two-dimensional
visualization using an off-the-shelf embedding technique. Ali et al. [1] apply
a similar approach to multivariate time-series data, where each sliding time
window is treated as a single high-dimensional data point. In this way, they
embed temporal sequences into two dimensions, where arrows connect consecu-
tive time points. Unlike dynamic t-SNE and AlignedUMAP, which construct a
three-dimensional embedding by stacking multiple two-dimensional embeddings
along a time dimension, these approaches illustrate the entire temporal progres-
sion into two dimensions and indicate dependence using arrows.

In bioinformatics, single-cell RNA velocity [5] may accompany more standard
gene expression data and requires a different visualization approach. Each data
point corresponds to the gene expression of a single cell, characterized by tens
of thousands of genes. Then, for each cell, single-cell RNA velocity estimates the
likely transitions between different cell states, for instance, during differentiation.
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The resulting visualization typically consists of a two-dimensional embedding
constructed using t-SNE or UMAP overlaid with arrows to indicate likely cell-
to-cell transitions. This approach is conceptually similar to van den Elzen et
al. [4] and Ali et al. [1], where we deal only with a single time-step for every cell.

Another notable approach, Time Curves [2], offers general guidelines for visu-
alizing the temporal progression of a single entity. The framework may be viewed
as a generalization of the work by Ali et al. [1], allowing for arbitrary time steps
between snapshots.

3 Methods

Consider a high-dimensional data set X ∈ R
N×d, where N is the number of

data points and d is the dimensionality of each data point. Let G be a directed
graph G = (V,E), where V denotes the set of vertices vi corresponding to
individual data points xi. E is the set of edges eij representing the temporal
connections between data points i and j. When visualizing high-dimensional
data sets, our primary objective is to find a low-dimensional embedding Y ∈
R

N×2 that accurately reflects the topological features of X. In two-dimensional
visualizations, we represent the connections eij as directed line segments pij

(depicted as arrows) linking two related data points i and j in the embedding
space such that pij = [yi, yj ].

3.1 t-SNE

t-distributed stochastic neighbor embedding (t-SNE) is a non-linear dimension-
ality reduction technique commonly used to visualize high-dimensional data [6].
t-SNE aims to find a low-dimensional representation Y such that if two data
points are close in the high-dimensional space X, then they are also close in the
low-dimensional space Y.

Formally, the t-SNE algorithm aims to find a low-dimensional representa-
tion Y∗, such that the Kullback-Leibler (KL) divergence between similarities
P between data points in the high-dimensional space X and the similarities Q
between data points in the low-dimensional space Y is minimized, such that

Y∗ = argmin
Y

KL(P || Q). (1)

The similarities P = [pij ] between data points in X are obtained using the
Gaussian kernel,

pij =
pj|i + pi|j

2N
, pj|i =

exp
(−D(xi,xj)/2σ2

i

)
∑

k �=i exp (−D(xi,xk)/2σ2
i )

, pi|i = 0, (2)

where D is some distance measure and the bandwidth of each Gaussian kernel
σi is selected such that the perplexity u of each conditional distribution matches
a user-specified parameter value,

log (u) = −
∑

j

pj|i log
(
pj|i

)
(3)
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In the low-dimensional representation Y, the similarities Q = [qij ] are charac-
terized by the t-distribution,

qij =

(
1 + ||yi − yj ||2

)−1

∑
k �=l (1 + ||yk − yl||2)−1 , qii = 0. (4)

3.2 Directional Coherence Loss (DCL)

The key idea behind the directional coherence loss (DCL) is that arrows close
to one another in the embedding space should point in approximately the same
direction. Since each arrow is defined as a line segment parameterized by points
yi and yj , we can achieve this directional coherence by adjusting the positions
of points yi and yj accordingly.

Let uij be the unit vector corresponding to the line segment pij = [yi, yj ],

uij = ũij/||ũij ||, ũij = yj − yi (5)

Then, for each pair of edges eij and ekl in E, we can determine the directional
coherence of their corresponding arrows in the embedding by computing the dot
product uij · ukl = ||uij || ||ukl|| cos θ, where θ denotes the angle between the
two vectors. In our case ||uij || = ||ukl|| = 1, so their dot product simplifies to
uij ·ukl = cos θ. When uij and ukl point in the same direction, their dot product
is 1. Conversely, when uij and ukl point in opposite directions, their dot product
is −1. Therefore, to achieve good directional coherence for any pair of arrows in
E, we must maximize the dot product of their corresponding directional vectors.

To make directional coherence compatible with existing dimensionality reduc-
tion loss functions, we convert the directional coherence into a strictly positive
minimization loss. To convert the maximization into a minimization objective,
we multiply the equation with −1. To enforce strict-positivity and avoid negative
penalties, we add a +1 term to the above formulation and shift the domain from
[−1, 1] to [0, 2]. Additionally, we have found it beneficial to square the resulting
equation, leading to faster convergence and more visually appealing visualiza-
tions. The directional coherence loss between edges pair of edges eij and ekl then
becomes

DCL(pij ,pkl) = (− (uij · ukl) + 1)2 (6)

We penalize only nearby arrow pairs in order to enforce the local penalization
of the DLC. The distance between two line segments pij = [yi, yj ] and pkl =
[yk, yl] is defined as

d(pij ,pkl) = argmin
s,t

|| [s · yi + (1 − s) · yj ] − [t · yk + (1 − t) · yl] ||, (7)

where s, t ∈ [0, 1]. Intuitively, their distance corresponds to the distance between
the two closest points on these line segments. If the line segments intersect, then
their distance is 0.
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We penalize nearby arrow pairs using a Gaussian kernel on the obtained
pairwise line-segment distances,

w(pij ,pkl) =
1√
2πσ2

exp
(−d(pij ,pkl)/2σ2

)
, (8)

where σ2 is the variance of the Gaussian distribution. The variance σ2 determines
the region around each arrow where we wish the arrows to point in the same
direction. This parameter can greatly affect the final embedding, as a large value
of σ2 will enforce the DCL across the entire embedding. In contrast, small values
of σ2 will have a limited effect on the point positions. It is also worth noting
that this parameter should depend on the scale of the embeddings, which can
change during optimization and vary across different dimensionality reduction
algorithms. In our experiments, we use σ2 = 1.

Combining the directionality penalty from Eq. 6 and the weights from Eq. 8,
we obtain the final directional coherence loss,

LDCL =
1

(|E|
2

)
∑

eij∈E

∑

ekl∈E

w(pij ,pkl) (− (uij · ukl) + 1)2 , (i, j) �= (k, l). (9)

We can incorporate the DCL loss into various dimensionality reduction meth-
ods. In our case, we augment the t-SNE algorithm with the DCL loss,

L = Lt-SNE + λLDCL (10)

where λ is the trade-off parameter between the two loss functions. In our exper-
iments, we used λ = 10.

4 Results and Discussion

Below, we demonstrate the conceptual idea and expected results of our approach
using a toy example. Additionally, we include a real-world case study on the
progression of the COVID-19 pandemic in Slovenia. We conclude this section
with a discussion of the potential shortcomings and limitations of the proposed
approach.

4.1 Toy Example

We first consider a toy example to demonstrate that adding the DCL to the
t-SNE dimensionality reduction algorithm elucidates trajectories or transitions
between different clusters. This synthetic data set consists of seven distinct,
non-overlapping clusters at equal distances from one another, each contain-
ing 50 points sampled from unit-Gaussian distributions. To simulate transitions
between clusters, we connect each point from a given cluster c to a randomly
chosen point from the subsequent cluster c+1. The data points in the last cluster
from a sequence of connected clusters are connected to the data points from the
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first cluster. This toy example can be thought of as a cyclic process containing
seven distinct states where transitions are only possible between adjacent states.
This may correspond to, for instance, single-cell data containing gene expression
profiles corresponding to four different cell-cycle states in cell division.

We optimize the embedding using batch gradient descent as implemented
in pytorch [9] for 10,000 iterations using a learning rate of 10. We use
ReduceLROnPlateau to reduce the learning rate once the loss has not improved
for 3,000 iterations. We use a perplexity value of 30 in the t-SNE loss function.

Standard t-SNEa b t-SNE with DCL
t-

SN
E 

2

t-SNE 1

t-
SN

E 
2

t-SNE 1

Fig. 1. The toy example demonstrates that incorporating the directional coherence loss
(DCL) can help highlight the temporal transitions between data points. We construct
a standard t-SNE embedding in (a), which can recover the seven distinct clusters.
However, the arrows between clusters cross over one another, making it challenging to
observe the underlying cyclic pattern. Incorporating the DCL in (b) helps untangle
the crossing arrows and highlights the cyclic pattern in the underlying data set while
still recovering the seven clusters.

Figure 1a shows that while t-SNE can recover the seven distinct clusters from
the high-dimensional space, overlaying the embedding with arrows clutters the
visualization, concealing the cyclic pattern in the underlying data set. On the
other hand, augmenting the standard t-SNE loss function with the DCL untan-
gles the arrows and highlights the cyclic pattern as shown in Fig. 1b. Combin-
ing the t-SNE dimensionality reduction algorithm, which can identify the dis-
tinct clusters, with the DCL, which positions the clusters so that the transitions
between the clusters are most apparent, considerably enhances the interpretabil-
ity of the embedding and the underlying temporal pattern.

The t-SNE algorithm aims to preserve distances to a user-specified num-
ber of neighbors. However, accurately preserving distances obtained from high-
dimensional data sets in a two-dimensional embedding is only possible in some
of the most straightforward data sets. Using a perplexity value of 30, t-SNE
does its best to preserve distances to each point’s 30 nearest neighbors in the
high-dimensional space. However, t-SNE also attempts to preserve distances to
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other data points, albeit to a much lesser extent. In our synthetic data set, each
cluster comprises 50 data points, meaning that, in addition to the points in the
same cluster, t-SNE also attempts to preserve at least some distances from the
other clusters. In Fig. 1a, the purple cluster is positioned centrally to other clus-
ters, roughly at equal distances from the remaining clusters. Here, t-SNE can
preserve the distances reasonably well. On the other hand, the top-left yellow
cluster appears close to the central purple cluster and the light-green cluster
below it, suggesting that these clusters are closer to one another than to, for
instance, the right-most green cluster. However, by design, all seven clusters are
at equal distances from one another in the high-dimensional space and cannot
be accurately embedded in a two-dimensional plane. Consequently, the between-
cluster distances in all nearest-neighbor-based two-dimensional embeddings are
often meaningless and should never be taken at face value. This is a general
limitation of dimensionality reduction techniques and has been documented in
numerous reviews, e.g., by Nonato and Aupetit [8].

Note, however, that incorporating the DCL necessarily reduces the embed-
ding quality regarding the t-SNE loss function. For instance, although the dis-
tances between clusters were poorly preserved in Fig. 1a, the between-cluster
distance distortions were arguably less severe than in Fig. 1b, where each cluster
is closest to its preceding and subsequent cluster, and progressively further from
the remainder. This layout indicates that adjacent clusters are more similar than
non-adjacent ones when, in reality, all clusters are at equal distances from one
another. Nonetheless, despite this embedding being quantitatively worse at pre-
serving distances between clusters, we argue that it provides a more informative
visualization. When constructing embeddings for high-dimensional data sets, dis-
tances between clusters in the embedding should never be taken at face value,
regardless of the dimensionality reduction technique. While the spatial relation-
ships between clusters can aid in hypothesis generation, they should always be
validated using alternative techniques.

Given that the spatial relationships between clusters lack informative value
and can even mislead, it would be more sensible to position clusters in a tem-
porally coherent manner. In this way, at least, the temporal relationships are
more clearly highlighted, and the user is more directly aware of the limitations
of interpreting spatial relationships, an often overlooked limitation of non-linear
dimensionality methods. This way, the embedding algorithm can still recover
well-defined clusters of data points in the high-dimensional space. Still, we explic-
itly decide that the spatial positions will reflect the temporal component of the
embedding and not the spatial relationships between clusters.

4.2 COVID-19 Pandemic in Slovenia

We obtain Slovenian national data on the COVID-19 pandemic spanning from
the beginning of March 2020 up until the end of March 20221. Although the data

1 National Slovenian data on the COVID-19 pandemic is available at https://covid-
19.sledilnik.org/en/stats.

https://covid-19.sledilnik.org/en/stats
https://covid-19.sledilnik.org/en/stats
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includes many variables, we limit our analysis to three time-series variables: the
daily number of tests performed, the daily number of confirmed cases, and the
daily number of hospital patients. We plot the individual time series in Fig. 2a.
The line plots indicate the progression of the COVID-19 pandemic in Slovenia,
with visible distinct phases of the pandemic.

To construct a two-dimensional visualization of the pandemic progression
through time, we follow the approach from Ali et al. [1]. We first convert this
multi-variate time series into a high-dimensional data set by constructing vectors
from a sliding window with window size 7. Thus, the 160 21-dimensional data
points represent one week of the pandemic. We connect data points correspond-
ing to subsequent weeks with arrows.

We construct a t-SNE visualization of the high-dimensional data set in
Fig. 2b. While the plot indicates a clear progression through time, the plot fails
to reveal any underlying patterns in the data. Figure 2c depicts the results of our
approach. While the embedding has not changed much structurally, the visual-
ization reveals two clear cyclic patterns in the upper-right and lower regions of
the embedding space.

We investigate the top-right cyclic pattern in Fig. 2c. Inspecting the two
corresponding time spans highlighted in the original time series in Fig. 2a, it
appears that this cyclic pattern coincides with high hospitalization rates, mod-
erate levels of testing, and a moderate number of positive tests. Interestingly,
both periods occurred during the spring season, one in 2021 and one in 2022.
The first of these periods was substantially longer, lasting to the end of May,
while the second lasted only a month and a half. It is also interesting to inspect
which COVID-19 variants were prevalent in the country at that time2. During
the first period in 2021, we were dealing with the initial 20A strain. The second
period coincides with the transition from the Delta strain to the Omicron strain.
The highlighted region in Fig. 2a corresponds to the final weeks of the Delta
variant, which had higher mortality rates than the Omicron variant [12]. These
strain prevalence and dynamics may explain the subsequent peak in the positive
test cases and lower hospitalization rate following the highlighted region.

Finally, adding the DCL to the t-SNE algorithm elucidates the time progres-
sion of the time series. For instance, in Figs. 2e and 2e, we focus on a particular
region of the embedding space, where it first appears as though the standard
t-SNE embedding better highlights the temporal progression than with the addi-
tion of the DCL. Upon closer inspection, however, it is challenging to trace the
arrows denoting the temporal progression of the pandemic as the arrow seems
to veer off to the right, then cycle back, only to make another cycle back to the
originating point. It is unclear which of these cycles occurred first and which
second. With the addition of the DCL, it becomes easy to trace the temporal
progression, as indicated by the red arrow drawn on top of the arrows to facilitate
reading the embedding.

2 The prevalence of the different COVID-19 variants in different countries is available
at https://covariants.org/per-country.

https://covariants.org/per-country
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Fig. 2. We plot the progression of the COVID-19 pandemic in Slovenia from March
2020 to March 2022. (a) depicts individual line plots of the three variables under con-
sideration. We construct a t-SNE embedding of the multivariate time series in (b) and
augment the t-SNE loss function with our directional coherence loss in (c). Individual
points correspond to one week of the time series. We indicate the chronological progres-
sion by point colors where dark, purple colors correspond to the start of the pandemic,
while lighter, yellow colors coincide with later stages of the pandemic. We connect
consecutive weeks by arrows. Incorporating the directional coherence loss uncovers
interesting temporal patterns in the visualization. We highlight one such cyclic region
in (d) and mark the corresponding time spans in the original line plots. Panels (e) and
(f) provide close-up views of regions of the original and augmented t-SNE embedding.
We clarify the time progression by superimposing a red arrow onto the plot.
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4.3 Hyperparameter and Evaluation Considerations

Incorporating the DCL into existing algorithms introduces two additional hyper-
parameters to the visualization procedure. The kernel bandwidth σ determines
the radius in which the DCL is enforced. A larger bandwidth emphasizes global
coherence, while a lower value results in more locally consistent arrows. Addition-
ally, the parameter λ determines the trade-off between the visualization loss and
the DCL. Placing a greater emphasis on temporal coherence highlights temporal
progression, enabling a clearer visualization of temporal dependencies. However,
this may obscure the underlying structure in the resulting visualization. There-
fore, finding optimal parameter settings for the DCL is crucial to achieving a
well-balanced visualization and likely varies from dataset to dataset.

We evaluate our approach using a toy dataset designed to illustrate the con-
ceptual motivation behind our method. While this example supports the validity
of our approach, real-world data may not display such straightforward temporal
patterns. For a more comprehensive evaluation, we could create other synthetic
datasets to test various scenarios and temporal patterns. While we could also
apply our approach to real-world, multivariate time-series data, the interpre-
tation of such study outcomes might be subjective. An ideal evaluation would
involve an objective measure of visualization quality. However, devising such
a quantitative metric is challenging even for non-temporal, two-dimensional
embeddings. Adding temporal coherence to this metric introduces additional
complexities and challenges.

5 Conclusion

The work presented here was motivated by the difficulties of identifying temporal
patterns in presentations of multi-variate data in a low-dimensional, non-linear
embedding. There, we may expose the temporal relations using arrows to indicate
the transitions. These visualization elements often clutter the data presentations
and obscure the underlying temporal patterns. Existing dimensionality reduction
techniques do not account for the temporal nature of the data. To this end,
we propose the directional coherence loss (DCL), which can be incorporated
into existing dimensionality reduction techniques. Uniquely, the DCL explicitly
integrates the temporal information into the embedding construction process
and produces embeddings highlighting the temporal patterns in the underlying
data more clearly.

This presented work opens up several avenues for future research. First, the
DCL enforces directional coherence by affecting the positions of the data points
in the two-dimensional embedding. While this approach is viable for simpler
data sets, such an arrangement may be difficult to achieve in the presence of
more complex patterns. Secondly, the DCL is applicable when the arrows begin
at one data point and end at another. This is not the case in data such as
those from bioinformatics that include RNA velocity, where arrows originate
from data points but end in an average position of multiple data points. The
DCL must be extended to make it applicable to this case. Thirdly, in its current
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form, the DCL exhibits quadratic scaling in the number of connections between
data points, making it unsuitable for visualizing large data sets. Due to the local
nature of the DCL, approximation schemes could be developed which would
only compute the interaction between nearby line segments. Lastly, we could
find better optimization schemes leading to faster convergence.
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Abstract. Explaining AI-based clinical decision support systems is cru-
cial to enhancing clinician trust in those powerful systems. Unfortunately,
current explanations provided by eXplainable Artificial Intelligence tech-
niques are not easily understandable by experts outside of AI. As a conse-
quence, the enrichment of explanations with relevant clinical information
concerning the health status of a patient is fundamental to increasing
human experts’ ability to assess the reliability of AI decisions. There-
fore, in this paper, we propose a methodology to enable clinical reasoning
by semantically enriching AI explanations. Starting with a medical AI
explanation based only on the input features provided to the algorithm,
our methodology leverages medical ontologies and NLP embedding tech-
niques to link relevant information present in the patient’s clinical notes
to the original explanation. Our experiments, involving a human expert,
highlight promising performance in correctly identifying relevant infor-
mation about the diseases of the patients.

1 Introduction

Recent efforts in Artificial Intelligence (AI) have shown great potential in helping
physicians in several of their daily clinical practices, for example, the interpre-
tation of medical scans [30] and the accurate assessment of prognosis [9] and
treatment recommendation [5]. While some worries have been raised about AI
systems replacing the role of doctors, human reasoning and oversight remain
indispensable for the proper functioning of such systems [10]. Indeed, current
AI applications focus on narrow tasks and have been shown to be sensitive
to adversarial attacks [23] and biased datasets and algorithms [26]. These short-
comings raised several concerns about the trustworthiness of such systems, espe-
cially because most state-of-the-art AI-based solutions are hardly interpretable
by humans. The transparency of AI systems in high-stakes domains such as
healthcare has been subject to many recent European regulatory efforts like the
GDPR and the recent proposal to regulate AI (AI Act).

For example, the European General Data Protection Regulation (GDPR),
which came into full effect in May of 2018, prescribes providing the data subject
of any automated decision-making process with “meaningful information about
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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the logic involved, as well as the significance and the envisaged consequences
of such processing for the data subject” [14]. Furthermore, the recent proposal
for a European regulation of AI (AI Act) prescribes high-risk AI systems to be
developed in such a way that they enable users to interpret their output cor-
rectly and use them appropriately [15]. In response to these ethical and legal
issues, in the past years, the research community has been very active in devel-
oping several techniques to explain the reasoning of black box AI models, i.e.,
models whose internal decision-making process is obscure. The research field
that studies the interpretability of AI systems is that of eXplainable Artificial
Intelligence (XAI) [4]. Most XAI techniques offer interpretations of the black
box behaviour by providing explanations, i.e., interfaces between humans and
algorithms that allow the user to understand the AI decision-making process.
Developing AI systems able to support medical decision-making requires creating
appropriate human-computer interfaces to enable clinical reasoning. However,
most XAI explanations are designed to provide insights on model behaviour to
AI developers [3].

In this paper, we present a novel methodology that exploits access to the
patient’s clinical notes and the domain knowledge encoded in medical ontolo-
gies to semantically enrich the explanations provided by a state-of-the-art XAI
technique for clinical decision support systems (DSS). While the original expla-
nation considers only patient features that the AI algorithm received as input,
our methodology exploits medical ontologies to link such features to an exter-
nal source of knowledge on the patient. The result is an augmented explanation
that allows the physician to reason over the clinical context. Our experiments,
involving a human expert, show promising performance in correctly identifying
relevant information about the diseases of the patients.

The paper is structured as follows. In Sect. 2 we briefly present the field of
XAI, its applications in the healthcare context and the related uses of ontologies.
In Sect. 3 we formalize the problem we address in the paper, while in Sect. 4 we
describe the details of our methodology. Section 5 presents the experiments used
to validate our methodology. Finally, in Sect. 6 we discuss our results and we
present our ideas for future developments of our methodology.

2 Related Work

In this section, we overview some research work linked to our methodology.

XAI in Healthcare. XAI research studies how to provide explanations for AI
systems behaviour in human-understandable terms [4]. The need for XAI tech-
niques stems from the fact that many AI systems have an opaque internal rea-
soning process, i.e., they are considered black boxes. In the literature, the trans-
parency of AI systems is achieved mainly in two ways: by building transparent-
by-design models and by extracting explanations from black box models [16].
Some examples of transparent-by-design models employed in healthcare are mod-
els that allow the visualization of the relationships between input features and
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model output [6] and case-based reasoning models where the decision-making
process is entirely interpretable [2]. However, it is not always possible to build
transparent-by-design models for the task at hand. Therefore it might be nec-
essary to extract explanations from black box models. The two most known
examples of such XAI techniques are LIME [27] and SHAP [22]. While LIME
trains a local linear model on a feature space neighbourhood of the data point
to be explained and uses its weights as a local explanation for the model classi-
fication, SHAP assigns to each feature an importance value using a game theory
approach. In the healthcare field, an example of an explainer is MARLENA [25],
a model-agnostic solution to explain classifiers that perform multi-label tasks
such as multi-morbidity classification or unknown genes functional expressions.
Another example is Doctor XAI [24], the XAI algorithm employed in our experi-
ments which we detail in the next paragraph. However, none of these works really
takes into consideration end-user needs and domain expertise in the design of
their explanations.

Some examples of transparent-by-design models employed in healthcare are
the ones presented in [6] and [2]. In [6], the authors use Generalized Additive
Models (GAM) with pairwise interactions to predict the probability of 30-days
readmission to the hospital and the probability of death from pneumonia. GAM
allows the visualization of the relationships between single and pairs of input fea-
tures with the output, enabling the user to inspect what the model has learned.
In [2], the authors develop a case-based interpretable Deep Learning model to
classify mass lesions in mammographies. The case-based reasoning, highlighting
the classification-relevant parts of the image used to make the decision, makes
the model interpretable. However, it is not always possible to build transparent-
by-design models for the task at hand. Therefore it might be necessary to extract
explanations from black box models. The type of XAI technique that we employ
in this paper is post-hoc and model-agnostic. Post-hoc XAI techniques extract
explanations from trained models, and model-agnostic ones can extract such
explanations from any type of black box model because they do not use any of
its internal parameters in the explanation extraction process.

This kind of XAI techniques are agnostic w.r.t. the black box model, however,
they are not agnostic w.r.t. the type of input and output data processed by the
model. Therefore, they are considered specific for healthcare when they are able
to deal with the peculiarities of healthcare data.

Doctor AI and Doctor XAI. In this paper we semantically enrich the expla-
nations of Doctor XAI, which is a post-hoc model-agnostic XAI technique able
to deal with multi-label classification tasks and ontology-linked sequential data.
Doctor XAI exploits medical ontologies in its explanation extraction process.
Once the user selects one data point whose outcome needs an explanation, Doc-
tor XAI first finds a set of semantically close neighbours of that data point from
a set of available instances by employing an ontological distance metric. Then, it
augments such neighbourhood by ontologically perturbing the neighbour’s data
points, i.e. it masks ontologically similar features and queries the black box on
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such perturbed data points. Finally, it learns a multi-label decision tree on such
an augmented neighbourhood and extracts an explanation from it in the form
of a decision rule matching the decision path for that data point on the tree.

Doctor XAI is used to explain the outcomes of Doctor AI [12], a Recurrent
Neural Network (RNN) trained on the sequential representation of patients’
clinical histories encoded using International Classification of Diseases (ICD)
codes. Doctor AI predicts patients’ next clinical events, i.e. the set of diseases
(represented as ICD codes) that each patient will have in future visits to the
hospital.

Therefore, we use it in our experiments as clinical DSS and study how to
improve Doctor XAI explanations of Doctor AI predictions to enable clinical
reasoning.

Ontologies Use in XAI. Some XAI works already explored how to use ontolo-
gies (or knowledge graphs) to improve the explanation process or to tailor expla-
nations to specific user needs or characteristics. Besides Doctor XAI, also the
authors of Trepan Reloaded [13] use the ontology in the explanation extraction
process. In particular, they use ontology to constrain the training of the decision
tree acting as a local interpretable model. Closer to our research, other works
use ontologies to tailor the explanation to user-specific needs [7,21]. The authors
of [8] use an ontology that encodes all types of explanations to find the most
appropriate one for user questions.

In [28] the authors use an ontology to customize the explanation to user
needs. However, to the best of our knowledge, ours is the first attempt to enrich
explanations of clinical DSS to enable clinical reasoning and the first method
that extracts sentences from clinical notes guided by ontology and ICD-9 codes
(the ninth revision of ICD). We are aware of the existence of semantic annotation
tools like [1], and [19]. However, our method is different, and it does not tag each
sentence in the clinical note with a corresponding entity. Our method highlights
only the relevant sentences of the note based on the associated ICD-9 codes and
the relations extracted from the ontology. This difference did not allow us to
compare our method with the already existing tools.

3 Problem Statement

Our aim is to use medical ontologies and external sources of medical knowledge
to semantically enrich the explanation provided by state-of-the-art explainabil-
ity techniques for clinical DSS. In particular, we are interested in augmenting
explanations, that consider only the features given as input to the model, with
external sources of knowledge in order to present to the end-user the complete
clinical picture relevant for a particular algorithmic decision and enabling clin-
ical reasoning. We focus our effort on the post-hoc explanations provided by
Doctor XAI [24] and use clinical notes representing the patient’s discharge sum-
mary as an external source of knowledge. We have already presented Doctor
XAI in Sect. 2 and now we provide more details on its explanations. In Fig. 1, we
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Fig. 1. An example of Doctor XAI Explanation.

show an example of an explanation of a Doctor AI outcome for a patient having
three visits. Each visit is represented by a set of ICD-9 codes and the explana-
tion for the multi-label classification provided by Doctor AI is the decision rule
depicted in the bottom right. Each conjunction of the rule premise follows the
following pattern: ICD code ≷ threshold value. Here, the threshold value is a
split value assigned by a decision tree to that ICD code. The internal encod-
ing of Doctor XAI allows giving a temporal interpretation of such value, e.g.,
threshold value = 0.5 means that the ICD code was present in the last visit.
At the top of the image, we have a more readable representation of the explana-
tion. The ICD-9 codes of the patient’s clinical history identified as meaningful
by Doctor XAI have been coloured to enhance the readability. However, the final
user who wants to exploit this explanation has to analyse the description associ-
ated with each highlighted code and derive the possible relationships and their
meaning. Furthermore, the explanation does not provide any information on the
clinical context of the patient. The method we are proposing aims to enrich the
Doctor XAI explanation with information derivable from clinical notes associ-
ated with each visit and written by nurses and physicians.

Our methodology enriches such an explanation by highlighting the parts of
the patient’s clinical notes mostly correlated with the ICD-9 codes and uses
medical ontologies to identify if, in that clinical note, there are references to
clinically relevant information such as the ICD-9 description, the parts of the
body affected by the disease, its causes and its effects.

4 Methodology

Our methodology exploits the SNOMED-CT medical ontology [29] to seman-
tically enrich XAI explanations. The SNOMED-CT ontology contains a com-
prehensive representation of clinical healthcare terminology including diseases,
symptoms, signs, diagnoses, medications and procedures. Our methodology first
finds all the SNOMED-CT concepts related to each ICD-9 code in the explana-
tion, then it selects some clinically relevant ontological relationships associated
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with these concepts (more details in Sect. 4.1), and finally uses clinical embed-
dings to find the parts of the patient’s clinical note most related to these relation-
ships and highlights them on the clinical note itself (more details in Sect. 4.2).
A bird-view of our methodology is provided in Fig. 2b. In Fig. 2a we show an
example of some of the concepts and relations contained in the SNOMED-CT
Ontology. In particular, for the concept “Bacterial Pneumonia” we have two
different relations, the Finding Site, which is “Lung Structure”, and the Due to
which is “Bacteria”. Note that all the diseases are also involved in a Parent-Child
relation where the parent node represents a more general disease than the child
e.g. “Pneumonia” is more general than “Infective Pneumonia”.

4.1 SNOMED-CT Relationships Extraction

Each ICD-9 of the explanation has a one-to-many mapping to the concepts
in the SNOMED-CT ontology. For example, consider the ICD-9 code 707.15,
which stands for “Ulcer of other part of foot”. This code is mapped to a set of
SNOMED-CT concepts such as “Ulcer of foot”, “Ulcer of big toe” and “Diabetic
foot”. For providing the clinician with the most accurate clinical context related
to the decision, we first consider all of these possibilities and for each of them,
we extract all the relevant clinical information. We focus on three SNOMED-
CT ontological relationships: (a) Finding Site, i.e., the body site affected by a
condition; (b) Associated Morphology, i.e., the morphological changes seen at the
tissue or cellular level that are characteristics of a disease; and (c) Due to, i.e.,
the cause of the clinical finding, might be another clinical finding or a procedure.

More formally, we define a function g that given an ICD-9 code cd and the
SNOMED-CT ontology O returns the corresponding set of the SNOMED-CT
concepts SC, i.e., g(cd,O) = SC. Then, starting from the set of concepts SC,
our method navigates the SNOMED-CT ontology and derives:

– A set of descriptions D = ∪s∈SCds, where each ds is the description associated
with the SNOMED-CT concept s;

– A set of finding sites F = ∪s∈SCFs, where Fs = f1
s , f2

s , . . . , fn
s is the set of

finding sites associated with the SNOMED-CT concept s;

Fig. 2. (a) SNOMED-CT Ontology relationships and (b) Bird-view of our methodology.
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– A set of associated morphology caused by the disease M = ∪s∈SCMs, where
Ms = m1

s,m
2
s, . . . , m

k
s is the set of associated morphology associated with the

SNOMED-CT concept s;
– A set of causes of the disease C = ∪s∈SCCs, where Cs = c1s, c

2
s, . . . , c

h
s is the

set of causes associated to the SNOMED-CT concept s.

We denote by f ∈ F , m ∈ M and c ∈ C any of the finding sites, associated
morphology and causes extracted from the ontology.

4.2 Information Extraction from Clinical Notes

We exploit biomedical word embeddings to encode the description of each clini-
cally relevant piece of information found in the previous step and find the most
similar piece of text in the clinical note associated with the patient. Given an
ICD-9 code and a clinical note N , our methodology, by using the function g
(defined above), first extracts from the ontology O the set of descriptions D
related to the concepts SC in SNOMED-CT, or the corresponding sets of find-
ing sites F , associated morphology M , causes C. Then, for each ds ∈ D, f ∈ F ,
m ∈ M or c ∈ C To this end, we use a sliding window of length r that generates
a set of word sequences W composed of r contiguous words that can be used
to represent the note N . We then embed each element of W obtaining the cor-
responding set of pairs 〈embedding, sentence〉 denoted by E. We also compute
the embedding for each ds, f ∈ F , m ∈ M , or c ∈ C and for each of them
we identify the most similar embedded sentence Ew corresponding to the pair
〈E w,w〉 ∈ E.

We use the cosine similarity metric to compute a similarity score between
these embeddings and those generated using the sliding window. Given two
embeddings A and B, the similarity is computed as follows: Similarity =

A·B
||A||||B|| . Thus, we obtain that each element of D, F , M and C is associated
with the most similar sentence of the note and a similarity score i.e., we have
four score vectors Dscore, Fscore, Mscore and Cscore.

To identify the descriptions in D, the finding sites in F , the associated mor-
phology in M and the causes in C referred to in the note N , we select from these
sets only the elements with a similarity score higher than a threshold τ . In our
experiments, the threshold τ is computed as the 90th percentile of the score vec-
tors. We compared several thresholds. In the end, we chose the one that allows us
to have the highest number of correctly highlighted sentences. By highlighting all
the sentences of the discharge summary having T scores ≥ τ , we present to the
end-user only the information relevant to the patient under study.

The length r of the sliding window has a clear impact on the embedding-
based representation of each note and on the resulting parts of the text that
are associated with specific concept descriptions, finding sites, etc. We propose
to select for each type of relationship the more appropriate r value by using
a data-driven approach. In particular, it finds the suitable r value for a given
relationship type by testing several sliding window length values on a separate
set of clinical notes and by selecting the value leading on average to the highest
similarity score.
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5 Experiments and Results

In this section, we experimentally show the ability of our approach to identify
the correct sentences of the patient’s clinical notes for explanation enrichment.1

We carried out two types of experiments with the help of a human expert.
In the first experiment, the human expert manually annotated a set of clinical
notes with the ICD-9 descriptions and their relevant ontological relationships.
This allowed us to build a ground truth for the automatic extraction of our
methodology. In the second experiment, we used our methodology to extract
the sentences from another set of clinical notes and then, we asked the human
expert to validate whether the identified sentences were correct.

5.1 Dataset

We tested our methodology on the Medical Information Mart for Intensive Care
database (Mimic-III) [18]. This dataset contains de-identified data of approxi-
mately 40.000 patients collected between 2001 and 2012 in the Beth Israel Dea-
coness Medical Center data in Boston. Data is stored in 26 different tables; in
particular, we used the NoteEvents table which contains all the clinical notes
written by nursing and clinicians during a patient’s stay in the hospital.

Note Cleaning. We applied a pre-processing to the clinical notes to clean them
and reduce noise: we have lower-cased the text; we have removed numbers; we
have substituted odd characters with space; we have removed stopwords; we have
removed the punctuation; and we have replaced the contractions in the text with
an extended form using a dictionary of possible contractions.

5.2 Implementation Details

We trained Doctor AI for 50 epochs, splitting MIMIC-III using 70% of its
patients as a training set, 15% as a validation set, and 15% as a test set. We then
used Doctor XAI as detailed in the original paper. To navigate the ontology, we
used a Python Library called PyMedTermino [20]. For the embedding of the
clinical notes’ sentences, we used three different methods:

– BioWordVec [31], a pre-trained word embedding for biomedical natural lan-
guage processing trained on PubMed and Mimic-III;

– ClinicalBert [17], a Bert based embedding trained on Mimic-III;
– and BioSentVec [11], a biomedical sentence embedding with sent2vec trained

on Mimic-III and PubMed.

1 Code available at: https://github.com/lucacorbucci/Semantic-Enrichment. Hard-
ware used: NVIDIA Quadro RTX 6000 GPU, Intel(R) Core(TM) i9-10980XE CPU
@ 3.00 GHz, 256 gb of RAM.

https://github.com/lucacorbucci/Semantic-Enrichment
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BioSentVec and BioWordVec are based on Word2Vec, the embeddings are
context-independent and we can use them without the model that generated
them because we just have <key, value> pairs where the keys are the words and
the values are the embeddings. ClinicalBert is based on Bert, the embeddings
are generated considering the context of a word, this means that we have to
give a sentence as input to the model and it will return the embedding. This is
computationally more expensive than the Word2Vec model.

Before applying the embedding we identified the suitable length value r of
the sliding window for each type of relationship: r = 7 for the Finding Site and
Associates Morphology relationships, r = 9 for Due to relationship and r = 10
for the Description. To this end, we tested values in the range between 3 and 30
using a subset of 500 clinical notes contained in the original dataset.

5.3 Human Validated Experiment

Clinical Notes Manual Annotation. The domain expert took into account
each ICD-9 code associated with the clinical notes and highlighted by Doctor
XAI. The notes were manually annotated highlighting the most similar sentences
to the following information: i) Code description; ii) Cause of the disease asso-
ciated with the code; iii) Finding site of the disease associated with the code;
and iv) Associated morphology of the disease associated with the code. In par-
ticular, we considered the clinical histories of nine different patients, involving a
total of 32 clinical notes. These patients have been diagnosed with ICD-9 code
250.00 i.e. diabetes, 584.9 i.e. Acute kidney failure, 428.0 i.e. Congestive heart
failure and 401.9 i.e. Unspecified essential hypertension, among other diseases.
Once the domain expert annotated the notes, we tested our method to com-
pare the extracted sentences with the manually annotated ones. In Table 1, we
report Accuracy, F1-Score, Precision and Recall for each ontological relationship
and the corresponding confidence interval at 1 − α = 0.95 confidence level. The
results are divided according to the type of relationship and in bold we highlight
the best performance. The confidence intervals for all the metric values are tight
meaning that the performances of the methods are reliable. To evaluate these
metrics, we have defined:

– True Positive as the number of sentences that were manually annotated in
the clinical notes and are correctly annotated by our method;

– False Negative as the number of sentences in the clinical notes that our
method does not annotate because they have a similarity score lower than
the input threshold and that were manually annotated by the domain expert.

– False Positive as the number of sentences in the clinical notes that our method
annotates and that do not have a corresponding manual annotation.

– True Negative as the number of sentences in the clinical notes that our method
does not annotate because they have a similarity score lower than the input
threshold and that do not have a corresponding manual annotation.

Table 1 shows that BioWordVec presents the best performance across all rela-
tionships, for this reason, we chose to employ it in our methodology. Furthermore,
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Table 1. Validation on 32 manually annotated clinical notes of 9 patients. Confidence
of Accuracy, Precision, Recall and F1-score at 1 − α = 0.95 of confidence level.

Relationship Embedding Accuracy F1-score Precision Recall

Description BioWordVec Value
Confidence

0.718
0.715–0.719

0.707
0.704–0.708

0.819
0.815–0.819

0.622
0.619–0.624

Description BioSentVec Value
Confidence

0.662
0.659–0.663

0.664
0.661–0.665

0.804
0.800–0.804

0.566
0.563–0.567

Description ClinicalBert Value
Confidence

0.640
0.637–0.641

0.602
0.599–0.603

0.654
0.651–0.655

0.557
0.555–0.559

Finding site BioWordVec Value
Confidence

0.743
0.740–0.744

0.274
0.273–0.277

0.170
0.169–0.173

0.708
0.705–0.709

Finding site BioSentVec Value
Confidence

0.726
0.723–0.727

0.294
0.293–0.297

0.200
0.199–0.203

0.555
0.553–0.557

Finding site ClinicalBert Value
Confidence

0.686
0.683–0.687

0.214
0.213–0.217

0.150
0.149–0.153

0.375
0.373–0.377

Due to BioWordVec Value
Confidence

0.666
0.647–0.673

0.451
0.440–0.466

0.350
0.342–0.368

0.636
0.618–0.644

Due to BioSentVec Value
Confidence

0.600
0.582–0.609

0.091
0.091–0.119

0.050
0.050–0.080

0.500
0.486–0.513

Due to ClinicalBert Value
Confidence

0.568
0.552–0.579

0.214
0.211–0.238

0.150
0.149–0.176

0.375
0.366–0.392

Associated morphology BioWordVec Value
Confidence

0.856
0.845–0.856

0.577
0.571–0.581

0.464
0.459–0.470

0.764
0.755–0.766

Associated morphology BioSentVec Value
Confidence

0.803
0.793–0.803

0.409
0.405–0.415

0.321
0.318–0.329

0.562
0.556–0.566

Associated morphology ClinicalBert Value
Confidence

0.734
0.726–0.736

0.339
0.336–0.347

0.321
0.318–0.329

0.360
0.356–0.367

BioWordVec computational runtime was an order of minutes shorter if compared
with ClinicalBert, as previously observed in [19]. Our experiment pointed out
that the Description is the easiest relation to search for and in most of the
cases, our methodology is able to extract the same sentence highlighted during
the manual annotation phase. On the contrary, it is not easy to deal with Finding
Site and Due to. As explained by our domain expert usually this information is
often underlined by the clinicians and is not explicitly written in the notes. This
sometimes led to the extraction of wrong sentences.

A Kruskal-Wallis test was used to determine whether or not there are statisti-
cally significant differences between the medians of accuracy, precision, recall and
F1-score of the different embedding methods reported in Table 1 (BioWordVec,
BioSentVec, and ClinicalBert). The Kruskal-Wallis test is the non-parametric
test considered equivalent to the One-Way ANOVA and, given the low number
of observations that we are comparing, it is the best fitting for our setting. The
Kruskal-Wallis test uses the following null and alternative hypotheses: H0: “The
median is equal across all embedding methods”, H1: “The median is not equal
across all embedding methods”. For the accuracy we obtained that the Kruskal-
Wallis Statistics is 2.192 with a p-value of 0.334 (> 0.05) meaning no statistically
significant difference among the accuracy medians, so the H0 hypothesis cannot
be rejected. For the recall we obtained that the Kruskal-Wallis statistic is 8.800



226 L. Corbucci et al.

Table 2. Kruskal-Wallis test for the recall: results.

BioWordVec BioSentVec ClinicalBert

BioWordVec stat: 1.000 stat: 3.036 stat: 5.398

p: 0.000 p: 0.0814 p: 0.0202

BioSentVec stat: 1.000 stat: 5.333

p: 0.000 p: 0.0209

ClinicalBert stat: 1.000

p: 0.000

Table 3. Human validation of the extracted sentences using a 90th percentile threshold.

Relationship Description Finding site Associated Morphology Due to

Embedding valid non-valid valid non-valid valid non-valid valid non-valid

BioWordVec 75 (75%) 25 (25%) 65 (65%) 35 (35%) 21 (75%) 7 (25%) 13 (65%) 7 (35%)

BioSentVec 77 (77%) 23 (23%) 56 (56%) 44 (44%) 21 (75%) 7 (25%) 13 (65%) 7 (35%)

ClinicalBert 67 (67%) 33 (33%) 32 (32%) 68 (68%) 18 (64%) 10 (36%) 9 (45%) 11 (55%)

with a p-value of 0.012 meaning a statistically significant difference among the
recall medians, so the H0 hypothesis has been rejected. We performed both a
Kruskal-Wallis test and a Mann Whitney test on the pairs to verify which are
the pairs with a significant difference. In Table 2 we report the results of the pair-
wise comparisons of the Kruskal-Wallis test (equal results were obtained with
the Mann Whitney test).

Looking at Table 2, it is interesting to note how the pairwise comparisons
between BioWordVec vs ClinicalBert and BioSentVec vs ClinicalBert give sta-
tistically significant differences between the pairs (always lower for ClinicalBert).
For the F1-score (Kruskal-Wallis Statistics 1.505 with a p-value of 0.471) and
the precision (Kruskal-Wallis Statistics 1.462 with a p-value of 0.481) we found
no significant difference among at least one of the medians (both for F1-score
and precision), so the H0 hypotheses have to be accepted in both cases. Thus,
to summarize the three embedding methods present statistically significant dif-
ferences only for the recall: BioWordVec and BioSentVec perform statistically
better than ClinicalBert, reinforcing the choice of one of these two embeddings.

Classification of Extracted Sentences. We made a second experiment
exploiting the knowledge of the domain expert. We selected almost 100 notes
classified with the ICD-9 250.00 (diabetes), 584.9 (Acute kidney failure), 428.0
(Congestive heart failure) and 401.9 (Unspecified essential hypertension).

Then, we ran our method on each note to highlight the most similar sen-
tences to the Description, Finding Site, Associated Morphology and Due To
relation associated with all the ICD-9 with which the note is associated. We
used the previously mentioned method and the three different embeddings to
compute the similarity. After extracting the sentences with our method, the
domain expert analysed each sentence evaluating the correlation with the rela-
tion with which similarity was calculated and if the highlighted sentence provided
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helpful information about the patient’s clinical history. Each of the extracted sen-
tences was classified as “Valid Sentence” or “Non-Valid Sentence”. In Table 3
we report the result of this experiment with a similarity threshold of the 90th
percentile. The results show that the performances using embeddings BioWord-
Vec and BioSentVec are very similar while those using ClinicalBert are slightly
worse.

6 Conclusion and Future Work

We presented a methodology to semantically enrich the explanation of an XAI
technique in the healthcare context by exploiting SNOMED-CT ontology and
clinical notes. In particular, it highlights the relevant clinical information related
to one algorithmic decision directly on the patient’s clinical note. Thanks to the
domain expert, we were able to annotate a small part of the dataset and to
have a preliminary “human validation” of our methodology. The presence of a
“human validator” was crucial in our methodology. Unfortunately, we have not
found any pre-annotated dataset that could fit our needs and that could be
used as a ground truth. The “human-validated” experiment showed promising
results concerning the identification of sentences related to the description of the
disease and the associated morphology while selecting the correct finding site and
cause of the disease is more challenging. We studied many different approaches
to extract the information, and we compared different embeddings to have a
better representation of our notes. In terms of embeddings, we compared the
performances achieved with BioWordVec, BioSentVec and ClinicalBert, and we
concluded that, for the same performance, BioWordVec performs slightly better
in general and it is faster in computing embeddings. A limitation of an approach
that involves the use of pre-trained embeddings is that we would not be able
to generalise this task with the same performances when using a completely
different medical dataset. In that context, an embedding like ClinicalBert would
probably perform better. However, it would have a high computational cost to
the embedding computation.

In the future, we would like to validate our method on a larger quantity of
clinical notes and exploit our methodology to generate explanations expressed
by natural language.

In addition, we would like to test the methodology to understand if the
semantically enriched explanation could improve the interpretability of the
explanation. Lastly, we plan to investigate the opportunity to exploit our
methodology to generate explanations expressed by natural language.
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Abstract. Time Series Analysis (TSA) and Natural Language Process-
ing (NLP) are two domains of research that have seen a surge of interest
in recent years. NLP focuses mainly on enabling computers to manip-
ulate and generate human language, whereas TSA identifies patterns
or components in time-dependent data. Given their different purposes,
there has been limited exploration of combining them. In this study, we
present an approach to convert text into time series to exploit TSA for
exploring text properties and to make NLP approaches interpretable for
humans. We formalize our Text to Time Series framework as a feature
extraction and aggregation process, proposing a set of different conver-
sion alternatives for each step. We experiment with our approach on
several textual datasets, showing the conversion approach’s performance
and applying it to the field of interpretable time series classification.

Keywords: Time Series Classification · Interpretable Machine
Learning · Natural Language Processing · Explainable AI

1 Introduction

In recent years, both Time Series Analysis (TSA) and Natural Language Pro-
cessing (NLP) have seen a surge in popularity [2,8,14]. NLP has found numer-
ous applications, including machine translation, email spam detection, informa-
tion extraction and summarization, and question-answering [14]. Meanwhile, the
development of time series classifiers [2] and the increasing availability of time-
dependent data such as electrocardiogram records, motion sensor data, climate
measurements, and stock indices [8] have fueled interest in TSA. Despite the
individual growth of NLP and TSA, there has been limited exploration into com-
bining these two fields, which usually have different goals. NLP focuses mainly
on enabling machines to manipulate and generate human language, whereas
TSA identifies local patterns or components in time-dependent data. However,
they also share similarities since the text, from a human perspective, remains a
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sequence of spoken or written expressions rather than a comprehensive machine-
readable representation. This work explores the benefits of integrating TSA into
NLP to make it more interpretable for humans.

NLP relies on text representation techniques to convert text into machine-
readable input for classification, clustering, and sentiment analysis [31]. Typi-
cally, text encoding involves transforming text into vectors representing its con-
tent. Traditional approaches build an explicit representation of the distributional
properties of the text, using raw frequencies like bag-of-words [9], or exploiting
tf-idf [12], and n-grams [28]. State-of-the-art techniques are based on transform-
ers [26], which can better capture semantic and syntactic relationships between
words and sentences. The vectorial representations generated by these models,
known as embeddings, are denser and lower-dimensional than previous models,
even if not interpretable [22]. On the other hand, TSA techniques can capture the
temporal evolution of sequences of data points measured at regular intervals [6].
By considering temporal dependencies, TSA can be used for various purposes,
such as descriptive analysis, clustering, classification, and forecasting [16].

In this paper, we investigate the impact of converting text observations into
time series observations to solve interpretable text classification through time
series representations. In particular, we exploit interpretable models originally
developed for time series [25] as interpretable text classifiers. In the literature,
state-of-the-art time series classifiers are mainly black-box models [2], not inter-
pretable from a human standpoint. We instead focus on time series classification
through shapelets [30], i.e., subsequences that allow for interpretable predictions
based on local similarities in shape. Hence, we propose using shapelets in NLP
by turning texts into time series. To perform this transformation, we design and
implement tots, a framework to turn text to time series. tots exploits a range
of alternatives for converting a text into multivariate time series, including sen-
tence embeddings [17,20], sentiment scores [11], and linguistic features [5,13,19].
In this way, we can leverage implicit representations of language and concrete
linguistics variables to represent language vectorially. Then, tots adopts aggre-
gation techniques to compress multivariate time series into univariate ones. By
compressing time series, we can identify shapelets on 1-d signals that are easier to
analyze and interpret than multivariate ones, shedding light into many domains,
such as sentiment analysis over time, event detection, social media trends, etc.

Overall, this work contributes to the fields of TSA and NLP by (i) proposing
a formalization of text to time series conversion, (ii) exploring dimensionality
reduction and aggregation techniques that can effectively convert multivariate
time series into univariate, (iii) testing different text to time series conversions
through a novel evaluation metric, and (iv), showing the effectiveness of the app-
roach in the field of interpretable text/time series classification. The rest of this
work is structured as follows. Section 2 discusses related works at the intersec-
tion between TSA and NLP. Section 3 introduces notions useful for describing
the proposed transformations, detailed in Sect. 4. Section 5 presents the experi-
mental results, and Sect. 6 concludes the paper.



232 M. Poggioli et al.

2 Related Works

A proper intersection between TSA and NLP lies in analyzing texts produced
within a time window. Works in this domain build time series by extracting
features from each text and condensing them within each timestep to represent
a time-dependent phenomenon. In [10], the authors constructed a sentiment
scoring rule from the count of positive and negative words in multiple social
media texts, resulting in an event-driven, irregularly spaced time series. In [1],
the authors combined text mining and time series to analyze sequences of dated
documents, such as news articles, and extracted correlations and patterns among
frequently used words. Differently from the described approaches, we analyze
documents individually and introduce time by splitting each text content.

Other works are focused on the relationship between features (such as market
sentiment) extracted from Twitter data and financial trends. In [21], the authors
analyzed correlations between stock-market events and features extracted from
micro-blogging messages, relying on overall activity measures (e.g., number of
posts, re-posts) and graph-related indices (e.g., number of connected compo-
nents, degree distribution). In [27], the authors used market sentiment and text
mining techniques for financial time series, proposing a hybrid model that com-
bines the conventional ARIMA model with a support vector regressor method
to extract valuable insights from the market sentiment. Similarly, in [18], it was
proposed ST-GAN, combining financial news texts and numerical data to predict
stock trends. In [4], the authors used a flexible multiple-output Gaussian process
to analyze multimodal statistical causality between cryptocurrency market sen-
timent and price processes, proposing an NLP framework for interpretable senti-
ment indices as inputs for time-series models. Differently from these approaches,
we convert each text into individual time series representations, moving away
from the financial domain and focusing on classification rather than forecasting.

To the best of our knowledge, the only approach for mapping text to time
series is T3 [29]. T3 uses combinations of granularity, n-grams, and different
space-filling curves to assign appropriate numeric values to each character. When
applied to the “record linkage” problem, T3 achieved good accuracy with con-
siderable speed-ups. Our study goes beyond this work by focusing on mapping
text at the sentence level, allowing for incorporating multiple types of features,
including advanced models like sentence embeddings.

3 Setting the Stage

In order to keep our paper self-contained, we report in this section a brief
overview of concepts necessary to comprehend our proposal. We define a text
corpus and each of its components, i.e., documents and sentences, as follows:

Definition 1. A corpus is a structured set of textual documents, represented as
a collection T = {T1, T2, ..., Tn} where T is the corpus and Ti an individual docu-
ment within the corpus. A document T is a sequence of sentences, where each sen-
tence is denoted by Sj , and the entire text is represented as T = {S1, S2, ..., Sm},
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where m is the total number of sentences in the text. Finally, a sentence S is an
ordered sequence of words.

For example, a corpus might be a set of film or theater scripts, a document might
be a scene or an opera, and a sentence might be an actor’s line. Also, we can
consider a set of songs as a corpus, a song as a document, and a verse of the song
as a sentence. We can now define the Text Classification problem as follows:

Definition 2. Given a corpus T with a vector of finite integer labels (or classes)
assigned to each document y ∈ N

n, the Text Classification Problem is the task
of training a function f from the space of possible inputs T to a probability
distribution over the class values in y.

In the following, we establish a connection between text and time series, defining
them in similar and coherent ways.

Definition 3. A time series dataset X = {X1, . . . , Xn} ∈ R
n×d×m is a col-

lection of n time series. A time series X = {x1, . . . ,xd} ∈ R
d×m is a set of

d signals. A signal, or dimension, x = {x1, . . . , xm} ∈ R
m is a sequence of m

real-valued observations sampled at equal time intervals. When d = 1, a time
series is univariate, while if d > 1, the time series is multivariate.

Consequently, we define the Time Series Classification problem as follows:

Definition 4. Given a time series dataset X with a vector of finite integer labels
y ∈ N

n, Time Series Classification is the task of training a function f from the
space of possible inputs X to a probability distribution over the class values in
y.

Given the formulations above, a parallel can be drawn between a text corpus
T and a time series dataset X , and a document T and a time series X. Conse-
quently, the only difference between the two problems is in the type of dataset
used, i.e., T vs X . By exploiting the parallelism between time series and text,
our intuition is that we can solve the Text Classification Problem through TSA
approaches. Our idea is to exploit interpretable machine learning methods on
time series [25] to build algorithms able to identify the most discriminative sub-
sequences of a time series and project them back into the original text. This
would allow us to perform text classification in a human-understandable way.

We focus on interpretable classification through shapelets, i.e., time series
subsequences representing a particular class within a dataset [30]. A subsequence
is an ordered and contiguous subpart of a signal, formally:

Definition 5. Given a signal x, a subsequence s = {xj , . . . , xj+l−1} of length l
is an ordered sequence of values such that 1 ≤ j ≤ m − l + 1.

To extract shapelets from a dataset, candidate shapelets are generated, and
their distances to the time series in the dataset are calculated. Then, their qual-
ity is assessed based on how well they separate different classes, and the best
shapelets are selected based on their quality scores. After that, each time series
is represented as a feature vector, where each feature corresponds to the distance
between the time series and one of the shapelets [7]. Formally:
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Definition 6. Given a time series dataset X ∈ R
n×d×m, a shapelet discov-

ery function, shp discovery, extracts a set Q of q discriminative shapelets, i.e.,
shp discovery(X ) = Q ∈ R

q×l. Then, a transform function, shp transform, con-
verts X into a real-valued tabular dataset, D, obtained by taking the minimum
Euclidean distance between each time series in X , and each shapelet in Q, via a
sliding-window, i.e., shp transform(X , Q) = D ∈ R

n×q.

Once the time series dataset is converted through the shapelet transform, an
interpretable classifier such as a Decision Tree [3] can be used, having the advan-
tage of an interpretable feature representation. Given these notions, we can now
easily link the concept of a time series shapelet to that of a subdocument by
defining it as an ordered and contiguous subpart of a document, formally:

Definition 7. Given a document T , a subdocument P = {Sj , . . . , Sj+l−1} is an
ordered sequence of l sentences, such that 1 ≤ j ≤ m − l + 1.

Therefore, by finding important subsequences in a time series, i.e., shapelets, we
can find the most discriminative parts in a corresponding text. Consequently,
the real challenge we face in this paper consists in converting a text into a time
series. Our proposal to accomplish this task, and to allow solving interpretable
text classification through time series classification, is illustrated in the next
section.

4 Text to Time Series Conversion

In this section, we describe tots, a framework to turn text to time series. The
tots framework is a text to time series conversion workflow formed by three
core steps: tokenization, feature extraction, and aggregation. We regard tots
as a framework because every step can be implemented differently. In this work,
we defined its main steps and realized only some possible variants. However, the
tots structure leaves space to integrate various alternatives easily.

A summary of tots is illustrated in Algorithm 1. Given a text corpus T ,
tots returns a time series dataset X where the ith time series X ∈ X is the
time series representation of the corresponding ith document T ∈ T . First, tots
initializes the empty time series dataset X (line 1). Then, for each document
T ∈ T , it runs the conversion of T into X and adds it to X (lines 2–10). The
first step of tots on T is tokenization, in which the document is split into sen-
tences and readied for further analysis (line 4). After that, for each sentence S
in the tokenized document T ′ (lines 5–7), tots extracts characteristic features
describing S through the features extraction function feat extr and places them
into a vector v ∈ R

d where d is the number of features. Supposing a document
T ′ formed by m sentences, the sequence of m vectors v is concatenated into the
matrix X ∈ R

m×d. This matrix X ∈ R
m×d can be viewed as a multivariate time

series. Thus, we can transpose X in order to have a proper multivariate time
series X ′ ∈ R

d×m where different rows model different signals, i.e., features in
this case, and different columns capture different timesteps (line 8). The vari-
ous signals of the multivariate time series are aggregated into a univariate one



Text to Time Series Representations 235

Algorithm 1: tots(T , tokenize, feat extr , aggregate)
Input : T - text corpus, tokenize - splitting function,

feat extr - feature extraction function, aggregate - aggregation function
Output: X - time series dataset

1 X ← ∅; // init. time series dataset
2 for T ∈ T do // for each document
3 X ← ∅; // init. time series

4 T ′ ← tokenize(T ); // tokenize document

5 for S ∈ T ′ do // for each sentence
6 v ← feat extr(S); // extract feature vector
7 X ← X ∪ {v} // store feature vector

8 X′ ← Xᵀ; // transpose feature vector matrix

9 X′ ← aggregate(X′); // aggregate multivariate time series

10 X ← X ∪ {X′}; // store time series

11 return X

through the aggregation function aggregate (line 9). The function aggregate has
no effect on X ′ when the time series is already univariate, i.e., d = 1.

Once a given text corpus T is converted into a time series dataset X through
tots, we can run any TSA approach exploiting the advance of a clear correspon-
dence between texts and time series. In particular, we can use an interpretable
shapelet-based time series classifier. In the remainder of this section, we illustrate
some alternatives to implement the three functions used by tots.

Tokenization. The first step in our approach consists in defining the granular-
ity of the final time series by splitting the original text. Tokenization involves
breaking up a given text into units, called tokens, that can be individual words,
phrases, or whole sentences [13]. In tots, we tokenize at the sentence level.

Definition 8 (Sentence Tokenization). Given a text document, T , a tok-
enization function, tokenize, splits the document into tokens, creating a set of
m sentences T ′ = {S1, S2, ..., Sm} = tokenize(T ).

Here, we use the term “sentence” loosely, i.e., not as a sequence of words ending
with a punctuation mark but as a grammatically complete sequence expressing
a full thought. Text splitting is a crucial step that may vary depending on the
nature of the text and the specific problem. For example, in a dialogue, a timestep
may correspond to a speaker’s turn, while in a book, it may correspond to a whole
paragraph. If the focus is on song lyrics, line splitting is instead the most sensible
option. We use a real 66-line-long rap lyric from the Song Lyrics dataset as a
running example to illustrate the various step of the proposed framework (see
Sect. 5 for further details). The newline character (/) is adopted as the splitting
criterion for this example. The following are the first six lines, i.e., T0:5:

T0:5 Say brah / In this game called life / It’s charces , decisions, and consequences / I decided to change my
life, for the better / So anybody that’s out there seeking conviction / because of profanity in my music /

Feature Extraction. The second step consists in extracting features from each
token, i.e., each sentence in our setting. We present here alternatives to extract
features from a document and to implement the feat extr function defined as:
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Definition 9 (Feature Extraction). The feature extraction function
feat extr takes as input a sentence S, and returns a vector v containing d char-
acteristics of S, i.e. feat extr(S) = {v1, . . . , vd} = v ∈ R

d.

There exist many different feature extraction approaches in NLP. We design
and implement three alternatives: one based on linguistic features, one based on
sentence embeddings, and an approach relying on sentiment/emotions.

Linguistic Features. Computational linguistics offers several methods for
extracting meaningful linguistic features within a text [5,13,19]. Features such
as type-token ratio can be extracted through tokenization [13], measuring the
lexical diversity of a text by calculating the ratio of unique words (types) to the
total number of words (tokens) in a text. Readability scores, such as the Flesch-
Kincaid and Dale-Chall formulas [5], can also be viewed as features assessing
the complexity of a text. Part-of-speech tagging, such as the Universal POS
tagsets [19], can instead be used to identify the grammatical category of each
word in a text. These linguistic features provide valuable information about
the structure and complexity of a text and can be used in conjunction with
other features to improve NLP tasks. In tots, we define the function feat extr
to extract the following features v from a given sentece S: sentence length
(snl), monosyl words count (mwc), polysyl words count (pwc), avg token length
(atl), readability score (rs), normalized sentence freq (nsf), sentence ttr (st),
avg token freq (atf), alliteration score (as), verb count (vc), noun count (nc),
adj count (adj), adv count (adv), intj count (ic). With linguistic feature extrac-
tion, a dynamic representation of text characteristics emerges as a multivariate
time series. This provides insights into the changing grammatical and phono-
logical qualities from sentence to sentence. Figure 1 (left) shows the linguistic
feature-based conversion for the rap text above (all features are normalized).
We notice that nsf and atf can recognize repeating patterns in the text, iden-
tifying the three changes between chorus and verse (lines 12:15, 34:36, 56:59).
Further, monosyllabic words (mwc) have a generally low frequency in the text,
except for the first few sentences. The only constant feature throughout the text
is the number of interjections (ic).

Sentence Embeddings. Sentence embeddings are high-dimensional vectors
that encode the semantic meaning of a sentence into a space where similar
sentences are spatially closer [20]. Several NLP models have been developed
to output embeddings. In tots, we implement the function feat extr through
Sentence-BERT (SBERT) [20] and Doc2Vec [17], in order to extract the embed-
ding v from a given sentence S. Doc2Vec takes a document as input and outputs
embeddings capturing context, while Sentence-BERT uses Siamese and Triplet
networks to derive semantically meaningful sentence embeddings that can be
compared using cosine-similarity. The sentence embeddings S of these models
are “static” vectorial representations, v, of sentences. However, considering the
sequence of embeddings X ′, we can capture the relationship between subsequent
sentences. Figure 1 (center) shows an example of a 100-dimensional embedding
vector of Doc2Vec for each input sentence. Sentence embeddings are not directly
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Fig. 1. From left to right: multivariate time series obtained through feature extraction
via (i) linguistic features, (ii) text embeddings, (iii) sentiment analysis.

interpretable by humans, but they can capture complex semantic information,
which is extremely useful for machine learning predictors.

Sentiment/Emotion Features. The logit layer of a sentiment/emotion analy-
sis model produces a vector of scores or activations for each possible output class,
indicating the model’s confidence or belief that the input sentence corresponds to
each possible sentiment/emotion. Examples of such models are VADER (Valence
Aware Dictionary and sEntiment Reasoner) [11], a lexicon and rule-based sen-
timent analysis tool attuned explicitly to sentiments expressed in social media,
and RoBERTa (Robustly Optimized BERT Pretraining Approach) [15], a vari-
ant of BERT that has been shown to achieve state-of-the-art performance on
several NLP tasks, including sentiment analysis. While originating from a trans-
former model, logits are more interpretable than embeddings as they provide a
sort of expectation of an input sentence for a certain sentiment/emotion.

In tots, we implement the function feat extr to extract the list of senti-
ments/emotions v from a given sentence S through both VADER and RoBERTa,
which, in a time series context, can track the fluctuation of sentiment and emo-
tions within the text, providing dynamic information instead of static analysis.
VADER provides a single sentiment score, while RoBERTa outputs logits for the
following emotions: Anger (ang), Disgust (dis), Fear (fea), Joy (joy), Neutral
(neu), Sadness (sad), and Surprise (sur). Figure 1 (right), shows an example of
a multivariate time series obtained with RoBERTa. This series depicts a mostly
neutral document, with a high peak of sadness on line 42 (“Rest in peace and
then deceased but we still strugglin while you sleep”).

Aggregation. In order to use a shapelet-based interpretable machine learn-
ing model, we need to reduce multivariate time series into univariate ones. We
accomplish this task by defining an aggregation function, aggregate, that takes
a multivariate time series as input and “compresses” it into a univariate time
series without changing the number of observations m. Formally:
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Fig. 2. Shapelet analysis approach on a linguistic time series aggregated with PCA.

Definition 10 (Aggregation Function). An aggregation function aggregate
takes as input a multivariate time series X ∈ R

d×m, with d > 1, and compresses
it into a univariate time series X ′ = aggregate(X), where X ′ ∈ R

1×m.

In this work, we experiment with two naive approaches such as average and
max aggregation, and with a complex dimensionality reduction method such as
Principal Component Analysis (PCA) [24]. Aggregation by taking the average
may be sufficient when multivariate dimensions represent the same phenomenon
detected by different models, such as the sentiment or the emotion computed by
two different transformers, which is averaged for a more robust prediction. On the
other hand, aggregation by taking the maximum could be enough when the dif-
ferent signals in a time series represent logits of different sentiments, highlighting
the intensity of the prevalent emotion at a specific timestep. More sophisticated
approaches like PCA may be required for more complex signals, like those result-
ing from embeddings. PCA dynamically detects the significant time series signals
that include characteristic patterns of the original data because the significance
of each signal is represented in each component of the transformation [24].

Figure 2 (left) displays in blue the univariate time series resultant from the
PCA aggregation from the linguistic features. The signal is hardly interpretable
at first look, but, as illustrated in the following, the contribution of each signal
toward the final component can be retrieved, providing insights into the most
relevant signals at specific timesteps, i.e., for specific sentences in our setting.

Time Classification. Once a given text corpus, T , has been converted into
the corresponding time series dataset, X , by tots, i.e., X = tots(T ), we can
extract a set of q shapelets, Q, from X with Learning Shapelets (LS) [7]. LS learns
shapelets through gradient descent optimization and is regarded as a state-of-
the-art approach. In the example in Fig. 2, we use the extracted shapelets with a
decision tree classifier to distinguish between rap and rock lyrics transparently.
The resulting tree is extremely simple and, using only two of the extracted
subsequences (s14 and s1), can discern between the two genres, by looking at
the distance between the shapelets and the text conversion. Here, to aid inter-
pretability, we present distances as “high” or “low” instead of specific values.
Hence, there are only three rules to classify songs: if dist(s14,X) is low then the
class = rap, else, if dist(s1,X) is low then class = pop, else class = rap.

Figure 2 (center) displays our running example for shapelet s14 (in orange).
We notice that the best alignment of the shapelet with the time series begins at
index 32 and ends at index 55 included. With this information, the shapelet can
be mapped back to its multivariate components, i.e., the subsequences between
32 and 55 of each signal depicted in Fig. 2 (right). Furthermore, the same indexes
can be mapped back to the original text by unveiling the lines between 32 and 55
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Table 1. Dataset information.

dataset id classes records labels

SongLyrics pprc 2 24000 pop, rock

SongLyrics rcrp 2 24000 rock, rap

SongLyrics lyr3 3 36000 pop, rap, rock

SongLyrics rsub 5 25000 pop-rock, metal, indie, hard-rock, punk

WikipediaMoviePlots mplt 4 7512 drama, comedy, thriller, horror

20Newsgroups 20ng 5 1775 talk, religion, sci, rec, comp

in the original lyric, which the model uses to make a prediction. In the following,
we show the document T from sentence 28 to sentence 59 to better appreciate
the text highlighted by the shapelet.

T28:59 Sometime we do bad, but we all in it / You gotta learn to dream, cause there’s No Limit, ya heard me?
/ - singing / Y’all don’t know what we goin through / Y’all don’t know what they put us through /
Y’all don’t know what we goin through / Y’all don’t know what they put us through / Don’t treat me
like a disease, cause my skin darker than yers / And my environment is hostile, nuttin like your suburbs
/ I’m from the ghetto, home of poverty - drugs and guns / Where hustlers night life for funds but,
makin crumbs / in the slums in the street, in the cold in the heat / Rest in peace and then deceased
but we still strugglin while you sleep / And the game never change it’s still the same since you passed
/ We get beat and harassed, whenever them blue lights flash / To the little homies in the hood, claimin
wards and wearin rags / Tryin to feel a part of a family he never had / And it’s sad, I feel his pain,
I feel his wants / To avoid bein locked up, there’s do’s and don’ts / Use your head little soldier, keep
the coke out your system / that ? out your veins, that won’t do away with the pain / Only prayers will
get you through, ain’t no use to bein foolish / Ain’t got one life to live, so be careful how you use it
/ - singing / Y’all don’t know what we goin through / Y’all don’t know what they put us through /
Y’all don’t know what we goin through / Y’all don’t know what they put us through /

From the comparison between the shapelet and the text, we can observe how
the text evolves. For instance, at the beginning of the shapelet, the normal-
ized sentence frequency drops (nsf), indicating the end of the chorus and the
beginning of the verse. A slight increase at the end highlights the beginning of a
new chorus. Further, the alliteration score seems to grow in the verse, with the
more rhythmic repetition of sounds (“To the little homies in the hood, claimin
wards and wearin rags”). snl and pwc represent the higher length of sentences
in the verse w.r.t. the chorus. Other subsequences are harder to interpret in this
instance, such as the number of adjectives (adj) and verbs (vc).

5 Experiments

We experiment with tots1 on three datasets to assess the correctness and effec-
tiveness of the proposed transformation.

Datasets. The first dataset is Song Lyrics, containing lyrics associated with
the artist’s genres. We created four different balanced subsets of this dataset,
pprc, rcrp, lyr3, and rsub, containing different labels, as described in Table 1.
We split Song Lyrics line-by-line with tokenize, removing duplicates and non-
English text (e.g., Chorus 2x ). For 20ng, we used sentences as tokens, removing
hyperlinks, HTML tags, email addresses, symbol repetitions, and expanding con-
tractions. For mplt, we merged coherent genre labels, tokenizing at the sentence
1 Code available at: https://github.com/mattiapggioli/lyrics2ts.

https://www.kaggle.com/datasets/neisse/scrapped-lyrics-from-6-genres/versions/6
https://github.com/mattiapggioli/lyrics2ts
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level. We discarded sentences with less than 20 lines for all datasets to avoid
generating very short time series and performed an 80/20% train/test split.

Experimental Setting. We detail here the alternative implementations
adopted to realize the function feat extr and aggregate. Linguistic features are
derived using the textstats and NLTK packages. Regarding sentence embedding
methods, for Sentence-BERT [20] (sbe) we used the all-MiniLM-L12-v2 model
provided by SentenceTransformers, while for Doc2Vec [17] (d2v) we used Gensim
after using its tokenizer with lowercasing2. For sentiment features (sen), we used
VADER [11] through the NLTK library, which outputs a compound score, rang-
ing from −1 (extremely negative) to +1 (extremely positive). Thus, the resulting
time series are univariate and require no aggregation. Finally, for emotion fea-
tures (emo), we used emotion-english-distilroberta-base, extracting the emotion
logits of the last layer. As aggregate functions, we tested naive avg and max
by simply applying the respective numpy functions column-wise and PCA by
adopting the scikit-learn implementation. We experimented with PCA by (i)
fitting and transforming each time series separately (pca), and (ii), by fitting a
global PCA model on the entire multivariate time series dataset and using it to
transform each time series into a univariate one (gpca). In the latter, the idea is
to consider timesteps as individual observations in a vector space that we want
to reduce in one dimension and time series as movements within it.

Assessing Conversions Correctness. In this experiment, we assess the cor-
rectness of the different conversion workflows that can be realized through the
tots framework. We measured the correctness by checking if similar texts are
mapped to similar time series after the conversion in a controlled experiment on
the lyr3 dataset. Formally, given a document T from the corpus T , a document
T ′ �= T that by construction is similar to T , i.e., is obtained by alterating T ,
and a document T ′′ �= T randomly selected from T , our desiderata is that the
distance between tots(T ) and tots(T ′) is smaller than the distance between
tots(T ) and tots(T ′′). Thus, similar documents should be converted in similar
time series. Since we are comparing time series, we adopt the Dynamic Time
Warping (DTW) distance [23]. Hence, given a corpus T , a corpus of similar doc-
uments T ′, and a randomly shuffled corpus T ′′, we define the correctness score
CS as:

CS =
1
n

n∑

i

1[dtw(tots(Ti),tots(T ′
i )) < dtw(tots(Ti),tots(T ′′

i ))]

where CS is the percentage of times the desiderata holds. In practice, we sam-
pled 50 song lyrics per genre from lyr3, i.e., T and, for each of them, we created
a similar lyric by applying text augmentation line by line, i.e., T ′. For this pur-
pose, we used the ContextualWordEmbsAugmenter of the nlpaug library, which
replaces words in a text with their contextually similar counterparts using a pre-

2 We set the following parameters: dm = 1, vector size = 100, min count = 2, epochs
= 20, window = 5.

https://github.com/textstat/textstat
https://www.nltk.org/
https://github.com/UKPLab/sentence-transformers
https://radimrehurek.com/gensim/
https://nlpaug.readthedocs.io/en/latest/overview/overview.html
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trained contextual word embedding model. Then, we associated each original
text in T with a randomly selected one, i.e., T ′′. Finally, we computed CS .

Table 2. CS metric for lyr3. The best aggregate for each feat extr method are in bold.

feat extr d2v sbe lin emo sen
a
gg
re
ga
te

avg 0.740 0.667 0.840 0.813

0.800
max 0.740 0.693 0.713 0.693

pca 0.593 0.540 0.633 0.713

gpca 0.720 0.767 0.997 0.786

Table 2 shows the results of this experiment w.r.t. different types of feature
extraction and aggregation functions (the higher, the better). Excluding gpca,
d2v performs better than sbe, with an average difference of about 0.05. However,
with gpca applied, sbe demonstrates the highest performance among sentence
embedding approaches, outperforming d2v. The gpca method demonstrates sig-
nificant superiority among those based on linguistic features. Traditional pca
demonstrates poor results not only against gpca but also to max and avg . In
summary, the best aggregation approaches seem to be avg and gpca. However,
the single sentiment signal sen, without any aggregation, scores surprisingly
high. As for runtime performance, the fastest method is sen, with a runtime of
5.3 ms per sentence, followed by lin and d2v with an average execution time of
44–48 ms. sbe takes longer, with an average execution time of 1.120 s, and the
slowest model is emo taking on average 2.83 s3.

Given these results, we chose one instance for each feature extraction method
to experiment with the classification task. In particular, we selected sbewith gpca,
which produced the best results among the embeddings, despite being less efficient
than d2v. For lin, we also picked the gpca method, which proved extremely accu-
rate during validation. Finally, for the sentiment/emotion method, we selected
sen, given that it performed well, with extremely fast runtimes.

Classification Benchmark. This section evaluates the performance of inter-
pretable ML models applied to solve the text classification problem. Regarding
our proposal, after having selected the most promising functions feat extr and
aggregate as described in the previous section, we applied tots on the text cor-
pus obtaining the corresponding time series datasets, i.e., X = tots(T ). To
achieve our goal of interpretable text classification with explanations based on
the dynamical properties of text, we extracted the shapelets from X through
a shp discovery function, and we turned X into D with a shp transform func-
tion. In particular, we obtained shp discovery and D with the LearningShapelets
function of tslearn4. Then, we trained the following ML models selected for their
3 Experiments were run on a ThinkPad E595. AMD Ryzen 5 3500U CPU, 8 gb RAM.
4 We set the number of shapelets to extract q using the provided heuristic, and Adam

as optimizer training for 2000 epochs per dataset.

https://tslearn.readthedocs.io/en/stable/
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Table 3. Classification accuracy (higher is better). The best results by column, i.e.,
by tots conversion, are bolded, best results by dataset are underlined.

pprc rcrp lyr3 rsub mplt 20ng

lin sen sbe lin sen sbe lin sen sbe lin sen sbe lin sen sbe lin sen sbe

sh
p

dt .53 .54 .57 .79 .73 .74 .52 .50 .48 .22 .23 .24 .28 .33 .31 .27 .31 .32

rf .59 .60 .64 .86 .81 .82 .61 .60 .56 .24 .27 .28 .33 .39 .39 .32 .34 .41

lg .60 .60 .64 .86 .81 .82 .61 .60 .57 .24 .28 .28 .31 .39 .37 .29 .35 .38

fe
a
t

dt .55 .54 .55 .80 .76 .71 .53 .52 .47 .21 .24 .23 .29 .33 .31 .25 .29 .34

rf .60 .59 .62 .86 .83 .78 .60 .60 .54 .25 .27 .26 .34 .39 .36 .26 .39 .41

lg .61 .60 .64 .86 .83 .79 .61 .61 .56 .25 .27 .28 .33 .38 .35 .27 .34 .40

kn
n euc .52 .55 .56 .56 .51 .55 .38 .37 .38 .22 .22 .24 .32 .35 .33 .27 .24 .33

dtw .54 .54 .60 .75 .68 .67 .51 .47 .44 .22 .23 .26 .29 .33 .34 .28 .30 .32

interpretability properties on the shapelet-transformed dataset D (shp), i.e., a
Decision Tree (dt), a Random Forest (rf), and LightGBM (lg). As a com-
petitor, we extracted global time series statistics (feat) such as the minimum,
maximum, mean, variance, skewness, and kurtosis on X , and then we train the
tree-based models dt, rf, and lg. In this setting, classifiers are only statically
interpretable because all the temporal references given by the time series are
completely lost. Finally, in line with instance-based explanation approaches [8],
we experimented also with k-Nearest-Neighbors (knn) trained directly on X . In
particular, we experiment with knn with k = 5 using the Euclidean distance
(euc) and dtw with a 3-window Sakoe Chiba band [23], adopting the pyts
library5.

Table 3 presents the accuracy of the various classifiers. The column header
represents the different dataset conversions of tots, i.e., we convert each of the
six datasets using the three best approaches from the previous section for a total
of 18 dataset representations. The rows represent different classifiers, i.e., based
on shapelets (shp), static global features (feat), and distances (knn). The best
results in each column are in bold, highlighting the best feature extraction and
aggregation. The best approach overall for each dataset is underlined.

At first glance, the best-performing classifiers are rf and lg, with dt, euc,
and dtw always having subpar performance. In general, shapelets and global
features perform similarly, with their respective best models tieing in all of the
six datasets. However, as shown in the example rap lyric, the advantage of using
shapelets is to look at the importance of specific paragraphs in the text, which
is impossible with global features. Regarding tots conversion alternatives, sbe
wins in 20ng and pprc, while lin is the overall best for rcrp. Classifiers trained
on sen have slightly lower performance, likely because they are based on a single

5 Given the computational complexity of dtw on large datasets, we first used Piece-
wise Aggregate Approximation (PAA) to reduce the length of the time series by
80% and then kept one-third of the records for each class, selected using the Clus-
terCentroids method of imblearn.
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sentiment, which may not be sufficient for the classification. The similar perfor-
mance of embeddings and linguistic features is promising for explainability. It
demonstrates that, for specific problems, using domain knowledge to extract
interpretable features can achieve similar results to non-interpretable embed-
dings.

As a final note, we highlight that the purpose of tots at this stage is not
to beat standard NLP approaches applied to the whole text but to define a way
of using TSA approaches for text classification. While our approach may not
perform as well as standard NLP classifiers, we offer a unique way to analyze
text by taking into account local patterns rather than relying solely on the
properties of the entire text. This allows for a more nuanced understanding
of the text and its underlying dynamics. Overall, a sentence-based explanation
can provide a more fine-grained and interpretable classification. For example,
when analyzing a song, a sentence-based explanation can help identify the most
relevant lines or sections to the classification result. Finally, in datasets such
as 20ng, containing multiple topics, a sentence-based explanation can provide
insights into how different parts of the text contribute to the classification result.

6 Conclusion

We have introduced tots, a method that represents text as a time series using
TSA techniques and NLP approaches. Our formalization enables the conversion
between text and time series, enhancing interpretability by capturing local tex-
tual patterns. Additionally, tots allows for easy transformation back to text,
facilitating human interpretation. Through experiments, we showed that our text
to time series conversion uncovers new insights and patterns not easily observable
with traditional NLP approaches. A potential limitation of tots is its reliance on
multiple independent steps, where the quality of underlying models can influ-
ence the overall performance. For example, we acknowledge that aggregating
time series into univariate ones is a strong simplification, and directly analyz-
ing multivariate text-time series could be more effective. Moreover, instead of
exclusively relying on shapelets, alternative patterns could be tested for the clas-
sification task. Combining features and patterns offers a promising approach to
extracting local characteristics and global dynamic trends, capturing the entire
document’s semantic context. After further improvements, we plan to compare
tots against state-of-the-art NLP models and study possible avenues of integra-
tion with Large Language Models. Finally, we plan on extending text shapelets’
interpretability to unsupervised analyses like clustering or topic modeling, where
sequentiality can be incorporated by localizing the analysis on extracted sequen-
tial patterns.
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Abstract. Cross-modal retrieval requires building a common latent
space that captures and correlates information from different data modal-
ities, usually images and texts. Cross-modal training based on the triplet
loss with hard negative mining is a state-of-the-art technique to address
this problem. This paper shows that such approach is not always effec-
tive in handling intra-modal similarities. Specifically, we found that
this method can lead to inconsistent similarity orderings in the latent
space, where intra-modal pairs with unknown ground-truth similarity are
ranked higher than cross-modal pairs representing the same concept. To
address this problem, we propose two novel loss functions that leverage
intra-modal similarity constraints available in a training triplet but not
used by the original formulation. Additionally, this paper explores the
application of this framework to unsupervised image retrieval problems,
where cross-modal training can provide the supervisory signals that are
otherwise missing in the absence of category labels. Up to our knowledge,
we are the first to evaluate cross-modal training for intra-modal retrieval
without labels.

We present comprehensive experiments on MS-COCO and Flickr30K,
demonstrating the advantages and limitations of the proposed methods
in cross-modal and intra-modal retrieval tasks in terms of performance
and novelty measures. Our code is publicly available on GitHub https://
github.com/MariodotR/FullHN.git.

Keywords: cross-modal retrieval · triplet loss · hard negative mining ·
unsupervised image retrieval

1 Introduction

Content-Based Image Retrieval (CBIR) is an approach to searching an image
database where users can input an image as a query and retrieve related images
based on their visual content [11]. Cross-modal retrieval (CMR) is a related
approach that enables users to query the system with data in one modality (e.g.,
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a textual description) and retrieve data in another modality (e.g., an image)
[5]. With the rapid growth of image and multimedia data, CBIR and CMR
have become essential technologies for building effective information systems in
various domains, including social networks [23], online retail [14], remote sensing
[1], and medicine [17].

In the last decade, deep learning has significantly enhanced hand-crafted fea-
ture extraction algorithms such as SIFT and BoVW [4]. However, deep learning-
based methods require training with appropriate loss functions to learn the
semantics of images and their relationships [9]. One state-of-the-art technique
for training CBIR models is triplet-based learning [4,11]. A training triplet typ-
ically consists of an anchor image, a positive image that is similar to the anchor,
and a negative image that is dissimilar or less similar to the anchor. The triplet
loss function is then used to encourage the anchor to be closer to the positive
image than the negative image in the latent space. In CMR [5], where differ-
ent data types are involved, representation learning requires building a common
latent space that captures and correlates information from these modalities.
The cross-modal triplet loss addresses this challenge by taking the anchor from
one modality but the positive and negative samples from another modality . In
this way, learning seeks to ensure that the similarity between cross-modal pairs
representing the same concept in different modalities is higher than between
cross-modal pairs unobserved in the training data. In practice, it is well-known
that this approach is governed by cases where the largest error occurs. These
elements are called hard negatives [5]. Recent research has been largely focused
on methods to select negative samples that improve learning efficiency [3,35],
techniques that use more than one negative to constrain data representations
[21,28], and adaptive margin formulations [27,30].

In this paper we investigate triplet-based cross-modal training with hard
negative mining for CBIR in label-free scenarios. This research is motivated
by a real-world medical application in which we must deploy a CBIR engine to
support the process of differential diagnosis which helps physicians to distinguish
between multiple conditions or diseases that share similar characteristics. The
training data includes images and radiology reports but lacks explicit category
labels such as diagnoses. In the absence of labels, we can leverage text reports
and train image representations through cross-modal learning.

We found that cross-modal triplet-based learning alone does not effectively
handle intra-modal similarities and can lead to inconsistent similarity relation-
ships in the latent space. This phenomenon can introduce spurious neighbors
in the latent space that hurt retrieval performance. Previous research on this
issue has focused on labelled data, studying how intra-class concentration and
inter-class dispersion contribute to the engine’s overall performance [6,25,28,35].
Without class annotations, intra-class and inter-class similarities cannot be mea-
sured and the accuracy of intra-modal searches cannot easily computed. To
address these limitations, we propose two novel loss functions that utilize intra-
modal similarity constraints within a training triplet. Unlike the classic formu-
lation, the proposed losses explicitly encourages ground-truth cross-modal pairs
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to be closer in the latent space compared to intra-modal pairs for which no
relationship is observed in the data. Additionally, we propose evaluating intra-
modal retrieval results using non-binary relevance metrics that take advantage
of the additional modalities to measure the semantic relationship between items
[15,16]. This approach enables intra-modal evaluation of cross-modal methods
without resorting to class labels.

Our main contributions are:

1) We show that the cross-modal triplet loss with hard negative mining can lead
to inconsistent similarity orderings in the latent space. Specifically, we show
that intra-modal pairs unobserved in the training data can be closer than
cross-modal pairs representing the same concept in different modalities.

2) We propose two new triplet losses that enhance the use of hard negatives
that exploit the order relationships between inter-modal and intra-modal
similarities. Experimental results demonstrate that our proposals can enable
the construction of more effective and novel cross-modal and intra-modal
retrieval systems.

3) We design a novel way of evaluating unlabeled image-to-image retrieval tasks
based on two semantic relevance measures using modern cross-modal retrieval
approaches. Furthermore, we use semantic information to measure the nov-
elty of the retrieval lists. Besides, we use self-information to measure general
surprise [36] in the retrieved results.

2 Related Work

Triplet-based learning and hard negative mining techniques are widely used tech-
niques in different areas [4]. In deep metric learning [9,21,31] propose a novel loss
that exploits all pairwise relationships within a batch. [3] suggests a linearization
of the triplet loss by using fixed class centroids that guarantee linear run-time
complexity.

Focusing on the role of the margin in selecting hard negatives, [6] proposes
a dynamically computed margin using a class tree constructed from the data
to estimate intra-class and inter-class separations. Additionally, [27] defines an
adaptive margin that is computed as a non-linear (and non-learnable) function
of the average distances among positive and adversarial negative pairs. It aims
to compact the intra-class and separate the inter-class.

In particular for similarity learning [29,30] proposes an adaptive triplet mar-
gin that takes advantage of intra-modal information. Given a text, the margin is
defined as a convex combination of the distance among images both in the feature
space and in the label space (one-hot representation) assuming a labeled data
scenario. In the task of person re-identification [33]. [28] introduces a quadruplet
loss that extends the triplet loss by incorporating a second negative of a class
different than the classic negative, and promotes that the distance between these
two negatives is greater than the distance of the positive pair. This implicitly pro-
motes that the minimum inter-class distance exceeds the maximum intra-class
distance. On the other hand, [35] also optimizes the intra/inter-class distance
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and reduces the cost associated with computing hard negatives by learning the
centers of the classes and using them as anchors to calculate the hard negatives.

For the image retrieval task applied to global descriptors, [26] extends the
triplet loss with hard-negative mining by incorporating second-order similarity
regularization [25]. This regularization enforces positive pairs exhibit similar
distances with respect to other points in the embedding space.

Specifically in cross-modal retrieval, VSE++ [5] is a model that demonstrates
the effectiveness of triplet loss with hard negative mining. Conceptually, this is
our starting point. However, it should be mentioned that the state of the art for
this task, particularly in our experimental setup, is given by [15,16]. Nevertheless,
these improvements on VSE++ are obtained by designing better neural network
architectures, not by modifying the triplet loss with hard negatives. These works
propose a semantic nDCG metric that allows evaluation beyond non-binary
(exact) retrieval, through two different sentence similarity functions that capture
different aspects of the sentence.

Based on our knowledge, we deal with a problem that has been identified
previously in other contexts [19,32]. We are the first in several contributions:
describing the intra-modal problem for cross-modal triplet loss, proposing novel
loss formulations, and evaluating the image-to-image retrieval task with label-
free cross-modal training and evaluation [15,16].

3 Preliminaries

The goal of the cross-modal retrieval task is to accept a query in one modality
and retrieve relevant data in another modality. Specifically, let us consider N
pairs of images and texts P = {(in, cn)}N

n=1 as the training data, and let pdata

be the distribution of these data. We refer to these tuples as positive pairs, and
call negative pair to any tuple that does not belong to P .

The classical loss for cross-modal retrieval is based on triplet learning for
the task of image retrieval from text (t2i) and text retrieval from images (i2t).
Triplet learning formalizes the intuition that the similarity between a positive
pair (in, cn) should be greater than the similarity between the query text cn and
some other image īn (t2i). Similarly, for the i2t task. The loss (represented in
Fig. 4a) combines the two tasks as follows:

L(in, īn, cn, c̄n) = Li2t + Lt2i. (1)

Li2t := [α + s(in, c̄n) − s(in, cn)]+, (2)

Lt2i := [α + s(īn, cn) − s(in, cn)]+, (3)

where [x]+ = max(0, x), α is a hyperparameter known as margin, and the sim-
ilarity s is measured as the dot product s(i, c) = fv(i)tft(c) between the nor-
malized representations [5] fv and ft assigned to images and texts, respectively.
The visual encoder is fv(i) = EV gi and the textual encoder is ft(c) = ET tc,
where gi ∈ RnV is the feature vector associated with the image and tc ∈ RnT

with the text. If pre-trained and untrainable neural networks are used to obtain
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these feature vectors, the trainable parameters θ are the projection matrices
EV

φ ∈ Rk×nV and ET
φ ∈ Rk×nT , with k the hyperparameter of the latent space

dimension. The optimization problem is formulated as follows:

min
θ

E
(in,cn)∼pdata

(īn,c̄n)∼p̄data

L(in, īn, cn, c̄n). (4)

In practice, the expectation is approximated by sampling from the training
data. In the Random Negative approach (RN), negative pairs are randomly
sampled. A well-known improvement to this technique is the Hard Negative
(HN) approach that dynamically chooses the negative examples according to the
current model’s state [5]. That is, p̄data = pmax

data, which means taking as negatives
the cases that are the most problematic for each task: īn = argmax

x�=in

s(x, cn) and

c̄n = argmax
x�=cn

s(in, x). For performance reasons, the negatives are sampled from

the mini-batch and not globally. See Fig. 1 for an illustration of the resulting
framework.
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Fig. 1. Cross-modal retrieval training framework. Two models are jointly trained on
the image-text dataset in the visual and textual modalities, with the goal of maximizing
the similarity between an image and its corresponding text. Based on the positive pair,
hard negative elements are generated and processed by models with shared weights in
each modality.

4 Proposed Methods

4.1 Motivation

One of the drawbacks of the cross-modal triplet loss is that it only considers inter-
modal similarity relationships and neglects the impact of intra-modal similarities.
To illustrate the limitations of this formulation, consider a t2i retrieval task.
Given a training triplet (i, c, ī), the triplet loss (Eq. 3) enforces the t2i constraint
s(i, c) > s(̄i, c) + α, which ensures that i will be ranked higher than ī when c
is presented as a query. However, this constraint does not impose conditions on
the relationship between i and ī.
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Fig. 2. Example of an inconvenient vector distribution for the t2i task. Although the
query text c is more similar to its image i than to the hard negative image ī, in the
face of a possible insufficient margin it is possible that ī is more similar to i than to c.

As depicted in Fig. 2, there may exist multiple (i, c, ī) such that:

s(i, ī) > s(i, c) > s(̄i, c) + α . (5)

This situation is problematic for several reasons:

1. While the pair (i, c) is known to represent the same concept, the pair (i, ī)
may or may not correspond to semantically similar concepts. Without explicit
supervision, such as class labels, it is challenging to differentiate between a
spurious relationship and a valid one. Thus, when only (i, c) is observed in
the data, we should expect s(i, c) to be higher than s(i, ī).

2. Let cī be the instance corresponding to ī in the other modality. If both s(i, ī)
and s(i, c) are high, c can be ranked higher than cī when ī is presented as a
query, resulting in an i2t retrieval error. While the triplet loss can handle this
scenario through the i2t constraint, it may require additional training steps
to sample cī to correct the mistake, slowing down the learning process.

3. Without additional forms of supervision, we expect a high value of s(i, ī)
(similar image representations) if and only if s(c, cī) is high (similar text
representations). However, if Eq. 5 holds, it is possible that s(c, cī) is small
but s(i, ī) is large. Indeed, if ī is very close to cī, it may happen that s(c, cī) ≈
s(c, ī), resulting in the following inequality: s(i, ī) > s(i, c) > s(c, cī) + α ,
which shows that the relationship in the visual modality s(i, ī) is inconsistent
with the relationship in the textual modality s(c, cī).

Assuming normalized latent representations, we can identify the triplets that
satisfy the problem identified above by solving Eq. 5, as shown in Fig. 3 The
existence of such triplets is naturally influenced by the magnitude of the margin.
A greater margin helps reducing the probability of selecting these triplets (note
the smaller volume in Fig. 3b, but it is not sufficient to eliminate the problem.
In the classic HN model, these problematic triplets are indirectly handled by
the margin. However, a fixed margin is a suboptimal strategy because it may
not adapt to the different possible triplets, leading to triplets that satisfy the
described problem and therefore do not favour the discriminative capacity or
generalization of the model.

We propose two novel extensions of the triplet loss with hard negative mining
that address the above-identified problem using the identical training triplets,
i.e., without increasing the complexity of the sampling strategy.
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(a) cos(im) cos(p) cos(n). (b) cos(im) cos(p) cos(n)+0.4.

Fig. 3. We define the angles p, n and im, as the angle of a positive pair, a negative
pair and between a query and a hard negative in the same modality, respectively.
Visualization of cross-sectional cuts of p of the triplets that satisfy the inequalities. We
also consider triangular inequality im ≥ n − p [20].

4.2 Full Hard Negative Method (F-HN):

We propose to make a better use of the hard negative by extending the triplet
loss to consider all the similarity constraints that can be derived from a training
triplet. The first loss we propose is defined as:

L(in, īn, cn, c̄n) = Li2t + Lt2i + Lvc + Ltc + Lsc. (6)

The new components of the loss will be called visual constraint (vc), textual
constraint (tc), and structural constraint (sc). They are defined as follows:

Lvc := [α + s(in, īn) − s(in, cn)]+, (7)

Ltc := [α + s(cn, c̄n) − s(in, cn)]+, (8)

Lsc := (1(īn,c̄n)/∈P )[α + s(īn, c̄n) − s(in, cn)]+. (9)

Here Lvc and Ltc aim to ensure that intra-modal similarities s(in, īn) and
s(cn, c̄n) are lower than that of positive pairs. Meanwhile, Lsc acts only in cases
where the hard negatives for each cross-modal task do not correspond to each
other, and therefore should not be more similar than the ground truth pair. We
can see the difference with the vanilla triplet model in Fig. 4.

4.3 Intra-modal Margin Hard Negative Control Method (M-HN)

We propose the use of an adaptive margin for each training triplet, this margin
allows for the selection of locally informative samples, capturing local similarity
structures in the latent space and making the training process more efficient.

For a given triplet (in, cn, c̄n), we determine the margin values based on the
intra-modal similarities. In the case of the i2t loss, we seek to ensure that the
cross-modal constraint holds with a margin that is at least the similarity s(in, īn).
Similarly for the t2i loss. These choices lead to the following definitions:

L(in, īn, cn, c̄n) = L∗
i2t + L∗

t2i, (10)
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(a) Vanilla triplet
loss.

(b) Proposed triplet
loss.

Fig. 4. We represent the order relations promoted by the vanilla (HN) and proposed
(F-HN) triplet loss. F-HN exploits all possible similarity relations between the same
elements of the vanilla formulation.

L∗
i2t := [s(in, īn) + s(in, c̄n) − s(in, cn)]+, (11)

L∗
t2i := [s(cn, c̄n) + s(īn, cn) − s(in, cn)]+. (12)

Compared to the vanilla cross-modal triplet loss, the proposed formulation
introduces a looser i2t constraint to triplets (in, cn, c̄n) with similar image repre-
sentations and a tighter i2t constraint to triplets with dissimilar image represen-
tations. Equivalently for the t2i constraint. This approach promotes a greater
consistency between the visual and textual modalities, leading to an increase
or decrease in both cross-modal and intra-modal similarity. Such consistency is
beneficial for cross-modal retrieval, as well as for intra-modal retrieval scenar-
ios where the only available supervisory signal for learning a representation is
obtained from the other modality. Finally, note that this formulation removes
the margin as a hyperparameter, which makes it easier to deploy and less prone
to overfitting.

5 Experimental Setting

We conduct experiments to evaluate the proposed algorithms in cross-modal and
intra-modal retrieval tasks. Below experimental settings adopted to this end.

5.1 Datasets

Although we extend evaluation in several directions, we adopt experimental set-
tings widely used in cross-modal retrieval research [5,7,15,16]. In particular, we
use popular datasets in the area: MS-COCO [13] and Flickr30k [34] (see Table 1
for statistics). Each dataset consists of a set of images with 5 human-written
captions describing it. We used the splits introduced by [8]1.

1 For MS-COCO, we report results for 5k images.
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Table 1. Datasets statistics (#Images)

Train Validation Test Total

Flickr30k 29,000 1,014 1,000 31,014
MS-COCO 113,287 5,000 5,000 123,287

5.2 Models and Implementation Details.

We compare our methods against the following baselines:

– RN: This method uses the classic cross-modal loss randomly selecting the
negative from the current mini-batch [5]. RN is equivalent to VSE0 [5] but,
as detailed below, we use more recent architectures to extract image and text
representations.

– HN: This is equivalent to VSE++ [5] with updated image and text represen-
tations.

– TERAN: Transformer encoder reasoning and alignment network is a state-
of-the-art model for cross-modal retrieval [15].

To simplify experiments, we used pre-trained neural nets for feature extrac-
tion. We only trained the encoders (see Sect. 3), mapping the visual and tex-
tual representations to the cross-modal latent space. We adopted state-of-the-art
models for both modalities. For the images, we used the Efficient Net V2L model
(nV = 1280) [24], and for the text we used the MPNET model (nT = 768) [22].
Visual features were computed on the entire image without data augmentation
or random crop extraction as in [5].

Our methodology starts by selecting the best hyperparameters according to
the sum of recall in the cross-modal retrieval tasks [5]. For Flickr30K, we randomly
selected half of the training data and evaluated on the validation set. To compare
against the best possible version of the HN method, we tuned the margin between
0.2–0.4, and the dimensionality of the latent space in [768, 896, 1024]. The best
results were obtained for a margin of 0.4 and a dimensionality of 10242. These val-
ues were transferred to the other models. We explored modifying the margin in the
new components of F-HN considering the grid [1e − 3, 1e − 3, 0.2, 0.4, 0.6]3. The
best result was obtained with the same margin of 0.4 selected for the classic triplet
loss’s components. For MS-COCO, we adopted hyperparameter values commonly
used in the literature: a margin of 0.2 and a dimensionality of 1024. We applied
the recommendation to keep the margins of the new constraints in F-HN equal
and worked with a mini-batch of 512. The models were trained for 30 epochs with
the Adam optimizer [10] using a learning rate of 0.0002 for the first 15 epochs and
0.00002 for the remaining 15 epochs [5].

2 With results of [351.3 − 350.3, 351.0 − 349.3, 350.4 − 351.4], respectively.
3 With results of [367.0, 368.1, 375.9, 377.5, 370.4], respectively.
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5.3 Evaluation

Cross-modal retrieval is commonly evaluated using Recall among the first 1, 5,
and 10 retrieved results. Besides this classic setting, we extend evaluation using
a non-binary relevance metric recently proposed in [15,16], which we applied
for the top K = 25 recoveries. Below we explain how we extend this metric
for evaluating intra-modal retrieval without category labels. We also propose
extending the evaluation by considering novelty metrics.

nDCG. For a query q, the nDCG@K is defined as nDCGK = DCGK/IDCGK ,
where DCGK =

∑K
v=1

rel(q,v)
log2(v+1) , and IDCGK is a model-agnostic normalization

constant that makes nDCGK = 1 for ideal retrieval lists. Besides, rel(q, v) is a
relevance function computed according to the modality of q:
– Image retrieval. In t2i and i2i tasks, we compute rel(q, v) = τ

(
C̄v, Cq

)
, where

τ is defined below, Cq is the query caption and C̄v is the set of all captions
associated to the image Iv. In i2i tasks, the metric is averaged among the
different captions.

– Text retrieval. In i2t and t2t tasks, we compute rel(q, v) = τ
(
C̄q, Cv

)
, where

C̄q is the set of captions associated to the query image Iq. For the t2t task,
each textual top is evaluated using the relevance function associated with the
image corresponding to the caption query.

Following [15,16] we use ROUGE-L [12] and SPICE [18] as sentence similarity
functions τ for computing caption similarities.

Novelty-Biased nDCG. We propose the following adaptation of α −
nDCG@K [2]. For a query q, the metric is defined as follows:

1
IDCG

∑K

v=1

rel(q, v)(1 − α)r(q,v−1)

log2(v + 1)
, where r(q, v − 1) =

∑v−1

z=1
rel(q, z) ,

where we compute the normalization constant IDCG by considering the most
relevant results for each query and α(= 0.5) is a constant penalizing long repe-
titions of relevant results in favor of novelty.

Novelty via Self-information. We adapt a metric used in Recommender
Systems [36] for measuring to which extent retrieved results are unexpected or
unusual. By defining the self-information or surprise of a retrieved item as the
inverse of its prior selection’s probability, novelty can be measured as

1
K

∑K

v=1
log2

(
nq

count(v)

)

,

where count(v) counts the number of times that v was retrieved among nq eval-
uation queries.

Note that self-information rewards results that are globally infrequent among
the retrieval lists. Novelty-biased nDCG, in contrast, rewards results that break
the monotonicity of an individual retrieval list.
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6 Results and Discussion

Tables 2, 3, 4, and 5 present the results4 for i2t, t2i, i2i and t2t tasks, respectively.

6.1 Cross-Modal Retrieval Performance

For i2t task, it can be observed that HN outperforms the other algorithms in
terms of Recall at various cutoffs, except for recall@10 on Flickr30k, where F-
HN is the superior method. F-HN ranks as the second-best algorithm overall. It
is worth noting that our results for RN and HN surpass the publicly available
results for VSE0 (ResNet) and VSE++ (ResNet) [5], respectively. These find-
ings provide evidence of the exceptional performance of the neural architectures
utilized to obtain visual and text representations. Nonetheless, it is important to
acknowledge that the performance of all methods, including ours, can be further
enhanced by fine-tuning the neural networks.

For t2i task, we can see that F-HN achieves the best results on Flickr30K,
while, on MS-COCO, RN gets the best retrieval performance followed by F-HN.
HN systematically obtains the worst retrieval performance. We attribute this
result to the problem identified in Sect. 4.1: HN has a problem with handling
intra-modal similarities. For example, as shown in Fig. 5, HN ranks s(c̄, c) higher
than s(i, c) during the entire learning process. In contrast, both F-HN and M-
HN require a few training epochs to correct this problem. F-HN is clearly more
effective. The RN model is often competitive and robust to outliers [5], because
it samples with high probability negatives that are harder than 90% of the entire
training set [5]. This effect is enhanced by the batch size used in this research.

6.2 Intra-modal Retrieval Performance

For intra-modal retrieval tasks, F-HN achieves the best retrieval performance
according to nDCG (except for t2t on MS-COCO where RN dominates). We

Table 2. Results of experiments for image to text retrieval.

Flickr30K MS-COCO

Metric RN HN M-HN F-HN TERAN RN HN M-HN F-HN TERAN
Recall @1 40.5 48.2 41.8 47.3 75.8 20.34 23.66 18.14 18.82 55.6

@5 67.5 77.1 72.3 75.5 93.2 45.62 48.84 41.32 42.42 83.9
@10 80.6 84.7 82.7 85.0 96.7 59.5 61.18 54.3 55.9 91.6

nDCG@25 Rouge-L 0.566 0.594 0.553 0.585 0.687 0.516 0.531 0.492 0.497 0.643
Spice 0.480 0.509 0.460 0.503 0.614 0.475 0.483 0.433 0.448 0.606

Novelty@25 Rouge-L 0.803 0.830 0.803 0.821 0.911 0.769 0.781 0.758 0.759 0.875
Spice 0.665 0.700 0.657 0.694 0.811 0.676 0.685 0.648 0.658 0.805
Self-information 7.292 7.345 7.291 7.249 7.285 9.224 9.306 8.676 8.569 9.667

4 The best value is underlined and the best without considering TERAN is highlighted
in bold.
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Table 3. Results of experiments for text to image retrieval.

Flickr30K MS-COCO

Metric RN HN M-HN F-HN TERAN RN HN M-HN F-HN TERAN
Recall @1 32.9 28.5 30.6 39.4 59.5 16.48 9.88 14.31 19.48 42.6

@5 65.1 58.6 59.9 69.0 84.9 40.5 26.2 34.76 42.68 72.5
@10 76.8 71.3 71.4 79.2 90.6 54.71 37.76 46.23 54.7 82.9

nDCG@25 Rouge-L 0.617 0.603 0.599 0.629 0.686 0.618 0.581 0.595 0.615 0.682
Spice 0.498 0.482 0.471 0.517 0.695 0.558 0.503 0.521 0.551 0.610

Novelty@25 Rouge-L 0.816 0.802 0.804 0.830 0.880 0.801 0.770 0.786 0.804 0.868
Spice 0.660 0.642 0.634 0.675 0.721 0.720 0.668 0.689 0.715 0.778
Self-information 5.187 4.959 5.186 5.145 5.258 7.357 6.734 7.133 7.334 7.576

Fig. 5. Average similarity by training epochs in Flickr30K (top) and MS-COCO (bot-
tom). The solid line corresponds to the cross-modal similarity between ground-truth
pairs. The dashed line corresponds to the intra-modal similarity between unobserved
pairs.

Table 4. Results of experiments for image to image retrieval.

Flickr30K MS-COCO

Metric RN HN M-HN F-HN TERAN RN HN M-HN F-HN TERAN
nDCG@25 Rouge-L 0.701 0.699 0.695 0.703 0.718 0.705 0.700 0.699 0.708 0.719

Spice 0.574 0.574 0.563 0.578 0.582 0.618 0.609 0.609 0.623 0.623
Novelty@25 Rouge-L 0.925 0.924 0.923 0.925 0.930 0.931 0.930 0.930 0.932 0.936

Spice 0.713 0.642 0.704 0.716 0.722 0.779 0.773 0.772 0.783 0.788
Self-information 5.185 5.097 5.219 5.104 5.197 7.393 7.166 7.271 7.214 7.452

must note also that performance results are always higher for intra-modal tasks
compared to cross-modal tasks. In particular, our intra-modal retrieval metrics
outperform the SOTA results in terms of cross-modal nDCG [15]. Due to fine-
grained reasoning, TERAN achieves superior results in almost all cases. F-HN
clearly reduces the difference with TERAN especially in the intra-modal tasks.
As future work we will use our full hard negative loss with an attentional model.
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Table 5. Results of experiments for text to text retrieval.

Flickr30K MS-COCO

Metric RN HN M-HN F-HN TERAN RN HN M-HN F-HN TERAN
nDCG@25 Rouge-L 0.716 0.726 0.646 0.733 0.758 0.682 0.671 0.586 0.662 0.714

Spice 0.635 0.645 0.511 0.645 0.677 0.650 0.633 0.424 0.587 0.667
Novelty@25 Rouge-L 0.941 0.945 0.918 0.946 0.953 0.933 0.928 0.904 0.927 0.940

Spice 0.766 0.642 0.652 0.767 0.795 0.837 0.826 0.688 0.805 0.848
Self-information 7.455 7.342 7.510 7.528 7.292 9.613 9.401 9.771 9.795 9.670

6.3 Novelty Results

For t2i task, the F-HN model obtains the best novelty-biased nDCG scores in
the t2i task, except for MS-COCO with Spice, where it takes the second place.
Using the self-information-based novelty measure and ignoring the RN model,
F-HN and M-HN achieve the best novelty score on MS-COCO and Flickr30K,
respectively. It is worth noting that HN obtains the worst novelty score across
all metrics on both datasets (except with SPICE on Flickr30K). However, for i2t
task, HN outperforms the other models. F-HN achieves the second-best results
regarding the novelty-biased nDCG metrics on Flickr30K. RN also produces
competitive results regarding the three novelty metrics introduced in this work,
often obtaining better novelty than models with better nDCG scores. This result
resembles the classic exploration-exploitation (novelty-accuracy) trade-off.

When considering the intra-modal retrieval tasks, F-HN obtains the highest
novelty scores most of the time. In the i2i task, it achieves the best novelty-
biased nDCG scores in both datasets. In the t2t task, F-HN outperforms the
other models regarding the self-information-based novelty score in both datasets
and achieves the best novelty-biased nDCG scores on Flickr30K. One more time,
it is worth noting that for both intra-modal retrieval tasks, HN obtains the worst
novelty scores concerning the self-information metric.

Once again, the performance of intra-modal surpasses that observed in
the cross-modal scenario. These observations show that cross-modal learning
approaches can lead to accurate, novelty-aware intra-modal retrieval systems.
Our F-HN proposal enhances this property. We provide a visual example in our
github repository.

7 Conclusions and Future Work

We have introduced two methods to leverage intra-modal relationships in cross-
modal training for IR systems. Our evaluation of these techniques went beyond
binary relevance, considering both the content of retrieved items and the nov-
elty of the retrieved lists. Furthermore, we explored the benefits of cross-modal
training in intra-modal retrieval tasks. Importantly, our methodology does not
rely on category labels for either training or evaluation. Moreover, our methods
are encoder-agnostic and can be applied in various tasks.
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Experimental results indicate that the proposed F-HN method, which
extends the triplet loss to enforce accurate intra-modal similarity orderings,
yields significant improvements in text-to-image retrieval compared to the con-
ventional cross-modal training. Besides, this method often ranks second for
image-to-text retrieval, where the conventional approach is a more challenging
baseline. The second proposed method, which uses intra-modal similarities to
replace the margin hyper-parameter required by the conventional approach, pro-
duced more varied outcomes. Nevertheless, it holds promise for time-constrained
applications where hyper-parameter tuning is problematic. Beyond classic cross-
modal evaluation, our experiments on image-to-image and text-to-text retrieval
tasks revealed that our F-HN method is particularly suitable for intra-modal
tasks, often providing more accurate and novel retrieval lists than classic cross-
modal training. Overall, these findings highlight the importance of consider-
ing intra-modal similarities in cross-modal learning, especially when the task
involves retrieving items within the same modality, but relevance must be deter-
mined using another modality (e.g., because explicit feedback is not given). As
future work, we plan to investigate the effect of including intra-modality similar-
ity relationships for other negative sampling techniques beyond hard-negative.
Also, we propose to investigate the impact of the proposed loss functions with
more advanced visual and textual encoders (such as transformers [15]).
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Abstract. Active learning aims to reduce the amount of labeled data
while maximizing machine learning models’ performances. Currently,
there is sparse research on the potential of an optimal active learning
strategy. Therefore, we propose a non-myopic oracle policy that accesses
the true labels of the data pool to approximate an optimal active learn-
ing strategy. We evaluate how the hyperparameters of this oracle policy
influence its performance and empirically demonstrate that it is an upper
baseline for common active learning strategies while being faster than a
state-of-the-art oracle policy. For the sake of reproducibility, all the code
related to our research is publicly available on our GitHub repository at
https://github.com/ies-research/non-myopic-oracle-policy.

Keywords: Active Learning · Oracle Policy · Classification

1 Introduction

Active learning (AL) aims to reduce the amount of required labeled data for
training well-performing machine learning models [9]. The idea of pool-based
AL is that the learner uses a specific selection strategy to find the most bene-
ficial instances to be annotated for training. While many articles present such
selection strategies, there needs to be more research exploring the potential of
AL. Concretely, assessing the gap between the performance of selection strate-
gies and an optimal instance selection is difficult. Moreover, it is unclear whether
selection strategies can outperform a random instance selection in certain cases.
Finding an optimal selection strategy would help to investigate these issues.
Even if the labels of all instances are known in advance, this is computationally
intractable in practice due to the high number of possible instance selections [14].
This motivates oracle policies, which are hypothetical selection strategies know-
ing the labels of all unlabeled instances in advance. They leverage this knowledge
to approximate an optimal selection strategy and to construct an upper baseline
for actual selection strategies without that prior knowledge.

In this article, we propose a novel iterative non-myopic oracle policy, which
resolves issues of a myopic (greedy) instance selection by considering future
label acquisitions. Further, we ablate the hyperparameters of this oracle policy,
compare it to existing oracle policies, and show that it builds an upper baseline
for common selection strategies in the context of classification tasks.
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2 Problem Setting

We consider pool-based AL [9] with X as the instance space and Y as the set of
class labels. Further, let p(x, y) be the data generating distribution over X × Y,
and let D ∼ p(x, y) be the observed data pool whose elements, i.e., instance-label
pairs, are drawn independently from p(x, y). A budget B ∈ N>0 specifies the
maximum number of annotated instances. A selection strategy or oracle policy
defines a selection order as an injective function σ : {1, . . . , B} → {1, . . . , |D|}
mapping indices of AL iterations to indices of instances in the data pool D. This
order induces a sequence of labeled sets

L0 := ∅, Lk := {(xσ(i), yσ(i)) : 1 ≤ i ≤ k} (1)

and unlabeled sets

U0 := {x : (x, ·) ∈ D}, Uk := {x : (x, ·) ∈ D\Lk} (2)

for iteration k ∈ {1, . . . , B}. Oracle policies know all labels in D from the start,
while selection strategies only know the labels in Lk−1 at iteration k. Given a
classifier fL : X → Y, we aim to find a selection order minimizing the widespread
area under the learning curve (AULC)

1
B

B∑

k=1

R(fLk
) with R(fLk

) := E(x,y)∼p(x,y) L(fLk
(x), y) (3)

as the expected risk for a loss function L, such as the 0–1 loss. Since the true
data generating distribution p(x, y) is unknown, we approximate the expected
risk with a test set T ∼ p(x, y), which results in the empirical risk

R̂T (fLk
) :=

1
|T |

∑

(x,y)∈T
L(fLk

(x), y) . (4)

3 Related Work

The first oracle policy proposed by Koshorek et el. [6] uses a fixed batch size
D ∈ N>0 and a sample size S ∈ N>0 to build the labeled set iteratively. The
policy randomly draws S candidate sets of D unlabeled instances in each itera-
tion. It retrains the classifier for all sets and evaluates its performance on a given
validation set. Then, it selects the set with the best performance and starts the
next iteration. There are a total of S · �B/D� classifier validations. The authors
tested only the sampling sizes S ≤ 5, for which the policy does not consistently
outperform random sampling. Zhou et al. [14] propose an oracle policy for deep
AL in a pool-based setting. Unlike the previous one, this policy does not build the
labeled set iteratively. Instead, it uses a simulated annealing (SA) search to opti-
mize the selection order. The search starts with a random order and iteratively
exchanges a batch of instances in this order to optimize the AULC. Therefore,
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the policy proceeds in two phases: In the first phase (TS ∈ N>0 iterations),
the policy randomly draws two indices and exchanges them with probability
proportional to the performance improvement. In the second phase (TG ∈ N>0

iterations), it greedily optimizes the order, i.e., accepts the change if and only
if the performance of the order increases. The optimization regarding the com-
plete learning curve means that each step has a linear run time in the number of
annotated instances B. This results in (TS +TG) ·B classifier validations making
it computationally very costly for large budgets. The authors’ experiments show
that their oracle policy clearly outperforms all evaluated selection strategies.

