
Text to Time Series Representations:
Towards Interpretable Predictive Models

Mattia Poggioli1, Francesco Spinnato2,3(B) , and Riccardo Guidotti1,3

1 University of Pisa, Pisa, Italy
{mattia.poggioli,riccardo.guidotti}@unipi.it

2 Scuola Normale Superiore, Pisa, Italy
francesco.spinnato@sns.it

3 ISTI-CNR, Pisa, Italy
francesco.spinnato@isti.cnr.it

Abstract. Time Series Analysis (TSA) and Natural Language Process-
ing (NLP) are two domains of research that have seen a surge of interest
in recent years. NLP focuses mainly on enabling computers to manip-
ulate and generate human language, whereas TSA identifies patterns
or components in time-dependent data. Given their different purposes,
there has been limited exploration of combining them. In this study, we
present an approach to convert text into time series to exploit TSA for
exploring text properties and to make NLP approaches interpretable for
humans. We formalize our Text to Time Series framework as a feature
extraction and aggregation process, proposing a set of different conver-
sion alternatives for each step. We experiment with our approach on
several textual datasets, showing the conversion approach’s performance
and applying it to the field of interpretable time series classification.

Keywords: Time Series Classification · Interpretable Machine
Learning · Natural Language Processing · Explainable AI

1 Introduction

In recent years, both Time Series Analysis (TSA) and Natural Language Pro-
cessing (NLP) have seen a surge in popularity [2,8,14]. NLP has found numer-
ous applications, including machine translation, email spam detection, informa-
tion extraction and summarization, and question-answering [14]. Meanwhile, the
development of time series classifiers [2] and the increasing availability of time-
dependent data such as electrocardiogram records, motion sensor data, climate
measurements, and stock indices [8] have fueled interest in TSA. Despite the
individual growth of NLP and TSA, there has been limited exploration into com-
bining these two fields, which usually have different goals. NLP focuses mainly
on enabling machines to manipulate and generate human language, whereas
TSA identifies local patterns or components in time-dependent data. However,
they also share similarities since the text, from a human perspective, remains a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bifet et al. (Eds.): DS 2023, LNAI 14276, pp. 230–245, 2023.
https://doi.org/10.1007/978-3-031-45275-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45275-8_16&domain=pdf
http://orcid.org/0000-0002-3203-6716
http://orcid.org/0000-0002-2827-7613
https://doi.org/10.1007/978-3-031-45275-8_16


Text to Time Series Representations 231

sequence of spoken or written expressions rather than a comprehensive machine-
readable representation. This work explores the benefits of integrating TSA into
NLP to make it more interpretable for humans.

NLP relies on text representation techniques to convert text into machine-
readable input for classification, clustering, and sentiment analysis [31]. Typi-
cally, text encoding involves transforming text into vectors representing its con-
tent. Traditional approaches build an explicit representation of the distributional
properties of the text, using raw frequencies like bag-of-words [9], or exploiting
tf-idf [12], and n-grams [28]. State-of-the-art techniques are based on transform-
ers [26], which can better capture semantic and syntactic relationships between
words and sentences. The vectorial representations generated by these models,
known as embeddings, are denser and lower-dimensional than previous models,
even if not interpretable [22]. On the other hand, TSA techniques can capture the
temporal evolution of sequences of data points measured at regular intervals [6].
By considering temporal dependencies, TSA can be used for various purposes,
such as descriptive analysis, clustering, classification, and forecasting [16].

In this paper, we investigate the impact of converting text observations into
time series observations to solve interpretable text classification through time
series representations. In particular, we exploit interpretable models originally
developed for time series [25] as interpretable text classifiers. In the literature,
state-of-the-art time series classifiers are mainly black-box models [2], not inter-
pretable from a human standpoint. We instead focus on time series classification
through shapelets [30], i.e., subsequences that allow for interpretable predictions
based on local similarities in shape. Hence, we propose using shapelets in NLP
by turning texts into time series. To perform this transformation, we design and
implement tots, a framework to turn text to time series. tots exploits a range
of alternatives for converting a text into multivariate time series, including sen-
tence embeddings [17,20], sentiment scores [11], and linguistic features [5,13,19].
In this way, we can leverage implicit representations of language and concrete
linguistics variables to represent language vectorially. Then, tots adopts aggre-
gation techniques to compress multivariate time series into univariate ones. By
compressing time series, we can identify shapelets on 1-d signals that are easier to
analyze and interpret than multivariate ones, shedding light into many domains,
such as sentiment analysis over time, event detection, social media trends, etc.

Overall, this work contributes to the fields of TSA and NLP by (i) proposing
a formalization of text to time series conversion, (ii) exploring dimensionality
reduction and aggregation techniques that can effectively convert multivariate
time series into univariate, (iii) testing different text to time series conversions
through a novel evaluation metric, and (iv), showing the effectiveness of the app-
roach in the field of interpretable text/time series classification. The rest of this
work is structured as follows. Section 2 discusses related works at the intersec-
tion between TSA and NLP. Section 3 introduces notions useful for describing
the proposed transformations, detailed in Sect. 4. Section 5 presents the experi-
mental results, and Sect. 6 concludes the paper.



232 M. Poggioli et al.

2 Related Works

A proper intersection between TSA and NLP lies in analyzing texts produced
within a time window. Works in this domain build time series by extracting
features from each text and condensing them within each timestep to represent
a time-dependent phenomenon. In [10], the authors constructed a sentiment
scoring rule from the count of positive and negative words in multiple social
media texts, resulting in an event-driven, irregularly spaced time series. In [1],
the authors combined text mining and time series to analyze sequences of dated
documents, such as news articles, and extracted correlations and patterns among
frequently used words. Differently from the described approaches, we analyze
documents individually and introduce time by splitting each text content.

