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Preface

We are delighted to introduce the proceedings of the 22nd International Symposium on
Intelligent Data Analysis, held from April 24–26, 2024, in Stockholm, Sweden. Origi-
nating in 1995, the symposium was organized biennially until 2009. Starting from 2010,
the symposium shifted its focus towards encouraging submissions that present ground-
breaking and innovative ideas, even if they might not be as fully developed as those
presented at other conferences. The 2024 edition of IDAmaintained this tradition, invit-
ing submissions that, while possibly considered preliminary in other contexts, promise
significant research advancements. This edition also marked the return of the Indus-
trial Challenge track, encouraging both academic and industrial researchers to tackle
a machine learning challenge focused on predicting the imminent failure of specific
vehicle engine components. Participants worked with data from Scania trucks operating
under demanding conditions. The IDA Symposium welcomes a broad range of model-
ing and analysis methodologies from all disciplines, aiming to be an interdisciplinary
forum that fosters discussions on intelligent data analysis that span various fields. We
invite contributions that address intelligent support for modeling and analyzing data
from complex, dynamic systems.

Within this context, IDA 2024 extended its support for data analysis beyond the con-
ventional algorithmic solutions typically discussed in academic literature. Only those
submissions that integrated established technologies within intelligent data analysis
frameworks or applied such technologies in innovative ways to the analysis and/or mod-
eling of complex systems were considered. The traditional review process, which tends
to favor small, incremental improvements over existing research, might have deterred
the submission of the innovative research that IDA 2024 aimed to attract. To counter this,
reviewers and senior PCmembers were encouraged to favor innovative ideas to complex
solutions and extensive experimental evaluations. The outcome was a highly compelling
program. We received 94 submissions, from which 40 were accepted as regular papers
and 3 as short papers, including those from the industrial challenge. Each submission
underwent a rigorous single-blind review by three members of the program committee
and one senior member.

We were pleased to have the following distinguished invited speakers at IDA 2024:

– Dimitrios Gunopulos, National and Kapodistrian University of Athens, Greece on the
topic “Computing counterfactuals with feasibility and compactness guarantees”

– Dino Pedreschi, University of Pisa, Italy on the topic “Social Artificial Intelligence:
Challenges of the Human-AI Ecosystem”

– Danica Kragic, KTH Royal Institute of Technology, Sweden on the topic “Represen-
tation learning and foundation models in robotics”.

The conference was held at the Department of Computer and Systems Sciences of
Stockholm University in Stockholm.



vi Preface

We wish to express our gratitude to all authors of submitted papers for their intel-
lectual contributions; to the Program Committee members and advisors and additional
reviewers for their effort in reviewing, discussing, and commenting on the submitted
papers and to the members of the IDA Steering Committee for their ongoing guidance
and support. We thank Zed Lee for running the conference website. Special thanks go to
the industrial challenge chair Tony Lindgren for handling the submission and reviewing
process of the industrial challenge papers, as well as to Luis Galárraga for handling the
PhDPoster Track.We gratefully acknowledge thosewhowere involved in the local orga-
nization of the symposium: Sindri Magnusson, Ali Beikmohammadi, Franco Rugolon,
and Maria Bampa. We thank our Frontier Prize chair, Jaakko Hollmen, our advisory
chairs Matthijs van Leeuwen and Siegfried Nijssen for their precious guidance dur-
ing the preparation of IDA, and our Social Media chair, Zhendong Wang who together
with Ioanna Miliou took care of all strategic social media communications related to
IDA. Finally, we are grateful to our sponsors: Stockholm University, Scania AB, Digital
Futures, Springer, and The Artificial Intelligence Journal. We are especially indebted to
KNIME, who funded the IDA Frontier Prize for the most visionary contribution present-
ing a novel and surprising approach to data analysis in the understanding of complex
systems. Last but not least we thank the City of Stockholm for hosting IDA’s reception
evening at the Stockholm City Hall.