4 Non-myopic Oracle Policy

Even if the labels in the data pool D are known in advance, the difficulty in
finding an optimal selection strategy is the fast-growing number of possible
selection orders

(|D|
B

)
· B! with an increasing budget B. Thus, an exhaustive

search exceeds computing capacities for common data sets and budgets. There
are two approaches for approximating an optimal selection order: The first app-
roach [14] is to start with any selection order σ and optimize it by iteratively
changing this order, which has the advantage that the AULC can be directly
optimized. However, such AULC computations are very expensive (cf. Sect. 3).

Algorithm 1: non myopic oracle policy

input : budget B, data pool D, validation set V, sample size S, lookahead M
output: selection order σ
// Initialize labeled and unlabeled set

L0 ← ∅
U0 ← {x : (x, y) ∈ D}
for k = 1, . . . , B do // Select until budget is reached

// Initialize risk table

∀x ∈ Uk−1, ∀m ∈ {1, . . . , M} : Tk[x, m] ← ∞
for m = 1, . . . , M do

for s = 1, . . . , S do
Draw Ds ⊆ D\Lk−1 with |Ds| = m s.t. Ds �= Di ∀i < s
// Extend labeled set by candidate set

L+ ← Lk−1 ∪ Ds

for (x, y) ∈ Ds do
// Update risk table

Tk[x, m] ← min(Tk[x, m], R̂V(fL+))

(x̂, ŷ) ← best candidate(Tk, D\Lk−1)

// Get index to update oracle policy

σ(k) ← index of (x̂, D)
// Update labeled and unlabeled set

Lk ← Lk−1 ∪ {(x̂, ŷ)}
Uk ← Uk−1\{x̂}
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The second approach [6] avoids these expensive computations by building the
selection order iteratively. Due to its greedy nature, this approach is vulnerable
to local minima, which may result in bad long-term performances. We propose
an iterative non-myopic oracle policy (NOP) in Algorithm 1, which avoids greedy
behavior through a lookahead M ∈ N>0. That is, the policy considers candidate
sets Ds ⊂ D of size |Ds| = m ∈ {1, . . . , M} and evaluates their performance
gains. Although our policy evaluates sets of instance-label pairs, the final selec-
tion concerns a single instance-label pair differing from the batch AL setting
in [6]. Due to a large number of sets, the policy randomly samples S candidate
sets of size m from the pool. The candidate sets are not disjoint since it would
limit the number of candidate sets. For each candidate set in iteration k, the
policy updates a risk table Tk ∈ (R ∪ {∞})|Uk−1|×M to track the respective
improvement.

Algorithm 2: best candidate

input : table T , data pool D
output: instance-label pair (x̂, ŷ)
// Compute minimum risks

∀(x, y) ∈ D : Rmin(x) ← minm∈{1,...,M} T [x, m]
// Initialize candidates

C ← {(x̃, ỹ) ∈ D : Rmin(x̃) = min(x,y)∈D Rmin(x)}
for m = 1, . . . , M do // Reverse order for backward filtering

// Filter candidates

C ← {(x, y) ∈ C : T [x, m] = min(x,y)∈C T [x, m]}
(x̂, ŷ) ← random selection(C)

After evaluating all sampled candidate sets, the best candidate function
in Algorithm 2 describes how the policy selects an instance-label pair (x̂, ŷ) to
update the selection order, based on the risk table. For this, it iteratively filters
the rows (instances) of Tk. Figure 1 illustrates this procedure. In the first step,
best candidate calculates the minimum risk Rmin(x) := minm Tk[x,m] of every
instance-label pair (x, y) ∈ D\Lk−1 (cf. the Rmin columns in Fig. 1). This value
is the minimum risk of all drawn sets containing the respective instance. The
policy then only keeps candidates with minimum Rmin among all candidates.

If there are multiple candidates with minimum risk (which always happens if
a candidate set with a size greater than one leads to minimum risk), we propose
two different filterings to select one candidate, depending on whether we aim to
optimize the AULC or only the performance on a fixed budget. If the goal is to
optimize the AULC, focusing on the short-term reward is beneficial as it leads
to multiple small improvements in the learning curve. Therefore, we iteratively
filter the remaining rows of the table from left to right (forward filtering, cf.
the left side of Fig. 1). In the i-th iteration, we only keep the instances with
minimum risk among the remaining candidates in the i-th column. This way,
we focus on instances that immediately lead to a lower risk. If the goal is to
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Fig. 1. Exemplary risk table Tk for M = 4 and |Uk−1| = n as basis for the candidate
selection. The instances x ∈ {x1, x3, x4} have the minimum risk Rmin(x) = 0.1 and are
therefore the only ones we consider in the selection. Colored cells show how long an
instance remains in the candidate set C. We query the instance x4 for both filterings.

optimize performance at a fixed budget, the performance at the final iteration is
all that matters. To focus on such a long-term reward, we propose to filter the
table from right to left (backward filtering, cf. the right side of Fig. 1), thereby
ignoring the short-term rewards. In both cases, if two instances have the same
entry in every cell, we randomly select one of these instances because we cannot
distinguish them through the risk table Tk.

The lookahead M describes the maximum size of the candidate sets to be
considered. Small values (especially M = 1) might lead to a bad approximation
because a greedy search with small lookahead can easily run into local minima.
To achieve a truly optimal algorithm, we need to set M = B, such that all per-
mutations of the candidates are considered and the best one is found. But since
the number of permutations grows fast in M , larger values are computationally
infeasible without restricting to a sub-sample of all candidate sets.

The sampling size S determines the number of randomly drawn candidate
sets per lookahead. That is, for every m = 1, . . . , M , the algorithm draws up
to S candidate sets of size m and only evaluates the performance of these sets.
This may lead to some instances not being considered if they appear in none of
the drawn sets. Koshorek et el. [6] only evaluate their greedy oracle policy for
S ≤ 5. We suppose that this is too small to outperform random selections since
the largest part of the candidates is not covered.

The validation set V is required to determine the performance of the selec-
tion order. It can be chosen in two ways: The first option is to draw a new set
V ∼ p(x, y), and the second option is to optimize the performance directly on
the test set by setting V := T . Drawing a new set yields a more realistic baseline
for selection strategies since they do not know the test set. However, the optimal
strategy for V may differ from the optimal strategy for T , especially if the sets
are small. This may lead to an underestimation of the potential of AL.

The run time of our NOP is a function of M · S · B corresponding to the
maximum number of classifier validations. In comparison, the SA search requires
(TS + TG) · B classifier validations. For M · S = TS + TG, both algorithms have
the same number of classifier validations. In this case, the iterative strategy
evaluates B-times as many candidate sets, resulting in better candidate space
coverage.
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5 Experiments

Our experiments are divided into two parts. The first part ablates the NOP’s
hyperparameters. The second part compares NOPs to the SA search [14] and
common selection strategies. Both analyses evaluate the policies’ and strategies’
learning curves and AULCs. Although we only present a selected set of learning
curves here, an exhaustive list of learning curves can be found in our repository.

5.1 Experimental Setup

For our experiments, we use 13 OpenML [13] data sets listed in Table 1, which
are preprocessed by standardizing the instances’ features. We repeat each exper-
iment 25 times. In each repetition, we randomly split the data set into a data
pool D containing 20% of the instances, a validation set V with 40% of the
instances, and a test set T containing the remaining 40% of the instances. Fol-
lowing the setup of Zhou et al. [14], we set B := �|U|/2, and only the oracle
policies optimize their selection on the validation set. After each iteration k, we
compute the 0–1 loss of the classifier fitted with Lk both on the test and the vali-
dation set. The results for the validation set are only given in the repository. For
the SA search, we compute the selection order σ beforehand and select xσ(k) in
iteration k. For classification, we use a Parzen window classifier [2] with a radial
basis function kernel, whose bandwidth hyperparameter is specified according to
the mean bandwidth criterion [3]. This classifier allows us to compare the poli-
cies to selection strategies such as probabilistic AL and epistemic uncertainty
sampling. Moreover, the classifier’s fast (re-)training speeds up the AL process,
in particular the instance selection of the oracle policies. Still, the oracle policies
can be combined with any other classifier.

Table 1. Description of data sets by (reference) name, number of instances, number
of features, number of classes, and OpenML identifier (ID).

data set name reference name instances features classes OpenML ID

chscase vine2 vine 468 2 2 814

kc2 kc2 522 22 2 1063

wdbc wdbc 569 30 2 1510

balance-scale bal 625 5 3 11

blood-transfusion blood 748 5 2 1464

diabetes diab 768 9 2 37

vehicle veh 846 18 4 54

qsar-biodeg qsar 1022 42 2 1494

banknote-authentication bank 1372 4 2 1462

steel-plates-fault steel 1941 34 2 1504

mfeat-pixel pixel 2000 240 10 20

segment seg 2310 19 7 36

satimage sat 6430 36 6 182
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5.2 Ablation Studies

Our experiments’ first part compares different configurations of the hyperparam-
eters introduced in Sect. 4. Note that policies cannot always sample S candidate
sets since there are settings where the number of available candidate sets is
smaller than S. This is particularly true for the greedy oracle policy (GOP)
with M = 1 because then the number of candidate sets corresponds to the
number of unlabeled instances. We use mean rank tables to evaluate the config-
urations. Accordingly, we compute the ranking of the configurations regarding
their AULCs for each data set, averaged over all repetitions. Further, we com-
pute the mean across all ranks (cf. column mean). Based on these tables, we
examine the following four hypotheses.

H1: NOPs strongly outperform a GOP. Table 2 shows the ranks of nine
selected hyperparameter configurations with the same maximum number of clas-
sifier validations. The GOP ranks worst on most data sets. The only exceptions
are wdbc, diab, kc2, and blood. The only data set where the GOP performs
better than most NOPs is kc2. On this data set, the Parzen window classifier
can reach its maximum accuracy with only two labeled instances (cf. Fig. 2).
Thus, the greedy selection of the GOP is not disadvantageous in this case. In
most other cases, the GOP’s rank is much worse than the rank of the NOPs.
The learning curves in Fig. 2 support these results. Here, the GOP often per-
forms substantially worse than all NOPs. The remaining learning curves in the
repository show similar results. This confirms H1 that a non-myopic selection is
crucial for an oracle policy to approximate an optimal instance selection.

H2: The forward filtering achieves a better AULC. We check if traversing the
risk table Tk via forward filtering results in a better AULC than traversing it
via backward filtering. As expected (cf. Sect. 4), the mean rank with forward
filtering is better than the one with backward filtering for every hyperparameter
configuration in Table 2, respectively. Only for two data sets (sat and steel),
the best configuration uses backward filtering. However, the differences are fairly
small in most cases. Overall, the filtering type does not seem to impact the
performance majorly. For all the following hypotheses, we only consider forward
filtering.

Table 2. Ranks of nine selected hyperparameter configurations for all data sets regard-
ing their AULCs. The bold red numbers highlight the best rank in each column.

M S filtering vine wdbc veh bank pixel seg sat bal diab kc2 blood qsar steel mean

1 1000 – 6.36 5.86 7.56 8.84 7.28 8.64 8.76 6.60 5.20 3.66 5.68 7.52 8.88 6.99

2 500 forward 5.44 4.46 3.64 3.12 4.50 4.76 5.44 4.44 4.22 3.94 4.70 5.28 3.96 4.45

3 333 forward 3.92 4.22 4.28 4.36 4.64 4.46 3.72 4.04 5.52 4.10 5.28 4.00 3.68 4.32

4 250 forward 4.80 3.44 4.44 4.00 3.96 4.12 4.40 4.32 4.08 4.16 3.88 5.32 4.76 4.28

5 200 forward 4.36 4.74 5.20 4.92 4.36 5.12 4.76 4.76 5.00 3.42 4.08 4.44 5.48 4.66

2 500 backward 4.84 4.76 4.60 3.76 4.74 4.42 5.28 4.96 5.34 4.02 4.42 4.48 3.64 4.56

3 333 backward 4.44 5.64 5.24 5.56 5.76 4.48 3.48 4.96 4.84 6.92 5.32 5.08 5.04 5.14

4 250 backward 5.24 5.92 4.56 4.56 4.28 4.48 3.92 5.36 5.00 6.82 5.72 4.40 4.56 4.99

5 200 backward 5.60 5.96 5.48 5.88 5.48 4.52 5.24 5.56 5.80 7.96 5.92 4.48 5.00 5.61
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(a) seg (b) bank

(c) kc2 (d) sat

Fig. 2. Learning curves for the GOP and seven NOPs with forward filtering and the
shown hyperparameters.

H3: The trade-off between sample size and lookahead influences the perfor-
mance. As shown in Sect. 4, the NOPs’ run times are determined by B · M · S
classifier validations. Hence, we expect that a good trade-off between the looka-
head M and the sample size S is crucial for good performance and fast run time.
Table 2 compares hyperparameter configurations with M · S = 1000 candidate
sets per iteration. Thereby, all compared NOPs have similar run times. The best
values for M and S vary between the data sets. Each NOP with forward filter-
ing performs best on at least one data set such that there is no clear winner
across all data sets. The mean ranks of the NOPs with forward filtering differ
only by less than 0.4. In contrast, the ranks on the individual data sets differ
more strongly. Thus, choosing a suitable trade-off depends mainly on the spe-
cific data set. Yet, the learning curves in Fig. 2 and our repository show that the
performance improvement of a suitable trade-off for an NOP is fairly small.

H4: Higher sample size and lookahead improve the policy’s performance. The
experiments with more candidate sets show that increasing M and S improves
the performance. As one can see in Table 3, the NOP with the highest number
of considered sets (i.e., M = 5 and S = 1000) performs best on 10 of the 13
data sets. As before, the ranks do not differ much. That is, the higher sample
size still does not persistently improve the performance. The learning curves
in Fig. 2 show that all curves of the NOPs are similar or nearly identical. Even
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Table 3. Ranks of NOPs with varying computational effort for all data sets regarding
their AULCs. The bold red numbers highlight the best rank in each column.

M S filtering vine wdbc veh bank pixel seg sat bal diab kc2 blood qsar steel mean

2 200 forward 2.64 2.64 3.00 2.44 3.12 2.80 2.76 2.92 2.72 2.52 2.48 2.56 2.76 2.72

2 500 forward 2.96 2.62 2.36 2.40 2.52 2.80 2.92 2.64 2.56 2.12 2.44 2.96 2.56 2.60

2 1000 forward 2.20 2.14 2.68 2.44 2.64 2.32 2.32 2.32 2.60 2.84 2.68 2.32 2.44 2.46

5 1000 forward 2.20 2.60 1.96 2.72 1.72 2.08 2.00 2.12 2.12 2.52 2.40 2.16 2.24 2.22

more candidate sets do not change the learning curve notably. This suggests that
the tested NOPs are already close to convergence toward an optimal instance
selection. All plots for the remaining data sets show similar behavior.

Summary: The most crucial parameter for the performance is to set M > 1,
i.e., to use an NOP. As expected, the forward filtering outperforms the backward
filtering. However, the difference is fairly small. The trade-off between lookahead
and sample size depends on the data set. Increasing the lookahead and the
sample size improves the performance only slightly. Hence, one can save a lot of
computation time by choosing a small lookahead and a relatively small sample
size, e.g., M = 2, S = 200, without notably losing performance.

5.3 Comparison with SA Search and Selection Strategies

This section compares the GOP/NOPs with a random baseline (Rand), and
with the popular selection strategies uncertainty sampling (LC) [10], query by
committee (QBC) [12], epistemic uncertainty sampling (Epis) [11], probabilistic
active learning (PAL) [8], discriminative active learning (DAL) [4], and querying
informative and representative examples (QUIRE) [5]. Since epistemic uncer-
tainty sampling works only for binary classification tasks, we evaluate it only on
eight data sets. For all selection strategies, we use the implementations of scikit-
activeml [7] with default hyperparameters. Further, we compare the GOP/NOPs
with SA search [14] with the proposed annealing factor of γ := 0.1. To the best of
our knowledge, this is the only comparable oracle policy for sequential pool-based
AL. We investigate two different configurations: one with the hyperparameters
TS := 25000, TG := 5000 as proposed by Zhou et al. [14] (which takes much more
time than our tested GOP/NOPs, as shown on right side of Table 4) and one
with TS := 2000, TG := 400 (SA fast) being more comparable to the run time
of the tested GOP/NOPs. Table 4 (left side) compares each GOP/NOP to its
competitors by computing the win percentage across all data sets and repeti-
tions, where a win corresponds to a lower AULC. For example, a win percentage
larger than 50% indicates that the GOP/NOP has more wins than its respective
competitor. Following the idea of Benavoli et al. [1], we test the statistical sig-
nificance of the pairwise performance differences between each GOP/NOP and
each competitor via a two-sided Wilcoxon signed-rank test. For this purpose, we
compute the mean AULC per data set and algorithm. We target a global signif-
icance level of 5% as the upper bound for the familywise error rate. Therefore,
we apply a Bonferroni correction for the comparisons of each GOP/NOP to its
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Table 4. Left: Comparison of GOP/NOPs vs. competitors for AULC. The column
titles denote M/S. The table entries denote the percentages of GOP/NOP wins over
all data sets and repetitions. The symbol denotes whether the performance results
provide sufficient evidence that the GOP/NOP is significantly better (+) or worse (−)
than its respective competitor. If no symbol is given, the performance results do not
provide sufficient evidence regarding a significant performance difference between the
GOP/NOP and its respective competitor. Right: Time comparison on the data set
sat. Our repository shows the times for the other data sets and selection strategies.

GOP 1/1000 NOP 2/200 NOP 4/250 NOP 5/1000

PAL 88.6% + 98.2% + 97.5% + 97.8% +

QBC 96.6% + 98.2% + 98.8% + 98.2% +

LC 89.2% + 98.2% + 99.1% + 99.1% +

Rand 91.7% + 98.2% + 97.5% + 97.8% +

QUIRE 92.9% + 97.2% + 97.2% + 97.2% +

DAL 89.2% + 98.2% + 98.8% + 98.5% +

Epis 86.5% 97.0% 97.0% 95.5%

SA search 24.9% 43.2% 51.7% 53.8%

SA fast 52.3% 81.5% + 82.2% + 84.9% +

time

GOP 1/1000 32h

NOP 2/200 13h

NOP 4/250 38h

NOP 5/1000 151h

LC 52s

PAL 502s

QUIRE 54h

SA search 402h

SA fast 51h

nine competitors, which results in a local significance level of about 0.6%. Based
on the results of Table 4, we examine the following two hypotheses.

H5: NOPs are an upper baseline for selection strategies. The win percent-
ages in Table 4 (left side) show that the GOP/NOPs outperform all selection
strategies. This observation is especially true for the NOPs, which consistently
achieve win rates above 95%. These superior performances are significant except
for the comparisons to Epis, since this strategy is limited to the eight binary
classification tasks. Figure 3 confirms these superior performances by showing
that there is a large gap between oracle policies and selection strategies. The
curves of the selection strategies are closer to Rand than to the oracle policies.

H6: NOPs achieve similar performance as SA search while being much faster.
Table 4 (right side) exemplarily demonstrates for the data set sat that SA fast’s
run time is higher than the run times of the GOP, NOP 2/200, and NOP 4/250.
Yet, Table 4 (left side) demonstrates that the GOP performs similarly to SA fast
(win rate slightly above 50%), while NOP 2/200 and NOP 4/250 significantly
outperform SA fast. SA search takes considerably longer than the GOP and all
tested NOPs, as exemplary shown for the data set sat in Table 4 (right side).
However, Table 4 (left side) reveals that only the GOP is clearly inferior to the SA
search (win rate about 25%), while the NOP 2/200 is only slightly worse (win rate
about 43%). In contrast, the NOP 4/250 and NOP 5/1000 achieve comparable
performances (win rates slightly above 50%) to SA search. The learning curves
in Fig. 3 confirm the comparable performances between NOPs and SA search,
while SA fast performs worse.
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(a) wdbc (b) steel

(c) qsar (d) pixel

Fig. 3. Learning curves of oracle policies (solid lines) and selection strategies (dashed
lines).

Summary: The results in Table 4 support H5 that NOPs are strong upper
baselines for selection strategies. Moreover, they verify H6 that the SA search
takes much longer to achieve comparable performances.

6 Conclusion

In this article, we proposed a novel non-myopic oracle policy (NOP) to explore
the potential of optimal active learning (AL). We showed that NOPs are robust
upper baselines for selection strategies while being faster than the simulated
annealing search [14] as the only comparable oracle policy. We further demon-
strated that, most notably, instance selections with lookaheads benefit AL, which
could motivate future research to design non-myopic selection strategies. Explor-
ing NOPs’ performances for other classifiers or even regressors would also be an
interesting research issue. Finally, combining NOPs with deep neural networks is
appealing and requires an extension toward AL with batch instance selections.
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Abstract. We propose a new machine learning formulation designed specifically
for extrapolation. The textbook way to apply machine learning to drug design is
to learn a univariate function that when a drug (structure) is input, the function
outputs a real number (the activity): F(drug) → activity. The PubMed server lists
around twenty thousand papers doing this. However, experience in real-world drug
design suggests that this formulation of the drug design problem is not quite cor-
rect. Specifically, what one is really interested in is extrapolation: predicting the
activity of new drugs with higher activity than any existing ones. Our new formu-
lation for extrapolation is based around learning a bivariate function that predicts
the difference in activities of two drugs: F(drug1, drug2) → signed difference in
activity. This formulation is general and potentially suitable for problems to find
samples with target values beyond the target value range of the training set. We
applied the formulation to work with support vector machines (SVMs), random
forests (RFs), and Gradient BoostingMachines (XGBs). We compared the formu-
lationwith standard regression on thousands of drug design datasets, and hundreds
of gene expression datasets. The test set extrapolation metrics use the concept of
classification metrics to count the identification of extraordinary examples (with
greater values than the training set), and top-performing examples (within the top
10% of the whole dataset). On these metrics our pairwise formulation vastly out-
performed standard regression for SVMs, RFs, and XGBs. We expect this success
to extrapolate to other extrapolation problems.

Keywords: machine learning · extrapolation · drug discovery

1 Introduction

The original motivation for this work came from applying machine learning (ML) to
drug design, specifically quantitative structure activity relationship (QSAR) learning.
The standard way to cast QSAR learning as ML is to learn a univariate function that
when a drug (structure) is input, the function outputs a real number (the activity):F(drug)
→ activity. The PubMed server lists around twenty thousand papers doing this.

Experience in real-world drug discovery suggests that this formulation is not exactly
what is really required in practice. Specifically, what one is really interested in is predict-
ing the activity of new drugs with higher activity than any existing ones - extrapolation.
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N.B. extrapolation inQSAR learning has two relatedmeanings: one is the ability tomake
predictions for molecules with descriptor values (xi) outside the applicability domain
defined by the training set of the model (Fig. 1a) [1–3]; the other is the identification
of the “extraordinary molecules” with activities (y) beyond the range of activity values
in the training data (Fig. 1b) [1, 4]. In drug discovery both types of extrapolation are
important. Extrapolating beyond training set descriptor values enables new molecular
types (maybe unpatented) to be proposed. Extrapolating beyond the highest observed y
values is strongly desired to select more effective drugs.

Fig. 1. The illustration of two types of extrapolation in drug discovery. (a) extrapolation outside
the applicability domain, (b) extrapolation outside the range of drug activities.

Although many QSAR learning studies have reported advantageous ML methods
based on their model prediction accuracy using metrics such as mean squared error, in
practice the ability to produce accurate predictions is less valuable than the extrapolation
ability in this type of application [4, 5]. In fact, someMLmethods can hardly extrapolate
beyond the training sets. For example, randomforest (RF) is incapable of predicting target
values (y) outside the range of the training set because it gives ensembled prediction by
averaging over its leaf predictions [4, 6]. Our study is therefore motivated by the purpose
to improveMLmethods to be better at finding extraordinary samples (Fig. 1b). This will
also be a tool that benefits many other applications, such as material sciences, dynamics
modelling and system management.

Our extrapolation problem can be defined as following. Consider a training set ofNtr

samples, its feature vectors of length Nf is x ∈ R(Nf ×Ntr), and its target activity values is
y ∈ RNtr . Therefore, the range of the target values for the training set is {ytr,min, ytr,max}.
A ML model f is then obtained so that f (xi) ≈ yi. Suppose there exist a test set xts of
size Nts containing Nex,true (Nex,true <= Nts) extraordinary samples with target values
yex > ytr,max. The extrapolation problem will be if the test samples with f (xts) > ytr,max
are truly extraordinary, or if themodel f can rank extraordinary test samples above xtr,max
if f is a ranking method. In addition, we also define Ntop,true top-performing samples
whose rank is within the top 10% of the whole dataset. We would like to know if the
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model can rank the top-performing test samples as top 10% of the dataset of (Ntr +Nts)
samples, once the model predicts ypredts = f (xts) and rank the training and test samples
by ytr and ypredts together.

There have been several studies recognising the importance of ranking performance
in drug screening. Some have proposed to optimise the ML method directly to achieve
higher ranking coefficients [7, 8], while some have instead proposed to boost the ranking
performance from non-ML perspectives [9, 10]. Agarwal et al. proposed the method,
RankSVM, to directly minimise a ranking loss to maximise the number of correctly
ordered pairs of molecules for all ranks [7]. Rathke et al. reported a new algorithm,
StructRank, which also directly solves the ranking problem with better focus and opti-
misation on the top-k-ranked molecules [8]. Al-Dabbagh et al. developed a probabil-
ity ranking approach that employed quantum interference analogy [9]. Liu and Ning
improved the ranking performance of SVMrank by leveraging assistance bioassays and
compounds [10]. Zhang et al. have also deployed “Learning-to-rank” (LTR) from infor-
mation retrieval successfully to integrate heterogeneous data and to identify compounds
by prioritising their relevance to drug targets in a cross-target manner, similar to match-
ing queries and documents in information retrieval applications [11]. Although our new
approach also emphasises the importance of ranking to meet the problem specifications,
it differs from LTR ranking algorithms. LTR data usually contain a large, fixed number
of items matched with different queries. LTR models are trained to rank a fixed set of
instances given queries, focusing on if the top-k items are correctly placed and extrap-
olation is not needed. LTR algorithms are therefore designed to incorporate the ranking
of the items in the model objective directly, putting emphasis on the relative positions of
test samples within the test set, rather than the extrapolation behaviour of a model. Our
approach, however, makes commonMLmethods learn explicitly to distinguish samples’
differences, so that it can later rank training and test samples to achieve extrapolation
over the training set.

Some recent work has emphasised the importance of extrapolation and proposed
new evaluation procedures for extrapolation performance of ML models. Kauwe et al.
tested the extrapolation ability of several common ML methods by keeping the top 1%
of the instances in the test sets for properties calculated from density functional theory
[1]. Von Korff and Sander used sorted and shuffled datasets to evaluate extrapolation
and interpolation performance, respectively [4]. Xiong et al., Meredig et al. and Wat-
son et al. have each proposed a newmodel validation technique to evaluate extrapolation
performance of ML methods [6, 12, 13]. However, due to a lack of systematic review
for them, it is unclear that these methods are statistically meaningful. Therefore, in this
study, we apply standard k-fold cross validation [2, 6, 14].

This study proposes aML configuration approach, the “pairwise approach”, to boost
the extrapolation ability of a traditional regression learning method. A pairwise model
is designed to model the relationship between the differences in the structures of pairs
of drugs and the sign of differences in their activity values. The learned pairwise model
is a bivariate function, F(drug1, drug2) → signed difference in activity, whose outputs
can give a better ranking of drugs by ranking algorithms. By transforming the learning
objective, the pairwise model enables improved performance in extrapolation compared
to traditional regression evaluation.
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2 Method

2.1 Datasets and Data Pre-processing

ChEMBL is a chemical database of bioactive molecules [15, 16]. It contains a large
number of molecules and their measured activities against a variety of targets. Due to
their size and scope, these datasets are suitable for benchmarkingML applications in the
realm of QSAR [17]. ChEMBL features a number of different activities, in this study
we are employing pXC50 as our target values, i.e. -log(measured activity). The structure
of drug molecules is represented by the commonly employed Morgan fingerprint (1024
bits, r = 2) encoding the molecular substructures by Boolean values [18].

The other large-scale database we used is the human gene expression datasets (acces-
sion code GSE70138) from the Library of Integrated Network-based Cellular Signatures
data (LINCS) [19]. These datasets were used byOlier et al. in transformationalML study
[16]. This set of datasets contains themeasured gene expression level across different tis-
sue types and drug treatments in cancer cell lines. There are in total of 978 human genes,
each of which was measured under 118,050 experimental conditions. Each dataset is the
expression levels of a gene, measured and processed as level 5 differential gene expres-
sion signatures, under a series of conditions. The conditions are featured into 1,154
Boolean values describing drugs’ fingerprints (1024 bits) and experimental settings,
which include 83 dosages, 14 cell types and 3 time points.

Before training any ML model, a basic feature selection is performed to reduce the
large feature space and accelerate the learning process. For a given dataset, the features
were removed if they have the same feature value assigned to every sample in a dataset.
The features that repeat to have the same pattern for all the samples were also removed.

2.2 Formulation of Baseline Approach

In this study, when evaluating the performance of the pairwise approach on a specific
dataset, in most cases it is compared with that of a baseline ML configuration, addressed
as the “standard approach”. It refers to the standardway of learning a regression problem.
For a dataset, the model is built directly between the feature vector, xi ∈ R(Nf ×Ns),
and the target value, yi ∈ RNs of all the samples. With multiple samples of known
(x, y), a ML method can learn the relationship between features, x, and target values,
y, establishing a model f which can produce f (xi) ≈ yi for the training set. The feature
values of the test samples, xts are fed into the model f to obtain the predicted target
values, ypredts = f (xts). The performance of this model is then evaluated using metrics
for evaluating the extrapolation performance (see Sect. 2.6).

2.3 Formulation of Pairwise Approach

For a given Boolean dataset, a pair of samples PAB is derived from sample A (SA) and
sample B (SB). The difference in the ith feature for this pair can be presented in one
of the following ways: present in both samples (xA,i = 1, xB,i= 1), present in SA but
not in SB (xA,i= 1, xB,i= 0), present in SB but not in SA (xA,i= 0, xB,i= 1), and absent
from both samples (xA,i= 0, xB,i= 0). To represent each type of difference in a feature, a
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unique value is assigned to the ith feature of the pair. An example of generating pairwise
feature for the ith feature from a ChEMBL dataset is shown in Fig. 2. The unique values
used in our experiments are:

xA,i = 1, xB,i = 1 → XAB,i = 2

xA,i = 1, xB,i = 0 → XAB,i = 1

xA,i = 0, xB,i = 1 → XAB,i = −1

xA,i = 0, xB,i = 0 → XAB,i = 0

Fig. 2. An example of generating pairwise samples for a ChEMBL dataset.

The way of generating pairwise features is called ordinal encoding. It is often used
for categorical features and each category value is assigned an integer value. Another
popular way to encode real values for categorical features is one-hot encoding. It assigns
Boolean bits to describe the absence or presence of each category. Therefore, it needs to
at least double the size of features space. In the pairwise case, one-hot encoding is equiv-
alent to the concatenation of features of two samples to generate the pairwise features.
Considering the large expansion of training set by permutation, the further expansion
in the feature size can greatly increase training time. Furthermore, our experiments on
ChEMBL datasets have shown that one-hot encoding made little difference in the train-
ing accuracy. Therefore, we decided to use ordinal encoding for the pairwise features. In
ordinal encoding, the choice of the integer value for each category is not restricted [20].
Despite potential doubts regarding the effect of their relative magnitudes under numeric
transformations [21], it has been proven not to affect our study through simple tests. We
endeavoured to assign each combination listed above with a different value (e.g., xA,i =
1, xB,i= 1 → XAB,i = -1; xA,i = 0, xB,i= 1 → XAB,i = 0). We have also tried a different
set of ordinal values, for example, using {1, 2, 3, 4} instead of {-1, 0, 1, 2}. In both tests
the results were hardly varied by the choice of ordinal values.

The pairwise target value needs to represent the difference in target values. For a
specific pair, PAB, its pairwise target value, YAB, is equal to yA − yB. Pairs PAB and
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PBA are treated differently as two pairwise samples despite YAB = −YBA. AMLmethod
can learn to predict the real values of those pairwise differences Y via regression or
learn to predict the sign of the pairwise differences, sign(Y ) via classification. The latter
type of learning was found to be more advantageous to extrapolate the model and find
extraordinary samples (see Sect. 2.4).

Suppose a dataset is split into a training set of size Ntr and a test set of size Nts.
The training samples are paired via permutation, creating N 2

tr pairwise training pairs.
This type of pairs is referred to as C1-type training pairs in this study. The test pairs
can be obtained in two ways: (1) C3-type test pairs: generate from a permutation of test
samples, giving N 2

ts test pairs; (2) C2-type test pairs: generate from pairing test samples
with training samples, giving 2NtrNts test pairs. The naming of the pair types follows
the notation in [22] which considers the amount of shared information between training
and test data within a pair. Because this work is about the extrapolation of the pairwise
approach, C2-type test pairs are more studied than the C3-type test pairs due to their
ability to compare between training samples and test samples.

2.4 Extrapolation Strategy

The pairwise model only predicts the differences of pairs of samples. Therefore, a con-
clusive decision needs to be made to point out the predicted extraordinary samples. We
propose to use rating algorithms to estimate the ranking of the test samples with the
training set. The idea is to treat each predicted difference as the result of “a game match”
between two samples. If the difference between sample A and sample B is greater than
0, then sample A wins sample B. This “league table of samples” gets updated from the
predicted differences of the test pairs. In the end, we can identify the extraordinary or
top-performing test samples.

Most of the generic rating algorithms were developed based on absolute wins or
losses to give rating scores to the players, such as Elo’s rating algorithm for chess com-
petition and Trueskill for computer games [23, 24]. There has also been some advanced
research that enables these methods to take score differences to help the rating [25].
But for their application in the pairwise approach, it was found that the former version
can serve our purpose better than the latter advanced version. We have noticed that if
the pairwise model is trained on signed differences via classification, the accuracy of
the predicted signs (wins, losses and draws) is higher than if it is trained on numerical
differences via regression, from which the signs are then extracted. In other words, the
accuracy of sign(Y )pred is higher than that of sign(Y pred). This result may come from
the fact that there exist pairs with the same differences in features (X) but different dif-
ferences in target values (Y ). Despite some loss of information when taking the signs,
the training of the classification model can suffer from less “noise” in pairwise target
values than the regression model. For a rating algorithm, correct results of win or loss are
more informative in deciding the rank of the samples than the more accurate numerical
score differences with potentially wrong signs. Therefore, training the pairwise model
via classification and generic version of rating algorithm were used.

We have also experimentally examined several generic ranking algorithms and found
that the choice of the generic ranking algorithm can merely affect the ranking accuracy
given the same sets of sign(Y )pred, usually by about 1%. It is believed that the main
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contribution to accurate ranking should come from the accuracy in sign(Y )pred rather
than the rating algorithm. Therefore, Trueskill is selected and used to rank the samples
from the predicted signs. Trueskill is originally designed to rank players in the game
“Halo”. Because it assumes variances both in players’ performance and skill levels, it
can deal with potential conflicts in match outcomes, in our case, conflicts in sign(Y )pred

due to learning errors. For example, when sign(Y )
pred
AB = –1 and sign(Y )

pred
BC = –1, it

implies that sample A < sample B < sample C. But if sign(Y )
pred
AC = 1, which implies

sample A > sample C, then these predictions are suggesting opposite opinions. This
situation is similar to game tournaments, in which a strong player does not necessarily
win every time. The python package for Trueskill was already made available [26]. In
our experiment, the default Trueskill parameters were used.

In an extrapolation task, the relationship between the test samples and the training
samples is important for comparing the training and test data in order to predict the
extraordinary samples. So, despite the existence of C3-type test pairs, using them to
rank solely can only tell the relative ranks within the test set. On the other hand, C2-
type test pairs describe the relative differences between training and test samples. These
are better suited for the extrapolation task. Therefore, in the following experiments on
extrapolation, the signed differences of C2-type test pairs will be primarily used to rank.

2.5 Machine Learning Methods

The pairwise formulation is potentially ML method agnostic. We utilised the most com-
monMLmethods applied to QSAR learning: support vector machines (SVMs), random
forests (RFs), Gradient Boosting Machine (XGBs) and K-nearest neighbours (KNN).
We did not use deep learning as the datasets were generally too small. The ML methods
used in this study are all based on the open-source ML python library, scikit-learn [27].
When aMLmethod is used to compare the standard and pairwise models, it is used with
the default parameter setting from scikit-learn.

The pairwise approach uses classification for the predictions of signed differences,
we therefore compared classification version of each ML method versus the standard
regression approach. For each evaluation, 10-fold cross validation is used.

2.6 Extrapolation Metrics

To evaluate the extrapolation ability of a ML method, metrics other than the traditional
evaluation metrics, such as mean squared error and R2, are required. This is because the
common metrics are usually designed to cover predicted results over the whole test set,
resulting in an averaged performance evaluation for both interpolation and extrapolation.
In a random splitting in cross validation, the test set usually contains more interpolating
samples than the extrapolating samples. Therefore, these metrics are good for evaluating
the interpolation power of a model, but not very informative in terms of extrapolation
power [6]. In this study, we decided to adopt the classificationmetrics of precision, recall
and f1 score to count the identification of extraordinary and top-performing samples [1,
6]. This will give a more direct view of how useful a ML method is in an application
where identifying top-performing samples is highly desired.
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3 Results and Discussion

3.1 The Pairwise Approach Extrapolates Better

Our extrapolation experiments on 1436 ChEMBL datasets showed a clear advantage of
the pairwise approach over the standard approach (Table 1 and Fig. 3). The ChEMBL
datasets were sorted by size and experimented in order. When comparing the two
approaches, the standard approach uses the regression version of aMLmethod to predict
target values y and rank the test samples with training samples by predicted target values,
while the pairwise approach uses the classification version of that ML method to predict
sign(YC2) to rank the whole dataset.

Table 1. (a) The percentages of 1436 ChEMBL datasets indicating the pairwise approach had
an equal or better performance than the standard approach, i.e., metric(pairwise) > = met-
ric(standard) by each ML method. (b) The percentages of ChEMBL datasets indicating the pair-
wise approach was better than the standard approach, i.e., metric(pairwise) > metric(standard),
excluding datasets showing equal performance. All the values have a binomial p-value < 0.05.

Metrics (a) Percentage of equal or better
performance

(b) Percentage of better performance,
excluding equally performed datasets

RF SVM XGB RF SVM XGB

pextra 99.8% 100% 99.4% 99.2% 100% 96.6%

rextra 99.9% 100% 99.5% 99.6% 100% 97.4%

f 1extra 99.9% 100% 99.4% 99.2% 100% 97.0%

ptop10% 78.1% 92.4% 72.4% 66.8% 89.7% 58.8%

rtop10% 88.7% 97.2% 86.4% 82.4% 96.3% 78.5%

f 1top10% 82.3% 95.4% 76.7% 74.3% 93.9% 66.7%

It was found that the pairwise approach was much better at recognising the extraor-
dinary and top-performing molecules than the standard approach. For all the three ML
method (RF, SVM and XGB) tested, the pairwise approach almost always found equally
or more extraordinary molecules than the standard approach (Table 1a). It can also iden-
tify more test molecules ranked within top 10% of the dataset most of the time, as shown
by a high percentage for rtop10%. Its outperformance in ptop10% is not as good as that
in rtop10%, but is still overall better than the standard approach. However, it was noted
that this outperformance is less good for XGB or for larger datasets. This means that the
ratio of false positives in the top-performing molecules by the pairwise approach can
sometimes be similar to that by the standard approach. At the same time the pairwise
approach often caused a greater increase in recall, which means it proposed more true
positives. Hence, despite an outperformance in ptop10%, the pairwise approach could
propose slightly more false positives together with more true positives.

As extraordinary molecules do not necessarily exist every time when a train-test split
is made, there weremany datasets showing pextra = rextra = f 1extra = 0 or non-existing.
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Fig. 3. The six metrics obtained by the pairwise approach versus those metrics obtained by the
standard approach over 1436 ChEMBL datasets using SVM.

Therefore, to illustrate outperformance, the datasets showing equal performance were
removed. The percentage of datasets suggesting the pairwise approach outperformed
the standard approach were re-calculated for the rest of the datasets (Table 1b). Across
the three ML methods tested, the pairwise approach did outperform the standard app-
roach in finding both the extraordinary and top-performing molecules. The results also
suggested that using RF or XGB had less outperformance than SVM. Through further
investigation, we found that the difference among ML methods was due to the variation
in extrapolation performance by the standard approach. The standard approach using
RF and XGB can evidently produce higher extrapolation metrics than using SVM for
the ChEMBL datasets. At the same time, the pairwise approach performed similarly via
both ML methods. This gives rise to the higher percentage of datasets showing pairwise
approach was better with SVM in Table 1 and Fig. 3.

Fig. 4. The increase in f1 score for top-performing molecules versus the size of datasets with RF
for 1436 datasets. On y-axis, �f 1top10% = f 1top10% (pairwise) - f 1top10% (standard).

Apart from a statistical overview of the extrapolation power of the pairwise approach,
we had a close look at its performance versus the size of the datasets. Figure 4 shows
an example of the increase in f 1top10% versus the size of datasets for the experiments
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with RF for 1436 datasets of sizes from 30 to 298. The plots for other metrics showed
a similar trend, that is the pairwise approach is more advantageous on smaller datasets,
indicated by more data points above the line of�f 1top10%= 0 when the size of dataset is
less than 200. This is mainly due to the standard approach learning better when the size
of the dataset was larger, reducing the difference between the pairwise approach and the
standard approach.

To test the generality of the paired formulation on other application datasets, we
applied the same comparison experiment to a set of human gene expression datasets.
Because each dataset contains 118050 rows of experimental conditions (samples), if the
pairwise approach is applied for this size, the pairwise training set will be too large to
train given any reasonable computational resources. We therefore decided to randomly
sample a size 100 or 200 from each of the 978 gene datasets to compare the extrapolation
performance. The extrapolation metrics were evaluated for the standard and the pairwise
approach across four ML methods, random forest (RF), support vector machine (SVM),
k-nearest neighbour (KNN) and gradient boosting machine (XGB).

We can see from Table 2 that for the gene expression datasets, the pairwise app-
roach followed the trend seen in the ChEMBL experiments to outperform the standard
approach.When the size of the datasets increased from100 to 200, some of the extrapola-
tion metrics decreased. This is also because the standard approach improved its learning
through the additional data at a rate slightly greater than the pairwise approach, resulting
in a decrease in the percentage of datasets showing outperformance. This is consistent
with observations from Fig. 4.

Table 2. The percentages of gene expression datasets which indicate the pairwise approach had
an equal or better performance than the standard approach, i.e., metric(pairwise) > = met-
ric(standard) by each ML method for 978 gene expression datasets (except for KNN which was
run on fewer datasets due to computational restriction). All the percentages have a binomial p-value
< 0.05.

Metrics RF-100 RF-200 KNN-100
*313 datasets

KNN-200
*320 datasets

SVM-100 XGB-100

pextra 100% 100% 100% 100% 100% 99.9%

rextra 100% 100% 100% 100% 100% 99.9%

f 1extra 100% 100% 100% 100% 100% 99.9%

ptop10% 87.6% 71.6% 86.3% 77.2% 86.3% 76.6%

rtop10% 88.9% 77.3% 85.9% 80.3% 85.7% 78.2%

f 1top10% 87.2% 70.6% 85.6% 76.3% 85.3% 75.3%

3.2 The Extrapolation Strategy Improves Extrapolation

As shown in Sect. 2.4, we proposed a strategy to utilise the predictions of the pairwise
models to give a ranking of training and test sets combined. This strategy is not exclusive
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to the pairwise approach. It can be applied to the standard approach to improve its
extrapolation performance (Table 3). Once the standard approach has predicted the target
values for the test set, the signed differences of C2-type or C3-type test pairs can be
calculated from ytruetrain and y

pred
test . By inputting these signs to the rating algorithm, a ranking

of the dataset can be obtained for further extrapolation evaluation. We will abbreviate
the results from this procedure as the “standard rank approach”. Likewise, we compared
the standard approach and the standard rank approach on ChEMBL datasets, which were
sorted by size and experimented in order. Each of them was trained and tested via RF
with 10-fold cross validation. In this experiment, we also compared the extrapolation
results from both rankings obtained from C2-type test pairs and from C2-type test pairs
plus C3-type test pairs.

Table 3. (a) The percentages of ChEMBL datasets indicating the standard rank approach had an
equal or better performance than the standard approach. (b) The percentages of datasets indicating
the standard rank approach was better than the standard approach, among the datasets excluding
the ones showing equal performance. The models were obtained by RF from 1456 ChEMBL
datasets. Each column represents the type(s) of test pairs used to produce the overall ranking.
Bold means a binomial p-value < 0.05.

Metrics (a) Percentage of equal or better
performance

(b) Percentage of better performance,
excluding equally performed
datasets

C2-Type C2-Type + C3-Type C2-Type C2-Type + C3-Type

pextra 100% 100% 100% 100%

rextra 100% 100% 100% 100%

f 1extra 100% 100% 100% 100%

ptop10% 80.3% 85.2% 36.4% 46.5%

rtop10% 87.2% 93.7% 54.0% 74.7%

f 1top10% 80.1% 86.3% 41.4% 55.7%

The results in Table 3 show that the proposed extrapolation strategy can evidently
enable the standard regression to identify more extraordinary samples compared to the
direct regression with RF, which in theory is incapable to extrapolate outside the range of
training targe values. By taking the signs and re-ranking the samples, despite at a cost of
reducing the overall ranking correlation, which might have caused a reduced number of
identified top-performing samples, Trueskill had the chance to re-allocate their relative
positions by updating the probability distribution for each sample’s rating score. Because
Trueskill updates the samples’ rating scores by numbers of pairwise comparisons, the
more comparisons are entered the Trueskill algorithm, the more accurate and confident
the rating scores will be. This might account for the increased number of datasets finding
more top-performing molecules when C2-type and C3-type pairs are both used to rank.
We also tested the case when C1-type training pairs, C2-type and C3-type test pairs are
all entered the Trueskill and indeed the extrapolation performance was even better. To
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Fig. 5. F1 scores obtained by the pairwise approach (PA) or the standard rank approach (SRA)
versus f1 scores obtained by the standard approach over 1456 ChEMBL datasets using RF. The
upper row is the results from ranking with C2-type test pairs, whereas the lower row is from
ranking with C2-type + C3-type test pairs.

validate properly from a ML methodology standpoint the results are not included due to
its use of training pairs.

The main differences that distinguish the standard rank approach from the pairwise
approach are that (1) its calculated signed differences are all non-conflicting and con-
sistent with each other, (2) its prediction objective focuses on the accuracy of predicted
target values, and (3) the extraordinary samples are more likely to be predicted to draw
(Y = 0) with the best training samples than to win (Y = 1) them. We found that the
pairwise approach still can achieve a better extrapolation performance than the standard
rank approach (see Fig. 5 and Table 4). This indicates that the pairwise model can pro-
duce a set of signed differences that better describes the relative positions of the training
and test samples, resulting in the outperformance in extrapolation.

Table 4. P-values from Friedman-Nemenyi test for each extrapolation metric among three
approaches: standard approach (SA), standard rank approach (SRA) and pairwise approach (PA).
Pairs of methods showing a p-value < 0.05 are highlighted in green, otherwise in orange.
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3.3 Discussion

The pairwise formulation is amethod of combingmodel-reconfiguration and feature pre-
processing techniques, rather than a newMLalgorithm. It can be applied tomultiple types
of ML. The new formulation transforms the ML learning objective so that the emphasis
is placed on the relationship between training and test samples. For a standard approach,
when ML algorithms learn from seen examples and try to predict unseen examples from
their “experience”, it can be difficult to extrapolate out of its “experience” domain. The
pairwise approach, on the other hand, learns from the differences in features, which
are sometimes more common and generalisable than the original features. It learns to
predict the difference between training and test sample, directly aiming to predict if a
test sample could win over the training samples. This transformed objective brings about
the extrapolation performance of the pairwise formulation.

This study also recommends using classification metrics to evaluate extrapolation
performance in a direct way. These metrics suit practical uses when extrapolation is
required to identify the extraordinary samples from a test set. For example, they can
be used to select ML algorithm for active learning. Active learning (AL) is a learning
algorithm that interactively selects unlabelled samples to be labelled to learn the model
in a goal-oriented way. In the selection, the exploration and exploitation are usually
balanced so that AL can both improve the model’s applicability to a larger domain and
improve the model’s prediction accuracy for the samples with desired properties. Hence,
these extrapolation metrics can be used to assess and selectMLmethods with the desired
exploitation property.

We believe that the extrapolation ability of the pairwise approach could be employed
directly to fulfil the exploitation duty in an AL task for top-performing samples. Tynes
et al. have also discovered the advantage of a pairwise approach for uncertainty-driven
AL tasks, which encourages the exploration of the wider domain by selecting samples
with less confident predictions [28]. We believe that it is possible to develop pairwise-
approach-based AL, combining both the exploration and extrapolation traits found by
Tynes’s study and ours. Despite the difference in how our pairwise approaches generate
the pairwise features, it is ultimately the difference induced by data pre-processing
techniques, which makes little differences between the two.

The main limitation of the pairwise approach is the additional time and memory
requirement to train a pairwise model, as pointed out by Tynes et al. [28]. This is
because the size of training set needs to be squared for the pairwise approach. Some
techniques such as batch training and sub-sampling could certainly mitigate this. More
generally, improvements in computer hardware will increasingly remove this limitation.
Nevertheless, the pairwise approach can be useful in novel discovery projects with a
limited budget or where data is scarce to better explore the surrounding space. In drug
design, for example, accurate data points are expensive to generate, so it is important
to utilise them efficiently. This study revealed the general applicability of the pairwise
approach over thousands of datasets using default ML methods. Our next study will
more thoroughly explore the new approach with tuned models on selected problems that
demand extrapolation in order tomimic practical applications. To enable reproducibility,
the code and datasets used for the experiments have been deposited on: https://anonym
ous.4open.science/r/pairwise_approach_extrapolation_2023-A188/

https://anonymous.4open.science/r/pairwise_approach_extrapolation_2023-A188/
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4 Conclusion

In this study we proposed a new pairwise configuration by first learning a classification
function, F(sample1, sample 2) → signed difference in target values, then ranking the
samples through Trueskill rating algorithm. We have compared for extrapolation the
standard regression approach with our novel pairwise formulation. We found that the
pairwise approach can almost always find more extraordinary samples from the test sets
than the standard approach, across all the ML methods tested over 2400 ChEMBL and
gene expression datasets. The pairwise approach outperformed the standard approach in
identifying equally or more top-performing samples on ~ 70% of the datasets. It was also
observed that the pairwise approach is more advantageous and effective when applied
to smaller datasets. Additionally, we have found that this configuration can be adopted
by the standard regression to identify more extraordinary samples. Yet the pairwise
approach still outperformed the configured standard approach in all the extrapolation
metrics tested.
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Abstract. Unveiling gene interactions is crucial for comprehending bio-
logical processes, particularly their combined impact on phenotypes.
Computational methodologies for gene interaction discovery have been
extensively studied, but their application to censored data has yet
to be thoroughly explored. Our work introduces a data-driven app-
roach to identifying gene interactions that profoundly influence survival
rates through the use of survival analysis. Our approach calculates the
restricted mean survival time (RMST) for gene pairs and compares it
against their individual expressions. If the interaction’s RMST exceeds
that of the individual gene expressions, it suggests a potential func-
tional association. We focused on L1000 landmark genes using TCGA
na METABRIC data sets. Our findings demonstrate numerous additive
and competing interactions and a scarcity of XOR-type interactions. We
substantiated our results by cross-referencing with existing interactions
in STRING and BioGRID databases and using large language models
to summarize complex biological data. Although many potential gene
interactions were hypothesized, only a fraction have been experimen-
tally explored. This novel approach enables biologists to initiate a further
investigation based on our ranked gene pairs and the generated litera-
ture summaries, thus offering a comprehensive, data-driven approach to
understanding gene interactions affecting survival rates.

Keywords: survival analysis · censored data · RMST · gene
expression · gene interactions · literature mining · large language
models

1 Introduction

Survival analysis is a set of statistical methods used to study the time until an
event of interest occurs and is commonly used in medical research to estimate
life expectancy based on patient-specific data [21]. A pivotal aspect of survival
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analysis is estimating survival curves and comparing the probability of survival
over time between different cohorts [4]. In biomedicine, we can relate the dif-
ferences in survival to potential markers such as specific genes [2] or groups of
genes [22], which can help distinguish patients who respond to treatments from
those who do not (see Fig. 1) [27].

Fig. 1. Example of survival curves representing two conditions dependent on gene
expression and associated with patient survival. A group of patients in METABRIC
dataset with a highly expressed FLT3 gene shows a noticeably higher survival function,
as depicted by the survival curve on the right. This difference is less prominent and not
significant in the case of the PLCE1 gene, as seen in the survival curve on the left. Part
of survival analysis in data with gene expressions is to find markers, that is, genes and
sets of genes, whose expression can characterize cohorts of patients with substantially
different survival functions.

Rather than a single gene, intricate networks of gene interactions determine
the complex nature of diseases such as cancer [26]. Identifying and character-
izing these interactions is essential, as they offer critical insights into the onset
and progression of a disease, potentially overlooked when analyzing individual
genes. Computational discovery of gene interactions is a well-researched area
in genome-wide association (GWAS) [17] and gene expression-based phenotype
categorization [5]. For the former, a notable approach for handling survival data
is the adaption of multifactor dimensionality reduction (MDR) [6,15]. Authors
also typically utilize Cox regression analysis to analyze the interaction effects of
candidate genes [28,30]. Analyzing survival data is crucial in the clinical domain,
highlighting the need for more systematic, data-driven methodologies to unravel
intricate gene interactions linked to survival data. Computational methods that
specifically address gene interactions from survival data are, at best, scarce, and
due to the recent abundance of survival data that includes gene expression, there
is a need for their development.

Here we report on a data-driven approach for identifying gene interactions
significantly affecting survival rates. In the context of our study, gene interaction
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refers to the combined effect of two genes on survival, which may be substan-
tially different from their individual effects. Our method aims to measure this
interaction effect, quantified as the difference in restricted mean survival time
(RMST) when considering the expression of both genes together compared to
the expression of individual genes. We then rank gene pairs based on the signif-
icance of the difference in RMST. We use top-ranked gene pairs, cross-reference
our findings with documented interactions, and synthesize complex literature
findings using large language models, thus expanding the exploratory scope of
our study.

In Sect. 2, we start with (1) introducing the data, (2) describing how we
measured the effect on survival, (3) explaining the measure of interaction and
how we define different types of interactions, and (4) describe the utilization of
large language models when cross-referencing our findings with existing litera-
ture. Section 3 briefly describes our analysis findings, followed by a discussion of
limitations and possible future work in Sect. 4.

2 Methods

Our method focuses on two-gene interactions and unfolds through a four-step
process. First, we separate samples into evenly sized groups according to the
median gene expression value. Subsequently, we estimate survival curves for each
group, and for each survival curve, we compute the restricted mean survival time
(RMST). We then quantify the difference in RMST between the groups. Lastly,
we assess the interaction effect by evaluating how significant is the RMST dif-
ference between the interaction term, as discussed in Sect. 2.4 and participating
genes. We replicate this procedure for each gene pair in our data set during
our discovery-driven analysis and rank them based on their interaction effect.
This ranked list paves the way for biologists to initiate their interpretation and
investigation. To aid this process, we implement literature mining and harness
the utility of large language models to distill complex biological knowledge for
assistance and interpretation.

2.1 Data

In this study, we leveraged two sources of survival data:

TCGA. We procured RNA-Seq data, including gene expression matrices and
corresponding survival endpoints, for various cancer types from The Cancer
Genome Atlas via the GEO portal ( GSE62944) [16]. Given the variability
in sample size across different datasets, we included only those with more
than 100 samples, resulting in 20 TCGA datasets.

METABRIC. We obtained microRNA gene expression matrix and patient
survival data from The Molecular Taxonomy of Breast Cancer International
Consortium through cBioPortal [3].

Across all datasets in our study, we implemented a log transformation on each
gene expression value supplemented with a pseudo count 1. Additionally, z-score

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62944
https://www.cbioportal.org/study/summary?id=brca_metabric
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normalization was carried out on each gene across samples within a dataset,
essentially standardizing the columns of the expression matrix. We utilized clin-
ical metadata for each sample’s overall survival (OS) time and event status. OS
time refers to the most recent date a patient was confirmed alive. The event
is recorded when a patient dies due to the condition under study, in this case,
cancer. If a patient’s status is unknown or death occurs due to unrelated causes,
we classify the event status as censored. Note that sample sizes and event rates
vary across datasets Table 1.

Table 1. Statistics about censoring in obtained datasets. The table shows the number
of samples and the ratio of censored events. We observe a high rate of censoring across
datasets.

Data HNSC KIRC LAML CESC BRCA BLCA METABRIC

Samples 504 542 178 306 1119 414 1964

Censored 0.67 0.71 0.35 0.81 0.91 0.75 0.42

To limit our exploration scope, we have focused solely on a specific set of
genes referred to as L1000 genes [23]. The L1000 gene set contains roughly one
thousand landmark genes acting as proxies to infer the expression of other genes.
Using this curated set of landmark genes, we significantly reduced the dimen-
sionality of our search space to a set of 1058 genes. Additionally, we removed
genes with low expression values to reduce noise before we proceeded with com-
putation. We have disregarded genes with a 75th percentile expression value
lower than 10.

2.2 Summary Measure of Survival: Restricted Mean Survival Time

Restricted Mean Survival Time (RMST) is the average survival time up to a pre-
specified time point, quantified as the area under the survival curve up to that
point (see Fig. 2) [29]. Its primary benefits are that it is interpretable, provides
a meaningful summary of survival data, and is considered more robust than
measures of median survival time [7].

Building upon its intuitive nature, RMST has gained substantial traction
for its versatile utility in comparing differences in survival between cohorts [19].
The difference in RMST is an alternative means to measure gains or losses in
the event-free survival between different groups of patients (see Fig. 3). Unlike
the log-rank test, which heavily relies on the assumption of proportional hazards
and may be sensitive to instances of crossing survival curves, the difference in
RMST presents a more flexible and reliable approach [25].

2.3 Interaction Scoring

We have devised a data-driven approach to identify interaction revealing sig-
nificant RMST differences. This difference implies that the combined influence
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Fig. 2. Illustration of RMST for groups of patients distinguished by varying expression
levels of FLT3. The group with low expression of FLT3 has an average survival time
of around 137 months compared to 165 months for the other group if we consider the
first 250 months of the study.

Fig. 3. RMST is a good metric for comparing two survival curves. The absolute dif-
ference in RMST represents the area between the curves. Here we illustrate this with
survival curves from Fig. 2. The absolute difference in RMST can be considered the
measure of time lost/gained between patients that were grouped by the expression
values of gene FLT3. Quantifiable measure that supports the visual interpretation of
the difference in Fig. 1.

of both features on survival differs considerably from the individual influence
of each feature. While this technique broadly applies to various types of data,
our primary focus here is on gene expression data, which we use to determine
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the combined influence of gene pairs on survival outcomes compared to their
individual effects.

The steps summarized with Algorithm 1 are following:

1. First, we partition samples into two cohorts based on the median expression
value of a particular gene. Each cohort represents a group of patients with
either low or high gene expression values (line 2).

2. For each cohort, we calculate its Kaplan-Meier survival curve. (line 3). Next,
we compute the RMST for each survival curve (line 4). We limit RMST
computation to the 75th percentile of all survival times in the cohort to
circumvent potential issues arising from uncertainty in survival estimates of
long survivors and to ensure a fair comparison across different cohorts by
consistently applying the same upper bound.

3. We calculate the absolute difference in RMST between the two created cohorts
(line 5). This difference effectively represents the area between the survival
curves, providing a measure of the disparity in survival outcomes between the
two groups (as shown in Fig. 3).

4. To determine whether an interaction effect exists, we first calculate the RMST
differences for the individual genes and their interaction (lines 6- 8). We
then compute the interaction measure as the absolute difference between the
largest individual RMST difference and the difference in RMST for the inter-
action term (line 10).

Algorithm 1. Interaction measure between two genes
1: function RMSTdifference(gene)
2: cohortA, cohortB ← split samples by median gene expression value
3: SurvA, SurvB ← estimated KaplanMeier curves for both cohorts
4: rmstA, rmstB ← computed RMST for both survival curves
5: return abs(rmstA - rmstB)

6: geneA ← RMSTdifference(geneA)
7: geneB ← RMSTdifference(geneB)
8: interactionTerm ← RMSTdifference(interactionTerm)
9: if interactionTerm > max(geneA, geneB) then

10: interactionMeasure ← abs(max(geneA, geneB) - interactionTerm)

2.4 Interaction Types

We define three types of interactions between genes that correspond to differ-
ent cohort formations (see Fig. 4). Using standardized gene expression values of
two genes, we construct a new feature and create cohorts using the approach
mentioned earlier. Gene interactions measured with this approach should be
interpreted with respect to survival and not as physical interactions.
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The first interaction is an additive (+) interaction, where standardized gene
expression values of both genes are summed together. Such interactions are more
common for genes of protein complex subunits.

The second interaction is a competing (-) interaction, where standardized
gene expression values are subtracted. The cohorts represent which of the two
genes was more expressed. Such interactions are more common for activator and
inhibitor-type interactions, where both genes regulate the same process.

The last interaction is an XOR-type (×) interaction, where we multiply
standardized gene expression values. These interactions are more complex and
are scarce in nature. They may result from the alternative signaling pathways
to the same process influencing survival.

Fig. 4. Interaction definition schema. Cohort formation (top row), RMST difference
calculation (middle row), interaction significance according to absolute RMSE differ-
ence (bottom row).

2.5 Discovering False Positives with Permutation Test

To identify potential false positive interactions, we performed a permutation test
for every data set and interaction type, which involved random shuffling of the
survival endpoint and rerunning the experiment 100 times. Given that we con-
ducted 100 such permutation runs per data set and different interaction types,
the computation required was extensive due to the sheer volume of potential
combinations to examine. Our analysis yielded results that allowed us to iso-
late the top 0.01% interactions, deemed non-random occurrences. In essence, we
consider interactions exceeding the 99.99th percentile as potential interaction
hits.
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2.6 Literature Mining

We propose to use literature mining to, where possible, explain the interactions
and synthesize intricate biological knowledge, leveraging the power of large lan-
guage models. Specifically, we have used GPT-3.5 and GPT-4 developed by
OpenAI. We focused on each data set’s top 100 ranked gene interaction pairs
and interaction types. These were cross-referenced within STRING [24] and
BioGRID [14] databases to ascertain how many gene pairs are in those intri-
cate networks of interactions. We also determined the number of shortest paths
and the shortest path length between gene pairs within the BioGRID interaction
network. We also incorporated UniProt descriptions of all genes under investi-
gation to supplement our analysis [1].

Having performed initial analyses, we then concentrated on the top 10 ranked
gene pairs and interactions previously reported in the literature. Utilizing the
language models, we sought to condense the complex biological context, prompt-
ing the models to extrapolate potential functional associations between these
genes. The UniProt functional descriptions of gene pairs and some genes found
in the shortest path within the bioGRID interaction network informed the mod-
els’ prompts.

3 Results

With our proposed approach we performed the analysis on TCGA and
METABRIC datasets.

3.1 Analysis Reveals Potential Interactions

We overlay interaction hits, as described in Sect. 2.5 with permutation test
results. The average number of interactions above the threshold for permuta-
tions was always 55.9, equivalent to 0.01% of all tested interactions. The tail of
the distribution corresponding to the 99.99% of interactions is also visualized
(see Fig. 5).

The number of additive and competing interaction hits overwhelmingly
exceeded the 56 random interaction threshold for almost all data sets (Table 2).
The number of additive interactions is generally lower than the number of com-
peting interactions for the same data set. On the other hand, XOR-type interac-
tions are scarce and found in abundance only in one out of 21 data sets tested.
Interestingly, there was no correlation between the number of interaction hits
and samples or events in the data set.

3.2 Cross-Referencing with Established Interaction Networks

We have cross-referenced the top 100 ranked gene interactions against known
gene interaction networks in STRING and BioGRID. Our findings indicate that
many of these interactions have some form of confirmation in these referenced
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Fig. 5. Permutation test results for TCGA-HNSC dataset. Additive interaction hits
against permutations (left), and competing interaction hits against permutations
(right).

Table 2. Number of interaction hits for data sets with at least 100 events.

project additive competing XOR-type

BLCA 113 149 58

BRCA 124 196 55

GBM 95 97 37

HNSC 112 272 217

KIRC 527 571 16

LAML 277 339 45

LUAD 113 137 38

LUSC 73 64 23

METABRIC 830 925 17

OV 83 105 69

SKCM 138 122 59

databases. Additionally, we performed these steps using randomly selected pairs
of genes instead of our top-ranked list and repeated this random sampling process
a thousand times. As illustrated in Fig. 6, competing interactions from HNSC
and KIRC emerge as interesting outliers. On average, the top additive and XOR
interactions are more scarce in the databases than competing interactions.

Given the surprisingly high number of documented interactions, even among
randomly selected gene pairs, we hypothesize that because we are dealing with
well-established genes, enhancing the likelihood of their documentation in high-
throughput analyses. These analyses are typically characterized by their ability
to investigate thousands of genes simultaneously, which are then reported in
databases like BioGRID.
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Fig. 6. Number of interactions with conformation in the literature for every dataset
used in the analysis. Additive (blue), competing (red), and XOR-type (purple) inter-
actions against 100 randomly selected interactions. (Color figure online)

3.3 Case Study: RHOA-CD44 Competing Interaction

We present one of the top 3 competing-type gene interaction hits from the kidney
renal clear cell carcinoma (TCGA-KIRC) data set with confirmed interaction
in both STRING and BioGRID database (see Fig. 7a). Competing interaction
between RHOA and CD44 genes shows more than five months larger difference
between cohorts than any of these genes individually (see Fig. 7b).

CD44 gene produces a cell surface receptor that binds Hyaluronan (HA) and
is involved in cell-cell interactions, adhesion, and migration. It serves for signal
transduction to different pathways, including cytoskeleton reorganization via
RhoA small GTPase [8]. Overexpression of CD44 was related to poor prognosis
in glioblastomas [20] and renal cell carcinoma [12] but had no significant effect
on breast cancer patient survival [18].

RhoA gene produces small GTPases, which function as molecular switches
mainly in cytoskeleton dynamics and cell migration [10]. Increased RhoA-ROCK
activities mediate the upregulation of tumor suppressor p53 and induce G1 cell
cycle arrest in kidney cell lines [13]. It has been shown that reduced RhoA
expression enhances metastasis in breast cancer [9].

Observing Kaplan-Meier plots for both genes’ high and low expression
cohorts confirms findings from the literature (see Fig. 7c,d). Our method reveals
a competing interaction between CD44 and RhoA genes. We interpret this
as a competition between CD44 and RhoA-related biology, where the higher
expressed gene prevails. Note that we are comparing relative expressions accord-
ing to the mean expression in the data set (see Fig. 7e). When RhoA is highly
expressed, it inhibits the tumor suppression mechanism. Only when CD44 is
more expressed than RhoA it sufficiently activates downstream pathways to
have a significant effect on survival over the effect of RhoA gene (see Fig. 7f).
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Fig. 7. Case study of the RHOA - CD44 functional association in Kidney renal clear
carcinoma (TCGA-KIRC). a) permutation distribution tail, b) interaction confidence
interval, c, d) Kaplan-Meier plots for RHOA and CD44 genes, e) cohort formation
based on gene expression, f) Kaplan-Meier plot of the competing interaction.

4 Discussion

Our results suggest a novel ability to identify interactions significantly affecting
survival outcomes, thus unveiling insights into the complex landscape of gene
interplay and disease prognosis. Even so, our methodology’s ranked gene inter-
action lists should be interpreted cautiously, serving primarily as an exploratory
analysis. Due to the vastness of possible gene interactions, we expect some to
arise purely by chance. Our preliminary work with permutation tests and lit-
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erature mining only provides some supportive evidence against these findings.
Our analysis identified several potential gene interactions affecting patient sur-
vival rates, providing a basis for further in-depth investigations. Particularly
noteworthy is the abundance of XOR-type interactions in the HNCS dataset.

Our study also reveals an intriguing potential for large language models
to summarize complex biological knowledge when fed with adequate context.
By distilling intricate gene pair interactions and their associated functions as
informed by resources like UniProt and interaction network databases, the mod-
els demonstrated their capacity to reason about known interactions, speculate
on potential associations, and guide future exploratory directions (as illustrated
with an example in Fig. 8). Although the present analysis should not be regarded
as a definitive evaluation of interaction, it establishes an efficient pipeline to
facilitate knowledge synthesis and accelerate the pace of scientific discovery, as
demonstrated in the case study above.

Fig. 8. Example of seven HNSC dataset interactions, ranked by their RMST difference
compared to non-interacting terms. The literature column reflects their documentation
in public databases. We also display four large language model-generated summaries.
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We also recognized noticeable differences in the quality of summaries gener-
ated by GPT-3.5 and GPT-4, indicating a trend of improved comprehension and
representation of complex biological interactions with newer model iterations.
This observation suggests a promising area for future research - the potential
of customized language models, fine-tuned on recent, domain-specific literature,
which could serve as a more streamlined and context-aware alternative to the
vast, generalized models currently accessed via APIs.

While our study presents interesting insights, several limitations present
opportunities for future exploration and refinement. The choice of equally-sized
cohorts, achieved by splitting at the median, does not account for potential vari-
ations in the cohort splits that might optimize the difference in RMST between
cohorts. Additionally, we did not consider the potential influence of time limits
on RMST calculations, which could significantly impact results and can be very
study specific. Lastly, our analysis was constrained by a low number of samples
relative to the vast space of possible feature interactions. The enormous space
of potential feature interactions may limit the generalizability of our findings.
Future work is required to address these limitations and deepen the insights
offered by our proposed methodology.

5 Conclusions

The prevalent nature of censored data and molecular fingerprints in clinical envi-
ronments highlights the need for techniques to illuminate the biological processes
regulating disease progression. Unraveling gene interactions is fundamental in
understanding these processes, specifically their collective effects on phenotypes.

We report on our work to introduce a data-centric method for detecting gene
interactions significantly affecting survival rates, leveraging restricted mean sur-
vival times. Using the proposed approach, we can identify possible novel gene
interaction candidates on publicly available datasets. We further contextualize
the hypothesized gene interactions through literature mining and using large
language models to distill complex biological knowledge for assistance and inter-
pretation. In a case study, we show the applicability of such an approach and its
potential to uncover and explain potential new interactions.

We have made our method’s implementation and the accompanying data and
scripts available on GitHub1 and archived them on Zenodo [11]. These resources
include the extended results of permutation tests, summaries produced by the
language models, and the prompt used to generate them.
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Abstract. Replacing missing features in data streams is an impor-
tant task in order to enable many machine learning algorithms that
require feature-complete instances for training and prediction. Two pop-
ular methods for dealing with missing features are imputation and active
feature acquisition, where in the former missing values are approximated,
whereas in the latter, missing features are provided by an expert for a
cost and within a limited budget. In this work, we present a hybridized
approach, where we employ an active feature acquisition method in the
first stage to pick candidate features on which we would require a costly
expert and then check in a second stage how well we could impute these
candidate features. If the imputation is expected to be of a certain qual-
ity, we skip the purchase and impute instead. We provide a framework
for such a scenario and used it to run extensive experiments. Our results
on 6 data sets show that our proposed method can achieve a similar
classification performance while spending 1% to 27% less budget.

Keywords: active feature acquisition · imputation · data streams ·
stream mining

1 Introduction

Missing features in data are a quite common occurrence in many real-world
scenarios and very often pose challenges, when we want to analyze such data
and use it for extracting information or making predictions. One of the most
common examples is the arrival of a patient at a doctor’s office who has a certain
issue and has already undergone some tests. The doctor now has to choose, if
the tests are sufficient for a diagnosis or whether additional tests are required.
It is infeasible in such a scenario to run all the possible tests because of time
and budget constraints. Choosing which tests to run under budget constraints,
which translates into which features to acquire, is the research topic of Active
Feature Acquisition (AFA) [22].

Another established way to address missing values is to estimate the value
based on previously available information, which is called imputation [15].
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Imputations can be very simple, like replacing a missing feature value with the
feature’s most common value, or quite complex like training a predictive model,
in order to predict missing features from available feature values. All imputation
methods have in common that they introduce biases into the data and that we
cannot be sure that the imputed value is correct. This can have negative impacts
on our data analysis tasks that build on top of the imputed data.

In a data stream setting the issue of the introduced biases becomes even
more extreme as concept drift might occur [24] and conducting AFA is also much
harder as we have to make acquisition decisions on an instance-to-instance basis
and cannot optimize our decisions over the whole data set [4].

In this work, we developed a hybrid approach for data streams that aims to
handle missing feature values in a two-stage approach. In the first stage, a set of
missing features of an instance is chosen for acquisition, based on the estimated
merit of the features. The merit of a feature indicates how much it helps in
separating the classes [7,23]. In the second stage, we check for each feature in the
acquisition set, and how well it can be predicted by the available features of the
respective instance. If the prediction based on available data seems promising,
choosing to impute rather than acquiring the missing values might be preferable
in order to save budget. The main contributions of this work are a method that
saves budget when imputation seems to be an adequate alternative to AFA and
secondly, an imputation method that tracks for each feature, how it can be best
predicted by another feature.

2 Related Works

Imputation covers methods for the replacement of missing values using estimates
based on statistical methods, information-theoretic approaches, or model-based
methods [1,15]. These methods can be quite simple, like replacing a missing
numeric feature with the mean value of the respective feature or forwarding
features of nearest neighbors using the available features of an instance [12],
but they can also become complex like the multiple imputation by chained
equations (MICE) [1] or deep imputation methods [8]. In the context of data
streams, handling missing data becomes challenging due to continuous arrivals
and concept drift [24]. Incremental models that can be trained online [17] or
windowed approaches [4] are proposed to handle the continuous growth of data
and address concept drift. In this work, we propose our own imputation method
which is using windowing and is closely related to [17] but instead of using multi-
ple regression, we train a linear regression model for each feature pair and select
the best available model for imputation.

In contrast to imputation, Active Feature Acquisition (AFA) tackles missing
values by determining them through a costly oracle, such as lab tests or Sub-
ject Matter Expert (SME) inquiries [20]. One approach is to purchase features for
instances that the current model misclassifies or is uncertain about [16]. Another
method estimates the merit of purchasing individual feature values, based on the
change in model performance [19]. However, these methods are computationally
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expensive and not suitable for data streams. A more recent work based on matrix
factorization [10] is also not applicable to data streams, as it is trained on the
whole data set and is computationally expensive. The method presented in [18]
applies an active feature acquisition strategy to relational databases in a static
scenario. It keeps track of its decisions through tree-based distances which allows
it to explain its decisions to human experts. Recently, an online feature selection
metric combined with budgeting for stream active learning has been proposed [2],
which was later extended to deal with varying feature costs [3]. A different app-
roach was taken in [21] where the authors employed reinforcement learning (RL)
in order to minimize the cost of the feature acquisitions while maximizing classifier
performance. Another RL-based method for static and time series data was intro-
duced in [14]. The authors propose the use of a surrogate model in order to pro-
vide better rewards to the RL agent and managed to reach state-of-the-art results,
albeit not on streams. RL has been used for handling data streams with incomplete
information, where P and Q networks are trained together [11]. The P network pre-
dicts labels based on acquired information, and the Q network predicts the impact
of feature acquisition. However, the deep-learning-based nature of this approach
requires an enormous amount of initial data and training time before it can be used
on new data. Our work extends the framework introduced in [3] with a hybrid app-
roach that favors imputation over acquisition in certain scenarios.

3 Methodology

In this section, we discuss the underlying method of this paper. Firstly, we
present the framework of supervised merit rankings [3], which forms the foun-
dation of our extended work. Secondly, we describe the Incremental Percentile
Filter, a crucial component in understanding the decision-making processes of
both the regular framework and the feature pair imputer threshold skip (FPITS)
which is used to determine acquisition and saving decisions. Thirdly, we intro-
duce a new imputation method called the feature pair imputer (FPI). Algorithm
1 provides an overview of our framework.

3.1 Supervised Merit Ranking Active Feature Acquisition
Framework

The supervised merit ranking framework for active feature acquisition has its
origins in the publication of [3]. It is a feature importance ranking method by
which features are selected and acquired online in a surrounding batch-wise
evaluation process. At the heart of its operation is a feature importance method
like in [7,23]. This importance metric is used in a merit function that incorporates
the costs of individual features to give a cost ratio indicator of a feature’s effective
usefulness when acquired given its costs (line 7).

By means of a quality function, which evaluates an instance and its known
features using merit functions, the framework can make a judgment of how
well the current instance helps the classification task given its associated cost.
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Algorithm 1. Simplified pseudo-code of the used framework.
Require: Initial data Xinit, A data stream consisting of batches X, a sliding window of

batches W , a classifier C, a budget manager BM , an imputation model I, a feature
importance metric afa, the cost of features C, a feature set selection method fss,
an initial budget threshold Tinit, the budget added for each instance Bgain

Ensure: Bspent ← 0, Bgiven ← 0, Bsaved ← 0
1: add Xinit to W
2: train initial model C0 on W
3: for Xi in X, i ≥ 1 do
4: update I with Xi

5: adjust budget threshold T
6: for x in Xi do
7: update merits using afa, W and x
8: Bgiven ← Bgiven + Bgain

9: get acquisition set A of x using fss
10: calculate quality gain of x ∪ A
11: determine acquisition decision of BM according to quality gain of x ∪ A
12: determine confidence decision of I given x
13: if (I) BM wants to acquire and I is confident then
14: Bspent ← Bspent + AC

15: Bsaved ← Bsaved + AC

16: else if (IV) BM wants to acquire and I is not confident then
17: Bspent ← Bspent + AC

18: acquire A for x
19: end if
20: end for
21: impute remaining missing values of Xi using I
22: evaluate Xi using Ci

23: add imputed Xi to W
24: train new model Ci+1 on W
25: end for

A further component selects promising feature sets to consider for acquisition,
coined the feature selection strategy returning the acquisition set A (line 9).
Assuming one was to acquire A’s feature values and include them in the current
instance, we can calculate two quality values, before and after acquisition of the
set respectively, and calculate the projected gain in quality (line 10). This quality
gain value is passed on to the Incremental Percentile Filter (IPF) which acts as
a budget manager for the process, making decisions to keep the spent budget
within the user-specified limits (line 11). With each batch processed the budget
threshold shown to the IPF is dynamically adjusted and the still missing values
are imputed and trained on (line 5).

3.2 Incremental Percentile Filter (IPF)

The Incremental Percentile Filter (IPF) [13] is a decision maker that bases its
decisions on the recent history of “usefulness” values. Incoming usefulness values
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are simultaneously stored in two separate windows of size wIPF : the chrono-
logically sorted window WIPF c and the value sorted window WIPF v. Only if
a newly arriving decision and its associated usefulness value is inserted into
WIPF v at or below a rank based on the threshold θIPF the IPF makes a pos-
itive decision. Since the windows of the IPF keep forgetting their oldest values,
they act like a sliding window. Given a constant threshold, enough time, and
no constant biases in the incoming decision usefulness values, the fraction of
positive to all decisions will approach θIPF . As a flexible and dynamic way of
adjusting decisions based on current circumstances, the IPF is used both as a
budget manager and as the decision maker of the imputation mechanism.

3.3 Defining Budget

The framework of [3] distributes budget evenly along the stream to ensure no
bias towards time points at which lots of budget is available. To do so budget
is distributed instance-wise so that with each arriving instance we gain a bit of
budget Bgain (line 8). The sum of the Bgain at a point in time is Bgiven. Similarly,
for each acquisition the expenditure pool Bspent is increased. Thus, the budget
usage Bused is defined as the relative ratio Bused = Bgiven

Bspent
. The framework aims

to use as much budget as is available or less Bused ≤ 1. Costs are associated with
each feature and stored in a cost vector C of size |F |. Due to biases and trends in
the selection and costs of acquisition sets as well as the budget-agnostic nature
of the IPF, the framework dynamically adjusts the budget threshold assigned
to the IPF whenever a batch has been processed (line 5). This adjustment is
performed using the following formulas:

T =

{
Tbasic ifBused ≤ 1
Tbasic/P otherwise

(1)

Tbasic =
Bgain

ÂC · Bused

(2)

P = �pc · (Bused − 1)� + 2 (3)

where pc = 32 is a user-specified penalty parameter and ÂC is the estimated
average cost of a presented acquisition set returned from the feature set selection
strategy [3].

3.4 Feature Pair Imputer (FPI)

The Feature Pair Imputer (FPI) is an imputation model designed to be usable in
fast-acting data streams with the possibility of a quick method for evaluating its
current reconstruction performance. At its core it keeps separate sliding windows
WFi,Fj

(shortened to Wi,j for brevity) with size wFPI for each feature pair (i, j)
and each individual feature (i, i) for a total of

∑|F |
i=1 i windows. Each sliding

window of value pairs has two associated imputation models Mi,j and Mj,i that
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train on this data. These models can further be evaluated using the same data.
The type of model applicable and the method needed to estimate the imputation
error depend on the feature types of the input and output features, see Table 1.

Table 1. Methods that are used for the feature pair imputations and how their error
is calculated

Feature In Feature Out Imputation Error

numeric numeric linear regression model
RMSE(Mi,j)

max(Wi,j−min(Wi,j))

categorical numeric mean of the posterior
distribution of output values
given the input value

RMSE(Mi,j)

max(Wi,j−min(Wi,j))

categorical categorical mode of the posterior
distribution of output values
given the input value

1− Jaccard(Wi,j [:, j],Mi,j)

numeric categorical 1-d nearest neighbour mapping 1− Jaccard(Wi,j [:, j],Mi,j)

The calculated error values are stored in an error matrix E ∈ [0, 1]|F |×|F |

where the rows are mapped to the input feature and the columns to the output
feature. Thus, Ei,j is the calculated imputation error of model Mi,j . Given E and
an encoding of the known features of x as a vector mask known(x) = {1, 0}|F |,
i.e. known(x)i = 1 iff feature value of feature i of instance x is known, we can
estimate the importance of models for imputing the particular missing features
of the instance x by means of creating a weight matrix from the errors. The set
of known features of x we call Kx.

This weight matrix weight is calculated using the reciprocal of the error
values as follows:

weighti,j =

{
(Ei,j + ε)−1 if ∃a∃bEa,b = 0
E−1

i,j otherwise
(4)

If any error value in E is 0, then a small value ε = 0.001 is added to all errors
to circumvent a division by zero.

Using weight, the known feature mask of x known(x), and the predicted
values for x using the models we can impute any values of x. We calculate the
specific weight matrix Z for instance x:

Zi,j = weighti,j · known(x)j + weighti,j · Ii,j (5)

where I stands in for the identity matrix of size |F |.
Let X ′ be the matrix of imputed values using the models M given the feature

values of x as input. Depending on the importance strategy, the imputed feature
value of missing feature j in x f̂j may be calculated either as:
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Weighted Approach

f̂j =

⎧⎨
⎩

∑|F |
i=1 Zi,j ·X′

i,j
∑|F |

i=1 Zi,j

if isNumerical(Fj)

X ′
m,j ,m = argmax1≤i≤|F |Zi,j otherwise

(6)

Choose Best Approach

f̂j = X ′
m,j ,m = argmax1≤i≤|F |Zi,j (7)

We will focus entirely on the latter choose best approach.

3.5 Feature Pair Imputer Threshold Skip (FPITS)

The FPI’s ability to quickly evaluate its models allows itself to calculate a
believed ‘confidence’ value of imputing a particular instance’s missing values.
Before any calculation takes place we discern between three cases based on the
number of known features of some instance x:

FPIconf (x) =

⎧⎪⎨
⎪⎩

0 if known(x) = 0
1 if known(x) = |F |
1 − max(Missmin(x)) else

(8)

For instances with at least one feature value missing and at least one fea-
ture being known the following steps are done to calculate the FPIconf : Given
an instance x’s known features Kx and the current FPI’s errors matrix E, we
calculate the believed ease of imputing x. The calculation uses the biggest recon-
struction error among the missing features, which we would suffer if we chose to
impute.

For each unknown feature j in x extract the error vector Vj that contains
all errors Ei,j with i ∈ {Kx ∪ j} that are available as models for the imputation
given Kx. According to the choose best approach in Eq. 7, we are only interested
in the smallest error of each respective unknown feature. Thus, we take the
minimum error of each vector and store the results as a new set of minimum
errors: Missmin(x) =

⋃F
j �∈Kx

min (Vj).
The maximum of these errors is the believed worst error in imputing x, thus

its one complement reorders the scale so that values close to one indicate that
the FPI believes to be capable of perfectly imputing the missing values of x,
FPIconf (x) = 1 − max(Missmin(x)).

We exploit these values to create a second IPF-based decision maker along-
side the framework’s budget manager and further restrict the acquisition of an
acquisition set A for instance x to only be acquired if the budget manager’s IPF
decides to purchase A and the IPF that is given the FPI’s goodness estimates
for instance x deems x hard to impute (line 12).

We coin this new method Feature Pair Imputer Threshold Skip, or FPITS for
short. Ideally, the FPITS’ additional constraint will further limit the spending
of budget in scenarios in which A is deemed highly informative but the FPI is
confident to impute x correctly anyhow.
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4 Evaluation

To test the effectiveness of our method we performed multiple experimental
runs using the framework1 as a basis. In the following subsections we will briefly
mention the data sets on which we ran our experiments, explain our framework
hyperparameters and finally show and discuss the results of these experiments
(Table 2).

Table 2. Data sets used in our experiments

Data set Instances Labels Cat. features Num. features

electricity 45312 2 1 7

adult 32561 2 4 8

magic 19020 2 0 10

cfpdss 13000 2 5 5

nursery 12960 5 8 0

pendigits 10992 10 0 16

The experiments were run on six data sets, four of which are based on static
concepts (adult, magic, nursery and pendigits) while the other two are stream-
based (cfpdss and electricity). Data sets magic and pendigits are entirely com-
prised of numerical features, data set nursery contains only categorical features
and data sets adult, cfpdss and electricity offer a mix of categorical and numer-
ical features. We chose to test our method on static data sets to validate the
usefulness of our imputation method independent of drift.

We highlight these differences since mixed and categorical feature types lead to
noticeable performance drops in the FPI’s performance and should be considered
separately. All but the cfpdss data set are available through the UCI site [5].

The cfpdss is a synthetic data set generated by us that offers various kinds of
feature-to-feature correlations and changes its underlying feature and label gen-
erative functions every thousand instances to simulate concept drifts, specifically
incremental, gradual, and sudden drift, that may occur in a streaming setting.
Since the different feature-to-feature correlations are to be tested these drifts
are synced with the various correlation types, i.e. only the features involved in
a specific correlation type drift when a concept change occurs in order to eval-
uate the performance of the FPI and its imputation models. Correlation types
present in the data set include linear correlations between two numerical features
plus some minor normally distributed noise, a numeric to bi-categorical feature
correlation determined by a threshold value and minor noise and vice versa as
well as a linear combination of two features determining the value of another
feature plus some normally distributed noise. Since the label function depends
on three numerical features each linearly correlated with another feature of the

1 https://github.com/Buettner-Maik/caafa-stream.

https://github.com/Buettner-Maik/caafa-stream
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data set and an additional categorical feature that is similarly correlated with
other features, makes their imputation with the linear regressors used by the
FPI an easy problem to solve. For more details please refer to the provided code
in the github.

4.1 Experiment Setup

Incomplete data streams are generated based on the type of data set. For static
data sets the data is shuffled and an initial batch of 50+ one example for each
label is created. Stream data sets keep their order and have their first 50 instances
serve as the initial batch. The remaining data is split into batches of 50 instances.
Based on the missingness parameter m the features of the instances are infused
with missing values in a completely at random fashion. This process was per-
formed for 10 iterations and 7 missingness values, giving a total of 70 different
incomplete permutations of data streams per data set.

The classification model uses a Support Vector Machine in its default param-
eterized form from the sklearn library. An initial classifier is trained on the initial
batch (line 2) and a new classifier is trained each time after the acquisition and
imputation steps have been performed (line 24). We use the prequential evalua-
tion paradigm as it is common for stream evaluation [6]. To do the acquisitions
the single window average Euclidean distance function was used as the basis
for the merit calculation [23], a budget manager in the form of an incremental
percentile filter with a window size wIPF = 50 and a 4-Best feature set selection
strategy was used. The cost of each feature was homogenous and set to 1.

The FPI follows the choose best approach for imputing values and uses a
pair window size of wFPI = 25. Thresholds for the FPITS method had been
chosen to be one of either 0, 0.1, 0.2, . . . , 0.9, or 1.0, where the threshold 0.0
is equivalent to a method without the use of the FPITS and a threshold 1.0 is
equivalent to a method that does not acquire any feature values at all. The FPI’s
IPF used a window of size wIPF FPITS = 100, i.e. its window was completely
renewed every two batches. We added a lower bound which shows the minimal
performance of a particular experiment when no budget is spent and an upper
bound which shows the maximum performance of a particular experiment when
every feature value is acquired.

4.2 FPI Performance

In order to evaluate the effectiveness of the FPI and imputation models we com-
pared the performance of both the old imputation model, which is limited to
mean and mode imputations coined Simple Imputer (SI), and the FPI for the var-
ious data sets under seven different missingness (m = {0.125, 0.25, . . . , 0.875}),
four different budget settings (Bgain = {0, 0.5, 1, 2}) and on 10 iterations for
a total of 280 comparisons per data set. We chose to perform a Wilcoxon test
(α = 0.05) to check whether the methods differ in their performance and further
evaluate their ranks to determine which of these performs better given a certain
data set. Our findings along with the p-values are listed in Table 3.
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Table 3. Wilcoxon test performed on each data set with a total of 280 (7 missingness,
4 budgets, and 10 iterations) paired sample points each. Winners are in bold.

Data set p-value FPI mean rank SI mean rank

adult <0.001 1.896 1.104

cfpdss <0.001 1.246 1.754

electricity 0.717 1.529 1.471

magic 0.371 1.504 1.496

nursery <0.001 1.739 1.261

pendigits <0.001 1.046 1.954

The FPI outperforms the simple imputation model on the pendigits and
cfpdss data set. Given that the cfpdss data set has multiple linear feature corre-
lations this is not surprising. The FPI performs much better on data set pendigits
which indicates strong linear dependencies between its features. Additionally, the
data set’s static nature enables the FPI to outperform the SI even more than on
the cfpdss data set, as the adaptation of the FPI to new concepts takes longer
with increasing missingness.

On the data sets adult and nursery the SI trumps over the FPI. Data set
nursery indicates a weakness in the FPI’s ability to correctly predict categorical
features with only one single other categorical feature. Overall the FPI loses to
the SI on data set adult the most. Data sets electricity and magic are undecided.

4.3 FPITS Behavior

Fig. 1. Scatter plots of the decision variables seen by both decision makers. The left
plot shows data set magic and the right data set nursery each on a single missingness
m = 50% run and the number of known features of an instance encoded in the color.
(Color figure online)

To further illustrate the workings of the FPITS method consider Fig. 1 which
maps the quality gain values of the budget manager for the selected acquisition
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set A and the confidence values of the FPI FPIconf for its associated instance
x on single runs of the data sets magic and nursery. Every point in this figure
is a single instance and their position in this graph indicates whether they are
to be acquired or imputed.

A vertical and horizontal line that represent the mean decision thresholds of
the budget manager and FPI respectively split these graphs into four quadrants.
The instances in quadrant QI and QIV that pass the threshold on the x-Axis are
the candidates for feature acquisition, whereas all instances with missing features
in QII and QIII will only be imputed. Whether an acquisition candidate instance
will be imputed (QI) or sent for actual acquisition (QIV ) is decided by the FPI
and its threshold. The ratio of values falling into QI compared to those falling
into either QI or QIV determines how much budget is saved. Do note, that during
execution the thresholds change depending on the recent history of the stream.
The clear steps in the FPIconf values on the right nursery figure which entirely
consists of categorical features and, given the nature of the imputation models for
categorical features, leads to well-defined ratios when calculating their respective
FPIconf values. The shape of the combined quality gain and FPIconf value
distribution determines how well the user-specified FPI threshold maps onto the
resulting budget. Since the FPI’s confidence grows stronger the fewer features
of an instance it has to impute while also having access to more imputation
models, FPIconf positively correlates with the number of features known in an
instance. On the other hand, the nature of the averaging function makes changes
in the quality smaller and smaller the more features are already known in the
instance. Thus, the acquisition sets’ quality gain values become more clustered
around the mean of the x-axis. We have visualized this correlation through the
use of the color bar which encodes the number of known feature values within
their respective instance. It is easy to see that most of the instances that have
many features known (light color) are to be found in QII , and therefore have
not been selected for acquisition and do not require a decision by the FPITS.

FPITS in Budget-Constrained Scenarios. When faced with increasingly
constrained budget scenarios (high missingness, low budget) we expect our
method to increase the actual amount of budget spent since both the shape
of the FPIconf and quality gain values are tilted towards QIV and the number
of known features similarly furthers an accumulation of instances mapped to
QIV . As the number of skipped acquisitions is described as the ratio of |QI | to
(|QI

⋃
QIV |), this shift towards more instances ending up in quadrant IV leads

to fewer acquisitions being skipped. We consider this desired behavior since we
may require more additional information the more values are missing. Figure 2
plots the Bspent depending on the chance of missing feature values m and illus-
trates this behavior on data sets pendigits and nursery.

However, we can also observe an adverse effect at very high missingness and
thresholds. Due to the increase in the likelihood of instances with no known
feature values the number of FPIconf = 0 values increases as well. Once the
FPITS’ IPF value-sorted window is sufficiently saturated with these FPIconf =
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0 values, that is, once more than wIPF FPITS · thr fill the window, the IPF
will compare the FPIconf of an incoming instance to the current threshold
value, which is 0. Since any incoming value will always be greater or equal to
0, the IPF will decide to skip acquisitions. In extreme scenarios, the FPITS
will never recover from this state and skip all future acquisitions leading to
a sharp drop off in budget expenditure, see high thresholds in Fig. 2. We can
calculate the expected average minimum critical threshold at which point the
comparison value of the IPF will evaluate to 0 for a missingness chance m as:
thrcritical ≤ 1 − m|F |.

Fig. 2. Budget spent for various FPITS methods with thr 0.0 (top most) up to 0.9
(bottom most) on the data set pendigits (left) and data set nursery (right) at Bgain = 1

4.4 Budget Comparison at Similar Performance

To validate whether our method can save budget while keeping similar perfor-
mance we devise a comparison based on the Friedman and post-hoc Nemenyi
test. We compared each prequential result of a batch and iteration among 11
methods of the FPITS with thresholds 0.0, 0.1, . . ., 1.0 and rank their classifi-
cation performance, here accuracy.

Using the individual ten iterations and number of batches (i.e. 10 itera-
tions times (13000–50)/50 = 259 batches) as comparison points we can calculate
whether these methods show different performance characteristics using a Fried-
man test. If they did, we further evaluated the methods’ rankings by means of
the post-hoc Nemenyi test which calculates the mean rankings of the respective
methods and a corresponding critical distance at confidence level α = 0.05.

Intuitively, one expects the methods with the highest budget spending to per-
form the best, i.e. have the lowest rank, while higher and higher thresholds will
result in less and less budget being spent and thus their relative ranking getting
worse, i.e. their ranks being higher. If the method with thr = 0 performs simi-
larly according to the critical distance of the post-hoc Nemenyi test to methods
with higher than thr = 0 we can further evaluate their respective budget spend-
ing and make claims about which of these methods used less budget and thus
was more effective in making acquisition decisions. All Friedman tests performed
returned p-values smaller than 2.2 · 10−16, making the post-hoc Nemenyi test
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seen in Fig. 3 applicable. The plots were generated using the autorank package
[9]. For brevity, we also provide our condensed findings in table 4. In our chosen
example we see the old method perform similarly to the thr = 0.4 method on the
adult data set. However, the thr = 0.4 method only requires 69% of the original
budget per batch to achieve comparable performance. Over the entirety of our
compared scenarios m = {0.25, 0.5, 0.75} and Bgain = {0.5, 1.0, 1.5, 2.0} we saw
budget savings at similar performance in the range of 1% on nursery and up to
27% on adult.

Fig. 3. CD-plots of the six data sets in a m = 0.5 and Bgain = 1 setting. The name
tuples signify the threshold and percentage of budget spent compared to the method
without FPITS.

Table 4. Overview of the relevant information of cd plots in Fig. 3.

adult cfpdss electricity magic nursery pendigits

cd 0.187 0.297 0.159 0.245 0.297 0.323

rank(thr = 0) 5.714 5.408 5.246 5.434 3.305 4.927

thrsim 0.4 0.3 0.1 0.5 0.0 0.3

rank(thrsim) 5.891 5.655 5.322 5.678 3.305 5.175

Bsaved 31% 23% 1% 15% 0% 8%
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5 Conclusion

The vast majority of past research either solely focused on active feature acqui-
sition (AFA) or solely worked on imputation, often also in conjunction with
unclear budget scenarios. In this work, we presented a hybrid method that com-
bines AFA on streams with an intelligent imputation mechanism in order to deal
with feature incomplete instances. This mechanism intervenes in costly feature
purchase decisions, in cases where there is a good chance that the missing fea-
tures can be imputed correctly by features that are available. Furthermore, we
introduced a novel lightweight imputation model which can easily evaluate itself
even on very fast streams and its plug-and-play nature allows it to adapt to
various kinds of simple feature-to-feature correlations.

We ran experiments on six different data sets with varying budget scenarios,
varying amounts of missing values, and different targeted budget savings. These
experiments showed that our new method can save on budget expenditure and
adapt these target savings based on the current needs of the stream. Our new
method achieved a similar performance to the method which solely relies on AFA
while saving between 1% to 27% of our invested budget depending on the data
set.

In our experiments, we identified several drawbacks of our simple feature pair
imputer which we plan to remedy in the future. This entails using more sophisti-
cated pairwise models, that are not limited to linear concepts, like Gaussian and
deep regression models. Furthermore, we plan to replace our static window sizes
with adaptive windows and enrich them with feature drift detection in order to
keep our imputation models up to date. This also extends to drift-aware feature
importance functions similar to what is presented in [7]. In addition, we will
investigate the influence of varying feature costs, the initial estimation of good
thresholds as well as the possibility to add the imputation confidence to the
merit function.
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Abstract. Human mobility data play a crucial role in understand-
ing mobility patterns and developing analytical services across various
domains such as urban planning, transportation, and public health. How-
ever, due to the sensitive nature of this data, accurately identifying pri-
vacy risks is essential before deciding to release it to the public. Recent
work has proposed the use of machine learning models for predicting
privacy risk on raw mobility trajectories and the use of shap for risk
explanation. However, applying shap to mobility data results in expla-
nations that are of limited use both for privacy experts and end-users. In
this work, we present a novel version of the Expert privacy risk predic-
tion and explanation framework specifically tailored for human mobility
data. We leverage state-of-the-art algorithms in time series classification,
as Rocket and InceptionTime, to improve risk prediction while reduc-
ing computation time. Additionally, we address two key issues with shap
explanation on mobility data: first, we devise an entropy-based mask to
efficiently compute shap values for privacy risk in mobility data; second,
we develop a module for interactive analysis and visualization of shap
values over a map, empowering users with an intuitive understanding of
shap values and privacy risk.

Keywords: Mobility Data · Privacy · Explainability

1 Introduction

The analysis of human mobility data is very important for the development of
analytical services and for supporting decision-making processes in many sectors:
urban planning [33], health [16] or tourism [7]. During the COVID-19 pandemic,
for example, studying human mobility data helped understand and explain to the
public how the infection spreads and propose good practices to stop it. Analyses
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in this field are usually conducted on large datasets containing information on
the temporal sequences of locations visited by individuals, such as GPS tracks.
This type of data, however, is very sensitive, as it can lead to the disclosure of
personal information about an individual, such as the home location and place
of work. For example, it has been proven that four spatiotemporal points may
be sufficient to identify 95% of the individuals within a mobility dataset [20].
To address privacy risks associated with mobility data, various methodologies
have been proposed to protect the privacy of the users, but they often involve
modifying the data or Machine Learning (ml) models, compromising overall
performance. Striking a balance between privacy protection and data quality
requires reliable and efficient methods to quantify privacy risk. Pratesi et al.
[25] proposed a risk assessment framework that computes privacy risk through
the definition and simulation of various attack scenarios. While effective, this
framework has drawbacks, including high time complexity and the need to re-
compute the privacy risk for all data when new samples are added.

To mitigate these problems, Pellungrini et al. [22] proposed a ml approach
for the computation of privacy risk based on individual and collective mobility
features extracted from the data. Further improvements have been proposed by
Naretto et al. [21] with the Expert framework, which implements a Long Short
Term Memory neural network (Lstm) able to predict privacy risk directly from
mobility data trajectories. In compliance with the EU General Data Protection
Regulation, Expert also ensures the “right to explanation”, proposing the use
of shap (SHapley Additive exPlanations) [17], a well-known explainer based on
shap values, which is commonly used for its stability and robustness. However,
Expert has several limitations: L1) the Lstm training is time demanding and
requires deep models to be effective; L2) shap can be efficiently applied only with
specific heuristics tailored on specific ml models, like DeepExplainer, whereas
general prediction models require a lot of time to be explained, since they rely
on the combinatorial evaluation of the shap values; L3) the explanation provided
by shap in the context of mobility data is not easy to interpret, given the high
number of dimensions, and it gives limited information to non-technical users.
Therefore, in this paper, we propose Exphlot, a framework tailored towards
human mobility data that solves the aforementioned problems. To tackle L1 we
employ state-of-the-art ml models for sequential data (as InceptionTime [14]
and Rocket [8]) to speed up the training process. For L2, we propose a novel
optimization heuristic based on entropy masks to execute efficiently shap permu-
tation explainer for mobility data. For L3, we propose a visualization dashboard
specifically tailored for the analysis of human mobility focused on both privacy
risk and explanation, thus improving the fruition of the system for non-technical
users.
The paper is structured as follows: in Sect. 2, we present the most relevant papers
in the related literature; in Sect. 3 are reported the necessary definitions and
notation; in Sect. 4 is presented our proposed framework; in Sect. 5 we show an
application of our proposed framework to real human mobility data and provide
an empirical evaluation.
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2 Related Works

Privacy Risk Assessment. In our work, we use the PRUDEnce framework
from Pratesi et al. in [25], which allows for a systematic computation of pri-
vacy risk in a data-driven way. At its core, PRUDEnce is based on the principle
of k-anonymity [29] as it computes privacy risk based on the size of the k-sets
for each individual represented in the data. PRUDEnce has been extensively
used in privacy risk assessment for a diverse range of data [23,24]. The high
computational cost of PRUDEnce lead to the development of ml approaches
that try to predict privacy risk instead of computing it. Pellungrini et al. [22]
developed an approach based on Individual Mobility Profiles extracted from the
data. Naretto et al. [21] proposed the Expert framework, which improves PRU-
DEnce in two ways: first, by developing a ml methodology able to predict risk
directly from sequential data, secondly by explaining the privacy risk predic-
tion using a set of methodologies like shap [17] and lime [26]. Our Exphlot
starts from the Expert and adds new improvements by integrating models and
solutions that leverage domain-specific characteristics of mobility data. Several
works are related to privacy risk assessment, mainly focused on applying classic
risk assessment techniques to various privacy problems [32]. One of the most
recent and relevant works in the field of privacy risk assessment is the work from
Silva et al. [30], in which the authors provide an application of CRISP method-
ology and fuzzy logic to natural language processing tasks. Their work relies
on the definition of a sensitivity level for the features possibly extracted from
an individual’s text and therefore is not entirely data-driven like our approach.
For location-based data, Khalfoun et al. [15] proposed EDEN, a federated learn-
ing approach to location anonymization that is based on the FURIA federated
learning framework for re-identification risk assessment. In their setting, they
consider three types of attack: AP-Attack, POI-Attack, and PIT-Attack, con-
sidering spatial, temporal, and aggregated features. EDEN then selects the best
privacy preservation technique with respect to this kind of assessment.

Predictive Models for Human Mobility Data. In this section, we present
the latest solution in the context of predictive models for human mobility data.
Exphlot predicts the privacy risk directly on mobility data. For this task, one of
the most applied ml models is the Long Short-Term Memory networks (Lstm)
[13], a specific architecture belonging to Recurrent Neural Network (Rnn), that
are able to overcome some of the shortcomings of Rnn, e.g., vanishing gradient
in fully connected Rnn. Lstm have been applied to human mobility data in
many works [7,21,34]. Song et al. [31] use a Lstm network to develop a sys-
tem for simulating and predicting human mobility and transportation model at
a citywide level, while Altché et al. [1] use a Lstm to model vehicular move-
ment on highways. Lstm have been also applied to predict the privacy risk
in human mobility data [21]. However, the application of Lstm requires deep
models to be effective and hence also a long training time. Recently, Fawaz et
al. proposed InceptionTime [14], an ensemble of deep inception modules. This
model achieves comparable performance as the Lstm reducing the learning time.
Another recent proposal is Rocket [8]. It is an ensemble method based on convo-
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lutional kernels which transform the time series into features that are then used
to train a linear classifier. This approach is very efficient and stable, allowing
good generalization capabilities. In Exphlot we exploit both InceptionTime
and Rocket models to overcome the time limitation of Expert.

2.1 Explainability

Explainability is one of the most important modern lines of research in AI as it
is crucial in achieving Trustworthy Artificial Intelligence. [3] provides a compre-
hensive overview of existing techniques for interpretability in ml, identifying two
main types of explanation models: global and local explainers. Local explainers
focus on explaining the results of predictions on single instance [11,18,27] while
global explainers explain the logic of the whole machine learning model [5,6,10].
With Exphlot, we aim at explaining to the end user the reasons why he/she
has a privacy risk exploiting local explanations for time series. In this context
there are many recent methods, however, the majority of them are computa-
tionally inefficient and require a long training time [12]. In this work, we provide
explanations by using shap [17], a well-known explainer based on shap values,
which is commonly used for its stability and robustness of results.

3 Background

3.1 Privacy Risk Assessment Framework

In this paper, we consider each individual’s mobility as a trajectory, i.e., a
temporally ordered sequence of pairs, Tu = (l1, t1), (l2, t2), . . . , (lm, tm), where
li = 〈xi, yi〉 is the location identified by the latitude xi and longitude yi, while
ti (i = 1, . . . , m) denotes the corresponding timestamp such that ∀1 ≤ i ≤ m
ti < ti+1. We denote by D = T1, . . . , Tn the mobility dataset that describes
the movements of n individuals. In this paper, we simulate a privacy attack on
human mobility data to acquire the ground truth to train our predictive model.
Our attack is simulated using the PRUDEnce framework.

As mentioned in Sect. 2, PRUDEnce is based on k-anonymity [29], in which
the privacy risk computation relies on the size of k-sets for each individual in
the data. PRUDEnce has been utilized for privacy risk assessment in various
data domains, such as purchase and mobility data [23,24]. The framework pro-
vides an effective approach to quantifying privacy risks and has demonstrated
its applicability in diverse contexts. For these reasons, we have chosen the PRU-
DEnce methodology as the pre-processing step for computing privacy risk on
raw mobility data in our work.

Technically, the privacy risk computation procedure of PRUDEnce is general
and requires the definition of a privacy attack. The privacy risk computation
defined in Prudence is the following:

1. Define an attack, based on a specific background knowledge category B;
2. Consider a set of background knowledge configurations B1, B2, ..., Bm;
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3. For all the configurations B1, B2, ..., Bm, compute all the possible instances
b ∈ Bk and its probability of re-identification;

4. For each individual, select the maximum privacy risk, defined as the maximum
probability of re-identification across all the instances b ∈ Bk.

Therefore PRUDEnce adopts an exhaustive privacy risk evaluation technique,
by considering all the possible background knowledge the attacker could have
over a given dataset (or dataview of the original dataset). For our purpose, we
consider the case where each individual is represented by a single trajectory Tu

in D. Formally, given a single individual u, the probability of re-identification is:

PrD(Tu|b) =
1

∑
Ti∈D{matching(Ti, b)} (1)

where D is the dataset under analysis, b the background knowledge instance
considered and Tu the trajectory under analysis. In essence, we compute the
support for b with respect to each trajectory in the dataset. The matching
function formalizes how an adversary matches background knowledge b to the
data. b is generated systematically, i.e., PRUDEnce performs exhaustive privacy
risk assessment, among all possible b ∈ Bk. We simulate an attack where we
assume that an adversary has access to some of the points in the trajectory of
an individual, knowing a subsequence of the original trajectory with the relative
order of the points.

Let h be the number of locations lj of an individual u known by the adversary
and let L(Tu) be the complete sequence of locations lj ∈ Tu visited by u (i.e.,
regardless of time). The location sequence background knowledge is a set of
configurations based on h locations, defined as Bh = L(Tu)[h], where L(Tu)[h]

denotes the set of all the possible h-subsequences of the elements in the set
L(Tu), i.e., each instance b ∈ Bh is a subsequence of locations of length h. In
each b, the order among the elements is preserved and known to the adversary.
The matching function for this privacy attack is therefore defined as:

matching(Ti, b) =

{
1, if b ⊆ L(Tu)
0, otherwise

(2)

Privacy Risk is the maximum probability of re-identification across all b:

Risk(u,D) = max(PrD(d = u|b)) (3)

Fig. 1. The general structure of the proposed framework.
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3.2 EXPERT

PRUDEnce is not suited for providing personalized recommendations in terms of
risks associated with personal mobility: for any new user requiring risk evaluation,
the system should re-compute the privacy risk against the whole dataset. In addi-
tion, it does not provide any explanation of the privacy risk derived by the sys-
tem. To overcome these drawbacks, Expert [21] predicts the user’s privacy risk
to increase individual awareness, by also providing an explanation of the deriva-
tion of the risk associated with sharing sensitive location information. Expert
implements a privacy risk prediction module which takes as input the user’s tra-
jectory and predicts the privacy risk level of that user by means of a ml model. It
also uses an explanation module to produce the explanation of the predicted risk.
The output of the privacy risk prediction module is the predicted privacy risk as a
binary value (high risk vs low risk). The output of the risk explanation module
is an explanation of the ml model for the predicted risk label. Expert is mod-
ular with respect to the explainer, allowing the use of any explanation method
which outputs a local explanation, suitable to the type of data under analysis.
The authors use shap, and lore in the original paper [21] (Fig. 1).

4 EXPHLOT

In this paper we propose Exphlot, an improved version of Expert tailored
for Human Mobility Data. Our aim is to provide analysts with an actionable
framework to predict and visualize privacy risk with an integrated explanation.
The general architecture of Exphlot is shown in Fig. 1.

4.1 EXPHLOT Predictive Model

Exphlot objective is to predict the privacy risk of a human trajectory while
providing the analyst with also an explanation to increase user awareness. Pri-
vacy risk is a continuous value in the interval [0, 1]. However, we decide to model
the problem as a binary classification. Indeed, we are interested in distinguishing
between high risk and low risk users, in such a way that higher-risk users can be
protected. Technically, we discretize the privacy risk obtained from the location-
based attack: low risk or 0 (privacy risk ≤ 0.5) and high risk or 1 (privacy risk
>0.5). The Γ vector generated in this way is then joined to the mobility dataset
D and we use 〈D,Γ 〉 to train a classification model. To avoid the problem of hav-
ing to craft and compute features to be used as input data, Naretto et al. [21]
propose to use methods applicable to raw sequences. In particular, they propose
to solve the privacy risk classification problem using a Long-Short Term Memory
network (Lstm). Our goal is, therefore, to use novel, state-of-the-art models to
solve this prediction task, and to compare the performance and time-efficiency
results of the new models with those of the Lstm. We propose two recent models,
Rocket and InceptionTime, introduced in Sect. 2. Rocket is a fast and accu-
rate time series classification algorithm that uses random convolutional kernels.
It is composed of two parts: a first part in which k randomly generated convo-
lutional kernels are used to calculate a feature map from which, for each kernel,
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two aggregated features are extracted (ppv and maximum value); a second part
in which the aggregated features are passed to a linear classification algorithm
to obtain the actual result. The number k of kernels is the only hyper-parameter
of the model. In theory, Rocket can be used for both variable-length and fixed-
length time series. To be applied to variable length time series, the kernels must
be shorter than the length of the shortest time series. In the case where the length
of the series varies greatly, as in our case, this approach is very inconvenient, as
finding the right kernel would be time-consuming. We, therefore, chose a fixed-
length approach, using low amplitude or zero padding to keep the result of the
convolution operation on those segments close to zero and constant, cutting it off
the calculation of the features (ppv and maximum value). We chose Rocket over
Minirocket [9] as the latter eliminates the random component in the choice of
kernels’ characteristics. Therefore, even though Minirocket is generally faster,
we believe that a set of varied kernels fits better for our case, to capture the most
diverse pattern possible. InceptionTime is an ensemble time series classification
algorithm based on an ensemble of inception architectures. The Inception model
is composed of convolutional layers and simultaneously applies several filters of
different lengths to the input time series. This structure alleviates the vanishing
gradient problem by enabling a direct flow of the gradient. It cannot be used on
time series of variable length. To choose the best models, we focused on the recall
of both classes, giving priority to class 1, and the precision of both classes. This is
because we want to protect high-risk users by preventing them from being classi-
fied as low-risk, so that their sensitive data would not be threatened. Moreover,
we wanted to maximize the possibility of sharing the data of low-risk users, thus
preventing them from being classified as high-risk.