Other works are focused on the relationship between features (such as market
sentiment) extracted from Twitter data and financial trends. In [21], the authors
analyzed correlations between stock-market events and features extracted from
micro-blogging messages, relying on overall activity measures (e.g., number of
posts, re-posts) and graph-related indices (e.g., number of connected compo-
nents, degree distribution). In [27], the authors used market sentiment and text
mining techniques for financial time series, proposing a hybrid model that com-
bines the conventional ARIMA model with a support vector regressor method
to extract valuable insights from the market sentiment. Similarly, in [18], it was
proposed ST-GAN, combining financial news texts and numerical data to predict
stock trends. In [4], the authors used a flexible multiple-output Gaussian process
to analyze multimodal statistical causality between cryptocurrency market sen-
timent and price processes, proposing an NLP framework for interpretable senti-
ment indices as inputs for time-series models. Differently from these approaches,
we convert each text into individual time series representations, moving away
from the financial domain and focusing on classification rather than forecasting.

To the best of our knowledge, the only approach for mapping text to time
series is T3 [29]. T3 uses combinations of granularity, n-grams, and different
space-filling curves to assign appropriate numeric values to each character. When
applied to the “record linkage” problem, T3 achieved good accuracy with con-
siderable speed-ups. Our study goes beyond this work by focusing on mapping
text at the sentence level, allowing for incorporating multiple types of features,
including advanced models like sentence embeddings.

3 Setting the Stage

In order to keep our paper self-contained, we report in this section a brief
overview of concepts necessary to comprehend our proposal. We define a text
corpus and each of its components, i.e., documents and sentences, as follows:

Definition 1. A corpus is a structured set of textual documents, represented as
a collection T = {T1, T2, ..., Tn} where T is the corpus and Ti an individual docu-
ment within the corpus. A document T is a sequence of sentences, where each sen-
tence is denoted by Sj , and the entire text is represented as T = {S1, S2, ..., Sm},



Text to Time Series Representations 233

where m is the total number of sentences in the text. Finally, a sentence S is an
ordered sequence of words.

For example, a corpus might be a set of film or theater scripts, a document might
be a scene or an opera, and a sentence might be an actor’s line. Also, we can
consider a set of songs as a corpus, a song as a document, and a verse of the song
as a sentence. We can now define the Text Classification problem as follows:

Definition 2. Given a corpus T with a vector of finite integer labels (or classes)
assigned to each document y ∈ N

n, the Text Classification Problem is the task
of training a function f from the space of possible inputs T to a probability
distribution over the class values in y.

In the following, we establish a connection between text and time series, defining
them in similar and coherent ways.

Definition 3. A time series dataset X = {X1, . . . , Xn} ∈ R
n×d×m is a col-

lection of n time series. A time series X = {x1, . . . ,xd} ∈ R
d×m is a set of

d signals. A signal, or dimension, x = {x1, . . . , xm} ∈ R
m is a sequence of m

real-valued observations sampled at equal time intervals. When d = 1, a time
series is univariate, while if d > 1, the time series is multivariate.

Consequently, we define the Time Series Classification problem as follows:

Definition 4. Given a time series dataset X with a vector of finite integer labels
y ∈ N

n, Time Series Classification is the task of training a function f from the
space of possible inputs X to a probability distribution over the class values in
y.

Given the formulations above, a parallel can be drawn between a text corpus
T and a time series dataset X , and a document T and a time series X. Conse-
quently, the only difference between the two problems is in the type of dataset
used, i.e., T vs X . By exploiting the parallelism between time series and text,
our intuition is that we can solve the Text Classification Problem through TSA
approaches. Our idea is to exploit interpretable machine learning methods on
time series [25] to build algorithms able to identify the most discriminative sub-
sequences of a time series and project them back into the original text. This
would allow us to perform text classification in a human-understandable way.

We focus on interpretable classification through shapelets, i.e., time series
subsequences representing a particular class within a dataset [30]. A subsequence
is an ordered and contiguous subpart of a signal, formally:

Definition 5. Given a signal x, a subsequence s = {xj , . . . , xj+l−1} of length l
is an ordered sequence of values such that 1 ≤ j ≤ m − l + 1.

To extract shapelets from a dataset, candidate shapelets are generated, and
their distances to the time series in the dataset are calculated. Then, their qual-
ity is assessed based on how well they separate different classes, and the best
shapelets are selected based on their quality scores. After that, each time series
is represented as a feature vector, where each feature corresponds to the distance
between the time series and one of the shapelets [7]. Formally:



234 M. Poggioli et al.

Definition 6. Given a time series dataset X ∈ R
n×d×m, a shapelet discov-

ery function, shp discovery, extracts a set Q of q discriminative shapelets, i.e.,
shp discovery(X ) = Q ∈ R

q×l. Then, a transform function, shp transform, con-
verts X into a real-valued tabular dataset, D, obtained by taking the minimum
Euclidean distance between each time series in X , and each shapelet in Q, via a
sliding-window, i.e., shp transform(X , Q) = D ∈ R

n×q.