April 2024 Ioanna Miliou
Nico Piatkowski

Panagiotis Papapetrou
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Kernel Corrector LSTM

Rodrigo Tuna1(B) , Yassine Baghoussi1,4 , Carlos Soares1,2,3 ,
and João Mendes-Moreira1,4

1 Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
up201904967@edu.fe.up.pt, {baghoussi,csoares,jmoreira}@fe.up.pt

2 Artificial Intelligence and Computer Science Lab. (LIACC – member of LASI LA),
Universidade do Porto, Porto, Portugal

3 Fraunhofer AICOS Portugal, Porto, Portugal
4 INESC TEC, Porto, Portugal

Abstract. Forecasting methods are affected by data quality issues in
two ways: 1. they are hard to predict, and 2. they may affect the model
negatively when it is updated with new data. The latter issue is usually
addressed by pre-processing the data to remove those issues. An alter-
native approach has recently been proposed, Corrector LSTM (cLSTM),
which is a Read & Write Machine Learning (RW-ML) algorithm that
changes the data while learning to improve its predictions. Despite
promising results being reported, cLSTM is computationally expensive,
as it uses a meta-learner to monitor the hidden states of the LSTM. We
propose a new RW-ML algorithm, Kernel Corrector LSTM (KcLSTM),
that replaces the meta-learner of cLSTM with a simpler method: Ker-
nel Smoothing. We empirically evaluate the forecasting accuracy and
the training time of the new algorithm and compare it with cLSTM and
LSTM. Results indicate that it is able to decrease the training time while
maintaining a competitive forecasting accuracy.

Keywords: Time series forecasting · Recurrent Neural Networks ·
Data-Centric AI

1 Introduction

In many fields, including energy, healthcare, management, and climate research,
time series forecasting is a crucial task that can be accomplished using machine
learning or statistical methods [8]. As data becomes widely available, more pre-
cise forecasting models are expected. However, data quality issues like outliers,

This work was partially funded by projects AISym4Med (101095387) supported
by Horizon Europe Cluster 1: Health, ConnectedHealth (n.o 46858), supported
by Competitiveness and Internationalisation Operational Programme (POCI) and
Lisbon Regional Operational Programme (LISBOA 2020), under the PORTU-
GAL 2020 Partnership Agreement, through the European Regional Development
Fund (ERDF); NextGenAI - Center for Responsible AI (2022-C05i0102-02), sup-
ported by IAPMEI, and also by FCT plurianual funding for 2020–2023 of LIACC
(UIDB/00027/2020 UIDP/00027/2020) and SONAE IM Labs@FEUP.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
I. Miliou et al. (Eds.): IDA 2024, LNCS 14642, pp. 3–14, 2024.
https://doi.org/10.1007/978-3-031-58553-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58553-1_1&domain=pdf
http://orcid.org/0009-0009-0047-2052
http://orcid.org/0000-0002-1943-1471
http://orcid.org/0000-0003-4549-8917
http://orcid.org/0000-0002-2471-2833
https://doi.org/10.1007/978-3-031-58553-1_1
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missing values, and changes in the underlying data generation process might
impact predictive techniques.

Traditional machine learning (ML) models are often considered read-only
models, capable of learning from data but neglecting the feedback loop for cor-
recting the data during the learning process. This approach, while efficient in
many cases, lacks proper adaptation of preprocessing techniques and the ML
model itself, as the model’s feedback is often overlooked.

To address this limitation, the concept of Read-Write Machine Learning (RW-
ML) has emerged. RW-ML models, such as Corrector LSTM (cLSTM) [1], not
only learn from data but also have the capability to change the data during the
learning process. cLSTM is a time series forecasting method designed to improve
forecasting accuracy by dynamically adjusting the data. It utilizes a meta-model
of the Hidden State Dynamics obtained with SARIMA to detect data quality
issues and employs a greedy heuristic to correct them. cLSTM has demonstrated
superior predictive performance compared to traditional LSTM models. How-
ever, the computational cost associated with the meta-learning component of
cLSTM is significant.