Fig. 2. Exphlot analytical pipeline. Starting from the generalized trajectories (a)
a privacy prediction model (d) is trained from a set of observations generated by a
privacy risk model (b). The prediction is explained by means of shap values (e) that
are visualized within an analytical dashboard (f)
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4.2 Exphlot Risk Explanation Module

For the Explanation Module of Exphlot our goal is to provide an explanation
that is informative for experts and users in the dominion of Human Mobility data
(Fig. 2). We chose to employ shap to generate an attribution-based explanation
for our models. Our aim is to indicate, for each individual, what parts of his
movement lead to higher privacy risks. Given the nature of our specific ml mod-
els, we must employ the Kernel Explainer, which is the agnostic explainer of the
shap library. Clearly, depending on the size of the given data, the computation
is more accurate but also longer in time. One possible solution, suggested also by
the authors of shap, is to exploit K-means clustering by selecting a large k and
then feeding all the centroids obtained to the Kernel Explainer. In this way, we
are able to represent all the space under analysis by considering a small number
of trajectories. However, this solution for mobility data is not enough: shap con-
siders each location of the trajectory as a variable and for computing the shap
values all the permutations of variables are calculated as well as their relative
interactions. This procedure is exponential in time if the number of variables is
high, as in our case. Computation of shap values becomes therefore unfeasible
in a reasonable time. Mitchell et al. [19] propose several sampling strategies that
can in theory speed up shap values computation. However, many of the proposed
strategies work under assumptions of bounds to the possible values or shape of
the data. For human mobility, these bounds may not hold. For these reasons, we
decide to apply the PermutationExplainer with a dynamic mask. This method
can take as input a user-defined mask that allows certain features to be hidden,
thus decreasing the individual evaluations made on these and the complexity
of the calculation. In our setting, each feature corresponds to a location of the
geographical map of our human mobility data. We used a binary mask to hide
the features with the highest entropy, fully evaluating the locations with the
lowest entropy. We formally define location entropy for each location i in the
dataset with the Shannon Entropy equation: Ei = −∑

u∈Ui
pu log2 pu, where

pu is the probability that individual u visits location i and Ui is the set of all
individuals visiting location i. The importance of location entropy for privacy
is thoroughly discussed by Rodriguez-Carrion et al. [28], while in the work of
Pellungrini et al. [22] entropy is proven to be one of the most important predic-
tive features/locations also in ml models. The intuitive concept behind it is that
location entropy is a measure of anonymity, in the sense that if a user passes
through high-entropy locations, where therefore many different other people pass
through, the uniqueness of his mobility profile is lost as it is blurred by the gen-
eral movement. We, therefore, hide the top 70% of the highest entropy locations,
evaluating only the 30% with the lowest entropy. In this way, we are focusing on
those locations that have fewer individuals visiting in a more sporadic way and
thus we are focusing on explaining high-risk predictions. Thus, we are able to
speed up the computation of the shap values.
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4.3 Exphlot Risk and Explanation Visualization Module

The effective visualization of mobility properties can provide a boost to gaining
deeper insights into spatial and temporal patterns. To manage the complexity of
spatial resolutions, a widely adopted solution leverages spatial aggregation based
on spatial partitioning [2,4]. The process organizes close entities into groups
and, for each group, a single centroid point is determined. Then the centroid
points are used as seeds to partition the territory. In the scope of our work,
the data related to geography is linked to multiple dimensions and attributes,
like mobility indicators, privacy risk prediction, and feature relevance. Moreover,
many of these indicators may have multiple spatial scales, for example ranging
from an urban building block resolution to a city district.

Thus, we designed a visual interface where the set of locations of each tra-
jectory is presented within two linked displays: a dynamic map with embedded
graphics and a bubble chart (see Fig. 4). The dynamic map shows for each loca-
tion a visual mark, a circle, whose visual properties are linked to internal indi-
cators of the location it represents. Each circle is driven by two visual variables,
the area of the circle and the fill color, which both encode the same quantitative
value. Without loss of generality, we can assume that these quantitative values
are mapped to the [0, 1] interval, in order to implement a pair of scale functions
to determine the area and the color of each circle. The Bubble Chart contains
the same set of circles of the map (to create conceptual links between the two
displays) located accordingly to the respective values on the two axes. The user
can decide which attributes are associated with which value. Any selection/filter
activated on the Bubble Chart is propagated to the map (and viceversa).

The shap values are computed for every single individual trajectory. How-
ever, the domain expert is interested in the analysis of collective behavior. Thus,
we aggregate the individual explanations into a global one using the aggregation
procedure available within the shap library. This is especially important for all
those instances where the data is not public or is under strict confidentiality con-
straints. From a geographical point of view, we considered for each location l the
set of all the trajectories crossing l. For this subset of trajectories, a set of indica-
tors is computed, such as number of trajectories, and risk of re-identification. For
the latter, we compute statistical indicators to have a compact representation of
the distribution: min, max, first quartile, third quartile, median, and average.

This design achieves multiple objectives. First, it provides a user-driven
exploration of the shap values, since the analyst can evaluate and compare
the contribution of each location to the risk prediction and let the user visu-
ally identify zones containing locations with similar characteristics. Second, the
possibility of navigating the map allows for a deeper investigation of local areas
and provides a solution to limit cluttering when the number of locations is high.
Third, geographic mapping allows a topological exploration of close locations,
enabling the identification of general patterns, i.e. urban areas versus rural areas.
Fourth, the expert can exploit the linked display to investigate relevant cases that
are not directly evident from the map. The possibility of cross-selecting visual
elements enables better identification of patterns and rules of the data.
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5 Experiments

For validating Exphlot we used GPS tracks of private vehicles, provided by
Octo Telematics1, an insurance company. We selected trajectories from the city
area of Prato and Pistoia (Italy), with 8651 users observed in a period of one
month, from 1st May to 31st May 20112. The dataset considered is composed of a
trajectory for each user. Hence, each trajectory contains all the points visited by
the user in temporal order. On these trajectories, we applied a transformation,
in the following called voronoi, in which the territory is split in tiles based
on a data-driven Voronoi tessellation [2]. This approach considers the traffic
density of an area to create the tiles. Then, we used the cells of this tessella-
tion to generalize the original trajectories. The algorithm applies interpolation
between non-adjacent points3. The outliers were removed using DBScan algo-
rithm obtaining 1473 different locations, with an average length of 240.2 per tra-
jectory. Given the processed dataset D, for an in-depth validation of Exphlot,
we considered four background knowledge configurations Bh using h = 2, 3, 4, 5
obtaining four different risk datasets, Γh=2,3,4,5 where, we recall, h represents the
length of the background knowledge of the simulated attacker. We discretized
the risk values in two classes: low, when the privacy risk is in [0, 0.5] and high
in ]0.5, 1]. At this point, we merged the privacy risk data with the trajectories
to obtain the classification datasets for our supervised learning task, following
the methodology explained in Sect. 3.1. Hence, we obtained 4 different datasets
for our experiments. We remark that the datasets with the highest and lowest
background knowledge are highly imbalanced, having the Dh=2 with the 71% of
users belonging to the low class, while for Dh=5 has the 63% of trajectories in
the high class. This is to be expected, as when the knowledge of the attacker is
small, such as h = 2, the attack is less effective, having fewer people re-identified.
In addition, we remark that we compute the privacy risk of the entire dataset
D, splitting the data after privacy risk computation. This decision is based on
the fact that if we calculate the privacy risk separately for the training and
testing sets, the final result will differ from the computation performed on the
complete dataset, due to k-anonymity (Sect. 3.1). It has been demonstrated that
the models still generalize well and possess transfer learning capabilities [22].

5.1 Exphlot Privacy Risk Prediction Module

For all the models we split our datasets into 80% for training and validation
(10%) and 20% for testing. The predictive performance of Rocket, Incep-
tionTime, and Lstm are reported in Table 1. All the models perform well,
achieving good precision and recall for both classes, even in unbalanced settings.
For the most unbalanced case, which is the h = 2, Rocket and InceptionTime

1 https://www.octotelematics.com/it/.
2 Data are collected by GPS devices that detect the position every 30 s, if the vehicle

is not in motion the device automatically stops recording.
3 Voronoi tessellation obtained using http://geoanalytics.net/V-Analytics.

https://www.octotelematics.com/it/
http://geoanalytics.net/V-Analytics
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Table 1. Metrics of Rocket (R), InceptionTime (IT) and Lstm (LS) compared for
each dataset h. For precision P and recall R we present the values for both classes
(high and low risk. From a privacy perspective Rhigh is the most important value as
it represents the fraction of correctly predicted high risk individuals.

h = 2 h = 3

Rocket InceptionTime Lstm Rocket InceptionTime Lstm

Acc 0.81 0.84 0.80 0.88 0.87 0.88

Plow 0.91 0.88 0.90 0.89 0.86 0.90

Phigh 0.63 0.72 0.62 0.88 0.88 0.88

Rlow 0.81 0.89 0.81 0.84 0.85 0.84

Rhigh 0.80 0.70 0.76 0.91 0.89 0.92

F1 0.78 0.80 0.76 0.88 0.87 0.88

h = 4 h = 5

Rocket InceptionTime Lstm Rocket InceptionTime Lstm

Acc 0.90 0.89 0.89 0.91 0.90 0.92

Plow 0.90 0.87 0.90 0.87 0.86 0.89

Phigh 0.90 0.91 0.89 0.93 0.93 0.94

Rlow 0.86 0.89 0.84 0.88 0.88 0.89

Rhigh 0.93 0.90 0.92 0.92 0.92 0.93

F1 0.90 0.89 0.89 0.90 0.90 0.91

Table 2. Training and test times for ROCKET and InceptionTime. Overall Rocket
is the fastest model in training.

InceptionTime Rocket Lstm

Dataset Training Test Time Training Test Training Test

h = 2 16h49min 6sec 2min32sec 44sec 8h50min 60sec

h = 3 20h7min 6sec 3min 40sec 5h30min 60sec

h = 4 4h 4sec 7min 16sec 5h50min 60sec

h = 5 9h24min 5sec 8min 17sec 6h15min 60sec

perform better than Lstm, showing better generalization capabilities. However,
Rocket achieves the highest recall on class high, which is the most important
class for our setting, being the class of the users with high risk of privacy. Incep-
tionTime, instead, while having generally good metrics, does not perform well
on the recall for high class. The real benefit of Rocket over other models is in
training time, as can be seen in Table 2. While training the Lstm can take many
hours, the other models are faster. Rocket is the quickest, with a training time
of just a few minutes, allowing us to achieve the online interaction with the end
user we are aiming at.
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Fig. 3. Shap Force Plot visualization of the contributions towards high risk. The stan-
dard visualization does not provide significant information to domain experts.

5.2 Mobility Privacy Risk Explanation

Applying shap we obtain a local explanation based on feature importance: for
each feature we have a value associated to it that represents how important the
feature is for the prediction at hand. Local explanations can be summed up to
obtain a global explanation as shown in Fig. 3. This plot represents the explana-
tion for all trajectories predicted as high risk. A large number of features makes
it very difficult for the analyst to understand which are the most relevant loca-
tions that contribute to the high (or low) risk. Clearly, this linear layout has
two main limitations: first, the high number of features does not allow a clear
reading of those locations with smaller contributions; second, the topological and
spatial relations among locations are not evident. The visual interface introduced
in Sect. 4.3 addresses these two limitations. Figure 4 shows a screenshot of the
interface showing the shap values associated with the prediction of high risk for
each location4. This visualization allows an analyst to immediately understand
which areas of the map present the highest contribution for the model towards
risk classification. Our map allows for a more intuitive understanding of the con-
tributions of each location with respect to the original shap visualization. Our
visualization can help the analyst understand the dependence of privacy risk on
the mobility behaviors of the collectivity. In the figure, there is a cluster of loca-
tions along a country road with a high contribution to the high risk, confirming
the intuition that low-traffic roads are more prone to privacy exposures. More-
over, the urban surroundings present a lower level of risk, even if it is possible to
visually detect different privacy levels in two close municipalities: the south-east
town has very low-risk levels; the north-west town has a higher risk level.

4 The interactive maps of the experiments in this paper are available at this link.

http://kddstatic.isti.cnr.it/sax/exphlot/
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Fig. 4. Visual interface for the exploration of explanation and prediction of privacy
risk. Each circle represents the contribution to the prediction of high risk

6 Conclusion

In this paper, we proposed Exphlot, a privacy assessment prediction and expla-
nation framework tailored towards human mobility data. We improve on pre-
vious privacy risk assessment frameworks by employing specific ml models for
sequential data and develop custom heuristic techniques for computing shap
values in feasible times and a visualization tool tailored for human mobility data
analysis. Our framework can accurately predict privacy risk in human mobility
data and effectively explain the predictive models with fast shap value calcula-
tion and an intuitive and interactive visualization tool that maps the essential
contribution and information about the problem onto a dynamic map. We vali-
dated our framework on real, confidential human mobility data and showed how
it is possible to immediately gain new insight into the nature of privacy risk.
Our work provides privacy analysts and experts in the field with an interactive
and actionable tool to understand the privacy risk of human mobility data in
an interactive and fast way. As a future work, we are working on exploiting our
visual analytics environment to validate the effeect of different privacy mitiga-
tion techniques. This would be a “what-if” simulation module to allow analysts
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to interactively assess privacy risk, providing a new tool in the development of
privacy protection measures based on generalization or deletion. Another inter-
esting direction is the integration of additional data quality measures, to allow
further experimentation of protection measures on the data before release.
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Abstract. As artificial intelligence becomes more pervasive, explain-
ability and the need to interpret machine learning models’ behavior
emerge as critical issues. Discussions are usually bounded by those
who defend that interpretable models must be the rule or that non-
interpretable models’ ability to capture more complex patterns warrants
their use. In this paper, we argue that interpretability should not be
viewed as a binary aspect and that, instead, it should be viewed as a
continuous domain-informed notion. With this aim, we leverage the well-
known Mixture of Experts architecture with user-defined budgets for the
controlled use of non-interpretable models. We extend this idea with a
counterfactual fairness module to ensure the selection of consistently
fair experts: FairMOE . We compare our proposal to contemporary
approaches in fairness-related data sets and demonstrate that FairMOE
is competitive with the state-of-the-art methods when considering the
trade-off between predictive performance and fairness while providing
competitive scalability and, most importantly, greater interpretability .

Keywords: Interpretability · Mixture of Experts · Counterfactual
Fairness · Scalability

1 Introduction

Explainable AI (XAI) has been studied for over three decades [8], with the objec-
tive of providing explanations for learning models’ outcomes such that it i) guar-
antees the highest level possible of model accuracy, and ii) that human actors can
understand [3]. Efforts within XAI are divided into two groups [3], influenced by
the concept of interpretability: for non-interpretable models, post-hoc explana-
tions extract information from their behavior where the inputs-outputs relation
is complex; for interpretable models, methods are applied to provide a more
transparent view of how model decisions are carried out. Naturally, there are
trade-offs in each of these types of models: non-interpretable models deployed in
high-risk decision-making environments may incur costly mistakes, but building
interpretable models requires extensive time and effort from domain experts and
they sometimes fail to uncover “hidden patterns” within the data that black-box
(i.e., non-interpretable) models may specialize in finding [29].
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We posit that defining interpretability as a binary notion is severely limiting.
Instead, we define it as a domain-informed and user-defined parameter, allowing
for models with varying levels of interpretability, capable of extracting the ben-
efits of complex models but retaining interpretability for higher-risk predictions.
However, this objective hinges on accurately anticipating such high-risk cases,
e.g. those related to decisions concerning non-privileged groups in protected
classes. This basis should allow for models that better balance interpretability,
fairness, and performance trade-offs, avoiding focus on a single one.

Contributions. We introduce FairMOE, a Mixture of Experts (MOE) archi-
tecture using interpretable and non-interpretable experts, where a single expert
is chosen per prediction. To the traditional MOE architecture we add i) Perfor-
mance meta-learners to anticipate the probability of a given expert prediction
being correct; ii) a Counterfactual Fairness Module to identify highest-risk sam-
ples and ensure they are handled fairly, and; iii) an Assignment Module for expert
selection, using results from the previous components within constraints of max-
imum levels of non-interpretability, i.e., the maximum amount of predictions
from non-interpretable experts.

2 Related Work

Our work intersects four topics: i) interpretability: definitions and contradic-
tions; ii) mixture of experts, the basis for our proposal; iii) meta-learning, and
how to anticipate predictive performance, and; iv) fairness, and how to improve
interpretability, fairness, and predictive performance trade-offs.

Interpretability. Despite a significant level of research, there is still no single
agreed-upon definition of interpretability. Miller [24] defines interpretability as
“the degree to which a human can understand the cause of a decision”, while
Kim et al. [20] define it as “the degree to which a human can consistently predict
the model’s result”. One consistency is that models are either interpretable or
not. In this paper, we use a continuous notion of interpretability, envisioning an
architecture capable of minimizing the number of non-interpretable errors.

Mixture of Experts. Proposed over 30 years ago, MOE [16] has been exten-
sively explored within regression and classification tasks [34]. Recently, sparse
MOE has been used as layers to large neural networks [30] and as a vision trans-
former [28] to increase large, deep learning tasks’ efficiency. Closer to our work,
Ismail et al. [15] applied an interpretable MOE approach to structured and time
series data, using an Assignment Module to pick individual expert for predic-
tions and variable percentage of samples assigned to interpretable experts. Our
approach leverages meta-learners to predict the accuracy of each expert given a
specific sample, inspired by Cerqueira et al. [6] work on time series forecasting.

Meta-learning. Meta-learning has been applied to domains such as transfer
learning, neural networks, and few-shot learning [31]. We use meta-learning for
error anticipation, towards selecting the best model. Khan et al. [19] detail
meta-learners’ usage for classifier selection. In an error-anticipation context,
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meta-learners are trained to predict model performance using a combination
of the original feature space, meta-features, and model predictions. Using meta-
learners, our proposal creates a fully-interpretable pipeline for selecting indi-
vidual models and allows us to exploit each model’s strengths. However, by
optimizing our proposal for predictive performance, this might create additional
issues with regard to model fairness.

Fairness. There are two main approaches to analyzing fairness. Group fairness
measures disparate treatment in protected groups over predictions, including
pre-processing, in-processing, and post-processing methods [14]. Pre-processing
includes methods such as relabeling data [17], perturbation, and sampling [7].
Post-processing methods include input correction [1], classifier correction [13],
and output correction [18]. In-processing methods attempt to train a model
to learn fairness concepts. Agarwal et al. [2] use adversarial learning. Zafar et
al. [35] apply constraints to the loss function to ensure fairness. Other approaches
include a composition of multiple classification models [27] and adjusted learn-
ing [36]. Fairness can also be measured on an individual or sample-wise basis.
Kusner et al. [21] proposed the notion of counterfactual fairness, which uses the
tools from causal inference to establish a prediction as fair if an individual’s
prediction remains the same with changing protected attributes. Counterfac-
tual fairness has been adopted in several domains as a viable approach toward
fairness. For example, Garg et al. [12] apply counterfactual fairness to text clas-
sification by considering perturbations obtained by substituting words within
specific identity groups. Our approach uses counterfactual fairness to ensure our
selected model predicts samples consistently. That is, selected experts should not
discriminate against different protected attribute values. We separately evaluate
our results with group fairness.

3 Fair Mixture of Experts

This section describes our fairness-aware MOE-based proposal. FairMOE has
four main components: i) individual experts, where each predicts each sample;
ii) performance meta-learners, which predict the probability of each expert’s
prediction accuracy; iii) a counterfactual fairness model, to assess predictive
consistency regardless of protected attribute values in each case and, iv) an
assignment module, combining the outcome of the previous two components and
solving for non-interpretable model usage constraints. This high-level workflow
is illustrated in Fig. 1, and components are described below.

3.1 FairMOE Components

1) Experts. FairMOE leverages a set of diverse expert learners trained using
half the training data, including interpretable and non-interpretable models.

2) Performance Meta-learner. A performance meta-learner per expert is
trained to predict the probability of an accurate prediction. For interpretability,
meta-learners use one of the following algorithms: Logistic Regression, Naive
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Fig. 1. (a) FairMOE training. Train data is split into two halves: Train1 and Train2.
Experts are trained with Train1 and performance meta-learners on Train2 using
experts’ predictions. (b) FairMOE testing. Experts predict the test data, which feeds
into the respective performance meta-learners. Counterfactuals are generated around
the protected attributes and assessed for consistency regarding expert predictions (Fair-
ness Module). Finally, the Assignment Module uses the output from the Fairness Mod-
ule and Performance Meta-Learners to select an expert and make the final prediction.

Bayes, Decision Tree, or K-Nearest Neighbors. They are trained using 10-fold
cross-validation with grid search. The expert prediction is included as a feature
within training, and the ground truth is a binary value indicating whether the
expert correctly classified the sample. The learners are fit using the unused half
of the training data to ensure they are trained using out-of-sample predictions.

3) Counterfactual Fairness Module. To assess the fairness of individual
models in a given sample, FairMOE uses a counterfactual fairness approach
inspired by Kusner et al. [21]. Let A,X, Y and (U, V, F ) represent protected
features, remaining features, the output of interest, and a causal model where U
is a set of latent background variables, V a set of observable variables, and F a
set of structural equations. We define a predictor Ŷ as counterfactually-fair if:

P (ŶA←α(U) = y|X = x) = P (ŶA←α′(U) = y|X = x) (1)

where A is the set of all possible combinations of values within A, α is a given
combination, and y is a given label.

The Counterfactual Fairness Module creates counterfactuals per sample to
assess models with regard to individual (counterfactual) fairness. It generates
a counterfactual for all possible permutations of Privileged/Unprivileged across
protected classes, minus the original sample combination while holding all non-
protected features constant1. Each expert then predicts them, being evaluated
with a consistency score to determine their level of fairness, defined as:
1 Counterfactuals are created by i) binarizing the features as privileged/unprivileged,
ii) creating the permutations as described, and iii) transforming the binary value
into a categorical or continuous variable by picking a random value following the
distribution from the original training data.
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CS =

∑
α′∈A\α I(ŶA←α(U)|X = x, ŶA←α′(U)|X = x)

|A| − 1
, (2)

where I is an indicator function returning one if the two values match and
0 otherwise. Then, the Module selects the set of models per sample with the
maximum consistency score:

Mx = {∀e ∈ E : CS(e) = max(CS(E))} (3)

where E is the set of experts. This set of counterfactually fair experts Mx is then
used by the Assignment Module to pick the best fair expert per prediction.

4) Assignment Module. Finally, the Assignment Module considers the perfor-
mance meta-learners, the Fairness Module, and the Non-Interpretable Budget to
select an expert for each sample. It has two stages. In the first stage, each sam-
ple within the test data is considered individually. The Fairness Module returns
the fair experts for each sample to be predicted. Using the performance meta-
learners, vectors are created with the interpretable and non-interpretable experts
with the highest probability of an accurate prediction (HPAP), and the differ-
ence between the probabilities is calculated. In the second stage, the test data
is considered as a whole. Samples with the highest positive difference, i.e., the
probability of an accurate prediction is higher for the non-interpretable model,
are assigned to the non-interpretable expert until the budget is exhausted. All
remaining samples are assigned to the interpretable expert. Samples with a neg-
ative difference are always assigned to the interpretable expert, so the total bud-
get is not always used. The designated expert’s prediction is the final FairMOE
prediction. The selection procedure is described in Algorithm 1.

Algorithm 1. Assignment Module
Require: L: Meta-Learners, E: Experts, b: Budget, X
1: for x ∈ X do
2: Mx = FairnessModule(x, E, L)
3: MI ← HPAP(Mx ∩ EI), EI ∈ E: subset of interpretable experts
4: MNI ← HPAP(Mx ∩ ENI), ENI ∈ E: subset of non-interpretable experts
5: Δprob ← LMNI (x) − LMI (x)
6: end for
7: PNI = SelectPositive(Δprob, b)
8: return x ∈ X: if x ∈ PNI: MNI(x); otherwise MI(x)

4 Experimental Evaluation

First, we present the data and methods used. Then, we proceed to assess the
performance of FairMOE regarding predictive accuracy, interpretable decision-
making, and fair behavior. We compare such performance against state-of-the-art
baselines, aiming to answer the following research questions:
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RQ1 Does the Non-Interpretable Budget impact predictive performance?
RQ2 Does FairMOE improve the predictive performance and fairness trade-off?
RQ3 What is the impact of the Counterfactual Fairness Module?
RQ4 Does FairMOE scale well with larger datasets?

Table 1. Data sets used in the experimental evaluation

Name Prediction Task Cases Feat. Protected Attributes Privileged Classes

Adult [11] Annual income exceeds $50,000 45222 94 Sex, Race, Age Male, White, 25–60
German Credit [11] Bank Account is high credit risk 1000 47 Sex, Age Male, 25+
Dutch Census [5] Person’s occupation is prestigious 60420 50 Sex Male
Bank Marketing [25] Client subscribes with deposit 45211 42 Age, Marital Status 25–60, Married
Credit Card Clients [33] Client will default in next month 30000 82 Sex, Marital Status Male, Single
OULAD [22] Student will pass class 21562 40 Sex Male
Lawschool [32] Student will pas bar on first attempt 20798 18 Sex, Race Male, White

4.1 Data

We use seven fairness-oriented and public data sets [23] (Table 1), following the
pre-processing steps, protected class definitions, and privileged groups described
in Le Quy et al. [23]. The pre-processing steps include removing missing val-
ues, dropping non-predictive columns, and when necessary binarizing the target
variable. The majority class was designated as privileged when lacking a defined
privileged group. Categorical variables were one-hot encoded.

4.2 Algorithms

We compare FairMOE against each expert and four fairness-aware algorithms.
To build FairMOE we used seven algorithms as experts, optimized using grid
search with 10-fold cross-validation (Table 2): Logistic Regression, Decision Tree,
Naive Bayes, K-Nearest Neighbors (KNN) are interpretable, and Random Forest,
LightGBM (LGBM), and XGBoost (XGB) are not. Concerning fairness-aware
algorithms, we used the solutions proposed by Hardt et al. [13] (post-processing
optimization of equalized odds), Zafar et al. [35] (builds models using covariance
between a sample’s sensitive attributes to measure the decision boundary fair-
ness, which guarantees disparate impact’s business necessity clause, by maximiz-
ing fairness subject to accuracy constraints), Agarwal et al. [2] (reduces a fairness
classification task to a series of cost-sensitive classification problems, where the
final outcome is a randomized classifier optimized for the most accurate classi-
fier subject to fairness constraints) and xFAIR [26] (aims to mitigate bias and
identify its cause by relabeling protected attributes in test data through extrap-
olation models designed to predict protected attributes through other indepen-
dent variables). Hardt et al. and Agarwal et al. methods are implemented using
the Fairlearn python package [4] with an underlying optimized LGBM model.
For xFAIR, we used a Decision Tree as the extrapolation model and a Random
Forest as the classification model suggested in the original paper [26]. The Zafar
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et al. baseline was implemented using a Logistic Regression loss function. Of
these alternatives, only the method proposed by Zafar et al. is interpretable. We
adapted the authors’ code to allow for multiple protected classes as necessary.
Protected classes were encoded as binary features for the baselines incompatible
with categorical or continuous features.

We evaluate six versions of our method. The most basic version (noted as
“Mode”) considers the experts as an ensemble that predicts the most common
prediction from all experts. Next, we consider an ensemble method that priori-
tizes fairness over performance (noted as “FairMode”) by using the Counterfac-
tual Fairness Module and predicting the most common prediction from only the
counterfactual-fairest models, i.e., with a maximum consistency score. Alterna-
tively, we consider the Mixture of Experts approach using performance meta-
learners without the Counterfactual Fairness Module to test the interpretability
aspect of our proposal, noted as “MOE”. Finally, our full proposal “FairMOE”,
combines performance meta-learners, the Counterfactual Fairness Module and
the Assignment Module. For MOE and FairMOE, we examined non-interpretable
budgets of 0% (fully interpretable model) and 100% (no interpretability con-
straints), noted as MOE0.0, FairMOE0.0, MOE1.0, and FairMOE1.0, respectively.

Fig. 2. Predictive performance of FairMOE and MOE at varying budgets. The per-
formance lines represent the average percentage change in Accuracy, F1, and G-Mean
scores over ten runs compared to the fully interpretable FairMOE. Higher scores rep-
resent better performance. Note that the Y-axes are not on the same scale.

4.3 Evaluation Metrics

For thoroughness, we evaluate our results with Accuracy, F1-score, and G-mean.
To measure fairness, we used Statistical Parity (SP) [9] and Equalized Odds
(EO) [13]. SP is derived from the legal doctrine of Disparate Impact [10] but
disregards ground truth labels, while EO considers them [23].

FairMOE is evaluated by running each dataset 10 times with different
80%/20% train-test splits. For each iteration, the models were ranked by per-
formance across all five metrics. With multiple protected classes, EO and SP
are calculated for each protected class. The metrics are grouped by performance
(Accuracy, F1, G-mean) and fairness (SP, EO), and assessed as to the model’s
average ranking across these groups.
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Table 2. Overview of the solutions used as benchmarks including their name, under-
lying model(s), parameters, and whether or not the solution is interpretable.

Model Underlying Algorithm(s) Tuning Parameters Interpretable?

Expert 1 Logistic Regression N/A Yes

Expert 2 Decision Tree Max. Depth: [3, 5, 10, 15], Yes
Min. Samples per Leaf: [5, 10, 25]

Expert 3 Naïve Bayes N/A Yes

Expert 4 KNN Weights: distance, Yes
Neighbors: [5, 9, 13, . . . , 53]

Expert 5 Random Forest Estimators: [10, 50, 100, 250], No
Min. Samples per Leaf: [5, 10, 25]

Expert 6 LGBM Estimators: [10, 50, 100, 250], No
Learning Rate: [.001, .01, .1],
Min. Samples per Leaf: [5, 10, 25]

Expert 7 XGB Estimators: [10, 50, 100, 250], No
Learning Rate: [.001, .01, .1],
Max. Depth: [3, 5, 10]

Agarwal [2] LGBM Estimators: [10, 50, 100, 250], No
Learning Rate: [.001, .01, .1],
Min. Samples per Leaf: [5, 10, 25]

Hardt [13] LGBM Estimators: [10, 50, 100, 250], No
Learning Rate: [.001, .01, .1],
Min. Samples per Leaf: [5, 10, 25]

Zafar [35] Logistic Regression N/A Yes

xFAIR [26] Decision Tree, Random Forest N/A No

Mode Experts 1-7 N/A No

Fair Mode Experts 1-7 N/A No

MOE0.0 Experts 1-7 N/A Yes

MOE1.0 Experts 1-7 N/A Partially

FairMOE0.0 Experts 1-7 N/A Yes

FairMOE1.0 Experts 1-7 N/A Partially

4.4 Results

Levels of Interpretability (RQ1). To measure the impact of interpretabil-
ity on predictive performance, we test how Accuracy, G-Mean and F1 scores
change as the Non-Interpretable Budget is increased (0% to 100% in 5pp) within
each dataset. Results (Fig. 2) show that increasing the Non-Interpretable Budget
can lead to predictive performance increases, but the magnitude of the effect is
usually small. In many cases, the increase in performance is less than 1%. For
example, the largest increase in accuracy from increasing the budget is less than
2% within the German Credit dataset. Additionally, in some cases increasing the
use of more complex (non-interpretable) models worsens performance.

Importantly, results show that FairMOE performs well even in contexts
where strict transparency is necessary. And, even when allowed to use the Non-
Interpretable Budget, every metric quickly stabilizes when increasing the budget.
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Fig. 3. Average total percentage of non-interpretable predictions for each budget in
FairMOE and MOE. The dashed line indicates maximum budget usage.

We illustrate this in Fig. 3, showing that FairMOE does not need to resort to
the total allotted non-interpretable predictions: with no interpretability con-
straints, FairMOE only used an average of 39.7% of the budget. Results with
the version MOE are similar (40% of non-interpretable predictions budget). This
suggests that, in the majority of instances, fully interpretable models are capable
of producing accurate predictions with high confidence. While non-interpretable
models offer some performance benefits, these improvements occur on the mar-
gins supporting our theory that peak performing models can be achieved while
maintaining high interpretability.

Performance and Fairness (RQ2). Next, we compare how well FairMOE
balances the predictive performance and fairness trade-off compared to other
baselines, studying each baseline’s Accuracy, F1-score, G-mean, SP, and EO
rankings. The results depicted in Table 3 (grouped by metric type) show that:

1. Adding the Counterfactual Fairness Module notably increases group fairness
at the cost of predictive performance;

2. Performance meta-learners add interpretability and fairness to our model with
only a minor impact on predictive performance;

3. FairMOE is competitive with state-of-the-art baselines in predictive perfor-
mance and fairness while increasing consistency and adding interpretability;

4. The Non-Interpretable Budget increases FairMOE’s predictive performance
without sacrificing fairness, demonstrating a cumulative advantage.

On predictive performance, XGB and LGBM are the best individual
experts. While both are competitive with FairMOE overall, they produce non-
interpretable models and poorly balance fairness and predictive performance (see
the rightmost column in Table 3), limiting their utility in domains with fairness
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Table 3. Average and Standard Deviation of rankings (R) by predictive performance
and fairness metrics. “All” is the mean of all predictive and fairness metric rankings
and ΔR their difference. Solutions are grouped by Fairness Agnostic, Fairness Aware,
and our proposal. Lower rankings signal better performance.

Predictive Performance Group Fairness All
solution R sd(R) solution R sd(R) solution R ΔR

A
gn

os
ti

c

Logistic Regression 7.57 4.00 Logistic Regression 10.90 4.32 Logistic Regression 9.24 3.33
Decision Tree 9.45 4.23 Decision Tree 10.52 4.69 Decision Tree 9.99 1.07
Naive Bayes 9.75 5.78 Naive Bayes 14.11 4.14 Naive Bayes 11.93 4.36
KNN 13.73 3.23 KNN 9.56 5.19 KNN 11.65 -4.17
Random Forest 8.36 4.60 Random Forest 9.35 3.67 Random Forest 8.85 0.99
LGBM 4.89 3.87 LGBM 10.52 4.11 LGBM 7.70 5.63
XGB 4.53 3.24 XGB 12.31 3.49 XGB 8.42 7.78

A
w

ar
e

Agarwal [2] 9.29 4.68 Agarwal 5.44 4.31 Agarwal 7.36 -3.85
Hardt [13] 11.49 6.85 Hardt 5.83 5.02 Hardt 8.66 -5.67
Zafar [35] 11.00 5.59 Zafar 7.66 6.24 Zafar 9.33 -3.35
xFAIR [26] 9.20 4.93 xFAIR 8.63 4.65 xFAIR 8.91 -0.58

P
ro

po
sa

l

Mode 7.53 3.65 Mode 10.17 4.11 Mode 8.85 2.64
Fair Mode 10.17 4.11 Fair Mode 5.94 3.98 Fair Mode 8.05 -4.23
MOE0.0 8.91 3.83 MOE0.0 8.96 3.84 MOE0.0 8.93 0.05
MOE1.0 8.31 3.95 MOE1.0 9.48 3.82 MOE1.0 8.90 1.17
FairMOE0.0 9.46 3.11 FairMOE0.0 6.86 3.52 FairMOE0.0 8.16 -2.60
FairMOE1.0 9.35 3.59 FairMOE1.0 6.78 3.30 FairMOE1.0 8.06 -2.57

Fig. 4. Accuracy, F1, and G-mean scores per solution across all trials. Higher scores
signal better performance.
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concerns. As for fairness-aware approaches, Agarwal and Hardt are the top mod-
els in group fairness. However, although Hardt is the second worst in predictive
performance, Agarwal is competitive with FairMOE. Regardless, Agarwal’s per-
formance is less consistent than FairMOE, i.e., higher ΔR, and, importantly,
both Agarwal and Hardt produce non-interpretable models.

Fig. 5. SP and EO for each solution across all trials. Lower scores represent better
performance. Note that the y-axes are not on the same scale.

FairMOE, with and without interpretability constraints, shows competitive
performance with regard to predictive and fairness. Figure 4 shows the magni-
tude of between model disparity with regard to predictive power beyond their
rankings. FairMOE and MOE are consistently in the middle or top-half of the
accuracy and F1 box plots, suggesting they are competitive with the baselines.
This is also observed concerning fairness metrics (Fig. 5).

Ultimately, FairMOE is competitive with the state-of-the-art baselines at
striking a balance between fairness and predictive performance and can do so
while maintaining interpretability. Even for high-risk domains, results show that
a fully interpretable FairMOE (FairMOE0.0) is competitive with baselines.

Counterfactual Fairness Module (RQ3). Comparing the results of Mode
and FairMode (Table 3), it is evident that the Counterfactual Fairness Module
improves group fairness. Mode is one of the worst-performing models regarding
group fairness, while FairMode is the third-best. On the other hand, FairMode
is the fourth-worst in predictive performance and Mode the third-best, demon-
strating the significant trade-off between fairness and predictive performance.
The differences between MOE and FairMOE further support these findings.
However, adding the performance meta-learners mitigates the loss in predictive
performance. Additionally, removing the interpretability constraints from MOE,
leads to a significant drop in group fairness as predictive performance is prior-
itized. However, in FairMOE, the model is able to maintain roughly equivalent
levels of fairness and predictive performance. Overall, the Counterfactual Fair-
ness Module successfully improves fairness while the performance meta learners
add predictive performance and interpretability.
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Scalability (RQ4). Results show that FairMOE is competitive in predictive
performance and fairness with regard to state-of-the-art baselines while pro-
ducing consistent results. However, scalability is key. Table 4 shows the average
total train and predict time per fairness-aware model, by dataset. It shows that,
while FairMOE is slower than Hardt and xFAIR, it improves over both alter-
natives in combined predictive performance and group fairness. Also, FairMOE
is faster than Agarwal, the leading fairness-aware algorithm. Finally, Zafar, the
only interpretable fairness-aware baseline, is much slower than other benchmarks
and does not scale well. From the fastest to the slowest data set, Zafar has a slow-
down of over 100x while FairMOE has a slowdown of approximately 8x. Overall,
FairMOE is competitive with state-of-the-art baselines in terms of fairness and
predictive performance trade-off, interpretable, faster, and more scalable than
some of the leading alternatives.

Table 4. Median processing time (seconds) to train and predict each solution in 10
trials per dataset. Asterisks (*) denote fully interpretable solutions.

Dataset Samples Features Median Time (s)
Agarwal Hardt *Zafar xFAIR *MOE0.0 MOE1.0 *FairMOE0.0 FairMOE1.0

German Credit 1000 47 22.68 0.70 12.63 1.23 11.52 11.47 12.17 12.18
Lawschool 20798 18 60.36 1.18 91.71 10.94 31.37 31.32 46.43 46.35
OULAD 21562 40 39.16 1.31 140.00 5.63 28.85 29.03 31.34 31.28
Credit Card Clients 30000 82 94.61 3.17 805.51 24.54 53.51 53.37 80.20 80.73
Bank Marketing 45211 42 122.83 2.35 711.34 29.42 68.39 68.22 108.40 107.78
Adult 45222 94 371.84 2.92 1489.74 45.22 93.93 93.91 157.16 156.92
Dutch Census 60420 50 106.23 3.08 1025.92 17.12 90.21 90.35 96.97 97.18

5 Discussion

This work intersects three essential concepts: predictive performance, fairness,
and interpretability. The interactions between each of these are complex, and
each has its own set of unique challenges. Importantly, FairMOE challenges the
paradigm that interpretability is a binary aspect of modeling. Instead, with Fair-
MOE, we introduce the idea of interpretability as a continuous domain-informed
notion to exploit the typical performance interpretability trade-off best. Fair-
MOE is currently only applicable to classification problems, though we intend
to expand it to regression in future work.

FairMOE utilizes a Non-Interpretable Budget to address the trade-off
between predictive performance and fairness. FairMOE balances the predictive
performance of complex, non-interpretable models with the user-specified inter-
pretability requirements with this budget. As our results demonstrate, FairMOE
is capable of maintaining interpretability on more than 60% of predictions (aver-
age) without noticeable drops in performance. More importantly, FairMOE with
strict interpretability performs competitively with FairMOE without any inter-
pretability constraints. This finding shows that FairMOE is applicable even in
highly-regulated domains with strict transparency requirements. Introducing a
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user-defined, domain-specific Non-Interpretable Budget allows FairMOE to be
amendable to different domain requirements.

Next, the Counterfactual Fairness Module within FairMOE addresses the
trade-off between interpretability and fairness. By limiting our results to our
counterfactually fair learners, FairMOE confines itself to making fair predictions
even if such a result leads to a non-interpretable prediction. The results illustrate
that, by adding the Counterfactual Fairness Module, we improve group fairness
results. This is an intriguing result that we aim to further explore in future work.

Fig. 6. The average global ranks of each fairness-aware baseline based on the weight
given to fairness. Lower average ranks signal better performance.

Finally, we established FairMOE’s success at balancing the predictive perfor-
mance and fairness trade-off: it is the second-best option to Agarwal. To extend
our understanding of how FairMOE handles this trade-off, in Fig. 6, we show
how each solution performs with varying weights on performance and fairness.
Our results show that FairMOE attains its success via consistent performance
in both prediction and fairness. We make all the data and code available for
reproducibility purposes at https://github.com/joegermino/FairMOE.

6 Conclusion

In this paper, we propose FairMOE, a fairness-aware solution based on the mix-
ture of experts’ architecture. By combining three components, predictive meta-
learners, the counterfactual fairness module, and the assignment module, we
demonstrate how it is possible to obtain a good trade-off between predictive per-
formance and fairness while being scalable. Importantly, FairMOE challenges the
paradigm that interpretability is a binary aspect of modeling. Instead, with Fair-
MOE, we introduce the idea of interpretability as a continuous domain-informed
notion to exploit the typical performance interpretability trade-off best.

https://github.com/joegermino/FairMOE
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Abstract. Bias in the training data can be inherited by Machine Learn-
ing models and then reproduced in socially-sensitive decision-making
tasks leading to potentially discriminatory decisions. The state-of-the-art
of pre-processing methods to mitigate unfairness in datasets mainly con-
siders a single binary sensitive attribute. We devise GenFair, a fairness-
enhancing data pre-processing method that is able to deal with two or
more sensitive attributes, possibly multi-valued, at once. The core of the
approach is a genetic algorithm for instance generation, which accounts
for the plausibility of the synthetic instances w.r.t. the distribution of
the original dataset. Results show that GenFair is on par or even better
than state-of-the-art approaches.

Keywords: Fairness · Pre-processing · Bias mitigation · Genetic
Algorithm · Synthetic Data Generation · Supervised Learning

1 Introduction

Machine Learning (ML) models can inherit biases from the training data, lead-
ing to discriminatory outcomes in automated decision-making tasks [17]. For
instance, historical and selection biases have led recidivism prediction models
to discriminate against Afro-American defendants1. The fast-growing literature
on fairness in ML has considered the issues of assessing and mitigating the bias
in training data against social groups, as characterized by a sensitive attribute
(e.g., Gender or Race) [14,15]. However, most data pre-processing techniques
are affected by two issues: (i) they deal only with binary sensitive attributes,
and (ii) they are unable to account for multiple sensitive attributes at once.

This paper addresses the aforementioned issues by proposing GenFair, a
data pre-processing method for unfairness mitigation, which leverages a genetic
algorithm to generate synthetic data. GenFair operates on tabular data, by
eliminating discriminatory instances and identifying the most appropriate fea-
ture combinations for synthetically generated instances to balance the dataset
with respect to multiple sensitive attributes. The synthetic generation process
is carried out by a genetic algorithm. Experimental evaluation of various biased
1 https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-

algorithm.
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datasets demonstrates that our method is either on par or better than competi-
tors, increasing the fairness of a classifier with a low impact on its performance.

The rest of the paper is organized as follows. Section 2 provides an overview
on fairness, while Sect. 3 formalized the problem after providing the neces-
sary background. GenFair is presented in Sect. 4, and experimental results are
resported in Sect. 5. Finally, Sect. 6 summarizes our contributions and discusses
open research directions.

2 Related Work

Fairness Definitions. The concept of “fairness” lacks an established framing
within the ML community, as it is often not adequately formalized, revealing
inconsistency and lack of normativity. Various definitions have been proposed
in the literature to quantify models’ fairness [18]. According to the group-based
notion of fairness, each value of a sensitive attribute should receive a simi-
lar treatment. Following this definition, the most common statistical metrics
are [25]: Statistical Parity Difference (SPD), which checks the difference between
the Positive Rates of the privileged and discriminated classes [1]; Disparate
Impact (DI), which compares the treatment w.r.t. performance received by a
privileged and a discriminated value of a sensitive attribute; Equal Opportunity
Difference (EOD) [9], which switches its focus to True Positive Rates (TPR);
Average Odds Difference (AOD), which takes into account False Positive Rate
(FPR) and TPR by calculating the mean of their difference. Enhancing the
fairness of a model should reduce discrimination, as measured by these metrics.

Fairness Algorithms. Bias mitigation strategies can be traced to three cat-
egories [15]. Pre-processing methods adjust the data on which the model is
trained, aiming to create an “ideal world dataset” [22]. In-processing strate-
gies consist of changing the functioning of an existing method to make it fair.
Post-processing mechanisms correct the decisions issued by models so that they
conform to fairness criteria. Pre-processing techniques are the least computation-
ally expensive approaches, although improving the fairness of the training set
might result in a performance loss [3]. In this regard, sampling techniques such
as Preferential Sampling (PS) [10] proved to be the least invasive and minimized
the trade-off. Moreover, they are also flexible, tackling edge cases or tangentially-
related problems. For example, [2] adapts PS to detect racial dialect bias, while
Fair Oversampling (FOS) [7] also takes into account imbalanced learning. Most
pre-processing algorithms only work with a single and binary sensitive attribute,
although some contributions deal with more complex cases. For example, Fair-
Smote [5] generates instances by interpolation and can concurrently balance
up to two sensitive attributes, while FAWOS [21] also works with non-binary
attributes, generating data exploiting Generative Adversarial Networks (GANs).

Genetic Algorithms. Genetic algorithms (GA), often used to solve optimiza-
tion problems, have already been employed in the context of fairness. The
post-processing method AuFair [26] employs GA to find fair decision rules to
enhance the output of a human decision-maker, replacing some decisions. The
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in-processing technique described in [4] focuses on a classifier that has learned to
be fair through genetic programming. ExpGA [8] is an explainability algorithm
that employs GAs to create synthetic counterfactual instances.

Our proposal differs from the current literature since it is able to balance
datasets w.r.t. multiple sensitive attributes, also supporting non-binary ones.
To create syntethic data, GenFair leverages a genetic algorithm, which avoids
duplicating existing instances as in existing sampling techniques, creating new
ones simply by interpolation as Fair-Smote, or employing costly GANs as
FAWOS.

3 Background and Problem Statement

In the paper, we make use of the following notation. Let us consider a dataset
D = 〈X,Y 〉, where X consists of instances {x1, . . . , xl} and Y consists of class
labels {y1, . . . yl}. An instance xi is a vector of values 〈xi,1, . . . , xi,m〉, one value
for each of m attributes in A = {A1, . . . , Am}. A class label yi is an element of
the binary set C = {+,−}. We consider the positive class + as the favorable
decision, e.g., granting credit, admitting to university, etc. Moreover, we denote
by SA a sensitive attribute from A, e.g., the gender or race of an individual
represented by an instance. For an instance x, we write x[Ai] to refer to the
value xi of attribute Ai.

3.1 Preferential Sampling

Preferential Sampling (PS) [10] is a pre-processing mitigation technique assum-
ing that the sensitive attribute SA is binary, taking values s and s̄, where s is a
(potentially) discriminated group and s̄ is a (potentially) privileged group (e.g.,
female and male, respectively). Note that the algorithm assumes the user has
an a priori knowledge of which group is potentially discriminated. The degree
of discrimination in the dataset is measured by the distance from the statistical
parity condition P (Y = +|SA = s̄) = P (Y = +|SA = s), estimated by a dataset
discrimination score given by the difference:

disc(D,SA) = |PP|/|PP∪PN | − |DP|/|DP∪DN | (1)

where DP = {x ∈ D : x[SA] = s ∧ x[C] = +}, DN = {x ∈ D : x[SA] =
s ∧ x[C] = −}, PP = {x ∈ D : x[SA] = s̄ ∧ x[C] = +} and PN = {x ∈ D :
x[SA] = s̄ ∧ x[C] = −}, and |PP | (respectively, |PN |) counts the instances from
the Privileged groups with a Positive (respectively, Negative) label, and |DP |
(respectively, |DN |) counts the instances from the Discriminated group with a
Positive (respectively, Negative) label.

The objective of PS is to pre-process a dataset for which disc > 0 to achieve
disc ≈ 0 by removing instances contributing to PP and DN, and by duplicat-
ing instances contributing to DP and PN. PS selects the instances using the
confidence of a classifier’s prediction as a rank, i.e., the predicted probability of
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Fig. 1. Workflow of GenFair’s steps.

the class. Hence, the closer the confidence to 0.5, the closer the instance to the
decision border. The classifier used as a ranker is trained on the dataset D.

Although offering overall good results compared to other pre-processing
approaches [10], PS has two significant drawbacks. First, PS cannot deal with
non-binary sensitive attributes. In [10], authors explicitly suggest binarization
as a possible solution. However, we reckon this solution leads to a loss of infor-
mation. Second, PS cannot deal with multiple sensitive attributes simultane-
ously. Indeed, while balancing disc w.r.t. a sensitive attribute SA1, PS could
worsen it w.r.t. another sensitive attribute SA2. For example, a white woman
positive instance is counted in DP for the Gender attribute and in PP for the
Race attribute. While PS only duplicates DP or PN instances, a multi-attribute
extension should be able to add instances belonging to a DP or PN group for
a SA1 and to a DN or PP group for another SA2. We aim at designing a pre-
processing method to address these limitations by balancing the discrimination
scores of multiple multi-valued sensitive attributes.

3.2 Genetic Algorithms

Genetic Algorithms (GA) are metaheuristic algorithms inspired by Darwin’s
theory of “survival of the fittest”, often used to solve an optimization problem.
Each possible solution is known as a chromosome (or as a individual), which
includes different “genes” [11]. Initially, a GA generates a random population of
chromosomes, which are subsequently evaluated using a fitness function that is
closely tied to the problem being addressed.

Then, GA’s selection operator selects the best individual in the population,
with the objective of optimizing a fitness value, i.e., only the “fittest” individuals
survive. A popular selection operator is Tournament selection, which chooses a
random number of chromosomes as tournament participants. The chromosomes
with the highest fitness are declared the winners. NSGA2 provides a multi-
objective selection operator, supporting multiple fitness criteria through a Pareto
front. It also considers the diversity of chromosomes, as each of them has a
“crowding distance value” estimating how dense the area around them is [20,24].

The selected chromosomes have a probability of being mixed (typically in
pairs of two) by the crossover operator. Selected genes are “shuffled” between
the chromosomes, resulting in new “children” individuals inheriting their genes
from their “parents’. Chromosomes from this new generation might be selected
by a mutation operator, mutating the value of at least one of their genes [12].
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Algorithm 1: GenFair(D, SA, C )

Input : D - labeled dataset, SA - set of sensitive attributes
Output: D′ - balanced dataset

1 Δ ← discrimination test(D, SA);
2 Δ′, D′, Π ← instance removal(Δ, SA, D);
3 K, N ← combination test(Δ′, Π);
4 for κ, n ∈ K, N do
5 S ← GenSyn(κ, n, D, DS);

⎫
⎬

⎭
synthetic data generation

6 D′ ← D′ ∪ S;

7 return D′

The process is repeated for a set number of generations. As the algorithm
keeps only the fittest individuals, the overall fitness increases generation after
generation. Finally, the algorithm chooses the individual(s) with the best fitness
value as the best solution(s) to the given problem.

4 GenFair

In the following, we introduce the GenFair method to address the limitations
of PS (see Sect. 3). To this end, we extend the notation introduced so far by
considering a set SA = {SA1,SA2, . . . ,SAk} of sensitive attributes, each of them
possibly being multivalued, i.e., SAi = {si,1, . . . , si,ni

}, with ni ≥ 2. GenFair
returns a dataset D′ balanced w.r.t. a conservative extension of the discrimina-
tion score to multiple multivalued sensitive attributes.

In line with PS, GenFair first assesses the discrimination w.r.t. each SA ∈
SA in the Discrimination Test. Then, instances close to the decision boundary
are removed in the Instance Removal phase. In order to create a “balanced”
dataset D′ with the same amount of instances as the original dataset D, the
Combination Test computes the number of instances with a given combination
of sensitive attribute values and class values. Such instances are generated by a
genetic algorithm named GenSyn, short for Genetic Synthesizer, and added to
D′. The four steps are depicted in Fig. 1, while Algorithm 1 reports the pseudo-
code of GenFair which is described in detail in the rest of this section.

Step 1. Discrimination Test. The function discrimination test takes as input
D and SA. We conservatively extend the discrimination score to a multivalued
sensitive attribute SA and a value s ∈ SA as follows:

disc(D,SA, s) = |Ps |/|Ps∪Ns | − |P¬s |/|P¬s∪N¬s | (2)

where Ps = {x ∈ D : x[SA] = s ∧ x[C] = +}, Ns = {x ∈ D : x[SA] = s ∧ x[C] =
−}, P¬s = {x ∈ D : x[SA] �= s ∧ x[C] = +} and N¬s = {x ∈ D : x[SA]
�= s ∧ x[C] = −}. When SA is binary, and s is the (potentially) discriminated
group, this definition boils down to the discrimination score (Eq. 1): intuitively,
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Fig. 2. Visual representation of Δ.

x[SA] �= s is equivalent to x[SA] = s̄. When SA has more than two values, Eq.
(2) compares s against all the remaining groups. Notice that the discrimination
scores quantify the distance from the statistical parity condition ∀s ∈ SA.P (Y =
+|SA = s) = P (Y = +|SA �= s), which is equivalent to independence of Y and
SA (https://github.com/FedericoMz/GenFair). If disc(D,SA, s) > 0, the group
s is considered to be discriminated. Thus, we label Ps and Ns respectively as
Discriminated instances with a Positive class (DP) and Discriminated instances
with a Negative class (DN). Conversely, if disc(D,SA, s) < 0, s is considered to
be privileged, and we label Ps and Ns as Privileged instances with a Positive
class (PP) and Privileged instances with a Negative class (PN).

GenFair then computes ePs
and eNs

, the expected size of Ps and Ns under
a statistical parity condition, i.e., the expected number of instances in the group:

ePs
= |{x∈D:x[SA]=s}|·|{x∈D:x[C]=+}|/|D|

eNs
= |{x∈D:x[SA]=s}|·|{x∈D:x[C]=−}|/|D|

(3)

If s is discriminated, |Ps| < ePs
and |Ns| > eNs

, then DP instances should be
added and DN instances removed. If s is privileged, |Ps| > ePs

and |Ns| < eNs
,

then PP instances should be removed, and PN instances added. We notice that
the absolute value of |Ps|−ePs

is always equal to the absolute value of |Ns|−eNs
.

Thus, for each s ∈ SA, the number of removed instances is equal to the number
of added instances, and the marginal distribution of SA does not change (nor
does D’s size). The steps above are repeated for each SA ∈ SA. Note that a
discriminated instance for SAi might be privileged for SAj with i �= j, e.g., an
instance x such that x[Race] = Black , x[Gender ] = Male, and x[C] = + might
be a DP for Race, but a PP for Gender.

After that, GenFair ranks every instance w.r.t. the confidence of a classifier
trained on D. The function then returns a hierarchical dictionary Δ that maps
each SA ∈ SA and each value s ∈ SA to the instances in D, grouped as DN, DP,
PP or PN, and ordered w.r.t. the classifier’s confidence score either in ascending
(DP, PP) or descending order (DN, PN). Δ also includes the expected size of each
group. Figure 2 visualizes an example of Δ structure w.r.t. the Race attribute.

The Discrimination Test step addresses the first issue mentioned in Sect. 3,
i.e., dealing with non-binary sensitive attributes. The vector of disc(D,SA, s)

https://github.com/FedericoMz/GenFair
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values, for all s ∈ SA, defines the degree of discrimination (positive values) or
privilege (negative values) for the groups in SA. For a binary SA, the two values
are the opposite of each other (e.g., .20 and −.20). As a benefit of this approach,
the user is no longer required to define a priori the discriminated group.

Step 2. Instance Removal. The function instance removal (line 2 in Algo-
rithm 1) takes as input Δ and D. For each DN or PP group G in Δ (such as
{x ∈ D : x[Gender ] = Male ∧ x[C] = +}), the function computes the difference
between the cardinality of G and the expected size:

d = |G| − eG (4)

where eG is the expected number of instances in G (i.e., either ePs
from Eq. 3 if

G is a PP group, or eNs
if G is a DN group).

If d > 0, the function removes from G the top d instances from D and the
various lists in Δ, balancing PP and DN groups. Instances are removed based on
the ranker’s order; in other words, GenFair prioritizes instances closer to the
decision border – which, as in PS, are deemed the most discriminating (Sect. 3.1).
If SA includes more than one sensitive attribute, removing instances from a PP
or DN group of a given SAi ∈ SA also affects the groups (not necessarily PP or
DN) of another SAj (with i �= j). For example, an instance removed from a PP
group of SAi might also belong to a DP group of SAj ; this might be the case for
an instance x such that x[Race] = Black (DP group), x[Gender ] = Male (PP
group), and x[C] = +. In the next step, GenFair will re-create the instance for
the DP group, but following another combination of sensitive attribute values
(e.g., an instance x such that x[Race] = Black (DP group), x[Gender ] = Female
(DP group), and x[C] = +). We underline that removing instances to balance a
sensitive attribute might also positively affects other sensitive attributes, if the
instance belongs to a DN or a PP group for multiple sensitive attributes (e.g.,
an instance x such as x[Race] = White, x[Gender ] = Male and x[C] = +)2.

The instance removal function outputs Δ′ and D′, respectively obtained
from Δ and D after removing instances as described above, and a list Π, which
includes the unique combinations of removed sensitive attribute values, ordered
by decreasing frequency, including all other combinations of sensitive attribute
values ordered by decreasing frequency (possibly zero frequency if not in D).

Step 3. Combination Test. The function combination test (Algorithm 1, line
3) takes as input Π and Δ′, and computes the constraints that must be met
while generating instances in the next step. We define a constraint as the set of
sensitive attribute values and the class value representative of an instance needed
to balance the dataset, such as Black Female, Positive.

2 The order of sensitive attributes considered may affect the set of instances removed.
GenFair guarantees to remove instances close to the decision boundary for the first
sensitive attribute given as input. For the following ones, instances already removed
might not be the closest to the decision boundary. However, the user can specify the
order of sensitive attributes to be considered.
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The combination test checks, for each combination in Π of sensitive attribute
values sπ1,1, sπ2,2, . . . , sπq,q, whether one or more instances with SAπi

= sπi,i for
i = 1, . . . , q must be generated, belonging either to the positive or negative
class. For each sensitive attribute value in the combination, it extracts from Δ′

the corresponding group Pi = {x ∈ D : x[SAπi
] = sπi,j ∧ x[C] = +} and the

expected number of instances ePi
, e.g., PWhite and ePWhite

from Fig. 2, computed
with Eq. (3). The function then computes c, the number of instances to be
generated which follows the sensitive attribute values in the combination in Π,
without leading any group Pi to exceed its expected size ePi

.

c = min(eP1 − |P1|, eP2 − |P2|, . . . , ePk
− |Pk|) (5)

If c > 0, the positive combination test is passed, i.e., instances with a positive
combination of values are needed to balance the dataset. A constraint with that
combination of values and a positive class is created with cardinality c, and c
placeholder instances are added to each group. The procedure is repeated for the
negative class (negative combination test), extracting from Δ′ both Ni = {x ∈
D : x[SAπi

] = sπi,j ∧ x[C] = −} and the expected size eNi
, for each value in the

combination. If both tests fail, i.e., no instances with the given combination of
values are required, GenFair moves to the next combination in Π.

For example, suppose a combination in Π is Race: White, Gender: Female.
If PWhite = {x ∈ D : x[Race] = White ∧ x[C] = +} and PFemale = {x ∈
D : x[Gender ] = Female ∧ x[C] = +}, GenFair computes ePWhite

− |PWhite | and
ePFemale

−|PFemale |. Suppose ePFemale
−|PFemale | = 3 and ePWhite

−|PWhite | = 5, the
constraint Race: White, Gender: Female, C: + is created with cardinality 3, and
3 placeholder instances are added both to PFemale and PWhite in Δ. After that,
the same combination is then tested with the negative class, i.e., with the groups
NWhite = {x ∈ D : x[Race] = White ∧ x[C] = −} and NFemale = {x ∈ D : x
[Gender ] = Female ∧ x[C] = −}.

The function combination test returns a list K of unique constraints, with
their cardinality in the list N . With this step, we solve the second issue men-
tioned in Sect. 3. Indeed, in the next step, instances are generated following the
constraints, concurrently balancing multiple sensitive attributes. We also aim to
maintain a plausible distribution of the combination of sensitive attributes’ val-
ues. Hence, constraints are created following the order of combinations in Π and
sorted by their frequency among the removed instances. GenFair prioritizes cre-
ating constraints and thus synthetic instances with more common combinations
of sensitive attribute values, mitigating a possible distribution disruption.

Step 4. GenSyn. In the previous step, GenFair computed the characteristics
that synthetic instances must have for a fair dataset, i.e., the constraints, and
their quantity. In this last step, GenFair generates these synthetic instances
and ensures their plausibility with the genetic algorithm GenSyn (Algorithm 1,
lines 4–5). GenSyn takes as input D′, the original dataset D and each constraint
κ ∈ K with its cardinality n ∈ N , and returns a new dataset S of n instances
following the values of sensitive attributes and class in κ. S that is concatenated
to D′ (Algorithm 1, line 6). This is iterated over all κ ∈ K and n ∈ N .
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As said in Sect. 3, a GA includes the generation of the initial population of
chromosomes, the evaluation and selection of the best ones, their crossover, and
the possible mutation of their “children”. With GenSyn, each chromosome is an
instance following a given constraint, which is evaluated w.r.t. its plausibility.
combination test analyzes the dataset D to create the initial population of pop
individuals (by default, 150). If instances in D have m attributes, each chromo-
some has m genes. The values of the genes representing the sensitive attributes
and the class are given by κ; this ensures that each synthetic instance follows
the values in the constraint κ. For the other attributes, the user can specify
how values are generated and, later in the mutation phase, mutated (different
strategies can be chosen for different attributes). With Float Strategy, to be used
for continuous float values, a random float is selected between the minimum and
maximum the attribute assume in the dataset. Integer Strategy is similar, but
an integer is selected instead and it is meant for continuous integer values. With
Equal Probability Strategy, a value is randomly selected among the values the
attribute assumes in the dataset, and can be used for all kinds of values, includ-
ing categorical and boolean. With Weighted Probability Strategy, each value has
a probability of being selected equal to its frequency in the dataset.

Each generation strategy ensures that, for each attribute, its value in the
synthetic instances belongs to the observable domain in the original dataset,
since no value larger (or smaller) than the largest (or smallest) observable value
can be generated. Certain use cases and the semantics of each attribute might
lead to choose one strategy instead of another. By its nature, the latest strategy
creates the most statistically-plausible results, but the others might increase the
diversity of the data. As an example, assume a dataset D with 6 instances. Age
has the following values: 18, 20, 23, 23, 23, 30. With the first strategy outlined,
GenFair picks as Age value a random float between 18.0 and 30.0, which is
wrong on a semantic level and strongly impacts the plausibility of the resulting
instance. The second strategy picks a random integer in the [18, 30] interval,
including values not featured in D. With the third strategy, GenSyn only selects
values among those in the original dataset, each having the same probability.
Finally, with the fourth strategy, more common values have a higher probability
(in the example, 23 has a 50% probability of being picked).

As a fitness function, inspired by [22], we consider the distance between the
synthetic instance and a representative instance, i.e., the medoid of instances
in D sharing the combination κ of sensitive attributes and class under consid-
eration3. The medoid is computed on a normalized D. While compared to the
medoid, the synthetic instance is also normalized. As a distance function, we
adopt the cosine distance [23]. The selection operator employed by GenSyn is
NSGA2, as it guarantees good diversity among the set of selected instances.

As a crossover operator, GenSyn uses a modified uniform crossover: two of
the best instances of each generation are randomly selected with probability ps

(default: 0.50) to generate two “children” instances by shuffling the values of

3 In the extreme case where no instances with the combination κ are featured in D,
such a medoid does not exist; the algorithm fallbacks to the medoid representative
of the entire dataset D.
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Table 1. Number of instances and attributes, Class, Sensitive Attributes (SA), SA
Values (discrimination score within parenthesis; most privileged bolded), Systemic
Bias (SB). Values refer to the training set.

Dataset N. Inst N. Attrs Class SA SA Values SB

adult 36177 13 Income Sex Male (−0.197) Female (0.197) 3836

Race White (−0.103) Black (0.131) Other (0.133)

Asian (−0.039) Eskimo (0.143)

german 800 10 Risk Sex Male (−0.054) Female (0.054) 0

Age > 25 (−0.141) <= 25 (0.141)

compas 4937 12 Recid Sex Male (0.137) Female (−0.137) 2180

Race Caucasian (−0.105) Hispanic (−0.082)

Native Amer. (0.042) Asian (−0.172)

African Amer. (0.146) Other (−0.108)

some random chromosomes with probability pc (default: 0.34). Each child has a
probability pm of being selected by the mutation operator (default: 0.15), which
changes the value of one of its genes (following the strategy chosen for that
gene), selected randomly. However, the crossover or mutation operator can not
select genes representing the class or sensitive attributes. These custom operators
preserve what we outlined for the initial population generation – the “children”
synthetic instance follows the values in the constraint κ, and the values of other
attributes belong to their respective domains in D. The evaluation, selection,
crossover, and mutation steps are repeated for gen generations (default: 50),
after which, among all the instances generated through every generation, GenSyn
returns the best n instances, which GenFair adds to D′.

5 Experiments

In this section, we report the experiments showing that GenFair4 outperforms
state-of-the-art competitors regarding models fairness and the plausibility of syn-
thetic data generation. We experimented on three datasets5 described in Table 1.
adult and compas share the same sensitive attributes, Sex and Race. Race is non-
binary, and it is often binarized in the literature as White and Non-White [5,19].
However, certain Non-White values are privileged in both datasets (e.g., Asian).
german has a high discrimination for Age, whereas Sex is relatively balanced.
Male is always Sex ’s privileged values, except for compas. For every dataset, we
performed an 80–20 split in train and test respectively, and we experimented
with a Random Forest (RF) with default parameters (as implemented by scikit-
learn) as classification model.

As fairness-enhancing competitors, we adopt Preferential Sampling for bal-
ancing a single binary sensitive attribute and Fair-Smote for single and multiple
4 GitHub repository: https://github.com/FedericoMz/GenFair.
5 Datasets from Kaggle. adult and compas pre-processed as in [19]. For german, cate-

gorical attributes are label-encoded while Age is binarized.

https://github.com/FedericoMz/GenFair
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binary sensitive attributes. We also conducted some initial testing with FAWOS,
however, the lack of an established heuristic for determining the optimal values
of its hyperparameters (as noted by the authors themselves [21]) prompted us
to cease further use of this approach. In our tests, we also included a random
method, replacing the same number of instances as GenFair balancing mul-
tiple sensitive attributes in the original training set (refer to the beginning of
Sect. 5.2). The random method generates synthetic instances by simply picking a
random value for each attribute, without following any fairness constraint. Gen-
erally, it is noteworthy that while Preferential Sampling (ps), GenFair, and the
random method output a final dataset with the same size as the original one,
Fair-Smote increases it. Lastly, while experimenting with Fair-Smote, some
features were removed from the training and test datasets as suggested in [5].
For GenFair and the random method, we employed the weighted probability
generation strategy for all the attributes, except Age in compas and adult for
which we used the integer generation strategy instead.

5.1 Evaluation Metrics

We evaluate the different approaches in terms of effectiveness in terms of debi-
asing, plausibility of the synthetic instances, and classification performance6.

For the evaluation of debiasing, we computed the discrimination scores with
GenFair’s Discrimination Test, and FAT Forensics’ Systemic Bias (SB)7 of
the training set before and after applying debiasing methods. For evaluating
the fairness of the trained models, we adopted SPD, DI, EOD, and AOD, as
described in Sect. 2. With these metrics, for each sensitive attribute, we compared
each value to the most privileged one as identified in the training set. Negative
results imply that the assumed discriminated attribute value is privileged and
vice-versa.

For plausibility, we adopted a set of metrics proposed in [16], which presents
the Synthetic Data Vault framework (SDV)8, including functionalities for eval-
uating the quality of synthetic datasets. Among those available, we selected two
statistical approaches, Kolmogorov-Smirnov Test (KST ) and ContinuousKL-
Divergence (CKLD), and two methods which train a model to detect synthetic
data, LogisticDetection (LD) and SVCDetection (SVCD). We also computed
the Inlier Score Difference (ISD) comparing the difference between the average
inlier score of the original and balanced datasets w.r.t. the scores returned by an
Isolation Forest [13], and the Average Minimum Distance (AMD) [6], comput-
ing the distance between each synthetic and original instance and returning the
average of the minimum distances of each synthetic instance. Finally, we eval-
uated the performance of the classifiers w.r.t. Accuracy (Acc), Precision (Pre),
Recall (Rec), and False Alarm (FA) [23].
6 In tables, the best results are in bold, second-best in italics. ↑ and ↓ indicate if the

measure should be maximized or minimized, while → 0 and → 1 if the ideal value
is close to 0 or 1.

7 https://fat-forensics.org/generated/fatf.fairness.data.measures.systemic bias.html.
8 https://sdv.dev/.

https://fat-forensics.org/generated/fatf.fairness.data.measures.systemic_bias.html
https://sdv.dev/
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5.2 Fairness and Performance Evaluation

In this section, we report the results obtained regarding the debiasing effect of
the compared methods. At first, we checked if GenFair can reduce the training
dataset’s discrimination in terms of disc and of SB. The former is always brought
to 0, while SB of adult and compas is mitigated, respectively, to 1502 and 1975,
w.r.t. the initial values reported in Table 1. german SB remained 0. GenFair
achieved these results by replacing only a small number of instances: 3945 for
adult (10.60%), 38 for german (4.75%), and 448 (9.07%) for compas.

We then checked the discrimination and the performance of a classifier
trained on the dataset balanced by GenFair. We envisioned three scenarios:
GenFair balancing only a single binary sensitive attribute, multiple binary sen-
sitive attributes, and a binary and non-binary sensitive attribute. Table 2 encom-
passes the first two cases. For adult and compas, we binarized Race respectively
as White - Non-White and Caucasian - Non-Caucasian. Due to the random
nature of the tested methods, we ran each pre-processing algorithm on the train-
ing set 5 times, resulting in 5 balanced training sets for each dataset. Each of
these training sets was used with a Random Forest. A classifier with the original
train set was also trained 5 times. The algorithms balanced either one of the
sensitive attributes or both of them. While balancing both, we tested the two
possible orders for GenFair (i.e., prioritizing Race or, for german Age, over Sex,
and vice-versa). Table 2 reports the average of the 5 results (the various meth-
ods offered consistent results with a low standard deviation, which is therefore

Table 2. Performance and fairness evaluation with binary sensitive attributes.
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Table 3. Fairness evaluation while balancing both Race (non-binary) and Sex.

Data Value AOD → 0 EOD → 0 SPD → 0 DI → 1

Original GenFair Original GenFair Original GenFair Original GenFair

a
d
u
l
t

Black 0.048 0.020 0.046 0.008 0.131 0.106 0.445 0.542

Asian -0.04 0.171 -0.056 0.315 -0.038 0.103 1.159 0.557

Eskimo 0.820 0.021 0.094 -0.007 0.122 0.085 0.483 0.634

Other 0.139 0.075 0.233 0.126 0.127 0.088 0.463 0.620

Female 0.059 -0.052 0.042 -0.101 0.184 0.092 0.352 0.731

c
o
m
p
a
s

African Amer. 0.157 0.034 0.123 -0.006 0.185 0.065 0.725 0.893

Hispanic 0.057 0.077 -0.004 0.041 0.015 0.042 0.978 0.931

Other -0.021 0.016 -0.080 0.008 -0.037 0.011 1.054 0.983

Asian 0.415 0.375 0.790 0.727 0.675 0.604 0.000 0.000

Native Amer. 0.352 0.075 0.210 0.273 0.325 0.063 1.482 1.104

Male 0.186 0.153 0.115 0.100 0.201 0.173 0.731 0.756

not reported). For the fairness metrics, the first value refers to Sex, the second
either to Race (compas, adult) or Age (german), to check whether balancing
one sensitive attribute affects the other.

Generally, removing and creating instances randomly hardly impacts the
model. GenFair maintains a good level of performance while at the same time
reducing discrimination, often offering the best or the second-best results. With
a single sensitive attribute, in terms of performance, GenFair is only sometimes
behind PS, while consistently getting better results than Fair-Smote. As for
fairness, targeting Sex GenFair always achieves the best results with SPD and
DI (with the only exception of compas DI). With Race or Age, the results are
very slightly below those of PS (for example, the SPD of adult is lowered to
0.217 by PS and to 0.124 by GenFair; for compas, it is lowered respectively to
0.033 and 0.031). While balancing multiple attributes, GenFair provides better
results than Fair-Smote both in terms of performance and fairness. It can be
seen that the order has a significant impact (as discussed in Sect. 4), although
in all the datasets prioritizing Race (or Age, for german) over Sex gives better
results even for Sex. It can also be seen that balancing both attributes indepen-
dently achieves for them better fairness results (e.g., adult Sex SPD, alone: 0.56;
with Race: 0.94). However, targeting only one attribute worsens the fairness of
the other w.r.t. the original train. Balancing both attributes is a good trade-off,
as it still provides an improvement for both.

Further tests were carried out balancing both Race (not-binarized) and Sex in
the adult and compas datasets. For these tests, we employed GenFair with the
most effective order found in the binary scenario, i.e., prioritizing Race over Sex.
Neither Preferential Sampling nor Fair-Smote are compatible with this test
case, and the random method did not offer interesting results. Table 3 focuses on
the results in terms of fairness (the impact on the performance was minimal, and
therefore not reported). As it can be seen, GenFair successfully improves the
fairness for all values, with the only exceptions of Asian (adult) and Hispanic
(compas). These values were already almost balanced, but they are considered
discriminated with the models trained on the new training sets.
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5.3 Plausibility Evaluation

The plausibility of the synthetic data was assessed by benchmarking GenFair
against the data generator of the SDV library. We created SDV-Fair, a version
of GenFair, replacing GenSyn with SDV and its Fast ML method9, which offers
a good compromise between data quality and computation time. We also tested
the random method outlined above. For adult and compas, we used the non-
binary training set. In Table 4, we report the results w.r.t. the various metrics.
GenFair and SDV-Fair are roughly on par in terms of KST, CKLD, and AMD,
with the exception of the german dataset. GenFair poor performance might be
due to the low number of instances generated (38), which might have converged
too close to the respective medoid. GenFair is often the best method with ISD,
reducing the average outlier score of the dataset. However, SDV-Fair is better
w.r.t. SVCD and LD, implying that the instances have some traits revealing
their synthetic nature, e.g., they might feature uncommon combination of values,
despite being close to the medoid. To summarize, GenFair is better than the
random method and close to the state of the art regarding data quality.

Table 4. Comparison of the random method, GenFair and SDV w.r.t. data quality.

Data Method KST ↑ CKLD ↑ LD ↑ SVCD ↑ ISD ↓ AMD ↓
adult Random 0.543 0.453 0.010 0.003 0.025 0.732

GenFair 0.889 0.716 0.498 0.080 –0.005 0.219

SDV-Fair 0.831 0.706 0.714 0.175 0.019 0.240

german Random 0.726 0.474 0.316 0.208 –0.02 0.659

GenFair 0.750 0.250 0.274 0.034 –0.021 0.037

SDV-Fair 0.838 0.427 0.518 0.396 –0.009 0.019

compas Random 0.496 0.438 0.003 0.007 –0.011 0.843

GenFair 0.876 0.728 0.321 0.111 0.008 0.017

SDV-Fair 0.852 0.754 0.513 0.220 0.019 0.082

6 Conclusions

We have presented GenFair, a fairness-enhancing pre-processing method for
tabular data. Our experiments have showen that GenFair creates plausible data
and is on par with the state of the art while balancing dataset with one sensi-
tive attribute. Models trained on processed datasets showed improved fairness
and maintained good levels of performance. The same holds for datasets with
multiple sensitive attributes, supported only by a limited number of competi-
tors. However, the issue of intersectional fairness, i.e., discrimination on groups
characterized by combinations of sensitive attribute values, is not addressed by
9 See: https://sdv.dev/SDV/user guides/single table/tabular preset.html.

https://sdv.dev/SDV/user_guides/single_table/tabular_preset.html
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GenFair. Future works will study thi aspect as well as how GenFair can deal
with three or more sensitive attributes, and extend it to privacy-masking, lever-
aging the flexibility of the genetic algorithm. In addition, the data generation
and mutation could be further enhanced by inferring and exploiting causal rela-
tionships among features while creating synthetic instances.
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Abstract. The paper presents a method for the privacy-preserving
learning of random forests from private data of three parties, where not
even the decision trees, i.e., neither the tree structures nor their param-
eters (the annotations of attributes and attribute values), are disclosed
to any of the parties. To make this practical for realistically size data,
a custom protocol is needed for the private comparison of two numbers,
such that the numbers themselves are only available in shares and are
not known to either party. Experiments with five datasets indicate that
the overall protocol matches classical random forests in accuracy and can
handle datasets of realistic size.

Keywords: Machine learning · Privacy · Random forest

1 Introduction

The current age of machine learning, enabled by very large data collections, high
computational resources, highly effective and efficient algorithms and industrial-
strength implementations, has increased the awareness both in the public dis-
course and on the side of policymakers. This has resulted in the enactment of
robust data security regulations such as the EU General Data Protection Reg-
ulation (EU GDPR). These regulations significantly impact data processing,
storage, and analysis, as data must not be transferred to third parties, even for
analytical purposes. One common use case that is seriously aggravated is the
collaborative analysis of data held by multiple parties. Thus, privacy-preserving
solutions for learning from distributed data, without disclosing any private infor-
mation, are called for.

This paper presents a protocol for the privacy-preserving training and testing
of a random forest [4] with three parties, each holding a unique secret dataset.
The major innovation is that we propose a custom protocol that also keeps the
tree (i.e., the tree topology as well as the annotation by the attributes) secret.
Existing approaches either propose custom protocols for private decision tree
learning such that the tree is disclosed or employ general-purpose protocols,
e.g., based on garbled circuits or homomorphic encryption, such that the tree
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remains undisclosed. The most important component is the private comparison
of two numbers, whereby the numbers themselves are only available in shares
and are not known to either party. The previous approach for a comparison of
two numbers using private intersection and the evaluation only via the cardinal-
ity was for the situation in which two parties each know a number and want to
compare them privately. The innovation here is the adaptation of this approach
that the two numbers themselves are not known to anyone, but are only avail-
able as secret shares. The remaining steps of the approach are essentially the
reduction of all steps of an ordinary decision tree learning algorithm to this com-
parison. Experimental results on several standard datasets demonstrate that this
protocol maintains the performance of a traditional random forest while meet-
ing privacy-preserving requirements. Importantly, the custom protocols enable
running times that scale favorably in various dimensions.

This paper is structured as follows. After establishing the context in Sect. 2
with a review of existing work on privacy-preserving machine learning, Sect. 3
discusses the fundamental concepts of secure computations between multiple
parties. Section 4 introduces our protocol for privacy-preserving training and
testing of a random forest, where we simplify the essential steps of the algorithm
to operations compatible with privacy-preserving solutions. Section 5 shares the
results from test runs of a Python implementation of the protocol for selected
datasets, before we conclude in Sect. 6.

2 Related Work

The concept of secure computations addresses the scenario where multiple par-
ties need to evaluate a known function using their private inputs, all while main-
taining data confidentiality. This field has been notably advanced through the
foundational work of Yao and Goldreich et al., both of which have contributed
significantly to its progression and understanding [9,21].

These protocols guarantee two fundamental aspects: security, meaning they
do not divulge any details about the private data, and correctness, which ensures
accurate computation of the function’s output. The security of these protocols is
safeguarded against different types of adversarial behaviors, notably the ‘semi-
honest’ or ‘honest but curious’ model and the ‘malicious’ model [3].

The semi-honest model deals with passive attackers, wherein participants
fundamentally adhere to the protocol’s instructions, but they might attempt
to glean more information than permitted from received messages during the
protocol. In contrast, the malicious model represents an active attacker, allow-
ing for any polynomial-time attack strategy. In addition to these models,
security can be divided into two categories based on their capabilities – the
‘information-theoretic’ model and the computational model. In the information-
theoretic model, security is unconditionally guaranteed even against attack-
ers not restricted by computability. In contrast, the computational model only
promises security against polynomial-time attackers [3].
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These theoretical models of security have practical applications, especially
in machine learning. However, the general ability to compute an arbitrary func-
tion secretly was often impractical for many machine learning algorithms when
dealing with realistic datasets. This led to the development of more specialized
techniques for different algorithms.

Privacy Preserving Linear Regression for two parties has been initially dis-
cussed for horizontally distributed data [15] and later for vertically distributed
data [8]. However, these models’ reliance on a combination of homomorphic
encryption and garbled circuits made them impractical for large datasets. In
response, a model was presented based on a combination of arithmetic, binary,
and Yao secret sharing that significantly improved runtime efficiency [14]. Fur-
ther, an extension of this model was proposed for three parties [13].

As for privacy-preserving training of artificial neural networks (ANNs), the
body of work remains limited. Models based on arithmetic, binary, and Yao secret
sharing have been used for this purpose for two and three parties, respectively
[13,14]. On the other hand, there are more developed approaches for privacy
preserving prediction using ANNs. Notably, an ABY approach was employed
for privacy-preserving prediction of an ANN [16]. Furthermore, an innovative
approach for the privacy preserving learning of the weights of a sum-product
network for n parties was presented recently [2].

There is also a significant amount of work on privacy-preserving training
of decision trees. Most of this work [1,6,7,11,12,17,19,20] involves multi-party
computational approaches where multiple parties jointly train a decision tree
based on the union of their individual datasets. However, these approaches often
communicate the decision tree’s structure to all parties, potentially exposing
information about each other’s data indirectly. In contrast, a more recent study
[1] presents a client-server solution for privacy-preserving training of a decision
tree using homomorphic encryption in a turn-based protocol. Here, the server,
unaware of the client’s data, trains the encrypted decision tree on encrypted
data received from the client, ensuring data privacy and protecting the decision
tree’s structure. Our contribution advances the state of the art by (i) proposing
a secure multi-party protocol for random forest learning, which is (ii) based on
secret sharing rather than homomorphic encryption.

3 Preliminaries

3.1 Secure Multi-party Computation

In this section, we aim to establish a fundamental understanding of security as
applied to this research, drawing from Araki et al.’s book [3]. This work primar-
ily leverages the semi-honest model. Essentially, this involves three parties who
jointly execute a known function using their confidential input data. These par-
ties are expected to adhere to the protocol guidelines, however, in doing so, they
attempt to glean additional insights about each other’s data from the messages
exchanged in the protocol. The semi-honest model prioritizes maintaining the



Private RF Learning Without Revealing Trees 375

confidentiality of each party’s input data, hence it is often termed as privacy-
preserving rather than broadly secure computation. This model is suitable when
the parties have a certain level of mutual trust, but have concerns about inadver-
tent data leaks or are bound by privacy regulations that prohibit data sharing.

First, let us briefly clarify some notation for the remainder of the section. In
our scenarios, we are dealing with 3 parties. We will use subscript i to represent
party i ∈ 1, 2, 3 and i−1, i+1 to refer to the ‘preceding’ and ‘following’ parties,
respectively. Here, i − 1 = 3 when i = 1 and i + 1 = 1 when i = 3.

Consider a function μ : N → R> 0 to be negligible if for every polynomial p :
N → R> 0 and sufficiently large n, we have μ(n) < 1

p(n) . An indexed probability

sequence X ==
{

X(a, n)
}

a∈{0,1}∗,n∈N

is a series of random variables indexed

by a ∈ 0, 1∗ and n ∈ N. Two such sequences X, Y are deemed computationally
indistinguishable (X

c≡ Y ) if for every polynomial time algorithm D, there exists
a negligible function μ such that for all a ∈ 0, 1∗ and n ∈ N we have

∣∣∣∣Pr
[
D(

X(a, n)
)
= 1

]
− Pr

[
D(

Y (a, n)
)
= 1

]∣∣∣∣ ≤ μ(n).

A 3-party protocol, denoted as π, represents three interacting algorithms.
Each algorithm i has a private input xi ∈ {0, 1} (see e.g. [5] p. 13). In the
context of the protocol, parties are linked to the algorithms they are execut-
ing. Party i’s perspective, or ‘view’, during a π execution, denoted viewπ

i (x),
is defined as (xi, r,m1, ...,mk), where r signifies the results of party i’s inter-
nal random experiments, and mj represents the j-th message received during
protocol execution. Each of the three algorithms produces an output outi ∈
{0, 1} (potentially empty). The protocol’s output is denoted as outputπ(x) =(
out1(x), out2(x), out3(x)

)
.

Consider the following definition (from [10] p. 696): Let f :
(
0, 1

)3

→
(
0, 1

)3

be a deterministic function with three inputs and fi(x1, x2, x3) represent the i-
th element of f(x1, x2, x3). Given π as a 3-party protocol for computing f , we
assert that π computes the function f with computational assurance under the

semi-honest model i ∈ 1, 2, 3, if (i) for each x ∈
(
0, 1

)3

, the protocol’s output
outputπ(x) is such that outputπ(x) = f(x); and (ii) there exists a probabilistic
polynomial time algorithm S such that for each i we have

{
S

(
xi, fi(x)

)}

x∈
(
{0,1}∗

)3

c≡
{

viewπ
i (x)

}

x∈
(
{0,1}∗

)3
.

Informally, in the presence of semi-honest parties, security implies that a
semi-honest party’s perspective/view of an execution of the protocol can be
reconstructed by a simulator given only the party’s input and output.

Lastly, it is important to note that while the above definition underlines the
intuitive understanding of security with semi-honest parties, utilizing this defini-
tion alone to prove the security of more complex protocols can be impractical. In
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more complex scenarios, sub-protocols may be used to delegate individual tasks.
To demonstrate the parent protocol’s security would necessitate a composition
theorem for protocols, as given by Canetti [5]. However, as this framework of
definitions is fairly extensive, it is not adopted in this research. Therefore, it
must be understood that the security of the protocols introduced in this paper
is not formally proven, but rather plausibly argued. A formal proof remains the
subject of future work.

3.2 Arithmetic Secret Shares

Arithmetic Secret Shares, as defined in the works of Mohassel et al. [13], serve as
the primary encryption method in our protocol for private learning of random
forests. They represent the secrets of the participating parties as integers within a
prime number field, denoted as Zp. This choice of representation enables addition
and multiplication operations to be carried out with minimal communication
overhead.

This method begins with the generation of a ‘distributed zero’ amongst the
parties. This distributed zero is essentially a set of numbers that, when added
together, equal zero. Although the process of creating this set of numbers may
seem complex, its validity can be straightforwardly confirmed because their sum
is, indeed, equal to zero.

Once this set of numbers has been created, we can apply it to encrypt a
secret. Consider a scenario where three parties want to encrypt a secret x within
the field Z. The secret x falls within the range of [−M,M ], and each party owns
a unique part of it such that the sum of their parts equals x. Notably, it is
permissible for one or two parties to possess no knowledge of x, meaning their
individual part of the secret is zero.

To encrypt the secret, the three parties use the previously generated ‘dis-
tributed zero’ to create a set of Secret Shares. Each party then adds its part
of the secret to its corresponding element in the distributed zero. This process
yields three encrypted values, and their sum is equal to x modulo p. This sharing
method ensures that each party needs all three shares to reveal the secret x.

Furthermore, the multiplication operation is handled in a unique way. Each
party holds not only its share but also the previous party’s share. Therefore,
every party possesses a pair of shares, making this sharing scheme secure under
the assumption that the parties will not collude.

Using Arithmetic Secret Shares, parties can also perform addition and multi-
plication with a publicly known constant without any communication overhead.
This flexibility is due to the operations being performed modulo p.

Protocols for executing addition and multiplication operations using Arith-
metic Secret Shares are described elsewhere [13], and we have employed those
protocols in this work. These protocols are secure because no communication
occurs between the parties during their execution.

In the case of the multiplication protocol, we can demonstrate its validity
through algebraic manipulation. After each party locally computes a specific
equation, the sum of the outcomes equals x ∗ y modulo p.
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Just as with the creation of the distributed zero, the security of these pro-
tocols is confirmed by simulating a party’s point of view. This simulation can
compute all the information a party would see during the protocol’s execution,
demonstrating that the secret x remains secure.

In the remainder of this work, especially in the sections on protocols for
privacy-preserving computations, we will maintain the convention that any com-
putational operations between values are performed by the parties using the
Arithmetic Secret Shares method.

4 Method

In this section, we describe our contribution for privacy-preserving learning of
random forest models. As established in Sect. 2, some methodologies for private
learning of decision trees have already been contributed to the literature (e.g.
[6,12,20]). However, we argue that while the learning protocols previously devel-
oped are in itself private, the act of releasing the tree structure may itself break
privacy by allowing for the reconstruction of private training data. We motivate
our argument via a simple example. Let the following datasets D1,D2 be owned
by two separate parties:

D1 =
{
(0, 0, 0, 0, 0), (0, 1, 0, 0, 0), (1, 0, 0, 0, 0), (1, 1, 0, 0, 0)

}

D2 =
{
(0, 0, 0, 0, 0), (0, 0, 0, 1, 0), (0, 0, 1, 0, 0), (0, 0, 1, 1, 1)

}
.

In a data point d ∈ D the first 4 components a1, . . . , a4 denote the values of the
4 attributes A1, . . . , A4 and the fifth component c represents the value of the
class C. Then, a decision tree which classifies the joint dataset D = D1

⋃
D2

may be found in Fig. 1.

A3

c = 0 A4

c = 0c = 1

a3 = 0 a3 = 1

a4 = 0a4 = 1

Fig. 1. Example of a decision tree that correctly classifies all data points of the joint
dataset D = D1

⋃
D2.
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Any protocol for training the decision tree used to construct the decision tree
would be privacy-preserving in the sense that the parties do not learn about each
other’s data in a direct way during this protocol. However, after the protocol
is complete, an issue arises if both parties are given the final resulting decision
tree. In this case, just from the structure and knowledge of its own data, any
party could infer knowledge about others’ data by observing the tree. In our
example, party 1 could infer from the branching at the 2nd level that data points
(0, 0, 0, 1, 0) and (0, 0, 1, 1, 1) must be contained in data set D2. Our proposal for
privacy-preserving learning of random forests, in contrast, keeps the structure of
the underlying decision trees a secret from all parties. This may be achieved via
arithmetic secret shares (see Sect. 3.2) and is described in the following.

4.1 Privacy-Preserving Determination of Maximum Value

This section presents a protocol for the privacy-preserving comparison of two
numbers x and y. The goal is to establish if y ≤ x. This approach will be crucial
for the privacy-preserving random forest.

We base our method on previous work that reduces the private comparison
problem to the Private Set Intersection Problem, which identifies if two sets A
and B have a non-empty intersection A∩B in a privacy-preserving manner. Our
protocol handles three semi-honest parties 1, 2, and 3 wishing to determine the
maximum between two numbers x and y from Z, given a predefined bound M .
The numbers x and y exist as arithmetic secret shares with respect to a prime
p, distributed among the three parties. Determining the maximum of x and y
corresponds to finding the sign of z = 2(y − x) + 1, which is estimated through
a probabilistic process with a success rate of at least 1 − 2 · M

p−4M−4 .
We also define two sets, S1

h and S0
r . If s = snsn−1 . . . s1 ∈ 0, 1n represents the

binary representation of a positive integer, we can establish S0
s and S1

s accord-
ingly:

S0
s :=

{
snsn−1 . . . si+11 | si = 0, 1 ≤ i ≤ n

}
,

S1
s :=

{
snsn−1 . . . si | si = 1, 1 ≤ i ≤ n

}
.

The intersection of these two sets allows us to determine if x > y. If the
sets share exactly one element, x > y holds true; otherwise, their intersection is
empty.

Due to space limitations, we cannot provide the full details and security
proofs of the algorithm here. However, it involves a series of steps including
random number selection, calculations based on the secret shares of x, determi-
nation of set intersections, and final calculation of the output sign of y as secret
shares. We emphasize that this procedure ensures privacy as only specific parties
have access to clear values of particular variables at any given time.
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4.2 Privacy-Preserving Decision Tree Learning

In this section, we give an overview of our novel multi-party computation method
where the decision tree’s structure is concealed from all involved parties. As pre-
viously established, we envisage a scenario where three parties aim to construct
a decision tree from a dataset D divided amongst them, assuming the parties
are semi-honest, adhering to a protocol but trying to extract knowledge from
each communication.

After preparatory steps, every data point d ∈ D becomes a vector of
{0, 1}m+1, implying binary-valued attributes and class. However, non-binary
attributes can be converted using One-Hot-Encoding, and multiple binary classes
can be learned separately. The data points are stored as additive Secret Shares
modulo a large prime p, unaffected by whether the original data was horizontally
or vertically distributed.

Our approach to privately training a decision tree is the same as in the core
of many classical decision tree induction algorithms, where three key steps are
required:

1. Establish the subset T ⊂ D of data that is viable for the current decision tree
node.

2. Determine the attribute Aj with the highest reduction of class impurity rel-
ative to T based on a random subset of attributes Aj1 , . . . , Ajs .

3. Generate the node’s children as branches with respect to attribute Aj .

Our strategy to design a secure multi-party protocol which can deal with
the distribution of D over multiple parties is to map these three high-level steps
to arithmetical operations to be performed over secret shares of the data. We
briefly elaborate on these in the following, avoiding the mathematical details
and security proofs due to space limitations.

Selecting T ⊂ D. To define whether a decision tree node will branch (inner
node) or select a label (leaf node), we must select the subset T from the total
data D that is pertinent to this node. Keeping node composition covert from all
parties, we express each node with a 2m-length binary vector x (where m signifies
attributes), distributed as secret shares among the three parties. Elements of x
(i.e., x0

i and x1
i ) indicate permissible data point values (0 or 1) for attribute Ai

in the respective node. The root node’s vector permits all attribute expressions.
To identify if a data point d from D should be evaluated at node x, we

calculate Zd:

Zd = 2
m∑

i=1

z
(d)
i , where z

(d)
i = di(x1

i − x0
i ) + x0

i .

When data point d satisfies the node’s attribute Ai requirement, z
(d)
i equals

1, otherwise 0. So, d is pertinent to the node if Zd = 2m. If not, Zd becomes less
than or equal to 2m − 2, hence a comparison is necessary to determine whether
the data point d is pertinent to the node or not:
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γd = argmax
{
2m − 1, Zd

}
.

To determine t ⊂ D, one could naively determine γd for each d ∈ D using
the maximum protocol. However, since the maximum protocol would have to be
executed for each individual node xj of the decision tree for all data d ∈ D and
this is significantly more communication-intensive (and therefore slower) than
the arithmetic operations on the secret shares, we use the following alternative
strategy. This strategy allows for all nodes at a certain level of the decision
tree to determine at once which data points are residing in which node, and
requires only a comparable number of communications between the parties as
the maximum protocol. The idea of the method is based on exploiting the fact

that for a certain data point d the distribution of the values
m∑

i=1

z
(d)
l , for a node

x of the considered tree level depth_index is determined a priori. For k with
0 ≤ m−k ≤ depth, the number of nodes on the tree level depth_index for which
m∑

i=1

z
(d)
l = k is given by

(
depth_index

m − k

)
, which can be shown by induction. In

particular, this means that there is only exactly one node on each tree level in
which a data point is pertinent (k = m). This allows the following procedure.
Parties 1 and 2 permute the secret shares of the three parties of

(
Zj1

d , . . . , Zjn
d ),

for a datapoint d ∈ D and all nodes xj1 , . . . , xjn of the given tree level. Then
party 3 can determine for all d ∈ D the indicator vector for which permuted node
j the value Zj

d equal 2m is and distribute this again as secret shares between the
parties. Parties 1 and 2 then repermute the shares of the indicator vector.

Perform Attribute Splits. Classical decision tree algorithms pick the next
attribute for branching in a decision tree using a strategy that focuses on maxi-
mizing the reduction of class impurity, which is in our case calculated using the
Gini index. To calculate this, we only consider binary attributes, simplifying the
process.

We then make certain computations for each attribute that account for the
size and distribution of the dataset. To simplify the process, we modify the
Gini index to remove divisions and make the process more efficient, following
an approach previously suggested by Hori in 2008 [17]. This approach allows
us to compare the evaluation of two different attributes without requiring any
division. This is crucial when we want to perform calculations privately, such as
in secure multi-party computation scenarios. Private computation of division is a
complex operation when performed over arithmetic secret shares (for a discussion
see, e.g., a recent paper on SPN learning [2]).

To apply this process in practice, we follow a specific protocol. This protocol
involves iteratively calculating and comparing the modified Gini index for each
attribute. After multiple rounds of these comparisons, the protocol will indicate
the attribute that should be used for branching, maximizing the reduction of
class impurity based on the Gini index. The security of this protocol may be
proven leveraging the security of the maximum protocol introduced in Sect. 4.1.
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The correctness of this protocol – that is, whether it truly picks the attribute
with maximum reduction of class impurity – can be shown through an induc-
tion argument. This argument essentially shows that after a given number of
rounds, the selected attribute will indeed be the one that maximizes the evalu-
ation function. We also make sure that the protocol does not pick an attribute
that has already been branched. This is done by setting the Gini index of already-
branched attributes to zero, so they will not be picked if there is at least one
other attribute that is still viable. If all previous attributes are invalid, the new
attribute will always be chosen.

In essence, we have transformed the original computation into a more efficient
version that can be computed securely and privately, and we have shown that
this approach can correctly select the attribute that maximizes reduction of class
impurity in a decision tree.

Branching the Tree. Creating branches from a node in the decision tree is
relatively straightforward. Since all attributes are binary, every node has two
children (left and right) no matter the attribute chosen for branching. For the
left (right) child, data is included only if its corresponding attribute Aj value is
0 (1).

This protocol’s input includes the attribute requirements of the node and
the attribute branching indicator vector. For the left child, x0

left is set as x0 and
x1

left as x1 − e. Similarly, for the right child, x0
right is set as x0 − e and x1

right as
x1. The output is the two child nodes.

The correctness of the protocol stems from the definition of x, which encodes
the node’s attribute requirements, and e, the attribute branching indicator vec-
tor. The protocol’s security relies on the security of the secret shares and the
fact that no matter the attribute selected, two child nodes are always created,
preventing information about the decision tree’s structure from being leaked to
the parties. The protocol’s overhead is constant.

The previous section has provided all the essential building blocks for privacy
preserving training of a decision tree. The correctness of this protocol is built
upon the correctness of the previously mentioned protocols and the leaf node’s
label definition. The protocol’s safety is ensured as the parties cannot learn
anything directly or indirectly about the data. This is achieved by using secure
arithmetic secret shares, and the fact that the learned decision tree’s structure
is always a complete binary tree of a specified depth. The total number of calls
to the maximum log protocol depends on the number of interior nodes and leaf
nodes, which are calculated based on the tree’s depth and the data set size.

4.3 Training and Inference for Privacy-Preserving Random Forests

In the previous section, we have established a privacy-preserving protocol for
training a single decision tree. Now, we extend this concept to train a random
forest, which consists of multiple decision trees, where randomness is injected, in
different ways, to obtain different trees from originally identical training sets.1

1 Notice that we follow the original definition of random forests by Breiman (2001).



382 L.-M. Bammert et al.

In our case, we obtain multiple decision trees, as in the original publication,
by sampling the dataset with replacement (bootstrap sampling). However, this
is the only way we inject randomness: We do not work with random subsets of
features, as in the original publication and in current random forest implemen-
tations. In the following, we modify the overall process to ensure privacy.

To maintain privacy while creating these sample datasets, we use an indicator
vector approach. For each draw from the original dataset, an indicator vector
is generated where the corresponding index is set to 1 and all other indices
are set to 0. By adding these vectors together, we obtain a weight vector that
essentially counts how many times each data point is included in a sample. Once
these data samples are generated independently by the respective parties, we
can then proceed to train individual decision trees using the privacy-preserving
protocol we previously outlined. The difference is that the computation of the
protocol will be slightly adjusted to account for the weights from the weight
vector. Once all trees in the forest have been generated and trained, they may
be used to make predictions on new data points. This process is similar to testing
a single decision tree, except that we must gather predictions from all trees in
the forest and then determine the overall prediction based on a majority vote.

The communication overhead for these protocols is relatively small, primar-
ily due to the extra communications required for the data draw process in the
training of the random forest, and the accumulation of predictions in the testing
process. In the next section, we will empirically test these protocols through
implementation and evaluate their performance in terms of accuracy and com-
putation time.

5 Experiments

The goal of the experiments was two-fold: First, to compare the privacy-pre-
serving protocol to a non-privacy preserving variant in terms of prediction per-
formance. Second, to test the running time of the privacy-preserving protocol
depending on a variety of different parameters, to make sure the approach is
suitable for realistically sized datasets.

All experiments were run of five datasets from the UCI repository2: Breast
Cancer, Balance Scale, Tic-Tac-Toe Endgame, Car Evaluation, Molecular Biol-
ogy (Splice-junction Gene Sequences). All attributes are nominal, and the task
is either binary or multi-class classification. The nominal attributes were trans-
formed to binary via one-hot encoding, employing scikit-learn. For the multi-
class problems (Balance Scale, Car Evaluation, Molecular Biology), we learn
one separate random forest for each class in turn (one-versus-all).

The Python implementation of the protocol for training and testing a random
forest is based on a publicly available Python implementation for private learning
of SPNs [2]. The implementation consists of a manager server that schedules
individual tasks and several member servers (in our case, 3) that execute these

2 http://archive.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml
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Fig. 2. Comparison of average prediction performance of privacy-preserving and non-
privacy-preserving random forest for different datasets and tree depths. The curve for
Tic Tac Toe is similar to the one of Breast Cancer and not shown here.

tasks. All servers communicate with each other via a WebSocket framework3,
where each member and the manager have a unique network ID.

We compared the performance of our privacy-preserving protocol with a ran-
dom forest learned without any privacy-preserving restrictions. In each experi-
ment, we used a Python package from scikit-learn [18] to learn a random forest
based on Breiman’s approach [4]. However, the individual decision trees were
built on the basis of the Gini index.

For both the privacy-preserving and non-privacy-preserving approaches, we
trained and tested a random forest consisting of 50 decision trees at tree depths
tree_depth = 1, 2, 3, 4, 5. We randomly divided the dataset into 2

3 training data
and 1

3 test data for this purpose. For all learned decision trees, max{tree_depth,
log(number of attributes)} random attributes were considered in the attribute
selection. The accuracy, i.e., the proportion of instances correctly classified by the
random forest in the test data, was used as a measure to evaluate the prediction
quality. The experiments were conducted on a Windows 8 machine with 16 GB
of memory, AMD A10-6700 APU processor, and no internal network latency was
used for inter-party communication.

Figure 2 presents the prediction performance of each random forest for dif-
ferent datasets and tree depths. The prediction quality of a random forest for
each tree depth is averaged over the total number of random forests learned

3 https://websockets.readthedocs.io/en/stable/.

https://websockets.readthedocs.io/en/stable/


384 L.-M. Bammert et al.

Fig. 3. Comparison of runtime of privacy-preserving random forest while varying num-
ber of attributes, tree depth and number of samples in the dataset.

for each class (in case of multi-class datasets). For all tree depths, the average
prediction quality of the privacy-preserving random forest comes close to that
of a non-privacy-preserving random forest, with the gap between the two being
at most around 5 %. In Fig. 3, we illustrate the runtime behavior of the privacy-
preserving protocol. We observe that, as the number of overall and randomly
chosen attributes grows, the running time grows linearly with it. The depen-
dency of the running time on the number of training instances also appears as
linear, as one would expect. The slight bend in the curve is not easy to explain
by expectations and could be due to statistical variation. The worst behavior is,
as expected, in the tree depth, where the running time appears to depend a bit
worse than quadratic on the depth of the tree.

To summarize, our experimental results suggest that a privacy-preserving
random forest can achieve nearly similar prediction performance as a non-
privacy-preserving random forest, with a manageable increase in runtime. How-
ever, there is a trade-off between privacy, performance, and runtime, which needs
to be carefully considered depending on the specific requirements and constraints
of a given application.
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6 Conclusion and Future Work

The paper presented a privacy-preserving approach to the computation of ran-
dom forests. A key innovation in our approach lies in maintaining the decision
tree’s structure and parameters (the annotation) as information hidden from all
parties. This ensures that no party can infer any knowledge about the data of oth-
ers, further strengthening the privacy protection in our methodology. Along the
way, we reduce all operations to work with arithmetic secret shares and establish
a protocol for securely determining the maximum of two integers. Experimental
results show that prediction quality is on par with its non-privacy-preserving
counterpart, and the runtime, while influenced by several variables, is manage-
able even for realistic datasets.

While the protocol is composed of secure primitives, a formal proof of its
security would be highly desirable, potentially achieved through the construc-
tion of a framework that enables secure protocol composition. Moreover, from a
practical perspective, developing an efficient protocol for finding the maximum
of two numbers without any error probability would be an improvement in terms
of quality. Simultaneously, reducing the protocol’s runtime through parallelized
operations, such as a component-wise maximum comparison of two vectors, could
enhance its practical applicability.

Acknowledgements. This work was partly funded by the Carl-Zeiss-Stiftung as part
of the CZS Durchbrueche project under grant number [P2021-02-014].
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Abstract. Medical image classification models are frequently trained
using training datasets derived from multiple data sources. While lever-
aging multiple data sources is crucial for achieving model generalization,
it is important to acknowledge that the diverse nature of these sources
inherently introduces unintended confounders and other challenges that
can impact both model accuracy and transparency. A notable confound-
ing factor in medical image classification, particularly in musculoskeletal
image classification, is skeletal maturation-induced bone growth observed
during adolescence. We train a deep learning model using a Covid-19
chest X-ray dataset and we showcase how this dataset can lead to spu-
rious correlations due to unintended confounding regions. eXplanation
Based Learning (XBL) is a deep learning approach that goes beyond
interpretability by utilizing model explanations to interactively unlearn
spurious correlations. This is achieved by integrating interactive user
feedback, specifically feature annotations. In our study, we employed
two non-demanding manual feedback mechanisms to implement an XBL-
based approach for effectively eliminating these spurious correlations.
Our results underscore the promising potential of XBL in constructing
robust models even in the presence of confounding factors.

Keywords: Interactive Machine Learning · eXplanation Based
Learning · Medical Image Classification · Chest X-ray

1 Introduction

While Computer-Assisted Diagnosis (CAD) holds promise in terms of cost and
time savings, the performance of models trained on datasets with undetected
biases is compromised when applied to new and external datasets. This limitation
hinders the widespread adoption of CAD in clinical practice [16,21]. Therefore,
it is crucial to identify biases within training datasets and mitigate their impact
on trained models to ensure model effectiveness.
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Fig. 1. In the left image, representing a child diagnosed with Viral pneumonia, the
presence of Epiphyses on the humerus heads is evident, highlighted with red ellipses.
Conversely, the right image portrays an adult patient with Covid-19, where the Epi-
physes are replaced by Metaphyses, also highlighted with red ellipses. (Color figure
online)

For example, when building models for the differential diagnosis of pathology
on chest X-rays (CXR) it is important to consider skeletal growth or ageing as
a confounding factor. This factor can introduce bias into the dataset and poten-
tially mislead trained models to prioritize age classification instead of accurately
distinguishing between specific pathologies. The effect of skeletal growth on the
appearance of bones necessitates careful consideration to ensure that a model
focuses on the intended classification task rather than being influenced by age-
related features.

An illustrative example of this scenario can be found in a recent study by
Pfeuffer et al. [12]. In their research, they utilized the Covid-19 CXR dataset
[4], which includes a category comprising CXR images of children. This dataset
serves as a pertinent example to demonstrate the potential influence of age-
related confounders, given the presence of images from pediatric patients. It
comprises CXR images categorized into four groups: Normal, Covid, Lung opac-
ity, and Viral pneumonia. However, a notable bias is introduced into the dataset
due to the specific inclusion of the Viral pneumonia cases collected exclusively
from children aged one to five years old [9]. This is illustrated in Fig. 1 where
confounding regions introduced due to anatomical differences between a child
and an adult in CXR images are highlighted. Notably, the presence of Epiphyses
in images from the Viral pneumonia category (which are all from children) is a
confounding factor, as it is not inherently associated with the disease but can
potentially mislead a model into erroneously associating it with the category.
Addressing these anatomical differences is crucial to mitigate potential bias and
ensure accurate analysis and classification in pediatric and adult populations.

Biases like this one pose a challenge to constructing transparent and robust
models capable of avoiding spurious correlations. Spurious correlations refer to
image regions that are mistakenly believed by the model to be associated with
a specific category, despite lacking a genuine association.
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While the exact extent of affected images remains unknown, it is important
to note that the dataset also encompasses other confounding regions, such as
texts and timestamps. However, it is worth mentioning that these confounding
regions are uniformly present across all categories, indicating that their impact is
consistent throughout. For the purpose of this study, we specifically concentrate
on understanding and mitigating the influence of musculoskeletal age in the
dataset.

eXplanation Based Learning (XBL) represents a branch of Interactive
Machine Learning (IML) that incorporates user feedback in the form of feature
annotation during the training process to mitigate the influence of confounding
regions [17]. By integrating user feedback into the training loop, XBL enables the
model to progressively improve its performance and enhance its ability to differ-
entiate between relevant and confounding features [6]. In addition to unlearning
spurious correlations, XBL has the potential to enhance users’ trust in a model
[5]. By actively engaging users and incorporating their expertise, XBL promotes
a collaborative learning environment, leading to increased trust in the model’s
outputs. This enhanced trust is crucial for the adoption and acceptance of models
in real-world applications, particularly in domains where decisions have signifi-
cant consequences, such as medical diagnosis.

XBL approaches typically add regularization to the loss function used when
training a model, enabling it to disregard the impact of confounding regions. A
typical XBL loss can be expressed as:

L = LCE + Lexpl + λ
∑

i=0

θ2i , (1)

where LCE is categorical cross entropy loss that measures the discrepancy
between the model’s predictions and ground-truth labels; λ is a regularization
term; θ refers to network parameters; and Lexpl is an explanation loss. Explana-
tion loss can be formulated as:

Lexpl =
N∑

i=0

Mi � Exp(xi) , (2)

where N is the number of training instances, x ∈ X; Mi is a manual annota-
tion of confounding regions in the input instance xi; and Exp(xi) is a saliency-
based model explanation for instance xi, for example generated using Gradient
weighted Class Activation Mapping (GradCAM) [17]. GradCAM is a feature
attribution based model explanation that computes the attention of the learner
model on different regions of an input image, indicating the regions that signifi-
cantly contribute to the model’s predictions [18]. This attention serves as a mea-
sure of the model’s reliance on these regions when making predictions. The loss
function, Lexpl, is designed to increase as the learner’s attention to the confound-
ing regions increases. Overall, by leveraging GradCAM-based attention and the
associated Lexpl loss, XBL provides a mechanism for reducing a model’s atten-
tion to confounding regions, enhancing the interpretability and transparency of
a model’s predictions.
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Fig. 2. The inner ellipse shows the typical mode of feedback collection where users
annotate image features. The outer ellipse shows how our proposed approach requires
only identification of one good and one bad explanation.

As is seen in the inner ellipse of Fig. 2, in XBL, the most common mode of
user interaction is image feature annotation. This requires user engagement that
is considerably more demanding than the simple instance labeling that most
IML techniques require [22] and increases the time and cost of feedback collec-
tion. As can be seen in the outer ellipse of Fig. 2, we are interested in lifting
this pressure from users (feedback providers) and simplifying the interaction to
ask for identification of two explanations as exemplary explanations and rank-
ing them as good and bad explanations. This makes collecting feedback cheaper
and faster. This kind of user interaction where users are asked for a ranking
instead of category labels has also been found to increase inter-rater reliabil-
ity and data collection efficiency [11]. We incorporate this feedback into model
training through a contrastive triplet loss [3].

The main contributions of this paper are:

1. We propose the first type of eXplanation Based Learning (XBL) that can
learn from only two exemplary explanations of two training images;

2. We present an approach to adopt triplet loss for XBL to incorporate the two
exemplary explanations into an explanation loss;

3. Our experiments demonstrate that the proposed method achieves improved
explanations and comparable classification performance when compared
against a baseline model.

2 Related Work

2.1 Chest X-Ray Classification

A number of Covid-19 related datasets have been collated and deep learning
based diagnosis solutions have been proposed due to the health emergency caused
by Covid-19 and due to an urgent need for computer-aided diagnosis (CAD)
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of the disease [8]. In addition to training deep learning models from scratch,
transfer learning, where parameters of a pre-trained model are further trained
to identify Covid-19, have been utilized [20]. Even though the array of datasets
and deep learning models show promise in implementing CAD, care needs to
be taken when the datasets are sourced from multiple imaging centers and/or
the models are only validated on internal datasets. The Covid-19 CXR dataset,
for example, has six sources at the time of writing this paper. This can result
in unintended confounding regions in images in the dataset and subsequently
spurious correlations in trained models [16].

2.2 eXplanation Based Learning

XBL can generally be categorized based on how feedback is used: (1) augmenting
loss functions; and (2) augmenting training datasets.

Augmenting Loss Functions. As shown in Eq. 1, approaches in this category add
an explanation loss, Lexpl, during model training to encourage focus on image
regions that are considered relevant by user(s), or to ignore confounding regions
[7]. Ross et al. [14] use an Lexpl that penalizes a model with high input gradient
model explanations on the wrong image regions based on user annotation,

Lexpl =
N∑

n

[
Mn � ∂

∂xn

K∑

k=1

log ŷnk

]2

, (3)

for a function f(X|θ) = ŷ ∈ RN×K trained on N images, xn, with K categories,
where Mn ∈ {0, 1} is user annotation of confounding image regions. Similarly,
Shao et al. [19] use influence functions in place of input gradients to correct a
model’s behavior

Augmenting Training Dataset. In this category, a confounder-free dataset is
added to an existing confounded training dataset to train models to avoid learn-
ing spurious correlations. In order to unlearn spurious correlations from a classi-
fier that was trained on the Covid-19 dataset, Pfeuffer et al. [12] collected feature
annotation on 3,000 chest x-ray images and augmented their training dataset.
This approach, however, doesn’t target unlearning or removing spurious corre-
lations, but rather adds a new variety of data. This means models are being
trained on a combination of the existing confounded training dataset and the
their new dataset.

One thing all approaches to XBL described above have in common is the
assumption that users will provide feature annotation for all training instances
to refine or train a model. We believe that this level of user engagement hinders
practical deployment of XBL because of the demanding nature and expense of
feature annotation that is required [22]. It is, therefore, important to build an
XBL method that can refine a trained model using a limited amount of user
interaction and we propose eXemplary eXplanation Based Learning to achieve
this.
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3 eXemplary eXplanation Based Learning

User annotation of image features, or M , is an important prerequisite for typi-
cal XBL approaches (illustrated in Eq. 1). We use eXemplary eXplanation Based
Learning (eXBL) to reduce the time and resource complexity caused by the need
for M . eXBL simplifies the expensive feature annotation requirement by replac-
ing it with identification of just two exemplary explanations: a Good explanation
(Cgoodi

) and a Bad explanation (Cbadj
) of two different instances, xi and xj . We

pick the two exemplary explanations manually based on how much attention a
model’s explanation output gives to relevant image regions. A good explanation
would be one that gives more focus to the lung and chest area rather than the
irrelevant regions such as the Epiphyses, humerus head, and image backgrounds,
while a bad explanation does the opposite.

We choose to use GradCAM model explanations because they have been
found to be more sensitive to training label reshuffling and model parameter ran-
domization than other saliency based explanations [1]; and they provide accurate
explanations in medical image classifications [10].

We then compute product of the input instances and the Grad-CAM expla-
nation in order to propagate input image information towards computing the
loss and to avoid a bias that may be caused by only using a model’s GradCAM
explanation,

Cgood := xi � Cgoodi
(4)

Cbad := xj � Cbadj
(5)

We then take inspiration from triplet loss [3] to incorporate Cgood and Cbad

into our explanation loss, Lexpl. The main purpose of Lexpl is to penalize a
trainer according to similarity of model explanations of instance x to Cgood and
its difference from Cbad. We use Euclidean distance as a loss to compute the
measure of dissimilarity, d (loss decreases as similarity to Cgood is high and to
Cbad is low).

dxg := d(x � GradCAM(x), Cgood) (6)

dxb := d(x � GradCAM(x), Cbad) (7)

We train the model f to achieve dxg � dxb for all x. We do this by adding a
margin = 1.0 and translating it to: dxg < dxb + margin. We then compute the
explanation loss as:

Lexpl =
N∑

i

max(dxig − dxib + margin, 0) (8)

In addition to correctly classifying X, which is achieved through LCE , this
Lexpl (Eq. 8) trains f to output GradCAM values that resemble the good expla-
nations and that differ from the bad explanations, thereby refining the model to
focus on the relevant regions and to ignore confounding regions. Lexpl is zero, for
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a given sample x, unless x � GradCAM(x) is much more similar to Cbad than
it is to Cgood—meaning dxg > dxb + margin.