Once the time series dataset is converted through the shapelet transform, an
interpretable classifier such as a Decision Tree [3] can be used, having the advan-
tage of an interpretable feature representation. Given these notions, we can now
easily link the concept of a time series shapelet to that of a subdocument by
defining it as an ordered and contiguous subpart of a document, formally:

Definition 7. Given a document T , a subdocument P = {Sj , . . . , Sj+l−1} is an
ordered sequence of l sentences, such that 1 ≤ j ≤ m − l + 1.

Therefore, by finding important subsequences in a time series, i.e., shapelets, we
can find the most discriminative parts in a corresponding text. Consequently,
the real challenge we face in this paper consists in converting a text into a time
series. Our proposal to accomplish this task, and to allow solving interpretable
text classification through time series classification, is illustrated in the next
section.

4 Text to Time Series Conversion

In this section, we describe tots, a framework to turn text to time series. The
tots framework is a text to time series conversion workflow formed by three
core steps: tokenization, feature extraction, and aggregation. We regard tots
as a framework because every step can be implemented differently. In this work,
we defined its main steps and realized only some possible variants. However, the
tots structure leaves space to integrate various alternatives easily.

A summary of tots is illustrated in Algorithm 1. Given a text corpus T ,
tots returns a time series dataset X where the ith time series X ∈ X is the
time series representation of the corresponding ith document T ∈ T . First, tots
initializes the empty time series dataset X (line 1). Then, for each document
T ∈ T , it runs the conversion of T into X and adds it to X (lines 2–10). The
first step of tots on T is tokenization, in which the document is split into sen-
tences and readied for further analysis (line 4). After that, for each sentence S
in the tokenized document T ′ (lines 5–7), tots extracts characteristic features
describing S through the features extraction function feat extr and places them
into a vector v ∈ R

d where d is the number of features. Supposing a document
T ′ formed by m sentences, the sequence of m vectors v is concatenated into the
matrix X ∈ R

m×d. This matrix X ∈ R
m×d can be viewed as a multivariate time

series. Thus, we can transpose X in order to have a proper multivariate time
series X ′ ∈ R

d×m where different rows model different signals, i.e., features in
this case, and different columns capture different timesteps (line 8). The vari-
ous signals of the multivariate time series are aggregated into a univariate one



Text to Time Series Representations 235

Algorithm 1: tots(T , tokenize, feat extr , aggregate)
Input : T - text corpus, tokenize - splitting function,

feat extr - feature extraction function, aggregate - aggregation function
Output: X - time series dataset

1 X ← ∅; // init. time series dataset
2 for T ∈ T do // for each document
3 X ← ∅; // init. time series

4 T ′ ← tokenize(T ); // tokenize document

5 for S ∈ T ′ do // for each sentence
6 v ← feat extr(S); // extract feature vector
7 X ← X ∪ {v} // store feature vector

8 X′ ← Xᵀ; // transpose feature vector matrix

9 X′ ← aggregate(X′); // aggregate multivariate time series

10 X ← X ∪ {X′}; // store time series

11 return X

through the aggregation function aggregate (line 9). The function aggregate has
no effect on X ′ when the time series is already univariate, i.e., d = 1.

Once a given text corpus T is converted into a time series dataset X through
tots, we can run any TSA approach exploiting the advance of a clear correspon-
dence between texts and time series. In particular, we can use an interpretable
shapelet-based time series classifier. In the remainder of this section, we illustrate
some alternatives to implement the three functions used by tots.

Tokenization. The first step in our approach consists in defining the granular-
ity of the final time series by splitting the original text. Tokenization involves
breaking up a given text into units, called tokens, that can be individual words,
phrases, or whole sentences [13]. In tots, we tokenize at the sentence level.

Definition 8 (Sentence Tokenization). Given a text document, T , a tok-
enization function, tokenize, splits the document into tokens, creating a set of
m sentences T ′ = {S1, S2, ..., Sm} = tokenize(T ).

Here, we use the term “sentence” loosely, i.e., not as a sequence of words ending
with a punctuation mark but as a grammatically complete sequence expressing
a full thought. Text splitting is a crucial step that may vary depending on the
nature of the text and the specific problem. For example, in a dialogue, a timestep
may correspond to a speaker’s turn, while in a book, it may correspond to a whole
paragraph. If the focus is on song lyrics, line splitting is instead the most sensible
option. We use a real 66-line-long rap lyric from the Song Lyrics dataset as a
running example to illustrate the various step of the proposed framework (see
Sect. 5 for further details). The newline character (/) is adopted as the splitting
criterion for this example. The following are the first six lines, i.e., T0:5:

T0:5 Say brah / In this game called life / It’s charces , decisions, and consequences / I decided to change my
life, for the better / So anybody that’s out there seeking conviction / because of profanity in my music /

Feature Extraction. The second step consists in extracting features from each
token, i.e., each sentence in our setting. We present here alternatives to extract
features from a document and to implement the feat extr function defined as:



236 M. Poggioli et al.

Definition 9 (Feature Extraction). The feature extraction function
feat extr takes as input a sentence S, and returns a vector v containing d char-
acteristics of S, i.e. feat extr(S) = {v1, . . . , vd} = v ∈ R

d.

There exist many different feature extraction approaches in NLP. We design
and implement three alternatives: one based on linguistic features, one based on
sentence embeddings, and an approach relying on sentiment/emotions.