In this paper, we propose a computationally less expensive variant of cLSTM,
named Kernel Corrector LSTM (KcLSTM), which replaces the meta-learner with
a simpler method: Kernel Smoothing. We empirically compare KcLSTM with
both cLSTM and LSTM models. Results reveal that KcLSTM achieves better
predictive performance than LSTM and cLSTM, while also being faster than
cLSTM, although the computational efficiency improvement is not as substantial
as expected.

The main contributions of this paper are:

– Introducing a variant of cLSTM, KcLSTM, which is computationally less
expensive while maintaining high predictive accuracy.

– An empirical study comparing KcLSTM with LSTM and cLSTM in terms of
predictive performance and training time.

This paper is structured as follows: we first provide an overview of the state-
of-the-art forecasting method, LSTM. Then, we delve into the concept of RW-ML
and its significance in time series forecasting. Next, we introduce the proposed
algorithm, KcLSTM. Finally, we describe the experimental setup, present the
results, and discuss their implications.

2 Related Work

In this section, we first present the Long Short-Term Memory. The algorithm
that our proposed algorithm is built on and the one it will be compared to. We
then define Data-Centric AI and provide examples of Data-Centric models built
for time series forecasting.
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2.1 LSTM

The Long Short-Term Memory (LSTM) [16] is a Recurrent Neural Network
(RNN), that can capture long-term dependencies in the input and it is used
for processing sequential data. RNNs differ from feed-forward networks through
recurrent connections, allowing them to learn from sequential data. Back Propa-
gation is applied to RNNs by taking advantage of the fact that for every recurrent
network, there exists an equivalent feed-forward network with identical behavior
for a finite number of steps [21], training it using Back Propagation Through
Time (BPTT) [23] (Fig. 1).

Fig. 1. Cell unit of the LSTM recurent neural network [6].

RNNs have some well-known limitations. First, they have problems capturing
long-term dependencies, being limited to only bridge between 5–10 steps [23].
This occurs because RNNs are sensible to the exploding/vanishing gradient prob-
lem [15]. The LSTM solves this problem through the use of a gating mechanism.

An LSTM network consists of blocks, with each block containing an input
gate, forget gate, output gate, and memory cell (Eqs. (1b) to (1d)). The input
gate controls which inputs are relevant; the forget gate learns which information
should be kept in memory; and the output gate controls which information
should be passed to the next block. The information is retained through the use
of two states called the cell state, (Eq. (1e)), and the hidden state, (Eq. (1f)).
The forward pass concatenates the input with the hidden state from the last
block, while the backward pass derives the error and updates the gates using
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the chain rule of derivatives. The gate derivatives are multiplied by the hidden
output to obtain the gradient deltas that update the gates.

it = σ(Wi · ht−1 + Vi · xt + bi) (1a)
ot = σ(Wo · ht−1 + Vo · xt + bo) (1b)
ft = σ(Wf · ht−1 + Vf · xt + bf ) (1c)

Ĉt = tanh(Wc · ht−1 + Vc · xt + bc) (1d)

Ct = it · Ĉt + ft · Ct−1 (1e)
ht = ot · tanh(Ct) (1f)
zt = ht (1g)

2.2 Data-Centric Time Series Forecasting

Anomalies, including outliers, missing values, and changes in the underlying
data generation process can impact predictive tasks. This affects the predic-
tions of such methods, hindering their performance [17], conversely to traditional
machine learning methods, that build models using a fixed dataset. In Data-
Centric AI [25], the focus is on the data. Data quality is increased to improve
the performance of AI models.

The exploration into machine learning models capable of learning and cor-
recting data has been a topic of interest in various studies. Both [22] and [20]
delve into this concept, with [22] focusing on the potential of ML models to
memorize sensitive information while [20] emphasize the importance of model
interpretability and safety. Additionally, authors in [4] further underscore the
significance of data quality in enhancing model performance, advocating for a
data-centric approach. Providing a broader perspective, the work in [14] discusses
the role of probabilistic modeling in understanding learning and uncertainty in
machine learning.