4 Experiments

4.1 Data Collection and Preparation

To demonstrate eXBL we use the Covid-19 CXR dataset [4,13] described in
Sect. 1. For model training we subsample 800 x-ray images per category to mit-
igate class imbalance, totaling 3,200 images. For validation and testing, we use
1,200 and 800 images respectively. We resize all images to 224 × 224 pixels. The
dataset is also accompanied with feature annotation masks that show the lungs
in each of the x-ray images collected from radiologists [13].

4.2 Model Training

We followed a transfer learning approach using a pre-trained MobileNetV2 model
[15]. We chose to use MobileNetV2 because it achieved better performance at
the CXR images classification task at a reduced computational cost after com-
parison among pre-trained models. In order for the training process to affect
the GradCAM explanation outputs, we only freeze and reuse the first 50 layers
of MobileNetV2 and retrain the rest of the convolutional layers with a custom
classifier layer that we added (256 nodes with a ReLu activation with a 50%
dropout followed by a Softmax layer with 4 nodes).

We first trained the MobileNetV2 to categorize the training set into the four
classes using categorical cross entropy loss. It was trained for 60 epochs1. We refer
to this model as the Unrefined model. We then use the Unrefined model to select
the good and bad explanations displayed in Fig. 2. Next, we employ our eXBL
algorithm using the good and bad explanations to teach the Unrefined model to
focus on relevant image regions by tuning its explanations to look like the good
explanations and to differ from the bad explanations as much as possible. We use
Euclidean distance to compute dissimilarity in adopting a version of the triplet
loss for XBL. We refer to this model as the eXBLEUC model and it was trained
for 100 epochs using the same early stopping, learning rate, and optimizer as
the Unrefined model.

For model evaluation, in addition to classification performance, we compute
an objective explanation evaluation using Activation Precision [2] that measures
how many of the pixels predicted as relevant by a model are actually relevant
using existing feature annotation of the lungs in the employed dataset,

AP =
1
N

N∑

n

∑
(Tτ (GradCAMθ(xn)) � Axn

)∑
(Tτ (GradCAMθ(xn)))

, (9)

1 The model was trained with an early stop monitoring the validation loss at a patience
of five epochs and a decaying learning rate = 1e−04 using an Adam optimizer.
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where xn is a test instance, Axn
is feature annotation of lungs in the dataset,

GradCAMθ(xn) holds the GradCAM explanation of xn generated from a trained
model, and Tτ is a threshold function that finds the (100-τ) percentile value and
sets elements of the explanation, GradCAMθ(xn), below this value to zero and
the remaining elements to one. In our experiments, we use τ = 5%.

Fig. 3. Sample outputs of Viral Pneumonia category. (A) Input images; (B) GradCAM
outputs for Unrefined model and (C) their overlay over input images; (D) GradCAM
outputs for eXBLEUC and (E) their overlay over input images.
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Table 1. Classification and explanation performance.

Models Accuracy Activation Precision
Validation Test Validation Test

Unrefined 0.94 0.95 0.32 0.32
eXBLEUC 0.89 0.90 0.34 0.35

5 Results

Table 1 shows classification and explanation performance of the Unrefined and
eXBLEUC models. Sample test images, GradCAM outputs, and overlaid Grad-
CAM visualizations of x-ray images with Viral pneumonia category are dis-
played in Fig. 3. From the sample GradCAM outputs and Table 1, we observe
that the eXBLEUC model was able to produce more accurate explanations that
avoid focusing on irrelevant image regions such as the Epiphyses and background
regions. This is demonstrated by how GradCAM explanations of the eXBLEUC

model tend to focus on the central image regions of the input images focusing
around the chest that is relevant for the classification task, while the GradCAM
explanations generated using the Unrefined model give too much attention to
areas around the shoulder joint (humerus head) and appear angular shaped giv-
ing attention to areas that are not related with the disease categories.

6 Conclusion

In this work, we have presented an approach to debug a spurious correlation
learned by a model and to remove it with just two exemplary explanations in
eXBLEUC . We present a way to adopt the triplet loss for unlearning spurious cor-
relations. Our approach can tune a model’s attention to focus on relevant image
regions, thereby improving the saliency-based model explanations. We believe
it could be easily adopted to other medical or non-medical datasets because it
only needs two non-demanding exemplary explanations as user feedback.

Even though the eXBLEUC model achieved improved explanation perfor-
mances when compared to the Unrefined model, we observed that there is a clas-
sification performance loss when retraining the Unrefined model with eXBL to
produce good explanations. This could mean that the initial model was exploit-
ing the confounding regions for better classification performance. It could also
mean that our selection of good and bad explanations may not have been optimal
and that the two exemplary explanations may be degrading model performance.

Since our main aim in this study was to demonstrate effectiveness of
eXBLEUC based on just two ranked feedback, the generated explanations were
evaluated using masks of lung because it is the only body part with pixel-level
annotation in the employed dataset. However, in addition to the lung, the disease
categories might be associated with other areas of the body such as the throat
and torso. For this reason, and to ensure transparency in practical deployment
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of such systems in clinical practice, future work should involve expert end users
for evaluation of the classification and model explanations.
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Abstract. Greek literary papyri, which are unique witnesses of antique
literature, do not usually bear a date. They are thus currently dated
based on palaeographical methods, with broad approximations which
often span more than a century. We created a dataset of 242 images
of papyri written in “bookhand” scripts whose date can be securely
assigned, and we used it to train machine and deep learning algorithms
for the task of dating, showing its challenging nature. To address the
data scarcity problem, we extended our dataset by segmenting each
image to the respective text lines. By using the line-based version of
our dataset, we trained a Convolutional Neural Network, equipped with
a fragmentation-based augmentation strategy, and we achieved a mean
absolute error of 54 years. The results improve further when the task is
cast as a multiclass classification problem, predicting the century. Using
our network, we computed and provided precise date estimations for
papyri whose date is disputed or vaguely defined and we undertake an
explainability-based analysis to facilitate future attribution.

Keywords: Chronology Attribution · Computer Vision · Greek Papyri

1 Introduction

No autographs of classical Greek authors survive today. Our knowledge of such
works (along with post-classical literature and the first Christian works including
the New Testament) relies on manuscripts postdating the original compositions.
Of these, the most chronologically proximal are a few thousand papyri excavated
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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mainly in Egypt in the last two centuries. Due to physical damage, these papyri
usually preserve only small portions of the texts in question unlike medieval
manuscripts which tend to transmit them in full-length, but both papyri and
manuscripts represent copies of copies of the original works.

1.1 Background

Despite their fragmentary nature, papyri are crucial witnesses for innumerable
texts, not to mention that they occasionally preserve literary works that would be
otherwise lost. They are also invaluable evidence for our understanding of book
culture in Antiquity, as well as for philology, the evolution of writing scripts
and book production. One of the most important aspects of such research is to
determine the date of the papyri involved.

Unlike their documentary counterparts (i.e. papyri preserving official and
everyday documents), literary papyri bear no date before the introduction of
colophons in the Middle Ages (9th century CE). We customarily employ palaeo-
graphical methods to assign an approximate and broad (often spanning more
than a century) date for their production. Apart from their content, the two cat-
egories, documentary and literary papyri, are also usually written in distinctly
different scripts: unformal cursive writings for the former opposed to elegant
bookhand for the latter. There are some exceptions on both sides, i.e. literary
texts written in cursive and documentary texts with surprisingly elegant scripts.
To this day, we lack an exhaustive list of the first category (literary texts in
cursive script) which does not allow us to use the numerous dated documents
to date these literary papyri by script comparison. However, a few specimen
of the second group (documentary texts written in bookhand) have been col-
lected in the CDDGB (see below). Palaeographers rely on the evidence-backed
assumption that handwriting styles are typical of certain periods and change
over time, much like fashions and trends in anything else. The subjectivity and
authoritativeness of these methods are increasingly acknowledged among schol-
ars [3,12,15,16] and further assistance for more reliable and/or accurate ones is
highly desirable.

In traditional dating, papyrologists employ comparative dating. They use
the—admittedly very few—objectively dateable papyri specimens to draw com-
parisons with non-dated ones and estimate the latter’s place on a notional time-
line. The comparison is performed on the basis of the form and features of single
letters, or the script overall, also used for other palaeographical tasks such as
identifying scribes, or classifying styles and types of scripts. The characteris-
tics used for such studies may focus on size (small/large, short/long), shape
(round/angular), specific parts of letters (arches/loops/serifs/decorations),
speed of writing, ductus (the number, directions and sequence of strokes required
to draw a letter), formality etc. Although the same features are regularly invoked
by many palaeographers, each researcher is free to focus (and they often do so) on
every conceivable aspect of the writing. Hence, there is no formally established
methodology, set of features to be taken into account, or even terminology that
managed to reach consensus. [22,23] Even for the commonly used and agreed
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upon features, it is rarely possible for scholars to measure them or objectively cal-
culate their significance towards a conclusion. Research in digital palaeography
quantifying script features such as angle and direction of writing (for instance
[1,2]) usually provides one such feature as the base for performing computation-
ally palaeographical tasks. In our study, we aim at performing such a task (in
this case dating) without any input in the form of human-perceived features.
Instead, we attempt to identify any clues or features that lead our models to a
specific date for a papyrus image.

The computer can pinpoint areas of the images which push predictions
towards either extreme and/or alter these images (and predict the correspond-
ing date) in a controlled manner. Nevertheless, it cannot provide explanations
in real-life terms, nor identify features perceivable by humans. At the same
time, human experts instinctively date scripts in terms of certain characteristics,
however subjective, but are unable to measure each such feature’s significance
towards assigning a date. In this preliminary examination, our aim is to detect
patterns (not necessarily semantically clear at this stage) in the application of
saliency maps.

1.2 The Contributions of This Work

C1. We developed two datasets of images of Greek papyri from Egypt, along
with the dates assigned to them by experts: one with whole papyri frag-
ments; the other with lines of writing extracted from the full-size images.

C2. We proposed a Convolutional Neural Network (CNN), which we call fCNN,
that is based on a fragmentation-based augmentation strategy and which
predicts the date of text-line images with a mean absolute error of 54
years, using a regression head, and a macro-average F1 of 61.5%, using
a classification head, setting the state of the art for Greek papyri image
dating.

C3. We used fCNN to precise the dating of the lines of eleven papyri, whose
previous dates based on objective criteria are ranging across two centuries,
and we share our predictions: https://github.com/ipavlopoulos/palit

2 Related Work

Although researchers have suggested algorithms for the automated segmentation
of papyri images to text-lines [19], and although the benefits of text-line segmen-
tation are already known in the field of writer identification [4], no published
work to date has investigated dating computationally Greek literary papyri by
focusing on text line images. The baseline is set by a CNN that is fed with whole
Greek literary papyri images, which achieved a mean absolute error of more
than a century [18]. Our study shows that data segmentation to text lines leads
to a much smaller error, with augmentation-enhanced CNNs providing the best-
performing solution. In the absence of other related work for Greek papyri image
dating, we summarise, next, the published work regarding dating in general [17].

https://github.com/ipavlopoulos/palit
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Image-Based Regression

CNNs outperform approaches based on feature engineering on writer identifi-
cation [6,14] and similar findings are reported in dating. In [7], the authors
used pre-trained CNNs to date images of medieval Dutch charters from 14CE to
16CE, by focusing on image crops. The authors reported a mean absolute error
of 10 years, a number beyond our reach with papyrus data where an approxi-
mation of 50 years is accepted. Regression using pre-trained CNNs on random
crops was also suggested in [25], for the dating of medieval Swedish charters.
Besides feature extraction with deep learning, earlier work approached the task
with regression on top of extracted features, such as scale-invariant [8] or hinge
and fraglets [9].

Dating From Other Modalities

Besides images, other modalities have also been used as input. In [11], for exam-
ple, textual features were used to infer the date. Although reasonable in general,
this is not a feasible approach for Greek literary papyri and manuscripts, the text
of which may be of much older authors, such as Homer. A different approach was
suggested in [20], where ordinal classification was combined with multispectral
imaging, tracking spectral responses of iron-gall ink (of historical letters, 17-
20CE) at different wavelengths. Although rich, this data representation is very
expensive in time and resources to establish, which also explains why datasets
in this form are very rare. Besides, papyri are mostly written with carbon-based
and not iron-gall ink, which is to the present more difficult to date.

3 Data

3.1 The Nature of the Papyri

As already mentioned, papyri bearing literary texts do not carry a date and
for the vast majority of them papyrologists assign a date based on the affinity
of their script with objectively (not palaeographically) dated specimens. These
specimens, referred to as ‘objectively dated’ ones, are dated using external indi-
cations (not contained in the literary text on the papyrus) [24]. Occasionally, it
is archaeological evidence or even radiocarbon dating suggesting a more secure
date, but most importantly, papyri were often re-used after they exceeded their
lifespan and literary texts are often found on papyri that have dated documents
on the opposite side.

3.2 Digitised Papyri

The images included in our dataset come from a number of collections and online
resources, whereas five or six of them were scanned from images in printed vol-
umes. Their digitisation took place during a period of more than two decades,
under substantially different imaging protocols. As a result, they vary greatly
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in their properties, most importantly in scaling to actual size, colour captur-
ing, resolution and bit depth. For a few of them it was not possible to extract
text lines, due to very low resolution, and they returned empty files during the
segmentation stage.

3.3 Our New Dataset

Our dataset comprises images of Greek papyri from Egypt and their respec-
tive dates, from the 1st to the 4th CE.1 Images of papyri from other centuries
were few, hence we did not consider them in this study. The papyri included
were selected from CDDGB, the only available collection of (somewhat) securely
dated literary papyri available, which includes also a few documentary texts in
bookhand. The data it contains can be dated based on various objective dating
criteria, such as the presence of a document that contains a date on the reverse
side, internal evidence in the text (mostly for the few documentary ones and the
9th c. manuscripts having colophons), radiocarbon dating, or a dateable archaeo-
logical context associated with the manuscripts. In the CDDGB database, most
records contain sampled images and we had to manually trace full-sized ones
from the respective collections. We release our dataset in two forms, one where
images contain whole fragments and one where they contain text lines.

Fig. 1. The number of PLF images (vertically) per century (horizontally) or century
range (when the date ranges between centuries), sorted by frequency.

1 There is a very small number of exceptions which reflect the complexity of our
documentation: one text is in Coptic, a few don’t come from Egypt but the Near-
East and another few are written on parchment, not papyrus. In this study, we
collectively call them ‘papyri’.

https://airtable.com/shrZEkjkKomzgWh5Y


406 J. Pavlopoulos et al.

The Papyri Literary Fragments (PLF) dataset consists of 242 images of
publicly available papyri fragments, from 1BCE to 9CE. As shown in Fig. 1,
most fragments come from the 2nd or the 3rd CE, followed by the 9th and
the 1st CE. When multiple fragments of the same manuscript were available,
we included all of them. The date provided for most fragments is not specific.
Typically, the minimum date range assigned to a literary papyrus spans 50 years,
but it may reach up to two centuries. Most often, the latter cases concern a date
between the two most frequent centuries (noted in Fig. 1 as ‘2,3’ CE). Our study
focused on the four first centuries, from 1 to 4 CE, comprising 168 images of
literary papyri. Nine images were empty, which led us to 159 images in total.
The final distribution across the four centuries (1-4CE) was 20, 61, 60, and 18
respectively. We converted our images to grayscale to reduce the dimensionality
and to facilitate machine learning experiments.

The Papyri Literary Lines (PLL) dataset extends PLF so that images of
the text lines of the fragments are provided instead of images of the whole frag-
ments. The 159 images were segmented automatically using the Transkribus
HTR platform,2 yielding 4,655 line images. For this segmentation step, we used
the default settings in Transkribus and did not train a specific baseline model,
due to the multiformity of our material. We interfered minimally, by manually
correcting text regions where none or very few lines were captured in the auto-
matically generated segmentation. We also manually corrected a small number
of base lines and line regions (appr. 1–2%), when no or insignificant amount of
writing was captured, or when substantial and useful writing areas were obvi-
ously excluded. Even so, a considerable number of possibly useful lines were not
added and in several cases the automatic segmentation captured multiple lines
in an instance, or substantial amount of background with minimal writing. As a
result, the dataset would benefit from more interventional curation. We did not
eliminate lines with noise, such as damaged papyrus surface, gaps in the writing
material (holes), and lines bordering the edge of the papyrus. As a result, several
line images still contain noise.

The balance of the dates followed that of PLF, with 439, 2,116, 1,797, and
303 images from the 1st, 2nd, 3rd, and 4th CE respectively. As can be seen in
Fig. 2(b), most images are higher than 50 pixels but width is characterised by a
greater variety. Figure 2(a) presents the scatterplot of PLL, where lines comprise
texts of various lengths, from a single word to more than ten. We filtered out
images with a height lower than 50 pixels and ones with a width less than 300
pixels, which resulted in 2,774 images in total (40% reduction).

4 Method

Our method, called fCNN, is a 43m-parameter CNN that exploits augmentation
so that it is robust to fragmented input, often met in papyri.

2 https://readcoop.eu/transkribus/.

https://readcoop.eu/transkribus/
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Fig. 2. Scatter plot of the width (shown horizontally) and height of the images.

4.1 fCNN

The network consists of two Conv2D layers to represent the image of each text
line, of 32 and 64 channels respectively, followed by a 3-layer feed-forward neural
network (FFNN) with a single output neuron to yield the date. We used a con-
volutional kernel of size 5, single stride, zero padding, and max-pooling (2× 2).
The FFNN receives a flat representation from the Conv2D which is reduced to
1024 and then to 512 neurons before the date is estimated. A ReLU activation
function is used per layer.

Synthetic Fragmentation is a possible augmentation channel during training.
Papyri are very often fragmented, leading to partial information in the image
to be dated. We exploited this pattern as part of our augmentation strategy, by
erasing randomly (0.5 probability) image fragments, setting their pixel values to
0.5. Images were transformed with Gaussian blur (kernel size of 3) and random
affine (up to 3◦). The actual letter size as well as the image ratio to actual size
in our dataset greatly varies, hence, to assist the network’s robustness, we also
randomly cropped and resized each image by keeping the 1:6 aspect ratio.

4.2 The Baseline

We used the state-of-the-art in regression, which is achieved by ensembles [5],
including Extremely Randomized Trees (XTR) and XGBoost (XGB). We exper-
imented with both these regressors, using patches of 50*300 windows cropped
from the center of each image, which was also represented with PCA-extracted
500-dimensional features. In our preliminary experiments, PCA led to better
results compared to image binarisation using Canny edge detection and Otsu,
which have been reported beneficial in writer identification [13]. We used the
implementation provided by sklearn setting all hyper-parameters to default
values, besides the objective of XGB, which was set to the squared error.
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5 Experiments

We approached dating, which is a regression task, with fCNN, a CNN that uses a
fragmentation-based augmentation strategy. We experimented with algorithms
on the PLL dataset, using as input the images of the lines of the papyri and as
output the date of the respective papyri. We also show results when we cast the
problem as a classification task, predicting the century as one out of four labels.

5.1 Experimental Details

We used Adam optimisation [10] with a learning rate of 1e−3, batch size of 16,
200 epochs, early stopping with patience of 20 epochs. The regression variant
was trained with a mean squared error loss and the classification variant with a
cross entropy loss. We used PyTorch and we release our code in our repository.3

The benchmark

A majority baseline (BLM), which always predicts the 2nd CE, achieved an MAE
of approx. 0.632 and an MSE of 0.772. XTR and XGB perform better than this
weak baseline, with a considerable difference when looking at MSE. The latter
penalizes greater distances more, which means that papyri of the 1st and 4th
CE were better handled by XGB and XTR. Our fCNNr performs considerably
better than all the baselines, achieving an average absolute error of 54 years.

Table 1. Mean absolute and squared error of dating along with their standard error
of the mean in parenthesis.

MAE ↓ MSE ↓
BLM 0.632 (0.032) 0.772 (0.050)

XGB 0.612 (0.005) 0.558 (0.012)

XTR 0.610 (0.006) 0.544 (0.012)

fCNNr 0.540 (0.001) 0.511 (0.009)

From Regression to Classification

By rounding the predictions of our fCNNr, we created a confusion matrix, which
is shown in Fig. 3(a). Confusion regards mainly neighboring centuries. The model
correctly detects images from the 2nd and 3rd while images from the 3rd may
be predicted close to the 2nd, and vise versa. Difficulties in dating regard the
two edges, because the 1st and 4th CE are more often predicted as of the 2nd
and 3rd CE respectively.
3 https://github.com/ipavlopoulos/palit.

https://pytorch.org/
https://github.com/ipavlopoulos/palit


Explaining the Chronological Attribution of Greek Papyri Images 409

(a) fCNNr (b) fCNNc

Fig. 3. Confusion matrices of fCNNr (rounded predictions) and fCNNc.

Although our task in hand is a regression one in nature, we also trained and
assessed a classification variant (fCNNc), which learns to disregard the order of
centuries and simply treat them as labels. In Fig. 3(b), we observe that results
improve across all centuries except from the 4th CE, where the difficulty remains
approximately the same. Table 2) shows the F1 per century per fCNN variant,
along with the benefit in absolute number when using the classification head
instead of the regression one. We also trained an XGB and an XTR classifier,
with the former performing better yet much worse than fCNNc.

Table 2. F1 per century of fCNNr (predictions are rounded) and fCNNc, the absolute
difference between the two is shown in parenthesis.

1CE 2CE 3CE 4CE

XGB 0.38 0.69 0.58 0.09

XTR 0.00 0.56 0.44 0.00

fCNNr 0.35 0.62 0.56 0.25

fCNNc 0.69 (+0.34) 0.78 (+0.16) 0.73 (+0.17) 0.26 (+0.01)

Despite the fact that both fCNN variants are trained on the same data, we
note that we do not consider them as competitors. The regression-based fCNNr
suggests a date, which can provide a very rough estimation of when the papyrus
was written. If the predicted date was 280CE, then this is an indication that
the papyrus is dated between the 3rd and the 4th CE, and that a year close to
the latter is likelier. On the other hand, the classification-based fCNNc suggests
a century and yields a score to indicate its confidence. If the predicted century
was the 4th CE and the confidence was 80%, then this means that the network
is confident that the date is 4th and no other. Although our task in hand is
one of regression, both can generate useful explanations. Therefore, since our
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end goal is to assist and not supplement the expert, we used them both in our
explainability study, discussed next.

Explainability

Saliency maps [21] reveal the parts of the image which are responsible for the
network’s prediction. We experimented with both variants, fCNNr and fCNNc,
and we used both, gradient- and perturbation-based attribution. In this study,
we opted for fCNNc using gradient-based attribution, but we observe that expla-
nations by the two variants can be combined to yield richer explanations.

(a) 1CE (b) 2CE

(c) 3CE (d) 4CE

Fig. 4. Saliency maps for lines of papyri per century

We computed one heatmap per predicted line and we present a random sam-
ple of lines in Fig. 4. The heated colours show that the network consistently
focuses on the letters in order to yield its predictions for the date. This means
that the model is basing its prediction on the shape of specific letters, the dis-
tance between them, the size, or the intensity of the ink. By contrast, it seems
invariant from background noise and other attributes which may be often present
in Greek literary papyri. For example, gaps (holes in the papyrus) such as those
in Figs. 4(a) and 4(c), do not get any attention by the model.

6 Assessing Data Sources Limitations

CDDGB is not a product of targeted research on securely dated papyri, but
rather a compilation of such examples mentioned in other papyrological works.4

4 More reliable compilations are promised by current projects, but are still work-in-
progress for the time being.
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Hence, the collection is not comprehensive and the data included is not metic-
ulously assessed by the compilers. Shortcomings concern the accuracy of some
dates. Still and all, it is the same data of objectively dated papyri that papy-
rologists use as reference for palaeographical dating. In this study, we introduce
the computational factor in assessing scripts in connection with their assigned
dates. Also, by focusing on the explainability of dating images of handwritten
text, we do not consider these shortcomings detrimental. The possible inaccu-
racies in dating and the wide-range of the assigned dates does not affect the
explanations, which aim to provide pointers on features of the script.

The imbalance in the size of the fragments and quantity of lines is an inher-
ent issue owing to the nature of the available material. A papyrus may contain
three or four usable lines, whereas others may have more than fifty. This does
not affect dating significantly because, although test lines may come from a
manuscript not hidden during training, each line constitutes a completely dif-
ferent image pattern. The same issue could be an advantage regarding explain-
ability, because possible features are brought out in a more controlled manner
when multiple lines of the same manuscripts are involved. While some features,
especially palaeographically insignificant characteristics, remain consistent (such
as colour/intensity of the ink, texture and colour of the background, general size
of script, scale, etc.), explanations can focus on pivotal ones.

Our train and validation subsets are mutually exclusive at the line level but
not necessarily at the fragment level. Although the former is straight forward,
the latter is not due to the diversity of lines in the fragments. To experiment
with the latter, we kept lines from papyri whose index modulo a value (13) was
zero for validation and testing (in half), keeping the rest for training. Although
introducing a distribution drift, presenting relatively fewer lines from 1CE during
testing, this split met our restrictions. The error of fCNNr is slightly higher
(0.612±0.002), but remains the best. The F1 score remains approx. the same in
classification, except from the 1st CE that drops to 0.4 but whose support in
the test set is only 3 (out of 80) images. Future work will carefully compile more
train, development, and test subsets, to investigate this issue further.

7 Error Analysis

To go further in our understanding of the relevance of our experiment, we provide
in this section an error analysis, followed by an experiment on the way the model
handles the damages on the papyri by ablating input images before dating.

Analysis. By studying fCNN’s deviations from the ground truth, we observe
that these concerned predictions toward the neighbouring century. Images from
the two edge centuries, 1st and 4th CE, are scored up to the 2nd and 3rd CE
respectively, the two most frequent centuries (Fig. 1). Images from the 2nd and
3rd CE, on the other hand, were scored not far from each other, most often
to the 3rd and the 2nd respectively. By looking at the saliency maps of the
misclassifications, we observed that letter-shaped noise, present in the source
images, received the model’s focus.
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Ablation. Our error analysis revealed that fragments may deceive our model.
In order to investigate the model’s sensitivity, we fed fCNNc with test images,
augmented with randomly-shaped black and white patches. We observe that the
model’s focus changes according to the colour of the patch. White boxes appear
to be disregarded by our model, by contrast to black boxes, which are receiving
attention. An example is shown in Fig. 5, where the same line from a papyrus
of the 3rdCE is altered in two ways. In Fig. 5(b), the focus is everywhere except
from the white patch. This is in line with our findings about the breaks, which
are also depicted in white in the images (Fig. 4). By contrast, the black patch
of Fig. 5(a) affects the prediction as if the model is guessing what character was
missing and as if the black colour of the patch was ink.

(a) black (b) white

Fig. 5. Saliency maps of the same test line, from a papyrus of the 3rd CE, whose source
image was transformed either with a black or a white patch before dating.

8 Dates in Doubt: A Computational Estimate

fCNN can accurately predict the date of a text line image (Table 1) and, when
the task is simply to predict the century and not an exact date, a classification
variant that ignores the temporal relation of the labels yields even better results
(Table 2). As was shown from our study of saliency-based explanations, fCNN
focuses on the letters, that is the foreground and not the background (e.g., the
blank parts of the papyrus sheet, the fibres, the holes and damages). In order
to provide the experts with suggestions that could possibly improve the current
dating,5 we apply this network to loosely dated texts (across two centuries).

In our primary source, 11 papyri are dated either to the 2nd or the 3rd
CE. Using fCNNc, we found that 87% of the lines are classified to the 2nd or
3rd CE. Exceptions were from 16 which were classified to the 1st and 1 which
was classified to the 4th. Figure 6 presents the analytical results. Using fCNNr,
we attempted then to estimate a more precise chronology for the lines in these
papyri. Despite the fact that our regressor was trained on ground truth at the
century level, our expectation is that it will have learned to yield a chronology
5 Datings usually come from one expert, the editor of the text. Sometimes another

expert makes a case that the dating should be modified and the correction may be
accepted or provided as alternative dating.
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Fig. 6. Chronological attribution of fCNNc of lines in fragments dated between 2-3CE

that is closer to the objective date. Figure 7 presents our predictions, organised
per papyrus. The predicted dates for the lines of P.Oxy 3005, which was classified
by fCNNc on the 3rd, are diverse, with the majority falling on the late 2nd and
early 3rd. Overall, our network’s estimations agree with the range provided by
the experts. The earliest prediction was 98CE, for a line in P.Oxy. 661. This
papyrus comprises parts of a poem by Callimachus and is dated from 150 to
250 CE,6 with the first editor arguing that it is the late 2nd CE.7 On average,
our predictions suggest 200CE, but some lines are predicted as early as 100CE
while others as 250CE. The latest prediction is 270CE for a line in P.Flor. II 120,8

dated from 250 to 261CE. In this papyrus, in very few lines our predictions agree
with the experts, because on average our network dates it before the 200CE. In
P. Oxy. 4560, only one line is used, and date is 100CE. In P. Oxy. 232, although
lines are few, all our predictions date the papyrus between 100 and 150CE.

Fig. 7. Chronological attribution of fCNNr of lines in fragments dated between 2-3CE

6 https://www.trismegistos.org/text/59375 (accessed: May 25, 2023).
7 The Photographic Archive of Papyri in the Cairo Museum (accessed: May 25, 2023).
8 https://papyri.info/ddbdp/p.flor;2;120 (accessed: May 25, 2023).

https://www.trismegistos.org/text/59375
http://ipap.csad.ox.ac.uk/4DLink4/4DACTION/IPAPwebquery?vPub=P.Oxy.&vVol=4&vNum=661
https://papyri.info/ddbdp/p.flor;2;120
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9 Conclusions

This work introduced two datasets of images of Greek literary papyri, one with
whole papyri fragments (PLF) and one with lines of writing (PLL). Our experi-
ments showed that an augmentation-enhanced CNN predicts the date of text-line
images with a mean absolute error of 54 years, using a regression head, and a
macro-average F1 of 61.5%, using a classification head, setting the state of the
art for Greek papyri image dating. An explainability study revealed that fCNN
clearly focuses on letters to predict the date, following the palaeographer’s path.
Using fCNN, we predicted the date of the text lines in eleven papyri, whose
objective date is ranging across two centuries, and we discussed our findings.
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Abstract. Japanese early-modern woodblock prints depicting pastoral
views of the countryside, so-called meisho-e (images of famous places),
are often defined today as landscapes (fūkei). However, the notion of
fūkei is a modern cultural translation, which obscures specificities of
Japanese visual culture, and intricacies of early modern spatiality or a
socially produced space. To uncover these characteristics and provide a
more nuanced understanding of meisho-e prints, we have engaged in a
macroanalytical study of relationships between places depicted in prints
and actual topography, aided by computational technologies rooted in
Natural Language Processing (NLP). In our prior work, we experimented
with automated harvesting of geospatial data from image-content-related
inscriptions on two hundred prints. In this follow-up work, we undertake
a large-scale automated mapping of meisho and we study the geographi-
cal distribution of sites featured in these prints. We explore two different
computational paths, one using deep learning and one based on digi-
tal gazetteers, and reflect on the challenges and benefits of the applied
computational approaches. We improve the former, which was the state-
of-the-art, using pre-training, and we show that the latter is beneficial
in terms of mapping. Finally, by using automatically extracted place-
name entities, we undertake an analysis of prints over space and time.
We release our code and the dataset for public use: https://github.com/
Connalia/ai-jan-art.

Keywords: NLP · Spatiotemporal Analysis · Art History

1 Introduction

Among the most globally recognised artifacts kept and displayed in museums
worldwide are Japanese landscape prints designed by some iconic artists such
as Katsushika Hokusai (1760–1849) or Utagawa Hiroshige (1897–1858). These
images depicting peaceful views of the countryside featuring mountains, rivers,
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and rural dwellings, are commonly assumed to depict realities and topographies
of pre-modern Japan, and as such defined fūkei or ‘landscapes’. However, fūkei
is a modern term developed in the process of cultural translation shaped by
Western modern art epistemologies. In fact, these prints are more appropriately
described as meisho-e or ‘images of famous places’. Initially, these ‘famous places’
(meisho) were not depicting actual sites, which could be geolocated on the map
of Japan, but poetic rhetorical figures rooted in classical poetry. These so-called
utamakura (lit. poem pillows) tied seasonal images and symbolic motives, with
particular places [9].

In the context described above, the actual topography of meisho places was
not the guiding principle for their visual depictions [4]. In fact, meisho-e prints
such as those designed by Hokusai or Hiroshige curate geographical reality in
multiple ways. They maintain links to this reality mainly through printed inscrip-
tions that feature a wide variety of place-names. These characteristics changed
in time, especially in the first half of the ninetieth century, when many new
toponyms entered the world of printed culture, and meisho strengthened their
relationships with physical reality. Nonetheless, identification of the depicted
places and their geolocation is far from being straightforward, which challenges
interpretation of meisho-e prints as landscapes, and hinders understanding of
their social function in general.

The issues, which were only briefly presented above, have not been compre-
hensively addressed to date. The research on meisho-e prints remains fragmented
and often focuses on specific print series or individual designers rather than
attempting to look at the genre and its epistemology at large. This is mainly
due to the richness and diversity of the visual material that escapes traditional
analytical methods based on close reading or interpretation of selected individ-
ual images. In this context, Natural Language Processing (NLP) can facilitate
the discovery of new knowledge, through the analysis of large cultural datasets
of digitised objects, and offer a possibility to rectify this situation.

1.1 Research Aims

This study provides a macro-analytical exploration of meisho-e prints through
Named Entity Recognition (NER). The contributions of this work are as follows:

– We benchmark NER on inscriptions of meisho-e prints, comparing the state-
of-the art [12], a fine-tuned Japanese BERT [6], with simpler gazetteer-based
approaches. We show (i) that the former is better, and (ii) that further pre-
training of BERT leads to better results, setting the new state-of-the-art.

– Despite its superior performance overall, we show that BERT-based
approaches still fall short compared to the much simpler gazetteers, when
geolocation of places is the objective.

– We extract place-name entities for approx. 20k meisho-e prints, which we use
to perform a large-scale spatiotemporal analysis of place-names distri-
bution across time, aiming to discover which meisho are the most popular per
time period, and how these preferences were distributed in space; i.e., which
areas were considered culturally significant and at which times.
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As spatiotemporal analyses are not limited to the mapping of depicted places,
we also conduct the analysis of formal aspects of prints aiming at developing an
understanding of how space is represented in prints. More specifically, we take a
pivotal step to study how the colour schemes in prints changed in time and in
relation to the depiction of different types of places. This new experiment opens
up new analytical venues that we plan to explore in the future.

2 Related Work

Recent years saw an advancement in the field of Spatial Humanities and Spatial
Art History building on Geographical Information Systems (GIS), Natural Lan-
guage Processing (NLP) and Corpus Linguistics [17]. However, although these
analytical paths bring good results in the study of contemporary datasets it is
not always the same for historical materials. Also, spatial analysis of Japanese
pre-modern materials such as meisho-e prints, remains especially challenging,
among others due to their formal characteristics (e.g., different perspective prin-
ciples), difficulties with place identification (e.g, ambiguity of the depicted visual
motives, problems with accurate transcription and lack of textual metadata)
etc. Important contributions have been made recently e.g. the digitization of
Japanese prints collections and the development of print databases worldwide
[1], and among others, the initiation of computational analysis of Japanese prints
targeting the questions of style [16], attribution [8] and content e.g. images fea-
turing figures of kabuki actors [19] etc. or even geolocating of the selected print
series depicting Edo city [15]. However, these important efforts study relatively
small datasets, focus on testing technical solutions rather than large theoretical
questions and do not target ‘landscape’ images at a scale and depth that would
enable the development of an entirely new epistemology of this art genre.

Large-scale spatial analysis and the mapping of meisho-e prints with geo-
graphical information systems remains challenging as place identification is facil-
itated by the image-content related inscriptions printed in the images that
often feature place names. But due to the high complexity of the task, read-
ing early-modern inscriptions has so far been conducted by experts in Japanese
pre-modern art history and literature. The task has been challenging for both
humans and machines and it is estimated that only 1% of pre-modern textual
sources have been transcribed [13].

Computational tools are expected to improve this situation. Automated text
recognition technologies, e.g., Optical Character Recognition (OCR) and Hand-
written Text Recognition (HTR), can yield the text in an image in a machine
readable form. However, conducting OCR and HTR analysis on pre-modern
Japanese texts is a challenging task due to the intricacies of Japanese writing
systems. There are several reasons for this. First, this is due to a large number
of characters used in pre-modern texts (ca. 4,500 characters are used [11]), of
which many appear only once or twice in a given dataset. Second, the texts
use so-called hentaigana or ‘kanji variations’ in which kanji characters could
be used alternately depending on their phonetic value, and in multiple ways or
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forms. As a result, the same word could be written in different characters [18]
and in different forms, or they could be written in a phonetic alphabet. Third,
methodological challenges also include a lack of training data and applicability of
software developed for the analysis of Western materials and texts in the study
of non-Western materials. Fourth, the layout of texts is not always sequential
and is characterised by a great variety of spatial distribution across the page and
integration with the illustrations (both in single prints and printed books).

Therefore, the application of OCR software for automated transcription of
text has been developing slowly in the case of East Asian languages using logo-
graphic writing systems [3]. Only recently, the field noted considerable progress
in the development of OCR instruments. The new tools for automated reading of
early-modern texts such as KuLA (Kuzushiji Learning Application) [7], KuroNet
and Miwo [5,11] and newly established databases, among others, the National
Institute for Japanese Literature, the National Institute for Japanese Language
and Linguistics, the National Diet Library Digital Collections, the Waseda Uni-
versity’s database, the Ritsumeikan University’s ARC Portal Databases as well
as datasets created, among others, by the National Institute of Informatics and
the Center for Open Data in the Humanities (CODH) provided an excellent
incentive and facilitated progress in the field of automated data harvesting from
Japanese pre-modern textual sources. However, it is not feasible to develop one
computational transcription tool for all pre-modern manuscripts, printed texts
in books and visual images.

These and other challenges are also relevant to the automated reading of
place-names inscriptions on visual images, even the prints produced at the same
period. Therefore, transcription of inscriptions is one of the main obstacles not
only for historians and literary scholars but also for art historians interested in a
large-scale spatiotemporal analysis of meisho-e prints. Therefore, to expand the
existing analysis of prints, and achieve our research goals we engage the so-called
‘distant viewing’ approach [2] and explore technological solutions facilitating a
large-scale automated mapping of meisho or famous places depicted in prints
produced between ca. 1750 and 1850, and we study the geographical distribution
of sites featured in these prints. We explore two different computational paths,
one using deep learning and one based on digital gazetteers, and reflect on the
challenges and benefits of the applied computational approaches.

3 The Corpus of Digitised Meisho-e Prints

The access to the data for this work was facilitated by the database hosted at
the Art Research Centre at Ritsumeikan University, Kyoto. The Centre’s digital
databases of Japanese printed culture host approx. 700,000 (678,429) digitised
objects kept at 28 institutions in Japan and abroad. We use the 200 train- and
test-annotated data with their place-names from [12]. Our study used 22,959
inscriptions that related to keyword meisho (famous place). These digitised
prints depict mainly natural environments. Only 10,421 of them have meta-
data specifying production dates important for our study. Statistical overview of
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textual information in the 200 inscriptions studied previously [12] as compared
to our new set of 22,959 is presented in Table 1.

Table 1. Statistics of the inscription texts in our study and in [12], including the
number of texts, the average, the min., the 1st and 3rd quartile, the max. length in
characters.

Num. Avg St.dev. Min 25% 75% Max

Ours 22,959 11 7.9 2 9 13 444

[12] 200 20 8.5 5 14 23 59

4 Methods

In this study, we used NER to conduct a large-scale automated mapping of
meisho or famous places depicted in prints produced between ca. 1697 and 1978.
BERT-based NER has been found to be accurate for the task in hand [12]. On
the other hand, gazetteer-based approaches hold valid latitude and longitude
coordinates while not requiring any labelled data, as is the case of deep learning.

BERT-FT. In [12], the authors used a Japanese pretrained BERT.1 The model
was pre-trained on Japanese Wikipedia articles and was fine-tuned for place-
name entity recognition. The authors showed that merging location and geopo-
litical entities into a single place-name one leads to improved inter-annotator
agreement and results. We used this model as a strong baseline, geolocating
the recognised entities on a map, in order to elaborate on the limitations of
BERT-based models. We call this fine-tuned BERT as BERT-FT.

GOJ. The Gazetteer of Japan (GOJ) issued by the Government of Japan,2

includes more than 4,000 modern place-names. It does not include any historical
place names. This is an important limitation, because the inscriptions of this
study refer to such historical places, some of which may have been altered over
time. Edo, for example, is now called Tokyo, and as such is found in GOJ.

GeoLOD. In [10], the authors introduced a gazetteer of Japanese toponyms
that comes bundled with a geotagging algorithm. The tool is based on data
from three databases: “Prefectures of Japan”, “Historical Administrative Area
Data Set Beta Dictionary of Place Names”, “Railroad Stations in Japan (2019)”.

1 https://huggingface.co/cl-tohoku/bert-base-japanese.
2 https://www.gsi.go.jp/ENGLISH/pape e300284.html.

https://huggingface.co/cl-tohoku/bert-base-japanese
https://www.gsi.go.jp/ENGLISH/pape_e300284.html
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BERT-FP-FT. The Wikipedia articles which were used to pre-train BERT-FT
do not cover the language used in our inscriptions, which were produced during
the Edo period (1600–1868). To address this issue, in this study, we used 20,346
inscriptions to further pre-train Japanese BERT, before fine-tuning for NER.
We used a masked language modelling objective, which is a language modelling
task where the model is trained to predict the missing token(s) in a text. Our
hypothesis is that this objective will allow the model to learn the language and
the context of inscriptions from the Edo period, used in our dataset.

5 Experiments

Masked language modelling, or MLM in short, was used to further pre-train
the Japanese BERT. We used a batch size of 64, a max length of 128 tokens, a
learning rate of 2e−5, 20 epochs, 500 warm-up steps, and a weight decay of 0.01.
To measure the model’s ability, we measured the accuracy of the predictions for
masked tokens. Further pre-training improves the average negative log likelihood
of masked tokens (the same for the two models), from 2.22 to 1.27 (−43%).

We used MLM to yield our BERT-FP-FT model, which we compared with
GOJ, GeoLOD, and BERT-FT [12]. As shown in Table 2, GeoLOD was better
than GOJ, achieving 39% in F1. Both gazetteer-based approaches achieved high
precision but low recall. A preliminary error analysis revealed that they could
not detect all place names from the Edo period, but more experiments are needed
to verify this. BERT-FT achieved 77% in F1. BERT-FP-FT outperformed its
competitors in all the evaluation metrics and its difference in F1 (+4) from
BERT-FT, which we consider as the previous state of the art, is also robust, as
we can see in Table 3, where we repeated the experiment three times.

Table 2. Evaluation of GOJ, GeoLod, BERT-FT [12] and BERT-FP-FT.

Precision Recall F1

GOJ 0.92 0.07 0.13

Geolod 0.97 0.25 0.39

BERT-FT 0.76 0.78 0.77

BERT-FP-FT 0.79 0.82 0.81

Table 3. F1 across the 3 folds used for Monte Carlo Cross Validation

#1 #2 #3 avg

BERT-FT 0.80 0.82 0.85 0.82

BERT-FP-FT 0.82 0.85 0.90 0.86
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6 Empirical Analysis

6.1 Inscription Text Restoration

One of the major problems in the transcription of inscriptions on prints, which
facilitates their spatiotemporal mapping, is the quality and readability of his-
torical material. In time, the material quality of prints deteriorates e.g., as the
result of light exposure the paper and pigments undergo discolouring, which hin-
ders the readability of the texts. Prints also may be damaged in other ways (via
tearing, insect activity), which diminishes their readability by the public (both
experts and the wider public). In this context, MLM can help restore fragmented
inscriptions, by replacing with [mask] the token to be restored.

We present a use-case of this method by testing its applicability in the restora-
tion of an inscription on a selected print by Utagawa Hiroshige Fig. 1. The print
presents a view of the famous Seta Bridge in the southeast part of Lake Biwa
with Mt. Mikami in the background. The upper left cartouche comprises the
inscription (also shown in Fig. 1). We masked the second kanji character in this
inscription assuming that it was not readable (e.g., destroyed) Fig. 1. We fed our
MLM with “瀬[mask]夕照 ” and the model correctly predicted that the missing
character is 田 (Table 4, first two columns of the first row). By masking and
restoring the first kanji character, however, the model had trouble identifying the
correct character (Table 4, last two columns). This is probably due to the fact
that the first character refers to the name of a specific place, while the second
is a generic term 田 or ‘rice field’ often used in different place names in Japan.

Table 4. Two masked tokens predicted by BERT w/o and w/further pre-training.

瀬瀬瀬[mask]夕夕夕照照照 [mask]田田田夕夕夕照照照

w/o w/ w/o w/

田 0.15 田 0.79 UNK 0.13 嶋 0.04

野 0.06 川 0.03 都 0.02 隠 0.03

下 0.05 崎 0.02 狩 0.01 茨 0.02

Similarly, in other prints featuring the inscription with the place-name 浅間
山 or ‘Mt. Asama’ or ‘Asama Mountai’ (which is, in fact, a volcano), we observe
that the word 山 or ‘mountain’ is correctly restored, but this is not the case
when we mask the first word浅間 or ‘Asama’ instead. This is because the word
is a generic term describing a topographical formation (ie., mountain) used in
many place-names (e.g. mountains) in Japan. Nonetheless, this experiment has
shown both opportunities and challenges related to the automated transcription
of inscriptions in meisho-e prints.
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Fig. 1. The print by Utagawa Hiroshige (1797–1858) entitled “Sunset Glow at Seta”
(瀬田夕照 ), from the series “The Eight Views of Ōmi” (近江八景 ), 1834–35, woodblock
print, MET (OA). On the left we see two cartouches with inscriptions, the first one
with the second kanji character masked, and the second one, the original version with
no character masked.

6.2 Data Augmentation with OCR

The next analytical step towards large-scale mapping of places depicted in
print is experimenting with computational tools with automated transcription
of inscriptions on prints, which feature place-names. The corpus of Japanese
pre-modern printed books and single prints is extremely rich. For example,
Kokusho Sōmokuroku (General Catalog of National Books) alone includes more
than 450,000 pre-modern books [14], 90% dated to the Edo period (1600–1868).
However, only less than 1% of these books have been transcribed to date. OCR
could provide a solution to this problem, presuming that historical books, prints,
and documents are available in digital format. In this work, we hypothesise that
NER can be performed on the OCR-recognised text, and information about the
place-names can be extracted despite the noise generated during the automated
recognition phase.

We used a pretrained Japanese OCR model,3 in order to extract the text
inscribed on meisho-e print images. Then, we applied NER on the OCRed out-
put, investigating the possibility of enriching our primary source of data before
moving on to exploration at a larger scale. For example, as is shown in Fig. 2, we
analysed Hokusai’s print entitled “Inume Pass in Kai Province” (甲州犬目峠 )
from the series “Thirty-six Views of Mount Fuji” (富嶽三十六景 , ca. 1830–31).
We extracted the white rectangular cartouche with the inscription, located in
the upper left corner of the image, and we experimented with different OCR
models to transcribe the text. Then, we applied NER on the OCRed text. The
recognition tool performed relatively well, with the model recognising 富嶽 or

3 https://huggingface.co/kha-white/manga-ocr-base.

https://huggingface.co/kha-white/manga-ocr-base
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“Fugaku” (marked in red colour) which is an alternative name for Mount Fuji.
This is a promising result given that our model was not trained on OCRed input.
If successful, this application will not only allow large-scale exploration, but can
also unlock related applications for the study of early-modern printed books.

Fig. 2. Brown colour indicates the correct Japanese characters while red colour indi-
cates the place-name extracted by the Bert NER model (Color figure online)

NER on OCRed transcriptions is indeed promising, but challenges exist.
When it comes to longer texts such as poems, due to the characteristics of the
Japanese pre-modern writing system and the formal specificities of the design
(e.g., multicolour cartouches), the recognition is largely distorted, for exam-
ple, when the model delivered only four correct characters scattered across the
inscription. The following question arises, then: is this error affecting the per-
formance of NER models, and if so, can we learn to bypass it? To address this
question, we plan to assess NER on OCR output, in order to quantify the error
that is propagated from the recognition of written text to the recognition of
named entities. Furthermore, we also plan to improve the written text recogni-
tion outcome. For example, one thing we are considering is joining forces with
OCR error correction challenges.

6.3 Geolocating Recognised Place-Name Entities

Finally, we experimented with geolocating the recognised places, by applying
several methods (as described earlier in Sect. 4 (Analytical Tools). The scope of
this experiment was to assess if the reported evaluation results are reflected in a
use case. In principle, the map featuring places depicted in prints, which would
result from our spatiotemporal mapping experiments, could be envisioned as a
tool for the study of spatial relationships between geographical places and their
representation in prints and their changes across time. Figure 3 provides such an
example, by visualising the frequency of appearance of recognised place-names
across our dataset.
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Fig. 3. Visualisation of a publicly available interactive map we created, serving
exploratory purposes of the recognised (using GeoLOD) locations which meisho-e
prints depict (the disc radius reflects the frequency)

BERT-Based Methods. By using BERT-FP-FT, we observe that the model
included different kinds of entities and not only place-names, yielding a faulty
geolocation. In Table 5, which presents the ten most frequently recognised place-
names across our data, we observe the presence of generic categories of landforms
or human-made objects, e.g., ‘mountain’ or ‘bridge’, as well as grammatical forms
such as the preposition ‘of’. We also observe two more error sources. First, a few
recognised places were geolocated outside of Japan, like Jiang, and Sichuan.
Second, historical place-names extracted with NER from meisho-e inscriptions
are not easily geolocated on contemporary maps of Japan. This is due to the
historical transformation of Japanese writing systems, and historical changes in
administrative geography in Japan as the retrieval algorithms are trained on
contemporary datasets and gazetteers of toponyms (place names). For example,
the tool could not geolocate the names of roads such as ‘Tōkaidō’ that are not
pinnable on a map by a single pin. ‘Tōkaidō’ was represented as a larger grouping
of pins and was located in Aichi prefecture. Also, Tokyo, Kawasaki, and Fujisawa
were located on the Izu peninsula, which is not geographically correct.4

Gazetteers. When tested, gazetteer-based approaches, which already hold valid
latitude and longitude coordinates, were overall more precise compared to BERT-
based ones. The Gazetteer of Japan (GOJ) did not detect many place-names,
mainly because it does not cover historical toponyms from the pre-modern
period. GeoNLP was more precise but it could also not detect all place-names
from the period. Therefore, despite the better performance of BERT-based mod-

4 We observed similar findings for BERT-FT.



426 K. Liagkou et al.

Table 5. The most frequent places extracted with BERT-FP-FT

Rank Place Count

0 Tōkaidō 3657

1 Edo 3328

2 Toto 1602

3 Tokyo 751

4 Kiso 670

5 of 545

6 bridge 478

7 Jiang 476

8 Mountain 462

9 Sichuan 452

els, we find that gazetter-based approaches still hold the advantage when the goal
is geolocation and mapping of meisho-e prints.

6.4 Spatiotemporal Analysis

Following our findings, we conducted spatiotemporal mapping of meisho
depicted in prints aimed at the identification of the most popular places at
different historical periods. In Fig. 4, we present the frequency of recognised
place-name entities over time. We used the GeoLOD for our purposes, to opt for
high precision (Table 2). We have found out that the depiction of places (includ-
ing both natural and man-made formations) flourished especially in the 19th
century, especially between the 1830 and 1860s, and that different places were
popular in different historical eras.

Fig. 4. Frequency of place name entities, recognised with GeoLOD, over time

We also experimented with analysis of formal aspects of the prints and how
certain places were depicted, namely what colour schemes were used in their
depiction across time. We analysed the colour of 3,505 meisho-e images printed
during 16 historical eras, from 1751 to 1868. We transformed images from RGB
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(i.e., red, green, blue) to HSV (i.e., hue, saturation, lightness) and each pixel
was classified to the colour it depicts, by using the classification presented in
Table 6. This classification allows us to compute the percentage of each colour
for an image (i.e., how many pixels are classified to the respective colour out of
all in the image). Figure 6 presents the colour percentages averaged across the
images of each time period. We observe that yellow is the most frequently-used
colour over time. Red and green follow, with the former being most dominat-
ing during early time periods (1751–1772) while the latter dominated after the
Kaei era (after 1854). Blue and cyan followed, with low percentages over time.
These analytical results may indicate historical changes in colour preferences
among the print producers (designers, artists) and consumers as well as tech-
nological developments e.g. availability of certain pigments etc. They also may
be correlated with certain types of motives and topographical formations (e.g.,
mountain, sea) and to a lesser degree even specific places (e.g., colour schemes
linked to the depiction of the Edo city).

Table 6. HSV ([hue, saturation, value]) range (from, to) per colour

Colour HSV: from HSV: to

blue [110, 50, 0] [130, 255, 255]

cyan [80, 100, 100] [100, 255, 255]

green [36, 0, 0] [70, 255, 255]

red [0, 25, 0] [15, 255, 255]

yellow [16, 25, 0] [35, 255, 255]

Figure 5 for example, we observe that brown and blue dominate, which
reflects the type of depicted motive, i.e. the bridge, representing both water
and land. Beige colouring also results in discolouration of the paper which prints
undergo in time under the influence of the exposure to light. The dominance of
brown and blue can also be seen in the 3D representation of the colours of that
print (Fig. 5).

We investigated the correlation of specific colour schemes and historical peri-
ods and specific places. We focused on the two most frequent depicted places 東
海道 or ‘Tōkaidō’ and 江戸 or ‘Edo’, which generated 468 and 575 hits respec-
tively. We calculated the amount of blue and cyan per image and historicised
the results Fig. 7. We observed that prints depicting stations along the ‘Tōkaidō’
road have more cyan colour than images of Edo city. This is not surprising con-
sidering that the ‘Tōkaidō’ road linking Kyoto and Edo city crosses large areas
with rich waterscapes. Moreover, we observe that the colour is not directly linked
to the place that is depicted, but rather follows the colour trends specific for a
given era characteristic for the majority of prints produced at a given period.
This finding underlines a general understanding of the prints and their material
aspects in Japanese art history and indicates that to contribute to the state-of-
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Fig. 5. Visualisation of the colour scheme in a selected print (title: 「東海道五十三次
之内 京師 三条大橋」 ) focusing on the twelve most frequent colours (left) and a 3d
RBG representation of all the colours in the image (right) (Color figure online)

Fig. 6. Visualisation of the temporal distribution of the frequency of basic colours used
in prints in different historical epochs between ca. 1750s and 1850s with the standard
error of the mean shadowing each respective time series (Color figure online)

Fig. 7. On top is the average (and the st. error of the mean) percentage of blue and
cyan in prints of specific time periods is shown, in the two most frequent places versus
all images. The barchart shows the support (# prints) per place per era (i.e., aligned).
(Color figure online)
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the-art in the field in a meaningful more fine-tuned analysis needs to follow (e.g.,
on the level of a print designer, publisher, print format, topic).

Analytical Limitations in the Study of Colour Schemes. The computa-
tional study of colour schemes in meisho-e prints has several analytical limita-
tions. Most importantly, the colour schemes depend on the material characteris-
tics and quality of the photographs of prints (subsequently digitised). Also, the
results indicate a strong presence of silver and grey colour, which most probably
is not included in the compositions but in the composition frames, which are
also part of the image and its photo. These limitations need to be accounted for
in the future interpretation.

7 Conclusion

In this study, we benchmarked NER on inscriptions of meisho-e prints, com-
paring deep learning with simpler gazetteer-based approaches. We improved the
former with further pre-training and we showed that BERT still falls short com-
pared to the latter, when geolocation is the goal. By applying NER on approx.
20k images, we undertook a large-scale spatiotemporal analysis of recognised
place-names, discovering popular meisho per historical era. By focusing on the
two most frequently recognised meisho, we showed that colour reveals charac-
teristics of the landscape, in the case of the waterscapes, and that it is not
directly linked to the place depicted but may follow other trends. Future work
will explore more meisho and we will interpret our analytical results, attempt-
ing to contextualise them in relation to sociopolitical changes and technological
advancements (e.g. introduction of new printing materials), as well as correlate
them with other factors such as print designer, publisher, and print format that
may have played the role in their production and popularity at a given time.
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Abstract. In recent years, the significance of artificial intelligence in
comprehending the real-world has increased, by leveraging the inher-
ent ability of humans to process intuitive physics on a computer. Prior
investigations on real-world understanding have mainly relied on image
inference to recognize the physical environment. In contrast, we propose
an inference model that can predict the observed environment using both
visual and physical features, emulating the predictive coding hypothe-
sized to occur in the human brain, and detects change points in response
to predictive events. Additionally, the model verifies the correctness of
the timing of important physical events of objects, such as object colli-
sions and disappearances. Furthermore, the results of the physical infor-
mation prediction are also described as natural language sentences to
confirm whether the model accurately recognizes the real-world and pre-
dicts the next behavior based on the physical information.

Keywords: physical characteristics · latent hierarchical structure of
physical relationships · prediction

1 Introduction

When faced with a specific circumstance, humans possess the innate capacity to
swiftly comprehend environmental cues, predominantly through visual percep-
tion. This capability is believed to rely on the mental construction and simulation
of the environment within the brain, contingent upon perceived stimuli [9]. Con-
currently, humans are able to apprehend and anticipate the actions of objects in
the environment, founded on the environmental framework constructed within
their brain. At this point, humans generate predictions concerning both the
physical and visual aspects of the perceived objects. It is believed that physical
prediction pertains to significant events in the object, rather than forecasting all
possible states of the environment. Considerable research has been conducted to
achieve the human capacity to identify and forecast environmental information
on a computer [1,6,8,9,13,18,22,26,30]. Nonetheless, the majority of real-world
prediction studies have produced results based on either visual predictions via
pixel alterations, or physical predictions via numerical variations in simulators,
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and no prediction model that can simultaneously generate both visual and phys-
ical predictions has been put forward, as humans are capable of doing. In this
investigation, we present a novel model capable of producing both visual and
physical predictions regarding objects in the environment, whilst simultaneously
extracting the timing of important events amongst the predicted events. The
model is constructed through a combination of PredNet [20], a prediction model
that replicates the top-down and bottom-up hierarchical information processing
in the human brain, and the Variational Temporal Abstraction (VTA) [14] mech-
anism, which retrieves change points within the observed environment based on
the visual information’s image characteristics. The proposed model is rigorously
evaluated to confirm its efficacy, wherein the timing of predicted object colli-
sions within the event is ascertained using CLEVRER [33], representing phys-
ical phenomena such as object collisions, and the model’s accuracy is verified
by computing the correct timing. Furthermore, the physical prediction results
are generated as sentences to facilitate interpretation and validate whether the
model accurately forecasts the next action based on physical information.

2 Related Work

Real-World Cognition. Real-world cognition refers to the study of machine
learning and artificial intelligence for recognizing and interpreting the real-
world. Ha et al [9] proposed the concept of world models as a mechanism by
which humans perceive and understand the environment. When humans visu-
ally observe the environment, they can quickly recognize the objects and their
behavior in the environment. This is made possible by modeling and simulating
the environment in the brain based on the sensory input. LeCun [16] identified
one of the three challenges that AI research must address in the future: “How can
machines learn to represent, predict, and act on the world from observation?”
Humans and animals can gain insight into how the world works and acquires
background knowledge through limited interaction and observation. This is con-
sidered the basis of common sense, which not only predicts future outcomes but
also fills in information gaps in time and space. Common sense consists of models
of the world that inform us about what is probable and what is improbable. This
allows humans and animals to predict, reason, plan, explore sequences of actions,
and imagine novel solutions to problems. The study of real-world cognition is
therefore crucial.

Prediction. Research on real-world cognition often focuses on visual predic-
tion and commonly employs Recurrent Neural Networks (RNN) and Long Short
Term Memory (LSTM) methods [11]. However, while Chang et al. [2] proposed
a new model, STIP, to address the problem of generating high-resolution pre-
dictions due to a loss function based on information loss and mean squared
error, the emphasis of many studies is solely on capturing temporal dependen-
cies between frames, with little discussion of the spatial features within frames.
To rectify this, Wang et al. introduced a spatio-temporal LSTM (ST-LSTM)
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structure to predict high-quality videos and proposed novel prediction models
such as PredRNN++ [28] and PredRNN [29]. Additionally, to enable long-term
prediction, Lin et al. [19] integrated a self-attention mechanism into ST-LSTM to
store long-range spatial features, while Lee et al. [17] introduced memory align-
ment learning to store long-term temporal dependencies. Other proposed models
include Iso-Dream [23], an improved version of Dreamer [10], which separately
learns controllable and uncontrollable state transitions and combines them with
prediction, and Gao et al.’s SimVP [7], a prediction model that merges image
recognition with Transformer technology and uses Vision Transformer [5]. These
studies aim to produce highly accurate prediction results and expand research
on models that can make long-term predictions, such as for humans.

Physical Reasoning, Intuitive Physics. The field of common sense or intu-
itive physics, which involves computational understanding of the physical world,
has been studied extensively in recent years. Representing intuitive physics is
crucial for modeling object interactions and predicting their dynamics, and has
received considerable attention [3,4,26]. Tang et al. [26] proposed PHYCINE, a
hierarchical prediction model that focuses not only on first-order features such as
object position and shape, but also on hidden behaviors of objects such as mass
and charge, by discovering physical concepts of objects from low-level (color,
shape) to high-level abstract (mass, charge) from video images. Ye et al. [31]
and Piloto et al. [25] focus on learning intuitive physical properties that can be
interpreted. In addition, many studies have attempted to learn intuitive physical
properties from a few frames of a video image. Yi et al. [32] have focused on the
complex temporal and causal structures underlying object interactions, using
the image reasoning dataset CLEVR (Compositional Language and Elementary
Visual Reasoning diagnostics dataset) [12] with CLEVRER (CoLlision Events for
Video REpresentation and Reasoning) [33]. They also extended CLEVRER and
proposed CLEVRER-Humans as a video inference dataset for human-labeled
causality inference [22].

3 PredNet

PredNet [21] is a deep prediction neural network construct to mimic the concept
of predictive coding. An overview of the model is shown in Fig. 1. Each module
has four internal components: an input convolutional layer (xtk), a recurrent
convolutional representation layer (R), a convolutional prediction layer (A), and
an error representation (E). The representation layer in each module captures
the state for prediction, while the input layer processes the input information.
The prediction layer generates the internal prediction state, and the error layer
outputs the error representation by taking the difference between the prediction
state and the input. PredNet utilizes a bidirectional process to generate predic-
tions, where predictions made in the upper layers of the network are conveyed to
the lower layers via the representation module, and errors detected in the lower
layers are transmitted to the upper layers. This mechanism mimics the operation
of a generalized state equation, which enables accurate predictions to be made.
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Fig. 1. Schematic diagram of PredNet.

4 Variational Temporal Abstraction (VTA)

In Variational Temporal Abstraction (VTA) [14], a state-space model is pro-
posed to extract hierarchical abstractions from series data and detect change
points. Figure 2 (right) is the graphical model of the hierarchical state-space
model obtained by VTA. In this figure, X is the input, S is the observation
abstraction, and Z is the temporal abstraction. X is the lowest layer closest to
the input, and S and Z are the upper layers in that order. By processing the
input series information and obtaining the hierarchical structure, VTA enables
the acquisition of the upper Z representation, which indicates the transition of
the environment. However, as for the state space models that handle sequen-
tial series information, in general, it is difficult to determine when to transition
to the upper layer Z, taking into account temporal transitions, as depicted in
Fig. 2 (left) to (right). To address this issue, VTA introduces a binary latent
variable m that determines the timing, as shown in Fig. 2(left). The boundary
indicator M = m1:T takes the value 0 or 1. When the change in the observed or
temporal abstraction is significant, m becomes 1, and the upper layer Z transi-
tions accordingly.

5 Proposed Model

5.1 Mechanism of the Change Point Prediction Model

PredNet [20] and VTA mechanisms are integrated to construct an change point
prediction model. This model mimics predictive coding which is a hypothesized
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Fig. 2. Schematic diagram of VTA. (left) Model with boundary index M = {0, 1, 0, 0}.
(right) Model with time structure obtained from the boundary index M .

Fig. 3. Schematic diagram of a change point prediction model.

function in the human brain. The model architecture is presented in Fig. 3. The
proposed model is a parallel hierarchical structure of two PredNet models, one of
which predicts physical phenomena of the environment by representing them as
graphs, and the other of which predicts them by visual information of the envi-
ronment. The proposed model also incorporates the change point discrimination
flag m, which is a mechanism of VTA. The input information consists of two
datasets: the CLEVRER dataset with image information xit and the physical
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training dataset xgt with physical properties generated from CLEVRER. The
output information consists of two pieces of information: the predicted image
(“img output” in Fig. 3), which was sequentially predicted for the image, and the
change point ma (“flag output” in Fig. 3), which was computed by the inference
of the embedding vector representing the physical property. The change point
ma serves as an indicator flag, signifying when the cumulative value of physi-
cal and image data has significantly changed and takes the value 0 or 1. Both
mechanisms learn by error propagation to higher levels, minimizing the differ-
ences between prediction Â derived from the representation tier R and actual
observation A. To determine the change point m, the difference diff between
the representation layer R at time t− 1 and time t is calculated for the physical
and image data, respectively, such that the change point ma becomes 1 if the
difference diff exceeds a threshold value α.

The algorithmic updates are expounded upon in Algorithm 1, along with
Eqs. (1) through (11). In this instance, R represents the layer of representation,
A represents the layer of prediction, Â signifies the generated prediction content
derived from the representation layer R, and E represents the layer of error.
Furthermore, it denotes the variable used in the processing of the image, while
gt denotes the variable utilized in the processing of physical information. Equa-
tion (12) illustrates the training loss. λt and λ� are weighting factors for time
and layer, respectively, and n is the number of units in the �-th layer.

Ait
l =

{
xit if l = 0
MaxPool(ReLU(Conv(Eit

l−1))) l > 0
(1)

Agt
l =

{
xgt if l = 0
MaxPool(ReLU(Conv(Egt

l−1))) l > 0
(2)

Âit
l = ReLU(Conv(Rit

l )) (3)

Âgt
l = ReLU(Conv(Rgt

l )) (4)

Eit
l = [ReLU(Ait

l − Âit
l );ReLU(Âit

l − Ait
l )] (5)

Egt
l = [ReLU(Agt

l − Âgt
l );ReLU(Âgt

l − Agt
l )] (6)

Rit
l = ConvLSTM(Eit−1

l , Rit−1
l , Upsample(Rit

l+1)) (7)
Rgt

l = ConvLSTM(Egt−1
l , Rgt−1

l , Upsample(Rgt
l+1)) (8)

diffit = Rit
l − Rit−1

l (9)
diffgt = Rgt

l − Rgt−1
l (10)

diff = diffit + diffgt (11)

Ltrain =
∑
t

λt

∑
l

λl

nl

∑
nl

Et
l (12)
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Algorithm 1. Calculation of change point prediction model
Require: xit, xgt

Ait
0 ← xit, A

gt
0 ← xgt

E0
l , R0

l ← 0
for t = 1 to T do

for l = L to 0 do
if l = L then

Rit
L = ConvLSTM(Eit−1

L , Rit−1
L )

Rgt
L = ConvLSTM(Egt−1

L , Rgt−1
L )

else
Rit

l = ConvLSTM(Eit−1
l , Rit−1

l , Upsample(Rit
l+1))

Rgt
l = ConvLSTM(Egt−1

l , Rgt−1
l , Upsample(Rgt

l+1))
end if

end for
for l = 0 to L do

if l = 0 then
Âit

0 = SatLU(ReLU(ConvRit
0 )))

Âgt
0 = SatLU(ReLU(ConvRgt

0 )))
else

Âit
l = ReLU(ConvRit

l )
Âgt

l = ReLU(ConvRgt
l )

end if
Eit

l = [ReLU(Ait
l − Âit

l );ReLU(Âit
l − Aitl)]

Egt
l = [ReLU(Agt

l − Âgt
l );ReLU(Âgt

l − Agt
l )]

if l < L then
Ait

l+1 = MaxPool(Conv(El
it))

Agt
l+1 = MaxPool(Conv(El

gt))
end if
diffit = Rit

l − Rit−1
l

diffgt = Rgt
l − Rgt−1

l

diff = diffit + diffgt
if diff > α then

ma = 1
else

ma = 0
end if

end for
end for

6 Experiment

6.1 Change Point Extraction in Predictive Inference

To verify the effectiveness of our proposed model, an experiment was conducted
to see if the model can correctly extract the change point of the next step state.
The dataset we used was the CLEVRER dataset and physical training data
generated from CLEVRER.
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Physical Training Dataset. The two datasets we used were CLEVRER
dataset [33] and a dataset representing physical properties of real-world objects
– the procedure for creating the physical properties dataset is shown in Fig. 4.

Fig. 4. Steps to create physical training dataset.

Table 1 shows the experimental settings of the model, which is the same as
used in the previous study [20].

Results and Discussion. The results of the change point prediction accuracy
in the proposed model are shown in Table 2. The physical data in Table 2 shows
the results obtained from the data set created in Fig. 4, and the annotation data
in the table shows the results obtained from the CLEVRER annotation dataset.

The results show that the accuracy of the physical data is equivalent to that
of the annotation data, which is the supervised data, in predicting the change
points. As a result example, the predicted images and flags for region i are shown
in Fig. 5. As the predicted image is also accurately generated, it can be said that
this model is proficient in generating both the predicted image and flag of the
next time’s change point.
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Table 1. Experimental Settings.

Number of training data 600,000
Number of validation data 60,000
Number of times studied 500,000
#Layers 4
Size of convolutional filter 3 × 3 (for all conventions)
#Channels From lower module, 3, 48, 96, 192
Optimization Adam [15]
Learning rate decay 0.0001
α 5

Table 2. Accuracy of the proposed prediction model.

Validation range i ii iii iv v vi

physical data 33.3 50 50 33.3 66.7 50
annotation data 66.7 50 66.7 40 50 50

6.2 Text Generation of Prediction Results

The proposed model made two predictions, one for physical data and one for
visual data. Humans apprehend and acquire knowledge of the real-world by
perceiving it and engaging in predictions and inferences. Furthermore, linking
language to the physical world enables us to gain a more profound comprehen-
sion of reality and our prior experiences. Put differently, human intelligence can
be conveyed through symbol manipulation using language that pertains to the
real-world. Therefore, research on comprehending the physical world through
machine learning technology should express reasoning as a language, with the
aim of linking the recognition of real-world objects, understanding of physical
properties, and prediction using language. This study generated embedded vec-
tors, extracted as change points in physical data, as a form of language informa-
tion. Additionally, only collisions were used as change points for the generation.

Dataset. To generate language from the embedded vectors predicted by the
change-point prediction model, it is necessary to learn new linguistic information.
For this purpose, we developed a language dataset consisting of a pair of data:
an embedded vector of graph representations representing physical properties
and a sentence describing the state of the graph. Although the experiment was
conducted in Japanese, this paper covers both English and Japanese. The graph’s
embedding vector representation was created from the CLEVRER annotation
data using the procedure illustrated in Fig. 4. The paired sentences were devised
to fit into nine templates of three (before collision, collision, and after collision) ×
three (type of sentences). The correct answer for each image was three sentences.
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Fig. 5. Predicted change point extraction results in range i.

The details of the templates are as follows: Two objects A and B collide with each
other, and A and B are “{gray, red, blue, green, brown, water, purple, yellow}
{sphere, cylinder, cube}.” For example, “Red sphere” and “Blue cylinder” are now
included. In addition to the collision data, we also created a dataset for when the
objects were approaching before the collision and when they were leaving after
the collision. The approaching time was five frames before the collision, and the
leaving time was five frames after the collision. An example of the generated pair
dataset is shown in Fig. 6.

Text Generation Model. The text generation model utilized only the decoder
component of the Transformer [27]. The decoder architecture is depicted in Fig.
7. Although conventional transformers are based on an encoder-decoder model,
this study adopts the embedding vector prediction result of the graph in the
change-point prediction model of the proposed model as the encoder output.
This prediction result is employed as input from the encoder to the decoder.
The paired data generated in Fig. 4 was utilized to train the decoder, with the
number of paired sentence data set at 219,303 (nine sentences × 24,367 collisions)
and the predictive graph embeddings for test data set at 10,965. The training
settings are detailed in Table 3.
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Fig. 6. Example of text templates. Fig. 7. Schematic diagram of the text
generation model.

Table 3. Experiment Setting.

batch size 8
Embedding 128
hidden layer 512
Optimization Adam [15]

Results and Discussion. We confirmed that the embedded representations of
the predicted graphs made correct predictions about the real-world by generat-
ing a language sentence describing the observed real-world situation. The four
ranges that were examined for description were those shown in Fig. 2, i, ii, iv,
and vi, which indicate the time of the collision.

Range of i. In range i, a green sphere collides with a red cylinder and the
assumed correct statement is shown in Fig. 8. The generated sentence was “A
green cylinder is repelled by a red cylinder.” The sentence was correct about the
color of the object, but incorrect about its shape.

Range of ii. In range ii, a green cylinder collides with a brown cube and the
assumed correct statement is shown in Fig. 8. The sentence generated was “A
green cylinder collides with a brown cube.” The sentence was correct for both
color and shape of the objects.

Range of iv. In range iv, a gray sphere collides with a blue cube and the
assumed correct statement is shown in Fig. 8. The generated sentence was “A
grey sphere is repelled by blue cube.” The sentence was correct for the color of
the object, but incorrect for the shape.
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Fig. 8. Example of text generation for prediction results.

Range of vi. In range vi, a cyan cube collides with a blue sphere and the
assumed correct statement is shown in Fig. 8. The generated sentence was “A
cyan cube collides with a blue sphere,” which was incorrect for the object’s color
and shape. Unlike the other results, range vi produced incorrect judgments for
both color and shape of the object. Figure 9 depicts the objects’ transition up
to the collision in range vi, which includes the “cyan cube” and “cyan cylinder”
colliding objects. It is noticeable that the “cyan cube” passed through the “blue
sphere” without collision. The infinitesimally small distance between the cyan
cube and the blue sphere led to the incorrect prediction of their collision. It
is likely that considering the cyan cylinder hidden behind the cyan cube, and
both objects being of the same color, contributed to the failure to generate a
description accurately. To improve the text generation accuracy, it is necessary
to improve the points where objects of the same color are regarded as the same
object and where incorrect collision predictions are made.

Accuracy Verification with BLEU
The accuracy of the generated text is evaluated by BLEU [24]. BLEU@n is a
measure of how well each correct and generated sentence matches in the n-gram.
The evaluation results of the generated sentences using the BLEU evaluation
metric are presented in Table 4. Since there were three correct answers for each
generated sentence, the average of each score was used as the BLEU score for the
generated sentence. The BLEU scores were computed for Japanese sentences, and
the generated sentences achieved scores of 80 for the 2-g, 75 for the 3-g, and 69
for the 4-g, indicating that they were able to generate informative and accurate
sentences about the observed environment to a certain extent.
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Fig. 9. Object transition status of range vi.

Table 4. BLEU evaluation.

BLEU@2 BLEU@3 BLEU@4

score 79.7 74.5 68.8

7 Conclusions

In this study, we constructed a model that emulates the structures in the human
brain, which can predict the observed environment visually and physically. The
predictive model was able to appropriately retrieve change points occurring in
the next step, such as object collisions in the environment. Moreover, we gener-
ated descriptions from the predicted physical attributes of the environment and
calculated the BLEU score, resulting in a language generation capability with a
certain degree of accuracy. Based on this outcome, we assert that this model is
capable of not only visual prediction but also physical prediction. The outputs of
this model and language generation have allowed us to establish a link between
the recognition of real-world objects and the understanding and prediction of
their physical properties, mediated through the use of language. On the other
hand, we believe that there is still room for improvement in both prediction
model and language generator since the target dataset is less complex than the
actual environment perceived by humans. As future work, we aim to enhance the
model and expand the number of language datasets to allow language generation
for various physical properties other than collisions.
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Abstract. Qualitative modeling can be applied to the control of
dynamic systems by following these steps: (1) learning a qualitative
model of the controlled dynamic system from the system’s behaviors
in time, (2) using the learned model to derive a qualitative plan for the
control task, and (3) executing the qualitative plan on an actual dynamic
system. This approach has been demonstrated in the usual cart-pole con-
trol domain as significantly more sample efficient than the usual variants
of reinforcement learning, by at least two orders of magnitude. The qual-
itative approach also enables better explanation of the learned control
strategy through symbolic planning. In this paper, we generalize the
cart-pole problem to uneven terrains, such as driving over a crater or
a hill. We study whether the learned flat-surface qualitative controller
can be successfully transferred to the tasks of negotiating uneven terrain.
Experiments show that the flat-surface qualitative controller is remark-
ably robust on new, more difficult tasks.

Keywords: Qualitative Modeling · Qualitative Reasoning ·
Qualitative Control · Transfer Learning

1 Introduction

The problem of controlling the cart and pole system also called the inverted
pendulum, is a popular benchmark problem for control learning methods. Michie
and Chambers [9] were among the first to study adaptive control on this dynamic
system. They implemented a reinforcement learning algorithm called BOXES,
which discretized the continuous domain into ‘boxes’ and kept a record on how
actions are performed within each ‘box’. Later experiments involved various
types of neural networks [1,2,5], policy gradient learning [12], and Q-learning
[5,8,10]. Ramamoorthy and Kuipers [11] used qualitative modeling to design a
controller for the pole-and-cart system. Their control policy, which was derived
manually, was robust enough to accommodate a large amount of abuse from the
user.
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In [15], experiments with cart-pole control are presented using an approach
in which a qualitative model is learned through experimentation. Then a control
policy is derived automatically by planning with the learned model. The result of
planning with a qualitative model is called a qualitative plan. Such a qualitative
plan cannot be directly executed on the actual dynamic system or its simulator
because quantitative actions are needed for that. Therefore, qualitative actions in
a qualitative plan have to be first reified into numerical values, which is done by
a ‘reactive executor’ [13]. The reactive executor is also capable of adaptation to
concrete numerical system models that share the same qualitative model. This
adaptation ability was experimentally shown to work rather well over several
examples of dynamic systems, including quadcopter flying [16], moving compli-
cated objects by pushing [17], robotic walk [13], and standard cart-pole control
[15]. It should be noted that qualitative plans enable interpretable strategies for
the control of dynamic systems, which was discussed in particular in [15].

In this paper, we generalize the standard cart-pole problem to driving over
uneven terrain. Our approach is based on learning a qualitative model and using
this model to derive a controller through planning and learning. The approach
has the advantage in comparison with the usual reinforcement learning in that
(1) learning a qualitative model is easier than a quantitative model, and (2) a
qualitative model enables symbolic planning of the control task. For these rea-
sons, learning with this approach can be significantly faster (in terms of required
sample size) than standard reinforcement learning [4,12].

We investigate the question, how robust is the qualitative controller trained
on the usual, flat surface, when transferred to the more difficult problem of
driving over uneven terrain. We present the results of experiments carried out
in a simulated environment.

In Sect. 2 we introduce the cart-pole problem on uneven terrain. In Sect. 3
we give details of qualitative learning and planning for the flat-surface version of
the problem. In Sect. 4 we explain how qualitative plans are executed. In Sect. 5
we present experiments in the transfer of the flat-surface qualitative controller
to the tasks on uneven terrain.

2 The Cart-Pole System on Uneven Terrain

In the usual version of the cart-pole system, a pole is freely hinged on the top of
a wheeled cart that moves along a one-dimensional track on a flat surface. It is
assumed that there is no friction between the cart and the track or the pole and
the cart. The controller can apply force F of a fixed magnitude at discrete time
intervals, pushing the cart in either direction, left or right. This is also known as
bang-bang control. In this paper, we consider the control tasks when the goal of
control is for the cart to reach a given goal position from a given starting position
while preventing the pole from falling. It should be noted that this version of the
cart-pole task is considerably more difficult than just balancing the pole, which
is the task usually tackled in experiments with reinforcement learning.

An example of extending the standard control task to uneven terrain is shown
in Fig. 1. The terrain has the shape of a crater, the cart’s starting position is on
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Fig. 1. The task is to drive the cart from the start position at (−12 m, 0 m) through
the crater to reach the goal position at (0 m, 0 m) indicated by the yellow pole. Three
white dots at (−11 m, 0 m), (−6 m, −1.5 m) and (−1 m, 0 m) indicate the left edge,
the bottom and the right edge of the crater, respectively. The shape of the crater is
modeled by a Bezier curve of 2nd degree interpolated between these three dots.

the left of the crater, and the goal is to reach a given position to the right of the
crater.

To simulate the cart-pole on uneven terrain, we have to generalize the usual
mathematical model of cart-pole, which assumes a flat surface. Figure 2 shows the
variables in the generalized model. We derived the following differential equations
for pole-and-cart on a slope:

ẍ =
F + ml(θ̇2 sin θ − θ̈ cos θ)

M + m
− g sinϕ (1)

θ̈ =
(M + m)g sin(θ − ϕ)
(M + m)l − ml cos2 θ

−

−
cos θ

(
F + mlθ̇2 sin θ − (M + m)g sinϕ

)

(M + m)l − ml cos2 θ

(2)

The parameters in our experiments were:

Cart mass: M = 1 kg
Pole mass: m = 0.1 kg
Pole length: l = 1m
Gravity: g = 9.81m/s2

The amount of force F varied between experiments so that |F | was either 5N or
10N. These amounts correspond to a “weak” or a “strong” motor, which produced
different control behaviors, with the stronger motor being more effective. Action
frequency was 50Hz, which means that the controller determined the next force
direction every 0.02 s.
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F – control force
Fr – rotational force
M – mass of the cart
m – mass of the pole
l – pole length
θ – pole angle
ϕ – slope angle
t – pole motion tangent
(x, y) – cart position
(xm, ym) – pole top position

Fig. 2. Cart and pole on a slope, the slope angle is denoted by ϕ.

3 Learning a Qualitative Controller for Cart-Pole on Flat
Surface

The approach of learning a qualitative controller from observations we used in
this paper is as described in detail in [13,16]. The approach consists of the
following:

1) Collect learning data by observing the target dynamic system when sequences
of random actions are executed.

2) Use the collected observations as examples for learning a qualitative model
of QSIM-type of the dynamic system.

3) Use QSIM-like qualitative simulation [6,7] to generate a search space for
qualitative plans that possibly solve the control task. Note that successful
execution of these plans on the actual (quantitative) system is not guar-
anteed, due to the ambiguous nature of qualitative simulation, and success
depends on the numerical parameters of our concrete dynamic system. So
these plans can be viewed as a source of plausible ideas for solving the control
task.

4) Try to execute a qualitative plan by the ‘reactive executor’ on the dynamic
system. The reactive executor observes the actual (quantitative) state of the
controlled system and finds appropriate numerical actions according to the
qualitative plan.

3.1 Learning a Qualitative Model

We here summarize the results of applying the above procedure to learning to
control the cart-pole system on a flat surface as conducted in [15]. To collect
numerical data needed to learn a qualitative model of cart-pole, we acquired
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samples of the form (F, x, ẋ, θ, θ̇) at the rate of 50Hz of the running experimen-
tation with the system controlled by random bang-bang actions. After 3 s of
experimentation, two behaviors in time were observed, both ending with a pole
crash. 150 samples were collected in these two traces. Note that in learning a
controller in this approach, unlike the usual reinforcement learning, there is no
need to observe any trials in which the control task was successfully executed.
We used the qualitative learning program QUIN (QUalitative INduction) [3,18]
to learn from these 150 examples the following two qualitative constraints:

θ̈ = M−,+(F, θ)

ẍ = M+(F )
(3)

Here, the notation y = M+(x) means, as usual in qualitative modeling, that
y is a monotonically increasing function of x. A multivariate constraint like
z = M−,+(x, y) means that z monotonically decreases with x and monotonically
increases with y. More formally: ∂z/∂x < 0, and ∂z/∂y > 0. Note that these
learned constraints are an approximation to the qualitative abstraction of the
differential equation model of cart-pole for the flat surface (ϕ = 0). A completely
correct qualitative model would be considerably more complex.

3.2 Finding a Qualitative Plan

Given the above qualitative model (as two qualitative constraints), we can use a
QSIM-like algorithm [6,7] to generate the search space of possible qualitative
behaviors for all possible action sequences (force F in the case of the cart-
pole system). The planning consists of searching for such action sequences that,
starting in the given start state of the system, possibly result in a given goal
state. For example, starting at the start state with x = x0 and the pole upright,
with all the variables being steady, we want to reach a goal state with x = x1

(x1 > x0) and the pole is upright again, and all the variables steady. This means
moving the cart to the right to some position x1.

The search space consists of all possible qualitative states of the system, con-
nected by state transitions, allowed under the assumption of smoothness, that
comply with the given qualitative model. Qualitative states are obtained by dis-
cretizing the domain at certain landmarks. Typically, the initial and goal values
are taken as landmarks, while the learned qualitative model may additionally
introduce it own landmarks, e.g. QUIN may learn that a certain qualitative
constraint holds for all x ≤ l and another for all x > l, hence l in considered
a landmark within the real-valued domain of x. In our cart-pole domain, the
landmarks for x are the initial and the goal value x0 and x1, and for θ the goal
value 0 and the interval end-points −180 and 180. Time derivatives ẋ and θ̇
contain only the landmark 0 and are thus qualitatively abstracted as inc, dec
and std, respectively for positive values, negative values and 0. Suppose x0 = 0
and x1 = 1. The numerical state (x = 0.5, ẋ = 0, θ = 45, θ̇ = −0.1) is therefore
qualitatively abstracted as (x = x0..x1/std, θ = 0..180/dec).
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The assumption of smoothness means that the transition between two qual-
itative states is possible only if all variables and their time derivatives transi-
tion in a numerically continuous manner. Considering our variable θ, transition
(θ = −180..0/inc) → (θ = 0/inc) is possible, while (θ = −180..0/inc) → (θ =
0..180/inc) violates the continuity of θ. Transition (θ = 0..180/inc) → (θ =
0..180/dec) is not possible, because it violates the continuity of θ̇, while the
sequence of transitions (θ = 0..180/inc) → (θ = 0..180/std) → (θ = 0..180/dec)
is possible. See [6,7,13] for more details.

Table 1. An executable plan to move the cart-pole from x0 to x1 found by the qual-
itative planner. The symbols min and max stand for different minimal and maximal
values for different variables F , x and θ.

Step F x/ẋ θ/θ̇

0 0 x0/std 0/std
1 min..0 min..x0/dec 0..max/inc
2 0 min..x0/dec 0..max/inc
3 0..max min..x0/dec 0..max/inc
4 0..max min..x0/std 0..max/std
5 0..max min..x0/inc 0..max/dec
6 0..max x0/inc 0..max/dec
7 0..max x0..x1/inc 0..max/dec
8 0 x0..x1/inc 0..max/dec
9 min..0 x0..x1/inc 0..max/dec
10 min..0 x1/std 0/std

The planner may find many different plans of various sizes. Some may qual-
itatively be correct, but may not be executable under some specific numerical
properties of the system. This can only be verified by actually executing a plan
and discarding it if the execution is unsuccessful. To find plans that have the
best practical chances to succeed when executed, we use the following heuristics:

1) Favor short solutions. Short plans offer simpler explanations than long ones
and hopefully take less time to find. They are therefore first to be tested. It
should be noted that there is no guarantee that the shortest qualitative plan
will be in fact the quickest to achieve the goal on the physical system.

2) Favor solutions with effective actions. An action A in some qualitative state
S is effective if it causes a deterministic transition to the next state. Plans
with effective actions are more likely to succeed.

Using these heuristics, the shortest executable plan found by the planner to move
the cart-pole from position x0 to position x1 is shown in Table 1 and visualized
in Fig. 3.
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Fig. 3. A visualization of the qualitative plan from Table 1. Position x is depicted
relative to landmarks x0 and x1. Blue arrows show transitions between system’s states.
Black arrows depict the directions of motion of the cart and the pole. The directions
of actions F are respectively shown by red arrows.

A possible explanation of the plan is the following: In the initial state (state
0) apply a negative force F , which will cause the cart to move backward and
the pole to lean forward. The cart will move left from its initial position x0

(state 1). Stop applying the negative force. The cart and the pole will keep their
momenta (state 2). Apply a positive force F , the cart and the pole are expected
to keep moving in the same direction for a while (state 3). Eventually, they
would both come to a stop, while the positive force is still being applied (state
4), and change their direction of motion (state 5). The cart will assume its initial
position x0, while the cart and the pole will maintain their previous qualitative
directions (state 6). The cart will then move past x0, between the points x0 and
x1 (state 7). Stop applying the positive force. The cart and the pole will keep
their momenta (state 8). Apply a negative force F . The cart and the pole will for
a while keep moving in the same direction (state 9), but with the right amount
of force at the right timing, the cart and the pole would stop precisely at their
goal positions (state 10).

Such an ideal execution is obviously not feasible in practice and the cart
is likely to overshoot the goal position x1 by a certain amount. Finding itself
in some qualitative state with x = x1..max, the system will devise a similar
but mirrored plan to move left towards x1. Finally, the execution would end up
continuously balancing the pole near the goal position, as seen in Fig. 6.
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4 Reactive Execution

The role of our reactive executor is to implement in real-time a numerical transi-
tion Si → Si+1 between two consecutive qualitative states in a given qualitative
plan S0 → · · · → Sn. The main challenge of such an execution are unknown
numerical properties of the system, which makes it difficult to predict what
numerical state the system will transition to after some continuous action has
been executed for a certain amount of time and with a certain magnitude. We
approach this problem reactively, which means that we consider only one action
ahead after observing the current numerical state. In our case, a decision about
action is made 50 times per second. Every time, the executor performs the fol-
lowing steps:

1) Observe the current numerical state, the value, speed and acceleration of each
domain variable.

2) Estimate how far each variable is from its next goal value defined by the next
qualitative state Si+1. This ‘distance’ to the next goal value is estimated as
the minimal time needed to reach the goal value, according to the previously
observed speeds and accelerations. Classical kinematic equations are used
independently on each variable. We denote by ei the time estimate for variable
xi.

3) Construct an n-dimensional hypersurface H, where n is the number of
observed variables, and embed the surface into an (n+1)-dimensional hyper-
space, so that the next immediate goal state Si+1 is at the global minimum,
and the current state S at a certain distance from Si+1, as depicted in Fig. 5.
The hypersurface is constructed in such a way that the steepness of the slope
increases with the goal distance.

4) Use the (learned) qualitative model to resolve the qualitative effect of each
available action. A qualitative effect of an action merely determines in which
direction a variable would change, but not its rate of change.

5) Choose and execute the action whose effect follows the steepest descent along
the surface H (defined by formula 4).

The plan that the executor attempts to execute is a reduced version of the
planner’s output. Consider again the plan from Fig. 3. This detailed plan depicts
not only the positions of individual variables, but also the directions of their
change (qualitative velocities). These, however, can be inferred by the executor
from consecutive positions. E.g., if the pole transitions from θ = 0 to θ = 0..90,
the qualitative direction of θ must obviously be increasing. The executor, there-
fore, follows a succession of qualitative states in the plan that differ only in
the qualitative values of the state variables, but not in actions. The plan from
Fig. 3 is thus reduced by the executor as shown in Fig. 4. The crucial information
passed from the planner to the executor is here to tilt the pole in the direction
of the goal before moving forward towards x1.

Besides the plan, the executor can also be given a set of numerical constraints
that determine fail states. In our case, we allow the pole to move within a



454 D. Šoberl and I. Bratko

Fig. 4. A reduced sequence of qualitative states executed by the reactive executor
when following the qualitative plan from Fig. 3. A numerical constraint θ ∈ [θmin, θmax]
is given additionally with the qualitative model.

predetermined interval θ ∈ (θmin, θmax), otherwise the execution fails. While the
executor will aim to bring the variables to their goal values, it will simultaneously
try to keep numerically constrained variables within their constraints, which is
done by targeting the midpoint of the constraining interval. The idea behind this
type of numerical constraints is to specify a fail-safe ε-neighborhood around a
‘safe point’. However, other types of numerical constraints may also be considered
in the future.

For a numerically constrained variable xi, the time to reach its interval’s mid-
point from the current state is estimated (denoted as ei), as well as the time to
reach the midpoint from the farthest point within that interval (denoted as emax

i ).
The conversion of the current numerical state to such time estimates allows a
comparison between variables of different measures and kinematic properties,
either pursuing a goal value or being numerically constrained to an interval.

Prioritization of actions is done by determining the steepness of the descent
along the hypersurface H, which is constructed in the following way. Let xi for
all i ≤ k have a goal value, while xi for all i > k are numerically constrained.
Define the function:

f(e1, . . . , en) =
k∑

i=1

ei
2

2
+

n∑
i=k+1

((
1 +

ei

emax
i

)−1

·
(
1 − ei

emax
i

)−1

− 1

)
, (4)

where (e1, . . . , en) ∈ H is a point on the surface H and F the embedding of H
into a higher dimensional space. An example of such an embedding for variables
x and θ is shown in Fig. 5. Note that the goal is reached when ei = 0 for all
i ≤ k, while the executor also targets ei = 0 for all i > k. The gradient

∇f =
(

∂f

∂e1
, . . . ,

∂f

∂en

)
(5)

at the current time estimates (e1, . . . , en) represents the direction of the steepest
ascent, while the executor follows the direction of the steepest descent −∇f
towards the goal.

After the gradient is computed, the executor must resolve, which qualitative
action works in the direction of the steepest descent, or at least closest to it.
Qualitative action A = [dirc0 , . . . ,dircm ] is defined as a vector of qualitative
directions diri ∈ {inc, std,dec} of control variables c0, . . . , cm. The effect of action
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Fig. 5. Executor’s evaluation of the current system’s state S relative to the next imme-
diate goal state Si+1 in the form of a hypersurface H. The shape of H is determined
by the executor’s observations of speeds and accelerations for each variable xi. Action
with the steepest descending effect is chosen for execution.

A on other variables is deduced from the given qualitative model. The qualitative
algebra for such deduction is theoretically analyzed in [13,14]. It is, however, not
difficult to understand intuitively. Consider again the learned qualitative model
(3) and the learned qualitative constraint θ̈ = M−,+(F, θ). Note that in our
domain, F is the sole control variable. Qualitative action dirF = dec implies
dirθ̈ = inc, if dirθ ∈ {std, inc}. However, if dirθ = dec, the effect of F on θ̈
is qualitatively non-deterministic. The qualitative effects of time derivatives are
further propagated to their time integrals, e.g., from θ̈ to θ̇ and to θ. A qualitative
vector E = [dirx0 , . . . ,dirxn

] of qualitative effects of action A on every variable xi

is finally obtained. Deterministic qualitative effects inc and dec are interpreted
as real values 1 and −1 respectively, while non-deterministic effects and std are
interpreted as value 0. Action A is then quantified as

Q(A) = −∇f · E, (6)

and a qualitative action Ai with the maximum Q(Ai) is chosen for execution.
Interpreting non-deterministic effects as 0 results in prioritizing actions with a
higher level of determinism. Therefore, if two actions could achieve the same
qualitative effect, the one with a higher certainty is chosen over the other. Sup-
pose the qualitative effect of action A1 on variable x is inc and the qualitative
effect of action A2 is non-deterministic. None of the two actions exclude the
possibility of increasing x, but action A1 is certain to do it.

The chosen qualitative action A determines for each output variable (signal)
whether to increase or decrease its current value. In our domain, this is either
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F = inc or F = dec. Since we are using bang-bang control, this immediately
translates to numerical actions F = max and F = min. Even though this type
of control may seem crude, a high action frequency still allows the controller to
successfully regulate any critical numerical property, e.g., the angle of the pole,
by issuing patterns of short inc and dec actions.

5 Transferring the Qualitative Controller from Flat
to Uneven Terrains

In this section, we test the qualitative controller of the previous section on uneven
terrain. It should be noted that this controller was obtained by merely learning
a qualitative model on a flat surface, using that model to derive a qualitative
plan, and executing this plan with the reactive executor. In this process, no case
of a control task on uneven terrain was ever encountered. It is of interest to see,
whether the so-obtained controller is robust enough to work on modified, more
difficult tasks such as driving over a crater (Fig. 1).
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Fig. 6. Reactive execution of the qualitative plan for cart-pole on a flat surface.

The qualitative model (3), which was learned and previously successfully used
on flat terrain, was transferred to the uneven terrain environment unchanged.
However, as seen in Fig. 2, the new environment introduces the variable ϕ,
which indicates the steepness of the slope. This changes the notion of the pole’s
‘upwards’ position from θ = 0 to (θ − ϕ) = 0. Hence the goal conditions and
constraints that involve pole angle were altered accordingly.

We experimented with three types of tasks:

1) Driving over a crater with start and goal as in Fig. 1: start left of the crater
and drive to the goal on the right of the crater;

2) Driving out of the crater: start at the bottom and drive to the goal on the
right of the crater;

3) Driving over a hill with the shape complementary to the crater of Fig. 1; start
on the left of the hill and drive to the goal to the right of the hill.
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Fig. 7. Trace in time of driving over the crater with bang-bang force 10N. The angles
are in degrees, and the distance to the goal (blue curve) is in meters.
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Fig. 8. Unsuccessful control in driving over the crater with bang-bang force 5 N. The
pole collapses soon after 11 s (red curve) at the steep section of the crater when the
motor is too weak to control the pole. After that, the pole rotates in full circles a few
times.

In the experiments, we varied the amount of bang-bang control force. We
started with the usual |F | = 10N. Figure 7 shows the control trace for suc-
cessfully driving over the crater (task 1). Similarly, the flat surface controller
completed the remaining two “non-flat” tasks above without problems. Then we
reduced the motor strength |F | to make the control task harder. A weaker motor
with |F | = 5N then indeed failed on all three tasks. Figure 8 shows the control
trace with 5N on task 1 (driving over crater). The failure occurred at about the
11th second of the execution when the pole crashed while the cart was driving
out of the crater over the steep section close to the goal. We then analyzed this
control behavior to find the reason for failure. The conclusion of this analysis
was that the task cannot be completed, even theoretically, with the amount of
force limited to 5N. This can be explained with the following reasoning. The
balancing of the pole is done by the pole’s angle oscillating about the vertical.
For example, if the pole is leaning to the right, the cart has to be accelerated
to the right to cause negative angular acceleration. Accelerating the cart to the
right is normally done by a positive force F , pushing to the right. When the
cart is climbing out of the crater, the control force has to overcome the oppos-
ing gravitational force. If the motor force is too weak then the pole cannot be
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Fig. 9. Control trace of driving over the crater with bang-bang force 6.9 N, which is
just enough to catch the pole, but at the price of largely overshooting the goal x = 0
and only then returning to the goal (blue curve). (Color figure online)

controlled. The critical situation arises at the steepest section of the slope where
the slope angle is largest, about 0.45 rad and the pole angle is about 0.61 rad.
For the pole angular acceleration to be negative, the required force F > 6.83N,
which shows that control cannot succeed with |F | = 5N. Interestingly, setting
|F | = 6.9N (just above the required threshold) is enough for the qualitative
controller to complete the task (Fig. 9). The trace shows that this is achieved at
a narrow margin, when the cart overshoots the goal x = 0 by first moving far to
the right, before eventually stabilizing close to the goal.

6 Conclusions

The approach to the learning to control dynamic systems experimented with in
this paper consists of: learning a QDE qualitative model (Qualitative Differential
Equations) from examples of random behaviors of the controlled system, finding
a qualitative plan for the control task by searching the qualitative state space
generated by the learned model, and reactively executing a qualitative plan on
the actual dynamic system. This approach was applied to a standard version of
the cart-pole control task in [15], in which the cart moves on a flat surface. In this
paper, we generalized the application problem to cart-pole on uneven surfaces,
such as the task of driving over a crater or a hill. We investigated whether the
flat-surface controller can be usefully transferred to the generalized control prob-
lem. We showed in the experiments that the flat-surface controller can handle
the new control tasks (never encountered by the controller before) remarkably
robustly. The key seems to be the generality of qualitative plans learned for the
simpler control problem, and the robustness of reactive execution of qualitative
plans, even if this may be suboptimal. These features make the sample efficiency
of learning qualitative controllers much better than that usually reported in
reinforcement learning approaches, e.g. [4,12]. As experiments indicate, typical
reinforcement learning methods require at least two orders of magnitude larger
samples than our approach based on qualitative learning and planning.
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Abstract. Trajectory clustering is one of the most important issues
in mobility patterns data mining. It is applied in several cases such
as hot-spots detection, urban transportation control, animal migration
movements, and tourist visiting routes among others. In this paper, we
describe how to identify the most frequent trajectories from raw GPS
data. By making use of the Ramer-Douglas-Peucker (RDP) mechanism
we simplify the trajectories in order to obtain fewer points to check
without losing information. We construct a similarity matrix by using
the Fréchet distance metric and then employ density-based clustering to
find the most similar trajectories. We perform experiments over three
real-world datasets collected in the city of Porto, Portugal, and in Bei-
jing China, and check the results of the most frequent trajectories for
the top-k origins x destinations for the moves.

Keywords: Clustering · Fréchet Distance · Transportation · Frequent
Trajectories · Mobility Patterns

1 Introduction

With the development of location-based positioning devices and the advent of
the Internet-of-Things (IoT), more and more moving objects are traced and
their trajectories are recorded joining diversified information about their carri-
ers and equipment. These data comprise a rich source of spatial and temporal
semantic information. Therefore, moving object trajectory clustering undoubt-
edly becomes the focus of the study in moving object data mining [1].

Many areas can leverage the similarity of trajectory analysis such as policy-
makers/government, transportation companies/authorities, last-mile parcel car-
riers, biologists, and retail and marketing companies, among others. In the public
sector, the managers can analyze the moves of people at different hours of the
day and week to promote changes in the infrastructure of a region, change the
bus routes, increase the number of trains or metro cars, and take measures to
diminish the bottlenecks of traffic hot-spots and try to diminish the vehicle
emissions. The private sector can also make use of these studies to target adver-
tisements to specific groups of users that travel along some routes or visit some
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bifet et al. (Eds.): DS 2023, LNAI 14276, pp. 460–473, 2023.
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points of interest. Biologists can use these techniques to help to understand the
whereabouts of animals such as birds and fish, where they go, and which are
the recurrent routes taken. Tourism in both public and private sectors can also
make good use of trajectory analysis by recommending tourist routes or using
these routes to improve or even deploy services along the path.

A common approach to performing trajectory analysis is by making use of
clustering techniques where the process assigns a set of similar trajectories into
groups (the clusters) having highly similar trajectories within each cluster and
low similar trajectories among the different cluster sets [1,2]. Among the cluster-
ing approaches, one, in particular, has shown to be more suitable for trajectory
analysis due to its possibility of forming clusters of arbitrary shapes in Euclidean
space: the density-based approach. One of the most popular algorithms in this
group is DBSCAN [3]. Still, one key component of good-quality trajectory anal-
ysis is how to calculate the similarity between trajectories in a group. Different
similarity measures can be used but not all of them take into consideration the
order of the data points in the trajectory set and this is paramount for a good-
quality cluster of similar trajectories. Fréchet distance is one of the metrics that
can be used to solve the problem.

In this paper, we show how to identify frequent spatiotemporal trajectories
using density-based clustering techniques with Fréchet distance and experiment
with the proposal in three real-world trajectory datasets.

The paper is organized as follows. Section 2 briefly reviews the related works
in this area and the common trajectory clustering methods. Section 3 explains
the data set and the methods used in detail. Section 4, describes the experimental
setup and discusses the results for the study. Conclusions and suggestions for
further research are presented in Sect. 5.

2 Related Work

Nowadays, due to the massive volume of data that is being generated the need
for methods to analyze mobility data has also grown. Many researchers have
been applying data-mining techniques over many scenarios related to the iden-
tification of meaningful locations, habits, and common paths users and objects
take for diverse goals and the use of clustering techniques is very common when
dealing with these problems. We can view the clustering methods developed
for handling data into five categories: partition-based methods, hierarchy-based
methods, density-based methods, grid-based methods, and model-based methods
[2]. In this section, we review some relevant works which leverage the informa-
tion contained in these data for a multitude of different applications and show
how it can be effectively used for analyzing the moves of objects.

In [4,5] Andrade et al. propose a method for discovering common pathways
across users’ habits without any a priori or external knowledge. First, they per-
form density-based clustering for spatiotemporal data to obtain the places the
user visits the most. Secondly, a Gaussian Mixture Model (GMM) is applied over
the clustered origin x destination (OD) places to automatically separate the tra-
jectories into habits. Finally, they apply an extension of the Longest Common
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Sub-sequence (LCSS) algorithm over the habits to find the trips that are more
similar. Gudmundsson et al. [6] proposed a sub-trajectory clustering approach
based on Fréchet distance, considering a trajectory as a directed curve in 2D.
Dynamic Time Warping (DTW) was used by Sanchez et al. [7] for fast trajec-
tory similarity. They proposed hashing techniques named Distance-Based Hash-
ing (DBH) and Locality Sensitive Hashing (LSH) by clustering the trajectories
using the k-means algorithm. Hung et al. [8] proposed a “clue-aware” trajectory
clustering algorithm to cluster similar trajectories into groups by similarity, and
then aggregate trajectories in each group to derive the corresponding trajec-
tory centroids. Brankovic et al. [9] consider a center-based trajectory clustering
algorithm to compute the �-simplifications of the center trajectories, where a
centroid trajectory has only � points.

3 Methodology

3.1 Definitions

Here we introduce the definition of a point, trajectory, and frequent trajectory.

Point: A point is a triple of the form p = (latitude, longitude, time) that repre-
sents a latitude-longitude location and a time-stamp.

Trajectory: A trajectory Tr is a sequence of ordered point triples Tr = (p1, p2,
. . ., pn) where pi is a point and p1.time < p2.time <. . .< pn.time. From this
sequence of points, we can derive the trajectory length. This property is the sum
of the distances between each of the sequence points often represented in meters
or kilometers. Direction is also another property of the trajectory. In our study,
it is denoted by the direction of the start x endpoint which means from where
the individual is departing to the destination or final observation. For this study,
we also observe the cardinality of the trajectory. This property is denoted by the
number of points in the sequence.

Frequent Trajectory: A frequent trajectory is described as a regular route an
individual tends to follow when traveling/moving between two locations (origin
and destination) [10]. In a real-life example, this can be a street or highway one
can take to drive from home to work, a metro line used to commute, a sidewalk
that is taken to walk to the user’s preferred restaurant, to go to a shopping
mall, etc. In this study, we have focused on the discovery of the most frequent
places that individuals visit and the common routes that are related to these
displacements.

Other characteristics are also important to mention:

– Trajectories may have different lengths as individuals tend to move accord-
ingly to their needs and singularities (e.g., N and M can be different for Tr i
= (p1, p2,. . . , pN ) and Tr j = (p1, p2,. . . , pM )).

– Trajectories may have different directions. In the context of individuals’ move-
ment, the direction of each trajectory is an essential condition for the sim-
ilarity of trajectories. As we propose the discovery of frequent routes, two
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trajectories moving in opposite directions should be considered as different
moves despite their close proximity to each other as they may represent differ-
ent habits (e.g., going to work from home and going back home from work).

3.2 Trajectories Simplification with Ramer-Douglas-Peucker (RDP)

In some cases, GPS raw data can be very densely represented. The three datasets
used in this work have different granularities and for the frequent trajecto-
ries discovery/clustering step, we end up not needing so much detail. Many
of these points can be removed as they are somehow redundant whereas other
key positions need to be kept. A good way to avoid unnecessary processing is
by using compression techniques. For simplifying the trajectories we use the
Ramer-Douglas-Peucker algorithm [11,12]. The aim of the algorithm is to pro-
duce a simplified poly-line that has fewer points than the original but still keeps
the original’s characteristics/shape. The method takes one threshold parameter
ε and starts by connecting the first and the last point of the original line with
a reference OD pair. It then finds the point that is furthest away from that
baseline reference and checks if it’s greater than ε. If true, it keeps the point and
the function continues to recursively split the line into two segments creating
new reference points and repeating the procedure. If the point is nearer to the
baseline reference than ε it discards all the points between these reference points
simplifying the trajectory.

Figure 1 (a) shows an example of a trajectory being split by the RDP algo-
rithm.

3.3 Clustering Algorithm and Similarity Measures

Clustering is an efficient way to group data into different classes on the basis of
the internal and previously unknown schemes inherent in the data and trajectory
clustering is the most popular topic in current trajectory data mining. The aim is
to discover the similarity (distance) in moving object databases, grouping similar
trajectories into the same cluster, and finding the most common patterns [2].

Density-based clustering techniques are very popular methods for location
detection, as they have the ability to detect clusters of arbitrary shapes without
specifying the number of clusters in the data apriori. Furthermore, they are
tolerant of outliers (noise). Some recent studies have addressed the location
detection techniques in order to improve the quality of the discoveries [4,5,10,
13,14].

In this study, we apply the clustering method proposed by [10] which is a
variation of DBSCAN [3] to form the clusters of trajectories between the start
(origin) and end (destination) points of all the trajectories.

One of the most important parts of a clustering algorithm is the similar-
ity measure of two items. This is the step where the distance of two points is
calculated before the algorithm decides to group these items or not. Different
comparison strategies must be taken accordingly to the purpose of the clustering
task. Some of the most common distances are Euclidean, Hausdorff [1], Longest
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Common Sub-Sequence [15], Dynamic Time Warping [1], and Fréchet distance
[16].

For the Euclidean distance (ED), the similarity between two trajectories is
simple and intuitive, because it is parameter-free. In addition, its time com-
plexity is linear which means that it can handle a large dataset. However, noise
existing in trajectory data will have a great influence on the result. Another main
disadvantage of using the ED for measuring the similarity between trajectories is
that the sampling points must be in corresponding positions (at the same time)
and the trajectories must have the same length. In real-world scenarios, this is
not true even though the origin and destination are the same.

Hausdorff distance (HD) between trajectory segments A and B selects the
maximum unidirectional HD from A to B and from B to A. It measures the
maximum mismatching degree between two trajectory segments. HD tolerates
the influence caused by the disturbance of points but is sensitive to noise data.
This last point is also an issue in real-world scenarios when dealing with GPS
data due to the signal interference caused by objects. For this reason, we avoid
using this distance function.

For the Longest Common Sub-Sequence (LCSS), as the name suggests, the
idea is to get the longest list of common items in sequence between two trajec-
tories. It uses a distance function (that can be ED or any other) to compare if
the combination of pair of points is less than a threshold ε. Having the distance
value less than the expected threshold, the value of LCSS is increased by 1.
One advantage of LCSS is that it allows certain deviations existing in the sam-
pling data (which is common in the real world). The advantages are the distance
measure choice and parameter specification as well as the time complexity.

In order to find an optimal alignment between two given (time-dependent)
sequences under certain restrictions the Dynamic Time Warping (DTW) algo-
rithm was proposed. This method can match trajectories even if their lengths
are different. The goal is to minimize the warping cost of finding similar paths
between two trajectories. It is also sensitive to noise. The disadvantages are that
when two trajectories are completely dissimilar in a small range, the DTW dis-
tance cannot be found and time cost and complexity are higher than the previous
techniques.

Finally, the discrete Fréchet Distance (DFD) considers both the sequential
relationship as well as the location of the points in the trajectories while measur-
ing their similarity. It also relies on ED to calculate the distance in a point-wise
fashion as shown in Eq. 1.

DFD(x, y) = max
(‖pi(t) − qi(t)‖,min

(
DFD(x − 1, y),DFD(x, y − 1)

))
(1)

where given two sequences of points p=(p1, p2, p3, . . . , pn) and q = (q1, q2,
q3, . . . , qm), Fréchet distance represented by DFD(x, y) is the maximum of the
minimum distances between points pi and qi. Figure 1 (b) shows an example of
the Fréchet distance between two trajectories.

One of the key issues previous studies have shown is that the Fréchet distance
contains the temporal relationship between the points. More particularly, the
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(a) Douglas-Peucker algorithm [1] (b) Fréchet distance between trajectories

Fig. 1. RDP and Fréchet distance examples

structure of the nodes inside the trajectory is taken into consideration in the
computation process, which can more accurately describe the similarity between
the trajectories yelling better results [17]. In some scenarios where there exists a
backward direction, ring, or crisscross in a trajectory, the Fréchet distance value
doesn’t show more distortion than other distance measurements. Due to these
characteristics, this metric is more descriptive and more suitable as a measure
of the similarity between trajectories. The time complexity is also similar to the
other mentioned metrics.

For this work, we decided to use the DFD to cluster the trajectories. To
obtain the clusters of frequent trajectories between the origin and destination
pairs we first construct a symmetric distance matrix of each of the pairs in the
trajectories connecting the given OxD using the DFD. We then fit the symmetric
distance matrix to the DBMeans [10] method to obtain the different groups of
trajectories.

4 Experiments and Results

4.1 Datasets

Here we describe the data we use in the paper as well as the preprocessing steps
taken to handle the raw data and transform it to perform the clustering.

Porto Taxi Dataset. The dataset comprises 442 taxis running in the city of
Porto, in Portugal, for an entire year (from 2013–07–01 to 2014–06–30) [18].
These taxis operate through a taxi dispatch central, using mobile data terminals
installed in the vehicles. Each data sample corresponds to one completed trip.
It contains a total of 9 (nine) features and for this study following were used:
TRIP ID: a unique identifier for each trip; TAXI ID: a unique identifier for
the taxi that performed each trip; TIMESTAMP: Unix Timestamp (in seconds)
that identifies the trip’s start; POLYLINE: It contains a list of GPS coordinates
between brackets organized in pairs as [LONGITUDE, LATITUDE]. This list
contains one pair of values for every 15 s. The last list item corresponds to
the trip’s destination while the first one represents its start. The dataset has
1, 710, 670 instances in total.
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Google Location History Dataset. This dataset was acquired using the
Google Location History Data from a single user as described in [4]. The dataset
contains 120.847 instances from a period of 9 months or 253 unique days starting
in February 2019 to October 2019. Among other features that are not going
to be used in this study, the dataset is composed of a pair of (latitude, and
longitude), and a timestamp. All the data was delivered in a single JSON file.
As the locations of this dataset are well known by the researchers that published
the files in [4], this dataset is going to be used as ground truth.

T-Drive Dataset. This dataset contains the GPS trajectories of 10,357 taxis
during the period of one week from 02 to 08, February 2008, within Beijing,
China [19]. The total number of points in this dataset is about 16,3 million and
the total distance of the trajectories reaches 9 million kilometers. The average
sampling interval is about 177 s with a distance of about 623 m. Each file of this
dataset, which is named by the taxi ID, contains the trajectories of one taxi.

4.2 Data Filtering and Preprocessing

The first step is the preprocessing task that is including among other activities,
the data cleaning process where we perform outliers and noise removal [20,21].
First of all, we need to look for duplicate data in the dataset and remove it.
We also look for null data in the points where we cannot use the latitude or
longitude to create new features in the next step.

Due to the influence of GPS signal loss and data drift, there are a number
of unwanted points in the trajectories set during the data acquisition. Hence,
cleaning tasks need to be performed in order to have more trustworthy data.
This inconsistent data must be deleted. We apply a smoothing median filter to
each set of 5 of GPS points to remove the noise as it is more robust to outliers
[4,10]. We also perform filtering accordingly to the speed and acceleration: points
with speed greater than 150 km/h and acceleration greater than 10 m/s2 are
removed [22].

For the Porto Taxi dataset, 1, 290, 226 rows and 28, 599 trajectories without
missing values were kept. The Google Location History (GLH) dataset was kept
with 209, 038 rows for 333 distinct trajectories while for T-Drive dataset was
kept with 16, 325, 487 rows and 146, 749 unique trajectories.

4.3 Experimental Setup

For the experiments, we have extracted a subset of the Porto Taxi dataset. We
used a sub-sample of one week of data between 2013–08–01 and 2013–08–07. For
the GLH we used the dataset as a whole due to the data being collected from
a single user while for the T-Drive Taxi dataset, we used a single day of data
(2008–02–03) chosen by the mean value of the 7 days of data.