Linguistic Features. Computational linguistics offers several methods for
extracting meaningful linguistic features within a text [5,13,19]. Features such
as type-token ratio can be extracted through tokenization [13], measuring the
lexical diversity of a text by calculating the ratio of unique words (types) to the
total number of words (tokens) in a text. Readability scores, such as the Flesch-
Kincaid and Dale-Chall formulas [5], can also be viewed as features assessing
the complexity of a text. Part-of-speech tagging, such as the Universal POS
tagsets [19], can instead be used to identify the grammatical category of each
word in a text. These linguistic features provide valuable information about
the structure and complexity of a text and can be used in conjunction with
other features to improve NLP tasks. In tots, we define the function feat extr
to extract the following features v from a given sentece S: sentence length
(snl), monosyl words count (mwc), polysyl words count (pwc), avg token length
(atl), readability score (rs), normalized sentence freq (nsf), sentence ttr (st),
avg token freq (atf), alliteration score (as), verb count (vc), noun count (nc),
adj count (adj), adv count (adv), intj count (ic). With linguistic feature extrac-
tion, a dynamic representation of text characteristics emerges as a multivariate
time series. This provides insights into the changing grammatical and phono-
logical qualities from sentence to sentence. Figure 1 (left) shows the linguistic
feature-based conversion for the rap text above (all features are normalized).
We notice that nsf and atf can recognize repeating patterns in the text, iden-
tifying the three changes between chorus and verse (lines 12:15, 34:36, 56:59).
Further, monosyllabic words (mwc) have a generally low frequency in the text,
except for the first few sentences. The only constant feature throughout the text
is the number of interjections (ic).

Sentence Embeddings. Sentence embeddings are high-dimensional vectors
that encode the semantic meaning of a sentence into a space where similar
sentences are spatially closer [20]. Several NLP models have been developed
to output embeddings. In tots, we implement the function feat extr through
Sentence-BERT (SBERT) [20] and Doc2Vec [17], in order to extract the embed-
ding v from a given sentence S. Doc2Vec takes a document as input and outputs
embeddings capturing context, while Sentence-BERT uses Siamese and Triplet
networks to derive semantically meaningful sentence embeddings that can be
compared using cosine-similarity. The sentence embeddings S of these models
are “static” vectorial representations, v, of sentences. However, considering the
sequence of embeddings X ′, we can capture the relationship between subsequent
sentences. Figure 1 (center) shows an example of a 100-dimensional embedding
vector of Doc2Vec for each input sentence. Sentence embeddings are not directly



Text to Time Series Representations 237

Fig. 1. From left to right: multivariate time series obtained through feature extraction
via (i) linguistic features, (ii) text embeddings, (iii) sentiment analysis.

interpretable by humans, but they can capture complex semantic information,
which is extremely useful for machine learning predictors.

Sentiment/Emotion Features. The logit layer of a sentiment/emotion analy-
sis model produces a vector of scores or activations for each possible output class,
indicating the model’s confidence or belief that the input sentence corresponds to
each possible sentiment/emotion. Examples of such models are VADER (Valence
Aware Dictionary and sEntiment Reasoner) [11], a lexicon and rule-based sen-
timent analysis tool attuned explicitly to sentiments expressed in social media,
and RoBERTa (Robustly Optimized BERT Pretraining Approach) [15], a vari-
ant of BERT that has been shown to achieve state-of-the-art performance on
several NLP tasks, including sentiment analysis. While originating from a trans-
former model, logits are more interpretable than embeddings as they provide a
sort of expectation of an input sentence for a certain sentiment/emotion.

In tots, we implement the function feat extr to extract the list of senti-
ments/emotions v from a given sentence S through both VADER and RoBERTa,
which, in a time series context, can track the fluctuation of sentiment and emo-
tions within the text, providing dynamic information instead of static analysis.
VADER provides a single sentiment score, while RoBERTa outputs logits for the
following emotions: Anger (ang), Disgust (dis), Fear (fea), Joy (joy), Neutral
(neu), Sadness (sad), and Surprise (sur). Figure 1 (right), shows an example of
a multivariate time series obtained with RoBERTa. This series depicts a mostly
neutral document, with a high peak of sadness on line 42 (“Rest in peace and
then deceased but we still strugglin while you sleep”).

Aggregation. In order to use a shapelet-based interpretable machine learn-
ing model, we need to reduce multivariate time series into univariate ones. We
accomplish this task by defining an aggregation function, aggregate, that takes
a multivariate time series as input and “compresses” it into a univariate time
series without changing the number of observations m. Formally:



238 M. Poggioli et al.

dist(s14, X)

rap
low

dist(s1, X)

pop
low

rock
high

high

Fig. 2. Shapelet analysis approach on a linguistic time series aggregated with PCA.

Definition 10 (Aggregation Function). An aggregation function aggregate
takes as input a multivariate time series X ∈ R

d×m, with d > 1, and compresses
it into a univariate time series X ′ = aggregate(X), where X ′ ∈ R

1×m.

In this work, we experiment with two naive approaches such as average and
max aggregation, and with a complex dimensionality reduction method such as
Principal Component Analysis (PCA) [24]. Aggregation by taking the average
may be sufficient when multivariate dimensions represent the same phenomenon
detected by different models, such as the sentiment or the emotion computed by
two different transformers, which is averaged for a more robust prediction. On the
other hand, aggregation by taking the maximum could be enough when the dif-
ferent signals in a time series represent logits of different sentiments, highlighting
the intensity of the prevalent emotion at a specific timestep. More sophisticated
approaches like PCA may be required for more complex signals, like those result-
ing from embeddings. PCA dynamically detects the significant time series signals
that include characteristic patterns of the original data because the significance
of each signal is represented in each component of the transformation [24].