Moving to neural network models, authors in [11] discuss highly intercon-
nected networks for associative memory and optimization, with a focus on
learning and adaptation. Moreover, [10] propose a model for neural networks
that learn temporal sequences through selection, employing synaptic triads and
a local Hebbian learning rule. Furthermore, [9] introduce predictive-corrective
networks for action detection in videos, which utilize top-down predictions and
bottom-up observations for adaptive computation and simplified learning. These
models collectively demonstrate the potential of neural networks to learn and
correct data across various applications.

Similarly, recurrent neural network (RNN) models have been developed to
address the challenge of learning and correcting data. In [13], an attempt is
made to introduce a learning algorithm for the recurrent random network model,
employing gradient descent of a quadratic error function. Later, authors in [2]
propose a recurrent network architecture for modeling dynamical systems, which
can learn from multiple temporal patterns and cope with sparse data. More
recently, the research in [5] demonstrates that tree-structured recursive neural
networks can learn logical semantics, including entailment and contradiction.
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In the context of time series forecasting, some data-centric approaches have
been employed. In dLSTM [19], the authors train the model on non-anomalous
data and use the predictive errors to detect anomalies. The deviation from the
normal state is measured through delayed prediction errors. The normal state can
then be restored from several candidate values. Following the idea of using the
prediction errors to improve the quality of the data Pastprop was introduced [3].
The responsibility for the training error is shared between the model parameters
and the training data. The backpropagation of the derivatives is applied to the
input, indicating the part of the input that caused the training error.

2.3 Corrector LSTM

cLSTM [1] is an architecture that improves its predictive performance by recon-
structing the data of the model. The architecture of the algorithm is based on
the LSTM and a data correction component. This data correction component
uses a meta-learner, SARIMA, to identify problems in the hidden states of an
LSTM model. This is achieved by predicting the hidden states using SARIMA
and if the difference between the predicted and the real hidden states is over a
certain threshold they are considered anomalous. The anomalies detected in the
hidden states are assumed to be caused by the data which is then reconstructed.
The reconstruction of the data points is such that the difference between the
predicted and the real hidden states falls under a certain threshold. The authors
showed that analyzing the Hidden State Dynamics [24] of an LSTM can be used
to detect anomalies in the training data and consequently improve the forecasting
performance of the model. However, the data correction relies on a meta-learner
which makes the algorithm computationally expensive.

3 Kernel Corrector LSTM

The architecture of the Kernel Corrector LSTM (KcLSTM) is the same as the
cLSTM architecture, and the meta-learner used to detect problems in the learn-
ing is substituted by a simpler approach, kernel smoothing.

3.1 Training

The KcLSTM utilizes the hidden states learned during the training process to
find and correct data points of the series. The training of the KcLSTM is divided
into three distinct phases. The first phase consists of training the data on a
standard LSTM. This allows the hidden states to capture the information of the
time series and to be indicative of problems in the data. We then perform the
correction, which is comprised of a detection and a correction component. These
two components find and correct errors in the data respectively, this phase is
thoroughly explained in Sect. 3.2. Finally, the LSTM is trained on the new data,
learning a corrected time series, that can improve the predictions of the model.
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3.2 Data Correction

The Data Correction phase of the algorithm is divided into two different compo-
nents: the correction and the detection. These two components aim to find data
points that worsen the learning of the model and change the data so that the
learning process is improved and a better model is obtained. Each phase has a
threshold δd and δc. The hidden states of the last iteration of the first training
phase, H = h0, ..., hn are used to find errors in the training data. cLSTM uses a
meta-model that is computationally expensive to compute; our goal is to assess
if a simpler method can obtain competitive results with less cost; the method
selected for this purpose is Kernel Smoothing because states are estimated rather
than predicted which makes it computationally. A new set of estimated hidden
states H ′ = h′