For the clustering step in the GLH dataset, we set the ε to 100 meters and the
MinPts to 5 as it comprises data from single user mobility while for the Porto
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Taxi dataset, we used a more strict value for ε: 50 meters and MinPts was set
to 10 due to the nature of the taxi business, the same values were applied to the
T-Drive taxi dataset. For the simplification of the trajectories using the RDP
algorithm, we set the ε to 50 for the GLH dataset due to the more flexible moves
the individual may perform freely walking, running, cycling, or other activities
related to vehicles. Regarding the Porto Taxi and the T-Drive taxi datasets,
we set the ε to 25 due to the constraints for the vehicles in the road network.
Table 1 shows the results for the top 10 trajectories with more points. Likewise,
Table 2 shows the results for the top 5 trajectories with more points for the GLH
dataset while Table 3 shows the values for the T-Drive dataset. In many cases
(more evident in Tables 1 and 2) the reduction is greater than 50% and in some
situations, the values reach up to 80%.

All the experiments were performed on a 64-bit Intel(R) Core(TM) i7-6700K
CPU 4.00 GHz and 32 GB memory RAM machine over Python 3.6.7 environ-
ment.

Table 1. Porto Taxi RDP

Traj. Id Raw RDP

6 111 34

35 102 30

4 101 46

5 101 31

27 98 35

42 95 27

41 92 30

38 92 29

8 90 32

24 88 42

Table 2. GLH RDP

Traj. Id Raw RDP

0 38 10

1 22 4

2 24 5

3 30 11

4 53 13

Table 3. T-Drive RDP

Traj. Id Raw RDP

1 39 30

2 12 7

8 8 6

12 8 5

11 7 5

14 7 4

7 6 4

4 5 4

6 4 3

13 4 3

4.4 Evaluation

In this subsection, we compare our proposal with the one made by [4] where the
authors use the LCSS to identify common pathways (frequent trajectories in our
case).

Porto Taxi Dataset Results. In Fig. 2 one can see the most frequent tra-
jectories between the top origin x destination pair in the great Porto area. As
expected, this is a set of options of routes from the city center (start green
marker) at the bottom to the airport area (end red marker) at the top of the
figure. The strong blue cluster on the right side seems to be the longest path
while all the other colors merge with the strong green cluster before reaching
the end of the trajectory.
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Fig. 2. Porto Taxi frequent trajectories. (Color figure online)

The most frequent trajectories that each model yields are different. One can
notice that in our case the frequent trajectories group contains 22 trajectories
while in the work LCSS method, it returns only 2. It is also possible to identify
that they are different routes. For our approach (in purple on the left side) the
most frequent trajectories are departing from the green marker and then going
right before going up and then to the left. For the LCSS (in blue on the right
side) it goes straight up and then to the left and then up again. Figure 3 shows
the comparison between the two methods.

Google Location History Dataset Results. For the Google Location His-
tory dataset, by using the ground truth information given in [4], we can identify
the clusters of trips starting at the individual’s workplace and ending at the
individual’s home place depicted in Fig. 4. One interesting pattern to observe is
the cluster in the lime color that is very different from the other pathways. The
user takes a very distinct route from work to home. Further investigation on the
location on the top of the image can help us to understand why.

The most frequent trajectories in this dataset are the same where both groups
contain 2 trajectories. Figure 5 shows the comparison between the two methods.
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(a) Fréchet distance trajectories (purple) (b) LCSS trajectories (blue)

Fig. 3. Porto taxi frequent trajectories with Fréchet and LCSS results. (Color figure
online)

Fig. 4. Google Location History frequent trajectories. (Color figure online)

T-Drive Taxi Dataset Results. In Fig. 6 one can see the most frequent tra-
jectories between the top origin x destination pair in the great Beijing area. The
group has 15 trajectories in total. Unlike the results from the Porto Taxi dataset,
the most frequent trajectories, in this case, are very short ones connecting the
Capital Airport and a place nearby that we suggest being a hotel. The only
exception to this rule is the long trajectory (in red) that is spread around the
northeastern part of the city (obviously an outlier).

The most frequent trajectories in this dataset are the same where both groups
contain 11 trajectories. Figure 7 shows the comparison between the two methods.
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(a) Fréchet distance trajectories (grey) (b) LCSS trajectories (orange)

Fig. 5. GLH frequent trajectories with Fréchet and LCSS results. (Color figure online)

Fig. 6. Beijing T-Drive Taxi frequent trajectories. (Color figure online)

(a) Fréchet distance trajectories (blue) (b) LCSS trajectories (brown)

Fig. 7. T-Drive taxi frequent trajectories with Fréchet and LCSS results. (Color figure
online)
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4.5 Discussion

Regarding the GLH dataset, as it has mixed data logs, sometimes the trajectories
are not that rich and the precision of the points is low. Still, we can obtain clear
trajectory groups from our method. It is important to mention that in [10]
the authors already classified the locations turning this dataset into a labeled
version of the raw data. In this case, is possible to use it as a ground truth
for identifying the frequent trajectories between origins and destinations. By
performing a visual inspection of the outputs for the two datasets one can clearly
see the distinct groups between the same origin and destination. As this dataset
is from individual user mobility is expected that we find two main clusters that
connect the user’s home and work and the opposite trips going back from work
to home.

For the Porto Taxi dataset, the results are more clear as the GPS logs are
from vehicles that are constrained into the road network, and the trips are started
and ended in clear places usually outdoors which increases the quality of data.
Also, it is important to remark that the logs are constant in intervals of 15 s
apart.

The results for the T-Drive Taxi dataset are also interesting as we found out
that the most frequent trajectories are short and close to the airport. One can
reason for not finding many trajectories connecting regions closer to the city
center due to Beijing being a large city (much larger than Porto) and the users
could be using the metro, bus, or train to perform these moves.

5 Conclusions and Future Work

Frequent trajectory discovery is an important research topic in mobility patterns
and clustering analysis has the tools to help us to understand the movements of
individuals and objects with several application scenarios. Still, the problem is
challenging due to the ubiquitous shifting in trajectory data and variable logging
rates of different objects. In this paper, we showed how to handle raw GPS data
and identify the most frequent trajectories between origin and destination pairs
by using density-based clustering techniques, polyline simplification, and Fréchet
distance. The experiments over three real-world datasets show the usefulness of
our proposal in different scenarios.

For future work, we intend to perform more extensive experiments on dif-
ferent real-world datasets and scenarios. We also plan to improve the clustering
algorithm for streaming processing.
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Abstract. Understanding the characteristics of neural networks is important but
difficult due to their complex structures and behaviors. Some previous work
proposes to transform neural networks into equivalent Boolean expressions and
apply verification techniques for characteristics of interest. This approach is
promising since rich results of verification techniques for circuits and other
Boolean expressions can be readily applied. The bottleneck is the time complex-
ity of the transformation. More precisely, (i) each neuron of the network, i.e., a
linear threshold function, is converted to a Binary Decision Diagram (BDD), and
(ii) they are further combined into some final form, such as Boolean circuits. For
a linear threshold function with n variables, an existing method takes O(n2

n
2 )

time to construct an ordered BDD of size O(2
n
2 ) consistent with some variable

ordering. However, it is non-trivial to choose a variable ordering producing a
small BDD among n! candidates.

We propose a method to convert a linear threshold function to a specific form
of a BDD based on the boosting approach in the machine learning literature. Our
method takes O(2npoly(1/ρ)) time and outputs BDD of size O(n2

ρ4 ln 1
ρ
), where

ρ is the margin of some consistent linear threshold function. Our method does
not need to search for good variable orderings and produces a smaller expression
when the margin of the linear threshold function is large. More precisely, our
method is based on our new boosting algorithm, which is of independent interest.
We also propose a method to combine them into the final Boolean expression rep-
resenting the neural network. In our experiments on verification tasks of neural
networks, our methods produce smaller final Boolean expressions, on which the
verification tasks are done more efficiently.

Keywords: Convolutional Neural Network · Binary decision diagram ·
Boosting · Verification

1 Introduction

Interpretability of Neural Networks (NNs) has been relevant since their behaviors are
complex to understand. Among many approaches to improve interpretability, some
results apply verification techniques of Boolean functions to understand NNs, where
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NNs are represented as an equivalent Boolean function and then various verification
methods are used to check criteria such as robustness [6,7,12–14]. This approach is
promising in that rich results of Boolean function verification can be readily applied.
The bottleneck, however, is to transform a NN into some representation of the equiva-
lent Boolean function.

A structured way of transforming NNs to Boolean function representations is pro-
posed by [10]. They proposed (i) to transform each neuron, i.e., a linear threshold func-
tion, into a Binary Decision Diagram (BDD) and then (ii) to combine BDDs into a final
Boolean function representations such as Boolean circuits. In particular, the bottleneck
is the transformation of a linear threshold function to a BDD. To do this, they use the
transformation method of [3]. The method is based on dynamic programming, and its
time complexity is O(n2

n
2 ) and the size of resulting BDD is O(2

n
2 ), where n is the

number of the variables. In addition, the method requires a fixed order of n variables as
an input and outputs the minimum BDD consistent with the order. Thus, to obtain the
minimum BDD, it takes O(n!n2

n
2 ) time by examining n! possible orderings. Even if

we avoid the exhaustive search of orderings, it is non-trivial to choose a good ordering.
In this paper, we propose an alternative method to obtain a specific form of BDD

representation (named Aligned Binary Decision Diagram, ABDD) of a linear threshold
function. Our approach is based on Boosting, a framework of machine learning which
combines base classifiers into a better one. More precisely, our method is a modifica-
tion of the boosting algorithm of Mansour and McAllester [8]. Given a set of labeled
instances of a linear threshold function, their algorithm constructs a BDD that is con-
sistent with the instances in a top-down greedy way. The algorithm can be viewed as a
combination of greedy decision tree learning and a process of merging nodes. Given a
linear threshold function f(x) = σ(w ·x+b) where σ is the step function, we can apply
the algorithm ofMansour andMcAllester by feeding all 2n possible labeled instances of
f and obtain a BDD representation of f of the sizeO(n2

ρ4 ln 1
ρ ) in timeO(2npoly(1/ρ)),

where ρ is the margin of f , defined as ρ = minx∈{−1,1}n |w·x+b|/‖w‖1. An advantage
of the method is that the resulting BDD is small if the linear threshold function has a
large margin. Another merit is that the method does not require a variable ordering as an
input. However, in our initial investigation, we observe that the algorithm is not efficient
enough in practice. Our algorithm, in fact, a boosting algorithm, is obtained by mod-
ifying their algorithm so that we only use one variable (base classifier) in each layer.
We show that our modification still inherits the same theoretical guarantees as Man-
sour and McAllester’s. Furthermore, surprisingly, the small change makes the merging
process more effective and produces much smaller BDDs in practice. Our modification
might look easy but is non-trivial in a theoretical sense. To achieve the same theoretical
guarantee, we introduce a new information-theoretic criterion to choose variables that
is different from the previous work. That is one of our technical contributions1.

In our experiments on verification tasks of Convolutional Neural Networks (CNNs),
by following the same procedures as [10], we construct smaller BDDs and resulting
Boolean representations of CNNs faster than in previous work, thus contributing to
more efficient verification.

1 All proofs will be found in the arXiv version http://arxiv.org/abs/2306.05211.

http://arxiv.org/abs/2306.05211
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Table 1. Time and size for several methods to convert to DDs from a given linear threshold
function (LTF, for short) of margin ρ. The fourth result is only for LTFs with integer weights
whose L2-norm is W .

Method DD type Size Time

[3] OBDD O(2
n
2 ) O(n!n2

n
2 )

[8] BDD O(n2

ρ4 ln 1
ρ
) O(2npoly(1/ρ))

Ours ABDD O(n2

ρ4 ln 1
ρ
) O(2npoly(1/ρ))

(cf. [10]) OBDD O(nW ) O(nW )

This paper is organized as follows: Sect. 2 overviews the preliminaries of binary
NN (BNN), BDD, Ordered BDD (OBDD), and Aligned BDD (ABDD). Sections 3 and
4 detail our proposed method to construct ABDD. Section 5 details the construction of
the Boolean circuit and SDD. Section 6 handles the experimental results with analysis,
followed by the conclusion in Sect. 7.

Related Work. The work in [9] proposed a precise Boolean encoding of BNNs
that allows easy network verification. However, it only works with small-sized net-
works. [11] leveraged the Angluin-style learning algorithm to convert the BNN (the
weights and input are binarized as {−1, 1}) and OBDD into Conjunctive Normal Form
(CNF) and then used the Boolean Satisfiability (SAT) solver to verify the equivalence of
its produced CNF. However, they modified the OBDD several times and utilized limited
binary network weights. [3] suggested a method to convert a linear threshold classifier
with real-valued weight into OBDD. However, their approach owns time complexity of
O(n!n2

n
2 ) and OBDD size complexity of O(2

n
2 ) via searching the full ordering, which

increases exponentially when n becomes larger. Still, [3,9,11] can only handle small
dimension NN weight, and the large Boolean expression was represented as Sentential
Decision Diagram (SDD), which owns enormous time complexity. Moreover, [4] pro-
posed a rule extraction method inspired by the ’rule extraction as learning’ approach to
express NN into a Reduced Ordered DD (RODD), which has the time complexity of
O(n22n).

2 Preliminaries

2.1 Binary Neural Network

A binary neural network (BNN) is a variant of the standard NN with binary inputs
and outputs [2]. In this paper, each neural unit, with a step activation function σ, is
formulated as follows:

σ(
∑

i

xiwi + b) =

{
1,

∑
i xiwi + b ≥ 0

−1, otherwise
(1)

where x ∈ {−1, 1}n, w ∈ R
n and b ∈ R are the input, the weight vector and the bias

of this neural unit, respectively.
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2.2 Definition of BDD, OBDD and ABDD

A binary decision diagram (BDD) T is defined as a tuple T = (V,E, l) with the follow-
ing properties: (1) (V,E) is a directed acyclic graph with a root and two leaves, where
V is the set of nodes, E is the set of edges such that E = E− ∪ E+, E− ∩ E+ = ∅.
Elements of E+ and E−’s are called +-edges, and −-edges, respectively. Let L = {0-
leaf, 1-leaf} ⊂ V be the set of leaves. For each v ∈ V , there are two child nodes
v−, v+ ∈ V such that (v, v−) ∈ E− and (v, v+) ∈ E+. (2) l is a function from V \ L
to [n].

Given an instance x ∈ {−1, 1}n and a BDD T , we define the corresponding path
P (x) = (v0, v1, . . . , vk−1, vk) ∈ V ∗ over T from the root to a leaf as follows: (1)
v0 is the root. (2) for any j = 0, . . . k − 1, we have (vj , vj+1) ∈ E+ ⇔ xl(vj) = 1
and (vj , vj+1) ∈ E− ⇔ xl(vj) = −1. (3) vk is a leaf node. We say that an instance
x ∈ {−1, 1}n reaches node u in T , if P (x) contains u. Then, a BDD T naturally defines
the following function hT : {−1, 1}n → {−1, 1} such that

hT (x) �
{

−1, x reaches 0-leaf
1, x reaches 1-leaf.

(2)

Given a BDD T = (V,E, l), we define the depth of a node u ∈ V as the length of
the longest path from the root to u. An ordered BDD (OBDD) T = (V,E, l) is a
BDD satisfying an additional property: There is a strict total order <[n] on [n] such
that for any path P = (v0, . . . , vk) on from the root to a leaf, and any nodes vi and vj

(i < j < k), l(vi) <[n] l(vj). An Aligned BDD (ABDD) T = (V,E, l) is defined as
a BDD satisfying that for any nodes u, v ∈ V \ L with the same depth, l(u) = l(v).
We employ vi,j to appear the positional information of a node in the BDD, where j
represents the depth of the node, and i represents the position of the node at depth j.

BDD, OBDD and ABDD are illustrated in Fig. 1.

2.3 Instance-Based Robustness (IR), Model-Based Robustness (MR)
and Sample-Based Robustness (SR)

Robustness is a fundamental property of the neural network, which represents the tol-
erance of the network to noise or white attacks. For binary input images, the robustness
k represents that as long as at least k pixels are flipped from 0 to 1 or 1 to 0, and the
neural network’s output will be changed.

We define the IR and MR of a network as follows.

Definition 1. (Instance-based Robustness) [10]
Consider a classification function f : {−1, 1}n → {−1, 1} and a given instance x. The
robustness of the classification of x by f , denoted by rf (x). If f is not a trivial function
(always True or False),

rf (x) = min
x′:f(x) �=f(x′)

dis(x, x′) (3)

where dis(x, x′) denotes the Hamming distance between x and x′.
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Fig. 1. Examples of BDD (A), OBDD (B) and ABDD (C). To express the same linear threshold
function in BDD form: nodes at the same depth can be labeled by different variables, which
means that the number of variables does not limit the depth of BDD; in OBDD form: the nodes
at the same depth are all labeled by the same variables, which results in the depth of OBDD is
smaller than the number of variables; in ABDD form: nodes at the same depth are labeled by
the same variables, and the depth of ABDD only depends on the reduction of entropy to 0 in our
algorithm.

Definition 2. (Model-based Robustness) [10]
Consider a classification function f : {−1, 1}n → {−1, 1}. The Model-based Robust-
ness of f is defined as:

MR(f) =
1
2n

∑

x

rf (x). (4)

However, we consider that computing MR on full-size data is not practically mean-
ingful. In practical applications, robustness validation based on sample data is common.
Here, we regard the samples in the dataset as instances randomly extracted from the
full-size data under the uniform distribution. Then, we have the following definition.

Definition 3. (Sample-based Robustness, SR)
Consider a classification function f : {−1, 1}n → {−1, 1}. Given a sample S under
uniform distribution from {−1, 1}n. The Sample-based Robustness of f is defined as:

SR(f) =
1

|S|
∑

x∈S

rf (x). (5)

2.4 Overview of Our Method

In Sect. 3, we propose an algorithm that constructs an ABDD whose training error is
small with respect to a given sample of some target Boolean function. Our algorithm is
based on boosting, which is an effective approach in machine learning that constructs
a more accurate classifier by combining “slightly accurate” classifiers. In Sect. 4, we
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apply our boosting algorithm for finding an equivalent ABDDwith a given linear thresh-
old function. Under a natural assumption that the linear threshold function has a large
“margin”, we show the size of the resulting ABDD is small. In Sect. 5, we show how to
convert a given BNN to an equivalent Boolean expression suitable for verification tasks.
More precisely, (i) Each neural unit is converted to an equivalent ABDD by applying
our boosting algorithm, (ii) each ABDD is further converted to a Boolean circuit, and
(iii) all circuits are combined into the final circuit, which is equivalent to the given
BNN. Furthermore, for a particular verification task, we convert the final circuit to an
equivalent sentential decision diagram (SDD).

3 Boosting

3.1 Problem Setting

Boosting is an approach to constructing a strongly accurate classifier by combining
weakly accurate classifiers. We assume some unknown target function f : {−1, 1}n →
{−1, 1}. Given a sample S = ((x1, f(x1)), . . . , (xm, f(xm))) ∈ ({−1, 1}n ×
{−1, 1})m of m instances labeled by f and a precision parameter ε, we want to find a
classifier g : {−1, 1}n → {−1, 1} such that its training error PrU{g(x) 
= f(x)} ≤ ε,
where U is the uniform distribution over S. We are also given a set H of base classifiers
from {−1, 1}n to {−1, 1}. We assume the following assumption which is standard in
the boosting literature [8].

Definition 4. (Weak Hypotheses Assumption (WHA))
A hypothesis set H satisfies γ-Weak Hypothesis Assumption (WHA) for the target func-
tion f : {−1, 1}n → {−1, 1} if for any distribution d over {−1, 1}n, there exists h ∈ H
such that edged,f (h) �

∑
x∈{−1,1}n dxf(x)h(x) ≥ γ.

Intuitively, WHA ensures the set of H of hypotheses and f are “weakly” related to each
other. The edge function edged,f (h) takes values in [−1, 1] and equals to 1 if f = h.
Under WHA, we combine hypotheses of H into a final hypothesis hT represented by
an ABDD T .

Our analysis is based on the conditional entropy of f given an ABDD without
leaves, where the entropy is measured by a variant of entropy function G : [0, 1] →
[0, 1], defined as G(q) � 2

√
q(1 − q). Like the Shannon entropy, G is concave and

G(1/2) = 1, and G(0) = G(1) = 0. In particular, min(q, 1 − q) ≤ G(q). An ABDD
T without leaves is an ABDD that has no 0-leaf and 1-leaf. For each node u in T , let
pu � PrU{x reaches u} and qu � PrU{f(x) = 1 | x reaches u}, respectively. Let
N(T ) be the set of nodes in T with no outgoing edges. Now we define the conditional
entropy of f given T as

HU (f |T ) =
∑

u∈N(T )

puG(qu). (6)

We can construct a standard ABDD T̂ (i.e. with 0-leaf and 1-leaf) by merging
those nodes u in N(T ) with qu < 1/2 into 0-leaf and those nodes u in N(T )
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with qu ≥ 1/2 into 1-leaf. Then, it is easy to see that PrU{f(x) 
= hT̂ (x)} =∑
u∈N(T ) pu min(qu, 1 − qu) �

∑
u∈N(T ) puG(qu). Thus, minimizing HU (f |T )

implies minimizing PrU{hT̂ (x) 
= f(x)}, and hence in what follows we consider
ABDDs without leaves and simply call them ABDDs.

Proposition 1. PrU{hT̂ (x) 
= f(x)} � HU (f |T ).

Therefore, it suffices to find an ABDD T whose conditional entropy HU (f |T ) is
less than ε.

We will further use the following notations and definitions. Given an ABDD T ,
S and u ∈ N(T ), let Su = {(x, y) ∈ S | x reaches u}. The entropy Hd(f) of
f : {−1, 1}n → {−1, 1} with respect to a distribution d over {−1, 1}n is defined
as Hd(f) � G(q), where q = Prd{f(x) = 1}. The conditional entropy Hd(f |h) of f
given h : {−1, 1}n → {−1, 1} with respect to d is defined as Hd(f |h) = Prd{h(x) =
1}G(q+) + Prd{h(x) = −1}G(q−), where q± = Prd{f(x) = 1 | h(x) = ±1},
repectively.

3.2 Our Boosting Algorithm

Our algorithm is a modification of the boosting algorithm proposed by Mansour and
McAllester [8]. Both algorithms learn Boolean functions in the form of BDDs in a top-
down manner. The difference between our algorithm and Mansour and McAllester’s
algorithm lies in the construction of the final Boolean function, where ours utilizes
ABDDs, while Mansour and McAllester’s algorithm does not. Although this change
may appear subtle, it necessitates a new criterion for selecting hypotheses in H and
demonstrates improved results in our experiments.

Our boosting algorithm iteratively grows an ABDD by adding a new layer at the
bottom. More precisely, at each iteration k, given the current ABDD Tk, the algorithm
performs the following two consecutive processes (as illustrated in Fig. 2).

Split: It chooses a hypothesis hk ∈ H using some criterion and adds two child nodes
for each node in N(Tk) in the next layer, where each child corresponds to ±1 values
of hk. Let T ′

k be the resulting DD.
Merge: It merges nodes in N(T ′

k) according to some rule and let Tk+1 be the ABDD
after the merge process.

The full description of the algorithm is given in Algorithm 1 and 2, respectively.
For the split process, it chooses the hypothesis hk maximizing the edge edged̂,f (h)
with respect to the distribution d̂ specified in (8). For the merge process, we use the
same way in the algorithm of Mansour and McAllester [8].

Definition 5. [8] For δ and λ (0 < δ, λ < 1), a (δ, λ)-net I is defined as a set of
intervals [v0, v1], [v1, v2], . . . , [vw−1, vw] such that (i) v0 = 0, vw = 1, (ii) for any
Ik = [vk−1, vk] and q ∈ Ik, maxq′∈Ik G(q′) ≤ max{δ, (1 + λ)G(q)}.
Mansour and McAllester showed a simple construction of (δ, λ)-net with length w =
O((1/λ) ln(1/δ)) [8] and we omit the details. Our algorithm uses particular (δ, λ)-nets
for merging nodes.
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3.3 Analyses

The conditional entropy of a function f : {−1, 1}n → {−1, 1} given an ABDD T and
a hypothesis h : {−1, 1}n → {−1, 1} with respect to distribution d over {−1, 1}n is
defined as follows:

Hd(f |T, h) =
∑

u∈N(T )

(pu+G(qu+) + pu−G(qu−)) (7)

where pu+ = Prd{x reaches u and h(x) = 1} and qu+ = Prd{f(x) =
1|x reaches u,h(x) = 1}. pu− and qu− are defined similarly. The conditional entropy
in (7) is about the nodes in N(T ) after split by hypothesis h.

Then, we establish the connection between γ and the entropy function and have a
γ ∈ (0, 1) at each depth to reflect the entropy change under our algorithm as shown in
Lemma 1 and 2.

Lemma 1. Let d̂ be the distribution over S specified in (8) when Tk, H and S is given
by Algorithm 2 and let hk be the output. If H satisfies γ-WHA, then the conditional
entropy of f with respect to the distribution U over S given Tk and hk is bounded as
HU (f |Tk, hk) � (1 − γ2/2)HU (f |Tk).

Lemma 2. ( [8]) Assume that, before the merge process in Algorithm 1,
HU (f |Tk, hk) ≤ (1 − λ)HU (f |Tk) for some λ (0 < λ < 1). Then, by merging based
on the (δ, η)-net with δ = (λ/6)HU (f |Tk) and η = λ/3, the conditional entropy of
f with respect to the distribution U over S given Tk+1 is bounded as HU (f |Tk+1) �
(1−λ/2)HU (f |Tk), where the width of Tk+1 isO((1/λ)(ln(1/λ)+ln(1/ε))), provided
that HU (f |Tk) > ε.

Now we are ready to show our main theorem.

Theorem 1. Given a sample S of m instances labeled by f , and a set H of hypotheses
satisfying γ-WHA, Algorithm 1 outputs an ABDD T such that PrU{hT (x) 
= f(x)} ≤
ε. The size of T is O((ln(1/ε)/γ4)(ln(1/ε) + ln(1/γ))) and the running time of the
algorithm is poly(1/γ, n)m.

4 ABDD Construction

We now apply the ABDD Boosting algorithm developed in the previous section to a
given linear threshold function f to obtain an ABDD representation T for f . In partic-
ular, we show that the size of T is small when f has a large margin.

To be more specific, assume that we are given a linear threshold function f :
{−1, 1}n → {−1, 1} of the form

f(x) = σ(w · x + b)

for some weight vector w ∈ R
n and bias b ∈ R, where σ is the step function, i.e., σ(z)

is 1 if z ≥ 0 and −1 otherwise. Note that there are infinitely many (w, b) inducing the
same function f . We define the margin ρ of f as the maximum margin f(x)(w · x +
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Algorithm 1. ABDD Boosting
Input: a sample S ∈ ({−1, 1}n × (−1, 1))m of m instances by f , and a set H of hypotheses,
and precision parameter ε (0 < ε < 1);
Output: ABDD T ;

1: initialization: T1 is the ABDD with a root and 0, 1-leaves, k = 1.
2: repeat
3: (Split) Let hk = Split(T, H, S) and add child nodes with each node in N(Tk). Let T ′

k

be the resulting ABDD.
4: for u ∈ N(T ′

k) do
5: merge u to the 0-leaf (the 1 leaf) if qu = 0 (qu = 1, resp.).
6: end for
7: (Merge) Construct a (δ̂, λ̂/3)-net Ik with

8: λ̂ = 1 − HU (f |Tk,hk)
HU (f |Tk)

, and δ̂ = λ̂HU (f |Tk)
6

.
9: for I ∈ Ik do
10: merge all nodes u ∈ N(T ′

k) such that qu ∈ I .
11: end for
12: Let Tk+1 be the resulting ABDD and update k ← k + 1.
13: until HU (f |Tk) < ε
14: Output T = Tk.

b)/‖w‖1 over all (w, b). We let our hypothesis set H consist of projection functions,
namely, H = {h1, h2, . . . , hn, hn+1, hn+2, . . . , h2n}, where hi : x �→ xi if i ≤ n and
hi : x �→ −xi otherwise, so that we can represent f as f(x) = σ(

∑2n
i=1 wihi(x) + b)

for some non-negative 2n-dimensional weight vector w ≥ 0 and bias b. Then, we can
represent the margin ρ of f as the solution of the optimal solution for the following LP
problem:

max
w,b,ρ

ρ (9)

s.t. f(x)(
2n∑

i=1

wihi(x) + b) ≥ ρ for any x ∈ {−1, 1}n,

w ≥ 0,
∑

i

wi = 1.

Now we show that H actually satisfies ρ-WHA for f .

Lemma 3. Let f be a linear threshold function with margin ρ. ThenH satisfies ρ-WHA.

By the lemma and Theorem 1, we immediately have the following corollary.

Corollary 1. Let f be a linear threshold function with margin ρ. Applying the ABDD
Boosting algorithm with the sample S = {(x, f(x)) | x ∈ {−1, 1}n} of all (2n)
instances, our hypothesis set H, and the precision parameter ε = 1/2n, we obtain an

ABDD T , which is equivalent to f of size O
(

n
ρ4 (n + ln(1/ρ))

)
.
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Fig. 2. Illustration of our boosting algorithm. The blue dotted line part represents the process of
merging the split temporary nodes into new nodes by searching the equivalence space that does
not appear in the ABDD. Following algorithm 1, we find some hypothesis h to construct child
nodes in the new layer and then merge nodes afterward. (Color figure online)

5 Circuit and SDD Construction

Since we have a method to convert linear threshold functions into a DD representation,
the next step is to connect them according to the structure of the NN to form an equiv-
alent (∨,∧,¬)-circuit, which is used to verify SR. Subsequently, we can convert the
circuit into an SDD, which is used to verify robustness.

The conversion process from a DD to a circuit is performed in a top-down manner.
As shown in Fig. 3, the region enclosed by the red dashed box represents a conversion
unit. This unit converts a node x1 and its two edges in the DD into four gates and a
variable in the circuit. As the next node x2 is connected to a different edge of node x1,
we generate a new circuit beginning with an’or’-gate and connect it to the’and’-gate
obtained from the conversion of an edge associated with x1. This process is repeated
until all edges of the nodes reach either the 0-leaf or the 1-leaf. The resulting circuit is
equivalent to the DD and its corresponding neural unit. To construct the NN’s equivalent
circuit, we utilize Algorithm 1 to generate DDs for each neuron in the NN. These DDs
are then converted into circuit form. We combine these equivalent circuits based on the
structure of the NN, specifically establishing a one-to-one correspondence between the
inputs and outputs of each neuron in the NN and the inputs and outputs of the circuit.
This completes the construction of the NN’s equivalent circuit. Such a method is also
described in [10].

Once we have the equivalent circuit of a neural network (NN), the subsequent step is
to convert it into an SDD. SDD is a subclass of deterministic Decomposable Negation
Normal Form (d-DNNF) circuits that assert a stronger decomposability and a more
robust form of determinism [5]. The class of SDDs generalizes that of OBDDs in that,
every OBDD can be turned into an SDD in linear time. In contrast, some Boolean
functions have polynomial-size SDD representations but only exponential-size OBDD
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Algorithm 2. Split

Input: ABDD T , a set H of hypotheses, a set S of m instances labeled by f ;
Output: h ∈ H;

1: for u ∈ N(T ) do
2: Let d̄u be the distribution over Su defined as follows:

d̄u
(x,y) =

⎧
⎪⎨

⎪⎩

1
2×|{(x′,y′)∈Su|y=1}| , if y = 1 & (x, y) ∈ Su

1
2×|{(x′,y′)∈Su|y=−1}| , if y = −1 & (x, y) ∈ Su

0, if (x, y) /∈ Su

, for (x, y) ∈ S.

3: Let p′
u = puG(qu)∑

u∈N(T ) puG(qu)
,

4: end for
5: Let d̂ be the distribution over S given follows:

d̂(x,y) =
∑

u∈N(T )

p′
ud̄u

(x,y), (8)

for (x, y) ∈ S.
6: Output h = argmaxh′∈H edged̂,f (h

′).

representations [1]. In SDD, Boolean functions are represented through the introduction
of"decision (∨) nodes" and "conjunction (∧) nodes."

Indeed, the size complexity of each apply operation between two SDD nodes is pro-
portional to the product of their internal nodes. Consequently, as the complexity of the
circuit increases, the construction of the corresponding SDD requires more space. Con-
sidering the conversion process according to ABDD, if the resulting circuit is smaller,
it follows that the corresponding SDD constructed from it will also be smaller in size.
The size reduction in the circuit conversion directly influences the size of the resulting
SDD. Therefore, by optimizing the BDD/circuit representation, we can achieve a more
compact SDD.

6 Experiments

6.1 Experimental Setup

We use the USPS digits dataset of hand-written digits, consisting of 16 × 16 binary
pixel images. We use the data with labels 0 and 1 for verification of SR. The NN design
we used is similar to [10], which has two convolution layers and a full-connected layer.
In training, we use two real-valued-weight convolutional layers (kernel size 3, stride 2;
kernel size 2, stride 2) with a sigmoid function and a real-valued-weight fully-connected
layer in the NN. In testing, the sigmoid function is replaced with the step activation
function mentioned before. The experiments are conducted using a CPU of Intel(R)
Xeon(R) Gold 2.60GHz. The batch size equals 32 and the utilized learning rate is 0.01
decaying to 10% at half and three-quarters of all learning epochs. Here, the Stochastic
Gradient Descent (SGD) optimizer with a momentum of 0.9 and a weight decay of
0.0001 is used.
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Fig. 3. Example of converting BDD/OBDD/ABDD (Left) to the circuit (Right).

6.2 Sample-Based Robustness (SR) Validation

The SR of a standard NN whose output is real-valued is achieved simply by querying
the pixels that affect the recognition the most and flipping them until the recognition
result changes. Nevertheless, on the standard methods, for a BNN that has input size
h × w, the time cost to compute robustness k is O((hw)k), which is difficult to use in
BNNs.

Since BDD, OBDD, and ABDD are easily represented as a circuit, as shown in
Fig. 3. The circuits of several neural units are linked into a circuit f that represents the
entire NN according to its network structure. Note that we separately verify the SR of
the OBDDs generated by the methods based on Theorem 1 and Theorem 2 in [10] using
a circuit representation. The integration of weights and bias in Theorem 2 is performed
as follows.

For each w in weight W and bias b, We set α = max{|w1|, . . . , |wn|, |b|}, then we
turn them to integer weight ŵi = � 10p

α wi� and bias b̂ = � 10p

α b� where p is the number
of digits of precision.

As for dis() in Definition 1, it’s easy to express the k ≤ dis(x, x′) between x and
x′ in a circuit form and likewise convert it to circuit gk,x denoted as follows:

gk,x(x′) =

{
1, if | x ⊕ x′ |≤ k

−1, otherwise
(10)

We calculate the SR of f on (positive and negative) instance x, where have f(x) = 1
and f(x) = −1, by running Algorithm 3 of BDD, OBDD and ABDD on 10 CNNs, the
results as shown in Table 2. Note that the SR of negative instances can be computed by
invoking Algorithm 3 on function ¬f .

In table 2, (Shi.1) circuits are generated using the Theorem 1 proposed in [10], while
(MM.) circuits are generated using the method described in [8], and (Shi.2 p) circuits are
generated using the Theorem 2 proposed in [10] under the number of digits of precision
p = 2, 3, 4. As observed, the number of gates of (Shi.2 2, 3, 4) are significantly larger
than the others, it also consumes more time during SR validation (over 10 h).
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Algorithm 3. SR

Input: circuit f , (positive) instance x ∈ {−1, 1}n;
Output: rf (x);

1: initial: rf = 0;
2: for k = 1 to n do
3: if gk,x ∧ f is satisfiable then
4: break
5: end if
6: end for
7: return k

Table 2. Summary of experimental results for SR calculations.

ID SR Time for SR (s) Num of gates

Ours (Shi.1) (MM.) Ours (Shi.1) (MM.) (Shi.2 2) (Shi.2 3) (Shi.2 4)

1 1.83 3161 3994 4709 3737 5536 4433 48103 57079 57511

2 7.87 7142 9718 10626 1595 4039 2300 46972 57511 57505

3 3.79 3788 5050 5425 2384 4129 3146 51952 56611 54883

4 2.9 3970 4781 7655 3464 5128 5300 37474 57487 57493

5 4.94 5035 5902 7353 3235 3994 4249 43501 53971 57511

6 3.53 5229 7402 9731 3479 6049 4709 47083 55021 57511

7 2.84 4714 5839 7685 4963 5824 6613 47227 57511 57511

8 6.08 6559 8740 9334 3227 5233 3902 38983 57487 57511

9 4.01 5774 7323 8633 3659 5500 4577 47767 57487 57511

10 2.82 3711 5373 5393 2520 5497 3600 42439 57511 57511

6.3 Analysis

We train a standard CNN and show 99.73% accuracy on the test set. Then we replace
the sigmoid function with the step activation function, and the accuracy of the CNN
dropped to 99.22%. To represent BCNN, compare to BDD and OBDD, our algorithm
can generate smaller ABDD while keeping the same recognition accuracy. It pro-
vides certain advantages in later work. Note that since [10]’s strategy is to randomly
select multiple orders to generate many OBDDs and select one with the smallest size.
Although we set the number of random orders to 100, the size of OBDD is still greater
than ABDD.

Comparing these methods in Table 1, we observe that the BDD algorithm proposed
by Mansour and McAllester [8] aims to identify the hypothesis h that yields the most
significant reduction in entropy at each node. This approach initially appears to generate
a smaller DD due to the intuitive advantage of entropy reduction. However, our observa-
tions reveal that this advantage diminishes when the number of samples within a node
changes during the merging process. Specifically, if the number of samples remains
unchanged, i.e., the entropy of the child node does not decrease to zero, the entropy of
both BDD and our algorithm (ABDD) at the same depth remains constant. However,
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Fig. 4. Illustration of the entropy change of ABDD and BDD at each depth. We show the change
in the total entropy in each depth of the DD generated by the linear threshold functions of the
3 × 3 convolution layer (A) and the fully connected layer (B) when using the ABDD and BDD
algorithms, respectively.

once this phenomenon occurs, the entropy of ABDD decreases at a faster rate compared
to that of BDD, as depicted in Fig. 4. We attribute this phenomenon to the fact that our
approach ensures that nodes at the same depth share the same variables, thereby grant-
ing us an advantage when merging based on the energy of each node. When comparing
ABDD with the OBDD [10], we contend that ABDD offers a precise algorithm for
finding the DD with the smallest size, instead of relying on multiple randomizations. In
contrast, when [10] applies OBDD based on neural unit weights, the time complexity
increases exponentially with the size of the weights. In contrast, our algorithm exhibits
minimal time consumption, unaffected by changes in weight size. Undoubtedly, this
represents a notable advantage of our approach.

7 Conclusion

This paper introduced a Boosting-aided method that generates DDwith smaller size and
time complexities than conventional works. Our proposed method’s resulting diagram
is named ABDD, a variant of standard DD, in which the same variable labels the nodes
at the same depth, and the depth is not limited to the number of dimensions of the
variable. Experimental results show that ABDD can be connected in various forms to
express NN and can be used to implement various verification tasks efficiently. Since
our method can be used to generate a smaller equivalent circuit of the NN, it can be
applied in tasks such as hardware-based transformations of NNs. In the future, we aim
to extend our method to more complex NNs.
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Abstract. The growing interpretable machine learning research field
is mainly focusing on the explanation of supervised approaches. How-
ever, also unsupervised approaches might benefit from considering inter-
pretability aspects. While existing clustering methods only provide the
assignment of records to clusters without justifying the partitioning, we
propose tree-based clustering methods that offer interpretable data par-
titioning through a shallow decision tree. These decision trees enable
easy-to-understand explanations of cluster assignments through short
and understandable split conditions. The proposed methods are evalu-
ated through experiments on synthetic and real datasets and proved to be
more effective than traditional clustering approaches and interpretable
ones in terms of standard evaluation measures and runtime. Finally, a
case study involving human participation demonstrates the effectiveness
of the interpretable clustering trees returned by the proposed method.

Keywords: Interpretable Clustering · Tree-based Clustering ·
Interpretable Data Partitioning · Explainable Unsupervised Learning

1 Introduction

The growing interest in eXplainable Artificial Intelligence (XAI) led to the design
of a huge amount of methods to explain supervised learning approaches [22]. Our
objective is to enhance the interpretability of unsupervised learning algorithms.
In particular, we focus on the interpretability of clustering algorithms consid-
ering two aspects: first, understanding the insights gained from the record-to-
cluster assignment, and second, understanding the logic used by the algorithm
to partition the data. The results returned by traditional clustering algorithms
such as k-Means [39] and the hierarchical Complete-Linkage algorithm [39] do
not provide results that are easy to understand. Indeed, the centroids used by
k-Means to characterize the different groups may not be suitable when there are
many features or similar feature-values in the centroids. Similarly, the dendro-
gram returned by Complete-Linkage only provides an idea of at which distance
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the clusters were joined, but not why. Moreover, it is difficult for a human user
to understand which branch of the dendrogram should be followed to assign a
record to a cluster. These considerations are in line with recent studies on inter-
pretable clustering [1,2,7,15,29], which argue that clustering should be derived
from unsupervised binary trees. In a binary tree, each node is associated with a
feature-threshold pair that recursively splits the dataset, and leaves have labels
corresponding to clusters. If shallow trees are considered, any cluster assignment
can be explained with a small number of thresholds [27]. Indeed, in supervised
problems requiring interpretability, decision trees are typically adopted [4,22,37].

We advance the state-of-the-art by designing a tree-based clustering method
that returns an unsupervised binary tree to interpret the data partitioning. The
method simultaneously creates the tree and the data partitioning by searching for
the best splits along subsequent iterations. This is different from state-of-the-art
approaches, which first apply a traditional clustering algorithm and then try to
infer a tree that approximates the clustering [2,7,15,29]. We name our proposal
Partitioning Tree (ParTree), and we show its effectiveness by implementing
three versions that differ w.r.t. the criterion adopted to perform the data split.
ParTree can be applied to numerical, categorical, and mixed datasets. The
experiments conducted on synthetic and real datasets show that ParTree is as
effective as traditional clustering methods and outperforms tree-based state-of-
the-art approaches. Additionally, we conducted a case study where participants
were asked to assign a record to a cluster on the basis of the clustering explana-
tions returned by different algorithms. The results of the survey show that the
usage of tree-based clustering methods improves user performance.

2 Related Works

We provide here a self-contained literature review of tree-based unsupervised
approaches and of interpretable clustering methods adopting tree-based models.

We consider in the first group trees that do not account for any loss function
such as k-d-trees [39], Random Projection tree [10], PCA trees [16,42], Approx-
imate Principal Direction trees [31]. Their aim is is to create balanced trees and
reduce the distance between records in the same partition.

The second group of approaches determine the partitioning features by opti-
mizing different metrics, either locally or globally. TIC [3] uses maximum dis-
tance between prototypes as a splitting criterion and the F-test as a stopping
condition. CLTree [29] is based on a supervised decision tree construction that
uses uniformly at random synthetic points to capture the natural distribution
of the data. In [41] is described a simplified solution of CLTree: k-Means is exe-
cuted, and the clusters assignment labels are used as classes for a decision tree
classifier. In [1] is proposed a method for hierarchical clustering based on trees
where the selection of the splitting attribute is established w.r.t. four measures
based on heterogeneity. In [6] additional split criteria and agglomeration mea-
sures are developed. TASC [8] partitions data space by constructing a decision
tree using one attribute set and measures the degree of similarity through another
one. INCONCO [36] finds clusters that minimize minimum description length
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Fig. 1. ParTree application on the iris dataset. Partitioning logic as rules (1st

plot, numbers within parenthesis are the absolute and relative number of records in a
cluster); partitioning logic as scatter plots (2nd), iris classes (3th plot).

and retrieves rules by assuming a multivariate normal distribution. CUBT [15]
retrieves interpretable Clustering using Unsupervised Binary Trees. A problem
with CUBT is that it joins similar clusters even if they do not share the same
parent in the tree. Since this last step decreases the interpretability of the clus-
tering destroying the tree, in our proposal we consider only “valid” partition-
ing trees. In [19] is proposed an extension of CUBT to nominal data through
heterogeneity criteria and dissimilarity measures. PCN [23] extracts a subset
of patterns to cluster the data and uses multiple unsupervised trees similar to
TIC to derive these patterns. UD3.5 [30] extends PCN by introducing two qual-
ity measures to control the split and does not require any empirical parameter
to control the depth of the trees. Recent approaches returning clustering trees
focus on interpretability to address the need for XAI [22]. DReaM [7] uses a
probabilistic discriminative model to learn a rectangular decision rule for each
cluster. Iterative Mistake Minimization (IMM) [33] recursively builds a binary
tree to minimize mistakes in k-Means. ExKMC [11,17] extends IMM to allow
for more accurate but less interpretable clustering trees. Ex-Greedy [26] addi-
tionally boosts ExKMC, while ExShallow [27] favors the construction of shal-
low trees by accounting for the depth through a penalty term. K-Means Tree
(KMT) [40] extends k-Means optimizing tree and centroids jointly for fast clus-
tering. ICOT [2] uses Mixed Integer Optimization (MIO) to generate an optimal
tree-based clustering model. Also in [28] is used MIO to jointly find clusters and
define polytopes explaining the clusters. In [18] is created a tree using oblique
trees on top of any clustering method defined by optimizing a cost function.

We place our proposal between these two groups. Indeed, as for the second
group, our objective is to (i) cluster a dataset effectively and efficiently and (ii) to
obtain an interpretable tree explaining the logic to partition the data. However,
similarly to the first group, we aim at (iii) inducing the tree directly on the
dataset without relying on other clustering approaches but (iv) by following
local heuristic splitting criteria. Furthermore, our proposal aims at handling
continuous, categorical, and mixed data.

3 Partitioning Tree Methods

Given a set of n records X = {x1, . . . , xn}, where each observation is a d-
dimensional vector, the clustering problem consists in partitioning X into k < n
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Algorithm 1: ParTree(X,max clusters,max depth,min sample, ε)

Input : X - dataset, max clusters - max number of clusters, max depth - max tree depth,
min sample - min cluster size, ε - percentage of BIC parent discount

Param : qs - queue score function
Output: C - clustering, R - clustering tree

1 C ← ∅; // init. clustering result
2 R ← make node(X); // init. tree root
3 Q ← push(Q, qs(X), 〈X,R 〉); // init. priority queue
4 while |Q| > 0 ∧ |C| + |Q| < max clusters do
5 〈C,N 〉 ← pop(Q); // extract tree node from queue
6 if |C| < min sample ∨ depth(N ) > max depth then
7 C ← C ∪ {C}; L ← make leaf(N ); // add cluster and make leaf
8 continue; // go next iteration

9 f, C1, C2 ← make split(C) // make split
10 if bic(C) < bic([C1, C2]) − ε|bic(C)| then
11 C ← C ∪ {C}; L ← make leaf(N ); // add cluster and make leaf
12 continue; // go next iteration

13 N l ← make node(C1); Nr ← make node(C2); // make left and right node
14 N ← update node(f,N l,Nr) // update tree
15 Q ← push(Q, qs(C1), 〈C1,N l〉); Q ← push(Q, qs(C2), 〈C2,Nr〉); // update queue

16 while |Q| > 0 do
17 〈C,N 〉 ← pop(Q); // extract tree node from queue
18 C ← C ∪ {C}; L ← make leaf(N ); // add cluster and make leaf

19 return C,R ;

disjoint sets (or clusters) C = {C1, . . . , Ck}, such that C is optimal in terms
of homogeneity and simplicity, i.e., similar records belong to the same clusters
and the number of clusters is small. Our objective is to define an algorithm that,
given the dataset X, not only returns the clustering C, but also a way to humanly
understand the logic used by the algorithm to obtain the clustering.

To this aim, we define Partitioning Tree (ParTree), an interpretable tree-
based clustering method that, besides the record to cluster assignments, returns
an unsupervised binary tree describing the partitioning logic adopted. ParTree
is based on hierarchical top-down iterative bisections to find the best feature to
partition the data. We highlight that, differently from bisecting k-Means [39],
the crucial point of ParTree is that the data partitioning at every tree level
is done by selecting a unique feature-value to separate the data to guarantee
cohesion among the records in the same partition. Indeed, in short, ParTree
aims at guaranteeing interpretability without sacrificing the clustering quality.

Figure 1 shows the clustering of ParTree on the iris dataset. On the left is
reported the partitioning logic learned by ParTree. The central plot shows the
effect of the axis-parallel partitioning w.r.t. the features in the rules. By compar-
ing this plot with the right one reporting the iris classes we can appreciate how
ParTree, without any knowledge of the class, retrieved that setosa flowers can
be recognized by the smallest petal lengths (cl. 0), while the remaining flowers
are partitioned into versicolor (cl. 2) and “normal”-virginica (cl. 1), still w.r.t
petal length. The “anomalous”-virginica, in cluster 3, are separated w.r.t. petal
width from the rest. In the following, we describe the overall algorithm.

ParTree Algorithm. In line with [21,35], ParTree adopts a top-down, divide-
and-conquer strategy. It starts from a set containing a single cluster, then, iter-
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atively tries to partition a cluster in two sub-clusters. The general schema of
ParTree is illustrated in Algorithm 1. It starts by initializing an empty set of
sets C containing the clustering result (line 1) and by building the root of the
tree R containing the whole dataset X (line 2). Then, it pushes both C and
R into a priority queue Q that keeps track of the set of candidate clusters to
be considered for partitioning (line 3). The priority of the objects in the queue
is given by a qs(·) function that can be implemented in different ways. In our
experiments, we considered the size of the cluster.

At each iteration, a candidate cluster C and the tree node N modeling C are
extracted from Q (line 5). If C is too small (min sample) to be partitioned or the
tree node N is too deep (max depth), then C is added to the clustering result
C, N is turned into a leaf L , and the control passes to the next iteration (lines
6–8). On the other hand, the partitioning of C is performed by make split(·)
(line 9) that returns a binary partitioning function f , as well as the partitioning
obtained by f on C, i.e., C1, C2, such that C = C1 ∪ C2. Alternative ways to
implement make split(·) are illustrated in the remainder of this section. After
that, ParTree calculates the Bayesian Information Criterion (BIC) as in [35]
on C and on the two sub-clusters C1, C2 (lines 10–11). If the data partitioning
of C into C1 and C2 is not advantageous enough than keeping C united w.r.t.
the BIC score, then C is added to the clustering result C, N is turned into a
leaf L , and the control passes to the next iteration (lines 10–12). Otherwise, if
the data partitioning is advantageous, the tree nodes Nl and Nr are created for
sub-clusters C1 and C2 (line 13), and linked to the parent node together with the
partitioning function f (line 14). After that, the novel candidate clusters C1, C2

with Nl,Nr are pushed into (line 15). The ε ∈ [0, 1] parameter controls to which
extent the BIC of the children must be lower than the BIC of the parent w.r.t.
the absolute BIC of the parent. If ε > 0 the condition to stop the partitioning
is relaxed and allows to obtain more clusters.

ParTree termination is controlled by three conditions: (i) the maximum
number of admissible clusters (max clusters), (ii) the maximum admissible tree
depth (max depth), (iii) if it is worth to split the clusters obtained so far w.r.t.
the BIC criterion. The while-loop (lines 4–15) ends either when Q is empty or
when the number of candidate clusters and the clusters contained in the clus-
tering result exceeds max clusters. If the queue is not empty after the first
while-loop, a further loop completes the clustering and the tree construction
(lines 16–18). Finally, it returns the clustering and the unsupervised binary par-
titioning tree. We highlight that the selection of the best splitting attribute
(make split(·)) can be done in parallel due to the fact that the search is made
independently among the various attributes. The computational complexity of
ParTree is O(It · n · d · s), where It is the number of iterations required to
stop the algorithm, and s is the cost of the splitting strategy adopted. This
leads to a theoretical worst case of O(d3n3 log n), which yet in normal situations
is expected to boil down to O(d2n log2 n), thus almost linear in the number
of records and quadratic in the number of initial features. In the following, we
define three different implementations of ParTree make split fulfilling different
partitioning principles.
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Algorithm 2: CPT split(X)

Input : X - dataset
Param : dist - distance function, get centroids - calculate centroids,
Output: f - binary partitioning function, C1, C2 - cluster partitions

1 j∗ ← ∞; t∗ ← ∞; MSE∗ ← ∞; // init. split feature, threshold, best MSE
2 for j ∈ [1, d] do // for every feature

3 for t ∈ values(X(j)) do // for every value

4 f ← make partitioner(cond(X(j), t)); // build data partitioner
5 Xa, Xb ← split data(f, X); // make binary partitions
6 if |Xa| = 0 ∨ |Xb| = 0 then
7 continue; // go next iteration
8 μa, μb ← get centroids(Xa, Xb); // make centroid

9 MSE ← |1|
|X|

(∑
x∈Xa

dist2(μa, x) +
∑

x∈Xb
dist2(μb, x)

)
; // calculate MSE

10 if MSE < MSE∗ then // if better partitioning
11 j∗ ← j; t∗ ← t; MSE∗ ← MSE; // update split feature, thr, MSE

12 f ← make partitioner(cond(X(j∗), t∗)); // build data partitioner
13 C1, C2 ← split data(f, X); // make binary partitions
14 return f, C1, C2;

Center-Based Split. Inspired by bisecting k-Means [39] and similarly to [3,23],
Center-based ParTree (CPT) employs a center-based strategy. The pseudo-
code of CPT is reported in Algorithm 2. CPT tests each feature j value t
(lines 2–3) to find the best axis-parallel split (lines 4–5) to partition X based
on the centers μa, μb of the two partitions (line 8). The goal is to optimize local
compactness using a single axis-parallel split. The partitioning leading to the
smallest weighted average Mean Squared Error (MSE) is selected as best split
(lines 9–11).

The CPT split can be parameterized w.r.t. (i) the distance function dist used
to calculate the distance between the records and its center contributing for the
MSE, and (ii) the function get centroids used to calculate the centroids. These
functions can be adapted to different types of data, by using appropriate distance
measures and feature aggregators. For continuous features we use the Euclidean
distance for dist and of the mean values for every feature for get centroids (like
in k-Means), while for categorical features we can use Jaccard distance for dist
and the mode values for get centroids (like in k-Modes). Thus, CPT can be
used on any data type, also mixed, if the appropriate functions are provided. We
assume without loss of generality that the values of each feature are normalized.

Impurity-Based Split. Inspired by Decision Tree models for classification and
regression [39] and similarly to [1,19], Impurity-based ParTree (IPT) adopts
an impurity-based strategy. The pseudo-code of IPT is reported in Algorithm 3.
The objective of IPT is to use impurity measures, such as Gini Index and
Entropy for classification and Mean Absolute Percentage Error (MAPE) and
R2 score for regression [39], to optimize the impurity w.r.t. the various features
for an axis-parallel split. Since the problem is unsupervised and there is no tar-
get variable, the impurity measures cannot be directly adopted. Instead, given a
partitioning of X into Xa and Xb w.r.t an axis-parallel split on feature j value
t, the impurity is estimated by first computing the impurity values taking each
remaining feature l (l �= j) as target, and then aggregating the results (lines 8–
13). IPT solves the problem of requiring a notion of (i) distance, (ii) centroids.
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Algorithm 3: IPT split(X)

Input : X - dataset
Param : impurity - impurity function, agg fun - impurity aggregation function
Output: f - binary partitioning function, C1, C2 - cluster partitions

1 j∗ ← ∞; t∗ ← ∞; h∗ ← ∞; // init. split feature, threshold, best impurity
2 for j ∈ [1, d] do // for every feature

3 for t ∈ values(X(j)) do // for every value

4 f ← make partitioner(cond(X(j), t)); // build data partitioner
5 Xa, Xb ← split data(f, X); // make binary partitions
6 if |Xa| = 0 ∨ |Xb| = 0 then
7 continue; // go next iteration
8 H ← ∅; // init. impurity list
9 for l ∈ [1, d] ∧ l �= j do // for every target feature

10 ha ← impurity(X(l)
a ); hb ← impurity(X

(l)
b ); // calculate impurities

11 h ← |Xa|
|X| ha +

|Xb|
|X| hb; // calculate total impurity

12 H ← H ∪ {h}; // update impurity list

13 h′ ← agg fun(H); // aggregate impurities

14 if h′ < h∗ then // if better partitioning

15 j∗ ← j; t∗ ← t; h∗ ← h′; // update split feature, thr, MSE

16 f ← make partitioner(cond(X(j∗), t∗)); // build data partitioner
17 C1, C2 ← split data(f, X); // make binary partitions
18 return f, C1, C2;

IPT split is parameterized w.r.t. (i) the impurity function(s), and (ii)
agg fun used to aggregate the list of impurities H (line 13). If l is a contin-
uous feature we used MAPE or non-negative R2, i.e., R2 where values smaller
than zero are considered zero, while if l is a categorical feature we used the
Gini Index or the normalized Entropy, as they all take values between 0 and 1.
As aggregation function agg fun, similarly to Complete-Linkage [39], we exper-
imented by using the minimum, maximum and average values. IPT does not
require to normalize the data as the features are all analyzed independently
from each other.

Principal Component-Based Split. Principal-based ParTree (PPT), with
pseudo-code in Algorithm 4, is inspired by [16,31,40,42], by Oblique Decision
Trees [43] and Householder reflection [25]. The intuition is that principal com-
ponents are capturing as much variance as possible and they are orthogonal
each other. PPT first runs a dimensionality reduction algorithm on X to obtain
a reduced version A. For a continuous dataset, Principal Component Analy-
sis (PCA) [39] can be used, for a categorical dataset Multiple Correspondence
Analysis (MCA) [20], and for a mixed dataset Factor Analysis of Mixed Data
(FAMD) [13]. After that, the principal components A(j) are used as target vari-
ables of a decision tree regressor f with a single split (line 4) that is used to iden-
tify the axis-parallel split that better predicts the principal component values of
the data. Depending on the data partition X, one of the first nbr components
principal components is used to separate X w.r.t. one of the features of X.
Finally, the goodness of each partitioning is measured using the BIC1 (lines

1 After a preliminary experimentation we discarded evaluation measures for regres-
sors as they do not consider the separation of the data but the performance of the
regressor.
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Algorithm 4: PPT split(X)

Input : X - dataset
Param : nbr components - number of components
Output: f - binary partitioning function, C1, C2 - cluster partitions

1 j∗ ← ∞; t∗ ← ∞; bs∗ ← ∞; // init. split feature, threshold, best BIC
2 A ← get PCA(X,nbr components)); // calculate PCA
3 for j ∈ [1, nbr components] do // for every principal component

4 f ← train tree regressor(X, A(j))); // build data partitioner
5 Xa, Xb ← split data(f, X); // make binary partitions
6 if |Xa| = 0 ∨ |Xb| = 0 then
7 continue; // go next iteration
8 bs ← bic(Xa, Xb); // calculate BIC partitions
9 if bs < bs∗ then // if better partitioning

10 j∗ ← j; t∗ ← t; bs∗ ← bs; // update split feature, thr, BIC

11 f ← train tree regressor(X, A(j∗))); // build data partitioner
12 C1, C2 ← split data(f, X); // make binary partitions
13 return f, C1, C2;

8–10). The PPT split can be parameterized w.r.t. the number of components
nbr components, and like CPT, it requires to normalize the dataset before usage.

4 Experiments

In this section we evaluate the performance of ParTree, that we implemented
in Python2, on different datasets and against a wide array of competitors. Our
objective is to demonstrate that ParTree is more accurate or faster than state-
of-the-art tree-based clustering algorithms, as well as a reasonable competitor of
traditional (mostly non-interpretable) approaches.

Datasets. We experimented with 18 synthetic and 15 real datasets taken by
UCI Machine Learning and Kaggle3. The synthetic datasets are all continuous
and typically bi-dimensional, while some real datasets are composed also by cat-
egorical attributes. We consider the datasets grouped as follows: DS1 continuous
synthetic datasets, DS2 continuous real datasets, i.e., real datasets without cate-
gorical attributes, DS3 categorical real datasets, i.e., real datasets with continuous
attributes turned into categorical ones through equal-width binning with 20 bins,
DS4 mixed real datasets, i.e., the datasets remain as they are. After that, in order
to be processed by the clustering method implementations adopted, categorical
attributes in DS3 and DS4 are turned into labels. All the datasets are normal-
ized using z-score normalization [39]. We underline that ParTree can always
work with continuous attributes and, depending on the type of split, it can be
applied on categorical and mixed dataset either by design with IPT and PPT,
or through one-hot encoding or custom-defined distance functions with CPT.
Table 1 summarizes the characteristics of the datasets types.

2 https://github.com/cri98li/ParTree.
3 https://github.com/deric/clustering-benchmark, https://archive.ics.uci.edu/ml/

datasets.php, https://www.kaggle.com/datasets.

https://github.com/cri98li/ParTree
https://github.com/deric/clustering-benchmark
https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
https://www.kaggle.com/datasets
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Table 1. Dataset groups characteristics.

nbr. records features con. feat. cat. feat. clusters

min avg max min avg max min avg max min avg max min avg max

DS1 18 238 1860.9 5000 2 2.0 3 2 2.056 3 0 0 0 3 8.2 31

DS2 7 1000 10913.4 32561 14 24.2 44 6 16.8 32 1 7.4 13 2 2.0 2

DS3 14 150 15366.5 150000 4 18.2 44 4 15.2 34 0 3 13 2 2.2 4

DS4 14 150 15366.5 150000 4 18.2 44 4 15.2 34 0 3 13 2 2.2 4

Competitors. We compare ParTree with traditional clustering algorithms
and with tree-based competitors. In particular, we considered k-Means (kM),
bisecting k-Means (bkM), BIRCH (BIR), DBSCAN (DBS), OPTICS (OPT)
and the Agglomerative Hierarchical Clustering (AHC) [39] single/complete/wa-
rd linkage approaches as implemented by scikit-learn, x-Means (xM) [35] as
implemented by pyclustering, and k-Modes (kMd)4. As tree-based competi-
tors we considered CLTree (CLT) [29] that provides a usable Python implemen-
tation. Furthermore, we implemented k-Means-Tree (kMT) [41] by combining
the scikit-learn k-Means and Decision Tree classifier. Finally, inspired by [3],
we realize a variant of ParTree using the maximum variance as indicator to
identify the feature-values to use for partitioning (VPT).

Experimental Setting. We evaluated the performance of the algorithms by
adopting a large array of measures. We report the results w.r.t. the external
validation measures Adjusted Rand Index (ARI) [38] Normalized Mutual Infor-
mation (NMI) [34], and Fowlkes-Mallows Score (FMS) [14], and the internal
validation measure Silhouette (SIL) [39]. Also, we evaluated the running time in
seconds. For each algorithm, we executed the clustering with different parame-
ter combinations on each dataset5 and we considered the evaluation measures
corresponding to the best performance w.r.t SIL as being an internal validation
measure can be used without the need of the clustering ground truth6. The val-
ues adopted to test the parameters of the various algorithms as well as other
validation measures are available on the Github of the project. For the clustering
methods requiring a distance functions we used the Euclidian distance for DS1,
DS2, and DS4, while for DS3 the Cosine distance [39].

Results. Table 2 shows the average values of the measures obtained by the 14
algorithms and their average rank for the different datasets types. k-Means (kM)
is the best performer overall, while the second best performer is the Agglom-

4 https://scikit-learn.org/stable/index.html, https://github.com/annoviko/pycluster
ing/, https://github.com/nicodv/kmodes.

5 Details for the parameter values tested are available on the repository. How-
ever, since the objective is towards interpretable clustering, we do not search for
more than 12 clusters or trees deeper than 10. Also, we remark that it is out-
side the purpose of this study to design strategies to identify good values for
max clusters, max depth, min sample, ε. We leave this task for a future study.

6 Similar results to those reported are obtained with best parameters w.r.t other mea-
sures.

https://scikit-learn.org/stable/index.html
https://github.com/annoviko/pyclustering/
https://github.com/annoviko/pyclustering/
https://github.com/nicodv/kmodes
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Table 2. Experimental results. For each algorithm and dataset we report the perfor-
mance of the best parameter configuration w.r.t SIL. The overall highest value per
measure is in bold while the highest among tree-based methods is in italic and blue.

DS1 DS2

NMI ↑ ARI ↑ FMS ↑ SIL ↑ Time ↓ NMI ↑ ARI ↑ FMS ↑ SIL ↑ Time ↓
avg rnk avg rnk avg rnk avg rnk avg rnk avg rnk avg rnk avg rnk avg rnk avg rnk

CPT .80 5.5 .72 5.1 .81 5.4 .59 5.1 1.2 11.0 .54 1.7 .56 1.7 .83 4.0 .32 6.2 16.8 10.5

IPT .48 10.8 .39 10.3 .65 9.3 .42 11.0 1.9 10.4 .30 5.0 .26 6.0 .71 6.5 .32 6.7 14.7 9.5

PPT .77 6.6 .69 6.3 .78 6.6 .57 6.9 0.1 5.3 .69 2.0 .70 2.0 .85 2.0 .35 5.0 0.2 3.3

VPT .66 8.3 .50 8.5 .66 8.7 .51 8.6 0.9 10.8 .01 6.0 .02 8.0 .65 7.6 .24 5.6 1.2 8.0

CLT .10 13.2 .03 13.1 .46 12.5 .02 13.2 25.4 13.9 .01 3.5 <0 6.5 .69 3.0 <0 11.0 >100 11.0

kMT .72 8.0 .58 7.1 .71 7.5 .54 7.6 0.1 5.6 .23 4.7 .24 3.1 .70 5.1 .37 5.0 0.4 5.0

kM .83 4.2 .71 4.7 .79 5.0 .61 2.1 0.1 5.7 .23 2.7 .24 2.1 .71 4.7 .38 3.0 0.5 5.8

bkM .79 6.2 .71 5.6 .79 5.9 .59 4.8 0.1 7.8 .23 2.7 .24 2.1 .71 4.7 .38 3.0 0.5 5.7

xM .85 3.6 .76 4.3 .83 4.6 .63 1.6 0.0 2.4 .22 4.8 .21 4.8 .73 3.2 .51 2.2 0.1 1.8

kMd .00 13.5 <0 13.3 .47 12.6 <0 13.7 0.1 7.7 .10 8.4 .11 6.7 .65 7.1 .05 10.8 5.9 8.1

BIR .80 5.1 .68 5.8 .77 5.8 .58 5.6 0.1 4.5 .21 5.4 .21 6.7 .69 6.2 .32 5.8 1.0 5.2

AHC .85 2.8 .74 3.3 .82 3.6 .60 3.4 0.1 4.2 .13 6.1 .10 6.4 .77 2.7 .64 1.0 1.6 4.2

DBS .81 3.8 .75 3.6 .82 3.7 .54 7.2 0.0 2.2 .12 8.1 .10 7.5 .73 6.2 .33 7.7 1.2 3.4

OPT .51 10.0 .36 10.1 .58 10.2 .38 10.9 4.7 12.8 .15 5.2 .10 6.7 .57 5.5 .26 7.5 90.7 10.8

DS3 DS4

NMI ↑ ARI ↑ FMS ↑ SIL ↑ Time ↓ NMI ↑ ARI ↑ FMS ↑ SIL ↑ Time ↓
avg rnk avg rnk avg rnk avg rnk avg rnk avg rnk avg rnk avg rnk avg rnk avg rnk

CPT .13 5.4 .10 6.8 .59 7.3 .12 11.0 22.7 10.7 .13 5.3 .10 6.5 .59 7.0 .12 10.8 21.9 9.7

IPT .11 6.0 .10 6.5 .66 4.5 .17 9.7 1.1 7.5 .11 6.2 .10 6.7 .66 4.7 .17 10.5 1.1 7.0

PPT .25 3.5 .26 3.1 .66 6.3 .28 7.8 0.9 6.2 .25 3.7 .26 3.2 .66 6.6 .28 8.2 0.9 5.8

VPT .10 6.4 .09 7.7 .64 5.8 .34 8.2 1.4 6.6 .13 5.5 .14 5.6 .64 6.5 .44 6.5 3.9 10.0

CLT .11 5.1 .08 8.1 .59 7.1 <0 13.5 >100 14.0 .11 5.2 .08 8.2 .59 7.8 <0 13.7 >100 14.0

kMT .13 6.6 .13 5.2 .63 5.5 .48 4.2 0.6 6.3 .14 6.5 .14 5.4 .63 6.1 .48 4.5 0.6 6.1

kM .17 5.4 .17 3.0 .62 5.6 .46 2.6 0.6 8.3 .18 4.9 .17 3.1 .62 6.1 .46 3.2 0.5 6.9

bkM .18 5.0 .17 2.9 .63 5.2 .46 2.9 1.0 8.0 .18 5.2 .17 3.0 .63 5.7 .46 3.6 0.9 7.6

xM .18 4.9 .17 3.9 .61 6.6 .45 2.9 0.1 1.7 .17 6.1 .15 4.5 .64 5.2 .49 2.6 0.1 2.3

kMd .08 6.7 .06 6.2 .57 8.3 .08 11.6 2.2 8.7 .09 6.5 .09 6.2 .60 6.8 .10 11.5 1.6 8.3

BIR .16 6.3 .15 6.1 .63 6.4 .40 5.3 1.9 5.3 .16 6.3 .15 6.4 .63 6.0 .42 5.2 1.7 5.3

AHC .07 7.6 .06 8.6 .68 3.3 .60 1.6 4.3 3.3 .07 8.0 .06 8.6 .68 3.2 .61 1.6 3.7 3.3

DBS .09 8.4 .06 9.0 .67 5.2 .35 7.3 1.6 3.8 .09 7.7 .06 9.3 .67 5.2 .35 7.7 1.6 3.7

OPT .15 5.1 .08 7.3 .52 7.0 .20 8.6 65.2 12.8 .16 4.8 .08 7.3 .53 7.0 .23 8.5 62.9 12.6

erative Hierarchical clustering (AHC), especially w.r.t. FMS that is meant to
adequately judge the performance of hierarchical clustering algorithm. The best
tree-based clustering algorithm is often a ParTree method. Among the syn-
thetic datasets DS1, CPT is the best algorithm for NMI, ARI, and FMS. On the
other hand, among the real datasets DS2, DS3, and DS2, independently from the
data type representation, PPT is the best method for NMI and ARI, and is on
par with IPT for FMS. Besides the quality measures, also w.r.t. runtime, PPT is
competitive with the traditional clustering algorithms and better or on par with
kMT, i.e., k-Means followed by a Decision Tree. Furthermore, we highlight that
ParTree methods are considerably better than the unique tree-based method
for which we found a usable implementation, i.e., CLTree (CLT).
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Fig. 2. Critical Difference plots with Nemenyi at 95% confidence among all datasets.

The comparison of the ranks of all methods against each other considering
all datasets and types is visually represented in Fig. 2 with Critical Difference
(CD) diagrams [12]. Two methods are tied if the null hypothesis that their
performance is the same cannot be rejected using the Nemenyi test at α = 0.05.
We immediately notice that for NMI and ARI, the methods are compactly tied to
each other but having PPT and CPT in the top-5 together with the centroids-
based methods kM, bkM and xM. For FMS, we need to consider the top-7 to
find PPT and CPT, which are overtaken by AHC and DBS besides kM, bkM
and xM. Finally, for SIL, the performance of ParTree methods are slightly
worse. However, PPT performance is not statistically worse than kMT, the
best tree-based clustering method w.r.t. SIL, as they are tied in the CD plot.
Furthermore, we recall that kMT [41] first applies k-Means and then a Decision
Tree that uses as target variable the cluster labels. Similarly to CUBT [15], this
causes an inconsistency in the tree-based logic of the clustering structure, as two
different records satisfying different conditions in the tree can be assigned to the
same cluster. On the other hand, for ParTree methods, this cannot happen
by construction, making ParTree the best interpretable-by-design tree-based
clustering method. Moreover, the SIL measure, and other internal evaluation
measures, are influenced by the distance function used to estimate it. In contrast,
the external validation measures NMI, ARI, and FMS are more objective as they
report the agreement between the returned and expected clustering assignments.
Therefore, the good performance of ParTree methods is even more remarkable,
considering that the best parameter configuration has been selected w.r.t. SIL.
Thus, SIL can be used for an unsupervised parameter tuning of ParTree.

5 User Study

We describe here the user study carried out to evaluate the interpretability
of different clustering algorithms. First, we aim to study if a user assigning a
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Fig. 3. Clustering visualizations for home. From left to right: ParTree, kM, AHC.

record to a cluster, i.e., trying to repeat the same logic followed by a clustering
algorithm, makes fewer mistakes by using a tree rather than other clustering
visualizations like centroids or dendrograms. Second, we want to understand if
the tree resulting from ParTree has a lower cognitive effort and higher usabil-
ity than other clustering summarizations. As competitors, we selected (i) the
centroids returned by k-Means (kM) represented with a parallel plot, and (ii)
the dendrogram returned by Agglomerative Hierarchical Clustering (AHC). We
adopted kM and AHC because they are the most effective approaches in the
benchmarking in the previous section and also because they are among the most
widely adopted methods. We do not compare ParTree against other tree-based
clustering algorithms as we have assessed in the previous section that ParTree
is the best tree-based clustering algorithm, and since all methods in this fam-
ily return a tree, there is small interest in comparing different trees, while we
are interested in checking if a tree is more interpretable than the visualizations
available from traditional non-tree-based clustering algorithms.

Our experiment consists in providing a user with a record x and a clustering
visualization in terms of tree, centroids, or dendrogram and ask to the user to
insert x into the right cluster. For all the visualizations, we do not provide dis-
tances between x and the clusters to avoid biasing the user toward a number that
might be unable to understand and to entirely judge how much a user can really
exploit the different clustering representations provided. Thus, our hypotheses
are the following. By comparing the correctness of the assignments, i.e., corre-
spondence of matches between users’ assignments and real cluster assignments,
i.e., the Success Rate (SR), we are able to evaluate the clustering interpretabil-
ity and usability. HP1: ParTree visualization makes users perform better in
terms of SR than the competitors. We assess the Cognitive Effort by means of
the NASA Task Load Index (NASA-TLX) questionnaire [5], and the clustering
visualization Usability with the System Causability Scale (SCS) [24]. Our expec-
tation is that the tree-based visualization of ParTree illustrates the clustering
logic in a clearer way than the competitors because, at the cognitive level, follow-
ing precise partitioning steps on a tree is easier than simultaneously comparing
a set of features on centroids or on a dendrogram. HP2: ParTree visualiza-
tion requires a lower cognitive effort than the competitors as NASA-TLK. HP3:
ParTree visualization provides better usability than the competitors as SCS.
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Fig. 4. User study results: (left) success rate, (center) cognitive effort, (right) usability.

Experimental Setting. We experimented with home and diabetes from which
we randomly selected three records. For ParTree, we adopted the CPT ver-
sion. We set parameters of CPT, kM, and AHC to obtain 5 clusters for home
and 10 clusters for diabetes, respectively. Figure 3 shows the visualizations for
home. More details are available in the repository, including the clustering log-
ics provided to user study participants. We ran an online experiment with the
Qualtrics platform7. We collected data from 40 participants8 with a background
in Computer Science and Data Science with an average age of 26 ranging from
22 to 37 years old. We asked the participants to assign a record to a cluster using
CPT, kM and AHC for home (“easy” task, with 7 features and 5 clusters) and
diabetes (“difficult” task, with 8 features and 10 clusters). Then participants
were asked to express their confidence in the accomplishment of the task. To
prevent any learning effect, each participant used different yet analogous records
for each algorithm. To prevent any order effect, participants were presented with
randomized orders for the complexity and for the algorithms.

Results. Figure 4 (left) shows the Success Rate in the record to cluster assign-
ment. It is clear how it is easier for a user to correctly assign a record to a cluster
following the tree logic by reasoning on one feature after the other, instead of
considering all the features simultaneously with parallel plots and dendrograms.
A one-way ANOVA test on the ST revealed that there is a statistically significant
difference in performance between at least two methods. We identify the meth-
ods through the Tukey’s Honestly Significant Difference (THSD) [32] for multiple
comparisons. It showed that the mean value of SR is significantly different for
CPT and kM (p>0.01, 95% Confidence Interval (CI) = [0.47, 0.92]) and for
CPT and AHC (p>0.01, 95% CI = [0.4, 0.8]). This result confirms HP1. Also,
the THSD found that the mean value of SR is not significantly different between
the easy and complex conditions (p = 0.213, 95% CI = [−14.6, 3.3]). This lack of
statistical significance holds also for the Cognitive Effort and Usability. Figure 4
(center) shows the Cognitive Effort as NASA-TLX box-plots (the lower, the bet-
ter): CPT has the lowest and more compact box-plots. The THSD found that
the mean value of NASA-TLX is significantly different between CPT and kM
(p>0.001, 95% CI = [−48.6, −30.6]), and between CPT and AHC (p>0.001,

7 https://www.qualtrics.com/.
8 All participants provided written informed consent and received no monetary

rewards.

https://www.qualtrics.com/
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95% CI = [−41.9, −24.0]), while this does not happen between AHC and kM.
Similarly, Fig. 4 (right) shows the Usability as SCS box-plots (the higher, the
better): CPT has the highest and more compact box-plots. Also in this case
the THSD found that the mean value of SCS is significantly different between
CPT and kM (p>0.001, 95% CI = [0.18, 0.11]), and between CPT and AHC
(p>0.001, 95% CI = [−0.04, 0.09]), while again this does not happen between
AHC and kM. These results confirm HP2 and HP3.

6 Conclusion

We have presented ParTree, an interpretable tree-based clustering method
that, besides the record to cluster assignments, returns an unsupervised binary
tree describing the partitioning logic adopted. Our experiments show that
ParTree is on par with, or in some cases even better than, traditional non-
tree-based clustering methods while it overcomes state-of-the-art tree-based
approaches. Also, a survey involving real users has shown that the clustering
tree provided by ParTree is the most effective way for a user to replicate the
algorithm’s behavior in assigning a record to a cluster. We plan to repeat the
user study involving more users and providing better visualizations. Further-
more, we would like to study the fair-clustering [9] problem through ParTree
and change its partitioning procedure to guarantee fair partitions, i.e., groups of
records not separated w.r.t. a sensitive attribute such as sex or race.
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Abstract. Finding dense subgraphs is a core problem in graph min-
ing with many applications in diverse domains. At the same time many
real-world networks vary over time, that is, the dataset can be repre-
sented as a sequence of graph snapshots. Hence, it is natural to consider
the question of finding dense subgraphs in a temporal network that are
allowed to vary over time to a certain degree. In this paper, we search for
dense subgraphs that have large pairwise Jaccard similarity coefficients.
More formally, given a set of graph snapshots and a weight λ, we find
a collection of dense subgraphs such that the sum of densities of the
induced subgraphs plus the sum of Jaccard indices, weighted by λ, is
maximized. We prove that this problem is NP-hard. To discover dense
subgraphs with good objective value, we present an iterative algorithm
which runs in O(

n2k2 + m log n + k3n
)

time per single iteration, and a
greedy algorithm which runs in O(

n2k2 + m log n + k3n
)

time, where k
is the length of the graph sequence and n and m denote number of nodes
and total number of edges respectively. We show experimentally that our
algorithms are efficient, they can find ground truth in synthetic datasets
and provide interpretable results from real-world datasets. Finally, we
present a case study that shows the usefulness of our problem.

1 Introduction

Finding dense subgraphs is a core problem in graph mining with many applica-
tions in diverse domains such as social network analysis [20], temporal pattern
mining in financial markets [8], and biological system analysis [10]. Often, many
real-world networks vary over time, in which case a sequence of graph snapshots
naturally exists. Consequently, mining dense subgraphs over time has gained an
attention in data mining literature [12,15,19,20].

Our goal is to find dense subgraphs in a temporal network. In order to mea-
sure density, we will use a popular choice of the ratio between number of induced
edges and nodes. This choice is popular since the densest subgraph can be found
in polynomial time [13] and approximated efficiently [5].

Given a graph sequence, there are natural extremes to find the densest sub-
graphs: the first approach is to find a common subgraph that maximizes the
sum of densities for individual snapshots, as proposed by Semertzidis et al. [20]
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Fig. 1. Toy graphs used in Example 1

among other techniques. The other approach is to find the densest subgraphs
for each snapshot individually.

In this paper, we study the problem that bridges the gap between these
two extremes, namely we seek dense subgraphs in a temporal network that are
allowed to vary over time to a certain degree. Our approach is to incorporate
the Jaccard similarity index directly into our objective function along with the
density. Here, we reward similar graphs over the snapshots. More formally, given
a graph sequence G and parameter λ, we seek a sequence of subgraphs, such
that the sum of densities plus the sum of Jaccard indices, weighted by λ, is
maximized.

We demonstrate the objective in the following toy example.

Example 1. Consider a graph sequence {G1, G2, G3} shown in Fig. 1, each graph
consisting of 6 vertices and varying edges. We denote the density induced by the
vertex set Si by d(Si), defined as the ratio between number of induced edges
and nodes, d(Si) = |E(Si)|

|Si| .
Given a weight parameter λ and a sequence of subgraphs {S1, S2, S3}, we

define our objective function as
∑3

i=1 d(Si)+λ
∑

i<j J (Si, Sj). Note that Jaccard

index between set S and T is defined as J (S, T ) = |S∩T |
|S∪T | .

Assume that we set λ = 0.3 and select S1 = {a, b, d, f}, S2 = {a, b, c, f}, and
S3 = {a, b, d, e, f}. The sum of densities is 4

4 + 6
4 + 8

5 = 4.1. Here, J (S1, S2) =
3
5 = 0.6, J (S1, S3) = 4

5 = 0.8, and J (S2, S3) = 3
6 = 0.5. Therefore, our objective

is equal to 4.1 + 0.3 × (0.6 + 0.8 + 0.5) = 4.67.

We show that our problem is NP-hard and consequently propose two greedy
algorithms. The first approach is an iterative algorithm where we start either
with the common densest subgraph or a set of the densest subgraphs for each
individual snapshot and then iteratively improve each individual snapshot. The
improvement step is done with a classic technique used to approximate the dens-
est subgraph (in a single graph) [2,5]. We start with the complete snapshot, and
iteratively seek out the vertex so that the remaining graph yields the largest
score. We remove the vertex, and the procedure is repeated until no vertices
remain; the best subgraph for that snapshot is selected. This is repeated for
each snapshot until no improvement is possible. The second algorithm uses a
similar approach except we consider all snapshots at the same time, and select
the best subgraph once we are done.
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The appeal of this approach is that, when dealing with a single graph, finding
the next vertex can be done efficiently using a priority queue [2,5]. We cannot use
this approach directly due to the updates in Jaccard indices. Instead we maintain
a set of priority queues that allow us to find vertices quickly in practice.

The remainder of the paper is organized as follows. In Sect. 2, we provide
preliminary notation along with the formal definitions of our optimization prob-
lem. Next, we prove NP-hardness of our problem in Sect. 3. All our algorithms
and their running times are presented in Sect. 4. Related work is discussed in
Sect. 5. Section 6 contains an experimental study both with synthetic and real-
world datasets. Finally, Sect. 7 summarizes the paper and provides directions for
the future work.

2 Preliminary Notation and Problem Definition

We begin by providing preliminary notation and formally defining our problem.
Our input is a sequence of graphs G = {G1, . . . , Gk}, where each snapshot

Gi = (V,Ei) is defined over the same set of nodes. We often denote the number
of nodes and edges by n = |V | and mi = |Ei|, or m = |E|, if i is omitted.

Given a graph G = (V,E), and a set of nodes S ⊆ V , we define E(S) ⊆ E
to be the subset of edges having both endpoints in S.

As mentioned before, our goal is to find dense subgraphs in a temporal net-
work, and for that we need to quantify the density of a subgraph. More formally,
assume an unweighted graph G = (V,E), and let S ⊆ V . We define the density
d(S) of a single node set S and extend this definition for a sequence of subgraphs
S = {S1, . . . , Sk} by writing

d(Si) =
|E(Si)|

|Si| and d(S) =
k∑

i=1

d(Si) .

We will use the Jaccard index in order to measure the similarity between two
subgraphs. More formally, given two sets of nodes S and T , we write

J (S, T ) =
|S ∩ T |
|S ∪ T | .

Ideally, we would like to have each subgraph to have high density, and share
as many nodes as possible with each other. This leads to the following score
and optimization problem. More specifically, given a weight parameter λ and a
sequence of subgraphs S = {S1, . . . , Sk} we define a score

q(S;λ) = d(S) + λ
k∑

i=1

k∑

j=i+1

J (Si, Sj) .

Problem 1. (Jaccard Weighted Densest Subgraphs (JWDS)). Given a graph
sequence G = {G1, . . . , Gk}, with Gi = (V,Ei), and a real number λ, find a
collection of subset of vertices S = {S1, . . . , Sk}, such that q(S) is maximized.
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We will consider two extreme cases. The first case is when λ is very large,
say λ =

∑
mi, which we refer to as densest common subgraph or DCS. This

problem can be solved by first flattening the graph sequence into one weighted
graph, where an edge weight is the number of snapshots in which an edge occurs.
The problem is then a standard (weighted) densest subgraph problem that can
be solved using the method given by Goldberg [13] in O(nm log n) time. The
other extreme case is λ = 0 which can be found by solving the densest subgraph
problem for each individual snapshot.

The main difference from prior studies [15,20] is that we allow the subsets
to be varied within a given margin (which is defined by Jaccard coefficient),
without enforcing subsets to be fully identical.

3 Computational Complexity

The problem of finding a common subgraph which maximizes the sum of densities
can be solved optimally in polynomial time. Moreover, if we set λ = 0, then we
can solve the problem by finding optimal dense subgraphs for each snapshot
individually. Next we show that JWDS is NP-hard. Note that the hardness
relies on the fact that we can choose a specific λ.

Proposition 1. JWDS is NP-hard.

Proof. We will prove the hardness by reducing from a 2-bounded 3-set packing
problem 3DM-2, a problem where we are given a set of items U , a family of sets
C each of size 3 such that each item in U is included in exactly two sets, and are
asked to find a maximum matching [7].

Assume that we are given an instance with r = |U| items and � = |C| sets. For
each set Ci we introduce two nodes vi and v′

i, and for each item ui we introduce
a node wi. We also introduce two additional nodes z1 and z2. In total, we have
n = 2� + r + 2 nodes.

Let ui be an item and let Ca and Cb be two sets containing ui. We add two
snapshots: the first graph Gi contains (z1, z2), (wi, z1), (va, z1) and (vb, z1) edges
and the second graph G′

i contains (z1, z2), (wi, z1), (v′
a, z1) and (v′

b, z1) edges.
We also add q = 2rn4 graphs Fj , each with one edge (z1, z2). We set λ = 1/q.
Let S be the optimal solution. We claim that

q(S) ≥ T1+T2+T3, where T1 =
q

2
+λ

(
q

2

)

, T2 = 2r
4
3
, T3 =

λ

2

(
2r

2

)

+λ2p+λr,

(1)
if and only if there is a matching with p sets.

Assume that Eq. 1 holds. Let Qj be the optimal subgraphs in Fj . Write Si to
be the optimal subgraph in Gi and S′

i to be the optimal subgraph in G′
i. Due to

symmetry, we can safely assume that the subgraphs Qj are all equal. Moreover,
Qj = {z1, z2} since the densities and the Jaccard indices of Si and S′

i cannot
reach q/2. The densities and Jaccard indices of Qj now correspond to T1.
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Next, we claim that Si (and S′
i) consists of 3 nodes and 2 edges, one of

them being (z1, z2). Fix Si with y = |E(Si)| edges and x = |Si| nodes. Let
z = |Si ∩ {z1, z2}| be the intersection with Qj . We can show that the score is

q(S) =
y

x
+

z

x + 2 − z
+ R + C,

where R contains the Jaccard terms using Si and not Qj , and C contains the
remaining densities Jaccard terms not depending on Si. The first two terms form
a fraction with a denominator of at most n2. Consequently, any changes to x, y,
and z change the first two terms by at least n−4. Note that R contains only 2r−1
terms, and due to λ, we have R < n−4. In other words, S must optimize the first
two terms. Since there are only 5 non-singleton nodes in Gi, x ≤ 5. Moreover,
z ≤ min(2, x) and y ≤ min(4, x − 1). Enumerating all the possible combinations
show that x = 3 and z = y = 2 yield optimal score. This is only possible if Si

consists of 3 nodes and 2 edges, one of them being (z1, z2). Now, densities of Si

(and S′
i) and Jaccard indices between Si (and S′

i) and Qj correspond to T2.
Finally, let us look now at the Jaccard terms between Si and/or S′

j . These
terms will constitute T3. Let a be the number of nodes vi or v′

i that are included
in 3 subgraphs; any such node will yield 3 Jaccard terms of value 1. Let b be the
number of nodes vi v′

i, or wi that are included in 2 subgraphs; any such node
will yield one Jaccard term of value 1. The remaining Jaccard terms between Si

and S′
i are all of value 2/4. In summary, the terms are equal to

λ

(
2r

2

)
2
4

+ λa3
(

1 − 2
4

)

+ λb

(

1 − 2
4

)

=
λ

2

(
2r

2

)

+ λa + λ(a + b)/2 .

Assume that a < 2p. Then since a+b ≤ 2r these terms are less than T3, which is
a contradiction. Therefore, a ≥ 2p. Now, there are p vertices in {vi} or p vertices
in {v′

i} that are included in 3 subgraphs. These sets correspond to matchings,
and at least one of them will have p sets.

To prove the other direction, assume there is a matching M with p sets. To
form the subgraph sequence, we first select (z1, z2) in every set. For ui ∈ Cj ∈ M,
we also select (vj , z1) in Gi and (v′

j , z1) in G′
i. For an item ui not covered by M,

we select (wi, z1) in Gi and (wi, z1) in G′
i. A straightforward calculation shows

that this sequence yields the score given in Eq. 1. �	

4 Algorithms

Since our problem is NP-hard, we need to resort to heuristics. In this section
we present two algorithms that we will use to find good subgraphs.

The first algorithm is as follows. We start with an initial candidate S. This set
is either the solution of the densest common subgraph or the densest subgraphs
of each individual snapshots; we test both and select the best end result.

In order to improve the initial set we employ the strategy used in [2,5] when
approximating the densest subgraph: Here, the algorithm starts with the whole
graph and removes a node with the minimum degree, or equivalently, removes a
node such that the remaining subgraph has the highest density. This is continued
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Algorithm 1: Itr(G, λ,S), finds subgraphs with good q(·;λ)
1 while changes do
2 foreach i = 1, . . . , k do
3 C ← V ;
4 foreach j = 2, . . . , |V | do
5 u ← arg max

v∈C
q(S1, . . . , Si−1, C \ {v}, Si+1, . . . , Sk);

6 C ← C \ {u};

7 Si ← best tested C, if the score improves;

8 return S;

Algorithm 2: Grd(G, λ), finds subgraphs with good q(·;λ)
1 S ← S1, . . . , Sk, where Si = V ;
2 while there are nodes do
3 u, j ← arg max

v,i|v∈Si

q(S1, . . . , Si−1, Si \ {v}, Si+1, . . . , Sk);

4 Sj ← Sj \ {u};

5 return best tested S;

until no nodes remained, and among the tested subgraphs the one with the
highest density is selected.

We employ a similar strategy. For a snapshot Gi, we start with Si = V , and
then iteratively remove the vertices so that the score is maximal. After removing
all vertices, we pick the subgraph for Si which maximizes our objective q(S;λ).
We iterate over all snapshots, we keep on modifying the sets until the algorithm
converges. The pseudo-code for this approach is given in Algorithm 1.

Our second algorithm is similar to Itr. In Algorithm 1 we consider each
snapshot separately and peel off vertices. In our second algorithm, we initialize
each Si with V . In each iteration, we find a snapshot Si and a vertex v so that the
remaining subgraph sequence is maximized. We remove the node and continue
until no nodes are left. In the process, we choose the one which maximizes our
objective function. The pseudo-code for this method is given in Algorithm 2.

The bottleneck in both algorithms is finding the next vertex to delete. Let
us now consider how we can speed up this selection. To this end, select Si and
let v ∈ Si. Let us write S ′ to be S with Si replaced with Si \ {v}. We can write
the score difference between S and S ′ as

q(S ′)−q(S) =
|E(Si)| − deg v

|Si| − 1
−|E(Si)|

|Si| +
∑

j �=i

J (Si \ {v} , Sj)−J (Si, Sj) . (2)

Let us first consider Grd. To find the optimal v and i, we will group the
nodes in Si such that the sum in Eq. 2 is equal for the nodes in the same group.
In order to do that we group the nodes based on the following condition: if two
nodes u, v ∈ Si belong to the exactly same Sj for each j, that is, u ∈ Sj if and
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only if v ∈ Sj , then u and v belong to the same group. Let us write P to be the
collection of all these groups (across all i).

Select P ∈ P. Since the sum in Eq. 2 is constant for all nodes in P , the node in
P maximizing Eq. 2 must have the smallest degree. Thus, we maintain the nodes
in P in a priority queue keyed by the degree. We also maintain the difference
of the Jaccard indices, the sum in Eq. 2. In order to maintain the difference, we
maintain the sizes of intersection |Si ∩ Sj | and the union |Si ∪ Sj | for all i and
j. To find the optimal v and i, we find the vertex with the smallest degree in
each group, and then compare these candidates among different groups.

This data structure leads to the following running time.

Proposition 2. Assume a graph sequence G1, . . . , Gk with n nodes and total
m =

∑
i mi edges. Let Pir be the groups of Si (based on the node memberships

in other snapshots) when deleting rth node. Define Δ = max |Pir|. Then the
running time of Grd is in

O(
nk2Δ + m log n + k2n(k + log n)

) ⊆ O(
n2k2 + m log n + k3n

)
.

Proof. Finding the best node u and the snapshot Si requires O(
∑

i |Pir|) ∈
O(kΔ) time. Consider deleting u from Si.

Deleting u from its queue requires O(log n) time. Upon deletion, we update
the degrees of the neighboring nodes in the corresponding queues, in total time
of O(m log n). Updating the intersection and the union sizes requires O(k) time.

We also need to update the gain coming from Jaccard indices for each group
P . Only one term changes if P is not a subset of Si; there are at most kΔ such
groups. Otherwise, if P ⊆ Si, then k −1 terms change; there are at most Δ such
groups. In summary, we need O(kΔ) time.

Node u is included in O(k) queues. As we remove u from Si, these queues
need to be updated by moving u to the correct queue. A single such update
requires deleting u from its current queue, finding (and possibly creating) the
new queue, and adding u to it. This can be done in O(k + log n) time.

Combining these times proves the claim. �	
We should point out that the running time depends on Δ, the number of

queues in a single snapshot. This number may be as high the number of vertices,
n, but ideally Δ 
 n.

The same data structure can be also used Itr. The only difference is that
we do not select optimal i; instead i is fixed when looking for the next vertex
to delete. Trivial adjustments to the proof of Proposition 2 imply the following
claim.

Proposition 3. Assume a graph sequence G1, . . . , Gk with n nodes and total
m =

∑
i mi edges. Let Pir be the groups of Si (based on the node memberships

in other snapshots) when deleting rth node. Define Δ = max |Pir|. Then the
running time of a single iteration of Itr is in

O(
nk2Δ + m log n + k2n(k + log n)

) ⊆ O(
n2k2 + m log n + k3n

)
.
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5 Related Work

In this section we discuss previous studies on discovering the densest subgraph in
a single graph, the densest common subgraph over multiple graphs, overlapping
densest subgraphs, and other types of density measures.

The Densest Subgraph: Given an undirected graph, finding the subgraph
which maximizes density has been first studied by Goldberg [13] where an exact,
polynomial time algorithm which solves a sequence of min-cut instances is pre-
sented. Asahiro et al. [2] provided a linear time, greedy algorithm proved to be
an 1/2-approximation algorithm by Charikar [5]. The idea of the algorithm is
that at each iteration, a vertex with minimum degree is removed, and then the
densest subgraph among all the produced subgraphs is chosen.

Several variants of the densest subgraph problem constrained on the size
of the subgraph |S| have been studied: finding the densest k-subgraph (|S| =
k) [2,9,16], at most k-subgraph (|S| ≤ k) [1,17], and at least k-subgraph (|S| ≥
k) [1,17]. Unlike the densest subgraph problem, when the size constraint is
applied, the densest k-subgraph problem becomes NP-hard [9]. Furthermore,
there is no polynomial time approximation scheme (PTAS) [16]. Approximat-
ing the problem of finding at most k-subgraph is shown as hard as the densest
k-subgraph problem by Khuller and Saha [17]. To find exactly k-size densest
subgraph, Bhaskara et al. [4] gave an O(

n1/4+ε
)
-approximation algorithm for

every ε > 0 that runs in nO(1/ε) time. Andersen and Chellapilla [1] provided a
linear time 1/3-approximation algorithm for at least k densest subgraph prob-
lem.

The Densest Common Subgraph over Multiple Graphs: Jethava and
Beerenwinkel [15] extended the densest subgraph problem (DCS) for the case of
multiple graph snapshots. As a measure the authors’ goal was to maximize the
minimum density. Moreover, Semertzidis et al. [20] introduced several variants
of this problem by varying the aggregate function of the optimization problem,
one variant, BFF-AA, is same as the DCS problem discussed in Sect. 2. DCS can
be solved exactly through a reduction to the densest subgraph problem, and is
consequently polynomial. The hardness of DCS variants has been addressed [6].

Overlapping Densest Subgraphs of a Single Graph: Finding multiple
dense subgraphs in a single graph which allows graphs to be overlapped is stud-
ied by adding a hard constraint to control the overlap of subgraphs [3]. Later,
Galbrun et al. [11] formulated the same problem adding a penalty in the objective
function for the overlap. The difference of our problem to the works of Balalau
et al. [3] and Galbrun et al. [11] is that our goal is to find a collection of dense
subgraphs over multiple graph snapshots (one dense subgraph for each graph
snapshot) while they discover a set of dense subgraphs within a single graph.
Due to this difference, we want to reward similar subgraphs while the authors
want to penalize similar subgraphs.

Other Density Measures: We use the ratio of edges over the nodes as our
measures as it allows us to compute it efficiently. Alternative measures have been
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Table 1. Characteristics of synthetic datasets. Here,
∣
∣V d

∣
∣ and |V s| give initial number

of dense and sparse vertices respectively, E[|E|] is the expected number of edges, k
is the number of snapshots, pd, ps, and pc gives the dense, sparse, and cross edge
probabilities, Jmin = mini<j J(V d

i , V d
j ) is the minimum Jaccard index between ground

truth dense sets of vertices, dtrue is the ground truth density of dense components, ddcs

gives the density of densest common subgraph, and dind gives the sum of densities of
locally densest subgraph from each graph snapshot.

Dataset
∣
∣V d

∣
∣ |V s| E[|E|] k pd ps pc dtrue ddcs dind Jmin

Syn-1 100 900 672.8 10 0.05 0.0005 0.0005 34.68 24.26 35.74 0.47

Syn-2 100 5 000 3 850.2 5 0.05 0.0001 0.0001 40.47 13.03 40.57 0.18

Syn-3 120 1 200 3 922 5 0.06 0.005 0.002 27.4 17.62 27.62 0.45

Syn-4 250 5 000 4 709 8 0.03 0.001 0.001 55.79 29.65 55.98 0.27

Syn-5 500 3 500 12 136.29 7 0.05 0.0003 0.0003 112.11 87.27 112.12 0.53

Syn-6 350 3 500 32 015 5 0.06 0.005 0.002 67.96 52.17 67.96 0.49

also considered. One option is to use the proportion of edges instead, that is,
|E|/(|V |

2

)
. The issue with this measure is that a single edge yields the highest

density of 1. Moreover, finding the largest graph with the edge proportion of 1 is
equal to finding a clique, a classic problem that does not allow any good approxi-
mation [14]. As an alternative approach, Tsourakakis et al. [24] proposed finding
subgraphs with large score |E|−α

(|V |
2

)
. Optimizing this measure is an NP-hard

problem but an algorithm similar to the one given by Asahiro et al. [2] leads
to an additive approximation guarantee. In similar vein, Tatti [21] considered
subgraphs maximizing |E| − α|V | and showed that they form nested structure
similar to k-core decomposition. An alternative measure called triangle-density
has been proposed by Tsourakakis [23] as a ratio of triangles and the nodes, pos-
sibly producing smaller graphs. Like the density, optimizing this measure can be
done in polynomial time. We leave adopting these measures as a future work.

6 Experimental Evaluation

The goal in this section is to experimentally evaluate our algorithms. We first
generate several synthetic datasets and plant dense subgraph components, in
each snapshot and test how well our algorithms discover the ground truth. Next
we study the performance of the algorithm on real-world temporal datasets in
terms of running time. We compare our results with the solutions obtained with
the densest common subgraph [20] and the sum of densities of locally dense
subgraphs [13]. Finally, we present results of a case study.

We implemented the algorithms in Python1 and performed the experiments
using a 2.4GHz Intel Core i5 processor and 16GB RAM.

Synthetic Datasets: Next, we explain in detail how the synthetic datasets are
generated, the statistics and the related parameters are given in Table 1.
1 The source code is available at https://version.helsinki.fi/dacs/. .

https://version.helsinki.fi/dacs/
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Table 2. Computational statistics from the experiments for synthetic datasets using
Itr and Grd algorithms. Here, λ is the parameter in q(·; λ), i is the number of iterations
using Itr, columns ddis and q are the sum of densities and scores of the discovered sets,
Jmin provide the minimum Jaccard index between discovered sets, columns ρ give the
average Jaccard index between discovered and ground truth sets, and columns time
give the computational time in seconds.

Data λ Itr Grd

ddis q Jmin ρ time i ddis q Jmin ρ time

Syn-1 0.3 34.84 43.1 0.51 0.93 10 4 34.84 43.09 0.5 0.93 30

0.5 33.54 48.97 0.54 0.89 11 5 33.44 48.97 0.54 0.88 33

0.7 26.43 56.08 0.84 0.74 4 2 26.22 56.08 0.86 0.73 32

Syn-2 0.3 40.57 41.18 0.18 0.99 50 3 40.57 40.77 0.18 0.99 92

0.4 40.57 41.39 0.18 0.99 53 3 40.57 41.39 0.18 0.99 84

0.5 40.57 41.6 0.18 0.99 50 3 40.57 41.6 0.18 0.99 87

Syn-3 0.4 27.59 29.59 0.44 0.97 16 3 27.6 29.59 0.44 0.97 29

0.5 27.59 30.1 0.44 0.97 18 3 27.6 30.08 0.44 0.97 26

0.8 27.44 31.65 0.46 0.98 17 3 27.6 31.56 0.43 0.98 28

Syn-4 0.4 55.75 60.38 0.27 0.98 66 2 55.89 60.42 0.27 0.98 307

0.5 55.82 61.56 0.27 0.98 132 4 55.83 61.55 0.27 0.98 308

0.6 55.76 62.71 0.27 0.98 132 4 55.79 62.71 0.27 0.98 285

Syn-5 0.01 112.12 112.26 0.53 1 73 2 112.12 112.26 0.53 1 249

0.4 112.12 117.7 0.53 1 69 2 112.12 116.3 0.53 1 251

0.5 112.12 119.09 0.53 1 103 3 112.12 119.09 0.53 1 257

Syn-6 0.1 67.96 68.61 0.49 1 42 2 67.96 68.61 0.49 1 226

0.8 67.96 73.18 0.49 1 67 3 67.96 73.17 0.49 1 252

1 67.95 74.49 0.49 1 69 3 67.96 74.48 0.49 1 238

Each dataset consists of k graphs given as {G1, . . . , Gk}. We split the vertex
set into dense and sparse components V d and V s. To generate the ith snapshot
we create two components V d

i and V s
i by starting from V d and V s and moving

nodes from V s to V d with a probability of ηi. The probability ηi is selected
randomly for each snapshot from a uniform distribution [0.01, 0.09]. Once the
vertices are generated, we sample the edges using a stochastic block model,
with the edge probabilities being pd, ps, and pc for dense component, sparse
component, and cross edges, respectively. We created 6 such synthetic datasets
in total to test our algorithms.

Results of Synthetic Datasets: We report our results in Table 2.
First, we observe that the discovered density values ddis approximately match

each other, that is, both Itr and Grd perform equally well in terms of the
densities. Similar result holds also for the scores q(·;λ) and minimum Jaccard
coefficients Jmin. However, Itr runs faster than Grd. This is probably due to
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Fig. 2. Average Jaccard index to the ground truth ρ as a function of λ in Fig. 2b.
Discovered density ddis as a function of λ in Fig. 2b. Scores q(·; λ) as a function of λ
in Fig. 2c. This experiment was performed using Syn-3 dataset.

Table 3. Characteristics of real-world datasets. Here, |V | gives the number of vertices,
|E| is the expected number of edges, k is the number of snapshots, ddcs gives the
density of densest common subgraph, and dind gives the sum of densities of locally
densest subgraph from each graph snapshot.

Data |V | |E| k ddcs dind

Twitter-# 806 101.2 15 7.54 38.79

Enron 1 079 23.2 183 43.47 185.34

Facebook 4 117 83.13 104 14 88.65

Students 889 43.68 122 24.15 117.98

Twitter-user 4 605 109.19 93 23 90.63

Tumblr 1 980 65.3 89 36.67 103.98

the fact that Grd takes more time to select the next vertex to delete, which
is the bottleneck in both algorithms despite of having same asymptotic time
complexity per iteration in Itr and overall time complexity in Grd. Let us now
compare the discovered sets to the ground truth, given in columns ρ. We can see
both algorithms gives similar values which indicates equally good performance
of Itr and Grd.

Our next step is to study the effect of the input parameter λ. First, we observe
Fig. 2 which demonstrates ρ as a function of λ. In Fig. 2a, we see that ρ gradually
decreases as we increase λ. This is due to the fact that when we increase the
weight of constraint part of q , the algorithms try to find dense sets with higher
Jaccard coefficients which eventually forces to deviate from its ground truth.
Furthermore, if we set λ = 2, we can see a drastic change in ρ.

Let us now consider Fig. 2b which demonstrates how the discovered sum of
densities change with respect to λ. We see the decreasing trend showing that
second term in the objective function starts to dominate with the increase of λ.

Next, we study how the score function q behaves over λ shown in Fig. 2c. We
can observe that both Itr and Grd have an increasing trend when we increase
λ from 0.3 to 2.3. This is expected as larger λ should yield larger scores.

Real-World Datasets: We consider 6 publicly available, real-world datasets.
The details of the datasets are shown in Table 3. Twitter-# [22]2 is a hash-

2 https://github.com/ksemer/BestFriendsForever-BFF-.

https://github.com/ksemer/BestFriendsForever-BFF-
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Table 4. Computational statistics from the experiments for real-world datasets. Here,
λ is the parameter in q(·; λ), i gives the number of iterations using Itr, columns ddis

are the discovered sum of densities, columns q are the discovered scores, and columns
time give the computational time in seconds.

Data λ Itr Grd

ddis q time i ddis q time

Twitter-# 0.3 37.34 40.52 2.81 5 37.65 38.13 5.79

0.5 14.14 54.54 3.06 7 31.01 42.37 6.38

0.7 11 74.7 2.62 5 16.8 56.18 6.23

0.8 11 83.8 2.79 6 9.33 75.47 6.88

Enron 0.05 130.43 357.29 72.02 5 122.08 343.02 816.54

0.1 111.88 593.87 148.9 10 62.08 589.96 826.28

0.5 95.88 2 662.7 81.56 6 20 3 139.25 854.43

5 88.66 25 254.81 98.87 7 20 31 212.5 774.39

Facebook 0.1 52.86 126.98 214.74 7 56.03 85.64 9 461.59

0.5 36.4 446.09 148.94 6 25.47 344.6 10 193.96

0.7 31.25 657.92 185.9 1 7 23.41 475.83 9 781.9

1 27.41 922.45 136.72 6 22.48 659.32 9 034.35

Students 0 108.9 108.9 124.38 4 102.7 102.7 2 787.8

0.2 46.99 526.19 100.17 5 33.17 567.84 2 178.28

0.5 46.17 1 258.41 79.65 4 33.17 1 369.86 2 256.26

0.8 44.5 2 020.81 78.61 4 33.17 2 171.88 2 125.67

Twitter-user 0.01 79.21 81.61 572.25 8 63.53 68.53 7 524.47

0.1 12.04 269 260.31 9 13.9 212.28 6 422.46

0.2 11.49 545.93 149.91 5 11.64 423.1 6 770.16

0.5 11.49 1 347.59 150.08 5 10.83 1 040.05 6 847.68

Tumblr 0.1 71.33 316.07 50.23 4 66.47 302.83 1 229.98

0.5 64.37 1 456.47 49.31 4 62.97 1 291.82 1 151.85

0.7 59.25 2 182.29 48.96 4 62.97 1 783.35 1 217.76

1 59.17 3 092.08 48.37 4 62.97 2 520.66 1 252.05

tag network where nodes correspond to hashtags and edges corresponds to the
interactions where two hashtags appear in a tweet. This dataset contains 15 such
daily graph snapshots in total. Enron3 is a popular dataset which contains email
communication data within senior management of Enron company. It contains
183 daily snapshots in which daily email count is at least 5. Facebook [25]4 is a
network of Facebook users in New Orleans regional community. It contains a set
of facebook wall posts among these users during 9th of June to 20th of August,

3 http://www.cs.cmu.edu/∼./enron/.
4 https://networkrepository.com/fb-wosn-friends.php.

http://www.cs.cmu.edu/~./enron/
https://networkrepository.com/fb-wosn-friends.php
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Table 5. Twitter hash tags discovered for Twitter-8 dataset.

DCS: abudhabigp, fp1, abudhabi, guti, f1, pushpush, skyf1, hulk, allowin,
bottas, kimi, fp3, fp2, unleashthehulk, density: 7.07

Itr algorithm: λ = 0.8, density: 12.23, objective: 21.76

Day 1: indiangp, skyf1, kimi, f1

Day 2: abudhabigp, skyf1, f1

Day 3: kimi, skyf1, abudhabigp, f1

Day 4: abudhabigp, skyf1, f1

Day 5: abudhabigp, english, arabic, spanish, french, danish, swedish, f1,
endimpunitybh, skyf1, bahrain

Day 6: abudhabigp, fp1, abudhabi, guti, f1, skyf1, hulk, allowin, bottas, kimi,
fp3, fp2

Day 7: abudhabigp, abudhabi, guti, f1, pushpush, skyf1, hulk, allowin, bottas,
kimi, fp3, quali

Day 8: abudhabigp, skyf1, f1

2006. Students5 is an online message network at the University of California,
Irvine. It spans over 122 days. Twitter-user [19]6 is a network of twitter users
in Helsinki 2013. It contains a set of tweets which appear each others’ names.
Tumblr [18]7 contains phrase or quote mentions appeared in blogs and news
media. It contains author and meme interactions of users over 3 months from
February to April in 2009.

Results of Real-World Datasets: We report the results obtained from the
experiments with real-world datasets in Table 4.

First, we compare scores q obtained using Itr and Grd. As we can see,
apart from few cases in Enron and Students datasets, Itr achieves greater score
than Grd. Furthermore, we can observe in time columns, Itr runs faster than
Grd. Next, let us observe column i which gives number of iterations with Itr
algorithm. We can see that we have at most 10 number of iterations which is
reasonable to deal with real-world datasets.

As we compare columns ddis which show discovered densities, we can occa-
sionally see approximately similar values but also deviations. Next, let us observe
the effect of λ on ddis and q . Based on λ, the ratio between ddis and q tends to
change. For example, in general, when λ is lowered, ddis tends to increase while
q decreases, as expected.

Case Study Using Twitter-8 Dataset: In this section, we present a case-
study and analyze the result which illustrates trending twitter hash tags over a
span of 8 days, under a Jaccard constrained environment.
5 https://toreopsahl.com/datasets/#online social network.
6 https://github.com/polinapolina/segmentation-meets-densest-subgraph/tree/

master/data.
7 http://snap.stanford.edu/data/memetracker9.html.

https://toreopsahl.com/datasets/#online_social_network
https://github.com/polinapolina/segmentation-meets-densest-subgraph/tree/master/data
https://github.com/polinapolina/segmentation-meets-densest-subgraph/tree/master/data
http://snap.stanford.edu/data/memetracker9.html
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Twitter-8 contains a hashtag network from November, 2013. We prepared
this dataset by extracting first 8 daily graph snapshots from Twitter-# dataset.
Here, each node of the graph represents a specific hashtag. As seen in the tags
from Table 5, Formula-1 racing car event which occurred on Abu Dhabi has
been trending during the period. We set λ = 0.8 and find different sets of dense
subgraphs for each day using Itr. On Day 1, tags indeangp, skyf1, kimi, and f1
have been added to the dense hashtag collection whereas on Day 2, the tag kimi
who is a Finnish racing legend and the tag indeangp have been removed from
trending list. On Day 3, kimi has been re-entered into the trending list and the
tag indeangp has been replaced by abudhabigp. On Day 6, the tags like bottas
(another Finnish racing car driver), fp2 (Free practice 2), fp3 (Free practice 3),
and etc. have been added which indicates that additional racing car event related
tags are trending. On Day 5, we can observe more new tags like bahrain, english,
arabic, french, danish, and swedish have been appeared which seems not directly
related to racing car event. Moreover, new dense collection gives a higher density
of 12.22 with respect to the DCS density of 7.07.

7 Concluding Remarks

We introduced a novel Jaccard weighted, dense subgraph discovery problem
(JWDS) for graphs with multiple snapshots. Here, our goal was to find a dense
subset of vertices from each graph snapshot such that the sum of densities and
the similarity between the snapshots is maximized.

We proved that our problem is NP-hard, and designed an iterative algorithm
which runs in O(

n2k2 + m log n + k3n
)

time per iteration and a greedy algorithm
which runs in O(

n2k2 + m log n + k3n
)

time.
We experimentally showed that the number of iterations was low in iterative

algorithm, and that the algorithms could find the ground truth using synthetic
datasets and could discover dense collections in real world datasets. We also
studied the effect of our user parameter λ. Finally, we performed a case study
showing interpretable results.

The paper introduces several interesting directions for future work. In this
paper, we enforced the pairwise Jaccard constraint between all available pairs
of snapshots. However, we can relax this constraint further by letting only a
portion of sets which lies within a specific window to assure the Jaccard similarity
constraint which may lead to future work. Another possible direction is adopting
different type of density for our problem setting.
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Abstract. The use of computational models is growing throughout
most scientific domains. The increased complexity of such models, as
well as the increased automation of scientific research, imply that model
revisions need to be systematically recorded. We present RIMBO (Revi-
sions for Improvements of Models in Biology Ontology), which describes
the changes made to computational biology models.

The ontology is intended as the foundation of a database contain-
ing and describing iterative improvements to models. By recording high
level information, such as modelled phenomena, and model type, using
controlled vocabularies from widely used ontologies, the same database
can be used for different model types. The database aims to describe the
evolution of models by recording chains of changes to them. To make this
evolution transparent, emphasise has been put on recording the reasons,
and descriptions, of the changes.

We demonstrate the usefulness of a database based on this ontol-
ogy by modelling the update from version 8.4.1 to 8.4.2 of the genome-
scale metabolic model Yeast8, a modification proposed by an abduction
algorithm, as well as thousands of simulated revisions. This results in a
database demonstrating that revisions can successfully be modelled in
a semantically meaningful and storage efficient way. We believe such a
database is necessary for performing automated model improvement at
scale in systems biology, as well as being a useful tool to increase the
openness and traceability for model development. With minor modifica-
tions the ontology can also be used in other scientific domains.

The ontology is made available at https://github.com/filipkro/rimbo
and will be continually updated.

Keywords: Ontology · Knowledge representation · Database ·
Computational biology · Semantic web

1 Introduction

Computational models play a crucial part in our understanding of complex bio-
logical systems [1], and the further improvements of such models have been
described as a grand challenge for the 21st century [2].
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A promising way forward, enabled by advances in AI and automation, is to
develop autonomous laboratories performing experiments and discovering knowl-
edge. This has been demonstrated by robot scientists performing cycles of exper-
iments to determine gene functions in yeast [3], discover drugs [4], and optimise
cell culturing conditions [5]. Largely automated pipelines has been used to opti-
mise strain engineering in both Saccharomyces cerevisiae and Escherichia coli
[6], and a mobile robotic chemist has searched for photocatalysts for hydrogen
production [7].