Figure 2 (left) displays in blue the univariate time series resultant from the
PCA aggregation from the linguistic features. The signal is hardly interpretable
at first look, but, as illustrated in the following, the contribution of each signal
toward the final component can be retrieved, providing insights into the most
relevant signals at specific timesteps, i.e., for specific sentences in our setting.

Time Classification. Once a given text corpus, T , has been converted into
the corresponding time series dataset, X , by tots, i.e., X = tots(T ), we can
extract a set of q shapelets, Q, from X with Learning Shapelets (LS) [7]. LS learns
shapelets through gradient descent optimization and is regarded as a state-of-
the-art approach. In the example in Fig. 2, we use the extracted shapelets with a
decision tree classifier to distinguish between rap and rock lyrics transparently.
The resulting tree is extremely simple and, using only two of the extracted
subsequences (s14 and s1), can discern between the two genres, by looking at
the distance between the shapelets and the text conversion. Here, to aid inter-
pretability, we present distances as “high” or “low” instead of specific values.
Hence, there are only three rules to classify songs: if dist(s14,X) is low then the
class = rap, else, if dist(s1,X) is low then class = pop, else class = rap.

Figure 2 (center) displays our running example for shapelet s14 (in orange).
We notice that the best alignment of the shapelet with the time series begins at
index 32 and ends at index 55 included. With this information, the shapelet can
be mapped back to its multivariate components, i.e., the subsequences between
32 and 55 of each signal depicted in Fig. 2 (right). Furthermore, the same indexes
can be mapped back to the original text by unveiling the lines between 32 and 55



Text to Time Series Representations 239

Table 1. Dataset information.

dataset id classes records labels

SongLyrics pprc 2 24000 pop, rock

SongLyrics rcrp 2 24000 rock, rap

SongLyrics lyr3 3 36000 pop, rap, rock

SongLyrics rsub 5 25000 pop-rock, metal, indie, hard-rock, punk

WikipediaMoviePlots mplt 4 7512 drama, comedy, thriller, horror

20Newsgroups 20ng 5 1775 talk, religion, sci, rec, comp

in the original lyric, which the model uses to make a prediction. In the following,
we show the document T from sentence 28 to sentence 59 to better appreciate
the text highlighted by the shapelet.

T28:59 Sometime we do bad, but we all in it / You gotta learn to dream, cause there’s No Limit, ya heard me?
/ - singing / Y’all don’t know what we goin through / Y’all don’t know what they put us through /
Y’all don’t know what we goin through / Y’all don’t know what they put us through / Don’t treat me
like a disease, cause my skin darker than yers / And my environment is hostile, nuttin like your suburbs
/ I’m from the ghetto, home of poverty - drugs and guns / Where hustlers night life for funds but,
makin crumbs / in the slums in the street, in the cold in the heat / Rest in peace and then deceased
but we still strugglin while you sleep / And the game never change it’s still the same since you passed
/ We get beat and harassed, whenever them blue lights flash / To the little homies in the hood, claimin
wards and wearin rags / Tryin to feel a part of a family he never had / And it’s sad, I feel his pain,
I feel his wants / To avoid bein locked up, there’s do’s and don’ts / Use your head little soldier, keep
the coke out your system / that ? out your veins, that won’t do away with the pain / Only prayers will
get you through, ain’t no use to bein foolish / Ain’t got one life to live, so be careful how you use it
/ - singing / Y’all don’t know what we goin through / Y’all don’t know what they put us through /
Y’all don’t know what we goin through / Y’all don’t know what they put us through /

From the comparison between the shapelet and the text, we can observe how
the text evolves. For instance, at the beginning of the shapelet, the normal-
ized sentence frequency drops (nsf), indicating the end of the chorus and the
beginning of the verse. A slight increase at the end highlights the beginning of a
new chorus. Further, the alliteration score seems to grow in the verse, with the
more rhythmic repetition of sounds (“To the little homies in the hood, claimin
wards and wearin rags”). snl and pwc represent the higher length of sentences
in the verse w.r.t. the chorus. Other subsequences are harder to interpret in this
instance, such as the number of adjectives (adj) and verbs (vc).

5 Experiments

We experiment with tots1 on three datasets to assess the correctness and effec-
tiveness of the proposed transformation.

Datasets. The first dataset is Song Lyrics, containing lyrics associated with
the artist’s genres. We created four different balanced subsets of this dataset,
pprc, rcrp, lyr3, and rsub, containing different labels, as described in Table 1.
We split Song Lyrics line-by-line with tokenize, removing duplicates and non-
English text (e.g., Chorus 2x ). For 20ng, we used sentences as tokens, removing
hyperlinks, HTML tags, email addresses, symbol repetitions, and expanding con-
tractions. For mplt, we merged coherent genre labels, tokenizing at the sentence
1 Code available at: https://github.com/mattiapggioli/lyrics2ts.

https://www.kaggle.com/datasets/neisse/scrapped-lyrics-from-6-genres/versions/6
https://github.com/mattiapggioli/lyrics2ts


240 M. Poggioli et al.

level. We discarded sentences with less than 20 lines for all datasets to avoid
generating very short time series and performed an 80/20% train/test split.