Using computational models to guide experiment design and the experimen-
tal results to improve the models in a closed loop manner has proved to be a
successful and scaleable way of developing systems biology models [8].

For an AI agent to be able to autonomously reason about improvements to
a model, a structured and semantically unambiguous way of storing models is
required. Critically, such a store should also handle large numbers of revisions
to the models. A semantically meaningful representation of these revisions will
enable human researchers to gain insights from the model improvement cycles,
access and use the models, as well as facilitating for computer systems to reason
about previous changes to models.

Across many domains the importance and use of computational models, as
well as the number of models available, is increasing [9]. No matter if the model
is used in science or any other field, it needs the trust of a wider community.
One way this can be achieved is by making the steps taken during development
more open and transparent, regardless if it was done by humans or machines.

In this work we propose an ontology, capturing and explaining changes to
different types of computational biology models, which can also be used for a
model revision database. Such a database is important in an automated scientific
discovery setting, where we seek improvements to computational models. We
also demonstrate how this ontology can be used to model community consensus
updates, as well as machine generated hypotheses about improvements for yeast
metabolic models.

2 Background and Related Work

There are several repositories or databases where the computational biology com-
munity share models today. Most notably BioModels [10] with over 2 000 sub-
mitted models of different types, but also BiGG Models [11] with genome-scale
metabolic models (GEMs), and the CellML Model Repository [12]. Although
some repositories support version control (e.g. BioModels), they are not designed
to deal with the large numbers of small revisions generated when developing and
refining models.

Central to the increased sharing and reuse of computational models, and
other biological information, are common and unambiguous model descriptions.
Biological Pathway Exchange (BioPax) [13] is a language for exchange and inte-
gration of biological pathways. For computational models, CellML [14], and the
Systems Biology Markup Language (SBML) [15] are widely used. They both
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enable the databases mentioned above, with BioModels and BiGG containing
large amounts of SBML models and the CellML Model Repository naturally
being for CellML models. Although slightly different, the three model formats
are all XML-based.

These three formats share a heavy reliance on ontologies. Ontologies and
controlled vocabularies provide semantic meaning to data, both to humans and
machines. The Gene Ontology (GO) [16], provides structure and semantics to
genes and gene products across species. The Systems Biology Ontology (SBO)
[17] is closely tied to SBML, and contains vocabularies useful for computational
modelling and systems biology, and the Kinetic Simulation Algorithm Ontology
(KiSAO) [18] complements it with additional terms describing simulation and
algorithms. Cell types and processes in cells can be found in the Cell Ontology
(CL) [19] and the Ascomycete Phenotype Ontology (APO) [20] contains phe-
notypes for Ascomycete fungi. The EDAM ontologies [21,22] have vocabularies
for data management and analysis. Provenance models, describing the prove-
nance of both scientific experiments and general processes, has been encoded in
ontologies like PROV-O [23] and REPRODUCE-ME [24].

The COMODI (COmputational MOdels DIffer) ontology [25] attempted
to characterise changes to computational models in XML format. Changes to
”XmlEntities” were identified along with ”Reasons”, ”Intentions”, and ”Targets”
for them. Such annotations provide very detailed descriptions of each change to
the XML tree, which is helpful when studying single updates or for understand-
ing the mechanics of the format the model is encoded in. However, this verbosity
is not helpful when chains of revisions are studied. Instead of providing a detailed
description of all changes to the encoding of the model, we argue that overar-
ching intentions are important. There are also differences between describing a
change, and providing an unambiguous and storage efficient patch that can be
used to recreate the actual file, without storing a copy of it.

Apart from just offering semantic meaning, ontologies can also effectively be
used as the schema for databases. By modelling data as Resource Description
Framework (RDF) triples (subject, predicate, object) using terms from ontolo-
gies, knowledge graphs can be created. Such graphs can be queried or reasoned
over, and have previously acted as the knowledge base for closed loop model
improvements [8].

3 Results

We propose that model revisions are represented using the Revisions for Improve-
ments of Models in Biology Ontology (RIMBO). It is designed to be the schema
for a graph database containing iteratively improved computational biology mod-
els. In theory it can be used with any type of model, but we have focused on
models that are improved by making small changes which can be described in
a semantically meaningful way. Below, a non exhaustive list can be seen, illus-
trating the type of competency questions we want such a database to answer.
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– Which model was introduced in publication p?
– Which models are derived from model M1?
– What was the reason for the revision R?
– Which revision tried to correct the predicted essentiality of gene g in model

M2?
– Which model is a revision of model M3, where the change affects reaction r?

The ontology is expressed in OWL2 and developed in Protégé (v. 5.5.0, https://
protege.stanford.edu/). We will first, in Sect. 3.1, describe the ontology and then,
in Sect. 3.2, show examples of model revisions in this format and demonstrate it
can be used as a database for large numbers of revisions.

3.1 Description of RIMBO

hasChange

hasReason

hasPatch

hasReference

createdBy

isUsedToModel
isImplementedAs

Model Biological
Process

Format

Agent

Software

SystemsBiology
Representation

Observable

hasSoftware

patchTo

Patch

aboutObservable
Reason

actsOn
Change

Publication

- MathematicalModel

- SBML

- Organization

- MetabolicProcess

- Update

- KnowledgeGain

- DiffPatch

PROV-O

GO

COMODI

APO

SBO

COMODI

REPRODUCE-ME

REPRODUCE-ME

EDAM

- SoftwareAgent
- Person

- Deletion
- Insertion

- Revision- NewFile

- MismatchWithPublication - Essentiality
- Chem.Comp.Acc.

- BiochemicalReaction
- GeneProd.Ass.
- DatabaseCrossRef.
- FluxBound

- ConstraintBasedModel

Fig. 1. Overview of RIMBO showing classes, how they are connected, and which ontolo-
gies they are from. The text under the boxes specifies subclasses used for the demonstra-
tion in Sect. 3.2. Red boxes denotes domain specific classes that would need replacing
if the ontology is applied to another domain. Blue denotes classes from other foun-
dational scientific ontologies and the white boxes are classes introduced in RIMBO.
(Color figure online)

RIMBO combines classes from different ontologies and an overview illustrating
how this is done can be seen in Fig. 1. To connect these classes the relations
described in Table 1, along with their domains and ranges, are introduced.

The central class in RIMBO is Model, being a superclass to different mod-
elling types, imported from ontologies such as the Mathematical Modelling

https://protege.stanford.edu/
https://protege.stanford.edu/
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Ontology (MAMO) and EDAM. Information about this model is provided
through links to other concepts. For example, BiologicalProcess classes from
GO or CL can describe which phenomenon is being modelled, and terms from
REPRODUCE-ME and PROV-O specify important metainformation, such as
when and by whom it was created, as well as links to relevant publications.
The model is also linked to the model file, represented by an instance of its
corresponding Format class from EDAM. This connects either to an external
reference to a filestore or an online resource, or a representation of the file in the
graph. There are advantages and disadvantages to each option. External refer-
ences require maintenance to ensure they point to correct locations, but are more
storage-efficient. Having large files in the graph may affect query performance.

Table 1. The relations used to model revisions with RIMBO, along with domains and
ranges when applicable. The namespaces specify which ontology the classes are from,
when no namespace is specified the term is introduced in RIMBO. rep-me is short for
REPRODUCE-ME.

Relation Domain Range Description

aboutObservable comodi: Reason apo: Observable Describes the Reason by linking it to

Observable terms from APO.

actsOn comodi: Change sbo: Sys.Bio.Repr. Describes what part of the model

is affected by the Change.

createdBy Model prov: Agent Specifies who created a Model

(Organization, Person � Agent).

hasChange Revision comodi: Change Connects the Revision to a Change.

hasPatch Revision Patch Connects the Revision to a Patch.

hasReason Revision comodi: Reason Connects the Revision to a Reason.

hasReference rep-me: Publication Links, e.g., a Model or Mism.W.Pub.

to its Publication.

hasSoftware rep-me: Software Specifies software, e.g., used to find

the diff-patch.

isImplementedAs Model edam: Format Links the Model to Format with

information about the model file.

isUsedToModel Model Describes which phenomenon is

modelled.

ofMaterialEntity apo: Observable Mat.Entity Links Observable to Mat.Entity

(Gene, Chem.Entity � Mat.Entity).

patchTo Patch edam: Format Links a Patch to the model file it

applies to.

revisionTo Revision Model Links the Revision to the Model it

was revised from.

The other central class in this ontology is Revision, which is also a subclass of
Model, and describes a modified version of a Model. An important thing to note
is that the Revision class is not disjoint with classes describing the model type,
for example MathematicalModel classes from MAMO. Hence, a revised model
is described as the intersection of its model type and a Revision. Recording
the reason along with descriptions of the changes made to models is important,
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both when improvements are generated by humans and machines. For a human
generated revision, it can, for example, be used as a way of documenting the
research. For a machine, it enables the system to reason about the effect of
previous changes, as well as providing a way of communicating and motivating
its findings with human researchers. The Reason class is from COMODI and
has subclasses such as MismatchWithPublication and KnowledgeGain. Linking
this to terms from ontologies like APO and relevant genes or chemicals gives
a description of the cause of a change. As one revision might be made up of
several changes, such as the addition of multiple new reactions, it is described
by a Change collecting, possibly several, instances of Deletions, Insertions, or
Updates, all from the COMODI ontology. The change can be described by linking
these classes to subclasses of SystemsBiologyRepresentation from SBO and
specific reactions or genes.

The actual change to the file is saved using the Patch class, with subclasses
DiffPatch and NewFile. As iterative changes often are small, in terms of the
actual changes to the files, it makes sense to just store the differences between
the two files to the database. This is done with the DiffPatch class along with
information on what software was used to find it. In some cases it might be
desirable to just store a new version of the model file, for instance for binary
model representations, for larger changes, or to avoid lengthy chains of patches.
This is done using the NewFile class.

3.2 Demonstration

To demonstrate the usefulness of this ontology and a resulting database, we have
generated a demonstration knowledge graph with model revisions. This example
is based on revisions to the genome-scale metabolic model (GEM) Yeast8 [26]
for the yeast species Saccharomyces cerevisiae. A GEM is a network collecting
information about, for example, genes and reactions in a biological system. First,
we model a part of a community update of Yeast8, from v8.4.1 to v8.4.2. Then,
by expressing the model in first-order logic, an algorithm using abductive rea-
soning, LGEM+ [27], was used to suggest modifications to the theory. Finally,
we perform 31 400 random revisions.

The first update, from v8.4.1 to v8.4.2, was about improving the simulation
of alcoholic fermentation conditions by adding several fatty acid ester produc-
ing reactions. The modification suggested by LGEM+ was to remove the gene
YJL130C as a requirement for an enzyme catalysing the reaction carbamoyl-
phosphate synthase (glutamine-hydrolysing). This was suggested as a remedy
to YJL130C being predicted as essential for growth, when empirical evidence
showed it was not [28]. Finally, starting with this version, random revisions were
generated by iteratively either removing a reaction, modifying the gene require-
ments for a reaction, or modifying the flux bounds for a reaction.
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Yeast8v8.4.1
ConstraintBasedModel

Publication
https://doi.org/10.1038/doi

ResearchGroup

SysBioChalmers
name

MetabolicProcess

y8fv841

SBML

xsd:base64Binary

binaryRepresentation

Yeast8v8.4.2

Revision

Change

y8fv842

SBML

xsd:base64Binary
binaryRepresentation

Insertion
BiochemicalReaction

r_4649

id

KEGG.R11957

xref

...
KnowledgeGain Chem.Comp.Acc.

CHEBI_35748

Yeast8v8.4.2r1

Revision

MetabolicProcess

MetabolicProcess

SoftwareAgent

Mism.WithPub.

Essentiality Gene

SGD.S000003666

xref

YJL130C
name

Change Update

GeneProd.Ass.

r_0250

id

name
YJL130C

DiffPatch Software

xmldiff
name

2.5.0

version

xsd:base64Binary

binaryRepresentation

s41467-019-11581-3

https://doi.org/
10.1038/nature00935

ConstraintBasedModel

DatabaseCrossReference

DatabaseCrossRef.

ConstraintBasedModel

Publication
https://doi.org/10.1038/doi
s41467-019-11581-3

Publication

doi

Fig. 2. The knowledge graph containing the base model, Yeast8v.8.4.1, the update to
v8.4.2, and the revision changing the gene reaction rule for reaction r 0250, described
in Sect. 3.2. The boxes are instances of the classes named above them, solid boxes
represent named nodes and dashed correspond to blank nodes. The dashed red lines
separates entries belonging to the different models/revisions. (Color figure online)

The knowledge graph with the first two revisions can be seen in
Fig. 2, where the base model, Yeast8 v8.4.1, is added as an instance of a
ConstraintBasedModel modelling a MetabolicProcess. It is linked to the
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ResearchGroup ”SysBioChalmers”, who are maintaining the model on Github,
as well as the corresponding Publication by Lu et al. [26]. The model file itself
is represented as an instance of the SBML format which links to a compressed
copy of the original model file as a literal of type xsd:byte64Binary.

Yeast8 v8.4.2 is still a ConstraintBasedModel, but also a Revision, mean-
ing this entry is the intersection of the two classes. The reason for the this revi-
sion is modelled as a KnowledgeGain about ChemicalCompoundAccumulation
of CHEBI 35748 (fatty acid ester) and it is described by Insertions of
BiochemicalReactions and TransportReactions with references to the KEGG
Reaction database. As the number of changes to the model file, going from v8.4.1
to v8.4.2, is rather large, we save a compressed copy of the entire file, represented
as a NewFile, linked with a new instance of SBML.

The reason for the change from the abduction algorithm is contradicting
results in a publication. Hence, it is modelled as a MismatchWithPublication
referring to a Publication representing the work by Giaever et al. [28], as well as
the predicted Essentiality of the gene, ”YJL130C”. The revision is described
as an Update of the reaction r 0250’s GeneProductAssociation associated to
the aforementioned gene. Unlike the previous models, this iteration was not gen-
erated by ”SysBioChalmers”, instead it is linked to a SoftwareAgent referring to
LGEM+. This time the model file is represented by the difference to Yeast8v8.4.2.
An instance of DiffPatch links a literal of the type xsd:base64Binary, con-
taining the patch recreating the updated model, to the revision and the pre-
vious model file. The software and version, xmldiff, v2.5.0 (https://xmldiff.
readthedocs.io/), used to find the patch is specified using the Software class.

To demonstrate that a database using this ontology can handle large num-
bers of revisions, chains of thousands of modified models were added, along
with metainformation describing the change and who made it. The modifica-
tions of the models were performed using COBRApy (v.0.26.3, https://cobrapy.
readthedocs.io/). When altering the gene-reaction rule a randomly picked gene
was either removed or added to the rule1of a random reaction. For the flux-
bound modifications either the upper or the lower bound for some reaction was
updated randomly such that it still is valid. Removing a reaction was done by
chosing a random reaction to delete from the model. The different actions were
not picked uniformly to better reflect real revisions, resulting in 25 793 modified
gene-reaction rules, 3 857 altered flux bounds, and 1 750 removed reactions. In
our implementation of the database a copy of every 100th model file was saved
to reduce the sizes of the patches stored for every revision. The knowledge graph
with 31 400 revisions contains 688 512 triples and the size of it, serialised as
a .ttl-file, is 1.17 GB (as a reference, one uncompressed Yeast8 file in SBML
format has a file size of ∼10 MB).

To validate the database, iterations containing more and more data were
deployed on an Apache Jena Fuseki server running on a 2021 MacBook Pro M1.
The growing database was queried for the binary patch, along with the file it
should be applied to, belonging to revisions updating the gene-reaction rules
of specific reactions. Figure 3a shows an example of the queries executed in the

https://xmldiff.readthedocs.io/
https://xmldiff.readthedocs.io/
https://cobrapy.readthedocs.io/
https://cobrapy.readthedocs.io/
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experiment where the gene-reaction pairs were varied. In Fig. 3b a box-plot of
the query times is shown, based on 100 queries for each database. All pairs
were present in every iteration of the databases and the same series of queries
were executed between the iterations. The query times increase with growing
database size, but the majority of the queries show a rather small increase.
The major difference between the different database iterations is the worst case
queries, which is primarily explained by the number of results retrieved. The
gene-reaction pairs are not necessarily unique and with a bigger database we
can expect more duplicates.

a b

SELECT ?patch ?file

WHERE {

?rev a rimbo:Revision;

rimbo:hasPatch ?p ;

rimbo:hasChange / BFO:0000051 ?change .

?change a comodi:Update;

rimbo:id ?reaction;

rimbo:actsOn ?gpa .

FILTER (?reaction="r_0518"^^xsd:string)

?gpa a rimbo:GeneProductAssociation;

rimbo:name ?gene .

FILTER (?gene="YMR281W"^^xsd:string)

?p rimbo:binaryRepresentation ?patch;

rimbo:patchTo / rimbo:binaryRepresentation ?file .

}

Fig. 3. (a) shows a query retrieving the patch and the file it applies to for a revision
where a modification, involving the gene YPL280W, of the gene-reaction rule for reac-
tion r 4133 is performed. This type of queries, but with varying gene-reaction pairs
were used to generate (b), showing a box-plot of query times from 100 queries for
databases of different size, deployed on an Apache Jena Fuseki server.

4 Discussion and Conclusion

In this work we demonstrate the usefulness of a structured and semantically
sound representation for computational models, not only for sharing with the
community, but also during the development process. We view RIMBO as a
complement to public model repositories, such as BioModels, BiGG Models,
and CellML Model Repository, providing structure and transparency to model
development. One could envision revision traces, expressed in controlled vocab-
ularies, describing the provenance published along with new models. We argue
this would be useful both for automated and traditional labs, as it could greatly
increase the openness and traceability of research. Along with this, RIMBO also
works as a useful tool to organise the models during development in a storage
efficient manner.

The ontology based graph structure allows for flexibility in the implementa-
tion of a database. For example, what level of detail to use when explaining a
change might vary depending on the needs of the specific lab, and what kind of
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model is revised. One might be interested in recording more fine-grained descrip-
tions of a change for a more specific model. Sometimes it could also be useful
to describe the actual changes to the XML-tree using the COMODI ontology.
Depending on the domain and what kind of changes are made, there might also
be a need to introduce new terms to describe the revision. APO and SBO, along
with some new classes describing terms connected to the SBML Level 3 Flux Bal-
ance Constraints package covers our current needs, working with yeast systems
biology, but other domains most likely need other, domain specific, classes.

A planned future extension and generalisation of this work, interesting for
both traditional and autonomous labs, is to also model and record hypotheses,
e.g., generating the revised model. This would build on previous work attempting
to formalise scientific discovery, such as the HELO ontology [29] and be a way of
connecting improvements to computational models with experimental data and
back to new biological knowledge. For this, information about how to test and
evaluate hypotheses should be described, such as unambiguous instructions on
what simulations to run and which data to compare the results to. Currently,
RIMBO is, to some extent, aligned with PROV-O. With this extension more
work is needed to align it with an upper level ontology, such as the Basic Formal
Ontology (BFO) [30], to easier interface with ontologies describing for example
experimental data.

As with computational models, ontologies change. As we use RIMBO to
represent models and revisions to models in our project, it will be continuously
developed and new releases will be published here: https://github.com/filipkro/
rimbo.

Although this work is focused on computational biology models, the tech-
niques and ideas presented are not domain specific. As the iterative nature of
new knowledge gain is common for most fields, we think the approach of record-
ing smaller changes to models, no matter if the improvements have been found
by humans or machines, along with reasons and intentions for changes can be
useful in many scientific fields.

5 Code and Availability

The code and knowledge graph for the demonstration is available here: https://
github.com/filipkro/rimbo-demo. The ontology and future updates of it, is avail-
able here: https://github.com/filipkro/rimbo.
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Abstract. In this paper, we propose a novel unsupervised approach
for code similarity and clone detection that is based on Graph Neural
Networks. We propose a hybrid approach to detect similarities within
source code, using centroid distances and a Graph Auto-Encoder that
uses a raw abstract syntax trees as input. When compared to RTVNN
[33], the state-of-the-art unsupervised approach for code similarity and
clone detection, our method improves significantly training and inference
time efficiency, while preserving or improving precision. In our experi-
ments, our algorithm is on average 77 times faster during training and
21 times faster during inference. This shows that using Graph Auto-
Encoders in the domain of source code similarity analysis is the better
option in an industrial context or in a production environment. We illus-
trate this by using our approach to compute source code similarity within
a large dataset of phishing kits written in PHP provided by our industry
partner.

Keywords: Graph neural network · Unsupervised Learning · Machine
learning · Phishing kits similarity · Software similarity analysis · Static
analysis

1 Introduction

The concept of a Graph Neural Network (GNN) was first introduced around
2005 [7,27] and was motivated by the non-regularity of data structures. In recent
literature, GNNs have been successfully applied in a wide range of domains and
have often outperformed previous approaches [39]. Recently, GNNs have been
shown to be particularly effective for source code analysis [28] and have the
advantage of being able work directly from graphs representing the source code.
Often, programs are written using highly structured languages. In their graph
representation, nodes are entities such as functions, variables, and statements,
while edges represent relationships such as calls, uses, and dependencies between
these entities. By learning the graph representation of source code, GNNs capture
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the structural relationships between different parts of the code. They can use
this information to perform tasks such as code classification, vulnerability or bug
detection, and clone detection [8,15,18,20,21].

Recently [14], the lack of available labelled datasets for supervised Neural
Clone Detection models has been flagged as a problem. In order to perform well,
supervised Neural Clone Detection models require access to a large amount of
datasets that have been labelled by human. However, such datasets are very
hard to find and obtain. This is also true in the field of malware analysis, where
the lack of labelled datasets limits the ability of models to detect and analyze
malicious code.

One way around this problem is using unsupervised learning. One example
is RTVNN [33]. This model uses AST and lexical embeddings to match clones
using two different recursive neural networks and performs well on the clone
detection problem. It can detect similarities in a large unlabelled data set but it
is computationally intensive because of the upstream AST transformations and
the presence of two different neural networks. The training time of the model is
one of the problems identified by the authors of [33].

In this paper, we propose a new architecture to perform code similarity
and clone detection in an unsupervised manner while improving the limitations
of [33]. Our contributions are:

– We introduce a novel hybrid technique to detect similarities within source
code, using centroid distances and a Graph Auto-Encoder (GAE) that rep-
resents a specialized architecture of unsupervised GNNs.

– We compare our approach to RTVNN [33] and show that our solution is
much more efficient in training time (x77) and in inference time (x21) while
preserving or even slightly improving precisions.

– We apply the proposed approach on a large dataset of 20,000+ “phishing
kits” to compute similarity metrics between these kits.

The remainder of this paper is organized as follows: we first introduce the
related work in Sect. 2. We then present our approach in Sect. 3. We compare our
method with the state-of-the-art in unsupervised models in Sect. 4. In Sect. 5, we
discuss the limitations of our experiments and future work, finally conclusions
are discussed in Sects. 6.

2 Related Work

2.1 Tree-Based Code Clone Detection

Code clone detection and similarity analysis in software code have been studied
extensively. Different granularity level (block, function, file) can be used for the
analysis, defining the syntactic unit called code fragment. In the literature [25],
clones have been divided into categories:

Type 1: Identical code fragments (except for variations in white space and
comments)
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Type 2: Structurally/syntactically identical code fragment except for variations
in identifiers, literals, types, layout and comments.

Type 3: Copied fragments with further modifications. Statements can be
changed, added or removed in addition to variations in identifiers, literals,
types, layout and comments.

Type 4: Code fragments that perform the same computation but are imple-
mented through different syntactic variants.

Each category is more difficult to detect than the previous one. The main differ-
ence between previous articles describing attempts to solve this problem comes
from the representation used as input. A simple string-based approach was pro-
posed in 2006 [3] and obtained a recall of 100% for type 1 clones on tested data
sets. By adding additional transformations on identifiers and constants, they
obtained a good result on type 2 clones, up to 88%.

Detection of more complex code clones requires a richer representation of code
that contains semantic information like abstract syntax trees (AST). Building
such trees relies on a parser that is language dependent. Then it is possible to
find code clones using sub-trees comparisons [2]. The approach proposed in [32],
“CDLH”, uses a Word2Vec model to learn token embeddings and capture lexical
information. It then trains a tree-LSTM [29] model based on an AST to combine
these embeddings into a binary vector to represent a code fragment. Other AST-
based deep learning approaches have been developed, such as ASTNN [38] and
TBCCD [36]. However, these machine learning models require a labelled data set
during the training phase, as they need to be trained in a supervised way. One
way to overcome this issue is using transfer learning [35], or using unsupervised
learning.

One architecture, called RTVNN [33], uses unsupervised learning and per-
formed well on a clone detection problem. The model uses AST and lexical
embeddings to match clones using two different recursive neural networks. This
method can detect similarities in a large unlabelled data set. One drawback of
this method is that it is computationally intensive because of the upstream AST
transformations and the presence of two different neural networks. An architec-
ture was proposed to overcome these limitations using weighted recursive autoen-
coders [37], but it still require pre-processing and linearization of the AST. In
this paper, we propose to use a Variational Graph Auto-Encoder (VGAE) and
directly send the AST as input to the graph neural network, to improve training
and inference time.

2.2 Graph Neural Network

The point of a Graph Neural Network (GNN [7]) is to learn a state embedding for
each node that contains information about itself and about its neighbourhood.
Different types of layers have been proposed. The most generic and common one
is the graph convolutional network (GCN) [11]. There are more specialized layers,
such as gated graph neural networks (GGNN) [13] that use gated recurrent units
and unroll the recurrence for a fixed number of steps. More recently, the graph
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matching network (GMN) was proposed [12]. It takes two graphs as input and
uses an attention mechanism to compute a similarity score.

Learning a similarity metric between graphs has been a key problem that
recent studies have tried to address using GNNs [16]. In [30], architecture that
creates a graph embedding through different steps (sampling, encoding, embed-
ded distribution) is presented. It obtains good results on most of the open data
sets used for benchmarking and the final embedding is claimed to be close to a
graph isomorphism. Aside from embedding structural information, a basic auto-
encoder allows eliminating irrelevant and redundant features [4]. Different types
of graph auto-encoders (GAEs) have been proposed with different objective func-
tions [10,23].

A recent supervised architecture had been proposed to compute graph sim-
ilarity directly from a neural network [31]. The authors compared the perfor-
mance of a GGNN and a GMN in code clones detection based in the similar-
ity between two graphs that aggregate AST, CFG and Dataflow information.
Their results outperformed state-of-the-art approaches on the BigCloneBench
and Google Code Jam data sets. However, using a deep neural network for code
clone detection and fragment matching implies doing n2 inferences for each pair,
which can be an issue on large data sets. Besides, the addition of a new entry to
the dataset implies running an inference between this new entry and all other
elements of the data set.

In this paper, we propose a more scalable approach based on a Graph Neural
Networks trained in an unsupervised manner.

3 Methodology

In this section, we first provide an overview of our approach based on an AST
and an auto-encoder. We then explain how we obtain a vector representation of
a set of source files and how we compute the pair-wise similarity. The following
steps describe our method:

– Parse source code and build the corresponding AST
– Build a data set of fragments and train the VGAE
– Create a representation from the encoded fragments that compose the source

code

Figure 1 shows an overview of our architecture. Our model creates a repre-
sentation of each fragment, from which we can then compute distances. We chose
a VGAE to create these representations, as it allows us to train the GNN in an
unsupervised manner [34] while providing the advantage of GNNs to consider
the structural information of the input graph. Details about internal VGAE
architecture is provided in Fig. 2.

3.1 Parser

The extraction of program AST is done through a parser generated with JavaCC.
The first pre-processing step is to identify files that contain code. The parser
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Fig. 1. Architecture overview

then extracts the AST for each file that is then decomposed into fragments at
the function and method level. By representing a file as a set of AST fragments,
our representation is not sensible to permutation of function.

3.2 Graph Neural Network

Each fragment F = (V,E) is represented as a set of nodes V and edges E. Each
node i ∈ V is associated with a feature vector xi of dimension H resulting from
the one-hot encoding on node type. We can then represent each fragment as a
node matrix X of shape (|V |,H) and an adjacency matrix A of shape (2, |E|),
and then use these matrices as input to the first layer of our model (Fig. 3).

In our architecture, we selected the Graph Convolutional Layer (GCN) [11].
It implements the core concept of Graph Neural Network by learning the fea-
tures through direct neighbors node inspection. This layer gave good result in
the recent literature [26,39] and can be fit, like most GNNs, into the general
framework message passing neural networks (MPNN) [6] to obtain the following
node-wise formulation:

x(k)
i = Θ

∑

j∈N (i)∪{i}

ej,i√
d̂j d̂i

x(k−1)
j (1)

with d̂i = 1 +
∑

j∈N (i) ej,i, where ej,i denotes the edge weight from source node

j to target i, N (i) is the set of direct neighbors of i, x(k−1)
i ∈ R

F denotes the
node features of node i in layer (k − 1), and Θ is a weight matrix.

In the case of an AST, all edges have the same relevance and weights. There-
fore, we chose to set all weights ei,j to 1. It should be noted that the described
layer does not consider the order of edges. In a recent article [31], the authors
proposed to generate new edge types to link siblings in their order. The creation
of such edge types, as well as edges bearing semantic information from CFG, is
left as a future work here.
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Fig. 3. Fragment Representation

We implemented our model composed of three GCN layers using the geo-
metric deep learning extension library for PyTorch [24] named PyTorch Geo-
metric [5]. The model produces an output matrix Z, composed of |V | vectors z
(one per node) of size D. The list of chosen parameters is available in the next
section, Table 2.

3.3 Graph Auto-encoder

Next, the unsupervised learning begins. As presented in a recent survey [34],
currently the main way to perform unsupervised learning with Graph Neural
Networks is using Graph Auto-Encoder [10,22]. They represent an unsupervised
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learning frameworks which encode nodes/graphs into a latent vector space and
reconstruct graph data from the encoded information. GAEs learn latent node
representations through reconstructing graph structural information such as the
graph adjacency matrix.

In contrast, the Variational Auto-Encoder (VAE) [9] is a Bayesian model
which learns the compressed representation of the Auto-Encoder, and constructs
the parameters representing the probability distribution of the data. The com-
monly adopted evaluation method of GAE is to minimize the reconstruction
errors of the input fragment or, in other words, to reconstruct the adjacency
matrix A from the embedding Z. To train our model, we used the variational
graph auto-encoder of [10] that proposes using the following objective function:

L = Eq(Z|X,A)

(
log p(A|Z)

) − DKL(q(Z|X,A)‖p(Z)) (2)

where X, A and Z are the matrix defined in Sect. 3.2 and represented in Fig. 3, p
and q are two discrete probability distributions, and DKL is the Kullback-Leibler
divergence that measures the distance between the two probability distributions.

3.4 Fragment Representation

Once the model has converged after the training phase, we can use the encoder
to create our fragment representation. To this end, we work on the distribution
of the encoded nodes of the AST by aggregating all nodes embedding Z returned
by the VGAE and then compute the following three metrics:

– Centroid: column-wise mean of Z
– Variance: column-wise standard deviation of Z
– Cardinality: |Z|

These three components are our final fragment representation from which we
can compute the distance between others fragments to obtain a similarity score.
The cardinality is a scalar, and the centroid and variance are both vectors of
dimension D Fig. 3 (dimension of the latent space). Using these three metrics,
it is possible to obtain a list of similar fragments [19] by computing the distance
between centroids, the variance, and the cardinality and selecting the closest
ones. Note that these three components can also be computed at the file level
by aggregating all encoded nodes of a file or at the overall software level by
aggregating all encoded nodes from all ASTs that compose the software.

We provide in our appendix repository [1] the corresponding implementation
using Pytorch [24] and Pytorch Geometric [5], which we used in our experiments.

4 Experiments

In this section, we compare our architecture to the prior art: we limited the
comparison to RTVNN [33], as it is the only approach based on unsupervised
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learning we found for clone detection. Comparison with supervised system would
not be feasible here, as we are analysing unlabeled datasets.

We performed our experiments on the same eight datasets used in [33], and
we estimated the precision of our architecture based on the test sets of code
clones used in [33] as well. These datasets are based on source code of open
source softwares, and were downloaded from GitHub. More information can be
found in Table 1.

Table 1. Systems statistics

System Version Files Lines of codes Tokens

ANTLR 4 514 104,225 701,807

Apache Ant 1.9.6 1,218 136,352 888,424

ArgoUML 0.34 1,908 177,493 1,172,058

CAROL 2.0.5 184 12,022 80,947

DNSjava 2.0.0 196 24,660 169,219

Hibernate 2 555 51,499 365,256

JDK 1.4.2 4,129 562,120 3,512,807

JHotDraw 6 984 58,130 377,652

Table 2. Training parameters

Number of features (H) 148

Latent space size (D) 10

Layers output size 100-20-10

Optimizer Adam

Learning rate 1e−2

Batch size 10

Epoch 30

All the systems analyzed are written in Java. To parse the code, we used a
custom made top-down parser for Java 1.7 written in JavaCC. The extracted
AST is then used as input to our VGAE model. The selected hyperparameters
are provided in Table 2. The first one corresponds to the number of different
AST node types (parser dependent value). In this case, it is 148. The other
hyperparameters were empirically chosen to obtain good results while keeping a
reasonable training time.

The comparison with the results of [33] is based on three aspects: the training
time, the inference time, and the precision. As mentioned earlier, we made the
comparison on the same set of software, at the same version, using the same set
of code clones. However, we should note that the experiments have been executed
on different computers. We used a Fedora 31 server with a 4-core Intel Core i5
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4670 at 3.4 GHz (released in 2013), whereas the results of [33] were obtained
using a compute node serving two 8-core Intel Xeon E5-4627 v2 processors at
3.3 GHz (released in 2014).

Our experiment was limited by the speed of our HDD, leading the CPU to
not be used to full capacity. We believe the our reported performance would
have been even better using an SSD and a two Intel Xeon E5-4627 processors,
as such CPU comes with larger caches, more cores and faster memory.

4.1 Clone Detection

To solve the clone code detection problem, we chose a file-level and method-
level threshold that we used throughout the whole experiment and that we did
not optimize system-wise. When the distance between two fragments is below
all three thresholds, the pair of fragments is then considered a “code clone.”
As our representation has three components, we identified three thresholds that
ensure the point representing the second fragment is inside a box centred on the
first fragment: if the distance is bellow all three thresholds, the two fragments
are considered clones. We also decided to tighten the threshold for method-level
clone detection because methods are on average smaller than files. We provide
the thresholds used for detect file-level and method-level code clones in Table 3.
They were selected empirically based on the average accuracy on all datasets.

One difference between our solution and RTVNN is the ability to differen-
tiate between clones of types 1 and 2. Our representation does not take into
account identifiers information, meaning that parametric and identical clones
get the same representation. This does not impact the following experiments,
since comparisons are based on clone detection no matter what type they are.
We do not believe that this limitation is significant, since clone 1 detection is
an easy problem to solve and does not require an architecture as complex as the
one described here.

4.2 Training and Inference

For each system, we trained our model on all the AST extracted from source code
Java files. As in the original experiment, we excluded all files containing more
than 4,000 lexical elements from the training set. We provide a comparison of
the training time per epoch between the two modes that the authors of RTVNN
[33] proposed (AST-based and greedy) and our approach (VGAE) in Table 4.

Table 3. Clone detection thresholds

File-level Method-level

Centroid distance 6e−1 4e−1

Variance distance 3e−1 3e−1

Size distance size× 8e−1 size× 5e−1
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Table 4. Average training/inference time per epoch number in parenthesis corresponds
to the median

Training (sec) Inference (sec)

CPU Xeon E5@3.3GHza i5@3.4GHzb Xeon E5@3.3GHza i5@3.4GHzb

System AST-Based Greedy VGAE AST-Based Greedy VGAE

ANTLR 443 3516 15 3.21 (1.18) 33.36 (1.96) 5.08 (0.06)

Apache Ant 813 3476 53 3.31 (1.76) 25.20 (3.10) 0.25 (0.06)

ArgoUML 1018 3868 47 2.58 (1.24) 16.35 (1.80) 0.26 (0.04)

CAROL 34 116 5 0.88 (0.48) 4.87 (0.95) 0.16 (0.07)

DNSjava 148 1169 14 3.63 (2.16) 30.67 (4.30) 0.81 (0.12)

Hibernate 277 1077 15 2.49 (1.17) 17.70 (1.70) 0.87 (0.05)

JDK 2977 14965 201 3.46 (1.19) 35.06 (1.80) 0.55 (0.05)

JHotDraw 336 792 24 1.67 (0.93) 6.40 (1.19) 0.11 (0.02)
aTwo Intel Xeon E5-4627 v2 @ 3.3GHz, released in 2014
bOne Intel Core i5 4670 @ 3.4GHz, released in 2013

On average, our approach is 16 times faster than the RTVNN AST-based
mode and 77 times faster than the RTVNN greedy mode. This can be explained
by two factors:

– Our model does not need to perform any pre-processing of the AST; the tree
is given as is to the GCN. In contrast, RTVNN performs heavy pre-processing
steps.

– Our architecture uses only one GNN, whereas RTVNN uses two different
recurrent neural networks.

For the same reasons, the same effect can be observed regarding the inference
time, also shown in Table 4: our approach is on average 22 times faster than
RTVNN greedy. Note that the inference times provided for our method does
includes all the steps to obtain our fragment representation, namely:

– Parsing
– Exporting the AST to a PyTorch object
– GNN inference
– Fragment representation from embedding

We can see that the average inference time for ANTLR is worse than RTVNN
AST-based here, but the median time is better. This is due to a few extremely
large files in ANTLR that take more time to be processed and fed to the model.

4.3 Precision

After training the model and inferring all representations, we can compare the
precision. By applying the threshold defined before, we determined whether each
considered pair of fragments is correctly classified as clones. The pairs of frag-
ments from the original experiments were manually selected in each system [33]
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Table 5. Precision results

File-level Method-level File-level Method-level

System AST-Based VGAE AST-Based VGAE Greedy VGAE Greedy VGAE

ANTLR 97% (30) 97% (30) 100% (30) 100% (30) 100% (30) 100% (30) 100% (30) 100% (30)

Apache Ant 92% (24) 92% (24) 100% (30) 100% (30) 93% (30) 97% (30) 100% (30) 100% (30)

ArgoUML 90% (30) 90% (30) 100% (30) 100% (30) 100% (30) 100% (30) 100% (30) 100% (30)

CAROL 100% (1) 100% (1) 100% (30) 100% (30) 100% (10) 100% (10) 100% (30) 100% (30)

DNSjava 47% (30) 50% (30) 73% (30) 77% (30) 100% (30) 100% (30) 87% (30) 90% (30)

Hibernate 100% (13) 100% (13) 53% (30) 70% (30) 100% (20) 100% (20) 70% (30) 73% (30)

JDK 90% (30) 94% (30) 100% (30) 100% (30) 100% (30) 100% (30) 100% (30) 100% (30)

JHotDraw 100% (30) 100% (30) 100% (30) 100% (30) 100% (30) 100% (30) 100% (30) 100% (30)

and correspond to fragments that are clones (types 1 to 4) and fragments that
are different. The authors of RTVNN showed that they obtained better precision
using the “greedy” method than the “AST-based” method. We could not evalu-
ate all methods simultaneously on the same set because, originally, AST-based
and greedy were not tested on the same set of clones. We performed two evalu-
ations, one comparing results with the AST-based method, and one comparing
results with the greedy method (Table 5). In both scenarios, our architecture
performed as well or better. The remaining undetected clones are mostly type
4 clones with substantially different amounts of code. However, these results
do not represent a significant improvement as there was not much room for
improvement.

4.4 Analysis of Results on DNSJava

To better understand the limitations of our architecture and the edge cases that
were not detected, we performed deeper results analyses on DNSJava method-
level clones. We started by using uniform manifold approximation and projection
(UMAP) [17] to perform dimensionality reduction on the fragment representa-
tions, as illustrated on Fig. 4.

The grey lines link two code clones. The blue points correspond to fragments
that are correctly classified as a clone, and the red points correspond to fragments
that are not correctly classified. We showed only one of the three code clones
that have not been correctly classified for easier reading.

Fig. 4. 2D representation (UMAP) of method embeddings on a subset of DNSJava
code clones
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The two fragments corresponding to the red points are type 4 clones, and our
architecture did not consider these two pieces of code as clones mainly because
of the size difference. Overall, most other undetected pairs also correspond to
type 4 clones with substantially different amounts of code. At the same time,
most of the type 3 clones were correctly classified. Finally, all type 1 and 2 clones
were correctly classified.

We note that, by tuning the threshold for this particular system, we were
able to reach 100% precision at the method and file levels.

5 Limitations and Future Research

Hyperparameters. One limitation of our approach is the choice of hyper-
parameters of our neural network. We did not do a thorough fine-tuning of
our model using a validation set: there is room for performance improvement
that could lead to better precision or even faster training and inference time.

Large Trees. As mentioned in our first experiment, we excluded from the train-
ing set files with more than 4,000 lexical elements (to be comparable with the
results obtained in RTVNN [33]). Including them highlighted a limitation of our
architecture: large graphs significantly increase the training and inference time.

Future Research. Our first experiment was performed on the dataset of clones
supplied with RTVNN. This dataset had been manually labeled by the authors
[33] and is relatively small. In addition to the second experiment on physhing
kits and to directly compare our architecture to other state-of-the-art models
for clone detection in conventional software, we would like to run new experi-
ments on other public benchmark datasets and compare the performances on a
larger scale. As an additional datasets for future experiments, we can mention
BigCloneBench that is a large, diverse, and publicly available dataset of code
clones. BigCloneBench is widely used in the research community for evaluating
and benchmarking code clone detection systems.

6 Conclusions

In this paper, we present a novel approach for code similarity analysis that com-
bines centroid distances and unsupervised training of GNN. Unlike traditional
metric-based methods, our architecture is designed to automatically learn dis-
criminating features in source code using a GAE.

In the first experiment, our model significantly improves training and infer-
ence time compared to the prior-art model, mainly because of: the advantages
brought by GNNs, the simplicity of the architecture, and the absence of AST
pre-processing steps. This is the first architecture to apply a GAE approach to
clone detection.

In the second experiment, we have presented results about how we used our
architecture on a large data set of more than 20,000 phishing kits corresponding
to a total size of about 84 MLOCs. The goal was to efficiently detect kits that
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share high source code similarity. We believe that after training, our model may
help to quickly identify or classify new incoming phishing kits by similarity to
previous ones. It may also help to detect kits that may be derived from one
another.
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Abstract. Time series forecasting is an important problem with various
applications in different domains. Improving forecast performance has
been the center of investigation in the last decades. Several research
studies have shown that old statistical method, such as ARIMA, are
still state-of-the-art in many domains and applications. However, one
of the main limitations of these methods is their low performance in
longer horizons in multistep scenarios. We attack this problem from an
entirely new perspective. We propose a new universal post-correction
approach that can be applied to fix the problematic forecasts of any
forecasting model, including ARIMA. The idea is intuitive: We query
the last window of observations plus the given forecast, searching for
similar “shapes” in the history, and using the future shape of the nearest
neighbor, we post-correct the estimates. To ensure that post-correction is
adequate, we train a meta-model on the successfulness of post-corrections
on the training set. Our experiments on three diverse time series datasets
show that the proposed method effectively improves forecasts for 30 steps
ahead and beyond.

Keywords: Multi-steap Time series Forecasting · Post-correction

1 Introduction

Time series forecasting is the process of predicting future values of a series of data
points that are indexed or ordered in time. This is typically done by analyzing
historical data and developing a model to capture patterns from that data. The
model is then used to project future values of the series based on the assumptions
and parameters of the model.

Many methods exist for time series forecasting, including statistical meth-
ods such as Auto-regressive Integrated Moving Average (ARIMA), Exponential
Smoothing, and machine learning methods such as neural networks. Depending
on the goal of the analysis, these models can be employed to perform either
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short or long-term forecasts. Statistical models usually provide a linear rela-
tionship equation between future and past observations. They are known to be
very robust and accurate for short-term forecasting. However, their performance
degrades progressively by enlarging the forecast horizon. This problem of sta-
tistical methods is our focus in this research. In particular, we are interested in
a universal post-processing approach that can correct the forecast of any model
in long-term forecasting. We aim to investigate the effectiveness of shape search
ideas in time series mining. Our central hypothesis is that when the forecast
horizon gets longer, the shape of the recent observation plus the forecasted part
can be an essential piece of information to correct the forecast. To the best of
our knowledge, we are the first group that investigates this idea.

1.1 Research Questions

Our fundamental hypothesis is that if the forecast is valid, we should be able
to find a similar shape of a query (last window of observation + prediction
window) in the historical set. Otherwise, we assume the forecast is inaccurate,
and we post-correct it according to the nearest shape match. According to this
assumption, we set our two main research questions as follows.

– Is shape post-correction an effective idea for improving time series forecasting?
– How we ensure that shape post-correction would result in a forecasting

improvement?

1.2 Contribution

Our contributions are the following:

– Novel Methodology. This work introduces a new universal approach to
improving the accuracy of a time series long-term forecast without modify-
ing the forecasting model that performed the estimates. To the best of our
knowledge, forecasting post-correction has not been studied before.

– Performance Analysis across Different Datasets. Extensive perfor-
mance analysis across different types of time series containing various charac-
teristics. This analysis provides valuable insights into the proposed method’s
robustness and adaptability to different data characteristics.

– Evaluation of Impact of Hyperparameters. This research offers an in-
depth understanding of how different important hyperparameters affect the
performance of the proposed method.

The expected outcome of this research is to improve the accuracy of time series
long-term forecasts by providing a way to identify, validate and post-correct the
estimates.
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2 Proposed Method: Time Series Post-correction (TSPC)

2.1 Overview

Fig. 1. High-Level system architecture of the TSPC

Figure 1 illustrates the complete data-flow process of TSPC. We start by pro-
ducing a forecast for time series data with any arbitrary model. Next, we create
our query, which is composed of the last window of observation plus the forecast
window. For instance, if the sliding window size is 20 and the forecast horizon
is 30, the query will have a length of 50. To allow a query to become indepen-
dent of scale, we also perform a z-normalization on the query and all sliding
windows of the same size. The purpose is to find a similar shape in the past,
not a similar sequence of values. Once we found the most similar shape in the
historical data, we denormalize the shape using the normalization parameters
of the last observation window. With this trick, we project back the shape into
the more up-to-date scale of the recent data. We perform our shape search using
nearest shape search (1NN) with Dynamic Time Warping (DTW) as a similarity
measure.

The next step is to create a meta-learning decision model to tell us whether
we should perform post-correction or not on an unseen example. Once we find
the nearest shape, we check if the future part of the denormalized nearest match
provides a better accuracy than the original forecast. So, we will have two out-
comes, either we have improvement (successful correction) or no improvement
(unsuccessful correction). This is how we generate auto-labels. Then from the
query, we extract time series features using tsfresh [2], which will later serve as
the input. tsfresh is a feature extraction tool for time series that extracts tens
of features, including statistical measures, time-domain characteristics, Fourier
transformations, etc. Once we created features using tsfresh we train a meta-
learner on the training set using tsfresh features as the input and auto-labels as
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the output. The trained model later will be served as a decision model to tell
us whether we do post-correction or not based on a given new query on the test
set.

2.2 Definitions

This subsection explains several definitions that will be used throughout the
remainder of Sect. 2.

– P(start): First forecast index.
– P(end): Last forecast index.
– F : Length of forecasting horizon.
– D: Ratio of forecasting horizon to observation
– K: Length of window of recent observations

K + F determines the query size.

2.3 Nearest Shape Search

As it is depicted in Fig. 2, after we are given of a forecast of length, F we
concatenate it with last K recent values. The new time series forms our target
query. The search is always performed from the earliest data point in the time
series up to P - (K+F). The subtraction of K and F is made to avoid matching
the searched shape with itself. The lowest DTW distance determines the NN
match. The last F data point of the best match is the potential correction for
the original forecast. Therefore, they are evaluated against the ground truth.
In the case of the best match, having a lower error than the original forecast,
a label “1” is assigned, representing the case when post-correction improved
the forecast, and “0”: when post-correction failed to improve the forecast. The
method is repeated from P(start) to P(end).

2.4 Z-Normalization of Sliding Windows

We use Z-normalization to normalize the sliding window by subtracting the mean
and dividing it by the standard deviation. Specifically, z-normalization involves
the following formula: z = (x− μ)/σ ,where z is the standardized value, x is the
original value, μ is the mean of the window, and σ is the standard deviation of
the window.

The rationale behind Z-normalization is to make the shape search indepen-
dent of the magnitude of the values. It is a quite typical technique used in time
series mining and methods such as SAX.
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Fig. 2. 1NN-DTW search process

2.5 Meta-learning for Predicting the Success of Post-correction

Sometimes the effect of post-correction might have an inverse effect. To reduce
this effect, we train a meta-model on the performance of post-correction on the
train set. The following phase of the method involves generating meta-features
that will be utilized for building a decision model for predicting the success of
post-correction. These meta-features are composed of information such as the
nearest shape, its measured DTW distance, P value, and K value. Additional
relevant information collected from the tsfresh is included in the dataset to
help collect more features from the candidate window. Note that not all features
extracted by tsfresh are always relevant. So, we have to filter out some redundant
and irrelevant features by using hypothesis tests, which dramatically reduces the
number of features (e.g., in our case, from 783 to 105). We also standardize meta-
features since their scale is different. Based on the outcome of MAE evaluations
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on the train set, binary labels are then appended to the dataset. These binary
labels are indicative of whether the correction would improve the results (1) or
not (0).

2.6 Random Forest Meta-learner

We use the random forest model as our meta-learning model. The reason for
using the random forest is that it is known to be a well-performing classifier for
tabular data, particularly for small or medium size data sets.

Hyperparameter Tuning. We optimize the hyperparameters of a random
forest using grid search with cross-validation. The parameter grid consists of
the number of trees in the forest, the maximum depth of each tree, and the
minimum number of samples required to split an internal node. We use 5-fold
cross-validation to evaluate the meta-learner’s performance on the training set
with each combination of hyperparameters. The best set of hyperparameters is
selected based on the mean cross-validation score. Subsequently, the random for-
est meta-learner is fitted using the optimized hyperparameters on the normalized
training set.

Threshold Tuning. The resulting classification model is then used to predict
post-correction status of the validation and test sets. To increase the chance
of a successful forecast post-correction, threshold tuning focuses on improving
the precision score, meaning that the model primarily focuses on predicting the
true positives and avoiding false positives accurately. For each set, the predicted
labels are adjusted using a threshold selected based on the precision score on the
validation set. The precision score is computed for various thresholds ranging
from 0.5 to 0.7 with a step size 0.05. The threshold that yielded the highest
precision score on the validation set was selected as the optimal threshold and
was subsequently used to adjust the predicted labels on the test set. The resulting
labels are then used to evaluate the meta-learner’s performance on the test set.

3 Experimental Evaluation

After the meta-learning model generated predictions on where the post-
corrections should be made (See Fig. 3), we are ready to evaluate the effectiveness
of the post-correction method. This is accomplished by calculating the total error
of all original forecasts in the test data. Next, the errors of the original forecasts
are replaced with the post-corrected errors in the predicted indices Fig. 3. Lastly,
the difference is measured in percentage.

3.1 Datasets

We use the following time series datasets to evaluate our proposed method.

– M4 Competition [5].
– Stock data from yfinance [1].
– Kaggle Climate dataset [8].
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Fig. 3. Only those forecasts that are predicted to be effective by meta-model will be
replaced by the correction obtained from 1NN-DTW search

3.2 Experimental Configuration

The following section explains various paradigms used to experiment with this
study. This study will test and evaluate three main parts: 1NN search perfor-
mance, the meta-learner’s ability to accurately identify when the corrections
should occur, and the effect of using tsfresh to select features.

Hyperparameters of Nearest Shape Search. The parameters that are used
in the 1NN search are: P, F , and D. The range of P(start) and P(end) deter-
mines the forecast horizon. This mainly contributes to the meta-learner in the
form of more training data. The P(start) also needs to have some historical
data for the search, and K(end) is chosen with consideration regarding time,
since with greater forecasting horizons, the process of finding the best match
becomes more computationally heavy. Hence, for the majority of the test, the
P(start) is chosen to be 400 and P(end) to 700. The dataset size could affect
these parameters.

The range of parameters F is chosen to be between 2 and 50 with intervals
of 4. This will provide insight into when TSPC is having a positive effect. The
increment of 4 is applied to reduce the whole process’s time.

The last parameter D is chosen to be 0.5, meaning 50% of the searched
window size will be the historical data, and 50% will be the forecast. A lower
percentage would be beneficial for the lower forecasting ranges. However, working
with high forecasting lengths would be too computationally heavy.

Meta-learner’s Hyperparameters. As previously mentioned, there will be
tests of the 1NN search with varying dataset sizes, directly impacting the meta-
learner in the form of training data size. This section will compare the meta-
learner’s performance to its absence, meaning all forecasting errors in the test
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data are replaced with the best matches. The meta-learner is hyper-tuned with a
temporal-wise split, which maintains the temporal order during cross-validation
with five splits. The parameters for grid search are shown in Table 1. The main
objective of meta-learner testing is to evaluate its performance in different sce-
narios and attempt to improve its correction score, done by threshold tuning.
After the model is trained, the validation dataset is used to find a more optimal
threshold, and the threshold is searched between 0.5 (default) and 0.7 with 0.05
step increments.

Table 1. Parameter Grid for the Random Forest

Parameter Values

n estimators 50 100 200 - - - - -

max depth 10 20 30 40 50 60 70 80

min samples split 2 3 4 5 6 7 8 9

Tsfresh’s Hyperparameters. The tsfresh needs to be tuned too. This is done
by adjusting the False Discovery Rate (FDR) level to see how significant an
impact this method has on TSPC. FDR is the expected proportion of falsely
rejected null hypotheses among all rejected null hypotheses. The tested are tested
are: 0.01, 0.05, and 0.1.

3.3 Evaluation Metrics

The model’s performance is evaluated with Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE). These metrics have been known and
widely accepted in the community and are used as metrics in the popular M4
time series competition challenge [6].

4 Result

The obtained results are presented in Fig. 4. As can be seen, the TSPC method
is effective in successfully improving forecasting in horizons, at least greater than
30 steps ahead and beyond. This observation holds for all three datasets tested
and kernel size distributions.

Figure 5 also compares the successful post-correction ratio in test sets. As we
can see, we can confidently say that after 30 steps, we have an increasing trend
in the number of successful post-corrections.
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Fig. 4. Forecasting Improvement using TSPC method (Left: Financial Dataset; Middle:
Climate Dataset; Right: M4 Dataset)

Fig. 5. Successful Ratio of Post-correction in Test set (Left: Financial Dataset; Middle:
Climate Dataset; Right: M4 Dataset)

4.1 Sensitivity Analysis

Tsfresh’s FDR Level. To see how tsfresh’s parameter on FDR-levels tests
influences the post-correction, we perform an experiment on the climate dataset.

The first appearance of new features in the meta-learner is seen after forecast
length 18, seen in the Fig. 6, and with few found features, the meta-learner per-
formed worse. In cases with extended forecasting range and with more selected
features, the tsfresh feature extraction was beneficial for the meta-learner (See
Fig. 7).

Forecast Ratio. To see how the forecast ratio influences the post-correction,
we perform an experiment on the climate dataset. The result is presented in
Fig. 8. As can be seen, we observe a more or less similar pattern across different
forecast ratios. At least on 30 steps and beyond, TSPC still provides a positive
improvement irrespective of the forecast ratio.

4.2 Analysis of the Results

The initial plan was to comprehensively search for the optimal kernel sizes for
each forecast length. However, due to the high computational costs associated
with this approach, a percent-wise distribution of the kernel and forecast was
used instead. It was anticipated that measurement of the DTW distance would
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Fig. 6. Amount of selected features with different fdr-levels

Fig. 7. Effect of FDR-level: left: 0.01, middle: 0.05, right: 0.10

indicate the likelihood of the best match being an improvement, but this assump-
tion did not hold. Therefore, an attempt was made to identify new parame-
ters that would improve the meta-learner’s predictive accuracy, leading to the
implementation of tsfresh. Tsfresh effectively extracted relevant features, mainly
when working with the M4 dataset. However, when applied to other datasets,
the number of extracted features decreased significantly or, in some cases, was
nonexistent.

When analyzing the results, the increment of the forecast length decreases
the percent-wise distribution of positive corrections, leading to an uneven data
distribution during meta-learner training. This holds for all three datasets. How-
ever, when analyzing the results from the M4 dataset, its clearly seen that the
training/validation and test vary drastically compared to the other datasets.
This could indicate that the TSPC method is able to find more corrections
when having more data to search through.

4.3 Post-correction Meta-learner

The evaluation of the Random Tree Forest model reveals that the model is not
overfitting or underfitting the training data. However, there is a low correlation
between the Dynamic Time Warping (DTW) distance of the best match and
its ability to outperform the ARIMA. To solve this problem, we try a precision
threshold tuning with validation data, resulting in improved results. However,
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Fig. 8. Effect of forecast ratio: left: 0.45, middle: 0.50, right: 0.55

in some scenarios, the number of corrections must be higher to yield signifi-
cant results. Another issue observed during the meta-learner phase is that the
results are negative when the number of true and false positives are equal. The
meta-learner can detect cases where the correction should not occur, resulting in
improved results with low forecasting length compared to results where the meta-
learner was not used. The results regarding high forecast length show that the
meta-learner’s predictions have low confidence values, resulting in many missed
opportunities for beneficial corrections.

4.4 Persistent Pattern Among Different Datasets

The TSPC method exhibited similar patterns in terms of forecast improvement
based on forecast length. The TSPC model was effective in improving longer
forecast ranges on all tree datasets but was not so effective on the shorter forecast
lengths. This could be because ARIMA is effective in short-term forecasting
but falls off as we go on and increase the forecast length. This is where the
TSPC method is able to come in and post-correct the inaccurate long-term
forecasts generated by the ARIMA, which was the selected forecast model in the
experimental setup.

4.5 Improving Original Forecast

Fitting data to the ARIMA model with arbitrary parameters might not always
produce an accurate forecast. That is why some experiments were also carried out
by an Auto-ARIMA model, which automatically selects the optimal parameters
based on the lowest AIC and BIC criteria. Using a model more closely fitted to
the data can produce a more accurate forecast, making the TCPS method even
more effective. Since Auto-ARIMA’s forecast is more accurate when compared to
the arbitrary ARIMA, the TSPC model can find a better replacement candidate
when performing post-correction, resulting in an overall model improvement.

4.6 Importance of the Distribution Parameter

The results from testing the parameter D showed expected results, where it is
preferred to use more of the historical data when working with longer forecasts
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and the opposite distribution benefits the TSPC model in the lower range of the
forecasting length. The reason might be that the ARIMA is a better forecasting
model when working with the near future. Meanwhile, the TCPC can outperform
ARIMA on the other end.

4.7 Effect of Tsfresh Features on the Meta-learner

The results of using tsfresh to select features indicates that there is an impact
from the selected features on the performance of the meta-learner. Since the
number of selected features relies on the window size, there are no changes in
the results for low forecasting lengths. However, when the number of selected
features increases to approximately 150, the meta-learner can find more true
positives and improve the results.

5 Related Work

To our knowledge, forecast post-correction is a new problem in time series fore-
casting. A similar idea has been proposed for higher-order tensors, particularly
for tensor completion problems [3]. However, in this work, naturally, the concept
of shape which is only relevant in time series was not considered, and a naive
nearest neighbor was proposed to solve the problem. However, this work was
the main inspiration for our research. In the time series domain, most related
works use nearest neighbor and dynamic time warping in forecasting, and not
particularly post-correction of forecasts. However, 1NN-DTW is quite popular in
time series classification, and the nearest neighbor idea has already been used for
forecasting. The studies presented in this section will discuss similar problems
and solutions associated with these lines of research.

In [7], the authors developed a methodology for applying KNN in time series.
Several preprocessing techniques are analyzed, which deal with problems such
as trends, seasonality, and outliers. Data differencing with one lag is a common
technique to remove trends from the time series. Normalization is also applied
when dealing with outliers. Also, the authors proposed how to choose the optimal
K-value and apply the method of using average results from multiple models with
different K-values.

A different kNN-based methodology using weights is applied in [4], which pro-
posed a model that uses a weighted Euclidean distance to calculate the similarity
between the current input and historical data and then uses a weighted averag-
ing method to obtain the final forecast. The authors also propose a method for
finding the optimal kernel window m. The method compared the distance with
a x datapoint and its candidate neighbor n between x+1 and neighbor n+1. If
the second distance is larger, then x and i are considered false neighbors. Then a
parameter m is chosen, which minimizes the number of false neighbors. Finally,
authors in [9] developed several algorithms that tackle the problems with the
time series prediction task using modified cross-validation to Weighted Near-
est Neighbor, mainly computational power when using a sliding kernel that is
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too large and the number of neighbors. The authors also discuss several data-
preprocessing techniques which tackle outliers and time series trends.

6 Conclusion

We propose a post-correction method, called TSPC to improve the long-term
forecasting performance of statistical methods. Our findings show that our
method is effective in the improvement of the forecast, at least 30 steps ahead and
beyond. Interestingly, the pattern of forecast improvement has been observed to
be consistent across the three diverse datasets tested in this research. The perfor-
mance of our proposed method even can become more competitive if the original
single-step forecast is more accurate. For instance, we noticed that TSPC is more
effective with hyperparameter-tuned ARIMA than its non-tuned counterpart.

7 Future Work

For instance, several techniques could be explored to improve the model’s per-
formance in finding the best match. One option is to apply a weighted search,
increasing the chances of finding a match that outperforms the original forecast.
Although 1NN has been proven to be more accurate in time series, contrary to
other problems, it would still be relevant to examine the effectiveness of KNN,
which allows the meta-learner to train on multiple best matches. Another direc-
tion can be testing different heuristics for determining the kernel size for each
forecasting horizon length. Another option for the meta-learner would be to use
part of the proposed correction as validation. If the correction fails to improve
the forecast in the early stages, then the correction should not be used.
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Abstract. This paper presents a post hoc analysis of a deep learning-
based full-disk solar flare prediction model. We used hourly full-disk
line-of-sight magnetogram images and selected binary prediction mode
to predict the occurrence of ≥M1.0-class flares within 24 h. We lever-
aged custom data augmentation and sample weighting to counter the
inherent class-imbalance problem and used true skill statistic and Hei-
dke skill score as evaluation metrics. Recent advancements in gradient-
based attention methods allow us to interpret models by sending gradient
signals to assign the burden of the decision on the input features. We
interpret our model using three post hoc attention methods: (i) Guided
Gradient-weighted Class Activation Mapping, (ii) Deep Shapley Addi-
tive Explanations, and (iii) Integrated Gradients. Our analysis shows
that full-disk predictions of solar flares align with characteristics related
to the active regions. The key findings of this study are: (1) We demon-
strate that our full disk model can tangibly locate and predict near-
limb solar flares, which is a critical feature for operational flare forecast-
ing, (2) Our candidate model achieves an average TSS=0.51±0.05 and
HSS=0.38±0.08, and (3) Our evaluation suggests that these models can
learn conspicuous features corresponding to active regions from full-disk
magnetograms.

Keywords: Solar flares · Deep learning · xAI · Interpretability

1 Introduction

Solar flares are transient solar events of central importance to space weather
forecasting, manifested as the sudden large eruption of electromagnetic radi-
ation on the outermost atmosphere of the Sun. They are classified according
to their peak X-ray flux level into the following five categories by National
Oceanic and Atmospheric Administration (NOAA): X (≥ 10−4Wm−2), M
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bifet et al. (Eds.): DS 2023, LNAI 14276, pp. 567–581, 2023.
https://doi.org/10.1007/978-3-031-45275-8_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45275-8_38&domain=pdf
http://orcid.org/0000-0002-4699-4050
http://orcid.org/0000-0001-9598-8207
http://orcid.org/0000-0001-6913-1330
http://orcid.org/0000-0002-9799-9265
https://doi.org/10.1007/978-3-031-45275-8_38


568 C. Pandey et al.

(≥ 10−5Wm−2), C (≥ 10−6Wm−2), B (≥ 10−7Wm−2), and A (≥ 10−8Wm−2),
where, X>M>C>B>A [6]. These flare classes are on a logarithmic scale, mean-
ing that each class represents a tenfold increase in X-ray flux compared to the
previous class. Large flares (M- and X-class) are scarce events that are more likely
to incur a terrestrial impact and, therefore, the classes of interest that gather
the attention of researchers. These flares may potentially disrupt the electricity
supply chain, airline industry, and satellite communications, and pose radiation
hazards to astronauts in space. To mitigate these risks, the necessity of a precise
and reliable flare prediction model becomes imperative.

Active regions (ARs) on the Sun are places characterized by the largest accu-
mulations of dipolar magnetic flux in the solar atmosphere. Most operational
flare forecasts target these regions of interest and issue predictions for individual
ARs, which are the main initiators of space weather events. To issue a full-
disk forecast with an AR-based model, the output flare probabilities for each
active region are usually aggregated using a heuristic function as mentioned in
[20]. The heuristic function used to aggregate the final forecast operates under
the assumption of conditional independence among ARs and that all ARs con-
tribute equally to the aggregate forecast. This uniform weighting scheme may
not accurately reflect the true influence of each AR on full-disk flare prediction
probability. It is important to highlight that the weights of these ARs are gener-
ally unknown; there are no established methods to accurately determine them,
nor are there any prior assumptions that guide the assignment of these weights.

Furthermore, the magnetic field measurements, employed by the AR-based
forecasting techniques, are susceptible to severe projection effects as ARs get
closer to limbs (to the degree that after ±60◦ the magnetic field readings are dis-
torted [5]); therefore, the aggregated full-disk flare probability is in fact, restric-
tive (i.e., from ARs in central locations) as the data in itself is limited to ARs
located within ±45◦ [11] to ±70◦ [9] and in some cases, even ±30◦ [8] due to
severe projection effects [7]. As AR-based models include data up to ±70◦, in the
context of this paper, this upper limit (±70◦) is used as a boundary for central
(within ±70◦) and near-limb regions (beyond ±70◦).

In contrast to AR-based models, which use individual AR data from central
locations, full-disk models use complete magnetogram images corresponding to
the entire disk. These images are typically compressed JP2 (JPEG 2000) 8-bit
representations (i.e., pixel values ranging from 0 to 255) derived from origi-
nal magnetogram rasters which contain magnetic field strength values ranging
from ∼±4500G. The compressed magnetogram images are used for shape-based
parameters, e.g., size, directionality, borders, and inversion lines. Although pro-
jection effects still prevail in these images, full-disk models can learn from the
near-limb areas. Thus, incorporating a full-disk model is essential to supplement
AR-based models, enabling the prediction of flares in the Sun’s near-limb areas
and enhancing operational flare forecasting systems.

With recent advancements in machine learning and deep learning methods,
their application in predicting solar flares has demonstrated great experimen-
tal success and accelerated the efforts of many interdisciplinary researchers
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[8,11,15–19,32]. Although deep learning methods have significantly enhanced
solutions to image classification and computer vision problems, these models
learn highly complex data representations, rendering them as black-box mod-
els. Consequently, the decision-making process within these models remains
obscured, presenting a critical challenge for operational forecasting communities
that rely on transparency to make informed decisions. Recently several empiri-
cal methods have been developed to explain and interpret the decisions made by
deep neural networks. These are post hoc analysis methods (attribution meth-
ods) [12], meaning they focus on the analysis of trained models and do not
contribute to the models’ parameters while training. In this work, we primarily
focus on developing a CNN-based full-disk model for solar flare prediction of
≥M1.0-class flares and evaluate and explain our model’s performance by using
three of the attribution methods: (i) Guided Gradient-weighted Class Activation
Mapping (Guided Grad-CAM) [25], (ii) Deep Shapley Additive Explanations
(Deep SHAP) [13], and (iii) Integrated Gradients (IG) [31]. More specifically, we
show that our model’s decisions are based on the characteristics corresponding
to ARs, and our models can tackle the flares appearing on near-limb regions.

The rest of this paper is organized as follows. In Sect. 2, we present the related
work on flare forecasting. In Sect. 3, we present our methodology with data
preparation and model architecture. In Sect. 4 we provide the description of all
three post hoc explanation methods utilized in this work. In Sect. 5, we present
our experimental settings, and model evaluation, and discuss the interpretation
of our models, and in Sect. 6, we present our conclusions and future work.

2 Related Work

There have been several attempts to predict solar flares using machine learning
and deep learning models. A multi-layer perceptron-based model was applied for
solar flare prediction of ≥C1.0- and ≥M1.0-class flares in [15] by utilizing 79 man-
ually selected physical precursors extracted from multi-modal solar observations.
A CNN-based flare forecasting model trained with solar AR patches extracted
from line-of-sight (LoS) magnetograms within ±30◦ of the central meridian to
predict ≥C1.0-, ≥M1.0-, and ≥X1.0-class flares was presented in [8]. Similarly,
[11] also used a CNN-based model to issue binary class predictions for both
≥C1.0- and ≥M1.0-class flares within 24 h using AR patches located within
±45◦ of the central meridian. It is important to note that both of these models
[8,11] are limited to a small portion of the observable disk in central locations
(within ±30◦ to ±45◦) and thus possess the limited operational capability.

More recently, we presented a deep learning-based binary full-disk flare pre-
diction model to predict ≥M1.0-class flares in [17] and to predict ≥C4.0- and
≥M1.0-class flares in [18] using bi-daily observations (i.e., two magnetograms
per day) of full-disk LoS magnetograms. It is important to note that in [18] all
the instances that fall between the ≥C4.0- and ≥M1.0-class flares were excluded
in both training and validation sets. These particular sets of instances lie on
the border of two binary outcomes and can be considered the harder-to-predict
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instances. These models are still black-box and do not provide explanations
on any global and local variable importance. These explanations are impor-
tant to understand the capabilities of full-disk models in near-limb regions and
improve their trustworthiness in operational settings. In solar flare prediction, [2]
used an occlusion-based method to interpret a CNN-based solar flare prediction
model trained with AR patches. Similarly, [33] presented a deep learning-based
flare prediction model for predicting C-, M-, and X-class flares and provided
visual explanations using Grad-CAM [25], and Guided Backpropagation [28].
They used daily observations of solar full-disk LoS magnetograms at 00:00 UT,
and their models show limitations for the near-limb flares. Moreover, in [30],
DeepLIFT [27] and IG [31] were evaluated for explaining CNN-based flare pre-
diction model trained using tracked AR patches within ±70◦.

This paper presents a CNN-based model to predict ≥M1.0-class flares,
trained with full-disk LoS magnetograms images. The novel contributions of this
paper are as follows: (i) We show an improved overall performance of a full-disk
solar flare prediction model, (ii) We utilized contemporary attribution meth-
ods to explain and interpret the decisions of our deep learning model, and (iii)
More importantly, we show that our models can predict solar flares appearing
on difficult-to-predict near-limb regions of the Sun.

3 Data and Model

Fig. 1. Data distribution used in this study with four tri-monthly partitions for training
≥M1.0-class flare prediction models. Note: The length of the bars is in logarithmic scale.

We used full-disk LoS solar magnetograms obtained from the Helioseismic and
Magnetic Imager (HMI) [24] instrument onboard Solar Dynamics Observatory
(SDO) [21] available as compressed JP2 images in near real-time publicly via
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Helioviewer1. To enhance computational efficiency for training the deep learning
model, these compressed images are resized to a smaller resolution of 512 × 512
pixels. We sampled hourly instances of magnetogram images at [00:00, 01:00,
..., 23:00] each day from Dec 2010 to Dec 2018. We labeled our data with a
prediction window of 24 h. The images are labeled based on the maximum peak
X-ray flux (converted to NOAA flare classes) within the next 24 h. We collect a
total of 63,649 images and label them such that if the maximum X-ray intensity
of flare is weaker than M1.0, the observations are labeled as “No Flare” (NF:
<M1.0) and ≥M1.0 ones are labeled as “Flare” (FL: ≥M1.0). This results in
54,649 instances for the NF-class and 9,000 instances (8,120 instances of M-class
and 880 instances of X-class flares) for the FL-class.
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Fig. 2. The architecture of our full-disk flare prediction model.

We finally split our data into four temporally non-overlapping tri-monthly
partitions for the cross-validation experiments. This partitioning of the dataset
is created by dividing the data timeline from Dec 2010 to Dec 2018 into four
partitions, where Partition-1 contains data from Jan to Mar, Partition-2 contains
data from Apr to Jun, Partition-3 contains data from Jul to Sep, and finally,
Partition-4 contains data from Oct to Dec as shown in Fig. 1. As a result of the
infrequent occurrence of ≥M1.0-class flares, the dataset exhibits a significant
imbalance, with the ratio of FL to NF class being approximately 1:6.

In this work, we extend the AlexNet [10] model by concatenating a convo-
lutional layer at the beginning of the network to make use of the pre-trained
weights for our 1-channel input magnetogram images as the pre-trained model
requires a 3-channel image as input to the network. Our added convolutional
layer uses a 3×3 kernel, size-1 stride, and outputs a 3-channel feature map
which is then integrated into the standard AlexNet architecture as shown in
Fig. 2. Furthermore, to efficiently utilize the pre-trained weights regardless of
the architecture of the AlexNet model, which expects 224×224, 3-channel image

1 Helioviewer: https://api.helioviewer.org

https://api.helioviewer.org
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as input, we use the adaptive average pooling after feature extraction before the
fully-connected layer to match the dimension on our 1-channel, 512×512 magne-
togram image. Overall, our model has six convolutional layers, three max-pool
layers, one average-pool layer, and two fully-connected layers.

4 Interpretation Methods

Deep learning models are often deemed black-box due to their complex rep-
resentations, resulting in interpretability, transparency, and consistency chal-
lenges concerning the patterns they learn [12]. To address this, various methods
[34] have been proposed to interpret CNNs. One common approach is using
attribution methods, which visualize how specific parts of the input influence
the model’s decisions. Attribution methods generate attribution vectors (heat
maps) representing the contribution of each input element to the model’s deci-
sion. These methods can be perturbation-based (e.g., Local Interpretable Model-
Agnostic Explanations (LIME) [23]), involving altering the input and measuring
the difference in output, or gradient-based, calculating gradients via backpropa-
gation to estimate attribution scores. While perturbation-based methods suffer
from inconsistency issues due to creating Out-of-Distribution data [22], gradient-
based methods are more robust to input perturbations and computationally
efficient [14]. Therefore, in this work, we employed three recent gradient-based
methods to assess the interpretability of our models. By leveraging gradient-
based techniques, known for their computational efficiency and robustness com-
pared to perturbation-based methods, we aimed to visualize the decisions made
by our model and gain insights into the specific characteristics in a magne-
togram image that trigger the models’ decisions. These methods allowed us to
cross-validate and ensure the consistency of the explanations provided by our
models, contributing to a more reliable and robust interpretation.

Guided Grad-CAM: The Guided Gradient-weighted Class Activation Map-
ping (Guided Grad-CAM) method [25] leverages the benefits of the Grad-CAM
and guided backpropagation [28]. Grad-CAM is a model-agnostic method that
uses the class-specific gradient information flowing into the final convolutional
layer of a CNN to produce a coarse localization map of the important regions
in the image. Guided Backpropagation is based on the premise that the neurons
act as detectors of certain image features, so it computes the gradient of the
output with respect to the input, except that when propagating through ReLU
functions, it only backpropagates the non-negative gradients and highlights the
pixels that are important in the image. Attributions from Grad-CAM are class-
discriminative and localize relevant image regions; however, do not highlight the
fine-grained pixel importance as guided backpropagation [3]. Guided Grad-CAM
combines the fine-grained details of guided backpropagation with the course
localization advantages of Grad-CAM and is computed as the element-wise prod-
uct of guided backpropagation with the upsampled Grad-CAM attributions.
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Deep SHAP: SHAP values (SHapley Additive exPlanations) [13] is a method
based on cooperative game theory [26] and used to increase the transparency
and interpretability of machine learning models. SHAP shows the contribution
of each feature to the prediction of the model, it does not evaluate the quality of
the prediction itself. The contribution of each feature is calculated using coop-
erative game theory and Shapley values to assess how much each feature adds
to the difference between the actual prediction and the average prediction. For
deep-learning models, Deep SHAP [13] is considered an enhanced version of the
DeepLIFT algorithm [27], where we approximate the conditional expectations of
SHAP values using a selection of baseline samples from the dataset. The base-
lines typically contain a set of representative samples from the same distribution
as the input data. For each input sample, it computes DeepLIFT attribution
with respect to each baseline and averages resulting attributions. This method
assumes that input features are independent of one another, and the explana-
tions are modeled through the additive composition of feature effects.

Integrated Gradients: The last method we will analyze in this study is Inte-
grated Gradients (IG) [31], which quantifies feature attributions by integrating
the gradients of the model’s output along a straight-line path from a baseline ref-
erence to the input feature under consideration. This method requires an extra
input as the baseline, representing the non-appearance of the feature in the orig-
inal image which is typically an all-zero vector. IG is favored for its completeness
property, where the sum of integrated gradients for all features precisely equals
the difference between the model’s output for the given input and the baseline
input values. This property ensures that the feature attributions accurately rep-
resent each feature’s individual contribution to the model output, allowing us to
reliably recover the model’s output value by summing these contributions [29].

5 Experimental Evaluation

5.1 Experimental Settings

We trained a full-disk flare prediction model with stochastic gradient descent
(SGD) as an optimizer and negative log-likelihood (NLL) as the objective func-
tion. Our model is initialized with pre-trained weights of AlexNet Model [10],
and then we make use of a dynamic learning rate (initialized at 0.0099 and
reduced 5%) to further train the model to 40 epochs with a batch size of 64. We
address the class-imbalance issue using data augmentation and class weights to
the loss function. We use three augmentation techniques: vertical flipping, hori-
zontal flipping, and +5◦ to −5◦ rotations. We augment the data for both classes
(where the entire FL-class data are augmented three times with three augmen-
tation techniques and NF-class is augmented once randomly). We then adjust
class weights inversely proportional to the class frequencies after augmentations.
The use of class weights penalizes the misclassification made in the minority
class. Our models are trained as 4-fold cross-validation experiments with each
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fold representing a different partition serving as the test set. Specifically, Fold-1
corresponds to Partition-1, Fold-2 corresponds to Partition-2, and so on.

We evaluate the performance of our models using two widely-used forecast
skills scores: True Skill Statistics (TSS, in Eq. 1) and Heidke Skill Score (HSS, in
Eq. 2), derived from the elements of confusion matrix: True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives (FN). In the context
of our paper, the FL class is the positive outcome and NF is the negative.

TSS =
TP

TP + FN
− FP

FP + TN
(1)

HSS = 2 × TP × TN − FN × FP

((P × (FN + TN) + (TP + FP ) × N))
, (2)

where N = TN + FP and P = TP + FN .

Recall =
TP

TP + FN
(3)

TSS and HSS values range from −1 to 1, where 1 indicates all correct pre-
dictions, −1 represents all incorrect predictions, and 0 represents no skill. In
contrast to TSS, HSS is an imbalance-aware metric, and it is common practice
to use HSS in combination with TSS for the solar flare prediction models due to
the high class-imbalance ratio present in the datasets. For a balanced dataset,
these metrics are equivalent [1]. In solar flare prediction, TSS and HSS are the
preferred choices of evaluation metrics compared to commonly used metrics in
image classification (e.g., accuracy) as they ensure a comprehensive and reliable
evaluation of predictive capabilities, especially in scenarios with imbalanced class
distributions. Lastly, we report the subclass and overall recall (shown in Eq. 3)
for flaring instances (M- and X-class) to assess the prediction sensitivity of our
models in central and near-limb regions. To reproduce this work, the source code
and experimental results can be accessed from our open-source repository [4].

5.2 Model Evaluation

Our models have on average TSS∼0.51±0.05 and HSS∼0.38±0.08, which
improves over the performance of [17] by ∼4% in terms of TSS (reported
0.47±0.06) and by ∼3% in terms of HSS (reported 0.35±0.05) 2. The detailed
experimental results for each fold are shown in Table 1.

In addition, we evaluate our results for correctly predicted and missed flare
counts for class-specific flares (X-class and M-class) in central locations (within
±70◦) and near-limb locations (beyond ±70◦) of the Sun as shown in Table 2. We
observe that our models made correct predictions for ∼95% of the X-class flares

2 While there are several other works (mentioned in Sect. 2) in solar flare prediction,
the results of these models are not directly comparable since they employ different
datasets, data timelines, and data partitioning strategies.
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Table 1. A comprehensive overview of 4-fold cross-validation experiments, showing all
the four outcomes of confusion matrices (TP, FP, TN, FN) evaluated on the test sets,
and performance of our models in terms of two skill scores (TSS and HSS).

Folds TP FP TN FN TSS HSS

Fold-1 1,720 1,943 10,511 614 0.58 0.47

Fold-2 1,155 3,083 10,772 457 0.49 0.29

Fold-3 1,585 2,668 11,640 779 0.48 0.36

Fold-4 1,706 2,241 11,791 984 0.47 0.40

Aggregated 6,166 9,935 44,714 2,834 0.51±0.05 0.38±0.08

Table 2. Counts of correctly (TP) and incorrectly (FN) classified X- and M-class
flares in central (|longitude|≤ ±70◦) and near-limb locations. The recall across different
location groups is also presented. Counts are aggregated across folds.

Within ±70◦ Beyond ±70◦

Flare-Class TP FN Recall TP FN Recall

X-Class 637 31 0.95 157 55 0.74

M-Class 4,229 1,601 0.73 1,143 1,147 0.50

Total (X&M) 4,866 1,632 0.75 1,300 1,202 0.52

Fig. 3. A scatterplot to quantify the performance of our models in terms of True
Positives (TP) and False Negatives (FN) for X-class flares grouped by flare locations.
The flare events beyond ±70◦ longitude are represented as near-limb events. Note: (i)
Red marker is for locations with zero TP. (ii) For some locations, TP+FN<24, given
that we used hourly instances, is due to the unavailable instances from the source.

and ∼73% of the M-class flares in central locations. Similarly, our models show
a compelling performance for flares appearing on near-limb locations of the Sun,
where ∼74% of the X-class and ∼50% of the M-class flares are predicted correctly.
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This is important because, to our knowledge, the prediction of near-limb flares
is often overlooked. More false positives in M-class are expected because of the
model’s inability to distinguish bordering class flares (C4.0 to C9.9) from ≥M1.0-
class flares, which we have observed empirically in our prior work [18] as well.
Overall, we observed that ∼90% and ∼66% of the X-class and M-class flares,
respectively, are predicted correctly by our models.

Furthermore, given that we sample our data with a 1-hour cadence result-
ing in 24 instances per day unless there are gaps due to unavailable data
instances, any given flare instance is expected to be in the prediction window
of 24 instances. X-class flares are relatively large flares that often dominate the
prediction window. Therefore, we analyzed the predictions on X-class flares and
observed that from a total of 45 X-class flare locations, our models correctly
predict the occurrence of a flare at least once for 44 of them, as shown in Fig. 3.
In particular, we show that the full-disk model presented in this paper can pre-
dict flares appearing on near-limb locations of the Sun at great accuracy, which
provides a crucial addition to operational flare forecasting systems.

5.3 Model Interpretation

In this section, we present a case study, interpreting the visual explanations
generated by our model, and also discuss the implications of these explanations in
the operational forecasting scenario. For this, we use the visualizations generated
using all three post hoc explanation methods mentioned earlier in Sect. 4 for
two instances: (i) a correctly predicted (TP) near-limb flare instance and (ii) an
incorrectly predicted (FP) instance.

Firstly, we interpret the predictions of our model for a correctly predicted
X1.4-class flare observed on 2011-09-22 at 10:29:00 UTC on the East limb (note
that East and West are reversed in solar coordinates). We generate a visual
explanation using all three attribution methods. We utilized an input image
from 2011-09-22 05:00:00 UTC (approximately 5.5 h prior to the flare event)
where the sunspot corresponding to the flare becomes visible in the magnetogram
image. Interestingly, we observed that the pixels covering the AR on the East
limb, which is responsible for the eventual X1.4 flare, are activated, as shown
in Fig. 4. Note that the location of the flare is indicated by a green flag and all
visible NOAA ARs are indicated by red flags in Fig. 4 (b). The model focuses on
specific ARs, including the relatively smaller AR on the East limb, even though
other ARs are present in the magnetogram image. The visualization of attri-
bution maps suggests that, for this particular prediction, the region responsible
for the flare event is attributed as important, contributing to the consequent
decision. This finding is consistent across all three methods, corroborating the
explanation’s reliability. However, Guided Grad-CAM and Deep SHAP provide
finer details by suppressing noise compared to IG.

Similarly, to analyze a false positive case, we present an example of a C7.1
flare observed on 2014-01-06 at 00:08:00 UTC. To explain the result, we used
an input magnetogram instance from 2014-01-05 06:00:00 UTC (∼18 h prior
to the event). The model’s prediction probability for this instance being an
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Input Image Time: 2011-09-22 05:00:00
Flare Start Time: 2011-09-22 10:29:00
Flare Class: X1.4
Flare Location: (-81.6, 11)
Model's Flare Probability: 0.68

Note: The scale in the color bar shows
attribution strength ranging from 0-1 for
each respective method. A higher value
on the scale suggests a more significant
feature for the corresponding prediction,
while 0 indicates that the feature has no
influence on the prediction.

(a) (b)

(GGCAM-Overlay)

(GGCAM-Map) (SHAP-Map) (IG-Map)

(SHAP-Overlay) (IG-Overlay)

Fig. 4. A visual explanation for a correctly predicted near-limb FL-class instance. (a)
Actual magnetogram from the dataset used as the input image. (b) Annotated full-
disk magnetogram at flare start time, showing flare location (green flag) and NOAA
ARs (red flags). Overlays (GGCAM, SHAP, IG) depict the input image overlayed with
attributions, and Maps (GGCAM, SHAP, IG) showcase the attribution maps obtained
from Guided Grad-CAM, Deep SHAP, and Integrated Gradients respectively. (Color
figure online)

FL-class is ∼0.97. Therefore, we seek a visual explanation of this prediction
using all three interpretation methods. Upon analysis, we observed that the
prediction mainly relies on only one AR, which indeed corresponds to the location
of the eventual C7.1 flare (indicated by the green flag) when visualized with all
three attribution methods, as shown in Fig. 5. This incorrect prediction can be
attributed to the interference of the bordering class flares mentioned in [18]. Such
interference poses a problem for binary flare prediction models. We noticed that
out of 25,150 C-class flares, 9,240 flares led to incorrect predictions, accounting
for approximately 37% of the total C-class flares in our dataset.
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Input Image Time: 2014-01-05 06:00:00
Flare Start Time: 2014-01-06 00:08:00
Flare Class: C7.1
Flare Location: (-27, -6)
Model's Flare Probability: 0.97

Note: The scale in the color bar shows
attribution strength ranging from 0-1 for
each respective method. A higher value
on the scale suggests a more significant
feature for the corresponding prediction,
while 0 indicates that the feature has no
influence on the prediction.

(a) (b)

(GGCAM-Overlay)

(GGCAM-Map) (SHAP-Map) (IG-Map)

(SHAP-Overlay) (IG-Overlay)

Fig. 5. A visual explanation for an incorrectly predicted NF-class instance. (a) Actual
magnetogram from the dataset used as the input image. (b) Annotated full-disk mag-
netogram at flare start time, showing flare location (green flag) and NOAA ARs (red
flags). Overlays (GGCAM, SHAP, IG) depict the input image overlayed with attribu-
tions, and Maps (GGCAM, SHAP, IG) showcase the attribution maps obtained from
Guided Grad-CAM, Deep SHAP, and Integrated Gradients respectively. (Color figure
online)

These two examples, although not exhaustive, carry significant implications
for operational forecasting systems. By incorporating visual explanations into
the forecasting process, in addition to providing a full-disk flare prediction prob-
ability, we have the capability to identify potential flare event locations among
all visible ARs precisely. This is invaluable for improving the accuracy and reli-
ability of solar flare forecasts, aiding in effective risk assessment and mitigation
strategies. Furthermore, it provides a deeper understanding of the underlying fac-
tors contributing to flare occurrences, empowering researchers and space weather
experts to make more informed decisions and take timely actions to safeguard
critical infrastructure and space assets.
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6 Conclusion and Future Work

In this work, we used three recent gradient-based methods to interpret the predic-
tions of our AlexNet-based binary flare prediction model trained for the predic-
tion of ≥M1.0-class flares. We addressed the highly overlooked problem of flares
appearing in near-limb locations of the Sun, and our model shows a compelling
performance for such events. Furthermore, we evaluated our model’s predictions
with visual explanations, showing that the decisions are primarily capturing
characteristics corresponding to the active regions in the magnetogram instance.
Although our model shows improved capability, still suffers from high false pos-
itives attributed to high C-class flares. As an extension, we plan to study the
individual class characteristics to obtain a better way of segregating these flare
classes considering the background flux and generate a new set of labels that
can better address the issue with border class flares. Furthermore, at this point,
the models are only looking at the spatial patterns in our data, and we intend
to widen this work toward spatiotemporal models to improve the performance.

Acknowledgement. This project is supported in part under two NSF awards
#2104004 and #1931555, jointly by the Office of Advanced Cyberinfrastructure within
the Directorate for Computer and Information Science and Engineering, the Division of
Astronomical Sciences within the Directorate for Mathematical and Physical Sciences,
and the Solar Terrestrial Physics Program and the Division of Integrative and Collabo-
rative Education and Research within the Directorate for Geosciences. This work is also
partially supported by the National Aeronautics and Space Administration (NASA)
grant award #80NSSC22K0272. Data used in this study is a courtesy of NASA/SDO
and the AIA, EVE, and HMI science teams and NOAA National Geophysical Data
Center (NGDC).

References

1. Ahmadzadeh, A., Aydin, B., Georgoulis, M., Kempton, D., Mahajan, S., Angryk,
R.: How to train your flare prediction model: revisiting robust sampling of rare
events. APJ Suppl. Ser. 254(2), 23 (2021)

2. Bhattacharjee, S., Alshehhi, R., Dhuri, D.B., Hanasoge, S.M.: Supervised convo-
lutional neural networks for classification of flaring and nonflaring active regions
using line-of-sight magnetograms. APJ 898(2), 98 (2020)

3. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-
cam++: Generalized gradient-based visual explanations for deep convolutional
networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision
(WACV). IEEE (2018). https://doi.org/10.1109/wacv.2018.00097

4. DMLab: Source Code. https://bitbucket.org/gsudmlab/explainingfulldisk/src/
main/

5. Falconer, D.A., Tiwari, S.K., Moore, R.L., Khazanov, I.: A new method to quan-
tify and reduce the net projection error in whole-solar-active-region parameters
measured from vector magnetograms. APJ 833(2), L31 (2016)

6. Fletcher, L., et al.: An observational overview of solar flares. Space Sci. Rev. 159(1–
4), 19–106 (2011)

https://doi.org/10.1109/wacv.2018.00097
https://bitbucket.org/gsudmlab/explainingfulldisk/src/main/
https://bitbucket.org/gsudmlab/explainingfulldisk/src/main/


580 C. Pandey et al.

7. Hoeksema, J.T., et al.: The helioseismic and magnetic imager (HMI) vector mag-
netic field pipeline: overview and performance. Sol. Phys. 289(9), 3483–3530 (2014)

8. Huang, X., Wang, H., Xu, L., Liu, J., Li, R., Dai, X.: Deep learning based solar
flare forecasting model. I. results for line-of-sight magnetograms. APJ 856(1), 7
(2018). https://doi.org/10.3847/1538-4357/aaae00

9. Ji, A., Aydin, B., Georgoulis, M.K., Angryk, R.: All-clear flare prediction using
interval-based time series classifiers. In: 2020 IEEE International Conference on
Big Data (Big Data), pp. 4218–4225. IEEE (2020)

10. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks
(2014)

11. Li, X., Zheng, Y., Wang, X., Wang, L.: Predicting solar flares using a novel deep
convolutional neural network. APJ 891(1), 10 (2020)

12. Linardatos, P., Papastefanopoulos, V., Kotsiantis, S.: Explainable AI: a review of
machine learning interpretability methods. Entropy 23(1), 18 (2020)

13. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In:
Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 4768–4777. NIPS 2017, Curran Associates Inc., Red Hook, NY, USA
(2017)

14. Nielsen, I.E., Dera, D., Rasool, G., Ramachandran, R.P., Bouaynaya, N.C.: Robust
explainability: a tutorial on gradient-based attribution methods for deep neural
networks. IEEE Signal Process. Mag. 39(4), 73–84 (2022)

15. Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., Ishii, M.: Deep flare net (DeFN)
model for solar flare prediction. APJ 858(2), 113 (2018)

16. Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., Watari, S., Ishii, M.: Solar flare pre-
diction model with three machine-learning algorithms using ultraviolet brightening
and vector magnetograms. APJ 835(2), 156 (2017)

17. Pandey, C., Angryk, R.A., Aydin, B.: Solar flare forecasting with deep neural net-
works using compressed full-disk HMI magnetograms. In: 2021 IEEE International
Conference on Big Data (Big Data), pp. 1725–1730. IEEE (2021). https://doi.org/
10.1109/bigdata52589.2021.9671322

18. Pandey, C., Angryk, R.A., Aydin, B.: Deep neural networks based solar flare pre-
diction using compressed full-disk line-of-sight magnetograms. In: Lossio-Ventura,
J.A., et al. (eds.) Information Management and Big Data, SIMBig 2021. Commu-
nications in Computer and Information Science, vol. 1577, pp. 380–396. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-04447-2 26

19. Pandey, C., Angryk, R.A., Aydin, B.: Explaining full-disk deep learning model
for solar flare prediction using attribution methods (2023). https://arxiv.org/abs/
2307.15878

20. Pandey, C., Ji, A., Angryk, R.A., Georgoulis, M.K., Aydin, B.: Towards coupling
full-disk and active region-based flare prediction for operational space weather
forecasting. Front. Astron. Space Sci. 9, 897301 (2022). https://doi.org/10.3389/
fspas.2022.897301

21. Pesnell, W., Thompson, B.J., Chamberlin, P.C.: The solar dynamics observatory
(SDO). Sol. Phys. 275(1–2), 3–15 (2011)

22. Qiu, L., et al.: Generating perturbation-based explanations with robustness to
out-of-distribution data. In: Proceedings of the ACM Web Conference 2022. ACM
(2022). https://doi.org/10.1145/3485447.3512254

23. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?”. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM (2016). https://doi.org/10.1145/2939672.2939778

https://doi.org/10.3847/1538-4357/aaae00
https://doi.org/10.1109/bigdata52589.2021.9671322
https://doi.org/10.1109/bigdata52589.2021.9671322
https://doi.org/10.1007/978-3-031-04447-2_26
https://arxiv.org/abs/2307.15878
https://arxiv.org/abs/2307.15878
https://doi.org/10.3389/fspas.2022.897301
https://doi.org/10.3389/fspas.2022.897301
https://doi.org/10.1145/3485447.3512254
https://doi.org/10.1145/2939672.2939778


Towards Explaining Solar Flare Prediction Model 581

24. Schou, J., et al.: Design and ground calibration of the helioseismic and magnetic
imager (HMI) instrument on the solar dynamics observatory (SDO). Sol. Phys.
275(1–2), 229–259 (2011)

25. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
CAM: visual explanations from deep networks via gradient-based localization. In:
2017 IEEE International Conference on Computer Vision (ICCV). IEEE (2017).
https://doi.org/10.1109/iccv.2017.74

26. Shapley, L.: A Value for N-Person Games. RAND Corporation, Santa Monica
(1952)

27. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences (2019)

28. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplic-
ity: the all convolutional net (2014). https://arxiv.org/abs/1412.6806

29. Sturmfels, P., Lundberg, S., Lee, S.I.: Visualizing the impact of feature attribution
baselines. Distill 5(1), e22 (2020). https://doi.org/10.23915/distill.00022 https://
doi.org/10.23915/distill.00022

30. Sun, Z., et al.: Predicting solar flares using CNN and LSTM on two solar cycles of
active region data. APJ 931(2), 163 (2022). https://doi.org/10.3847/1538-4357/
ac64a6

31. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks
(2017). https://arxiv.org/abs/1703.01365

32. Whitman, K., et al.: Review of solar energetic particle models. Adv. Space Res.
(2022). https://doi.org/10.1016/j.asr.2022.08.006

33. Yi, K., Moon, Y.J., Lim, D., Park, E., Lee, H.: Visual explanation of a deep learning
solar flare forecast model and its relationship to physical parameters. APJ 910(1),
8 (2021). https://doi.org/10.3847/1538-4357/abdebe

34. Zhou, J., Gandomi, A.H., Chen, F., Holzinger, A.: Evaluating the quality of
machine learning explanations: a survey on methods and metrics. Electronics 10(5),
593 (2021). https://doi.org/10.3390/electronics10050593

https://doi.org/10.1109/iccv.2017.74
https://arxiv.org/abs/1412.6806
https://doi.org/10.23915/distill.00022
https://doi.org/10.23915/distill.00022
https://doi.org/10.23915/distill.00022
https://doi.org/10.3847/1538-4357/ac64a6
https://doi.org/10.3847/1538-4357/ac64a6
https://arxiv.org/abs/1703.01365
https://doi.org/10.1016/j.asr.2022.08.006
https://doi.org/10.3847/1538-4357/abdebe
https://doi.org/10.3390/electronics10050593


Pseudo Session-Based Recommendation
with Hierarchical Embedding and Session

Attributes

Yuta Sumiya1(B) , Ryusei Numata2, and Satoshi Takahashi1

1 The University of Electro-Communications, Tokyo, Japan
{sumiya,stakahashi}@uec.ac.jp

2 The Japan Research Institute Limited, Tokyo, Japan
numata.ryusei@jri.co.jp

Abstract. Recently, electronic commerce (EC) websites have been
unable to provide an identification number (user ID) for each trans-
action data entry because of privacy issues. Because most recommenda-
tion methods assume that all data are assigned a user ID, they cannot
be applied to the data without user IDs. Recently, session-based rec-
ommendation (SBR) based on session information, which is short-term
behavioral information of users, has been studied. A general SBR uses
only information about the item of interest to make a recommendation
(e.g., item ID for an EC site). Particularly in the case of EC sites, the
data recorded include the name of the item being purchased, the price of
the item, the category hierarchy, and the gender and region of the user.
In this study, we define a pseudo-session for the purchase history data
of an EC site without user IDs and session IDs. Finally, we propose an
SBR with a co-guided heterogeneous hypergraph and globalgraph net-
work plus, called CoHHGN+. The results show that our CoHHGN+ can
recommend items with higher performance than other methods.

Keywords: Session-Based Recommendation · Pseudo Session ID ·
Session information · Auxiliary information · Heterogeneous
hypergraph network · Global Graph · Co-guided Learning

1 Introduction

In electronic commerce (EC) markets, the effective recommendation of items and
services based on individual user preferences and interests is an important factor
in improving customer satisfaction and sales, and several previous studies have
focused on recommendation systems. A recommendation system is a technology
that suggests items based on a user’s past actions and online behavior. How-
ever, in recent years, user IDs are not assigned to users to protect their privacy.
Under such circumstances, it is difficult to identify users; therefore, conventional
effective recommendation systems that need user IDs cannot be used.

Session-based recommendation (SBR), which makes recommendations with-
out focusing on user IDs, is currently attracting attention. SBR is a method
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of providing recommendations based on session IDs assigned to short-term user
actions. They are assigned when a user logs into an EC site, and are advanta-
geous in that users cannot be uniquely identified as they are assigned different
IDs depending on the time of day. However, even if session ID management is
inadequate, there is a risk that the session ID of a logged-in user may be illegally
obtained to gain access. To prevent this, we propose a new method for recom-
mending items without using either user or session IDs. Specifically, for purchase
history data to which user and session IDs are not assigned, records with con-
secutive user attributes, such as gender and place of residence, are defined as
pseudo-sessions, and the next item to be purchased in the pseudo-session is
predicted. In this manner, items that anonymous users place in their carts in
chronological order can be recommended for their next purchase without using
session IDs.

Generally, existing SBRs are often graph neural network (GNN)-based [5]
methods that consider only item transactions within a session. However, in the
case of purchase history, other features such as item price and category tend to be
observed as well. The existing method CoHHN [10] shows that price information
and categories are effective in recommending items. In this study, we propose a
new GNN model called the co-guided heterogeneous hypergraph and globalgraph
network plus (CoHHGN+), which consider not only the purchase transition and
price of items, but also the category hierarchy of items and auxiliary information
of sessions; our model also learns the co-occurrence relationships with other
sessions within the same features, and takes into account the importance of
embeddings between different features and same features. In summary, our key
contributions are as follows:

1. A pseudo session-based high-accuracy recommendation system is proposed.
2. We exploit session information about users and time series sales.
3. Item hierarchies and co-occurrence relationships of the same features are con-

sidered.

2 Related Work

Rendle et al. proposed a Markov chain-based SBR model, called factorized per-
sonalized Markov chains (FPMC) [6]. FPMC is a hybrid method that combines
Markov chains and matrix factorization to capture sequential patterns and long-
term user preferences. The method is based on a Markov chain that focuses on
two adjacent states between items and is adaptable to anonymous SBRs. How-
ever, a major problem with Markov chain-based models is that they combine
past components independently, which restricts their predictive accuracy.

Hidasi et al. proposed a recurrent neural network (RNN)-based SBR model
called GRU4Rec [4]. GRU4Rec models transition between items using gated
recurrent units (GRUs) for inputs represented as graphs.

The purchase transitions of an EC site can be represented by a graph struc-
ture, which is a homogeneous or heterogeneous graph depending on whether the
attributes of the nodes are singular or plural. Homogeneous graphs are graphs
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that represent relationships by only one type of node and edge and are used
to represent relationships in social networks. In contrast, heterogeneous graphs
are graphs that contain multiple and diverse nodes and edges and are used to
represent relationships between stores and customers.

Wu et al. proposed SR-GNN [9], which uses a GNN to predict the next item
to be purchased in a session based on a homogeneous graph of items constructed
across sessions. Using GNNs, we obtain item embeddings that are useful for
predicting by introducing attention mechanism to the continuously observed
item information. Currently, SBRs based on this GNN have shown more effective
results than other methods, and several extended methods based on SR-GNN
have been proposed. Wang et al. proposed GCE-GNN [8], which embeds not
only the current session but also item transitions of other sessions in the graph.

Existing methods, such as SR-GNN and GCE-GNN are models that learn
item-only transitions; however, sessions may also include item prices and categor-
ical features. To construct a model that takes these into account, it is necessary to
use heterogeneous graphs. However, when using graphs to represent the relation-
ship between auxiliary information such as price and items, the graph becomes
more complex as the number of items in a particular price range increases.
Therefore, we apply an extended heterogeneous hypergraph to allow the edges
to be connected to multiple nodes. This makes it possible to understand com-
plex higher-order dependencies between nodes, especially in recommendation
tasks [10]. Zhang et al. proposed CoHHN [10], which embeds not only item tran-
sitions, but also item prices and categories. While CoHHN can consider price
and item dependencies, it does not consider the hierarchical features of cate-
gories or sales information and user attributes observed during the sessions. It
also does not embed the global information that represents item purchase tran-
sitions in other sessions. Therefore, we propose a new GNN model that embeds
global information as in GCE-GNN, and considers item category hierarchy, user
attributes, and sale information.

3 Preliminaries

Let τ be a feature type that changes within a given session. Let Vτ = {vτ
1 , vτ

2 ,
· · · , vτ

nτ } be a unique set of feature τ and nτ be their size. We consider four
items: item ID, price, and hierarchical category of item (large and middle); we
subsequently denote its item set as V id, Vpri, V lrg, and Vmid, respectively. Note
that the prices are discretized into several price ranges according to a logistic
distribution [2,10], taking into account the market price of each item.

Let Sτ
a = [va,τ

1 , va,τ
2 , · · · , va,τ

s ] be a sequence of the feature τ for a pseudo-
session and s be its length. Note that each element va,τ

i of Sτ
a is belongs to Vτ .

The objective of SBR is to recommend the top k items from V id that are most
likely to be purchased or clicked next by the user in the current session a.
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3.1 Heterogeneous Hypergraph and Global Graph

To learn the transitions of items in a pseudo-session, two different graphs are
constructed from all available sessions.

We construct heterogeneous hypergraphs Gτ1,τ2 = (Vτ1 , Eτ2
h ) to consider the

relationships between different features. Let Eτ2
h be a set of hyperedges for feature

τ2. Each hyperedge eτ2
h ∈ Eτ2

h can be connected to multiple nodes vτ1
i ∈ Vτ1 in

the graph. This means that a node vτ1
i is connected to a hyperedge eτ2 when the

features τ1 and τ2 are observed in the same record. If several nodes are contained
in the same hyperedge, they are considered to be adjacent.

Heterogeneous hypergraphs are a method of constructing graphs with refer-
ence to different features; however, transition regarding information about fea-
tures of the same type is not considered. Additionally, item purchase transitions
may include items that are not relevant to prediction. Thus, we construct the
global graph shown below.

The global graph captures the relationship between items of the same type
that co-occur with an item for all sessions. According to [8], the global graph is
constructed based on ε-neighborhood set of an item for all sessions. Assuming
that a and b are different arbitrary session, we define the ε-neighborhood set as
follows.

Nε(v
a,τ
i ) =

{
vb,τ

j |va,τ
i = vi′ b,τ ∈ Sτ

a ∩ Sτ
b ; va,τ

j ∈ Sτ
b ; j ∈ [i

′ − ε, i
′
+ ε]; a �= b

}
,

(1)
where i

′
is an index of va,τ

i in Sτ
b and ε is a parameter that controls how close

items are considered from the position of i
′

in session B. Consider that Gg =
(Vτ , Eτ

g ) is a global graph where Eτ
g is an edge set and eτ

g ∈ Eτ
g connects two

vertices vτ
i ∈ Vτ and vτ

j ∈ Nε(vτ
i ). Notably, the global graph only shows the

relationship between identical features, and the adjacency conditions between
nodes are not affected by other features.

4 Proposed Method

From the perspective of privacy protection, we propose a pseudo session-based
recommendation method using a heterogeneous hypergraph constructed from a
set of features including a categorical hierarchy, a global graph for item and
price features, and additional session attribute information. Figure 1 shows an
overview of our proposed method. To consider the interactions and importance
between features, our model learns feature embeddings in two steps. In the first
step of aggregation, the intermediate embedding of each feature is learned from
a heterogeneous hypergraph which consider the interrelationships among differ-
ent features. In the second step, the final feature embedding vector obtained
by aggregating the intermediate embedding in accordance with their respective
importance. To address the problem of the heterogeneous hypergraph not being
able to learn purchase transitions within the same feature, a global graph is used
to incorporate co-occurrence relationships within the same feature into learning.
Finally, we propose learning of purchase transitions within a session by consid-
ering the features of the session itself, in addition to existing methods.
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Fig. 1. Overview of the proposed system. First, heterogeneous hypergraphs and global
graphs are constructed for all training sessions. In two-step embedding training, embed-
dings within and between graphs are iteratively trained to obtain multiple feature
embeddings, including categorical hierarchies. Then, using the item and price embed-
dings, we apply co-guided Learning [10] to predict the next item to be purchased by
extracting features that account for transitions within the session and the interaction
between the two.

4.1 Two-Step Embedding with Category Hierarchy

Based on intra-type and inter-type aggregating method in CoHHN [10], we
extend it to multiple categorical hierarchies. We obtain the item ID, price, large
category, and middle category embedding vectors from the two-step learning
method. In the first step of embedding, the embedding of a feature is learned
from a heterogeneous hypergraph in which the feature is a node and others are
hyperedges. For example, if the item ID is a node, price, large category, and mid-
dle category correspond to the hyperedges. In this case, multiple intermediate
embeddings are obtained depending on the type of feature, i.e., the hyperedge.
In the second step, these embeddings are used to learn the final node embeddings
by aggregating them based on their importance. Each learning step is repeated
for all L iterations.

First Step. We learn a first-step embedding for a feature t from a heterogeneous
hypergraph, where the target feature t is a node and another feature τ is a
hyperedge. First, we define the embedding of a node vt

i ∈ Vt as hhyper,t
l,i ∈ R

d.
Here, l denotes the location of the training iteration. In the initial state l = 0, the
parameters are initialized using He’s method [3]. Let N t

τ (vt
i) be the adjacent node

set of vt
i . Then, the intermediate embedding of vt

i in the l-iteration is given by

mt
τ,i =

∑
vt

j∈N t
τ (v

t
i)

αjh
hyper,t
l−1,j , (2)

αj = Softmaxj

([
u�

t h
hyper,t
l−1,k | vt

k ∈ N t
τ (vt

i)
])

, (3)
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where u�
t is an attention vector that determines the importance of hhyper,t

l−1,j . The
function Softmaxi is defined as

Softmaxi ([a1, · · · ,as]) =
exp (ai)∑s

j=1 exp (aj)
. (4)

Here, mt
τ,i ∈ R

d represents an intermediate embedding of the feature t when τ
is a type of hyperedge. In the first step of embedding, we learn the features to
focus on when embedding t.

Second Step. Let us assume that mt
τ1,i, mt

τ2,i, and mt
τ3,i are intermediate

embeddings for a feature t when τ1, τ2, τ3 are types of hyperedge, respectively.
By aggregating the embeddings of the first step, we obtain the embedding of vt

i

shown in the following equation.

hhyper,t
l,i = β1 ∗ hhyper,t

l−1,i +
4∑

j=2

βj ∗ mt
τj−1,i, (5)

βj = Softmaxj

([
W thhyper,t

l−1,i ,W t
τ1m

t
τ1,i,W

t
τ2m

t
τ2,i,W

t
τ3m

t
τ3,i

])
, (6)

where W t,W t
τ1 ,W

t
τ2 ,W

t
τ3 ∈ R

d×d are learnable parameters, and * denotes the
element-wise items of the vectors. Further, βj is a parameter that computes
the importance between the embedding vectors and aggregates the previous and
intermediate iteration embeddings.

4.2 Embedding of Global Graph

Since heterogeneous hypergraph does not consider the co-occurrence relation-
ships or counts between sessions related to the same feature, we use the learning
of embedding global graphs in a GCE-GNN [8] with two configurations: propa-
gation and aggregation of information.

Information Propagation. The ε-neighborhood of each feature from the
global graph for feature t are embedded. Because the number of features of
interest within a neighborhood is considered to be different for each user, based
on the attention score shown in the following equation, the neighborhood embed-
ding hNε(vt

i)
is first learned.

hNε(vt
i)

=
∑

vt
j∈Nε(vt

i)

π(vt
i , v

t
j)h

global,t
l−1,j , (7)

π(vt
i , v

t
j) = Softmaxj

([
a(vt

i , v
t
k) | vt

k ∈ Nε(vt
i)

])
, (8)

a(vt
i , v

t
j) = q�LeakyRelu

(
W1

[
s ∗ hglobal,t

l−1,j

]
;wij

)
, (9)
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where hglobal,t
l−1 is an embedding of the global graph for the feature j on the

l − 1-th learning iteration, and π(vt
i , v

t
j) is an attention weight that considers

the importance of neighborhood node embedding. The attention score a(vt
i , v

t
j)

employs LeakyRelu. In LeakyRelu, wij ∈ R is the weight of an edge (vt
i , v

t
j) in

the global graph that represents the number of co-occurrences with features vt
j ,

and ; is a concatenation operator. Further, W1 ∈ R
(d+1)×(d+1) and q ∈ R

d+1 are
learnable parameters, and s is the average embedding of the session to which vt

i

belongs, defined as

s =
1
s

∑
vt

i∈St
a

hglobal,t
l−1,i . (10)

Information Aggregation. For a feature vt to be learned, the l-iteration
embedding hglobal,t

l is obtained by aggregating the (l − 1)-iteration embedding
and the neighborhood embeddings using the following formula:

hglobal,t
l,i = ReLU

(
W2

[
hglobal,t

l−1,i ;hNε(vt
i)

])
, (11)

where W2 ∈ R
d×2d denotes a learnable parameter. In global graph embedding,

highly relevant item information can be incorporated throughout the session by
aggregating the reference features and their ε-neighborhoods.

4.3 Embedding Feature Nodes

For the feature node vt
i , the final embedding is obtained from the embedding of

heterogeneous hypergraphs considering the category hierarchy and the embed-
ding of global graphs by the following gate mechanism:

gt
i = σ(W3h

hyper,t
L,i + W4h

global,t
L,i ), (12)

ht
i = gt

i ∗ hhyper,t
L,i + (1 − gt

i) ∗ hglobal,t
L,i , (13)

where σ is a sigmoid function, W3 ∈ R
d×d and W4 ∈ R

d×d are learnable param-
eters, and L is the final iteration of graph embedding. gt

i is learned to consider
the importance of embedding heterogeneous hypergraphs and embedding global
graphs. The final feature node embedding is required only for the item ID and
price based on the training of the next item.

4.4 Feature Extraction Considering Session Attributes

To enhance the recommendation accuracy in pseudo-sessions based on the
learned node embeddings, we propose an extraction method of features related
to the user’s items and prices in each session.
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Feature Extraction of Items. The embedding of an item node in session a
is given by the sequence [ha,id

1 , · · · ,ha,id
s ]. In addition to items, user attribute

information, time-series information, and EC site sale information, among oth-
ers, may be observed in each session. Therefore, we considered this information
and learned to capture the session-by-session characteristics associated with the
items. Let dsale be the number of types of sale information and xa

sale ∈ {0, 1}dsale

items be given per session. Each dimension of this vector represents the type of
sale, with a value of 1 if it is during a particular sale period and a value of 0 if it
is outside that period. Similarly, if the number of types of attribute information
is dtype, then xa

type ∈ {0, 1}dtype is a vector representing user attributes.
For items and sales, we also consider time-series location information. The

item location information defines a location encoding pos itemi ∈ R
d as in [7].

Furthermore, for the location information of the sale, the week information to
which the current session belongs is encoded by the following formula:

pos timea
2k−1 = sin

(
2mπ

52k

)
, (14)

pos timea
2k = cos

(
2mπ

52k

)
, (15)

where pos timea ∈ R
c is the location encoding associated with the week infor-

mation of the session a, m ∈ Z represents the week, and k is the embedding
dimension. Because a year comprise 52 weeks, the trigonometric function argu-
ment is divided by 52. Based on the above, item embedding in a session is defined
as follows:

va,id
i = tanh

(
W5

[
ha,id
i ;pos itemi

]
+ W6 [x

a
sale;pos timea] + W7x

a
type + b1

)
,

(16)
where W5 ∈ R

d×2d, W6 ∈ R
d×(dsale+c), W7 ∈ R

d×dtype , b1 ∈ R
d are trainable

parameters, va,id
i is the i-th item embedding in session a. The item preferences

Î
a

of a user in a session are determined according to [10] as follows:

Î
a

=
s∑

i=1

βih
a,id
i , (17)

βi = u�σ(W8v
a,id
i + W9v̄a,id + b2), (18)

where W8,W9 ∈ R
d×d, b2 ∈ R

d are learnable parameters, u� ∈ R
d is the

attention vector. Additionally, v̄a,id = 1
s

∑s
i=1 v

a,id
i .

Feature Extraction of Prices. The price hyperedge in session a is given by
[ha,p

1 , · · · ,ha,p
s ]. To estimate price preferences with respect to users, we follow

[10] and learn the features of the price series using multi-head attention as shown
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in the following equation:

Ea,p = [ha,p
1 ; · · · ;ha,p

s ], (19)
Ma,p

i = [heada
1 ; · · · ;heada

h], (20)

heada
i = Attention(W Q

i Ea,p,W K
i Ea,p,W V

i Ea,p), (21)

where h is the number of blocks of self-attention, W Q
i , W K

i , W V
i ∈ R

d
h ×d are

parameters that map item i in session a to query and key, value, and heada
i ∈ R

d
h

is the embedding vector of each block of multi-head-attention for item i. Further,
Ea,p ∈ R

dm, Ma,p
i ∈ R

d and the embedded price series is [Ma,p
1 , · · · ,Ma,p

s ].
Because the last price embedding is considered to be the most relevant to

the next item price in the price series, we determine the user’s price preference
P̂

a
= Ma,p

s in the session.