Experimental Setting. We detail here the alternative implementations
adopted to realize the function feat extr and aggregate. Linguistic features are
derived using the textstats and NLTK packages. Regarding sentence embedding
methods, for Sentence-BERT [20] (sbe) we used the all-MiniLM-L12-v2 model
provided by SentenceTransformers, while for Doc2Vec [17] (d2v) we used Gensim
after using its tokenizer with lowercasing2. For sentiment features (sen), we used
VADER [11] through the NLTK library, which outputs a compound score, rang-
ing from −1 (extremely negative) to +1 (extremely positive). Thus, the resulting
time series are univariate and require no aggregation. Finally, for emotion fea-
tures (emo), we used emotion-english-distilroberta-base, extracting the emotion
logits of the last layer. As aggregate functions, we tested naive avg and max
by simply applying the respective numpy functions column-wise and PCA by
adopting the scikit-learn implementation. We experimented with PCA by (i)
fitting and transforming each time series separately (pca), and (ii), by fitting a
global PCA model on the entire multivariate time series dataset and using it to
transform each time series into a univariate one (gpca). In the latter, the idea is
to consider timesteps as individual observations in a vector space that we want
to reduce in one dimension and time series as movements within it.

Assessing Conversions Correctness. In this experiment, we assess the cor-
rectness of the different conversion workflows that can be realized through the
tots framework. We measured the correctness by checking if similar texts are
mapped to similar time series after the conversion in a controlled experiment on
the lyr3 dataset. Formally, given a document T from the corpus T , a document
T ′ �= T that by construction is similar to T , i.e., is obtained by alterating T ,
and a document T ′′ �= T randomly selected from T , our desiderata is that the
distance between tots(T ) and tots(T ′) is smaller than the distance between
tots(T ) and tots(T ′′). Thus, similar documents should be converted in similar
time series. Since we are comparing time series, we adopt the Dynamic Time
Warping (DTW) distance [23]. Hence, given a corpus T , a corpus of similar doc-
uments T ′, and a randomly shuffled corpus T ′′, we define the correctness score
CS as:

CS =
1
n

n∑

i

1[dtw(tots(Ti),tots(T ′
i )) < dtw(tots(Ti),tots(T ′′

i ))]

where CS is the percentage of times the desiderata holds. In practice, we sam-
pled 50 song lyrics per genre from lyr3, i.e., T and, for each of them, we created
a similar lyric by applying text augmentation line by line, i.e., T ′. For this pur-
pose, we used the ContextualWordEmbsAugmenter of the nlpaug library, which
replaces words in a text with their contextually similar counterparts using a pre-

2 We set the following parameters: dm = 1, vector size = 100, min count = 2, epochs
= 20, window = 5.

https://github.com/textstat/textstat
https://www.nltk.org/
https://github.com/UKPLab/sentence-transformers
https://radimrehurek.com/gensim/
https://nlpaug.readthedocs.io/en/latest/overview/overview.html


Text to Time Series Representations 241

trained contextual word embedding model. Then, we associated each original
text in T with a randomly selected one, i.e., T ′′. Finally, we computed CS .

Table 2. CS metric for lyr3. The best aggregate for each feat extr method are in bold.

feat extr d2v sbe lin emo sen
a
gg
re
ga
te

avg 0.740 0.667 0.840 0.813

0.800
max 0.740 0.693 0.713 0.693

pca 0.593 0.540 0.633 0.713

gpca 0.720 0.767 0.997 0.786

Table 2 shows the results of this experiment w.r.t. different types of feature
extraction and aggregation functions (the higher, the better). Excluding gpca,
d2v performs better than sbe, with an average difference of about 0.05. However,
with gpca applied, sbe demonstrates the highest performance among sentence
embedding approaches, outperforming d2v. The gpca method demonstrates sig-
nificant superiority among those based on linguistic features. Traditional pca
demonstrates poor results not only against gpca but also to max and avg . In
summary, the best aggregation approaches seem to be avg and gpca. However,
the single sentiment signal sen, without any aggregation, scores surprisingly
high. As for runtime performance, the fastest method is sen, with a runtime of
5.3 ms per sentence, followed by lin and d2v with an average execution time of
44–48 ms. sbe takes longer, with an average execution time of 1.120 s, and the
slowest model is emo taking on average 2.83 s3.

Given these results, we chose one instance for each feature extraction method
to experiment with the classification task. In particular, we selected sbewith gpca,
which produced the best results among the embeddings, despite being less efficient
than d2v. For lin, we also picked the gpca method, which proved extremely accu-
rate during validation. Finally, for the sentiment/emotion method, we selected
sen, given that it performed well, with extremely fast runtimes.

Classification Benchmark. This section evaluates the performance of inter-
pretable ML models applied to solve the text classification problem. Regarding
our proposal, after having selected the most promising functions feat extr and
aggregate as described in the previous section, we applied tots on the text cor-
pus obtaining the corresponding time series datasets, i.e., X = tots(T ). To
achieve our goal of interpretable text classification with explanations based on
the dynamical properties of text, we extracted the shapelets from X through
a shp discovery function, and we turned X into D with a shp transform func-
tion. In particular, we obtained shp discovery and D with the LearningShapelets
function of tslearn4. Then, we trained the following ML models selected for their
3 Experiments were run on a ThinkPad E595. AMD Ryzen 5 3500U CPU, 8 gb RAM.
4 We set the number of shapelets to extract q using the provided heuristic, and Adam

as optimizer training for 2000 epochs per dataset.

https://tslearn.readthedocs.io/en/stable/


242 M. Poggioli et al.

Table 3. Classification accuracy (higher is better). The best results by column, i.e.,
by tots conversion, are bolded, best results by dataset are underlined.

pprc rcrp lyr3 rsub mplt 20ng

lin sen sbe lin sen sbe lin sen sbe lin sen sbe lin sen sbe lin sen sbe

sh
p

dt .53 .54 .57 .79 .73 .74 .52 .50 .48 .22 .23 .24 .28 .33 .31 .27 .31 .32

rf .59 .60 .64 .86 .81 .82 .61 .60 .56 .24 .27 .28 .33 .39 .39 .32 .34 .41

lg .60 .60 .64 .86 .81 .82 .61 .60 .57 .24 .28 .28 .31 .39 .37 .29 .35 .38

fe
a
t

dt .55 .54 .55 .80 .76 .71 .53 .52 .47 .21 .24 .23 .29 .33 .31 .25 .29 .34

rf .60 .59 .62 .86 .83 .78 .60 .60 .54 .25 .27 .26 .34 .39 .36 .26 .39 .41

lg .61 .60 .64 .86 .83 .79 .61 .61 .56 .25 .27 .28 .33 .38 .35 .27 .34 .40

kn
n euc .52 .55 .56 .56 .51 .55 .38 .37 .38 .22 .22 .24 .32 .35 .33 .27 .24 .33

dtw .54 .54 .60 .75 .68 .67 .51 .47 .44 .22 .23 .26 .29 .33 .34 .28 .30 .32

interpretability properties on the shapelet-transformed dataset D (shp), i.e., a
Decision Tree (dt), a Random Forest (rf), and LightGBM (lg). As a com-
petitor, we extracted global time series statistics (feat) such as the minimum,
maximum, mean, variance, skewness, and kurtosis on X , and then we train the
tree-based models dt, rf, and lg. In this setting, classifiers are only statically
interpretable because all the temporal references given by the time series are
completely lost. Finally, in line with instance-based explanation approaches [8],
we experimented also with k-Nearest-Neighbors (knn) trained directly on X . In
particular, we experiment with knn with k = 5 using the Euclidean distance
(euc) and dtw with a 3-window Sakoe Chiba band [23], adopting the pyts
library5.

Table 3 presents the accuracy of the various classifiers. The column header
represents the different dataset conversions of tots, i.e., we convert each of the
six datasets using the three best approaches from the previous section for a total
of 18 dataset representations. The rows represent different classifiers, i.e., based
on shapelets (shp), static global features (feat), and distances (knn). The best
results in each column are in bold, highlighting the best feature extraction and
aggregation. The best approach overall for each dataset is underlined.

At first glance, the best-performing classifiers are rf and lg, with dt, euc,
and dtw always having subpar performance. In general, shapelets and global
features perform similarly, with their respective best models tieing in all of the
six datasets. However, as shown in the example rap lyric, the advantage of using
shapelets is to look at the importance of specific paragraphs in the text, which
is impossible with global features. Regarding tots conversion alternatives, sbe
wins in 20ng and pprc, while lin is the overall best for rcrp. Classifiers trained
on sen have slightly lower performance, likely because they are based on a single

5 Given the computational complexity of dtw on large datasets, we first used Piece-
wise Aggregate Approximation (PAA) to reduce the length of the time series by
80% and then kept one-third of the records for each class, selected using the Clus-
terCentroids method of imblearn.



Text to Time Series Representations 243

sentiment, which may not be sufficient for the classification. The similar perfor-
mance of embeddings and linguistic features is promising for explainability. It
demonstrates that, for specific problems, using domain knowledge to extract
interpretable features can achieve similar results to non-interpretable embed-
dings.

As a final note, we highlight that the purpose of tots at this stage is not
to beat standard NLP approaches applied to the whole text but to define a way
of using TSA approaches for text classification. While our approach may not
perform as well as standard NLP classifiers, we offer a unique way to analyze
text by taking into account local patterns rather than relying solely on the
properties of the entire text. This allows for a more nuanced understanding
of the text and its underlying dynamics. Overall, a sentence-based explanation
can provide a more fine-grained and interpretable classification. For example,
when analyzing a song, a sentence-based explanation can help identify the most
relevant lines or sections to the classification result. Finally, in datasets such
as 20ng, containing multiple topics, a sentence-based explanation can provide
insights into how different parts of the text contribute to the classification result.

6 Conclusion

We have introduced tots, a method that represents text as a time series using
TSA techniques and NLP approaches. Our formalization enables the conversion
between text and time series, enhancing interpretability by capturing local tex-
tual patterns. Additionally, tots allows for easy transformation back to text,
facilitating human interpretation. Through experiments, we showed that our text
to time series conversion uncovers new insights and patterns not easily observable
with traditional NLP approaches. A potential limitation of tots is its reliance on
multiple independent steps, where the quality of underlying models can influ-
ence the overall performance. For example, we acknowledge that aggregating
time series into univariate ones is a strong simplification, and directly analyz-
ing multivariate text-time series could be more effective. Moreover, instead of
exclusively relying on shapelets, alternative patterns could be tested for the clas-
sification task. Combining features and patterns offers a promising approach to
extracting local characteristics and global dynamic trends, capturing the entire
document’s semantic context. After further improvements, we plan to compare
tots against state-of-the-art NLP models and study possible avenues of integra-
tion with Large Language Models. Finally, we plan on extending text shapelets’
interpretability to unsupervised analyses like clustering or topic modeling, where
sequentiality can be incorporated by localizing the analysis on extracted sequen-
tial patterns.

Acknowledgment. This work is partially supported by the EU NextGenerationEU
programme under the funding schemes PNRR-PE-AI FAIR (Future Artificial Intelli-
gence Research), PNRR-SoBigData.it - Strengthening the Italian RI for Social Mining
and Big Data Analytics - Prot. IR0000013, H2020-INFRAIA-2019-1: Res. Infr. G.A.