4.5 Predicting and Learning About the Next Item

The user’s item preferences Î
a

and price preferences P̂
a

are transformed into Ia

and Pa respectively by co-guided learning [10], considering mutual dependency
relations. When an item va,id

i ∈ V id and a price range va,p
i ∈ Vp are observed

in session a, the next item to view and purchase is given by the score of the
following Softmax function:

ŷi = Softmaxi ([q1, · · · , qnid ]) , (22)

qi = Pa�ha,p
i + Ia�ha,id

i . (23)

At the training time, this score is used to compute the cross-entropy loss.

L(y, ŷ) = −
nid∑
j=1

(yj log (ŷj) + (1 − yj) log (1 − ŷj)) , (24)

where y ∈ {0, 1}nid
is the objective variable that indicates whether the user has

viewed and purchased item vid
i . ŷ ∈ R

nid
is the score for all items.

5 Experiments

We evaluate our proposed method using purchasing history data of an EC mar-
ket. The dataset comprises the purchasing history of 100,000 people randomly
selected by age group which are obtained from the users registered in 2019–20
in the Rakuten [1] market, which is a portal site for multiple EC sites. We con-
sider four age groups: 21–35, 36–50, 51–65, and 66–80. Each purchasing history
comprises the category name of the purchased item (large, middle, small), week
(week 1–105), gender (male or female), residence (nine provinces in Japan), and
price segment (separated by thousands of JPY). The user ID and session infor-
mation are not recorded. Note that this dataset is provided at the 2022 Data
Analysis Competition organized by Joint Association Study Group of Manage-
ment Science and is not open to the public.
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Table 1. Statistical information of data set.

Age group 21–35 36–50 51–65 66–80

# of price range 10 10 10 10

# of large categories 36 36 36 35

# of middle categories 342 354 340 322

# of small categories 2,800 2,975 2,763 2,327

# of interaction 727,655 1,033,405 712,894 452,496

# of sessions 326,110 462,290 323,184 203,725

Avg. session length 2.24 2.24 2.21 2.24

5.1 Preprocessing

Our method recommends a small category name as the item ID. Additionally,
the proposed model also considers session attributes, such as purchaser gender,
region of residence, and EC site sales. As specific sale information, we include two
types of sales that are regularly held at the Rakuten market. Sale 1 is held once
every three months for one week, during which many item prices are reduced by
up to half or less. Sale 2 is held for a period of one week each month, and more
points are awarded for shopping for items on the EC site. Each session attribute
is represented by a discrete label. When learning, we treat each gender, region,
and sale as a vector with the observed value as 1 and all other values as 0.
The price intervals are converted to price range labels by applying a logistic
distribution [2].

In each transformed dataset, consecutive purchase intervals with the same
gender and residential area are labeled as pseudo-sessions. Based on the assigned
pseudo session ID, records with a session length of less than 2 or frequency of
occurrence of less than 10 are deleted, according to [10]. Within each session,
the last observed item ID is used as the prediction target, and the other series
are used for training. In dividing the data, weeks 1 through 101 are used as
training data, and the remaining weeks 102 through 105 are used as test data.
Additionally, 10% of the training data re used as validation data for hyperpa-
rameter tuning of the model. The statistical details of the four datasets are listed
in Table 1.

5.2 Evaluation Criteria

We employ the following criteria to evaluate the recommendation accuracy:

– P@k (Precision) : The percentage of the top k recommended items that are
actually purchased.

– M@k (Mean Reciprocal Rank) : The mean value for the inverse of the
rank of the items actually recommended for purchase. If the rank exceeds k,
it is 0.

The precision does not consider the ranking of recommended items; however,
the mean reciprocal rank is a criterion that considers ranking, implying that the
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higher the value, the higher the item actually purchased in the ranking. In our
experiment, we set k = 10, 20.

5.3 Comparative Model

To verify the effectiveness of the proposed method, we compare it with the
following five models.

– FPMC [6]: By combining matrix factorization and Markov chains, this
method can capture both time-series effects and user preferences. As the
dataset is not assigned an ID to identify the user, the observations for each
session are estimated as if they were separate users.

– GRU4Rec [4]: An SBR based on RNN with GRU when recommending items
for each session.

– SR-GNN [9]: An SBR that constructs a session graph and captures transi-
tions between items using a GNN.

– GCE-GNN [8]: An SBR that builds a session graph and global graph, and
captures transitions between items by a GNN while considering their impor-
tance.

– CoHHN [10]: An SBR that constructs a heterogeneous hypergraph regarding
sessions that considers information other than items and captures transitions
between items with a GNN.

5.4 Parameter Setting

To fairly evaluate the performance of the model, we use many of the same param-
eters for each model. For all models, the size of the embedding vector is set to
128, the number of epochs to 10, and the batch size to 100. For the optimiza-
tion method, GRU4Rec uses Adagrad (learning rate 0.01) based on the results
of previous studies, while the GNN method uses Adam (learning rate 0.001)
with a weight decay of 0.1 applied every three epochs. The coefficients of the
L2-norm regularity are set to 10−5. Additionally, in GCE-GNN and our model
CoHHGN+, the size of the neighborhood item-set ε in the global graph is set to
12. Furthermore, in CoHHN and our model, the number of self-attention heads
is set to 4 (h = 4), and the number of price ranges to 10. Finally, the number of
GNN iterations and percentage of dropouts used in the architecture are deter-
mined by grid search for each model using the validation data. We have released
the source code of our model online1.

6 Results and Discussion

6.1 Performance Comparison

Tables 2 and 3 show the results of evaluating the five existing methods and the
proposed method CoHHGN+ on the four selected datasets. CoHHGN+ obtains
1 https://github.com/sumugit/CoHHGN plus.
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Table 2. Precision of CoHHGN+ and comparative methods. The most accurate value
for each dataset is shown in bold, and the second most accurate value is underlined.
Each value is the average of three experiments conducted to account for variations due
to random numbers. For CoHHGN+ and the other most accurate models, a t-test is
performed to confirm statistical significance, and a p-value of less than 0.01 is marked
with an asterisk (*).

Dataset age 21–35 age 36–50 age 51–65 age 66–80

Method P@10 P@20 P@10 P@20 P@10 P@20 P@10 P@20

FPMC 3.84 6.22 4.00 6.56 0.66 2.83 1.13 3.46

GRU4Rec 1.72 2.57 1.73 2.60 1.81 2.82 1.63 2.73

SR-GNN 15.06 20.92 13.71 20.11 13.78 20.34 14.30 22.55

GCE-GNN 15.16 20.88 13.72 20.11 13.87 20.46 14.42 22.46

CoHHN 15.19 21.06 13.96 20.22 13.93 20.73 14.36 22.49

CoHHGN+ 15.92∗ 22.28∗ 14.75∗ 22.01∗ 15.16∗ 22.57∗ 15.55∗ 23.84∗

Table 3. Mean reciprocal rank of CoHHGN+ and comparative methods. The symbols
attached to the values are the same as those in the table 2.

Dataset age 21–35 age 36–50 age 51–65 age 66–80

Method M@10 M@20 M@10 M@20 M@10 M@20 M@10 M@20

FPMC 0.88 1.04 1.14 1.31 0.15 0.28 0.38 0.54

GRU4Rec 0.78 0.84 0.75 0.81 0.71 0.78 0.59 0.66

SR-GNN 6.56 6.95 5.95 6.38 5.51 5.97 5.24 5.80

GCE-GNN 6.65 7.04 6.02 6.45 5.58 6.04 5.21 5.75

CoHHN 6.67 7.06 6.01 6.44 5.62 6.08 5.27 5.81

CoHHGN+ 6.89∗ 7.32∗ 5.93 6.42 5.83∗ 6.34∗ 5.81∗ 6.37∗

the most accurate results for all datasets with precision for k = 10, 20. The mean
reciprocal rank is also the most accurate, except for the data for the 36–50 age
group. For the 36–50 year age group dataset, the precision is higher than that
for the other models, while the mean reciprocal rank shows the highest accuracy
for GCE-GNN. However, there is no statistically significant difference in the
prediction accuracy between CoHHGN+ and GCE-GNN in this dataset. Thus,
it can be inferred that there is no clear difference in prediction accuracy. This
confirms the effectiveness of the proposed method for all the data.

In the comparison method, a large discrepancy in accuracy between the GNN-
based method, which introduces an attention mechanism in the purchase series,
and the other methods is noted. Overall, the GRU4Rec without attention mech-
anism results in the lowest accuracy, suggesting that the results were not suffi-
ciently accurate for data with a small number of sessions. This is because the
model focuses only on purchase transitions between adjacent items. Similarly,
for FPMC, although the accuracy is improved compared to GRU4Rec, modeling
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with Markov chains and matrix factorization is not effective for purchase data
with pseudo-sessions. Moreover, SR-GNN, GCE-GNN, CoHHN, and CoHHGN+
using graphs of purchase transitions between sessions show a significant improve-
ment in accuracy and are able to learn the purchase trends of non-adjacent items
as well.

Among the compared methods, CoHHN, which considered price and large
category information in addition to item ID information, tends to have a higher
prediction accuracy overall. The number of series per session is generally small
for purchase history data, and it can be said that higher accuracy can be obtained
by learning data involving multiple features, including items. GCE-GNN, which
also considers the features of other sessions, shows the second highest prediction
accuracy after CoHHN. When using purchase history data with short session
lengths, it is more accurate to learn embedding vectors by considering items
that have co-occurrence relationships with other sessions, in addition to series
within sessions. The SR-GNN that has learned only from item ID transitions
is inferior to the GCE-GNN in terms of overall accuracy among GNN-based
systems, although it is more accurate than the GCE-GNN for some datasets.
Therefore, it can be considered that adopting features other than the item ID
and other session information will lead to improved recommendation accuracy.

We confirm that the proposed method improves accuracy not only by con-
sidering auxiliary information in the purchase transition of items, but also by
learning methods for its embedding vectors and including additional features
that change from session to session. Furthermore, the embedding vector obtained
from the global graph of the item of interest works well for a series with short
session lengths.

6.2 Impact of Each Model Extension

Next, we conduct additional experiments on four datasets to evaluate the effec-
tiveness of embedding item category hierarchies and accounting for session
attributes, as well as global-level features. Particularly, we design the follow-
ing two comparative models:

– CoHHGN (H): A model that incorporates hierarchical embedding of three or
more features that vary within a session.

– CoHHGN (HS): A model that considers the hierarchical embedding of three
or more features and session attributes in the proposed method.

To compare the performance with existing methods, we use the most accurate
values of the existing methods shown in Tables 2 and 3 as the baselines. Tables 4
and 5 show the prediction results of the comparison model. For both precision
and Mean Reciprocal Rank, CoHHGN+, which incorporates all the proposed
methods, performs better overall than the other two models. For Precision, the
accuracy of CoHHGN (HS) is higher for P@10 in the 21–35 year age group
dataset. However, because the accuracy of CoHHGN+ is higher than that of
other methods in P@20, we believe that considering the embedding of global
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Table 4. Comparison of the precision accuracy for each model extension. The most
accurate values for each dataset are shown in bold. Each value is the average of three
experiments conducted to account for random number variation. A t-test was conducted
to confirm the statistical significance of the accuracy between the baseline and the
proposed method, and an astarisk (*) is added if the p-value is less than 0.01.

Dataset age 21–35 age 36–50 age 51–65 age 66–80

Method P@10 P@20 P@10 P@20 P@10 P@20 P@10 P@20

Baseline 15.19 21.06 13.96 20.22 13.93 20.73 14.42 22.49

CoHHGN (H) 15.24 21.13 14.10 21.13 13.98 20.69 14.24 22.56

CoHHGN (HS) 15.95∗ 22.11∗ 14.66∗ 21.97∗ 13.97 20.57 15.13∗ 23.51∗

CoHHGN+ 15.92∗ 22.28∗ 14.75∗ 22.01∗ 15.16∗ 22.57∗ 15.55∗ 23.84∗

Table 5. Comparison of mean reciprocal rank accuracy for each model extension. The
symbols attached to the values are the same as those in the table 4.

Dataset age 21–35 age 36–50 age 51–65 age 66–80

Method M@10 M@20 M@10 M@20 M@10 M@20 M@10 M@20

Baseline 6.67 7.06 6.02 6.45 5.62 6.08 5.27 5.81

CoHHGN (H) 6.63 7.02 6.02 6.45 5.66 6.12 5.32 5.88

CoHHGN (HS) 6.77 7.19 5.94 6.45 5.65 6.11 5.69∗ 6.24∗

CoHHGN+ 6.89∗ 7.32∗ 5.93 6.42 5.83∗ 6.34∗ 5.81∗ 6.37∗

graph features will improve the accuracy in a stable manner. For CoHHGN (H),
although the accuracy is improved over the baseline in several datasets, no sta-
tistically significant differences are identified. However, extending the model to
CoHHGN (HS), which also considers session attributes, results in a significant
difference in precision in all datasets, except for the age group 51–65.

Further, considering the mean reciprocal rank, although the recommenda-
tion accuracy tends to improve as the model is extended to CoHHGN (H) and
CoHHGN (HS), the only dataset in which statistically significant differences
can be confirmed is that for the 66–80 age group. However, when extended to
CoHHGN+, which incorporates all the proposed methods, the overall prediction
accuracy is higher and significant differences are confirmed. This confirms that
the recommendation accuracy of the item ID can be improved by simultaneously
considering features that vary between sessions and attributes of other sessions,
in addition to features that vary within sessions.

7 Conclusion

In this study, we developed CoHHGN+ based on CoHHN, which is an SBR con-
sidering various features, and GCE-GNN considering global graphs, for purchase
history data of EC sites. Moreover, we considered global time-series information,
sale information, and user information. The application of the proposed model
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to pseudo-session data with no user IDs shows that the GNN-based method
exhibits significantly higher accuracy than those for the other methods, and
that our proposed CoHHGN+ is the most accurate method on the dataset.

Although incorporating several types of data improves the prediction accu-
racy, there are still issues from the viewpoint of feature selection for data with
more types of information recorded. If there are n types of heterogeneous infor-
mation, the number of heterogeneous hypergraphs used to embed heterogeneous
information is 2n. Therefore, selecting and integrating heterogeneous information
remains an issue.

Future work on issues related to more efficient feature selection and meth-
ods for integrating heterogeneous information will lead to the development of
models with even higher accuracy. We would also like to expand the scope of
application of CoHHGN+ proposed in this study and attempt to provide useful
recommendations in other domains as well.
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Abstract. There seems to be an upper limit to predicting the outcome
of matches in (semi-)professional sports. A number of works have pro-
posed that this is due to chance and attempts have been made to simulate
the distribution of win percentages to identify the most likely proportion
of matches decided by chance. We argue that the approach that has been
chosen so far makes some simplifying assumptions that cause its result
to be of limited practical value, especially for settings where teams do
not play all possible opponents. Instead, we propose to use clustering of
statistical team profiles and observed scheduling information to derive
limits on the predictive accuracy for particular seasons, which can be
used to assess the performance of predictive models on those seasons.
Using NCAA basketball data, we show that the resulting simulated dis-
tributions are much closer to the observed distributions and give higher
assessments of chance and tighter limits on predictive accuracy. We also
show similar results for the NBA.

1 Introduction

In prior work on the topic of NCAA basketball [14], we speculated about the
existence of a “glass ceiling” in (semi-)professional sports match outcome pre-
diction, noting that season-long accuracies in the mid-seventies seemed to be the
best that could be achieved for college basketball, with similar results for other
sports. One possible explanation for this phenomenon is that we are lacking the
attributes to properly describe sports teams, having difficulties to capture player
experience or synergies, for instance. While this is the focus of on-going work in
the community, especially for “under-described” sports such as European soccer
or NFL football, we consider a different question in this paper: the influence of
chance on match outcomes.

Even if we were able to accurately describe sports teams in terms of their
performance statistics, the fact remains that athletes are humans, who might
make mistakes and/or have a particularly good/bad day, that matches are ref-
ereed by humans, see before, that injuries might happen during the match, that
the interaction of balls with obstacles off which they ricochet quickly becomes
too complex to even model etc. Each of these can affect the match outcome to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bifet et al. (Eds.): DS 2023, LNAI 14276, pp. 599–613, 2023.
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varying degrees and especially if we have only static information from before the
match available, it will be impossible to take them into account during predic-
tion.

While this may be annoying from the perspective of a researcher in sports
analytics, from the perspective of sports leagues and betting operators, this is a
feature, not a bug. Matches of which the outcome is effectively known beforehand
do not create a lot of excitement among fans, nor will they motivate bettors to
take risks.

Intuitively, we would expect that chance has a stronger effect on the outcome
of a match if the two opponents are roughly of the same quality, and if scoring
is relatively rare: since a single goal can decide a soccer match, one (un)lucky
bounce is all it needs for a weaker team to beat a stronger one. In a fast-paced
basketball game, in which the total number of points can number in the two or
even three hundreds, a single basket might be the deciding event between two
evenly matched teams but probably not if the skill difference is large.

For match outcome predictions, a potential question is then: “How strong is
the impact of chance for a particular league?”, in particular since quantifying
the impact of chance also allows to identify the “glass ceiling” for predictions.
The topic has been explored for the NFL in [2–4], which reports

The actual observed distribution of win-loss records in the NFL is indis-
tinguishable from a league in which 52.5% of the games are decided at
random and not by the comparative strength of each opponent.

Using the same methodology, Weissbock et al. [13] derive that 76% of matches
in the NHL are decided by chance. As we will argue in the following section,
however, the approach used in those works is not applicable to NCAA basketball.

Before we continue, a short remark on terminology: Burke uses the term
“luck” but we prefer the term “chance” since “luck” implies a positive outcome,
whereas “chance” is meant to indicate randomness.

2 Identifying the Impact of Chance by Monte Carlo
Simulations

The general idea used by Burke and Weissbock1 is the following:

1. A chance value c ∈ [0, 1] is chosen.
2. Each out of a set of virtual teams is randomly assigned a strength rating.
3. For each match-up, a value v ∈ [0, 1] is randomly drawn from a uniform

distribution.
– If v ≥ c, the stronger team wins.
– Otherwise, the winner is decided by flipping an unweighted coin.

4. The simulation is re-iterated a large number of times (e.g. 10, 000) to smooth
results.

1 For details for Weissbock’s work, we direct the reader to [12].
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Figure 1 shows the distribution of win percentages for 340 teams, 40 matches
per team (roughly the settings of an NCAA basketball season including playoffs),
and 10, 000 iterations for c = 0.0 (pure skill), c = 1.0 (pure chance), and c = 0.5.

Fig. 1. MC simulated win percentage distributions for different amounts of chance

By using a goodness of fit test – χ2 in the case of Burke’s work, F-Test in the
case of Weissbock’s – the c-value is identified for which the simulated distribution
fits the empirically observed one best, leading to the values reproduced in the
introduction. The identified c-value can then be used to calculate the upper limit
on predictive accuracy in the sport: since in 1 − c cases the stronger team wins,
and a predictor that predicts the stronger team to win can be expected to be
correct in half the remaining cases in the long run, the upper limit lies at:

(1 − c) + c/2,

leading in the case of

– the NFL to: 0.475 + 0.2625 = 0.7375, and
– the NHL to: 0.24 + 0.36 = 0.62

Any predictive accuracy that lies above those limits is due to the statistical
quirks of the observed season: theoretically it is possible that chance always
favors the stronger team, in which case predictive accuracy would actually be
1.0. As we will argue in the following section, however, NCAA seasons (and not
only they) are likely to be quirky indeed.

3 Limitations of the MC Simulation for NCAA
Basketball

A remarkable feature of Fig. 1 is the symmetry and smoothness of the resulting
curves. This is an artifact of the distribution assumed to model the theoretical
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distribution of win percentages – the Binomial distribution – together with the
large number of iterations. This can be best illustrated in the “pure skill” setting:
even if the stronger team were always guaranteed to win a match, real-world
sports schedules do not always guarantee that any team actually plays against a
representative mix of teams both weaker and stronger than itself. A reasonably
strong team could still lose every single match, and a weak one could win at a
reasonable clip. One league where this is almost unavoidable is the NFL, which
consists of 32 teams, each of which plays 16 regular season matches (plus at
most 4 post-season matches), and ranking “easiest” and “hardest” schedules in
the NFL is an every-season exercise. Burke himself worked with an empirical
distribution that showed two peaks, one before 0.5 win percentage, one after. He
argued that this is due to the small sample size (five seasons).
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Fig. 2. Observed distribution of win percentages in the NCAA, 2008–2013

The situation is even more pronounced in NCAA basketball, where 340+
Division I teams play at most 40 matches each. Figure 2 shows the empirical
distribution for win percentages in NCAA basketball for six season (2008–2013).2

While there is a pronounced peak for a win percentage of 0.5 for 2008 and 2012,
the situation is different for 2009, 2010, 2011, and 2013. Even for the former
two seasons, the rest of the distribution does not have the shape of a Binomial
distribution. Instead it seems to be that of a mix of distributions – e.g. “pure
skill” for match-ups with large strength disparities overlaid over “pure chance”
for approximately evenly matched teams.

NCAA scheduling is subject to conference memberships and teams will try to
pad out their schedules with relatively easy wins, violating the implicit assump-
tions made for the sake of MC simulations. This also means that the “statistical
2 The choice of seasons is due to presentation concerns, especially in the case of visu-

alizations. Other/additional seasons exhibit similar phenomena.
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quirks” mentioned above are often the norm for any given season, not the excep-
tion. Thought to its logical conclusion, the results that can be derived from
the Monte Carlo simulation described above are purely theoretical: if one could
observe an effectively unlimited number of seasons, during which schedules
are not systematically imbalanced, the overall attainable predictive accu-
racy were bound by the limit than can be derived by the simulation. For a given
season, however, and the question how well a learned model performed w.r.t. the
specificities of that season, this limit might be too high (or too low).
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As an illustration, consider Fig. 3, showing several season simulations as well
as observed winning percentages for the 2008 season.3 Differing from Burke and
Weissbock, we use neither the χ2 test (which requires frequency binning), to
compare distributions, nor the F-Test, which only compares variances. Instead,
we chose the Kolmogorov-Smirnov Test, which returns the maximum distances
between two distributions’ cumulative distribution functions (CDF).

The MC simulation that matches the observed proportion of teams having a
win percentage of 0.5 is derived by setting c = 0.42, implying that a predictive
accuracy of 0.79 should be possible. The MC simulation that fits the observed
distribution best, according to the Kolmogorov-Smirnov (KS) test (which over-
estimates the proportion of teams having a win percentage of 0.5 along the way),
is derived from c = 0.525 (same as Burke’s NFL analysis), setting the predictive
limit to 0.7375. Both curves have visually nothing in common with the observed
distribution, yet the null hypothesis – that both samples derive from the same
distribution – is not rejected at the 0.001 level by the KS test for sample com-
parison. This hints at the weakness of using such tests to establish similarity:

3 Other seasons show similar behavior, so we treat 2008 as a representative example.
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CDFs and standard deviations might simply not provide enough information to
decide whether a distribution is appropriate.

4 Related Work

As mentioned above, Weissbock [12,13] and Burke [2–4] use a Monte Carlo sim-
ulation to identify winning percentage distributions most similar to an observed
one using a comparison measure and then derive the chance value. We have given
the details of their approach in Sect. 2.

Academic work on the subject is relatively rare. Mauboussin [8] compares
the variance of winning percentages of observed seasons to the variance of an
all-chance season to derive the impact of chance. As a result of this analysis, he
claims that the influence of chance on the NBA is only 12% because the skill
difference between teams were so large. This is an astounding number since it
would imply that one can achieve a predictive accuracy of 94%! Incidentally,
this would make lucrative betting on the NBA impossible.

Aoki et al. [1] consider the distribution of points won at home and away for
teams (for soccer, for instance, 3 for a win, 1 for a tie, 0 for a loss), which in an
equal-skill (pure-chance) league would be normally distributed. By comparing
the observed distribution’s variance to the expected one, they derive a coefficient
placing different leagues on a skill-chance spectrum. They report basketball as
being least influenced by chance, followed by volleyball, soccer, and handball.
They do not report concrete chance values, except for the NBA where they esti-
mate it as being 35%, but explore how many teams that are much better (or much
worse) than the rest have to be removed to end up with a pure-chance league.
Basketball (50%) and volleyball (40%) require many such removals, whereas in
soccer (19%) and handball (14%) there are only few outlier teams.

Gilbert and Wells [7] place “luck” in the context of ludology, the study of
complex games. Defining two measures, , they consider individual MLB (base-
ball), NFL, NHL, and NBA matches. They find NBA matches to be less affected
by chance than NHL and MLB ones (due to larger skill differences in the NBA).
They also report NFL matches to be least affected by discuss that the shorter
season seems to cancel this out.

Sarkar and Kamath [11] consider soccer, and aim to establish whether there
is a difference in “X-factors” between the first and last six teams in a season’s
ranking, and to what degree chance affects the final rankings. They compare
expected (predicted) points, goals etc. to observed ones to derive what they term
“X-factors”. By comparing the mean of X-factors between consecutive positions
in the ranking, they find that the X-factor has explanatory power for the first
two positions, and that chance has no effect on the top-six.

Csurilla et al. [5] consider the results of 3×3 and 5×5 basketball world cups,
using the final ranking as ground truth. Using four chance measures, they find
that women’s basketball competitions are less influenced by chance than men’s,
and that 3 × 3 is more influenced by chance than 5 × 5. They do not report
concrete chance values.
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5 Deriving Limits for Specific Seasons

The ideal case derived from the MC simulation does not help us very much in
assessing how close a predictive model comes to the best possible prediction.
Instead of trying to answer the theoretical question: What is the expected limit
to predictive accuracy for a given league?,
we therefore want to answer the practical question: Given a specific season, what
was the highest possible predictive accuracy?.

To this end, we still need to find a way of estimating the impact of chance
on match outcomes, while taking the specificities of scheduling into account. The
problem with estimating the impact of chance stays the same, however: for any
given match, we need to know the relative strength of the two teams but if we
knew that, we would have no need to learn a predictive model in the first place.
If one team has a lower adjusted offensive efficiency than the other (i.e. scoring
less), for example, but also a lower adjusted defensive efficiency (i.e. giving up
fewer points), should it be considered weaker, stronger, or of the same strength?

Learning a model for relative strength and using it to assess chance would
therefore feed the models potential errors back into that estimate. What we can
attempt to identify, however, is which teams are similar.

5.1 Clustering Team Profiles and Deriving Match-Up Settings

Table 1. Statistics used to described teams for clustering, definitions can be found at
www.basketball-reference.com/glossary

Offensive stats Defensive stats

AdjOEff Points per 100 possessions
scored, adjusted for
opponent’s strength

AdjDEff Points per 100 possessions
allowed, adjusted for
opponent’s strength

OeFG% Effective field goal percentage DeFG% eFG% allowed

OTOR Turnover rate DTOR TOR forced

OORR Offensive rebound rate DORR ORR allowed

OFTR Free throw rate DFTR FTR allowed

We describe each team in terms of their adjusted efficiencies, and their Four Fac-
tors, adopting Ken Pomeroy’s representation [10]. Each statistic is present both
in its offensive form – how well the team performed, and in its defensive form –
how well it allowed its opponents to perform (Table 1). We use the averaged end-
of-season statistics, leaving us with approximately 340 data points per season.
Clustering daily team profiles, to identify finer-grained relationships, and teams’
development over the course of the season, is left as future work. As a clustering
algorithm, we used the WEKA [6] implementation of the EM algorithm with

www.basketball-reference.com/glossary
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Table 2. Number of clusters per season and clusters represented in the NCAA tour-
nament (second line)

Season 2008 2009 2010 2011 2012 2013

Number of Clusters (EM) 5 4 6 7 4 3

Cluster IDs in Tournament 1,5 4 2,6 1,2,5 3,4 2

# Clusters (Optimized EM, Sect. 7) 20 4 19 20 14 13

default parameters. This involves EM selecting the appropriate number of clus-
ters by internal cross validation, with the second row of Table 2 showing how
many clusters have been found per season.

As can be seen, depending on the season, the EM algorithm does not separate
the 340 teams into many different statistical profiles. Additionally, as the third
row shows, only certain clusters, representing relatively strong teams, make it
into the NCAA tournament, with the chance to eventually play for the national
championship (and one cluster dominates, like Cluster 5 in 2008). These are
strong indications that the clustering algorithm does indeed discover similarities
among teams that allow us to abstract “relative strength”. Using the clustering
results, we can re-encode a season’s matches in terms of the clusters to which
the playing teams belong, capturing the specificities of the season’s schedule.

Table 3. Wins / total matches for pairings of teams of the clusters indicated in the
row and column of each cell, 2008

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Weaker opponent

Cluster 1 76/114 161/203 52/53 168/176 65/141 381/687 (0.5545)

Cluster 2 100/176 298/458 176/205 429/491 91/216 705/1546 (0.4560)

Cluster 3 7/32 55/170 47/77 119/194 4/40 119/513 (0.2320)

Cluster 4 22/79 161/379 117/185 463/769 28/145 117/1557 (0.0751)

Cluster 5 117/154 232/280 78/83 232/247 121/198 659/962 (0.6850)

Table 3 summarizes the re-encoded schedule for 2008.4 The re-encoding allows
us to flesh out the intuition mentioned in the introduction some more: teams
from the same cluster can be expected to have approximately the same strength,
increasing the impact of chance on the outcome. Since we want to take all non-
chance effects into account, we encode pairings in terms of which team has home
court. The left margin indicates which team has home court in the pairing: this
means, for instance, that while teams from Cluster 1 beat teams from Cluster
2 almost 80% of the time when they have home court advantage, teams from
Cluster 2 prevail in almost 57% of the time when home court advantage is

4 The results for other seasons can be found in Appendix A.
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theirs. The effect of home court advantage is particularly pronounced on the
diagonal, where unconditional winning percentages by definition should be at
approximately 50%. Instead, home court advantage pushes them always above
60%. One can also see that many teams — all those in clusters 3 and 4 — mainly
play against stronger teams, and the teams in cluster 5 mainly against weaker
ones. In those cases, chance would need to intervene rather strongly to alter
match outcomes.

Table 3 is the empirical instantiation of our remark in Sect. 3: instead of a sin-
gle distribution, 2008 seems to have been a weighted mixture of 25 distributions.5

None of these specificities can be captured by the unbiased MC simulation.

5.2 Estimating Chance

The re-encoded schedule includes all the information we need to assess the effects
of chance. The win percentage for a particular cluster pairing indicates which of
the two clusters should be considered the stronger one in those circumstances,
and from those matches that are lost by the stronger team, we can calculate the
chance involved.

Consider, for instance, the pairing Cluster 5 – Cluster 2. When playing at
home, teams from Cluster 5 win this match-up in 82.85% of the cases! This is
the practical limit to predictive accuracy in this setting for a model that always
predicts the stronger team to win, and in the same way we used c to calculate
that limit above, we can now invert the process: c = 2 ∗ (1 − 0.8285) = 0.343.
When teams from Cluster 5 welcomed teams from Cluster 2 on their home court
in 2008, the overall outcome is indistinguishable from 34.3% of matches having
been decided by chance.

The impact of chance for each cluster pairing, and the number of matches
that have been played in particular settings, finally, allows us to calculate the
effect of chance on the entire season, and using this result, the upper limit for
predictive accuracy that could have been reached for a particular season.

Table 4. Effects of chance on different seasons’ matches and limit on predictive accu-
racy (for team encoding shown in Table 1)

Season 2008 2009 2010 2011 2012 2013

Unconstrained EM

KS 0.0526 0.0307 0.0506 0.0327 0.0539 0.0429

Chance 0.5736 0.5341 0.5066 0.5343 0.5486 0.5322

Limit for predictive accuracy 0.7132 0.7329 0.7467 0.7329 0.7257 0.7339

Optimized EM (Sect. 7)

KS 0.0236 0.0307 0.0396 0.0327 0.0315 0.0410

Chance 0.4779 0.5341 0.4704 0.5343 0.4853 0.5311

Limit 0.7610 0.7329 0.7648 0.7329 0.7573 0.7345

KenPom prediction accuracy 0.7105 0.7112 0.7244 0.7148 0.7307 0.7035

ANN prediction accuracy from [14] 0.7136 0.7357 0.7115 0.7248 0.7120 0.7187

5 Although some might be similar enough to be merged.
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The upper part of Table 4 shows the resulting effects of chance and the limits
regarding predictive accuracy for the six seasons under consideration. Notably,
the last two rows show the predictive accuracy when using the method described
on [10] and results we have reported in [14], using an artificial neural network
model. Ken Pomeroy’s method uses the Log5-method, with Pythagorean expec-
tation to derive each team’s win probability, and the adjusted efficiencies of the
home (away) team improved (degraded) by 1.4%. This method effectively always
predicts the stronger team to win and should therefore show similar behavior as
the observed outcomes. Its accuracy is always close to the limit and in one case
(2012) actually exceeds it. One could explain this by the use of daily instead of
end-of-season statistics but there is also another aspect in play. To describe that
aspect, we need to discuss simulating seasons.

6 Simulating Seasons

With the scheduling information and the impact of chance for different pairings,
we can simulate seasons in a similar manner to the Monte Carlo simulations we
have discussed above, but with results that are much closer to the distribution
of observed seasons:

1. A chance value c ∈ [0, 1] is chosen.
2. A set of virtual teams is assigned cluster labels as derived by the EM clustering

in such a manner that the distribution of instances to clusters matches the
observed distribution.

3. For each match-up, a value v ∈ [0, 1] is randomly drawn from a uniform
distribution.

– If v ≥ c, the stronger team wins.
– Otherwise, the winner is decided by flipping a weighted coin, with the

weight derived from the observed win probability for the cluster pairing.
4. The simulation is re-iterated a large number of times (e.g. 10, 000) to smooth

results.

Figure 3 shows that while the simulated distribution is not equivalent to the
observed one, it shows very similar trends. In addition, while the KS test does not
reject any of the three simulated distributions, the distance of the one resulting
from our approach to the observed one is lower than for the two Monte Carlo
simulated ones.

The figure shows the result of simulating the season 10, 000 times, leading
to the stabilization of the distribution. For fewer iterations, e.g. 100 or fewer,
distributions that diverge more from the observed season can be created. In par-
ticular, this allows the exploration of counterfactuals: if certain outcomes were
due to chance, how would the model change if they came out differently? Finally,
the information encoded in the different clusters – means of statistics and co-
variance matrices – allows the generation of synthetic team instances that fit
the cluster (similar to value imputation), which in combination with schedul-
ing information could be used to generate wholly synthetic seasons to augment
the training data used for learning predictive models. We plan to explore this
direction in future work.
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7 Finding a Good Clustering

Coming back to predictive limits, there is no guarantee that the number of
clusters found by the unconstrained EM will actually result in a distribution of
win percentages that is necessarily close to the observed one. Instead, we can
use the approach outlined in the preceding section to find a good clustering to
base our chance and predictive accuracy limits on:

1. We let EM cluster teams for a fixed number of clusters (we evaluated 4–20)
2. For a derived clustering, we simulate 10,000 seasons
3. The resulting distribution is compared to the observed one using the

Kolmogorov-Smirnov score

Table 5. KS similarity between observed and simulated distributions for different
numbers of clusters, lower is better, best values are indicated in bold

k Season

2008 2009 2010 2011 2012 2013

4 0.0838 0.0307 0.0560 0.0702 0.0539 0.0644

5 0.0710 0.0356 0.0543 0.0624 0.0609 0.0468

6 0.0488 0.0377 0.0506 0.0528 0.0404 0.0448

7 0.0494 0.0382 0.0433 0.0327 0.0390 0.0432

8 0.0466 0.0381 0.0417 0.0355 0.0404 0.0435

9 0.0534 0.0338 0.0424 0.0396 0.0398 0.0414

10 0.0564 0.0332 0.0421 0.0349 0.0370 0.0503

11 0.0478 0.0342 0.0447 0.0336 0.0325 0.0433

12 0.0326 0.0436 0.0545 0.0390 0.0378 0.0410

13 0.0357 0.0432 0.0559 0.0367 0.0351 0.0402

14 0.0374 0.0384 0.0511 0.0342 0.0315 0.0439

15 0.0385 0.0449 0.0578 0.0380 0.0350 0.0412

16 0.0388 0.0456 0.0570 0.0364 0.0361 0.0527

17 0.0269 0.0437 0.0480 0.0433 0.0441 0.0464

18 0.0293 0.0413 0.0441 0.0409 0.0327 0.0449

19 0.0276 0.0420 0.0396 0.0392 0.0462 0.0462

20 0.0236 0.0387 0.0460 0.0289 0.0371 0.0493

The results of this optimization are shown in Table 5. What is interesting
to see is that a) increasing the number of clusters does not automatically lead
to a better fit with the observed distribution, and b) clusterings with different
numbers of clusters occasionally lead to the same KS, validating our comment
in Footnote 5.
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Based on the clustering with the lowest KS, we calculate chance and pre-
dictive limit and show them in the second set of rows of Table 4. EM already
found the optimal assignment of teams to clusters for 2009 but for other seasons,
there are quite a few more clusters. Generally speaking, optimizing the fit allows
to lower the KS quite a bit and leads to lower estimated chance and higher
predictive limits. For both categories, however, the fact remains that different
seasons were influenced by chance to differing degrees and therefore different
limits exist. Furthermore, the limits we have found stay significantly below 80%
and are different from the limits than can be derived from MC simulation.

Those results obviously come with some caveats:

1. Teams were described in terms of adjusted efficiencies and Four Factors –
adding or removing statistics could lead to different numbers of clusters and
different cluster memberships.

2. Predictive models that use additional information, e.g. experience of players,
or networks models for drawing comparisons between teams that did not play
each other, can exceed the limits reported in Table 4.

The table also indicates that it might be less than ideal to learn from preceding
seasons to predict the current one (the approach we have chosen in our previous
work): having a larger element of chance (e.g. 2009) could bias the learner against
relatively stronger teams and lead it to underestimate a team’s chances in a more
regular season (e.g. 2010).

8 NBA Results

Finally, we apply the same approach to NBA seasons. The NBA contains much
fewer teams (30), and plays many more matches (82), with the result that every
team plays every other one at least twice.

Table 6. Effects of chance on different NBA seasons’ matches and limits on predictive
accuracy

Season 2008 2009 2010 2011 2012 2013 2014 2015

Optimized EM (Sect. 7)

Number of clusters 5 6 5 9 6 10 9 7

KS 0.0749 0.0693 0.0848 0.0802 0.0618 0.0822 0.0512 0.0840

Chance 0.5821 0.5779 0.5930 0.5802 0.6091 0.5841 0.6005 0.6066

Limit 0.7090 0.7110 0.7035 0.7099 0.6954 0.7080 0.6998 0.6967

KenPom prediction 0.6725 0.6920 0.6700 0.6697 0.6601 0.6530 0.6475 0.6590

NB prediction accuracy from [14] 0.6608 0.6494 0.6506 0.6331 0.6187 0.6240 0.6438 0.6545

The results can be seen in Table 6. Compared to Table 4, chance values are
higher, and predictive limits lower. This is expected since talent differences
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between NBA teams are less than for NCAAB teams (only the best NCAAB
players end up in the NBA after all), which allows chance to have a bigger effect,
as we discussed in the introduction. We also see that the prediction accuracies of
the predictive models are lower, most notably for Ken Pomeroy’s model, which,
as mentioned before, effectively always predicts the best team to win.

9 Summary and Conclusions

In this paper, we have considered the question of the impact of chance on the
outcome of (semi-)professional sports matches in more detail. In particular, we
have shown that the unbiased MC simulations used to assess chance in the
NFL and NHL are not applicable to the college basketball setting. We have
argued that the resulting limits on predictive accuracy rest on simplifying and
idealized assumptions and therefore do not help in assessing the performance of
a predictive model on a particular season.

As an alternative, we propose clustering teams’ statistical profiles and re-
encoding a season’s schedule in terms of which clusters play against each other.
Using this approach, we have shown that college basketball seasons violate the
assumptions of the unbiased MC simulation, given higher estimates for chance,
as well as tighter limits for predictive accuracy.

There are several directions that we intend to pursue in the future. First,
as we have argued above, NCAA basketball is not the only setting in which
imbalanced schedules occur. We would expect similar effects in the NFL, and
soccer, which, as mentioned, is lower-scoring and where teams typically only play
each other twice. What is needed to explore this question is a good statistical
representation of teams, something that is easier to achieve for basketball than
football/soccer teams.

In addition, as we have mentioned in Sect. 6, the exploration of counterfac-
tuals and generation of synthetic data should help in analyzing sports better.
We find a recent paper [9] particularly inspirational, in that the authors used a
detailed simulation of substitution and activity patterns to explore alternative
outcomes for an NBA playoff series.

Finally, since we can identify different cluster pairings and the differing of
chance therein, separating those cases and training classifiers independently for
each could improve classification accuracy. To achieve this, however, we will need
solve the problem of clustering statistical profiles over the entire season – which
should also allow to identify certain trends over the course of seasons.

A Clustered schedules for different seasons,
unconstrained EM

See Tables 7, 8, 9, 10 and 11.



612 A. Zimmermann

Table 7. Wins and total matches for different cluster pairings, 2009

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Weaker opponent

Cluster 1 133/197 46/182 105/272 1/45 0/696 (0.0000)

Cluster 2 210/227 231/352 262/374 76/247 472/1200 (0.3933)

Cluster 3 261/308 192/357 409/663 56/261 453/1589 (0.2851)

Cluster 4 210/211 341/374 424/448 515/818 975/1851 (0.5267)

Table 8. Wins and total matches for different cluster pairings, 2010

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Weaker opponent

Cluster 1 129/204 18/104 6/14 47/126 33/145 0/18 0/611 (0.0000)

Cluster 2 163/167 269/437 76/105 255/292 134/195 73/249 628/1445 (0.4346)

Cluster 3 29/34 64/95 12/18 49/58 21/41 30/87 163/333 (0.4895)

Cluster 4 109/136 71/240 19/46 159/232 55/119 6/87 109/860 (0.1267)

Cluster 5 147/163 87/166 14/23 101/123 71/118 17/57 349/650 (0.5369)

Cluster 6 120/120 336/361 100/117 169/172 133/141 360/579 858/1490 (0.5758)

Table 9. Wins and total matches for different cluster pairings, 2011

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Weaker opponent

Cluster 1 89/138 140/174 40/40 69/73 93/185 97/103 86/99 525/812 (0.6466)

Cluster 2 66/148 235/369 70/71 141/167 29/121 166/206 118/176 495/1258 (0.3935)

Cluster 3 2/14 15/55 29/39 16/42 0/8 20/85 4/31 0/274 (0.0000)

Cluster 4 10/48 48/151 36/40 42/85 2/28 55/100 28/68 91/520 (0.1750)

Cluster 5 166/217 187/206 43/43 79/80 205/339 80/83 148/160 703/1128 (0.6232)

Cluster 6 11/49 76/178 77/88 72/97 7/47 94/151 34/65 183/675 (0.2711)

Cluster 7 29/82 97/160 57/58 59/72 30/125 74/92 79/127 287/716 (0.4008)

Table 10. Wins and total matches for different cluster pairings, 2012

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Weaker opponent

Cluster 1 108/201 110/320 20/119 19/121 0/761 (0.0000)

Cluster 2 362/416 610/960 105/354 175/394 362/2124 (0.1704)

Cluster 3 197/197 458/500 264/418 191/251 846/1366 (0.6193)

Cluster 4 179/191 373/454 111/245 163/258 552/1148 (0.4808)

Table 11. Wins and total matches for different cluster pairings, 2013

Cluster 1 Cluster 2 Cluster 3 Weaker opponent

Cluster 1 507/807 89/374 272/567 0/1748 (0.0000)

Cluster 2 569/607 622/967 518/578 1087/2152 (0.5051)

Cluster 3 435/611 119/381 358/572 435/1564 (0.2781)
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Abstract. The International Classification of Diseases (ICD) has been
adopted worldwide in the healthcare domain, e.g. to summarize the key
information in clinical documents. Since manual ICD coding is very
expensive, time-consuming, and error-prone, deep learning algorithms
have been proposed to automate this task. However, the final goal of
ICD coding often lays not in determining the codes associated with indi-
vidual documents, but instead in quantifying the prevalence of each code
within sets of documents. In this work, we experimentally assess different
quantification methods in connection to ICD coding, including a simple
learning-based approach that leverages associations between the codes, in
order to predict their relative frequencies more accurately. Experiments
show that the proposed approach can effectively explore existing asso-
ciations between ICD codes, improving the quantification performance
over baseline methods that deal with each code independently.

Keywords: Clinical Text Processing · ICD Coding · Quantification

1 Introduction

The International Classification of Diseases (ICD)1 coding system corresponds
to a standardised way of indicating diagnoses and procedures, supporting a
variety of analyses over clinical data (e.g., in the context of administrative
processes or public health studies). Despite being adopted worldwide in the
healthcare domain, manually assigning ICD codes to clinical documents is both
time-consuming and error-prone, and it represents a huge monetary burden for
health facilities [3,16]. Noting the aforementioned problems, many efforts have
been placed on the design of deep learning methods to automatically assign ICD
codes to clinical text, usually formulating the task as a multi-label classifica-
tion problem. Recent work has proposed the use of Transformer-based language
models [28]. Still, although these approaches have become the state-of-the-art
in many Natural Language Processing (NLP) problems, several challenges have
not yet been overcome for the ICD coding task, which requires the processing of
long narratives that involve a large and domain-specific vocabulary [12].
1 https://www.who.int/standards/classifications/classification-of-diseases.
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On the other hand, a line of work that has not been explored concerns using
the results of a classifier to estimate the prevalence (i.e., the relative frequency)
of ICD codes in a given dataset. In other domains, this task is usually referred to
as the problem of text quantification [10,17,25]. In fact, in most practical appli-
cations for ICD coding, we want to estimate the prevalence of an ICD code (or
group of codes) in a dataset, rather than simply estimating codes for individual
documents. For instance, epidemiologists are often interested in monitoring the
prevalence of specific diseases, and this may be done through clinical NLP. Still,
more than classifying documents associated to specific individuals (e.g., death
certificates, hospital discharge summaries, etc.), this requires the analysis of sets
of documents representing a population under a period of analysis.

Previous work has already proposed several methods for text quantifica-
tion that outperform the standard “classify and count” procedure [17,22]. How-
ever, scenarios that include multi-label classifiers and/or large label spaces have
received less attention. A straightforward solution to the multi-label quantifi-
cation problem could simply consist of recasting the problem as a set of inde-
pendent binary quantification problems [21]. Although simple, this solution is
not entirely satisfactory when the independence assumption between the tar-
get labels is not verified, which happens naturally in the case of ICD coding
due to frequent comorbidities or due to the association between diagnoses and
procedures.

This work presents experiments using different quantification approaches,
including a simple learning-based method that leverages relations between the
ICD codes in order to predict their relative frequencies more accurately. Our tests
were conducted using the MIMIC-III dataset [15] for multi-label text classifica-
tion, which is a large and extensively used publicly available Electronic Health
Record (EHR) dataset. We specifically considered a subset of hospital discharge
summaries with the 50 most frequent codes, named MIMIC-III-50 [23], and the
recently released dataset splits named MIMIC-III-clean [6].

We show that the proposed approach can effectively explore the existing asso-
ciations between ICD codes, refining probabilistic “classify and count” estimates
from the multi-label classifier, so that the quantification errors are in some cases
reduced by a considerable margin.

2 ICD Coding of Clinical Text

This section describes implementation details regarding the ICD coding task.
Section 2.1 presents the characterization of the dataset used in our experiments,
which have also been used in previous work focusing on automated ICD coding.
In turn, Sect. 2.2 explores the neural network architecture used in our approach
for multi-label ICD classification.

2.1 Clinical Text Dataset Splits

The MIMIC-III dataset [15] is a large critical care database comprising informa-
tion of over 40,000 patients admitted to intensive care units. It includes different
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types of clinical notes, such as hospital discharge summaries. This last type of
documents constitute the clinical text considered in most previous studies for
the ICD coding task, as these condense all the information during a patient visit
into one document. Each document is tagged with a set of ICD-9-CM codes,
describing both diagnoses and procedures made during the patient visit.

Our experiments used the exact same data splits from the work of Mullenbach
et al. [23], which were also used in many of the subsequent studies in the area.
Similarly to recent studies exploring the use of Transformer-based models for
automated ICD coding [4], we considered a version of the data with the subset
of the top-50 most frequent codes, referred to as MIMIC-III-50. This subset
consists of 11,368 hospital discharge summaries, in which 8,066, 1,573, and 1,729
documents are used as training, validation, and test sets, respectively.

Additionally, we performed experiments using recently released new dataset
splits, named MIMIC-III-clean [6]. This subset considers 3,681 unique ICD-9-
CM codes, thus representing a more challenging classification problem. It con-
tains 52,712 hospital discharge summaries, in which 38,401, 5,577, and 8,734
documents are used as training, validation, and test sets, respectively. Table 1
presents a comparison of the two MIMIC-III dataset splits considered in the
experiments.

The different data splits from MIMIC-III were used in the ICD coding task
(see Sect. 2.2), and the documents in the validation/test sets were used to assess
quantification performance, according to the setup in Sect. 4.1. Notice that, in
the multi-label setting associated with MIMIC-III, one can expect label associ-
ations to play a particular importance in the performance of classification and
quantification methods (e.g., codes corresponding to common comorbidities, or
common disease/procedure pairs, are expected to have a similar prevalence).

2.2 Neural Network Architecture

In this work, ICD coding of MIMIC-III clinical texts mostly relied on a language
model based on the Transformer architecture [28], namely a Longformer [2] for
clinical text. Contrarily to standard Transformer-based models like BERT [5],
which are unable to process long sequences due to their quadratic self-attention
operation, the Longformer overcomes this limitation by introducing a sparse

Table 1. Comparison of the MIMIC-III dataset splits.

MIMMIC-III-50 MIMIC-III-clean

Number of unique codes 50 3,681

Median number of codes per document 5 14

Number of training documents 8,066 38,401

Number of validation documents 1,573 5,577

Number of test documents 1,729 8,734
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attention mechanism that scales linearly with sequence length, making it possible
to process longer documents (e.g., up to 4,096 tokens).

Specifically, we used a previously proposed Clinical-Longformer model from
Li et al. [18], which corresponds to a clinical knowledge-enriched version of the
Longformer that was pre-trained using clinical text. The Clinical-Longformer
was initialised from a Longformer-base model and was further pre-trained on all
clinical notes from the MIMIC-III dataset. This model is publicly available in
association to the HuggingFace2 Transformers library [30].

The approach used to train the model for multi-label classification involves
minimising the Binary Cross-Entropy (BCE) loss between the predicted and true
ICD code assigments, as follows:

LBCE(p,y) = − 1
L

L∑

i=1

[
yi log(pi) + (1 − yi) log(1 − pi)

]
, (1)

where p and y ∈ R
L. The variable yi ∈ {0, 1} is the ground truth for label i, pi

is the probability of the label i being true as given by the classifier, and L is the
number of different ICD labels.

We fine-tuned two different Clinical-Longformer models using the data splits
mentioned in the previous section. Experiments on MIMIC-III-50 showed that
this classifier achieves a macro-F1 of 63.2%, a micro-F1 of 68.4%, and a pre-
cision@5 of 64.8%. These results are on par with those from other previous
publications on the topic of ICD coding [4]. In the case of the MIMIC-III-clean
dataset splits, the classifier achieves a macro-F1 of 6.5%, a micro-F1 of 46.2%,
and a precision@15 of 47.8%, slightly lower than previously reported scores [6].

Additionally, we also considered the LAAT classifier [29] for our experiments,
which is one of the state-of-the-art models on MIMIC-III. This model consists
of a Bi-LSTM network producing latent feature representations of all the input
tokens in a clinical note. These representations are then fed to a label attention
layer, in order to learn label-specific vectors that represent the important clinical
text fragments relating to certain labels, this way producing label-specific weight
vectors. Each one of these vectors is finally used to build a binary classifier for
each of the labels. Edin et al. [6] reported on a revised model comparison over the
MIMIC-III-clean dataset, and the corresponding source code and model param-
eters were made publicly available, allowing for result reproducibility. Table 2
summarizes the classification results for the different methods.

3 Quantification

Classify and Count (CC) is perhaps the simplest quantification method, which
we use as a baseline in our study. Each class i is handled independently, and the
method consists of simply counting the number of documents classified as i and
dividing by the total number of documents in a sample. Given a classifier c and
a sample of documents ε, CC for each ICD code i is defined as follows:
2 https://github.com/huggingface/transformers.

https://github.com/huggingface/transformers
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p̂CC
ε (i) =

|{x ∈ ε|ci(x) = 1}|
|ε| . (2)

A variant that corresponds to a stronger baseline is Probabilistic Classify
and Count (PCC). Instead of counting the number documents classified as i, we
can use the posterior probabilities returned by the classifier, as follows:

p̂PCC
ε (i) =

1
|ε|

∑

x∈ε

pi(x). (3)

Although conceptually simple, the CC and PCC methods correspond to very
strong baselines, often outperforming more sophisticated quantification meth-
ods [22]. We initially also considered the Adjusted Classify and Count (ACC) and
Probabilistic Adjusted Classify and Count (PACC) approaches [1,8,9], which
use estimates for the True Positive and False Positive Rates (TPR/FPR) of
the underlying classifier to make adjustments over the CC/PCC methods. How-
ever, initial experimental results were discouraging. Previous studies have noted
that the performance of these methods is highly sensitive to any errors in the
TPR/FPR estimates (whose computation, in the case of multi-label classifica-
tion, also poses additional challenges [11]), and that ACC and PACC can degrade
severely when the training class distribution is highly imbalanced [9].

The main approach explored in this study involves training a Multi-Layer
Perceptron (MLP) in order to obtain an adjusted estimate of the prevalence
of ICD codes in the input dataset, accounting with associations between the
labels. Our MLP, which is illustrated in Fig. 1, takes its inspiration on under-
complete denoising auto-encoders, and also on previous work focused on improv-
ing extreme multi-label classification through label correlations [31]. We use a
single bottleneck hidden layer that forces a compressed knowledge representa-
tion of a noisy input, in an attempt to capture the underlying structure of the
data (i.e., the correlations between the different classes, which correspond to the
input features). This structure is learned and consequently used when forcing the
inputs through the bottleneck, in order to predict the adjusted class prevalence
values (i.e., the denoised versions of the inputs).

More formally, the input corresponds to p̂PCC
ε estimates, while the output is

an adjusted quantification, p̂MLP
ε . We thus obtain:

Table 2. Results for the different classification methods, over the considered dataset
splits. Results for methods with † were taken directly from a previous publication.

AUC F1 Precision@k

Dataset splits Models Macro Micro Macro Micro 5 8 15

MIMIC-III-50 Longformer 89.8 92.2 63.2 68.4 64.8 52.6 34.5

MIMIC-III-clean Longformer 91.5 97.7 6.5 46.2 72.7 63.6 47.8

MIMIC-III-clean LAAT [6]† 94.0 98.6 22.6 57.8 — 70.1 54.8
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p̂MLP
ε = σ(W2σ(W1p̂PCC

ε + b1) + b2), (4)

where W1 ∈ R
D×L and W2 ∈ R

L×D are the learned weights, b1 ∈ R
D and

b2 ∈ R
L are the biases, D is the dimensionality of the hidden layer, and σ is

a non-linear activation function applied after the linear transformations (in our
case, the logistic sigmoid function).

Model training is done by minimising the Mean Squared Error (MSE) over
a quantification training set, as follows:

LMSE(p̂MLP
ε ,pε) =

L∑

i=1

|p̂MLP
ε (i) − pε(i)|2, (5)

where p̂MLP
ε and pε ∈ R

L. The function pε(i) corresponds to the ground-truth
quantification for the ICD label i, i.e., the actual class prevalence values defined
as the number of documents where yi = 1 divided by the total number of docu-
ments in sample ε.

4 Experimental Evaluation

This section presents the experimental evaluation of the proposed methods.
Section 4.1 details the model implementation and the experimental setup, while
Sect. 4.2 focuses on the evaluation metrics that were adopted to assess result
quality. Finally, Sect. 4.3 presents and discusses the obtained results.

4.1 Experimental Setup

Our tests involved clinical text classification for the assignment of ICD codes to
individual documents, followed by the training and/or assessment of quantifica-
tion methods over sets of documents.

Fig. 1. The proposed MLP architecture for quantification.
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On what regards multi-label classification of the MIMIC-III documents, we
fine-tuned two different Clinical-Longformer models, as described in Sect. 2.2,
with an effective batch size of 16 instances, a learning rate of 2e-5, and a maxi-
mum of 30 training epochs together with an early stopping patience of 5, moni-
toring the micro-F1 score over the validation split.

Regarding multi-label quantification, for each experiment, our setup involved
the creation of training and testing collections, respectively by sampling docu-
ments from the original MIMIC-III-50/MIMIC-III-clean validation and testing
splits, and considering samples with different sizes [19]. Each sample ε consists of
a set of documents randomly chosen from the corresponding split, with |ε| taking
a random value for each sample between one and the number of documents in the
split. A total of 5,000 samples were generated for training our MLP quantifier,
and 1,000 samples were generated for testing all the quantification approaches
(including the unsupervised baselines). We aimed at the creation of reasonably
sized datasets, with sufficient samples for model training without under-fitting,
and for stable model evaluation. Notice that the MIMIC-III-clean data splits
feature a much larger number of documents (i.e., more than four times the num-
ber of training documents in MIMIC-III-50). Given the much larger label space
and dataset size, we also considered a setting for the quantification experiments
featuring a set of training samples that is four times larger (i.e., 20,000 training
samples), built with the same general methodology. We then trained another
MLP quantifier with these samples named MLPX4.

For training the MLPs for quantification, we used a batch size of 32 samples,
a learning rate of 1e-3, and a maximum of 1,000 training epochs, stopping if
the training loss does not decrease for five consecutive epochs. We considered
a hidden layer dimensionality of D = 32 for the case of MIMIC-III-50, and
D = 3072 for MIMIC-III-clean, i.e., slightly less than the number of ICD classes.

4.2 Evaluation Metrics

Following previous work [21,26], we use the Absolute Error (AE) and the Rel-
ative Absolute Error (RAE) as evaluation metrics for quantification. We addi-
tionally divide the error by the number of samples, obtaining the Mean Absolute
Error (MAE) and the Mean Relative Absolute Error (MRAE):

MAE(p, p̂) =
1
N

N∑

j=1

(
1
L

L∑

i=1

|pεj
(i) − p̂εj

(i)|
)

, (6)

MRAE(p, p̂) =
1

N

N∑

j=1

[
1

2L

L∑

i=1

( |pεj
(i) − p̂εj

(i)|
pεj

(i)
+

|(1 − pεj
(i)) − (1 − p̂εj

(i))|
(1 − pεj

(i))

)]
, (7)

where p is the ground-truth, p̂ is a quantification method (CC, PCC, or MLP),
p, p̂ ∈ R

N×L, and N is the number of samples in the evaluation dataset. Since
the MRAE is undefined when pεj

(i) = 0 or pεj
(i) = 1, we smooth the probability

distributions pε and p̂ε via additive smoothing, as follows:
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s(pεj
) =

γ + pεj

2γ + 1
, (8)

with γ = (2|εj |)−1 as the smoothing factor.

4.3 Results and Discussion

Table 3 presents the results obtained for the different quantification experiments.
As a simple baseline, we show the performance of a “lazy” quantification method,
which returns a constant result corresponding to the expected values for the
prevalence of each ICD class within the MLP training samples (i.e., we measure
class prevalence on each training sample, and make a constant prediction for all
the testing samples with the average of these results). We also use CC and PCC
as additional unsupervised baselines, as these models do not leverage relations
between ICD codes (i.e., they treat each code independently), comparing their
results against the use of the proposed MLP approach to adjust the values of
PCC. In the case of MIMIC-III-clean, we present an additional variant of the
MLP, which consists of using a four times larger set of training samples, named
MLPX4. We repeated the experiments with the MLP method five times with
different random seeds for parameter initialization, and we report the mean and
standard deviation of these five runs.

Table 3. Results for the different quantification methods, over the different dataset
splits and classification models that were considered. The values in bold represent the
best-in-class performance in terms of the MAE and MRAE metrics.

Dataset splits Models Methods MAE MRAE

MIMIC-III-50 Longformer Lazy 0.01413 0.07935

CC 0.01952 0.10609

PCC 0.01375 0.08227

MLP 0.01094 ± 0.00032 0.06510 ± 0.00177

MIMIC-III-clean Longformer Lazy 0.00085 0.22805

CC 0.00222 0.32510

PCC 0.00078 0.20785

MLP 0.00079 ± 0.00001 0.21565 ± 0.00091

MLPX4 0.00078 ± 0.00000 0.21951 ± 0.00102

MIMIC-III-clean LAAT Lazy 0.00085 0.22805

CC 0.00154 0.26203

PCC 0.00088 0.24575

MLP 0.00077 ± 0.00001 0.21251 ± 0.00082

MLPX4 0.00077 ± 0.00000 0.21140 ± 0.00107

On what regards the experiments with MIMIC-III-50, the “lazy” baseline
actually achieves results that are better than those of the CC method. Using
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the probabilities returned by the classifier, rather than counting the number of
documents, results in a significant improvement in quantification accuracy (an
MAE drop of 0.00577). With the MLP approach, the quantification performance
also increases (an MAE drop of 0.00281 when comparing PCC against MLP).
These results show that, while relatively simple, our learning-based approach can
effectively improve over standard quantification methods when label associations
are an important factor to consider, as is the case for ICD coding.

Regarding the tests with MIMIC-III-clean, we also can notice that the “lazy”
baseline is stronger than CC, and that there is a significant performance improve-
ment when using PCC instead of CC. However, the results are also slightly
different when using different classification models. In the case of the Clinical-
Longformer, the MLP approach actually failed to improve the quantification
performance over PCC. In contrast, for the the LAAT model, the MLP gives
an improved performance when compared to PCC (an MAE decrease of 0.00011
in both MLP variants). Regardless of the classification approach, using a four
times larger collection of examples for training the MLP does not appear to
increase performance (with the exception of LAAT, where the MRAE decreases,
but the change is not very significant). Interestingly, although the classification
performance of the Clinical-Longformer is significantly worse than that of LAAT
(see Sect. 2.2), the quantification performance on the PCC baseline is superior,
which suggests that the model is better calibrated and, consequently, the impact
of the MLP approach for adjusting the PCC estimates is negligible.

Figure 2 presents a comparison, in terms of the AE for each of the MIMIC-
III-50 classes, between the PCC and MLP methods. We also present the relative
frequencies of the ICD codes over the quantification test set, and the F1-score
of the underlying classifier over the MIMIC-III-50 classification test split. The
MLP method improves results for the majority of the classes. For instance, for
the ICD code 401.9, which is the most frequent on the test set, the difference
between the AE in PCC and MLP is one of the most significant ones (i.e., the
error decreases to less than half). There are however no noticeable patterns in
the association between the quantification performance, the class prevalence over
the testing data, and the overall accuracy of the underlying classifier.

Figure 3 presents scatter-plots with quantification results for the two ICD
codes that occur more frequently in the data (i.e., 401.9 and 272.4, which respec-
tively correspond to unspecified essential hypertension and other and unspeci-
fied hyperlipidemia), and for the two rarest codes in MIMIC-III-50 (i.e., 37.23
and 99.04, respectively corresponding to combined right and left heart cardiac
catheterization and transfusion of packed cells). The x axis corresponds to the
real prevalence values, while the y axis corresponds to the estimated prevalence
values (i.e., an ideal quantification method would produce results in the diag-
onal of the scatter-plots). In all cases, the figures show that the PCC method
frequently overestimates the prevalence values of these ICD codes, with the MLP
method adjusting the results towards better estimates.
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5 Related Work

Previous literature has separately addressed the problems of automatic ICD
coding [14] and text quantification [25].

Regarding ICD coding, several approaches based on Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) have been success-
fully explored. Mullenbach et al. [23] proposed Convolutional Attention for
Multi-Label classification (CAML), i.e., a CNN-based model that employs a
label-wise attention mechanism, allowing for the selection of the most relevant
segments of a given document for each of the possible codes. The authors made
their dataset splits publicly available, so the method became a milestone for
reproducibility in terms of methods for the ICD coding task. Ji et al. [13]
proposed Gated CNNs and a novel Note-Code Interaction (GatedCNN-NCI)
method. This approach simultaneously captures the lengthy and rich semantic
information of clinical notes, and simultaneously exploits the interaction between
notes and codes. Vu et al. [29] introduced LAAT, which we considered as a clas-
sification baseline in this work. This model combines a RNN-based encoder and
a new label attention mechanism for ICD coding, aiming to handle the various
lengths and the interdependence between different text segments related to ICD
codes. Additionally, the authors proposed a hierarchical joint learning mecha-
nism that enables the label attention model to handle the class-imbalance issue.

Fig. 2. Relative frequency, AE, and F1-score for each ICD code over MIMIC-III-50.
Notice that, in the middle part of the figure, the bars for the PCC and MLP methods
are overlapped, meaning that the color in the bottom part of the bars corresponds to
the overlap of the two methods. If the color in the top part of the bar corresponds to
PCC, the error of this method is higher than that of the MLP (and vice versa).
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Fig. 3. Estimated versus real prevalence for the two most frequent (top) or rarest
(bottom) ICD codes in the MIMIC-III-50 dataset.

Yuan et al. [32] proposed a Multiple Synonyms Matching Network (MSMN).
Instead of exploiting the code hierarchy, the authors leverage synonyms for bet-
ter code representation learning and, consequently, help in the coding task.

More recently, research has shifted towards Transformer-based language mod-
els, focusing on two main approaches for processing long documents: sparse
attention Transformers, such as the Longformer [2] or BigBird [33], and hier-
archical Transformers [24]. Dai et al. [4] compared different Transformer-based
models on long document classification, which aim to mitigate the computational
overhead of standard Transformers when encoding longer text. Michalopoulos
et al. [20] introduced ICDBigBird, i.e., a BigBird-based model that can inte-
grate a Graph Convolutional Network (GCN), taking advantage of the relations
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between ICD codes in order to create enriched representations of their embed-
dings. Zhang and Jankowski [34] proposed a hierarchical BERT model for ICD
code assignment, named MDBERT, which is the first BERT-based approach
with performance comparable to state-of-the-art methods that rely on CNNs or
RNNs.

On what regards text quantification, previous work has explored the appli-
cation to different domains, including sentiment quantification over tweets or
in the analysis of product reviews [7,21]. Although many methods have been
proposed for binary or multi-class problems, the multi-label setting remains a
challenge. One possible solution is simply to recast the problem as a set of inde-
pendent binary quantification problems. While simple, this solution is not, is
most cases, satisfactory, since the independence assumption between the labels
can not be verified. Moreo et al. [21] proposed the first truly multi-label quan-
tification methods, leveraging the dependencies among the classes when infer-
ring class prevalence. The proposed methods take inspiration on approaches for
adapting multi-label classification into simpler multi-class problems, e.g. consid-
ering sets of ICD codes as labels.

In the standard binary or multi-class quantification settings, other studies
have already proposed methods that go beyond the simplest baselines, such
as the CC approach, showing that, while strong, the baselines can be outper-
formed [22]. Levin et al. [17] presented two enhanced PCC methods that focus on
improving the quantification accuracy, by employing another supervised learn-
ing phase. While Levin et al. [17] evaluated their approach on a multi-label
dataset of short text comments, the proposed method treats each label indepen-
dently. Specifically, these authors extended the PCC approach by calibrating a
given classifier’s posterior probabilities for the specific task of text quantifica-
tion, rather than merely using the posterior probabilities of the classifier which
was adjusted for the classification task. The idea has some similarity to what is
done in this work, but our method leverages associations between the labels, as
Moreo et al. [21] proposed.

6 Conclusions and Future Work

This work assessed different text quantification approaches in connection to ICD
coding of clinical documents. No previous work had addressed quantification of
ICD codes and, apart from a few exceptions [17,21], quantification in associa-
tion to multi-label classification had also not been previously explored. While
simple and computational inexpensive, our learning-based approach can effec-
tively explore the relations between the ICD codes, in some cases outperforming
classical methods by a significant margin on texts from the MIMIC-III dataset.

Despite the interesting results, there are still many opportunities for improve-
ment. One can, for instance, consider the use of different classification mod-
els, including approaches based on recent very large language models [27], aim-
ing to improve the classification performance. Another possibility is to consider
stronger baselines for the quantification task, including methods based on adjust-
ing the classification thresholds according to a selection policy that maximizes
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quantification performance [9]. Additionally, we aim to explore more sophisti-
cated architectures for learning-based quantification [7], e.g. within end-to-end
models capable of simultaneously doing classification and quantification.
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Abstract. Scientific discovery in biology is difficult due to the complex-
ity of the systems involved and the expense of obtaining high quality
experimental data. Automated techniques are a promising way to make
scientific discoveries at the scale and pace required to model large bio-
logical systems. A key problem for 21st century biology is to build a
computational model of the eukaryotic cell. The yeast Saccharomyces
cerevisiae is the best understood eukaryote, and genome-scale metabolic
models (GEMs) are rich sources of background knowledge that we can
use as a basis for automated inference and investigation.

We present LGEM+, a system for automated abductive improvement
of GEMs consisting of: a compartmentalised first-order logic framework
for describing biochemical pathways (using curated GEMs as the expert
knowledge source); and a two-stage hypothesis abduction procedure.

We demonstrate that deductive inference on logical theories created
using LGEM+, using the automated theorem prover iProver, can predict
growth/no-growth of S. cerevisiae strains in minimal media. LGEM+

proposed 2094 unique candidate hypotheses for model improvement.
We assess the value of the generated hypotheses using two criteria: (a)
genome-wide single-gene essentiality prediction, and (b) constraint of
flux-balance analysis (FBA) simulations. For (b) we developed an algo-
rithm to integrate FBA with the logic model. We rank and filter the
hypotheses using these assessments. We intend to test these hypothe-
ses using the robot scientist Genesis, which is based around chemostat
cultivation and high-throughput metabolomics.
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1 Introduction

An important aspect of modern biology is improving our understanding of cellu-
lar processes, and the complex interactions between genes, proteins and chemical
species. Systems biology is the research discipline that tackles this complexity.
Saccharomyces cerevisiae, commonly known as “baker’s yeast”, is an excellent
model organism used for the study of eukaryote biology. This is due to the avail-
ability of tools for easy genetic manipulation, and low cultivation cost, enabling
targeted experiments to characterise the system. S. cerevisiae’s was the first
eukaryotic genome to be fully sequenced [10] and there is a wealth of knowl-
edge about the gene functions, many of which are conserved or expected to have
equivalents in other eukaryotes, including humans [5]. Metabolic network mod-
els (MNMs) represent the cellular biochemistry of an organism and the related
action of enzymatic genes; such models which seek to integrate knowledge from
the entire organism are known as genome-scale metabolic models (GEMs).

The scientific discovery problem we address is to add knowledge to or reduce
S. cerevisiae GEMs such that quality is increased. Model quality in GEMs
is multi-faceted—desirable properties of a model include: predictive power;
metabolic network coverage; and parsimony. There are trade-offs between dif-
ferent desirable properties [11]. Foremost, however, is the predictive power of
the GEM. Ultimately the aim is to understand the entities, mechanisms and
adaptations that govern yeast growth in different environments.

Given a draft model, improvement consists broadly of three stages: hypoth-
esise refinements to the model; conversion of refined model to a format suitable
for simulation; and evaluation based on experimental evidence and internal con-
sistency [24]. Repetition of these stages consists a scientific discovery process.
Evaluation is dependent on executing simulations using a mathematical formal-
ism, however optimising a model for a specific formalism is not the objective—
any improvements that are made to a GEM within a certain framework should
translate to improvements in the underlying knowledge.

Challenges for the future of genome-scale modelling of S. cerevisiae include:
improving annotation; removing noise from low-confidence components; and
adding reactions to eliminate so-called “dead-end” compounds [1]. To multi-
ply the efforts of human researchers, previous work has investigated automating
parts of the scientific method. GrowMatch was a technique developed to resolve
inconsistencies between predictions and experimental observations of single-gene
mutant strains of Escherichia coli [15]. Other approaches to metabolic network
gap-filling have exploited answer-set programming, the most complete of which
is MENECO which is designed to efficiently identify candidate additions to draft
network models [19].

Logical inference can be applied to generate and improve metabolic models:
induction allows us to generalise models from data; given a theory we can draw
conclusions using deduction; and abduction enables us to form hypotheses to
improve consistency with empirical data. In this work we use first-order logic
(FOL) to simulate the metabolic network, an approach first proposed in 2001
[20]. A FOL model was used to generate functional genomics hypotheses then
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tested by a robot scientist [13]; logical induction and abduction was applied to
identify inhibition in metabolic pathways after introduction of toxins [23]; and an
FOL model constructed in Prolog using the GEM iFF708 [7] as the background
knowledge source was used to predict single-gene essentiality [25]. Huginn is a
tool that uses abductive logic programming (ALP), and demonstrates the ability
to improve metabolic models and suggest in vivo experiments [21].

A core advantage of our model—both over these previous FOL approaches
that used Prolog, and over bespoke algorithmic methods such as MENECO—
is that we use first order theorem provers (FOTPs) to perform deductive and
abductive inference. This removes a large part of the burden of abductive algo-
rithm design and simulation. For the reasoning tasks we use the FOTP iProver
[14]. We extended iProver to include abduction inference. iProver is a saturation-
based theorem prover that saturates via consequence finding algorithms which
are well-suited to abduction [22]. Other declarative programming techniques that
we tried, for example Prolog, and SAT solvers based on backtrack search algo-
rithms (e.g. CDCL), lacked certain features that enable abduction. Using FOTPs
will also allow us to combine different deduction and abduction strategies.

Furthermore, our model is capable of deductive and abductive reasoning at
scales far greater than previous FOL approaches. The ability to reason at scale
is particularly important for the automation of scientific discovery in eukaryotic
biology where the domain is complex and data are expensive to generate.

One current limitation of our FOL framework is that we do not include
information on reaction stoichiometry. To integrate quantitative modelling, we
propose in this paper a method to combine flux balance analysis (FBA) and
logical inference to validate metabolic pathway configurations found by LGEM+.

The main contributions of LGEM+ as presented in this paper are: (1) a
compartmentalised FOL model of yeast metabolism; (2) a two-stage method for
the abduction of novel hypotheses on improved models; (3) scalable methods for
evaluating these models and hypotheses; and (4) an algorithm to integrate FBA
with abductive reasoning.

2 Methods

2.1 The First-Order Logic Framework

We chose FOL as the language to express the mechanics of the biochemical path-
ways. FOL allows for a rich expression of knowledge about biological processes,
such as reactions and enzyme catalysis. We use FOL to express our knowledge
about how entities are known to interact, for example that a reaction has sub-
strates and products, and possibly some required enzyme. By contrast, a propo-
sitional logic framework would be unable to express these higher level concepts
and as such would be less suitable for abduction. The method and model we
design is independent of the specific network, meaning that although here we
apply LGEM+ to S. cerevisiae, this modelling framework could equally well be
applied to other organisms.
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Fig. 1. Processes in LGEM+. (A) defining the logical theory, including abduction
of missing compounds to enable viability of base strain; (B) single-gene essentiality
prediction; (C) abduction of hypotheses from ngG errors; (D) using FBA to assess
viability of each hypothesis; and (E) repeating single-gene deletion to assess viability
of each hypothesis.

We define five predicates in the first-order language: met\2, gn\1, pro\1,
enz\1, and rxn\1. The semantic interpretation of these predicates is outlined in
Table 1. Here a cellular “compartment” refers to a component of the cellular
anatomy, e.g. mitochondrion, nucleus or cytosol.

Table 1. Predicates used in the logical theory of yeast metabolism. Forward and reverse
reactions are represented separately in the model, thus a “positive flux” through a
reversed reaction indicates the reaction flux is negative.

Predicate Arguments Natural language interpretation

met\2 metabolite, compartment “Metabolite X is present in cellular compartment Y”

gn\1 gene identifier “Gene X is expressed”

pro\1 protein complex identifier “Protein complex X is available (in every cellular compartment)”

enz\1 enzyme category identifier “Enzyme category X is available”

rxn\1 reaction “There is positive flux through reaction X”

Clauses in our model are one of seven types, each expressing relationships
between entities in terms of the predicates given above. These types of clauses
are listed below, and we provide a graphical overview and example statements
in Fig. 2.
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– Reaction activation clauses state that all substrate compounds for a specific
reaction being present in the correct compartments, together with availability
of a relevant enzyme, implies the reaction is active.

– Reaction product clauses state that a reaction being active implies the
presence of a product compound in a given compartment.

– Enzyme availability clauses state that the availability of the constituent
parts (proteins) of an enzyme imply the availability of the enzyme. Enzymes
sometimes act in complexes made up of two or more proteins, and different
enzymes that catalyse the same reaction are called isoenzymes.

– Protein formation clauses state that the presence in the genome of a gene
that codes for a specific protein implies the availability of that protein.

– Gene presence clauses are statements expressing either the presence or
absence of a particular gene in the genome.

– Metabolite presence clauses are statements expressing the presence of a
particular compound in a specific compartment.

– Goal clauses represent a biological objective, usually the presence in the
cytosol of a set of compounds deemed essential for growth, but could also be
another pathway endpoint or intermediary compound.

2.2 Assessing Growth and Production of Compounds

Yeast growth is dependent on the production of essential chemical products—
intermediary points or endpoints of biochemical pathways within the organism.
The core of these biochemical pathways is the enzymatic reactions, and they
are facilitated by diffusion of chemicals within cellular compartments, includ-
ing the cytosol, and passive or active transport across compartment boundaries
or the cell membrane. Certain products are deemed essential for growth, so if
production of these compounds is inhibited then the organism is inviable.

Logical inference was performed using the automated theorem proving soft-
ware iProver (v3.7) which was chosen due to its performance and scalability as
well as completeness for first-order theorem finding. The general formulation of
the problem provided to iProver is to identify whether a theory, T , “entails”
a goal, G. In other words that the goal is a logical consequence of the theory
(T � G). Here T is a set of logical axioms that encode, using the formalism
defined in Sect. 2.1: knowledge from the GEM; the medium in which the yeast is
growing, represented by axioms in the theory for the presence of compounds in
the extracellular space; the availability of ubiquitous compounds in each cellular
compartment and the extracellular space; and the presence and expression of
genes. Deduction can be used to analyse pathways and reachable metabolites. In
the case of growth/no-growth simulations, G represents the availability of all the
essential compounds in the cytoplasm. So if T � G we say that there is growth,
otherwise not. Other goals used here are the availability of other endpoints of
biochemical pathways. T and G are provided to iProver in plain text files and
plaintext proofs are output. The logical proofs (that the goal is reachable) found
by iProver correspond to detected biochemical pathways.
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Fig. 2. Conversion of genome-scale metabolic model provided in SBML to logical the-
ory. (A) A reaction is encoded in SBML using identifiers to represent the substrates
and products, and a logical rule for enzyme availability (GPR = “gene-protein-reaction
rule”). (B) The information contained on each reaction is encoded using logical formu-
lae into a set of clauses; predicate definitions are provided in Table 1. Here equation (1)
is the reaction activation clause. “∧” is a conjunction symbol (“AND”), meaning all of
the literals in the expression must be true for the RHS of the clause to be true; “∨” is
a disjunction symbol (“OR”). So we can read (1) as: “reaction r 0889 is active if all of
the metabolites in the set {s 0340, s 1207} are present in the cytoplasm and at least
one of the isoenzymes is present”. Similarly equation (2) describes the condition for
a relevant enzyme to be present; equations (3a,b) describe the conditions for each of
these isoenzymes to be formed; and equations (4a-c) are the reaction product clauses
and state that “if reaction r 0889 is active then each of its products is present”.

Single-Gene Essentiality Prediction. Here we seek to predict genes with-
out which S. cerevisiae cannot grow. We compare predictions against lists of
viable and inviable strains from a genome-wide deletion mutant cultivation for
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S. cerevisiae using several media [9]. In particular, we compare with cultivations
on a minimal medium with the addition of uracil, histidine and leucine. The
strain background used in this study was S288C, which has complete or partial
deletions for HIS3, LEU2, LYS2, MET17 and URA3—for our experiments we
remove these genes by default. Gene knockouts were performed by negating the
gene presence axiom in the logical theory (i.e. gn(gene) becomes ¬gn(gene)).

There are two basic error types with these predictions. We follow the naming
convention as in [15], that we have: (1) gNG inconsistency: a prediction of growth
when experimental data show no growth; and (2) ngG inconsistency: a prediction
of no growth when experimental data show growth. Inconsistencies arise from
three main sources: deficiencies in the prior knowledge; errors in the prediction
process; or conflicting empirical evidence. However it is the deficiencies in the
prior knowledge that are of most interest for scientific discovery, which we explore
next.

2.3 Abduction of Hypotheses

Abduction is used to suggest hypotheses that resolve inconsistencies between our
model and empirical data. As shown in Fig. 1(C) we select a reasonable set of
candidate hypotheses through a two-stage process: firstly, we generate hypothe-
ses; and secondly, we rank and filter these according to relevant scientific criteria.
Generating hypotheses using an automated theorem prover is general purpose.
Ranking and filtering heuristics will be domain-specific; here we describe the
heuristics that we used, but others could well be applied. Pseudo-code for the
abduction algorithm is provided in Algorithm 1.

Generating Candidate Hypotheses Using iProver. If the goal is not reach-
able (i.e. T � G) iProver abduces candidate hypotheses: sets Hi such that
∀i (T ∧ Hi � G). This is done by reverse consequence finding (T ∧ ¬G � ¬Hi).
For this project we extended iProver to include these features, which, not being
specific to biochemical reaction networks, could be used for automated discovery
in other scientific domains by constructing an appropriate FOL model. The form
of the hypotheses, Hi, is a set of clauses expressed in terms of the predicates
described above in Sect. 2.1. It is possible to restrict or guide the reverse con-
sequence finding algorithm in iProver to seek certain types of hypotheses. For
example a hypothesis could be: met(compound, compartment), that compound is
available in compartment. Such hypotheses are challenging to discover because
of the complexity of interaction in these networks.

None of the logical theories resultant from the conversion from Yeast8,
iMM904 and iFF708 was viable given the minimal medium and ubiquitous com-
pounds, even without any gene deletions, meaning one or more of the essential
compounds was not produced. iProver abduced hypotheses consisting of combi-
nations of compounds whose presence would enable viability of the base strain
(deletions for HIS3, LEU2, LYS2, MET17 and URA3), as shown in Fig. 1(A).
We chose the hypothesis with the fewest additional compounds.
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For ngG inconsistencies there exists a set of essential metabolites not being
produced that empirical data indicate will be produced given the specified geno-
type and conditions—in some sense the pathways in the model are incomplete.
Hypotheses in this scenario are those that repair an incomplete pathway: addi-
tional reactions; annotation of an isoenzyme for knocked out genes; or removal
of reaction annotations. For gNG inconsistencies there is a pathway in the model
that empirical data suggest should be interrupted but is not. Thus hypotheses
in this scenario will be those that interrupt a complete pathway: annotation of
a pathway-critical reaction with a gene that is in the set of knocked out genes;
removal of an isoenzyme annotation; or removal of reactions.

Heuristics for Ranking and Filtering Hypotheses. We filter hypotheses to
only include either: (a) addition of one or more compounds (i.e. containing only
atoms using the met predicate); or (b) the presence of one or more particular
enzyme groups for a reaction (i.e. containing only atoms using the enz predicate).
The motivation is that the subsequent model improvement step (to repair the
pathway) for case (a) would be to add reactions to the model that produce the
hypothesised metabolites, and for case (b) to either identify an isoenzyme for
hypothesised groups or remove the annotation for the deleted gene for one of
these reactions. We also remove hypotheses that introduced availability of one
or more of the target compounds in the cytosol, as this would directly ensure
the goal was reached but is of no scientific value.

We applied two criteria to assess the merit of each hypothesis. Firstly, by
using our FBA constraint method, as shown in Fig. 1(D) and described in
Sect. 2.4. Around half of the hypotheses resulted in infeasible solutions or very
small growth—this means perhaps there might be something else that is missing
from the model, and so we have not got a reasonable hypothesis. The second
criteria was evaluating the impact each hypothesis had on the overall error in
single-gene essentiality prediction, as shown in Fig. 1(E). If the total number of
ngG errors fixed is greater than the number of gNG errors introduced then this
is a good hypothesis. Another, more conservative, approach would be to only
add hypotheses to the model that do not introduce any gNG errors.

A final heuristic was whether hypotheses contained compounds that were
not produced by any reaction in the GEM, meaning adding a suitable reaction
that produces this compound would repair the error. These hypotheses could
be tested experimentally by constructing a deletion mutant, cultivating with
minimal medium and after observing growth, using metabolomic analysis (e.g.
with mass spectrometry) to identify if the hypothesised intermediary metabo-
lite set is present. If there were a reaction already in the GEM that produced
the compound there could be other deficiencies in the model that need address-
ing first, for example gene annotation for those reactions. In this case iProver
abduces hypotheses of case (b) above. Currently LGEM+ can hypothesise to
remove gene annotation, but this could be extended to include a search for an
isoenzyme based on similarity (e.g. sequence similarity) to the knocked out gene.
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Algorithm 1. Abduction using LGEM+

1: procedure AbductionSingleGene
2: H ← ∅
3: for gene in all genes in theory do
4: ˜T ← T � Make a copy of the base theory
5: ˜T ← ˜T \ {gn(gene)} ∪ {¬gn(gene)} � Construct deletant

6: Use iProver to deduce if goal is reachable by identifying if ˜T � G
7: if ˜T � G then � Growth prediction
8: continue
9: else if ˜T � G then � Non-growth prediction

10: if gene is essential then � No growth observed; no error
11: continue
12: else if gene is not essential then � Growth observed; ngG error
13: Abduction of potential hypotheses set Hgene using iProver
14: H ← H ∪ Hgene

15: end if
16: end if
17: end for
18: Filter and rank H =

⋃

gene∈theory

Hgene, according to heuristics, e.g. Section 2.3

19: end procedure

2.4 Constraining Flux Balance Analysis Simulations Using Proofs

Flux balance analysis (FBA) finds a reaction flux distribution, ν, given stoi-
chiometric constraints from the GEM and a biologically relevant optimisation
objective, f(ν), for example maximisation of biomass production [8,18]. FBA
assumes the metabolism is in steady state, resulting in the constraint Sν = 0,
where S is the stoichiometric matrix for the metabolic network and ν is the
reaction flux vector (S ∈ Z

m×n, where m is the number of compounds and n is
the number of reactions in the metabolic network).

maximize
ν∈Rn

f(ν1, . . . , νn)

subject to Sν = 0
νLB
i ≤ νi ≤ νUB

i , i = 1, . . . , n.

Whilst the stoichiometric matrix is fixed, the upper and lower bounds for
each reaction can be set to achieve relevant results. Existing methods to set
these bounds include integrating experimental measurements of fluxes, or using
enzyme turnover rates and availability [4]. We use FBA to assess the feasibility
of proofs found using iProver by: setting reaction bounds based on pathways
activated in the proof; and then solving the resultant optimisation problem. We
are able to do this neatly as both use the same GEM as the knowledge source.
The procedure is outlined in Algorithm 2.

Flux values are measured in mmol g−1
DWh−1 and metabolite concentrations

vary substantially between compounds, so finding a forcing threshold which is
appropriate for all reactions is not straightforward. For our FBA simulations we
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used the Python package cobrapy (version 0.26.3) [6]; in the absence of relevant
documentation on a suitable threshold, we found in a discussion for a MATLAB
implementation of COBRA that a suitable threshold should be set at 1×10−9 [2].

Algorithm 2. Constraining FBA solution given a logical theory T and a goal G

1: function FBAConstrain(GEM, T , G, ν0) � ν0 is minimum flux threshold for
activation

2: Use iProver to find proof of T � G � The goal is reachable
3: i ← 1
4: while i ≤ N do � N is the number of reactions in the GEM
5: if ri active in the proof in the forward direction then
6: νLB

i ← ν0 � Force reactions to have positive flux
7: else if ri active in the proof in the reverse direction then
8: νUB

i ← −ν0

9: end if
10: i ← i + 1
11: end while
12: Solve FBA problem (Sν = 0) with resultant flux bounds
13: return (ν, growthValue, solutionStatus) ∈ R

N × R × {optimal, infeasible}
14: end function

2.5 Sources of Knowledge

The primary source of the knowledge about reactions and associated genes is
the GEM Yeast8 (v8.46.4.46.2) [16]. This was chosen due to its broad coverage
of the reactions and gene associations as well as its specificity to the organism
S. cerevisiae. The other two GEMs used were: iMM904 [17] and iFF708 [7]. (We
include iFF708 as a background knowledge source partly to enable comparison
with previous logical modelling approach [25].) The models are stored using
Systems Biology Markup Language (SBML). The software written to convert
a GEM SBML file to a logical knowledge base is available in the supporting
material, and follows the process described below and shown in Fig. 2.

We use three reference lists of compounds from [25]; these are shown in the
first column of the files on the LGEM+ GitHub repository1 corresponding to:
(1) all compounds deemed essential for growth in S. cerevisiae2; (2) compounds
assumed ubiquitous during growth assumed to be present throughout the cell
regardless of initial conditions, such as H2O and O2

3; and (3) the growth media
for the experiments, in this case yeast nitrogen base (YNB) with addition of
ammonium, glucose and three amino acids (uracil, histidine and leucine)4.

1 https://github.com/AlecGower/LGEMPlus.
2 src/model-files/essential-compounds-{model}.tsv.
3 src/model-files/ubiquitous-compounds-{model}.tsv.
4 src/model-files/ynb-compounds-{model}.tsv.

https://github.com/AlecGower/LGEMPlus
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Each compound in these lists has an associated Kyoto Encyclopedia of Genes
and Genomes (KEGG) [12] identifier. We matched compounds in the curated
GEMs based firstly on KEGG ID, otherwise using the species name or synonyms.
Some of the compounds we wish to include do not have corresponding entities
in the GEMs used as background knowledge. Therefore there are discrepancies
between the reference lists and the compiled lists.

3 Results

Automated Theorem Proving Software can be Used to Estimate
Single-Gene Essentiality given a Prior Network Model. Using three
GEMs—Yeast8, iMM904 and iFF708—as background knowledge sources we
conducted single-gene deletant simulations to assess essentiality of each gene
and compared against a genome-wide deletion mutant cultivation [9]. Detailed
descriptions of these methods are provided in Sect. 2, and context in the overall
method in Fig. 1(B). A summary of the single-gene essentiality prediction results
is provided in Table 2.

When compared to previous qualitative methods our method showed state of
the art results [25,26]. Yet quantitative prediction using FBA achieves a higher
precision and recall. These error rates indicate how much is still to be learnt
about yeast metabolism. We also found that gene essentiality predictions vary
somewhat depending on the prior.

Simulation times for gene knockouts also appear to scale linearly with the
size of the network. Comparing network size to average gene knockout simu-
lation times for the three GEMs tested, we see that the mean (±1 s.d.) times
for one knockout simulation were: 0.52 s ± 0.09 s for iFF708 (1379 reactions);
0.67 s ± 0.12 s for iMM904 (1577 reactions); and 1.46 s ± 0.32 s for Yeast8 (4058
reactions).

Abductive Reasoning Allows for Identification of Possible Missing
Reactions. We apply the LGEM+ abduction procedure to model improvement,
here demonstrated on the Yeast8 model. For each of the 41 ngG errors in the
single-gene deletion task, we generated candidate hypotheses according to meth-
ods described in Sect. 2.3. In total we generated 2094 unique hypotheses; some
hypotheses would result in an error correction for several genes. We ranked and
filtered these hypotheses according to domain-specific heuristics, finding 681 of
these were valid, i.e. only containing met (633) or enz (48) predicates. The FBA
evaluation outlined in Sect. 2.4 indicated 534 hypotheses that could be balanced
by the reactions forced in the model, 118 of which were valid. There were 14
hypotheses that were valid and also resulted in a net improvement on the single-
gene prediction task.

Strict Essentiality Criteria and Incomplete Annotation may Explain
ngG and gNG Inconsistencies. If just one essential compound is not pro-
duced we have no growth. One result of this setup is a relatively low precision
in the single-gene essentiality prediction. Of the 72 deletions predicted inviable
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Table 2. Comparative prediction results for single-gene essentiality using LGEM+

across three background knowledge sources: Yeast8 (v8.46.4.46.2); iMM904; and
iFF708, with comparison to: (a) an FBA-simulation with a viability threshold on
growth rate set at 1×10−6h−1 (according to [16]); and (b) another qualitative prediction
method, the “synthetic accessibility” approach taken by Wunderlich et. al. [26]. The
empirical data used as truth data for these statistics were taken from a genome-wide
screening study using a minimal medium [9]. The FOL model performance represents
an improvement on previous qualitative method.

Base GEM Yeast8 iMM904 iFF708 Yeast8 (FBA) Syn. Acc. [26]

# predictions (#genes in GEM) 1056 (1150) 827 (905) 566 (619) 1068 (1150) 682

NG Recall (ngNG/*NG) 0.193 (31/161) 0.266 (33/124) 0.140 (14/100) 0.447 (72/161) 0.119 (14/118)

NG Precision (ngNG/ng* ) 0.431 (31/72) 0.478 (33/69) 0.778 (14/18) 0.459 (72/157) 0.292 (14/48)

gNG Rate (gNG/*NG) 0.807 (130/161) 0.734 (91/124) 0.860 (86/100) 0.553 (89/161) 0.881 (104/118)

ngG Rate (ngG/*G) 0.046 (41/895) 0.051 (36/703) 0.009 (4/466) 0.094 (85/907) 0.060 (34/564)

F1 score 0.266 0.342 0.237 0.453 0.169

Shorthand : *NG-observed no growth; *G-observed growth; ng* -predicted no growth.
(Note that the performance statistics for the synthetic accessibility method are taken
directly from the authors’ report so there may be a difference in truth data to those
used to evaluate our model.)

by our model, 41 of these are shown to result in experimentally viable mutant
strains (ngG errors).

For several genes in the L-arginine biosynthesis pathway the only essential
metabolite not reachable in the model was L-arginine. These resulted in ngG
errors despite the pathway structure and previous empirical evidence showing
that null mutants for genes in this pathway (e.g. for ARG1 [3]) are auxotrophic
for L-arginine (i.e. L-arginine was not produced). These results demonstrate that
the model can successfully identify behaviour of the metabolic network consistent
with other experimental evidence and not the genome-wide screen results [9].
These cases are candidates for experimental testing, and highlight the potential
of such models to inform laboratory experimental design and research direction.

In the Yeast8 model there are 4058 reactions, 1425 (35%) of which have no
enzyme annotation and 540 (13%) are annotated with a set of isoenzymes that
do not have a specific gene in common. Thus nearly half of all reactions will not
be affected by single-gene deletions, which is likely to account for a portion of
the 130 gNG inconsistencies in LGEM+ single-gene essentiality predictions.

Pathways Output from LGEM+ Overlap with FBA Simulations. In the
case of predicting growth, LGEM+ outputs reaction pathways. FBA simulations
output a reaction flux distribution, and from this we can use a flux threshold
for reaction activate to obtain reaction pathways. When comparing reaction
pathways obtained from both methods, for each deletant simulation just over
50% of reactions in the LGEM+ derived pathways are also active in the FBA
pathways. However, only around 30% of reactions in FBA derived pathways are
also active in the LGEM+ derived pathways.

Using pathways derived from the FBA constraint method described in
Sect. 2.4, we investigated the gNG errors. Of the 130 errors, 50 of them resulted in
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pathways that the FBA method indicated were unfeasible (i.e., they resulted in
low or zero growth). This would mean that by including this constraint method in
the LGEM+ framework we could eliminate these errors. However doing so would
also falsely predict 56 viable deletant strains as inviable (new ngG errors).

4 Discussion and Conclusion

Scientific discovery in biology is difficult due to the complexity of the systems
involved and the expense of obtaining high quality experimental data. Auto-
mated techniques that make good use of background knowledge, of which GEMs
are prime examples, will have a strong starting point. LGEM+ seeks to do just
that by using FOL combined with a powerful theorem prover, iProver.

We efficiently predicted single-gene essentiality in S. cerevisiae using a first-
order logic (FOL) model. Our method showed state of the art results compared
to previous qualitative methods, yet quantitative prediction using FBA achieves
a higher precision and recall.

We designed and implemented an algorithm for the abduction of hypothe-
ses for improvement of a GEM. We found 633 hypotheses proposing availability
of compounds in specific compartments, and therefore indicate possible missing
reactions, 118 of which were validated through FBA constraint and 14 of which
resulted in improvements in the single-gene essentiality prediction task. These
heuristics help to select more promising hypotheses for experimentation; further
selection will be informed by viability or cost of experiment design. We intend
to test these hypotheses using the robot scientist Genesis, which is based around
chemostat cultivation and high-throughput metabolomics. As we scale the sys-
tem we can adjust parameters in the heuristics, or introduce new heuristics, to
return only the most promising hypotheses.

Measuring performance statistics relative to the number of genes in a model,
rather than the number of genes in the organism, presents some challenges when
designing a learning process to improve this performance (e.g. GrowMatch [15]).
This highlights the need for better model assessment criteria to drive abduction.
We have attempted here to provide an example with the constraint of FBA
solutions. Future work could certainly be directed to defining such criteria and
integrating them into LGEM+.

The logical theory developed here was focused on efficient inference on bio-
chemical pathways. A challenge for future development is to extend the first-
order vocabulary to improve the power and performance of LGEM+. Extending
the vocabulary could mean: including more predicates, increasing the arity (num-
ber of arguments) of predicates, and introducing other logical clause forms. All
to better encode biological processes, for example more detail regarding enzyme
availability, integration of gene regulation and signalling or introducing time-
dependent processes. Aligning the logic more closely with existing ontologies, for
example the Systems Biology Ontology (SBO), would ensure the theory remains
useful and semantically precise as it is extended. This is a common challenge
across the scientific discovery community as we move further toward joint teams
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of human and robot scientists—ontologies provide a common language. Using
FOL allows us to work toward connecting LGEM+ with external knowledge
bases.

The best way to test hypotheses is through in vivo experimentation. Inte-
grating LGEM+ into an automated experimental design process would enable
the next generation of robot scientists.
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Abstract. The accurate prediction of biological age can bring important
benefits in promoting therapeutic and behavioural strategies for healthy
aging. We propose the development of age prediction models using multi-
modal datasets, including transcriptomics, methylation and histological
images from lung tissue samples of 793 human donors. From a technical
point of view this is a challenging problem since not all donors are cov-
ered by the same data modalities and the datasets have a very high fea-
ture dimensionality with a relatively smaller number of samples. To fairly
compare performance across different data types, we’ve created a test set
including donors represented in each modality. Given the unique charac-
teristics of the data distribution, we developed gradient boosting tree and
convolutional neural network models for each dataset. The performance
of the models can be affected by several covariates, including smoking his-
tory, and, most importantly, by a skewed distribution of age. Data-centric
approaches, including feature engineering, feature selection, data stratifi-
cation and resampling, proved fundamental in building models that were
optimally adapted for each data modality, resulting in significant improve-
ments in model performance for imbalanced regression. The models were
then applied to the test set independently, and later combined into a multi-
modal ensemble through a voting strategy, predicting age with a median
absolute error of 4 years. Even if prediction accuracy remains a challenge,
in this work we provide insights to address the difficulties of multi-modal
data integration and imbalanced data prediction.

Keywords: Regression · Multi-modal data · Bioinformatics ·
Computational Biology · Health applications

1 Introduction

Aging is a time-dependent process that leads to a decline in body functions and
an increased incidence of several diseases and conditions. The identification of
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molecular biomarkers can help to predict the longevity of an individual, promot-
ing therapeutic and behavioral strategies for healthy aging. However, to assess
an individual’s health status, it is necessary to determine both chronological
age and biological age. The former refers to the time passed since birth, and
occurs at the same rate for everyone. The latter varies with the former, but it
is a more complex concept to define and therefore harder to determine. Bio-
logical age is related to molecular changes that occur in cells and influence the
physiological and functional state of organisms. The rate of biological aging is
highly variable between individuals and depends on genetic factors, environmen-
tal exposure, and lifestyle. The identification of reliable biomarkers for biological
age is a long-standing research question.

Technological advances have allowed high-throughput profiling of multiple
biological layers, also called omics. These include: the amount of RNA molecules
in the cell (transcriptome); DNA methylation patterns (methylome); protein
abundance (proteome); or genetic variation (genome). Immunology and oncology
are at the forefront of multi-omics profiling. Histopathology provides microscopic
images of stained tissue samples. These images can provide important visual
information on the structure, composition and cellular characteristics of tissues.

Aging has been shown to affect methylation patterns and gene expression
[7,18], and both data types have been previously leveraged for age prediction
tasks [16,38]. However, to our knowledge, studies reporting associations between
histological images and aging or incorporating multiple data modalities in age
prediction are lacking in the literature.

Multi-modal datasets represent substantial analysis challenges, including a
sample size (typically dozens) much lower than the feature space (typically tens
of thousands); partial coverage among samples of the different data modalities;
differences in data distributions with different signal to noise ratios; or shared
and specific latent variables and factors between data modalities [1,39].

The Genotype-Tissue Expression (GTEx) project [12–14,23] has built a com-
prehensive resource to study tissue-specific gene expression and regulation. Sam-
ples were collected from 54 non-diseased post-mortem tissue sites across nearly
1000 individuals, summing more than 17,000 RNA-seq samples profiling 58,219
genes per sample. Histology images are available for each sample. The DNA
methylation status of selected tissues from GTEx has been profiled by other
initiatives [32]. The sampled population is highly heterogeneous, meaning that
individuals might be affected by different technical and biological covariates.

We set out to investigate the development of computational models to pre-
dict biological age in lung samples from different data modalities, namely gene
expression, methylation status and histological images. We focused on lung tis-
sue, since it is one of the few GTEx tissue sites with the three data types available
with a relatively large sample size. In this work we aim to contribute to three
research questions: a) which data modality provides better age predictions? b)
do the data types provide complementary information and improve their pre-
dictions when integrated? c) can we technically overcome the incomplete and
imbalanced distribution of the response variable, age?
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2 Results

Because not all samples are covered by the same types of data (only roughly 20%
are covered by the three types, see Fig. 1a, we trained and optimized independent
models for each data modality. For evaluation purposes we held out a test set
with n = 45 samples from individuals covered by the three data types, spanning
as uniformly as possible across age strata, see Fig. 1b. The goal of this common
test set was to compare the performance of the independent models, which were
later combined into a multi-modal ensemble, see Fig. 1c.
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Methylation
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n = 45 n= 45 n = 45  
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Fig. 1. Development of age prediction models. (a) Sample distribution of data modal-
ities. Not all samples are covered by the same modalities. Test sets for final evaluation
are derived from samples containing all the data modes, while the training sets are
modality specific. (b) Age distribution in the training and test datasets. (c) Individ-
ual models are developed for each data modality and their final predictions combined
into a multi-modal ensemble model.

Table 1 summarizes the results for the top-performing models of each data
modality. The performance was evaluated based on four key metrics: the coef-
ficient of determination (r2), which indicates how well regression predictions fit
the actual data; Root Mean Square Error (RMSE) and Mean Absolute Error
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(MAE), which measure the average magnitude of prediction errors, with RMSE
being more sensitive to outliers due to squaring’s error amplification; and the
Median Absolute Error (MED), a robust measure that mitigates outlier effects.
Higher r2 values signify better predictions, while lower RMSE, MAE, and MED
indicate fewer errors. Gene expression and methylation models were trained with
cross-validation of, respectively, 10-fold and 5-fold.

Table 1. Performance metrics for the top-performing models. Gene expression features
are the expression levels for 150 genes, while the methylation model uses 30 CpG
sites. Histological images are segmented into tiles of 256× 256× 3 pixels, with tile
number varying per sample. All models were optimized for RMSE and r2. Sample
sizes for training and test data are indicated in parentheses. For gene expression and
methylation, training metrics represent the average ± standard deviation derived from
10- and 5-fold cross-validation, respectively.

Data Type Dataset r2 RMSE MAE MED

Gene
Expression

(n = 570)

Training (n = 525) 0.65 ±
0.045

6.88 ±
1.64

5.56 ±
0.24

5.11 ±
0.41

Test (n = 45) 0.64 7.57 6.09 5.38

Methylation

(n = 217)

Training (n = 172) 0.76 ±
0.05

5.07 ±
0.75

4.18 ±
0.46

3.65 ±
0.85

Test (n = 45) 0.82 5.30 3.94 2.97

Histological

Images

(n = 793)

Training (n = 748) 0.62 7.34 6.03 5.50

Test (n = 45) 0.35 10.14 8.14 8.16

Ensemble Test (n = 45) 0.84 5.02 4.00 3.39

2.1 Data Retrieval and Code Availability

All data used in this work, with the exception of donor smoking status, is pub-
licly available. Donor information (including gender, age and other variables),
processed gene expression tables (version 8), and histological images are available
via the GTEx data portal (http://gtexportal.org/). Methylation data generated
by Oliva et al. [32] was downloaded from GEO (GSE213478).

Code developed for this project and detailed description of the pipelines used
to train the prediction models can be found in the following repository:
https://github.com/PedroGFerreira/MultiModalHumanLungAgePrediction

2.2 Predicting Age from Gene Expression

RNA sequencing (RNA-seq) is a high-throughput method used to quantify gene
expression by counting reads obtained from sequencing biological samples [34].

http://gtexportal.org/
https://github.com/PedroGFerreira/MultiModalHumanLungAgePrediction
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Read counts are normalized into TPM (transcripts per million) [37], which
accounts for variations in sequencing depth (i.e. the total number of reads per
sample) and gene length across samples. The gene expression data table consists
of 570 lung samples and 58,219 genes.

We filtered for protein-coding genes (19,291) and applied a log2-transforma-
tion to reduce the range of values and stabilize the variance. The data was
then split into a training set (n = 525) and a common test set (n = 45). A
quantile transformation was applied to minimize distribution right-skewness in
the expression values. The transformation was fitted on the training data and
applied to both training and test sets to ensure consistent scaling. This effectively
spreads out the values concentrated around 0 and reduces the impact of outliers.

To further reduce the number of features we tested several approaches using
10-fold cross-validation (CV) [11] and fit models based on gradient boosting trees
(LightGBM [19]) with default hyperparameters. The best performing approach
was an embedded method [21], set to yield a maximum of 150 features based on
the coefficients of a Bayesian Automatic Relevance Determination (ARD) model
[26]. To address the skew towards older individuals, see Fig. 1b, we assessed the
impact of a pre-processing strategy for imbalanced regression [3]. Unfortunately,
since there were no improvements, this approach was not considered. A hyper-
parameter random search [2] was performed on the training set without data
rebalancing (number of iterations = 1000) and evaluated through 5× 2 nested
CV [8]. The inner 2 folds select a set of hyperparameters, and the outer 5 folds
evaluate the model produced in the inner folds. The selected final model was
optimized using the previously selected top 150 features.

The model presents stable results between training and test sets as shown in
Table 1. Figure 2a depicts the fit on the test data, indicating an overestimation of
younger individuals and an underestimation of older ones (MED: 5.11 ± 0.41).

Feature importance, based on information gain, identifies the most influen-
tial genes for the model, see Fig. 3a. Information gain balances the frequency
of each feature with the magnitude of their contribution. Among the top fea-
tures we have EDA2R (r = 0.40, p-value = 1.4e−23, cf. Figure 4a), an essential
gene for ectodermal tissue development, with a possible impact on lung aging
and progression of Chronic Obstructive Pulmonary Disease [36]. Furthermore,
EDA2R has been previously identified by us as a gene with increased expression
with age in multiple tissues [28]. Other influential features include CDKN2A (r
= 0.42, p-value = 8.5e−26), a biomarker for cellular senescence, associated with
cognitive decline and aging [25,29], and TCHD4 (r = 0.38, p-value = 4.4e−21),
also identified as a biomarker for cellular senescence [4]. NEFH has a decreasing
expression with age (r = −0.38, p-value = 2.7e−21). The significant correlation
of these features with age underscores their potential importance in the aging
process, as captured by our machine learning model.
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Fig. 2. Scatter plots of true vs predicted age. The dotted gray line represents a perfect
x = y linear model fit. Predicted age values were obtained on the test set (n = 45)
using the best performing model for (a) (Color figure online) gene expression, (b)
methylation, (c) histology, and (d) a voting ensemble of the results for the three
datasets. LGBM - LightGBM.

Finally, to investigate possible cohort bias, we calculated the Spearman corre-
lation between the absolute difference of the predicted and true age, and several
donor characteristics, including lung-related clinical conditions. No significant
associations were found.
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(a) (b)

Fig. 3. Top 5 features with the highest information gain for the models trained on (a)
gene expression (genes) and (b) methylation (DNA probes and associated genes) data.
LGBM - LightGBM.

2.3 Predicting Age from Methylation Arrays

Profiling of DNA methylation patterns using the EPIC array has been widely
used [33]. This technique targets specific CpG sites across the genome. At each
site, it measures the intensity of DNA methylation, the β value, that ranges
between 0 and 1. β is computed by taking the ratio of methylated over methy-
lated plus unmethylated positions [33].

We downloaded the methylation data in GEO (GSE213478) and selected the
lung samples. CpG probes mapping to X or Y chromosomes or the mitochondrial
genome were filtered out. The dataset consisted of 217 samples and 754,115 DNA
probes as the features. Data from 172 samples were used for model training and
validation through 5-fold CV, yielding r2 and RMSE averages.

We started by filtering features based on the correlation with biological age
(|spearman rho | > 0.4). The data was quantile transformed, several feature selec-
tion methods were tested, and the resulting datasets were used to fit a gradient
boosted trees (LightGBM) model [19] with fine tuning of several parameters.
This procedure was repeated for each of the five CV folds. The best performing
approach was achieved with the top 30 features based on the coefficients of an
ARD regression [26] (r2: 0.73 ± 0.04 and RMSE: 5.40 ± 0.59).

In the case of methylation, the application of an imbalanced data pre-
processing strategy [3] on the unscaled data after feature selection improved the
performance and was applied during the training of the final model. Table 1 and
Fig. 2b indicate an average error of 3.9 years for the prediction of the 45 individ-
uals of the test set. Feature importance analysis (Fig. 3b) highlights CpG probe
cg16867657, located in the promoter on ELOVL2, a known aging biomarker [17]
and previously used to predict biological age [31], see Fig. 4b. Interestingly, all
the top 5 CpG probes have previously been implicated in aging [10,35]. Conges-
tion, a condition that increases with age given the decreased ability of the lung
to clear mucus [24] was the only significantly correlated covariate with the error
of the predictions (rho = 0.45, p-value = 0.0018).
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Fig. 4. Correlation between age and the top predictive features for (a) gene expression
(EDA2R) and (b) DNA methylation (CpG probe cg16867657). (c) Correlation between
relative telomere length (measured as the mean Telomere Quality Index for each probe)
and age. (d) Image resolution at different downsampling values has an important
impact on model performance when making predictions with histopathological images.

2.4 Predicting Age from Histological Images

Histological images are stained microscope slides that provide high resolu-
tion representations of tissue samples, and allow trained pathologists to detect
changes in cellular morphology and tissue structure. Histopathology has been
used for decades for disease diagnosis and characterization of complex pheno-
types. Given the recent advances in image pattern analysis with machine learn-
ing, we postulated if the lung histological images of nearly 800 donors could be
used to predict their biological age.

We started by evaluating a feature-based regression analysis approach. Har-
alick Features (HR) [22], a set of statistical measures that quantify texture prop-
erties of an image, were extracted. Dimensionality reduction based on UMAP
[27] suggests a lack of distinct age patterns that may indicate low discriminative
power for HR features for the analyzed data (data not shown).

To automatically derive the features and perform minimal image processing,
we applied convolutional neural networks (CNN). Four models were tested: a
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custom CNN-based model built and trained from scratch for this dataset, and
three pre-trained models (VGG16, VGG19 and Xception [5]) fine-tuned for our
data.

The histological images were downloaded from the GTEx data portal as
whole slide images (WSI), and then segmented into tiles using PyHist [30]. This
segmentation process is necessary for analyzing WSI, which can have dimen-
sions upwards of 40000× 40000× 3 pixels, to ensure that they fit in the GPU’s
memory. Thus, each donor has a set of associated tiles (256 × 256 x 3 pixels), all
inheriting the same label from their respective WSI.

Examples were split into training, validation, and test sets. We built a custom
stratification function for the training-validation and training-test splits: if an
age value has enough samples for stratification (three or more), stratify with a
proportion of 80% for training and 20% for validation/test sets; otherwise, keep
those samples in the training set only.

For the image-based regression model, we trained the four CNN architec-
tures. These were enhanced with data augmentation, a batch generator module
for efficient feeding of tiles, and a sample weights module that prioritized less
represented ages. Hyperparameters (Batch size, Epochs and Learning Rate) and
parameters (Augmentation, Sample Weights and Resampling Method), were sys-
tematically monitored and logged using Mlflow [41] for comparative analysis and
subsequent model selection. Overall, 173 different models were tested.

Through our analysis of selected metrics, particularly r2 and RMSE, we dis-
covered that oversampling by repeating images did not yield any benefits and, in
fact, led to worse results. On the other hand, undersampling consistently demon-
strated positive effects, optimizing our chosen metrics. Although data augmen-
tation techniques like rotations, reflections, and translations generally provided
some improvement, their impact was not significant. Our hypothesis regarding
the poor performance of oversampling is based on the presence of numerous non-
informative tiles in the dataset. By duplicating tiles randomly and increasing the
number of tiles per subject, the non-informative tiles introduce more noise into
the learning process. As a result, we decided to focus on undersampling and
data augmentation, as they proved more beneficial in optimizing our selected
metrics and improve model performance. After optimization of hyperparame-
ters, the best performing model was applied to the common test set (r2 = 0.35
and RMSE = 10.1, see Table 1 and Fig. 2c).

Our analysis revealed that the primary factor hindering the performance
of image-based models is the inadequate representation of the neighborhood,
particularly isolated donors from age groups with few or no neighbors. The lack
of representativity in the neighborhood has a more significant impact on model
performance than the number of samples per individual. Figure 5 illustrates that
the prediction errors are considerably larger for lower ages where there are larger
gaps in the number of donors per age, even if the number of tiles per donor
remains approximately the same across all ages, as shown in Fig. 5b.
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Fig. 5. Distribution of (a) the number of samples and (b) the number of tiles per age
in the test set (blue barplots) and the corresponding metrics (lines) in the test set.
The shift between the barplots and the points in the lines results from the application
in the train and test sets. Both figures correspond to the same experiment. Metrics
are the Mean Error (ME), Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE).

In conclusion, relying solely on data augmentation and oversampling strate-
gies in the less represented age groups is not sufficient to achieve better perfor-
mance in our histological dataset. Ensuring adequate representation of the neigh-
borhood, with a balanced distribution of donors across age groups, is essential
for obtaining reliable and high-performing image-based models.

2.5 Ensemble Prediction Model

In an attempt to enhance prediction accuracy and robustness, we combined
the three individual pre-trained models using an ensemble approach. Briefly,
we employed a weighted voting strategy using different combinations of data
modalities. The weights were optimized by minimizing a custom loss function,
( 12 × RMSE

10 ) − ( 12 × r2), to achieve a balanced control over RMSE and r2 on
age predictions from the common test set (n = 45). This approach yielded a
model with marginally better performance than the methylation model for the
optimized metrics (r2 = 0.84, RMSE = 5.01, see Fig. 1). The main contribution
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for this model stemmed from the methylation predictor, while gene expression
made a notable but secondary contribution (76.9% and 23.1%, respectively).
Histology data did not influence the final prediction.

2.6 Aging and Telomere Length

Telomeres are protective caps at the end of chromosomes that maintain genomic
stability and integrity during cell division. They tend to shorten with age [6].
Telomere length (TL) can be measured with different techniques and has been
proposed as a biomarker of biological age. The GTEx project provides a Relative
Telomere Length (RTL) measurement using a high-throughput technique.