244 M. Poggioli et al.

871042 SoBigData++, G.A. 761758 Humane AI, G.A. 952215 TAILOR, ERC-2018-
ADG G.A. 834756 XAI, and CHIST-ERA-19-XAI-010 SAI, and by the Green.Dat.AI
Horizon Europe research and innovation programme, G.A. 101070416.

References

1. Badea, I., Trausan-Matu, S.: Text analysis based on time series. In: ICSTCC 2013,
pp. 37–41. IEEE (2013)

2. Bagnall, A., et al.: The great time series classification bake off: a review and exper-
imental evaluation of recent algorithmic advances. DAMI 31, 606–660 (2017)

3. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Routledge (2017)

4. Chalkiadakis, I., Zaremba, A., Peters, G.W., Chantler, M.J.: On-chain analytics for
sentiment-driven statistical causality in cryptocurrencies. Blockchain: Res. Appl.
3(2), 100063 (2022)

5. Dale, E., Chall, J.S.: A formula for predicting readability: instructions. Educ. Res.
Bull. 27, 37–54 (1948)

6. Fu, T.C.: A review on time series data mining. Eng. Appl. Artif. Intell. 24(1),
164–181 (2011)

7. Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series
shapelets. In: SIGKDD 2014, pp. 392–401. ACM (2014)

8. Guidotti, R., Monreale, A., Spinnato, F., Pedreschi, D., Giannotti, F.: Explaining
any time series classifier. In: CogMI 2020, pp. 167–176. IEEE (2020)

9. Harris, Z.S.: Distributional structure. Word 10(2–3), 146–162 (1954)
10. Hassani, H., Beneki, C., Unger, S., Mazinani, M.T., Yeganegi, M.R.: Text mining

in big data analytics. Big Data Cogn. Comput. 4(1), 1 (2020)
11. Hutto, C., Gilbert, E.: Vader: a parsimonious rule-based model for sentiment anal-

ysis of social media text. In: ICWSM 2014, vol. 8, pp. 216–225 (2014)
12. Jing, L.P., Huang, H.K., Shi, H.B.: Improved feature selection approach TFIDF in

text mining. In: ICMLC 2002, vol. 2, pp. 944–946. IEEE (2002)
13. Kaplan, R.M.: A method for tokenizing text. Inquiries into words, constraints and

contexts 55 (2005)
14. Khurana, D., Koli, A., Khatter, K., Singh, S.: Natural language processing: state

of the art, current trends and challenges. Multim. Tools Appl. 82(3), 3713 (2023)
15. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. arXiv

preprint arXiv:1907.11692 (2019)
16. Makridakis, S., Wheelwright, S.C., Hyndman, R.J.: Forecasting Methods and

Applications. Wiley, Hoboken (2008)
17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-

sentations of words and phrases and their compositionality. ICML 2013, 26 (2013)
18. Muthukumar, P., Zhong, J.: A stochastic time series model for predicting financial

trends using NLP. arXiv preprint arXiv:2102.01290 (2021)
19. Petrov, S., Das, D., McDonald, R.: A universal part-of-speech tagset. In: LREC’12,

pp. 2089–2096 (2012)
20. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-

networks. arXiv preprint arXiv:1908.10084 (2019)
21. Ruiz, E.J., Hristidis, V., Castillo, C., Gionis, A., Jaimes, A.: Correlating financial

time series with micro-blogging activity. In: WSDM 2012, pp. 513–522 (2012)
22. Şenel, L.K., Utlu, I., Yücesoy, V., Koc, A., Cukur, T.: Semantic structure and

interpretability of word embeddings. IEEE/ACM TASLP 26(10), 1769–1779 (2018)

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2102.01290
http://arxiv.org/abs/1908.10084


Text to Time Series Representations 245

23. Senin, P.: Dynamic time warping algorithm review. Information and Computer
Science Dept. University of Hawaii at Manoa Honolulu, USA 855(1–23), 40 (2008)

24. Tanaka, Y., Iwamoto, K., Uehara, K.: Discovery of time-series motif from multi-
dimensional data based on mdl principle. Mach. Learn. 58, 269–300 (2005)

25. Theissler, A., Spinnato, F., Schlegel, U., Guidotti, R.: Explainable AI for time
series classification: a review, taxonomy and research directions. IEEE Access 10,
100700–100724 (2022)

26. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
�L, Polosukhin, I.: Attention is all you need. NIPS 2017, 30 (2017)

27. Wang, B., Huang, H., Wang, X.: A novel text mining approach to financial time
series forecasting. Neurocomputing 83, 136–145 (2012)

28. Wang, X., McCallum, A., Wei, X.: Topical n-grams: phrase and topic discovery,
with an application to information retrieval. In: ICDM, pp. 697–702. IEEE (2007)

29. Yang, T., Lee, D.: T3: on mapping text to time series. In: AMW (2009)
30. Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining. In:

SIGKDD 2009, pp. 947–956 (2009)
31. Zhang, W., Yoshida, T., Tang, X.: A comparative study of TF* IDF, LSI and

multi-words for text classification. Expert Syst. Appl. 38(3), 2758–2765 (2011)


	Text to Time Series Representations: Towards Interpretable Predictive Models
	1 Introduction
	2 Related Works
	3 Setting the Stage
	4 Text to Time Series Conversion
	5 Experiments
	6 Conclusion
	References