We aimed to determine whether RTL could be used as a predictor of biological
age. A significant negative correlation can be found between RTL and age (r =
−0.23, p-value = 6.7e−07, cf. Figure 4c), where age could be approximated by
the linear association: Age ∼ 64.46 − 10.94 × RTL. However, despite employing
linear and gradient boosting regression models and combining RTL data with
other relevant clinical and demographic variables, the predictive accuracy of the
models was found to be poor. This emphasizes that age prediction is a complex
task that requires a multifactorial approach, considering various other factors in
addition to RTL and clinical and demographic variables.

3 Discussion

As technology continues to advance, the generation of extensive biomedical
datasets containing multiple molecular and phenotypic measurements from the
same sample is expected to become increasingly common. This poses significant
difficulties in terms of data analysis. This work highlights the challenges of build-
ing prediction models based on such datasets, which are characterized by their
heterogeneous nature, high dimensionality, and non-uniform distributions.

In our study, we conducted an analysis to determine which data modality
that yields the most accurate age predictions. DNA methylation exhibited the
highest predictive performance, achieving a median error of 2.97 years and a
mean absolute error of 3.9 years when evaluated on a test set of 45 samples.
Gene expression data also showed promising results, albeit with slightly lower
accuracy. Histological images, while providing valuable insights at the tissue and
cellular level, had reduced accuracy when compared to the other modalities.

Next, we investigated whether integrating multiple predictive models could
enhance age estimation and reveal potential complementarity among different
data modalities. Our final ensemble model leveraged DNA methylation and gene
expression, but not histological images, to slightly improve the methylation pre-
dictor in terms of RMSE and r2 (Table 1).

We hypothesize that the limited accuracy of the histological model can be
attributed to the highly imbalanced distribution of the data, particularly the
missing data for lower age ranges, as shown in Fig. 1b. In an attempt to address
this issue, we applied data augmentation techniques such as rotations, scaling,
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and flipping transformations to increase variability and balance the represen-
tation of different age groups. However, these efforts had minimal impact on
the model’s performance. As part of our future work, we plan to explore the
application of recent strategies, such as the approach described in [40], which
tackles imbalanced regression based on the generation of continuous and smooth
distribution of the age. Moreover, we would like to combine HR features, which
were not used in this work, with other more relevant image properties [15,20].

Employing a data rebalancing technique that undersampled overrepresented
age groups and oversampled underrepresented ones [3], led to improved predic-
tions for methylation, but the impact for gene expression was not significant.
We posit that this may in part be explained by the considerable differences in
training set size for these two modalities, with gene expression having access to
three times more samples, see Table 1.

The disparity between biological age and chronological age can be substantial,
and stems from a combination of genetic, lifestyle, and environmental factors.
Furthermore, the divergence in these two aging categories can be biased by
biological or technical covariates. In our study, we focused on optimizing our
models to predict chronological age, although it is likely that the data reflects
biological age instead. The largest prediction errors were observed in the lower
age range, where less training data is available. This highlights the impact of
imbalanced age distribution, a predictive modelling problem which also makes
it difficult to understand if prediction deviations result from model errors or
differences between biological and chronological age.

To assess whether demographic and clinical covariates, such as smoking
habits, do not introduce bias, we have tested the association between the regres-
sion residuals and the covariates. Overall, no significant associations were found.
As future work, we aim to address potential bias by employing more general tech-
niques. One such approach involves incorporating the available covariates into
the linear models of expression and methylation. The corresponding residuals
can then be used as phenotypes of expression or methylation.

In addition to age prediction, our analysis revealed several genes of interest
for age biology. Notably, some of these genes, including EDA2R, CDKN2A, and
PTCHD4, have previously been associated with age-related conditions.

The GTEx samples used in this study were obtained post-mortem, where the
ischemic time may have an impact in the molecular fingerprint [9]. How these
models will perform on data sampled from living tissue is a question that requires
further evaluation and investigation.

4 Conclusion

This study applied state-of-the-art machine learning approaches for predicting
age from multi-modal biological data, including gene expression, DNA methyla-
tion, and histological images. The datasets posed significant analysis challenges
given their highly imbalanced age distribution, including missing data at the
lower end ages, and the very high dimensionality of the molecular data when
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compared with the number of available samples. Despite that, the DNA methy-
lation model and the voting ensemble model are promising strategies for pre-
dicting age, with the former having a median absolute error of approximately
4 years. These findings provide important insights for future explorations into
biological age prediction and age-related conditions, underscoring the potential
of integrating diverse biological data types for complex phenotype predictions.
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17. Johansson, Å., Enroth, S., Gyllensten, U.: Continuous aging of the human DNA
methylome throughout the human lifespan. PLoS ONE 8(6), e67378 (2013)

18. Jung, M., Pfeifer, G.P.: Aging and DNA methylation. BMC Biol. 13(1), 1–8 (2015)
19. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In:

Advances in Neural Information Processing Systems, vol. 30 (2017)
20. Kothari, S., Phan, J.H., Osunkoya, A.O., Wang, M.D.: Biological interpretation of

morphological patterns in histopathological whole-slide images. In: Proceedings of
the ACM Conference on Bioinformatics, Computational Biology and Biomedicine,
pp. 218–225 (2012)

21. Lal, T.N., Chapelle, O., Weston, J., Elisseeff, A.: Embedded methods. In: Guyon,
I., Nikravesh, M., Gunn, S., Zadeh, L.A. (eds.) Feature Extraction. Studies in
Fuzziness and Soft Computing, vol. 207, pp. 137–165. Springer, Heidelberg (2006).
https://doi.org/10.1007/978-3-540-35488-8 6
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28. Melé, M., Ferreira, P.G., Reverter, F., DeLuca, D.S., Monlong, J., Sammeth, M.,
Young, T.R., Goldmann, J.M., Pervouchine, D.D., Sullivan, T.J., et al.: The human
transcriptome across tissues and individuals. Science 348(6235), 660–665 (2015)

29. Melzer, D., Pilling, L.C., Ferrucci, L.: The genetics of human ageing. Nat. Rev.
Genet. 21(2), 88–101 (2020)
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Abstract. Machine Learning has been overtaken by a growing necessity
to explain and understand decisions made by trained models as regula-
tion and consumer awareness have increased. Alongside understanding
the inner workings of a model comes the task of verifying how ade-
quately we can model a problem with the learned functions. Traditional
global assessment functions lack the granularity required to understand
local differences in performance in different regions of the feature space,
where the model can have problems adapting. Residual Analysis adds
a layer of model understanding by interpreting prediction residuals in
an exploratory manner. However, this task can be unfeasible for high-
dimensionality datasets through hypotheses and visualizations alone.

In this work, we use weak interpretable learners to identify regions
of high prediction error in the feature space. We achieve this by exam-
ining the absolute residuals of predictions made by trained regressors.
This methodology retains the interpretability of the identified regions. It
allows practitioners to have tools to formulate hypotheses surrounding
model failure on particular regions for future model tunning, data col-
lection, or data augmentation on critical cohorts of data. We present a
way of including information on different levels of model uncertainty in
the feature space through the use of locally fitted Model Agnostic Pre-
diction Intervals (MAPIE) in the identified regions, comparing this app-
roach with other common forms of conformal predictions which do not
take into account findings from weak segment identification, by assessing
local and global coverage of the prediction intervals.

To demonstrate the practical application of our approach, we present
a real-world industry use case in the context of inbound retention call-
centre operations for a Telecom Provider to determine optimal pairing
between a customer and an available assistant through the prediction of
contracted revenue.
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1 Introduction

As the world evolves to be increasingly more data-driven, a need for a widespread
understanding of machine learning models and their decision-making processes
arises for practitioners and everyone affected by them. In recent years, the
increasing regulation of data products reflects this necessity. For example, the
European Union General Data Protection Regulation, in Recital 71, states that
“[the data subject should have] the right ... to obtain an explanation of the
decision reached”, effectively providing a legal right to an explanation.

Even without considering the regulation, one can easily see the gap that exists
if no efforts are made to make decisions made by machine learning algorithms
explainable to the end user. When used in sensitive domains such as medical
applications, banking, security, law, and many others, traditional performance
metrics alone don’t allow for an accurate understanding of the decisions made
and whether they are being affected by undesired factors such as biases in the
training dataset.

Here is where the growing domain of Explainable AI (xAI) enters to bridge
the model and the people (ML practitioners and non-practitioners) affected by
the model. There have been many efforts to formalize the objectives of this
emerging field, with one popular definition focusing on the following 4 pillars for
the necessity of xAI [1]:

– explain to justify - the decisions made by utilising an underlying model should
be explained to increase their justifiability;

– explain to control - explanations should enhance the transparency of a model
and its functioning, allowing its debugging and the identification of potential
flaws;

– explain to improve - explanations should help scholars improve the accuracy
and efficiency of their models;

– explains to discover - explanations should support the extraction of novel
knowledge and learning relationships and patterns.

Even with well-defined goals and motivations, the use of xAI in industry use
cases is rarely formulaic, depending highly on the context of the data and the
necessities of the owners and users of the data project. Fellous et al. [2] pro-
pose a division of explainable efforts regarding the data product’s development
stage: Pre-modeling, In-modeling and Post-modeling. A true implementation of
explainability efforts in a data product should reflect efforts in each stage.

In industry applications, data products are rarely one-shot projects. Instead,
they need to be maintained and updated by adjusting to possible concept drifts
over their lifetime, reflecting the reality seen in production, or by adding or
removing features for newer iterations of a certain data product. As the pro-
cess of producing and delivering analytics models is dynamic, so should the
steps to guarantee transparency in model decisions. As such, the results of the
Post-modeling stages can motivate further Pre-modeling analysis and choices of
algorithms in the In-modeling phase.
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This paper focused on a Post-modeling approach with a goal centred on
controlling and improving machine learning models. We will explore the benefits
of Error Analysis by segmenting the feature space in regions of different model
performances and how this can contribute to a more transparent decision process
through prediction intervals. As such, the contributions of this paper can be
summarized as follows:

– Expanding current methodology to analyse the local error in machine learning
models for high-impact industry applications;

– Integration between weak performance segments (data cohorts) and estima-
tion of prediction error for regression problems;

– Application of described methodology in a high-impact real-world industry
use case in the context of inbound retention call-centre operations for a Tele-
com Provider.

2 Error Analysis

Uncertainty in machine learning models refers to the lack of complete certainty
or precision in their predictions. ML models are often trained on limited or
noisy data, making it challenging to make definitive predictions. Uncertainty can
arise due to factors such as inherent variability in the data, model assumptions,
parameter estimation, and inherent stochasticity in the underlying processes
[9]. Quantifying and understanding uncertainty in ML models is important as it
provides insights into the reliability and robustness of predictions. Understanding
and quantifying each source of uncertainty in real-world applications can be a
nearly impossible. As such, a way of obtaining predictions that reflect uncertainty
can be achieved alternatively by using Error Analysis for segmenting our feature
space and employing prediction interval estimates. We explain this process in
detail in this and the following section.

Error Analysis (EA) is a method that falls into the category of a Post-
modeling approach, with a goal centred on controlling and improving a certain
machine learning model. A thorough EA seeks to go beyond aggregate per-
formance metrics since single-score evaluation may hide important conditions
of inaccuracies. This occurs because, by only considering global performance
metrics, we neglect that the error is often not uniformly distributed across the
feature space. In general, models will perform better in certain regions, either
by the amount of data present to train or for ease of fit of the decision function
according to model assumptions. By contrast, for hard-to-model or unexpected
inputs, the model performance might be significantly worse than the aggregate
performance.

Although EA methodologies are loosely defined, different sources converge
into the idea of the segmentation of a given feature space (or a feature space
with meta-information) [4,6,8], S, into n sub-regions, Ri ∈ S ( Ri ∈ {R1, ..., Rn}
with

⋃n
i=1 Ri = S, and Ri

⋂
Rj = ∅ for i �= j), and extract local behaviour of

the model in the regions. The segmentation can be either using only the features
available for inference or meta-information about the observation that is not
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accessible to the model. The latter can be either information that is deemed
sensitive, such as gender or ethnicity, not included in the training for fairness
concerns or information regarding characteristics of the data that are not seen
by the model (such as the presence of a cat in a binary image classifier that
identifies images of dogs). These two complementary ways of approaching EA
can lead to different steps for model improvement.

Identifying regions using boundaries or rules in the feature space is the more
direct way to find improvements for an existing model. One way to do so is
to train a different model for data in the feature space’s high error region, or
regions, to complement the existing model. Another way to improve performance
in underperforming regions is to increase the training observations in the area,
either by obtaining fresh data or performing data augmentation. Our approach
is not focused on improving the model performance but rather reflects model
uncertainty in the high error regions in the predictions.

We can use Error Analysis to evaluate and construct our prediction intervals
that estimate uncertainty in an observation. We can assess how well a prediction
interval estimate behaves locally by identifying the regions of high error in a test
set. Ideally, we should construct prediction intervals that retain the same level of
adequacy across all identified regions. For constructing prediction intervals with
information extracted from EA, we can perform local fits of agnostic predictors
in a calibration set’s identified regions to improve local coverage.

3 Model Agnostic Prediction Intervals (MAPIE)

MAPIE is a framework, proposed in [10], for estimating uncertainties associ-
ated with the predictions of Machine Learning models to better understand the
robustness and predictive power of predictions via conformal prediction methods.
These methods don’t require any considerations about the model, utilizing only
the exchangeability of the data as a requirement, which in the case of tabular
regression, is not a harsh assumption.

As this work is inserted in a larger study of interpretable models in indus-
try scenarios, there is a strong necessity for an agnostic approach for obtain-
ing prediction intervals to maintain compatibility with the trained modelling
approaches. The choice of this framework is mainly due to the versatility of the
conformal methods employed by it.

Mathematically, the problem can be defined as follows: given a training
dataset (X, y) = (x1, y1), ..., (xn, yn), we seek to create an estimator for the pre-
diction interval, Ĉα, such that the probability that the real value of the target of a
new observation falls on the estimated interval is P

(
yn+1 ∈ Ĉα (xn+1)

)
= 1−α.

The value of 1 − α is defined as the target coverage and is a user-determined
parameter based on desired risk α, which depends on how lenient the constructed
interval is on error.

Current implementations achieve this by either split-conformal or cross-
conformal methods. First, we define a conformity score function that assesses
how incorrect a prediction is. Typically, for regression problems, we can use
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absolute residuals of a prediction. For split approaches, we train the desired ML
model on a train set and use the conformal scores on a calibration set. For the
chosen risk level α, we determine the estimated quantile of the conformity score
distribution associated and use this value to construct boundaries around the
prediction. Cross-conformal approaches base themselves on a similar principle,
fitting a desired model on each of the folds and assessing out-of-fold conformity
scores using the selected conformity score function. The prediction interval is
then constructed from estimating the quantile associated with risk α from the
conformity scores.

One of the limitations of these methods is the lack of ability to correctly
undertake heteroscedastic noise. Expanding on this weakness, Conformalized
Quantile Regression [11] offers an alternative approach to regular conformal
methods, better adapting the width of prediction intervals to regions of higher
noise. This implementation requires compatible models, that is, models that take
a quantile regression as the machine learning task.

Our approach tries to bridge the knowledge extracted through the error anal-
ysis to produce locally fitted split-conformal predictions sensitive to different
error regions in the model without requiring a quantile regression learning task.

4 Related Work

The necessity to identify and diagnose machine learning model failures has led
to the development of tools for practitioners’ use, such as Uber’s MANIFOLD
[5,7] or Microsoft’s Error Analysis [4], that allow performing this task in an
exploratory way. The approach followed in this work for detecting high error
cohorts is similar to the latter, using shallow regression trees trained on the
absolute residuals of model predictions.

Alternatively to finding weak segments using features of the model, using
meta-information of the observations can lead to less direct ways of improving
existing models since new observations might lack the feature at the time of
inference, or even the use of this information might collide with fairness concerns.
As such, ways to improve the developed model with this type of EA tend to
follow an exploratory path, auditing the model by framing hypotheses on why
it under-performs in the region [3] and complementing the work with other xAI
approaches to understand the difference between local and global behaviour.
There have been approaches suggested for automating the process of finding
patterns that lead to higher error in applications related to image and text
applications [6], such as using a pipeline based on meta-feature extraction from
examples and a rules-based classifier for the prediction of errors.

Also of note, in uncertainty quantification, IBM’s Uncertainty Quantifica-
tion 360 [12] provides alternatives to obtaining prediction intervals by employ-
ing models that intrinsically produce uncertainty estimates and offering alterna-
tive post-hoc methodologies for obtaining prediction intervals on already trained
models.
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5 Methodology

In this work, we used an interpretable regressor - shallow regression trees -
trained on the absolute prediction residuals for identifying high error regions.
Given a model, f : S → R, and data points, (X, y) with X ∈ S, y ∈ R, the
absolute residuals are calculated as |f(X) − y|.

We split the available data into 3 distinct sets: train, test, and calibration.
The train set is used to train each of the models used and, through cross-
validation, tune the hyperparameters of each model using grid-search. The test
set assesses local performance by fitting our residual trees and verifying Mean
Absolute Error (MAE) and coverage of prediction intervals in each cohort iden-
tified. The calibration set is used for fitting our prediction interval estimators in
a split-conformal fashion. We experiment using 2 distinct approaches, Fig. 1, for
obtaining these intervals:

– Global Fitting - by using the entire calibration set for the estimator.
– Local Fitting - by training a residual tree on the calibration set, to segment

it into areas of different performance, and for each area create an associated
interval estimator.

Fig. 1. Experimental approach for obtaining prediction intervals

The residual trees on the test set were trained with a maximum depth of 3,
and a minimum number of samples required to be at a leaf node of 500 to avoid
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creating outlier cohorts, instead focusing on obtaining larger groups of higher
error. In the calibration set we used a slightly deeper estimator with a maximum
depth of 5 and all other parameters equal.

For each of the cohorts in the test set, we assess local coverage of both of our
prediction interval estimates.

For the choice of modeling approaches, since this work is framed in a larger
study on the impact of explainable models in industry use cases, we used a
range of interpretable additive models and a state-of-the-art black box model.
For our interpretable models, we have a Ridge Regression, a Generalized Lin-
ear Model (GLM) with a logarithmic link function [13], a Generalized Additive
Model (GAM) with an identity link function and non-interacting terms [14],
and an Explainable Boosting Machine (EBM) [15] that expands on the GAM
by adding the most relevant pair-wise interactions between features. We used
Extreme Gradient Boosting [16] for our black-box model.

6 Smart Pairing Use-Case

6.1 Use-Case Description

Smart Pairing is a project developed by a TelCo and media provider that seeks to
optimize the pairing of operators and customers, calling a retention line regarding
the possibility of changes to their current telecommunications plan. The clients
calling these retention lines can fall into several categories, such as customers
that are seeking to change their current plan for a more favourable one, cus-
tomers scanning the market to assess how competitive the offers provided by the
company are, or customers unhappy with their current service. In either case,
there is a risk of churn (customer abandonment ) associated with these requests.

To decrease the risk of client churn, as well as increase overall customer
satisfaction with the retention service provided, Smart Pairing proposes a pairing
between operators and clients based on analytics. For a given customer, we seek
to recommend the best operator, where an ideal pairing system minimizes churn
and maximizes contracted revenue.

The implementation strategy of Smart Paring consists of two parts:

– A regression problem, where given a pair of an operator and a customer
we predict contracted revenue (our target variable), given by the number of
contracted months multiplied by the monthly value contracted;

– A ranking problem, where given a model to predict contracted revenue, we
predict the target variable for each pairing possible for a certain customer
and return a custom list of the best operators to address the customer.

In this specific use case, expanding a traditional regression problem into a
conformal prediction, yielding prediction intervals rather than point predictions,
can be viewed as a measure to mitigate fairness issues that arise in the ranking
stage. If, for a specific customer, the model would yield overlapping prediction
intervals between two or more operators, enforcing a hierarchy between them
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might favour certain operators with performance similar to their peers. By giving
them the same priority, we can better reflect the actual prediction of the model
and not fall into the pit-trap of giving an advantage to individuals based on
marginal non-significant differences.

For model variables for the task, we possess historical operator information
regarding the number of calls for different technologies and other service seg-
ments and the number of calls by outcome (for example, calls that ended in
customer churn) over different aggregation periods. We also have available cus-
tomer information regarding the types of service included in their TelCo package
and the volume of calls made to the company operations over different aggrega-
tion periods.

6.2 Experimental Results

After training and tuning each of our models, we assess local performance and
segment the test cohorts. We seek to guarantee that the coverage of our predic-
tion intervals is stable over these regions.

By fitting our shallow regression trees on the residuals of the predictions
for each model on the test data, we noticed that our models seem to under-
perform for customers with high-paying packages and high number of voice and
mobile cards. This is a scenario that occurred regardless of the model used which
indicates that those customers are hard to model with the available data, and
suggests that improvements could be made by acquiring more examples in these
critical regions.

In Fig. 2 we expose a visual representation of the regression tree of the residu-
als for the EBM model to illustrate the insights we can extract with this analysis.
Here we see that the most important factor for different errors is a higher value of
the customer spending, arpu_in_amt, with variables regarding operator back-
ground and performance (ohp), such as the direction of their teams and the
volume of calls that resulted in churn, also contributing to the segmentation. In
this example, the highest error cohort is defined as observations that reflect calls
by higher paying customers and that were picked by teams of B2C (Business
to Consumer), with a local error that is 3.05 times larger than the lowest error
cohort.

Even though these regions are hard to model, if instead of point predic-
tions, we had an interval that reflected this local inaccuracy of the modelling
approaches, we could still make decisions in these areas for the ranking stage.
This could be achieved by observing overlaps, or lack thereof, between prediction
intervals and constructing a ranking system that only favours a certain operator
over another if and only if its predicted value is greater and no overlap of their
prediction intervals occurs.

The local error in each test cohort, alongside cumulative error, for each model
can be found in Fig. 3.

An ideal prediction interval model would yield not only a global coverage near
the user-defined target coverage parameter, but also maintain local coverage in
each cohort near said target. For this work we selected a target coverage of 90%,
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Fig. 2. Residual tree in the test set for the EBM model. The leaves represent each data
cohort used for assessing local error and coverage of prediction intervals.

meaning it is expected that globally, 90% of the targets of new observations will
fall on the predicted intervals. In Fig. 4, we can observe the limitations of using
the traditional split-conformal approach of MAPIE, which leads to prediction
intervals that fail to maintain the local coverage near the desired target since
the prediction interval width does not vary. As such, these prediction intervals
grossly overestimate uncertainty in regions where model error is low, leading to
coverages above the target (valid but overly conservative), and under-estimate
in regions of high model error.

In contrast, our approach to locally fit an estimator in each error cohort in
the calibration set leads to more granular interval estimates that locally maintain
the coverage near the desired target in each test cohort.

In Table 1 we present the average absolute deviation between measured cov-
erage and desired coverage over each cohort, for each of the trained models in
both approaches. We conclude that our approach leads to a significant average
improvement over a global fitting approach.

Table 1. Mean absolute deviation between target coverage and measured coverage
over each cohort (lower is better), for each prediction interval approach.

Approach Models
Ridge GLM GAM EBM XGBoost

Global
MAPIE

7.4% 8.2% 7.5% 7.4% 8.0%

Local
MAPIE

2.2% 2.8% 2.2% 1.9% 4.8%
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Fig. 3. Local Error (cohort MAE/Global MAE) and cumulative error for each identified
cohort

Fig. 4. Local coverage and mean interval width assessment using both described strate-
gies. The dashed line represents the desired coverage selected, 90%. We can visually
verify a higher stability of coverages using our locally fitted approach, as well as a more
granular interval width over test error cohorts.

7 Conclusion

In this work we explored the creation of prediction intervals through local fitting
of split-conformal methods for each region of different error detected in a calibra-
tion set, and validated their quality by assessing the coverage over each region
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of different error in a test set. We concluded, through our use-case, that this
approach yields more stable coverages over the different regions than a global
split-conformal estimator, being a better solution for use cases where error has
very different local behaviours. Our approach, by being based on an interpretable
regressor for segmentation of error regions on the calibration set, also maintains
high transparency as the path to each leaf can be used to comprehend the dif-
ferent width of the intervals for a prediction.

Our approach for verifying coverage in error regions can also be extended
for other prediction interval methodologies. We believe this assessment can be a
useful benchmark to guarantee prediction intervals are being generated in a way
that takes into consideration the inherent variability of prediction error in the
feature space.

8 Future Work and Limitations

In our approach, we did not include a comparison between our methodology and
quantile MAPIE models, which include a more resilient way to deal with error
changes in different regions. The requirement to have a quantile regression esti-
mator for this more adaptable method can lead to additional considerations on
the modelling step that our approach circumvents. Nevertheless, for future work,
we recommend a comparison between our approach and other more adaptable
ways of estimating prediction intervals.

Cross-conformal methods implemented by MAPIE were not explored in
depth during this work, as preliminary results reflected poor results for local
coverage while maintaining a high computational cost. Either way, a more in-
depth comparison of our local methodology with these approaches can also be
fruitful in comprehending how they are fair in comparison.

Other ways to deal with heteroscedastic noise in the context of prediction
intervals, outside the MAPIE ecosystem also could be explored in the future,
expanding on the work of Johansson et al. [17].

Lastly, the methodology used in this paper will continue to be explored for
creating a fairer decision process in the ranking segment of this use case, con-
tinuing to push for the positive impact of the xAI methodologies on industry
applications.
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Abstract. Log sequences generated by heterogeneous systems are crit-
ical for understanding computer system behaviour and ensuring opera-
tional and security integrity. However, the diverse formats, structures,
and content of logs pose challenges for traditional log anomaly detec-
tion approaches that rely on log parsing, which can be imperfect and
incomplete in information extraction. To address these challenges, we
propose HEART (HEterogeneous Log Anomaly Detection using Robust
Transformers), an end-to-end framework for log-based anomaly detec-
tion. HEART eliminates the need for log parsing and leverages Trans-
fer Learning (TL) and Transformer models to operate directly on raw
log events from multiple systems. We enhance existing tokenizers with
domain-specific tokens, applied to BERT and RoBERTa, and introduce
two novel Transformer models, LogAnBERT and LogBERTa, trained from
scratch on log events. We comprehensively evaluate HEART in intra-
system and cross-system scenarios, demonstrating its competitive per-
formance with enhanced anomaly detection using fewer training parame-
ters. Our findings highlight the importance of adapting Transformers and
tokenizers for log anomaly detection, enabling improved system monitor-
ing and security across domains. HEART is a significant contribution,
being the first end-to-end TL framework for log-based anomaly detection
in heterogeneous systems.

Keywords: log anomaly detection · transformers · transfer learning

1 Introduction

System logs, which are commonly employed for troubleshooting in large com-
puter systems, typically exhibit diverse formats and structures, making it chal-
lenging to use a universal log parser. Traditional approaches to log anomaly
detection often rely on techniques such as keyword matching or regular expres-
sions to identify abnormal log entries. However, these methods may fall short in
detecting attacks or anomalies that involve logs from different systems or logs
exhibiting different formats and structures [10].
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Log parsing is a common approach in log anomaly detection, where the
log sequences are initially transformed into a standardized format called “tem-
plates” [9]. Log parsing involves extracting structured information from unstruc-
tured or semi-structured log data, typically using pattern matching or rule-based
techniques, to create these log templates. Each sequence can then be mapped to
a specific template, enabling further analysis and detection of anomalies using
ML/DL approaches. Despite being a common approach in log anomaly detec-
tion, log parsing has some limitations [10]. First, log parsing relies on predefined
log templates, which may not cover all possible log patterns, leading to potential
parsing errors or missing relevant log information. Second, log parsing may not
effectively handle variations in log formats or entries that deviate from the prede-
fined log templates, resulting in incomplete or inaccurate parsing results. Third,
log parsing may not be suitable for handling dynamic or evolving log data, where
the formats or patterns change over time, requiring frequent updates to the log
templates. Lastly, log parsing may not be efficient in processing large volumes of
log data in real-time or near real-time, potentially leading to processing delays
or resource limitations in high-velocity logging environments [10].

In this work, we propose a novel methodology called HEART
(HEterogeneous Log Anomaly Detection using Robust Transformers) to
address the limitations of traditional log anomaly detection approaches. HEART
eliminates the need for log parsing and harnesses the power of Transfer Learning
(TL) [17] in our cross-system setup. Cross-system and intra-system scenarios
encompass different contexts for log data analysis. The intra-system scenarios
focus on detecting anomalies within a single system or application to identify
system-specific anomalies. In contrast, cross-system scenarios involve analyzing
log data from multiple systems, building a model based on this diverse data, and
applying it to detect anomalies in a target system [17]. HEART addresses the
challenges of both cross-system and intra-system log analysis. By directly oper-
ating on raw log events and employing Transformer models, HEART captures
intricate patterns and dependencies within log data, enabling effective anomaly
detection within a single system. This eliminates the need for predefined log tem-
plates and enhances the detection of complex anomalies within the system itself.
Moreover, HEART’s TL ability extends to the cross-system setup, where log
data from multiple systems with different formats and structures are analyzed
together. HEART leverages the knowledge learned from multiple systems and
applies it to a target, novel, system, enhancing anomaly detection performance
in cross-system scenarios and enabling a comprehensive analysis of log data in a
heterogeneous environment.

By emphasizing both cross-system and intra-system notions, our work high-
lights the versatility and effectiveness of HEART in addressing anomaly detec-
tion challenges in various contexts. The utilization of TL, Transformer models,
and elimination of log parsing capability make HEART a robust, end-to-end
methodology for log-based anomaly detection not only within a single system
but also across different systems and applications. To the best of our knowledge,
our work represents the first comprehensive analysis of cross-system scenarios in
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log data, that harnesses the power of TL and Transformer models trained from
scratch for log-based anomaly detection while making use of multiple datasets
with different log formats and structures.

Our main contributions can be summarized as follows:

1. We propose the HEART framework, a novel, end-to-end methodology for log-
based anomaly detection. HEART eliminates the need for log parsing while
benefiting from the power of TL and Transformer models, allowing us to
operate directly on raw log events from multiple systems.

2. We introduce a method to dynamically extend the tokenizers of pre-trained
Language Models (LMs), customizing them for targeting log data processing.
This approach is evaluated on widely-used architectures such as Bidirectional
Encoder Representations from Transformers (BERT) [5] and Robustly Opti-
mized BERT approach (RoBERTa) [12] that were originally designed for Natural
Language Processing (NLP) tasks.

3. We present LogAnBERT and LogBERTa, two domain-specific models tailored
for log-based anomaly detection, trained from scratch for Masked Language
Modelling (MLM) on a large-scale log dataset for 3.7 million steps. These
architectures are built upon the foundation of BERT and RoBERTa but are
customized and fine-tuned to effectively handle log data.

4. We conduct an extensive experimental study to assess the performance of both
the state-of-the-art publicly available approaches and our proposed HEART
framework. The evaluation encompasses various log datasets with diverse for-
mats and structures, covering both intra-system and cross-system scenarios.

The remainder of the manuscript is organized as follows: Sect. 2 reviews
related work on log-based anomaly detection using parsers and TL. Section 3
introduces our proposed HEART framework and its components. Section 4 pro-
vides details on the experimental datasets, scenarios, and our evaluation frame-
work. Next, in Sect. 5, we analyze and compare the results of our proposed
models. Finally, Sect. 6 offers conclusions on the topic, along with suggestions
for future work.

2 Related Work

2.1 Log Anomaly Detection with Templates and Transformers

Several recent studies have utilized contextual representations from Transform-
ers for log anomaly detection. For instance, LogBERT [8] uses self-supervised
learning objectives to detect anomalies, while NeuralLog [10] directly processes
log messages with Transformers without log parsing. BERT-Log [4] integrates
an event template extractor for structured log processing, and LogFiT [1] uses
Longformer to handle longer log sequences. Other anomaly detection approaches,
such as Prog-BERT-LSTM [16], PoSBERT [19], and CAT [21], combine Trans-
formers with other techniques, including parsing and word-embeddings.
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It is worth pointing out that NeuralLog stands out in its direct utilization
of Transformers, bypassing the need for explicit log parsing [10]. However, Neu-
ralLog still necessitates the extraction of the log messages from the log events,
which can be considered a form of parsing. Our proposed HEART framework, in
contrast, operates directly on raw log events without the requirement for parsing
or log message extraction. By harnessing the power of Transformers with cus-
tomized domain-specific models, HEART offers a novel approach to log-based
anomaly detection that overcomes the limitations associated with traditional
parsing techniques.

2.2 Transfer Learning for Log Anomaly Detection

Transfer learning can be defined as improving a model’s performance in a target
dataset by utilizing the knowledge from “related” source domains [17]. Specifi-
cally, in the context of log anomaly detection, TL involves harnessing the knowl-
edge gained from one or multiple source systems to facilitate the adaptation of
models to another target system’s log data. This adaptation process allows tack-
ling the challenges posed by variations in log formats, structures, and content,
ultimately enhancing the performance and applicability of anomaly detection
models in real-world scenarios [3].

LogTransfer [3] is an example of a TL framework for log anomaly detection.
It focuses on detecting anomalies in logs generated by different software systems.
The framework utilizes pre-training and fine-tuning, where a Long-Short Term
Memory (LSTM) model is first pre-trained on templates, extracted with FT-
tree [20], from a single source system and then fine-tuned on a target system’s
events. This transfer of knowledge has been shown to improve the model’s ability
to detect anomalies in the target system when faced with diverse log formats.
While LogTransfer makes use of the power of TL, its adaptability to diverse
datasets from different systems is still limited due to its dependence on FT-tree
for template extraction, i.e., log parsing. In contrast, our HEART framework
provides a significant advantage by being parser-independent, enabling greater
flexibility in employing multiple datasets. By decoupling from the constraints
of log template extraction, HEART seamlessly accommodates diverse log data
while still leveraging TL with diverse datasets, resulting in improved adaptability
for log anomaly detection.

3 HEART Framework, LogAnBERT and LogBERTa

This section provides an overview of the proposed specialized tokenizers designed
specifically for log data and the novel, domain-specific models we built from
scratch, namely LogAnBERT and LogBERTa, tailored for log anomaly detection.
Finally, we present the integration of these models and tokenizers within our
novel HEART1 framework for evaluating solutions for log anomaly detection
within a TL context.
1 The code, datasets, and Transformer models developed and evaluated in this work

are available upon reasonable request to the corresponding author.
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3.1 Special-Purpose Tokenizers

To deal with the inherent diversity present in logs originating from multiple
sources, we propose a novel approach that dynamically expands the vocabulary of
the tokenizers used in the classification process. This method enables us to effec-
tively handle the unique characteristics and variations within log data. We have
tested this approach on both BERT’s WordPiece [5] and RoBERTa’s ByteLevelBPE
(BBPE) [12] tokenizers for adaptability to the log anomaly detection task.

The proposed technique first tokenizes the training data using the tok-
enizer and computes the Term Frequency-Inverse Document Frequency (TF-
IDF) scores for the tokens present in the corpus using the TfidfVectorizer
from scikit-learn2. Then, the tokens are ranked according to their TF-IDF scores
and those not present in the current tokenizer’s vocabulary are identified as most
representative. Finally, the top t new tokens are added to the tokenizer, allowing
for the incorporation of domain-specific terminology and leveraging the power of
TL. This approach offers flexibility in adapting the tokenizer to different tasks
by dynamically updating its vocabulary with relevant tokens. In this work, we
experimented with a value of t = 1000.

3.2 LogAnBERT

To enhance the training process for log anomaly detection, we developed a cus-
tom Transformer model and tokenizer from scratch for MLM, namely LogAnBERT
(Log Anomaly Detection using the BERT architecture). LogAnBERT is a variant of
BERT, specifically designed for logs. It is a 6-layer Transformer model trained on
log events from publicly available sources for 3.7 million steps, using a batch size
of 16 samples. To ensure effective preprocessing, we employed the WordPiece
tokenizer for LogAnBERT. LogAnBERT’s tokenizer was trained from scratch on the
same log events, resulting in a vocabulary size of 30,522. During MLM, we ran-
domly masked 15% of the tokens in the events to create a context prediction task.
The model then learned to predict the masked tokens based on the surrounding
context, effectively capturing the contextual information within the events. The
motivation behind developing LogAnBERT was to tailor it specifically to log data,
enabling it to accurately understand and identify anomalies in log events.

3.3 LogBERTa

In addition to LogAnBERT, we also developed another custom Transformer model
and tokenizer called LogBERTa. LogBERTa is a variant of RoBERTa, designed
specifically for log anomaly detection and also trained for MLM. Similar to
LogAnBERT, LogBERTa is a 6-layer model trained on the same log events. For pre-
processing, we utilized the BBPE tokenizer for LogBERTa. LogBERTa’s tokenizer
was trained from scratch on the same log events, also resulting in a vocabulary
size of 30,522. By building LogBERTa from scratch and employing a dedicated

2 https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/
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tokenizer, we aimed to enhance its ability to effectively analyze log events and
identify anomalies with improved accuracy.

Our motivation behind building two Transformer models, LogAnBERT and
LogBERTa, with different tokenizers, stems from the unique characteristics of log
data and the specific requirements of log anomaly detection. Log events originat-
ing from different systems exhibit diverse patterns and structures necessitating
an effective means to capture and represent these patterns. By employing dis-
tinct tokenization strategies, we aim to better handle the heterogeneity of log
data, optimize the models’ performance in understanding and identifying anoma-
lies and harness the power of TL. LogAnBERT utilizes WordPiece, well-suited for
capturing subword-level information [5]. On the other hand, LogBERTa employs
BBPE, which operates at the byte level and can effectively handle non-standard
encodings [12]. This choice of tokenizers allows us to leverage their strengths
when dealing with diverse log datasets, enhancing HEART’s adaptability.

3.4 HEART Framework

Our proposed classification framework, HEART, is shown in Fig. 1 (the solid
arrow represents the core workflow). HEART combines the power of pre-trained
models, BERT and RoBERTa, from the HuggingFace transformers library with our
novel domain-specific models, LogAnBERT and LogBERTa, for log classification.

Fig. 1. Workflow of the HEART Framework

In the HEART framework, we augment the existing pre-trained models’
(BERT and RoBERTa) tokenizers with domain-specific tokens, to enable them to
handle log data. These updated models are then utilized to tokenize the log lines
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and trained for sequence classification. On the other hand, the right-hand side of
the framework focuses on making use of all log lines from the database to train
the novel tokenizers and models (LogAnBERT and LogBERTa) for MLM. In the
classification stage, the tokenized events are passed through a fully connected
linear layer, following a dropout layer to prevent overfitting. The output of this
linear layer is then passed through a sigmoid activation function to produce the
binary anomaly scores, indicating the probability of log events being anoma-
lous or normal. For evaluation, HEART encompasses both intra- (with k-fold
cross-validation) as well as cross-system ((D − 1) vs 1 for a total of D datasets)
performance evaluations. By incorporating these aspects, HEART provides a
thorough assessment of performance across different configurations, ensuring its
readiness for both intra- and cross-system performance evaluation. By combining
the power of TL with custom, domain-specific models and tokenizers, HEART
offers a comprehensive and end-to-end anomaly detection framework.

4 Experimental Setup

This section presents the details of the datasets, scenarios, evaluation metrics,
and hardware employed in our experiments to assess HEART’s performance.

4.1 Datasets

In this research, we evaluate the effectiveness of our approach using four widely
used publicly available labelled datasets downloaded from the loghub reposi-
tory3. Table 1 presents the statistics of the datasets.

Table 1. Datasets Statistics

System #Events #Anomalies #Non-anomalies Data Size

BGL 4,747,963 348,460 4,399,503 708.76 MB
Hadoop 393,433 25,285 368,148 48.61 MB
HDFS 11,175,629 288,250 10,887,379 1.47 GB
OpenStack 207,820 189,386 18,434 58.61 MB

BlueGene/L (BGL) [14]: The BGL dataset consists of logs collected from a
BlueGene/L supercomputer system at Lawrence Livermore National Labs
(LLNL) in California. The system has 131,072 processors and 32.7TB of
memory. The logs contain labelled alert and non-alert events.

Hadoop [11]: In this dataset, logs were generated from a Hadoop cluster con-
sisting of five machines with a total of 46 cores, each machine equipped with
an Intel(R) Core(TM) i7-3770 CPU and 16GB RAM. The cluster was used
to execute two testing applications, WordCount and PageRank. To simulate
real-world production environment failures, various deployment failures were
manually injected during the applications’ run-time.

3 https://github.com/logpai/loghub.

https://github.com/logpai/loghub
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Hadoop Distributed File System (HDFS) [18]: The HDFS dataset was
generated in a Hadoop-based map-reduce cloud environment using bench-
mark workloads, and annotated manually with handcrafted rules to identify
anomalies. The logs are segmented into traces based on block IDs, each with
a ground truth label (normal/anomaly).

OpenStack [6]: OpenStack4 is a cloud operating system used for managing
compute, storage, and networking resources in data centers. The dataset was
generated on a flexible scientific infrastructure for cloud computing research.
It includes both normal logs and abnormal log events.

4.2 Scenarios and Motivation

Our experiments comprised two scenarios: a cross-system scenario and an intra-
system scenario. In the traditional experimental setting of intra-system evalu-
ation, it has been common practice to employ fixed train-test-validation splits
without incorporating cross-validation [10]. This approach involves dividing each
system’s log data into fixed portions, typically allocating 70% for training, 15%
for validation, and 15% for testing. However, this method may not fully capture
the variability within the dataset and can lead to overfitting or limited gener-
alization to unseen data. To address these limitations and enhance the validity,
reliability, and robustness of our evaluation, we have chosen to incorporate strati-
fied k-fold cross-validation into our experimental design. This allows us to obtain
a more comprehensive understanding of our models’ performance across various
data configurations and minimize potential biases introduced by fixed splits [2].

Additionally, to assess the generalizability of our models across different sys-
tems, we have introduced a cross-system scenario. In this setup, our models were
trained on labelled log events from three out of the four different datasets, each
representing a distinct system. The fourth dataset was reserved exclusively as
the test set, allowing us to evaluate the models’ performance in a more diverse
and challenging environment. This cross-system evaluation is a form of TL, as it
capitalizes on knowledge from log events from multiple systems to improve the
models’ performance on a target system [17]. It should be emphasized that our
exploration of the cross-system scenario in log data is novel, as it involves mul-
tiple datasets from different systems. Similar approaches utilizing TL have been
investigated in the context of recommender systems to address the data sparsity
challenge in cross-system scenarios [22], demonstrating promising results.

To provide a fair comparison in the intra-system scenario, we compare our
approach to NeuralLog [10], which utilizes Transformers (BERT, GPT2 [15], and
RoBERTa) for log-based anomaly detection without log parsing. NeuralLog com-
bines positional encoding and the Transformer encoder to learn attention pat-
terns and make predictions from log “messages” extracted from the log sequences.
Our approach differs in that it directly utilizes the raw log “events” (or “ lines”)
from the sequences without parsing steps to extract the log messages. However,
NeuralLog was only developed and evaluated on two of the four datasets we
used in our work (HDFS and BGL). To ensure a fair comparison, we reran the

4 https://www.openstack.org.

https://www.openstack.org
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experiments for NeuralLog using the same k-fold cross-validation setup, which
was previously lacking in the original implementation5.

Both cross-system and intra-system scenarios are part of the HEART frame-
work and offer valuable insights. The cross-system scenario evaluates the model’s
performance in detecting log anomalies across diverse systems, simulating an
analyst’s assessment of a novel system using a model trained on multiple sys-
tems’ log data. This evaluation offers an initial assessment of the framework’s
performance in a new system for which there is limited or no prior knowledge
about the nature of anomalies. On the other hand, the intra-system scenario
assesses the model’s performance in detecting log anomalies within each individ-
ual system, providing insights into its effectiveness in specific system contexts.
While our binary approach of distinguishing “anomalous” and “non-anomalous”
events is valuable, we recognize that teams may have different classification tasks
or domain-specific requirements. For instance, they might aim to detect specific
types of anomalies or address unique security concerns such as malware infec-
tions or brute force attacks. To accommodate such scenarios, we include the
intra-system performance on the “anomalous” versus “non-anomalous” classifica-
tion task, showcasing our approach’s flexibility for system-specific customization.

4.3 Hardware Setup and Evaluation Metrics

The experiments were conducted on the Digital Research Alliance of Canada
(the Alliance) clusters utilizing 4 nodes, each equipped with 4 NVIDIA V100
GPUs (with 16GB memory each). The models were trained for 5 epochs with
a batch size of 16 samples. In evaluating the performance, we considered the
precision, recall and F1-score as evaluation metrics. In the cross-system scenarios,
we examined the performance at the class-wise level, which allowed us to assess
the performance of each individual class and understand the model’s ability to
detect anomalies in different system contexts.

In the intra-system setup, we primarily focus on the macro F1-score as it
provides a balanced measure of precision and recall, accounting for the accu-
rate detection of anomalies and minimizing false positives. This is particularly
important in the context of imbalanced datasets, where accuracy alone can be
misleading [13]. We also constructed a robust stratified 10-fold cross-validation
framework to report reliable metrics and account for potential sampling bias [2].
Finally, to assess significant differences among our experimental results (in both
intra-system and cross-system setups), considering the macro F1-score, we used
the Friedman test [7]. NeuralLog was excluded from our intra-system analysis
as it was not developed for the Hadoop and OpenStack datasets.

5 Results and Discussion

This section presents the results of the experiments we conducted in both
intra- and cross-system setups, including statistical tests. We further discuss
the obtained results, their implications, and potential avenues for further explo-
ration.
5 https://github.com/vanhoanglepsa/NeuralLog.

https://github.com/vanhoanglepsa/NeuralLog
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5.1 Intra-system Results

We conducted a 10-fold stratified cross-validation on data from each of the four
systems in the intra-system setup. Table 2 presents the average results obtained
from the 10 runs conducted across the systems, with the standard deviation indi-
cated in subscript next to the average values. NeuralLog’s results are presented
as NL-B, NL-R, and NL-G, indicating the LMs used: B for BERT, G for GPT2, and
R for RoBERTa. It is noteworthy that our implementation offers the advantage
of system independence, making it adaptable to various systems and datasets,
underscoring its wide applicability.

As seen in Table 2, our novel, yet smaller LMs (LogAnBERT and LogBERTa)
achieve comparable results to the existing models (NeuralLog, BERT and
RoBERTa) which contain more layers and parameters while taking less training
time. It is evident that despite having fewer layers and parameters and taking
the entire log events, our domain-specific models achieve performance on par
with the larger counterparts. This highlights the efficiency and effectiveness of
our approach, making it a compelling choice for cybersecurity applications where
reduced training time is of paramount importance.

The Friedman test yielded a Q-statistic of 6.8399, accompanied by a corre-
sponding p-value of 0.0771 and a Critical Distance (CD) of 2.3452. These results
indicate that there is no statistically significant difference among the measures
at a confidence level, α, of 0.05. Notably, our approach utilizing BERT with an
updated tokenizer achieved the highest rank, although it did not exhibit a sta-
tistically significant difference compared to the other models. Conversely, both
LogBERTa and RoBERTa obtained the same rank, while LogAnBERT ranked last.

Table 2. Intra-system results (average and standard deviation).

System M1 LBa2 RoBERTa LBT3 BERT NL-B NL-G NL-R

BGL F 1.0±0.0 1.0±0.01 0.99±0.0 1.0±0.0 0.99±0.0 0.99±0.0 0.98±0.0

P 1.0±0.0 1.0±0.0 0.99±0.0 1.0±0.0 0.99±0.0 0.99±0.0 0.98±0.0

R 1.0±0.0 1.0±0.0 0.99±0.0 1.0±0.0 0.99±0.0 0.99±0.0 0.98±0.0

Hadoop F 0.87±0.01 0.89±0.04 0.86±0.01 0.92±0.01 –4 –4 –4

P 0.84±0.02 0.86±0.04 0.85±0.01 0.90±0.01 –4 –4 –4

R 0.91±0.01 0.91±0.05 0.88±0.0 0.95±0.01 –4 –4 –4

HDFS F 0.97±0.0 0.96±0.0 0.96±0.01 0.98±0.01 0.99±0.0 0.99±0.0 0.98±0.0

P 0.95±0.0 0.94±0.0 0.95±0.0 0.97±0.01 0.99±0.0 0.98±0.0 0.98±0.0

R 0.98±0.0 0.98±0.0 0.98±0.02 0.98±0.0 0.99±0.0 0.98±0.0 0.96±0.0

OpenStack F 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 –4 –4 –4

P 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 –4 –4 –4

R 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 –4 –4 –4
1 M: Metric – F: Macro F1-score, P: Macro Precision, R: Macro Recall; 2 LBa: LogBERTa; 3

LBT: LogAnBERT; 4NeuralLog method not developed for this dataset.



HEART 683

5.2 Cross-System Results

In the cross-system setup, we utilized D−1 datasets from the available D datasets
for training the models, while reserving one dataset for testing. Specifically,
we trained each model on three datasets and evaluated its performance on the
remaining dataset. The results of this evaluation are shown in Table 3. To the
best of our knowledge, this study represents the first exploration of such a het-
erogeneous experiment, employing TL and involving multiple datasets. In con-
trast, LogTransfer solely utilizes a single system as the source data and assesses
its performance on another system as the target data. Therefore, we utilized
our implementations of the BERT and RoBERTa models, along with updated tok-
enizers, as baselines for comparison against the novel LogAnBERT and LogBERTa
models.

Table 3 provides a comprehensive view of the performance of different mod-
els, including our proposed domain-specific models (LogAnBERT and LogBERTa),
as well as the widely used BERT and RoBERTa models, across various systems.
The class-wise cross-system results in the table highlight the models’ ability to
distinguish between non-anomalies (class 0) and anomalies (class 1). We observe
varying degrees of success on the different datasets with the different models.
For the BGL dataset, only RoBERTa demonstrated exceptional performance while
the others’ performances were not effective for anomaly detection. However, for
the Hadoop dataset, the performance of all models was relatively lower, with
only the BERT yielding an F1-score for class 1 (anomalies) of 72%. Conversely,
on the OpenStack dataset, only our novel models LogAnBERT and LogBERTa
yielded F1-scores of 95% on class 0 (non-anomalies), while the other two yielded
poor results for both classes. Interestingly, our proposed domain-specific models

Table 3. Cross-system results

System M1 BERT RoBERTa LBT2 LBa3

0 1 0 1 0 1 0 1

BGL F 0.63 0.19 1.00 1.00 0.02 0.14 0.02 0.14
P 0.97 0.11 1.00 1.00 0.99 0.07 0.88 0.07
R 0.47 0.79 1.00 1.00 0.01 1.00 0.01 0.98

Hadoop F 0.23 0.72 0.12 0.07 0.12 0.00 0.12 0.23
P 0.13 1.00 0.07 0.98 0.06 0.00 0.07 0.95
R 0.96 0.56 0.99 0.04 1.00 0.00 0.89 0.13

HDFS F 0.00 0.06 0.00 0.06 0.99 0.30 0.99 0.54
P 0.00 0.03 0.00 0.03 0.98 1.00 0.98 1.00
R 0.00 1.00 0.00 1.00 1.00 0.18 1.00 0.37

OpenStack F 0.00 0.16 0.00 0.16 0.95 0.00 0.95 0.00
P 0.00 0.09 0.00 0.09 0.91 0.00 0.91 0.00
R 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00

1M: Class-wise Metric, F: F1-score, P: Precision, R: Recall, 2LBT:
LogAnBERT, 3LBa: LogBERTa
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showed promising results on the HDFS dataset, with LogBERTa achieving an F1-
score of 54% for class 1 (anomalies). This performance surpasses both BERT and
RoBERTa, which yielded similar, relatively poor results and achieved an F1-score
of 0 for class 0 (non-anomalies), indicating a complete failure to correctly pre-
dict instances of the majority class. Overall, the cross-system results highlight
the potential of our proposed models in adapting to diverse log formats on the
HDFS dataset, while also underscoring the challenges in handling the specific
patterns present in those datasets. These findings emphasize the necessity for
additional optimization to achieve improved performance in scenarios involving
diverse formats.

Based on the obtained macro F1-scores, we calculated a Q-statistic of 0.5675,
accompanied by a corresponding p-value of 0.9038 and a CD of 2.3451. Similar
to the intra-system scenarios, no statistically significant difference was observed
among the measures at α = 0.05. However, in this case, both LogBERTa and BERT
with the updated tokenizer achieved the highest rank, followed by RoBERTa in
second place, while LogAnBERT retained its position as the lowest performer.

5.3 Discussion

The results obtained from the intra- and cross-system scenarios (Tables 2 & 3)
show interesting performance trends. In intra-system scenarios, our models
demonstrate relatively strong performance, achieving the lowest F1-score of 86%
on the Hadoop dataset using LogAnBERT. However, in cross-system scenarios,
the performance becomes more challenging. Despite our proposed LogBERTa and
LogAnBERT models achieving relatively high macro F1-scores of 76% and 64%
on the HDFS dataset, the statistical analysis we conducted showed that there is
no significant difference when considering results from all datasets in the cross-
system scenarios. These findings highlight the inherent difficulties of effectively
handling log events from multiple systems that exhibit diverse formats and struc-
tures, while also indicating that our novel, more compact models can achieve
comparable performance to the larger BERT and RoBERTa models.

Examining the log events from the four experimental datasets offers valuable
insights into the challenges encountered and HEART’s effectiveness in both intra-
and cross-system scenarios. Notably, Table 4 illustrates distinct patterns in the
log events from the datasets. In the BGL dataset, there is a clear differentiation
between normal and anomalous events. Anomalies in this dataset consistently
begin with keywords belonging to the 41 identified classes, as established by
Oliner and Stearley [14], such as KERNDTLB, KERNSTOR, and APPSEV.
These keywords are associated with various aspects of the system, including the
kernel’s handling of the Translation Lookaside Buffer (TLB), storage and criti-
cal application-level events. In contrast, normal events consistently begin with
numerical values. This provides a plausible explanation for the high performance
achieved by all models in intra-system scenarios on the BGL dataset.

The Hadoop dataset lacks the distinct characteristics found in the BGL
dataset, resulting in an F1-score range of 87% to 92% in intra-system scenarios.
The dataset’s relatively small size and high class imbalance contribute to the
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Table 4. Example log events from the experimental datasets

System Label Log Event

BGL Normal 1118766826 2005.06.14 R25-M0-N3-C:J09-U11 2005-06-14-09 ...
Anomaly KERNSTOR 1118766822 2005.06.14 R24-M0-NC-C:J02-U11 ...

HDFS Normal 081110 003838 13 INFO dfs.DataBlockScanner: ...
Anomaly 081110 003838 13 INFO dfs.DataBlockScanner: Verification ...

Hadoop Normal 2015-10-18 21:36:41,236 INFO [main] org.apache.hadoop...
Anomaly 2015-10-18 18:25:44,584 WARN [LeaseRenewer:msrabi@...

Openstack Normal nova-api.log.1.2017-05-16_13:53:08 2017-05-16 06:25:02.870 ...
Anomaly nova-api.log.2017-05-14_21:27:04 2017-05-14 19:39:01.445 ...

performance variation. Similar trends are observed in the OpenStack and HDFS
datasets, but the distinctive length of log events in OpenStack and the larger
size of HDFS assist our models in achieving F1-scores ranging from 97% to 100%
in intra-system scenarios. During testing in the cross-system setup, our models
face challenges when processing log events from the target dataset. We posit this
difficulty arises due to discrepancies in log events across the datasets, resulting
in sub-optimal performance. To address this issue, the concept of Heterogeneous
TL (HTL) can be further explored. HTL involves extracting features from both
the source domain and target domain and it has been proven effective in similar
scenarios [17]. Updating the tokenizers with tokens specific to the target system
may potentially improve the models’ performance by aligning them more closely
with the characteristics of the target domain.

6 Conclusion

In this work, we demonstrate the competitiveness and efficiency of our novel
HEART framework that utilizes our domain-specific LMs, LogAnBERT and
LogBERTa, for log-based anomaly detection without log parsing in cybersecurity
applications when used in intra-system scenarios. Through comprehensive eval-
uations and comparisons with existing models, including NeuralLog, BERT, and
RoBERTa with updated tokenizers, we have shown that our smaller models achieve
comparable results while requiring less training parameters, thus less train-
ing time. This highlights the efficiency and effectiveness of our domain-specific
models in processing entire, raw, log events. By leveraging the domain-specific
knowledge embedded in our models, we can effectively capture the semantics
of log events from single systems and achieve performance on par with larger
counterparts. However, in cross-system settings, although leveraging TL showed
improvements on specific datasets, with LogBERTa and LogAnBERT models yield-
ing macro F1-scores of 76% and 64% on the HDFS dataset; our novel models
generally fell short compared to our implementations of the larger counterparts
with updated tokenizers. Nonetheless, our research contributes valuable insights
into log-based anomaly detection and enhances streamlined and time-efficient
log analysis, benefiting the field of cybersecurity.
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In order to further enhance our HEART framework, we plan to explore data
augmentation to enhance training data diversity, incorporate additional datasets
to increase variability and investigate HTL and unsupervised approaches for
anomaly detection. By addressing these areas, we aim to improve HEART’s
robustness, generalization, and scalability and advance the log-based anomaly
detection techniques, especially in cross-system scenarios.
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Abstract. Time series are sequences of observations ordered by time.
Detecting outliers in a set of time series is very important for many use
cases, including fraud detection and predictive maintenance. However,
this task continues to be difficult: First, time series may be of different
lengths and conventional distance measures like the Euclidean distance
can not capture their similarity well. Workarounds like feature engineer-
ing require domain knowledge and render solutions domain-specific. Sec-
ond, many existing techniques are supervised, but training labels are
expensive if not impossible to obtain. In this paper, we propose Multi-
Kernel Times Series Outlier Detection (MK-TSOD), a method that com-
bines the Fourier Transform, Global Alignment Kernels, and Multiple
Kernel Learning with Support Vector Data Description. We describe its
specifics, and show that MK-TSOD outperforms existing methods on
standard benchmark data.

Keywords: Time Series · Outlier Detection · Global Alignment
Kernel · Fourier Transform · Support Vector Data Description

1 Introduction

Outlier detection is of fundamental importance for many real-world applications,
such as fraud detection or predictive maintenance. In such settings, data is often
collected over time; the data has the form of time series. In the literature on time
series, “outlier” either refers to anomalous subsequences [24] or to anomalous full
sequences [14]. This article addresses the latter, that is, detecting few outlying
time series from a set of time series.

Outlier detection in time series continues to be challenging for two reasons:
(1) First, most outlier detection algorithms rely on a notion of distance to
quantify data dissimilarity. Yet, time series may have different lengths and be
shifted in time, which makes classic distance measures (e.g., the Euclidean dis-
tance) inadequate. As a workaround, many existing techniques rely on extracted
features instead of directly comparing the series by a distance measure. However,
extracting features limits the applicability of respective algorithms and gener-
ally leads to a loss of information. (2) Second, the outlier detection problem is
unsupervised in nature and typically imbalanced, that is, outliers are rare, so
that optimizing the parameters of outlier detectors is hardly feasible in practice.
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One common way to tackle both problems is using dynamic time warp-
ing (DTW; [20]) together with Support Vector Data Description (SVDD; [23]).
SVDD is a kernel-based approach that encloses a predefined share of the data
within a hypersphere of minimal volume; points outside the sphere are outliers.
The kernel function quantifies the dissimilarity of the data in an implicit feature
space. However, DTW does not yield a valid kernel function; the theory [21,22]
supporting support vector-based approaches does not hold when using DTW
with SVDD [8].

In this paper, we propose a kernel-based method for time series outlier detec-
tion that addresses all challenges identified above:

We propose Multi-Kernel Time Series Outlier Detection (MK-
TSOD). Our idea is to combine SVDD with multiple kernels, which can cap-
ture frequency information of time series with fast Fourier transform, and time
information with Global Alignment Kernels (GAK; [8]). Unlike DTW, GAK is
guaranteed to work with SVDD. We combine the time and frequency informa-
tion in an optimal way with Multiple Kernel Learning (MKL; [18]). MK-TSOD
has one parameter, the expected outlier ratio, which is intuitive to set.

We run extensive experiments on standard benchmark data. They reveal
that the proposed method outperforms the existing approaches on 9 out of 15
data sets with the balanced accuracy metric. We release the implementation
together with our experiments on GitHub.1

Paper outline: Sect. 2 presents related work. Section 3 presents the definitions
and the existing elements our method uses. Section 4 introduces the proposed
approach. The experiments are in Sect. 5 and Sect. 6 concludes.

2 Related Work

While outlier detection has been well addressed for numerous types of data, e.g.,
numerical, categorical, mixed, or text data, detecting outliers from time series
remains particularly challenging.

Due to the lack of proper distance measures for time series, most outlier
detectors use extracted features instead. Examples are Highest Density Regions
(HDR; [15]), and α-hull [15]: HDR extracts features of the time series and then
applies Principal Component Analysis (PCA) to project the features to the first
two principal components. It then estimates the local density of each observation.
Observations whose density is below a threshold are the outliers. α-hull is similar
to HDR as it also uses PCA. However, instead of using a density-based approach,
it relies on α-convex hulls. Both algorithms use the same set of extracted features.

Finding a good set of features tends to be difficult. Established approaches
to find such sets are either expert- or algorithm-based. The expert-based ones
are costly and require domain knowledge. The algorithm-based ones, e.g., [6,16],
only target classification and regression, i.e., supervised settings.

DOTS (Detection of Outlier Time Series; [3]) does not rely on extracted fea-
tures, but clusters the data based on DTW and then uses the entropy to find an
1 https://github.com/flopska/mk-tsod/.

https://github.com/flopska/mk-tsod/
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optimal positioning of cluster centers. It ranks the “outlierness” of observations
based on their distances to the clusters. DOTS has more free parameters than
our approach, and several of them are difficult to optimize in an unsupervised
setting, e.g., the regularization parameter λ and the number of clusters k.

ADSL (Anomaly Detection algorithm with shapelet-based Feature Learning;
[2]) is so far the approach most related to ours, as it also bases on SVDD. The
main difference is that ADSL applies SVDD to a learned intermediate repre-
sentation, namely shapelets, but not explicitly to time series data, as we do. It
then classifies outliers based on their distance to the shapelets. However, this
approach is only successful in cases where shapelets are indeed a meaningful
representation.

The DeepSVDD [19] approach combines ideas from neural networks with the
outlier detection paradigm of SVDD, that is, it learns a hypersphere encom-
passing the networks representation of most observations with minimal volume.
Similarly to SVDD, DeepSVDD labels points outside this sphere as outliers.
However, the algorithm is limited to data with fixed length and thus not appli-
cable to time series.

While theoretically unsound, support vector-based approaches with DTW-
based kernels can work in practice [13]. DTW-SVDD, ADSL, DOTS, HDR, and
α-hull form a set of strong baselines against which we compare in Sect. 5.

3 Background

This section summarizes the definitions (Sect. 3.1). To render the article fully
self-contained, we recall SVDD (Sect. 3.2) and GAK (Sect. 3.3).

3.1 Definitions

A function k : X × X → R is a kernel on an input space X if there exists a real
Hilbert space H and a map φ : X → H such that k(x, x′) = 〈φ(x), φ(x′)〉 for
all x, x′ ∈ X . We call φ the feature map and H the feature space of k [22]. The
corresponding Gram matrix for a subset {x1, . . . , xl} ∈ X l is the symmetric l× l

matrix Kk = [k(xi, xj)]
l
i,j=1 ∈ R

l×l.
A time series x with length n is a sequence x := (xm)n

m=1 with xm ∈ R for
m = 1, . . . , n. In what follows, we consider the input space X = {x1, . . . , xl}, i.e.,
a set of l time series with potentially different lengths. The proposed method is
straightforward to extend to R

D (D ∈ N), but for clarity, we consider observa-
tions taking values in R in what follows.

With those definitions, detecting outlying time series can be seen as finding
the l · θ time series that are the most dissimilar within a set of time series X ,
where the parameter θ ∈ (0, 1) specifies the expected ratio of outliers in that set.
Since outliers are rare, θ is typically small.



Multi-kernel Times Series Outlier Detection 691

3.2 Support Vector Data Description (SVDD)

The construction of SVDD is similar to the well-known SVM (Support-Vector
Machine; [7]). In short, the goal is to solve the constrained optimization problem

min R2 + C

l∑

i=1

ξi, s.t. ‖φ(xi) − a‖2 ≤ R2 + ξi, ξi ≥ 0,

for i = 1, . . . , l, that is, to find a sphere with center a and radius R2 so that most
observations are enclosed. The slack variables ξi allow points to lie outside the
sphere with a penalty controlled by parameter C. [23] recommends setting

C = 1/(l · θ), (1)

where θ is the expected ratio of outliers in the data, and l the size of the data
set. Hence, θ can be chosen intuitively. The corresponding dual problem is

max
α

l∑

i=1

αik(xi, xi) −
l∑

i,j=1

k(xi, xj),

s.t.
l∑

i=1

αi = 1, 0 ≤ αi ≤ C,

(2)

for all i = 1, . . . , l and with Lagrange multipliers α = (α1, . . . , αl)T.
Having obtained a solution to (2), a time series z ∈ X is an outlier if and

only if

‖φ(z) − a‖2 = k(z, z) − 2
l∑

i=1

αik(z, xi) +
l∑

i,j=1

αiαjk(xi, xj) > R2, (3)

with the radius R2 computed as

R2 = k(xk, xk) − 2
l∑

i=1

αik(xi, xk) +
l∑

i,j=1

αiαjk(xi, xk), (4)

with any xk ∈ X for which the corresponding Lagrange multiplier αk fulfills
0 < αk < C.

3.3 Global Alignment Kernels (GAK)

GAKs [8] extend DTW to the kernel setting. The definition of GAK bases on
the notion of alignment: An alignment π of length p between x, y ∈ X of lengths
n, n′ is a pair (π1, π2) that fulfills the following conditions:
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Boundary & Monotonicity. The first observation in x must map to the first
observation in y and analogously for the last observations. Also, the alignment
must be increasing. Formally, one has

1 = π1(1) ≤ · · · ≤ π1(p) = n,

1 = π2(1) ≤ · · · ≤ π2(p) = n′.
(5)

Continuity. There must not be any gap in the alignment path, i.e., each obser-
vation must map to at least one other observation. Further, there must not
be any repetition. Formally, for all 1 ≤ i, j ≤ p − 1,

π1(i + 1) ≤ π1(i) + 1, π2(j + 1) ≤ π2(j) + 1,

(π1(i + 1) − π1(i)) + (π2(i + 1) − π2(i)) ≥ 1.
(6)

Adjustment Window. Given an observation xi ∈ R, i = 1, . . . , n of time series
x ∈ X and parameter T , xi must map to an observation yi ∈ R, i = 1, . . . , n′

of y ∈ X that is “sufficiently close”, i.e., strictly less than T steps away and
vice versa. Formally, for all 1 ≤ i ≤ p − 1

|π1(i) − π2(i)| < T. (7)

While not strictly necessary, the adjustment window condition speeds up the
computation by reducing the number of alignments considered without impact-
ing result quality by much [8]; we confirm this in our experiments.

The kernel kGAK sums all distances computed over alignments that satisfy
(5), (6), and (7):

kGAK (x, y) =
∑

(x′,y′)∈M(n,n′)

k(x′, y′), (8)

with M(n, n′) = {(x′
π1

, y′
π2

) | π = (π1, π2) ∈ A(n, n′)}, where A(n, n′) is the
set of all valid alignments, and where k(x′

π1
, y′

π2
) =

∏|π|
i=1 κ(x′

π1(i)
, y′

π2(i)
) for a

so-called local kernel κ.
[8] shows that kGAK is not positive definite for all such κ. This is problematic,

as (2) is then non-convex, and the global optimum might be not be found.
Additionally, the theory that supports kernel functions does not hold in such
cases. However, [8] proves that κ/(1 + κ) being positive definite is a sufficient
condition to guarantee that kGAK is positive definite and show that this holds
for the local kernel,

κ(x, y) = exp
{

−‖x − y‖2
2σ2

− log
(

2 − e− ‖x−y‖2

2σ2

)}
,

where, by abuse of notation, x, y ∈ R in our case, and ‖·‖ the Euclidean distance.
In turn, DTW is defined as the minimum distance over all valid alignments

DTW(x, y) = min
π∈A(n,n′)

|π|∑

i=1

∥∥xπ1(i) − yπ2(i)

∥∥2
, x, y ∈ X ,
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with the corresponding DTW kernel

kDTW (x, y) = exp {−γ · DTW(x, y)} . (9)

As DTW does not fulfill the triangle inequality, the kernel kDTW is not guaran-
teed to be positive definite, a problem one avoids with GAK.

GAK and DTW have a recursive formulation that one can compute with
dynamic programming. So their complexity when comparing two time series
of lengths n and n′ and dimensionality d is O(dnn′). As GAK only considers
alignments within a band of width T , its runtime reduces to O(dT min(n, n′)).

GAK and DTW only consider the time information of the respective time
series. But it is known that considering the frequency information can prove
beneficial when working with time series. The proposed method that we present
next builds upon this observation.

4 Multi-kernel Time Series Outlier Detection

Depending on the characteristics of a time signal that one wishes to highlight,
it is common to represent the signal in the time or in the frequency domain.
Accordingly, we propose a kernel kFFT (Sect. 4.1) that considers similarities
in the frequency domain, which we then combine with kGAK in an optimal
fashion with Multiple Kernel Learning (MKL; [18]). This guarantees that the
proposed method (Sect. 4.2) detects outliers by taking both time and frequency
information into account. We analyze the runtime complexity of MK-TSOD in
Sect. 4.3.

4.1 Fast Fourier Transform Kernels

The Fourier transformation of a time series x = (xm)n
m=1 is the sequence X =

(Xk)n
k=1 of the Fourier coefficients

Xk =
n∑

m=1

xm exp
{

−2πi
(k − 1)(m − 1)

n

}
, k = 1, . . . , n,

with i2 = −1 the imaginary number. Let x, y ∈ X be time series of lengths
n, n′, having Fourier coefficients X = (Xk)n

k=1, Y = (Yk)n′
k=1, respectively. To

compare x and y, we propose kFFT as a modified Gaussian kernel that truncates
the sequence of Fourier coefficients, that is,

kFFT (x, y) := exp

⎧
⎨

⎩−γ

t∑

j=1

(Xj − Yj)
2

⎫
⎬

⎭ , (10)

with smoothing parameter γ, and 1 ≤ t ≤ min(n, n′). Hence, parameter t con-
trols the quality of the approximation by restricting the number of coefficients.
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Fig. 1. Schematic representation of the proposed outlier detection method.

To select the bandwidth parameter γ in an unsupervised fashion, we use
an argument from [12], which states that dissimilarities in the input space and
dissimilarities in the feature space behave similarly:

δ1
δ2

≈ exp
(−γδ21

)

exp (−γδ22)
,

where we denote by δi = ‖ · ‖ (i ∈ {1, 2}) the Euclidean distance between the
truncated Fourier transformations of two arbitrary observations. One solves for
γ and sets

γ =
− ln

(
δmin
δavg

)

δ2avg − δ2min

, (11)

with the quantities δmin :=
∥∥xq − x1−NN(q)

∥∥, δavg := 1
n−1

∑
i�=q ‖xq − xi‖, and

q := arg min1≤i≤n

∥∥xi − x1−NN(i)

∥∥. Here, 1 − NN(k) denotes the index of the
nearest neighbor of xk, i.e., the transformation with the smallest distance in the
frequency domain to xk. Hence, xq is the time series with the smallest distance to
its nearest neighbor. δmin is the smallest distance between the Fourier coefficients
of any two time series, and δavg is the average distance of all time series to xq

w.r.t. their Fourier coefficients. (11) allows accounting for the characteristics of
the frequencies observed.

4.2 MK-TSOD Algorithm

Fig. 1 provides an intuitive schematic representation of the proposed algorithm,
which we elaborate in what follows.

To merge kernel kGAK and the proposed kernel kFFT , we first recall a prop-
erty of kernels [22, Lemma 4.5] that allows their combination. We then detail
how we adapt MKL to SVDD in order to optimize over the free parameter that
results from the kernel combination, and conclude the section with the presen-
tation and runtime analysis of the full algorithm.
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Lemma 1 (Additivity). Let X be a set, β ≥ 0, and k, k1, and k2 be kernels
on X . Then βk and k1 + k2 are kernels on X as well.

With Lemma 1, a convex combination with weight w ∈ [0, 1] of GAK kernel
kGAK and the proposed kernel kFFT is a valid kernel that takes the form

k(x, y) = w · kGAK (x, y) + (1 − w) · kFFT (x, y),

and incorporates information of both the time and the frequency domain of
x, y ∈ X .

More generally, the MKL problem [18] is to find the Lagrange multipliers αi

of a kernel machine and the weights w = (w1, . . . , wM )T for a convex combination
k of kernels km given by

k(x, y) =
M∑

m=1

wmkm(x, y), s.t. wm ≥ 0 ∧
M∑

m=1

wm = 1. (12)

It follows from Lemma 1 and an induction argument that (12) defines a valid
kernel. To find the solution, we proceed as follows:

The Lagrangian of (2) is

L =
∑

i,j

αiαjk(xi, xj) −
∑

i

αik(xi, xi).

Combining this with k(x, y) from (12), we obtain the MKL problem for SVDD

L =
l∑

i,j=1

αiαj

M∑

m=1

wmkm(xi, xj) −
l∑

i=1

αi

M∑

m=1

wmkm(xi, xj).

To optimize w.r.t. w, [18] propose SimpleMKL, a gradient descent-based app-
roach. Hence, we compute the partial derivative w.r.t. wm, which for SVDD
takes the form

∂L

∂wm
= αTKmα − αTdiag(Km)

with Gram matrix Km associated with kernel km, and then apply their frame-
work: In the present case, M = 2, k1 = kGAK , and k2 = kFFT . Performing
the gradient descent optimization yields a weight w so that the volume of the
hypersphere is again minimized.

Algorithm 1 presents MK-TSOD in full. The method has a total of five
parameters. We recommend values for T, σ2, and t in Sect. 5.1. Parameter γ is
set according to (11); C is set by (1).

4.3 Complexity Analysis

The runtime of MK-TSOD depends on that of computing the Gram matrices
for kernels kFFT , kGAK , and on that of solving the MKL problem. For a worst-
case scenario, we assume that the longest time series is of length n, and that
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Algorithm 1. MK-TSOD
Require: Time series X = {x1, . . . , xl}, outlier ratio θ
1: C ← 1/(l · θ) � Equation (1)
2: KkFFT = [kFFT (xi, xj)]ij for i, j = 1, . . . , l � Equation (10)
3: KkGAK = [kGAK(xi, xj)]ij for i, j = 1, . . . , l � Equation (8)
4: w, α ← MKL(KkFFT ,KkGAK , C) � Equation (12)
5: K ← w1 · KkFFT + (1 − w1) · KkGAK

6: R2 ← (K)kk − 2
∑l

i=1 αi(K)ik + αTKα � Equation (4)
7: outliers ← ∅
8: for xi ∈ X do
9: if (K)ii − 2

∑l
j=1 αj(K)ij + αTKα > R2 then � Equation (3)

10: outliers ← outliers ∪ xi

11: return outliers

one observes l time series. Then the runtime of kGAK per pair of observations
is in O (

n2
)

[8]. As the Gram matrix computes all pairwise combinations, its
computational cost is O (

n2l2
)
. Computing the Fourier coefficients of a time

series of length n has a complexity of O (n log(n)), and, by the same reasoning
as before, obtaining the corresponding Gram matrix costs O (

n log(n)l2
)
. The

worst-case bound for an optimal solution of SVDD is O (
l3

)
[4]. As the number

of SimpleMKL iterations is bounded and does not depend on l [18], running Sim-
pleMKL does not affect the worst-case estimate. Putting the previous estimates
together, we obtain a total runtime complexity of O (

n2l2 + n log(n)l2 + l3
)
.

While the worst-case complexity is relatively high, the actual runtime is
reasonable for practical applications and often lower than that of competitors,
as our experiments show. In practice, one typically uses an approximate solver,
such as sequential minimal optimization (SMO; [17]), which yields a solution to
the SVDD problem (2) in O (

l2
)
; this reduces the runtime cost.

5 Experiments

In our experiments, we compare the proposed technique to the state of the art,
both in terms of outlier detection quality and runtime; we also conduct a parame-
ter sensitivity and ablation analysis. We start by describing the experiment setup
(Sect. 5.1), collect the results w.r.t. balanced accuracy, runtime, and parameter
sensitivity in Sect. 5.2, and compare to ablations in Sect. 5.3.

5.1 Setup

Metrics and Evaluation. Our experiments evaluate the balanced accuracy
(BA), which is commonly used for outlier detection tasks. We repeat each exper-
iment 10 times, keeping the normal data but sampling a different set of outliers,
and report the mean score and standard deviation. We run all algorithms on a
server running Ubuntu 20.04 with 124 GB RAM, and 32 cores with 2 GHz each.
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Table 1. Summary of the 15 data sets. Length is the length of the time series in the
respective data set, #N / #O is the absolute count of normal and outlying observations,
and #C (N) is the number of classes in the original data set together with the class
set as normal.

Data set Length #N / #O #C (N)

ArrowHead 251 65 / 3 3 (2)

CBF 128 310 / 16 3 (2)

Ch.Concent 166 1000 / 52 3 (1)

ECG200 96 133 / 7 2 (1)

ECGFiveDays 136 442 / 23 2 (1)

GunPoint 150 100 / 5 2 (1)

Ham 431 103 / 5 2 (1)

Herring 512 77 / 4 2 (1)

Lightning2 637 73 / 3 2 (1)

MoteStrain 84 685 / 36 2 (1)

Strawberry 235 351 / 18 2 (1)

ToeSeg1 277 140 / 7 2 (0)

ToeSeg2 343 124 / 6 2 (0)

Wafer 152 6402 / 336 2 (1)

Wine 234 57 / 3 2 (1)

Data Sets and Data Preparation. We follow the approach by [10,11] and
adapt time series classification data sets from the UCR repository [1,9] to our
setting. To improve comparability, our process mirrors the selection and pre-
processing from [2] but we exclude data sets with fewer than 50 time series [2,
Table 1], due to their small size. Specifically, for binary classification problems,
we choose the majority class as “normal” class, and for multiclass classification
problems, we set the class that is visually the most distinct as “normal”. We
then sample 5% of the observations from the respective other class(es), which
constitute the “outliers”. This yields 15 diverse data sets. Training sets include
the outliers, as this is closer to real-world settings, but the outliers are regener-
ated between runs. Table 1 summarizes the respective characteristics of the data
sets.2

Configurations. In the following, we detail the parameter settings for each
algorithm. We start with a recommendation for the parameters of our algorithm.

MK-TSOD. We set the regularization parameter C as in (1) with an
expected outlier ratio θ = 0.05. For kGAK , we follow the recommendation of
[8] and set σ2 = a2 · median(‖x − y‖) · √

median(|x|), with a = 1.5, and

2 We abbreviate the data sets “ChlorineConcentration”, “ToeSegmentation1”, and
“ToeSegmentation2” as “Ch.Concent.”, “ToeSeg1”, and “ToeSeg2”, respectively.
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T = b · median(|x|), with b = 0.5. We vary factors a, b in the parameter sen-
sitivity analysis. To solve the optimization problem (2), we use libsvm3, which
we adapt to use precomputed Gram matrices with SVDD. We set the smoothing
parameter γ of the Fourier transform-based kernel using (11), and set t = 20,
based on the parameter analysis we present at the end of the section. The code
for reproducing our experiments is available on GitHub.4

SVDD with DTW. As a baseline, we use kDTW (9) with SVDD; recall
that while the approach is theoretically unsound, it has shown good results
in practice. Because of the absence of a heuristic, we set γ = 1. We set the
regularization parameter C as in MK-TSOD.

HDR and α-hull. We use the reference implementations provided by the
authors together with the recommended parameters.5

DOTS. We set the regularization parameter λ to 0.045, and the number
of medoids k to the number of classes per data set, as recommended by the
authors, and use their reference implementation.6 To compute the BA, we cut
off the ranking based on the expected ratio of outliers, which is 0.05.

ADSL. We set the maximum number of iterations to 1000, k = 0.02, and
l = 0.2, as in [2]. We obtained the code from the authors.

LOF with DTW. As an additional baseline, we combine the well-known
Local Outlier Factor (LOF; [5]) with DTW in place of the Euclidean distance. As
LOF is sensitive to the amount of neighbors n to consider, we set n ∈ {5, 10, 20}
and report the best results.

5.2 Results

Performance. Table 2 shows the average Balanced Accuracy (BA).7 N/A indi-
cates that the respective algorithm did not complete a single run in 24 h.

One sees that MK-TSOD achieves the best score on 9 out of 15 data sets with
the BA metric, and that LOF-DTW performs second best, that is, it performs
better than the competitors.

Runtime. We measure the absolute runtime of each algorithm w.r.t. the number
and length of times series. We use the data set featuring the longest time series,
Lightning2, and simulate different input configurations. To vary their length, we
sub- or oversample the measured points. To vary the size of the set, we sub-
or oversample the time series themselves. When oversampling, we add Gaussian
noise with a standard deviation of 10−3. This mimics that real-world data does
not consist of duplicates only.

Figure 2 shows our results. MK-TSOD is slower than HDR and α-hull but
faster than ADSL and DOTS w.r.t. the number of time series. However, the

3 https://www.csie.ntu.edu.tw/∼cjlin/libsvm/.
4 https://github.com/flopska/mk-tsod/.
5 https://github.com/robjhyndman/anomalous-acm.
6 https://github.com/B-Seif/anomaly-detection-time-series.
7 Here, MK denotes MK-TSOD; DTW denotes DTW-SVDD.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://github.com/flopska/mk-tsod/
https://github.com/robjhyndman/anomalous-acm
https://github.com/B-Seif/anomaly-detection-time-series
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Table 2. Mean BA over 10 runs. Bold print highlights the best results.

Data set MK DTW HDR DOTS α-hull ADSL LOF-DTW

ArrowHead 0.70 ± 0.2 0.58 ± 0.2 0.67 ± 0.1 0.51 ± 0.1 0.67 ± 0.2 0.49 ± 0.0 0.52 ± 0.1

CBF 0.66 ± 0.0 0.49 ± 0.1 0.50 ± 0.0 0.49 ± 0.0 0.50 ± 0.0 0.50 ± 0.0 0.65 ± 0.1

Ch.Concent 0.49 ± 0.0 0.48 ± 0.0 0.50 ± 0.0 0.50 ± 0.0 0.50 ± 0.0 0.50 ± 0.0 0.63 ± 0.0

cre ECG200 0.67 ± 0.1 0.55 ± 0.1 0.50 ± 0.0 0.55 ± 0.1 0.50 ± 0.1 0.52 ± 0.0 0.65 ± 0.1

ECGFiveDays 0.64 ± 0.0 0.58 ± 0.0 0.52 ± 0.0 0.54 ± 0.0 0.52 ± 0.0 0.50 ± 0.0 0.77 ± 0.0

GunPoint 0.72 ± 0.1 0.61 ± 0.1 0.49 ± 0.0 0.64 ± 0.1 0.50 ± 0.0 0.62 ± 0.1 0.70 ± 0.1

Ham 0.51 ± 0.1 0.48 ± 0.1 0.49 ± 0.0 0.48 ± 0.0 0.49 ± 0.0 0.49 ± 0.0 0.49 ± 0.0

Herring 0.52 ± 0.1 0.51 ± 0.1 0.50 ± 0.1 0.50 ± 0.1 0.47 ± 0.0 0.50 ± 0.0 0.50 ± 0.1

Lightning2 0.57 ± 0.2 0.49 ± 0.2 0.48 ± 0.0 0.50 ± 0.1 0.51 ± 0.1 0.64 ± 0.1 0.72 ± 0.2

MoteStrain 0.70 ± 0.0 0.62 ± 0.1 0.52 ± 0.0 0.61 ± 0.0 0.52 ± 0.0 0.51 ± 0.0 0.55 ± 0.0

Strawberry 0.69 ± 0.1 0.70 ± 0.0 0.47 ± 0.0 0.68 ± 0.0 0.48 ± 0.0 0.56 ± 0.0 0.76 ± 0.0

ToeSeg1 0.65 ± 0.1 0.50 ± 0.1 0.49 ± 0.0 0.47 ± 0.0 0.48 ± 0.0 0.61 ± 0.0 0.73 ± 0.1

ToeSeg2 0.67 ± 0.1 0.48 ± 0.1 0.51 ± 0.0 0.48 ± 0.0 0.52 ± 0.0 0.60 ± 0.0 0.61 ± 0.1

Wafer 0.65 ± 0.0 0.64 ± 0.0 0.49 ± 0.0 N/A 0.49 ± 0.0 0.50 ± 0.0 0.56 ± 0.0

Wine 0.48 ± 0.1 0.50 ± 0.1 0.60 ± 0.1 0.56 ± 0.1 0.65 ± 0.2 0.54 ± 0.1 0.58 ± 0.1
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Fig. 2. Runtime analysis. We report the median runtime of five independent runs.

slope of MK-TSOD and DOTS is similar, so differences in runtime might be due
to implementation details. The difference to DTW-SVDD and LOF-DTW is
negligible. Regarding the length of time series, the figure shows that MK-TSOD
and DTW-SVDD scale better than ADSL and DOTS, but worse than HDR and
α-hull. Again, LOF-DTW scales similar to MK-TSOD, as expected.

Parameter Sensitivity Analysis. We study the sensitivity of MK-TSOD
w.r.t. parameters σ, T (the smoothness and the width of the window of kGAK ),
and t (the number of Fourier coefficients for kFFT ). Figure 3 shows the average
results obtained over all data sets from Table 1. When varying one parameter,
we keep the others fixed at their recommended values.

We see that for changes in σ, BA stays nearly constant from x = 1.5. The
figure also shows that the width T of the band considered for alignments does not
influence the result by much. However, we see a slight increase for the BA metric
at T = 0.2. This indicates that focusing on local similarities proves beneficial
for the data sets considered. For the number of Fourier coefficients t, we see
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Fig. 3. Influence of the factors a, b for the median heuristics for σ, T , and influence of
parameter t. We report the median BA of five independent runs.

that the best performance is obtained for t = 20, with a slight decline for larger
values. We hypothesize that using more than 20 coefficients approximates the
time series too closely, and the algorithm cannot generalize, that is, it overfits.
Altogether, we see that MK-TSOD is robust w.r.t. its parameters.

5.3 Ablation Analysis

We consider alternative designs of the proposed method. Instead of combining
multiple kernels, we run SVDD with the individual kernels kFFT (FFT-SVDD)
and kGAK (GAK-SVDD) and compare their results to the ones obtained with
MK-TSOD in terms of the average balanced accuracy over five draws of outliers.
The settings of the individual kernels are the same as in Sect. 5.1.

Table 3. Ablation analysis. Mean BA over five runs. Bold print highlights the best
results.

Data set MK-TSOD FFT-SVDD GAK-SVDD

ArrowHead 0.70 ± 0.2 0.65 ± 0.1 0.61 ± 0.2

CBF 0.66 ± 0.0 0.60 ± 0.1 0.66 ± 0.0

Ch.Concent 0.49 ± 0.0 0.52 ± 0.0 0.48 ± 0.0

ECG200 0.67 ± 0.1 0.63 ± 0.1 0.62 ± 0.1

ECGFiveDays 0.64 ± 0.0 0.65 ± 0.0 0.62 ± 0.1

GunPoint 0.72 ± 0.1 0.65 ± 0.1 0.64 ± 0.1

Ham 0.51 ± 0.1 0.47 ± 0.1 0.50 ± 0.1

Herring 0.52 ± 0.1 0.49 ± 0.1 0.51 ± 0.1

Lightning2 0.57 ± 0.2 0.67 ± 0.1 0.47 ± 0.1

MoteStrain 0.70 ± 0.0 0.62 ± 0.0 0.67 ± 0.1

Strawberry 0.69 ± 0.1 0.71 ± 0.1 0.73 ± 0.0

ToeSeg1 0.65 ± 0.1 0.65 ± 0.1 0.62 ± 0.1

ToeSeg2 0.67 ± 0.1 0.55 ± 0.1 0.57 ± 0.1

Wafer 0.65 ± 0.0 0.62 ± 0.0 0.65 ± 0.0

Wine 0.48 ± 0.1 0.54 ± 0.1 0.42 ± 0.0
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Table 3 shows the results (with the standard deviation) of our ablation study.
MK-TSOD achieves the largest BA on 10 out of 15 datasets; SVDD with the
kFFT kernel performs best on 5 datasets, and SVDD with the kGAK kernel has
the best score on 3 data sets (including ties). The proposed algorithm can lever-
age the respective strengths of the kernels. Considering the unsupervised setting,
where parameter optimization — including kernel selection — is typically infea-
sible in practice, this result indicates that MK-TSOD provides a good default
choice, often improving performance over employing a single kernel.

6 Conclusions

This paper tackles the long-standing problem of detecting outliers in a set of
time series, for which we propose a new method, MK-TSOD. It builds on SVDD
and combines global alignment and Fourier transform kernels, taking the time
and frequency information of time series into account. The parameters of MK-
TSOD are either intuitive to set or we recommend heuristics. Our evaluation
shows that MK-TSOD achieves state-of-the-art performance and outperforms
existing approaches w.r.t. the balanced accuracy metric on 9 out of 15 standard
benchmark data sets.
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Abstract. While batch machine learning algorithms typically assume
that all the concepts are available at training, the reality is often differ-
ent when dealing with continuous streams of data, where new concepts
can emerge and existing ones change over time. The task of novelty detec-
tion is an increasingly popular field that tackles this problem by trying
to recognize these formerly unidentified concepts that fall outside the
decision boundary of the models. Although there have been numerous
works discussing the implementation of such algorithms, studies covering
their adequate performance evaluation are still scarce. In this paper, we
present an evaluation framework that aims to streamline the evaluation
of novelty detection algorithms. This framework irons out the shortcom-
ings we identified in the domain, allowing us to obtain a more robust
assessment of the performance. Specifically, we propose novel metrics to
complement the existing ones, and we incorporate the temporal aspect
of data streams within the evaluation. We empirically test the impact of
intrinsic data streams’ characteristics when using our proposed frame-
work. We show the added value of this novel framework with experiments
carried out on both artificial and real-world data sets.

Keywords: Novelty detection · Data streams · Evaluation framework

1 Introduction

Contrary to typical uses of machine learning, where we generally assume that
the concepts learned at training time will be constant throughout the use of
the model, many real-world scenarios such as sensor networks, medical diagno-
sis, or network intrusions, present the data as data streams (DSs) rather than
datasets. DSs present many challenges, for example, the constant change in data
distribution, as well as the emergence of new concepts which were previously
unknown. Novelty detection (ND) is a research area that aims to detect, classify,
and potentially learn these unknown concepts. In this regard, many algorithms
have been created to accomplish this task effectively. However, the evaluation of
these algorithms has historically been inconsistent, as some works have adapted
the use of batch learning metrics to ND (e.g. [10,11]) while others have used
novel, domain-specific metrics (e.g. [7,9]). Moreover, many works that assume
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the emergence of multiple different classes have used binary metrics, which do
not represent the misclassification between novel classes in the evaluation. While
there has been some research in the direction of properly evaluating multi-class
ND scenarios [6], there are still many open challenges, including not considering
the temporal aspect and other characteristics of DSs, as well as the complexity of
comparing multiple models between themselves due to the need to track several
metrics. It is thus necessary to develop a standardized framework to evaluate ND
algorithms in a simple and clear way, that takes into account the classification
of multiple novel classes and also considers other DSs’ characteristics.

In this study, we tackle these gaps. Our main contributions are summarized
as follows: (i) we introduce a novel metric for binary classification scenarios
that allows incorporating multiple metrics previously defined in the field; (ii) we
propose the use of a metric for multi-classification scenarios that allows for better
comparability between models and adds a baseline for random classifiers; (iii)
we present a novel measure that incorporates the time necessary to detect novel
classes, an important aspect for many ND real-world deployment scenarios; and
(iv) we study the impact of different data characteristics of DSs and whether or
not they should be reported when evaluating such algorithms.

The rest of this paper is structured as follows: Sect. 2 reviews concepts and
existing metrics for ND; Sect. 3 presents some of the drawbacks of the existing
literature as well as our proposed solutions and framework; Sect. 4 compares and
discusses the empirical evidence; and Sect. 5 concludes this paper and mentions
potential future works.

2 Background

In this section, we characterize some of the common concepts within the field of
ND in DSs that are going to be used throughout this paper. We also formulate
the ND task and describe existing evaluation methods that have been proposed
in the literature.

2.1 Concept Definitions

Data Stream. Formally, a DS is characterized by a sequential, continu-
ous flow of samples that arrives in an online fashion and is potentially
unbounded [8]. The samples within these streams usually represent differ-
ent concepts (classes) and are not necessarily dependent.

Concept Drift. DSs are non-stationary, as new data becomes available, the
probability distribution of the concepts in the stream might change [5], this
is a phenomenon referred to as concept drift, and can either happen gradually
or suddenly [11].

Concept Evolution. While known concepts can shift over time (concept drift),
new ones can also appear in DSs as novel classes, named concept evolu-
tions [5]. These new concepts are typically outside the decision boundary of
the classes learned by the models and need to be detected properly in order
to perform the ND task.
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Novelty Pattern. A Novelty Pattern (NP) is a set of related samples iden-
tified within the stream which fall outside the known classes of the ND
algorithm [6]. A novel class can be detected as multiple NPs by the model,
although a minimal number of NPs per novel class is preferable.

2.2 Novelty Detection Task

The ND task consists in detecting samples corresponding to novel classes which
were not seen by the algorithm during its training phase, in other words, detect-
ing concept evolutions. Contrary to anomaly detection, where one sample dif-
fering from the known distribution might be enough to classify an anomaly, ND
focuses on the detection of a cohesive aggregation of these samples which fall
outside the model’s decision boundary and therefore form a NP [5]. There are
commonly two ways to approach this task, whether as a binary classification
problem, where all the NPs are detected as a single novel class, or as a multi-
class problem, where the NPs are separated and detected as multiple different
classes.

To perform this task, the algorithms implementing ND typically consist of
two phases, namely an offline and an online phase. In the former, similar to
batch learning, the model is trained on a set of examples representing the known
classes, while in the latter, the model is used in an online fashion on a DS and
tries to classify the known classes, while also detecting NPs. To detect these NPs
in the stream, numerous algorithms implement the concept of a buffer, where
samples that fall outside their decision boundary are temporarily stored and
classified as unknown to eventually cluster them in NPs if there is a sufficient
number of neighboring samples. The resulting confusion matrix is rectangular,
as the number of detected NPs does not necessarily equal the number of actual
classes, nor do the NPs labels match with the actual class labels [6].

2.3 Analysis of Metrics

In this section, we present and analyze the metrics for ND evaluation that have
been proposed in the literature. We start with the introduction of some notation.
We highlight that for the binary case, we consider the novelty class to be the
positive label (1), and the known class to be the negative label (0). The following
terms will be used in the definition of the metrics:

– True Positives (TP ): Number of detected novelties correctly classified
– False Positives (FP ): Number of known class samples incorrectly classified

as novelties
– False Negatives (FN): Number of novelties incorrectly classified as known
– True Negatives (TN): Number of known class samples correctly classified
– N : Number of samples
– Nc: Number of novel samples in the stream
– FE: Known class instances misclassified (other than FP )
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Using this notation, an example of a confusion matrix for a ND multi-class
problem, as first proposed by Faria et al. [6], can be seen in Table 1, where Ci

represents the class i, NPi is the ith NP discovered by the algorithm, and the
number of known classes k is lower than the number of actual classes m.

Table 1. Confusion matrix of a multi-class novelty detection problem.

Predicted Values

Known Classes Novelty Patterns

C0 C1 ... Ck NP1 NP2 ... NPj Unk

Actual
Values

Known
Classes

C0 TN FE FE FE

FP
C1 FE TN FE FE

... FE FE TN FE

Ck FE FE FE TN

Novel
Classes

Ck+1

FN TP...

Cm

As mentioned in Sect. 2.2, the ND task can be either considered as a binary
problem, where the goal is to distinguish between known classes and novel con-
cepts, or as a multi-class scenario where each known and each novel class rep-
resents different target classes. Numerous algorithms (e.g. [1,9,12]) can detect
multiple classes of novelties but still use binary evaluation metrics for their eval-
uation which, as we will demonstrate in the next section, present several issues
for the proper evaluation of the algorithms.

Binary Metrics

Mnew and Fnew. Mnew (c.f. Eq. 1) and Fnew (c.f. Eq. 2) represent, respectively,
the percentage of novel class samples misclassified as known, and the percentage
of known class samples misclassified as novel. While these are commonly used
metrics, they present some downsides, as they do not consider classification
errors within the novelty and novel classes, and need the tracking of two separate
measures for the evaluation. Hence, these two metrics are useful in the specific
scenario where one would only care about correctly distinguishing novel classes
from known ones.

Mnew =
FN

Nc
· 100 (1) Fnew =

FP

N − Nc
· 100 (2)

Accuracy and Error Rate. Accuracy (c.f. Eq. 3) and its complement the Error
Rate (Err) (c.f. Eq. 4) are also sometimes used in the context of ND. While the
error rate metric considers the misclassification within the known classes (FE),
similarly to Mnew and Fnew, both metrics do not consider misclassification within
the novel classes, i.e., NPs that are classified as the wrong novel class. For this
reason, they are considered binary metrics.
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It is also worth noting that in imbalanced domains, where one or multiple
classes of interest are less predominant than others, accuracy and error rate
have been demonstrated to be unsuitable, as the less prevalent classes will have
a lesser impact on the metrics [3]. Considering that ND often deals with such
imbalanced domains, where some of the classes such as the novel classes might
be underrepresented compared to others, these metrics might not be adequate
to evaluate the models’ performance.

Accuracy =
TP + TN

N
· 100 (3) Err =

(FP + FN + FE)
N

·100 (4)

Others. A number of other metrics that are already defined for batch learning,
such as the Fβ-Measure, and ROC Area Under the Curve (ROC AUC) have also
been used in ND, but also present similar issues as the aforementioned metrics, as
they consider the problem as binary, and regard the samples labeled as unknown
as correctly classified novelties.

Multi-class Metrics. Considering the limitations presented in the previous
section, Faria et al. [6] proposed one of the few frameworks available to evaluate
ND algorithms in multi-classification scenarios. As mentioned in Sect. 2.2, the
NPs identified by ND algorithms do not directly correspond to the true labels of
the dataset, which makes it impossible to compute typical multi-class evaluation
metrics made for batch scenarios. To resolve this issue, the authors propose to
associate each NP to a true class, by taking the most occurring true label in
each NP and associating that NP to that specific class. Once this association
is performed, the authors suggest plotting the three following metrics over the
course of the DS to follow the performance of the model.

Combined Error (CER). Defined as the weighted average of False Positive
Rate (FPR) and False Negative Rate (FNR) (c.f. Eq. 5), the Combined Error
(CER) (c.f. Eq. 6) is defined for M classes and does not include the samples
labeled as unknown within the metric’s computation.

FPRi =
FPi

FPi + TNi
FNRi =

FNi

FNi + TPi
(5)

CER =
1
2

M∑

i=1

#ExCi

#Ex
(FPRi + FNRi) (6)

where #ExCi represents the number of samples of class Ci and #Ex the total
number of samples.

Akaike Information Criterion (AIC). The complexity of the model needs
to also be taken into account in its evaluation, as a model clustering novelties
into a bigger amount of clusters could have a better classification performance
than a model with fewer clusters but would display an undesirable behavior
(multiple independent clusters). To resolve this issue, the authors propose the
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use of an adaptation of the Akaike Information Criterion [14] (AIC) (c.f. Eq. 7)
which punishes a high number of NPs.

AIC = −2 ln(1 − CER) +
2p

ln(N)
(7)

where p is the number of classes detected by the ND algorithm (NPs and known
classes) and N is the total number of samples without those labeled as unknown.

Unknown Rate (UnkRate). Finally, to resolve the issue of the samples labeled
as unknown being considered as a correctly labeled novel class, as discussed in
Sect. 2.3, the authors propose to compute those samples independently of the
other metrics, by using the Unknown Rate (UnkRate) (c.f. Eq. 8) which computes
the average amount of samples classified as unknown over the total number of
samples of each class i.

UnkR =
1
M

M∑

i=1

#Unki

#ExCi
(8)

where #Unki represents the number of samples of class i classified as unknown
and #ExCi the total number of samples of class i.

3 Proposed Framework

The evaluation framework by Faria et al. [6] presented in Sect. 2.3 is a good
initial base to properly evaluate ND scenarios. However, there are several ways
in which the performance assessment can be enhanced and a number of gaps
that can be addressed. This motivates the proposed evaluation framework that
we present next.

3.1 Novel Metric for the Binary Scenario

End-users may be interested in correctly classifying if a sample is novel or not,
in which case they would run into some of the issues mentioned in Sect. 2.3 such
as the need to track multiple metrics (Mnew and Fnew) to properly evaluate the
model. For the cases where the user is only concerned with correctly differenti-
ating novelties from known samples (such as in an active learning system), we
propose using a new metric: the Mβ-Measure (c.f. Eq. 9), which is also the har-
monic mean of the inverse of Mnew and Fnew when β = 1. The complement of
both metrics is used as we want Mβ to display a poor performance if any of the
two metrics is as well, which requires them to have their optimal value at 1 and
worst at 0. The idea behind this metric is akin to the combination of precision
and recall with Fβ , as it incorporates the correct classification of both classes in
a single, easy-to-track metric. Moreover, similarly to Fβ , it allows increasing the
weight given to correctly classified novel class samples (Inverted Mnew) using
β < 1, or correctly classified known class samples (Inverted Fnew) using β > 1.
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Mβ = (1 + β2) · (1 − Mnew) · (1 − Fnew)
(β2 · (1 − Mnew)) + (1 − Fnew)

(9)

3.2 Facing the Undesirable Properties of AIC

The use of AIC for the ranking of models’ complexity presents some undesirable
properties. In particular, AIC measures the quality of a model relative to oth-
ers [14]. The value of AIC will increase with the number of classes of a dataset,
considering its factor p. Therefore, there is no baseline value representing a ran-
dom model for any dataset, which means it can’t be used to compare models
between different datasets. Moreover, the metric is not defined for the worst-case
scenario where CER = 1, and since the metric scales a lot more with the model’s
complexity than its accuracy, it requires the user to track two different metrics:
one for the model’s performance (CER) and one for its complexity (AIC). While
DSs necessitate tracking multiple metrics due to their evolving nature, we believe
that, since these two aspects are directly related, combining them reduces the
analysis complexity and allows tracking other aspects not included in current
frameworks.

Given these issues, we suggest replacing the use of both CER and AIC for the
evaluation of models’ performance and complexity with the use of the Adjusted
Mutual Information (AMI) (c.f. Eq. 10). While this metric is commonly used in
the context of unsupervised learning when ground truth labels are available, to
the best of our knowledge it hasn’t been applied to the field of ND. We chose this
metric as it is adjusted for chance, which means that it will give a value close to 0
for random clustering or multiple very small, independent clusters. Moreover, it
has been previously demonstrated [13] to be preferable to other similar metrics
such as the adjusted random index when dealing with an imbalance within the
clusters, a phenomenon which is likely in ND scenarios since novelty concepts
are often more scarce than known ones.

We believe that the use of the AMI has several advantages, as it offers a
baseline score for random labeling and an upper bound of 1 for perfect agreement,
it is not affected by permutation of the samples in different clusters, it uses a
widely establish metric, and it combines both the classification performance
and model’s complexity in a single metric which is easier to track and compare
between algorithms.

AMI(U, V ) =
MI − E[MI]

mean(H(U),H(V )) − E[MI]
(10)

where U and V are two clusters (partitions), MI is the mutual information of
those partitions, E[MI] is the expected mutual information, and H(x) is the
entropy of x.

3.3 Inclusion of the Temporal Aspect of DSs

While the metrics discussed are reported over the course of the DS, which shows
the evolution of the model over time, there are currently no metrics reporting
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directly the time needed for the model to detect novel classes as novel when they
first appear in the stream. This is a very important aspect, considering that in
the fields typically pertaining to ND, such as intrusion detection, fraud detec-
tion, medical examination, and many others, the difference between detecting a
novelty very quickly or not could be critical. As such, we propose the inclusion of
a novel metric named Time To Detection (TTD) (c.f. Eq. 11). This metric com-
putes, for each novel class, the number of samples of that specific class necessary
for the class to be detected as a NP (other than known or unknown).

TTDi =
TFDi∑

j=TFAi

[cj = i] (11)

where TFAi represents the time of first appearance of the novel class i, TFDi

the time when it was first detected as a NP, and cj the true class label of the
jth sample of the stream.

3.4 Inclusion of Intrinsic Data Characteristics of DSs

Lastly, we believe that there exist multiple intrinsic data characteristics of DSs
such as the time of arrival, data sampling, the density of novel samples, and
others, which could affect the performance of a ND model greatly. Therefore,
this implies that for the proper evaluation of ND algorithms, these data charac-
teristics should be reported by researchers. However, most propositions within
the field do not display these properties, as is common to do so in batch learning
with train and test splits, for example. Hence, we want to extend our proposed
evaluation framework with the inclusion of these characteristics. We established
three main characteristics to further test and report on, which will be described
in more detail in the next section, and are as follows: (i) time between the
appearance of novel classes; (ii) ratio of offline samples; and (iii) ratio of known
classes.

4 Experiments

This section presents the results of the experiments carried out. We tested our
proposed improvements and new metrics in multiple scenarios, including by vary-
ing each of the data characteristics of the stream, and compared the results to
previously mentioned metrics both in the binary and multi-class setting. This
allowed us to confirm which of the extracted DS characteristics have an impact
on the model’s performance, as well as demonstrate how the proposed improve-
ments of the evaluation framework actually perform. We first start by describing
the evaluation methodology used in the next section and analyze the results in
the subsequent ones.
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4.1 Methodology

All experiments were performed using both synthetic and real datasets, the for-
mer, which we named SynthRBF, was generated using the RandomRBF gen-
erator of the MOA framework [2], a known framework for machine learning
in DSs. For the real-world dataset, we selected the Forest Cover Type dataset
(FCT) [4] as it possesses numerous classes and is widely used in the field of ND.
Some experiments, including on other datasets, are not included due to space
constraints but are freely available with all the code and hyperparameters to
reproduce the experiments in an online repository1.

Since we needed a ND algorithm that supported multi-classification of known
classes and novelty concepts, can run without external feedback (availability of
the true labels), and can predict unknown samples, our choice was somewhat
limited. Hence, we selected the MINAS algorithm [7] to perform the experiments
since it corresponded to our requirements and implemented the ND process using
clustering, a common way of implementing ND algorithms.

While it is possible to evaluate each metric at every new sample treated
by the algorithm, it is highly inefficient to do so as it requires considerable
computing power and offers very marginal benefits in our tests. Consequently,
we decided to log each metric at a period of every 100 samples for all experiments,
which provided a high definition of tracking for the metrics, while limiting the
computing requirements.

4.2 Baseline

As a baseline for our experiments, we selected the following parameters for each
of the data characteristics tested, based on other studies that have been per-
formed in the field of ND: no wait time between the arrival of different novel
classes (order of samples is randomized), 10% of the dataset is used as the offline
phase and 30% of classes used as known classes.

A simple example of the results of this baseline on the FCT dataset is demon-
strated in Fig. 1 as well as part of Table 2. We must highlight that with Mnew,
Fnew, CER, AIC, and TTD, a better score is represented by a lower value, while
a higher value (up to 1) represents a better score for the other two metrics pro-
posed in our framework (Mβ and AMI). We can also observe some advantages of
our proposed methodology, in the binary scenario, the usage of Mβ allows us to
easily follow the model’s ability to distinguish between novel and known classes
without the use of two metrics and efficiently compare the performance of mul-
tiple models/datasets. For the multi-class case, we must draw attention to the
second y-axis, where the value of AIC is displayed. As previously mentioned, the
value of AIC is unbounded, hence a second y-axis is displayed on the right-hand
side. Since it does not have a baseline for a random model, it can not be used
to compare models’ performance between different datasets.

1 https://github.com/jgaud/StreamliningEvaluationNDDataStreams.

https://github.com/jgaud/StreamliningEvaluationNDDataStreams
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(a) Binary metrics (b) Multi-class metrics

Fig. 1. Baseline metrics for the FCT dataset

4.3 Time Between the Appearance of Novel Classes

The first data characteristic we tested is the time between the arrival of a new
class within the stream. Indeed, while in real-world scenarios, novel concepts
could arrive at any time, randomly (t = 0), some works in the literature (e.g. [1,
12]) consider that novel classes arrive one after the other. Therefore, we wanted
to not only test whether or not classes that arrived in an orderly fashion versus
randomly affected the performance, but also if the number of samples between
the arrival of novel classes did. We tested three different parameters including our
baseline where novel classes appeared randomly (t = 0), a scenario where they
appeared at an intermediate interval (t = 5000), and one with a long interval
(t = 20000).

The results for the FCT and SynthRBF datasets can be seen in Figs. 2 and
3, respectively. Looking at the binary results, it is clear that a longer period
between the arrival of novel classes allows the ND model to perform a better
classification between the novel and known classes over the long term. Indeed,
on the FCT dataset, we can see the model’s ability to classify the novel classes
as NPs on the longest interval largely improving once a few novel classes have
arrived, represented by a lower Mnew and consequently, a higher M1 score. The
results on SynthRBF also demonstrated that a longer period between the arrival
of novel classes allowed the model to distinguish novel concepts from known ones
better, but in this case mainly due to a better detection of the known classes
(Fnew). This difference could be explained by the FCT dataset’s novel classes
being harder to distinguish from the known ones compared to the synthetic data.
The results are also similar to the multi-class metrics for both the synthetic
and FCT dataset, as both the AMI and CER show a slight improvement in
classification performance using a longer period between novel classes, as well as
ending up with a model slightly less complex for the largest time.

Looking at the time to detect each novel class in Table 2, we can see that the
addition of a time between the arrival of novel classes allowed to lower the TTD
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Table 2. TTD experimental results on different data streams’ characteristics.

Characteristic Data Stream Class

2 3 4 5 6 7

Baseline FCT – – 270 1083 258 451

SynthRBF 234 251 262 – – –

Time between the
appearance of
novel classes

FCT t = 5000 – – 0 931 19 169

t = 20000 – – 4 9 5 211

SynthRBF t = 5000 14 1 6 – – –

t = 20000 0 1 0 – – –

Ratio of offline samples FCT r = 0.4 – – 337 1020 363 365

r = 0.7 – – 525 1076 555 478

SynthRBF r = 0.4 235 254 265 – – –

r = 0.7 240 257 265 – – –

Number of known
classes

FCT n = 0.5 – – – 867 278 280

n = 0.7 – – – – 400 882

SynthRBF n = 0.5 – 348 356 – – –

n = 0.7 – – 585 – – –

(a) Binary metrics (b) Multi-class metrics

Fig. 2. Effect of the time between the appearance of novel classes for the FCT dataset

quite drastically with all classes, while the addition of a longer period (t = 5000
vs t = 20000) allowed to also accelerate the detection of some novel classes,
albeit less excessively. This is following our expectations, as adding a period
between the novel classes allows the model to better understand the decision
boundary of its known classes and therefore quickly identify samples that are
located outside and report them as novel. These results show the importance of
reporting on the DS’s characteristics, as they can affect the performance of the
models significantly. Moreover, it also highlights the usefulness of our proposed
metrics.
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(a) Binary metrics (b) Multi-class metrics

Fig. 3. Effect of the time between the appearance of novel classes for the SynthRBF
dataset

4.4 Ratio of Offline Samples

In this scenario, we tested the impact of the ratio of offline to online samples.
Similar to train/test sets in batch learning, ND algorithms typically use a portion
of the dataset to learn the known classes in the offline phase and then use the
other part as a DS. We wanted to test how this ratio affected the performance
of the model and consequently analyzed three different ratios of offline samples
to online: our baseline with 10% of the dataset used offline (r = 0.1), 40% of the
dataset used offline (r = 0.4), and finally 70% (r = 0.7).

The results obtained are displayed in Figs. 4 and 5 for both the FCT and
SynthRBF datasets. We observe that in both datasets, the largest value of offline
samples (70%) helped the algorithm classify the known classes, represented by
a lower value of Fnew compared to the baseline, which can be explained by the
algorithm having a larger amount of data to learn the known classes. However,
on FCT, this came at the cost of a lower performance over the classification of
novel classes (Mnew), which lowered the overall performance of the model and
could be explained by the higher number of novel classes and them being harder
to detect on the real dataset. For the moderate value of offline samples (40%),
the algorithm performed worse in all cases, which is demonstrated by an overall
lower M1 score and AMI. It is also important to note that while the number of
samples in the offline phase increases with a higher ratio, the number of known
classes stays the same. This means that there are fewer known class samples in
the online phase and that the density of novel class samples is increased. The
obtained results suggest that this higher density of novel samples, combined
with a shorter time to learn them in the online phase, hinders the model from
properly learning the novel concepts.

The TTD included in Table 2 did not show any specific trends for the syn-
thetic data, but did show an increase in time to detect classes 4 and 6 in FCT
when increasing the ratio of offline samples. This is in accordance with the other
results displaying some of the novel classes, especially on FCT, being harder
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(a) Binary metrics (b) Multi-class metrics

Fig. 4. Effect of the ratio of offline samples for the FCT dataset.

(a) Binary metrics (b) Multi-class metrics

Fig. 5. Effect of the ratio of offline samples for the SynthRBF dataset.

to detect. It also highlights another useful usage of our proposed metric, as it
allows us to see which specific classes might be problematic to detect with a
single scalar metric.

4.5 Number of Known Classes

Lastly, we tested the effect of the ratio of the number of known classes, i.e., the
percentage of all classes that will be shown to the model during the offline phase.
We selected 30% as our baseline (n = 0.3), 50% (n = 0.5), and 70% (n = 0.7).

The results can be seen in Fig. 6 for the FCT dataset and are included in the
aforementioned repository for the SynthRBF dataset since it presented a similar
behavior, and due to space constraints. Both show that a higher ratio of known
classes tends to lead to better results in terms of the distinction between novel
and known classes (M1), as well as similar or better performance in terms of
separation within NPs and known concepts (AMI). These results are per our
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(a) Binary metrics (b) Multi-class metrics

Fig. 6. Effect of the ratio of known classes for the FCT dataset.

expectations, as having the true labels of more classes during the offline phase
allows the model to better create the clusters around each class.

The TTD metric in Table 2 is also providing useful insights into the models’
performance. We can observe that, when the number of novel classes gets fairly
low (< 2), the time to detect each class increases quite importantly. This could
be caused by the density of novel samples in the DS being a lot lower compared
to known classes. Consequently, the model is discarding samples in its temporary
buffer due to its forgetting mechanism, which causes the model to take a longer
time to detect the novel classes.

5 Conclusion

This paper proposes an evaluation framework for ND in DSs based on existing
and novel concepts with the goal of streamlining and facilitating the evaluation
of algorithms in the field and allowing for better comparability between works.
Most works in the literature evaluate the ND problem as a binary classification.
However, this does not allow us to evaluate if the model properly classifies novel
concepts between themselves. Moreover, existing frameworks require tracking
of numerous metrics, which can make the comparison of models difficult, or
display undesirable properties such as the lack of upper bound and baseline.
In our framework, we suggest the use of a novel proposed metric, Mβ , for the
binary scenario, which combines existing metrics, and the use of AMI for the
multi-class scenario, a metric well-known in the field of unsupervised learning
which can combine two other metrics. We also proposed a novel metric, TTD,
to include the temporal aspect of DSs within the evaluation, an important facet
for multiple ND applications. Lastly, we tested and demonstrated the use of
our proposed metrics as well as the impact of numerous data characteristics of
DSs, which we suggest should be reported when testing ND algorithms since,
as we demonstrated, they can influence greatly the results and can show biased
performance results.
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In our future work, we plan to extend this framework by exploring other
data characteristics of DSs such as the density of novel samples or concept drift,
increase significantly the number of datasets and algorithms tested, and perform
an analytical study of our proposed framework compared to existing solutions.
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