0, ..., h
′
n is calculated using Gaussian Kernel Smoothing of H as

described in Eq. (2) (Fig. 2).

h′
i =

∑
j∈[i−W/2,i+W/2],i �=j hj ∗ K(hi, hj)
∑

j∈[i−W/2,i+W/2],i �=j K(hi, hj)
(2)

where K(hi, hj) is:

K(hi, hj) = e
‖hi−hj‖2

2σ2 (3)

Fig. 2. Gaussian Smoothing of the Hidden States, represented as a series.

The goal of error detection is to discriminate between data points that
need reconstruction and those that do not. A point needs reconstruction if the
Dynamic Time Warp similarity between the hidden state from which the point
originated hi and the corresponding estimated hidden state h′

i is greater than a
given threshold δd. This relation is depicted in Eq. (4).

DTW (h′
i, hi) > δd (4)

In the error correction, we reconstruct the detected points such that the
Dynamic Time Warp similarity of the hidden state and estimated hidden state
is less or equal to a given threshold δc Eq. (5). Early stopping is employed, and
if a maximum number of iterations is reached, the original value for the point is
restored.

DTW (h′
i, hi) ≤ δc (5)
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4 Experimental Setup

The goals of the empirical validation are to investigate if the proposed algorithm
is faster than the original one, without a significant decrease in forecasting accu-
racy.

A straightforward holdout method was used to estimate forecasting perfor-
mance, used when there is a temporal dependency in the dataset [7]. The model
is trained on the first s samples and assessed on the succeeding n − s samples.
The data used for evaluation is always the original one. Using corrected data
for the evaluation would likely lead to inadequate optimistic estimates of the
forecasting performance of the corresponding method.

The hyperparameters of LSTM and KcLSTM are chosen using hyperparam-
eter tuning using grid search. The learning rate was varied between: 0.0001,
0.001, 0.01, 0.1; and the batch size was varied between: 1, 2, 4, 8. For cLSTM
we do not perform hyper-parameter tuning due to the high computational cost.
Instead, we use the results described in the original paper [1]. The thresholds
for KcLSTM are fixed with values of 0.6 for the detection and 0.5 for the correc-
tion. The thresholds for cLSTM are described in the original paper [1], 0.6 for
the detection and 0.2 for the correction. We chose to maintain the same detec-
tion threshold and increased the correction threshold. The kernel estimates of
the hidden states are smoother; thus, a small correction threshold would signifi-
cantly alter the hidden states, and the information learned in the previous phase
would be lost.

4.1 Datasets

Table 1. Statistical description of the dataset.

Monthly

Timeseries 200

Average Length 366

Mean 4222

Standard Deviation 1160

We have used the M4 Competition Dataset [18] comprising six subsets. From
one subset, Monthly, we evaluate the performance of the algorithms on the first
199 time series. To evaluate the time taken to train the models, we use the first
20 time series of that subset (Table 1).

4.2 Evaluation Metrics

This study focuses on both the predictive performance of the algorithm as well
as its training time. To quantify the error of forecasts, we focus on the Mean
Absolute Scaled Error (MASE) in Eq. 6 because it allows for the averaging
of results across different time series as opposed to the Rooted Mean Squared
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Error (RMSE). The MASE measures the appropriateness of a forecast against
the naive forecast of predicting the previous value. To assess if the differences
are statistically different, we use the Mariano-Diebold Test [12].

MASE =
1

n−s

∑n
i=s+1 ŷi − yi

1
n−1

∑n
i=2 |yi − yi−1|

(6)

The execution time is measured in seconds and the experiments were run on an
Intel(R) Core(TM) i7-1065G7 CPU @ 1.30 GHz processor.

5 Results

Investigate if the proposed algorithm is faster than the original one, without
significantly decreasing forecasting accuracy. To illustrate the usefulness of the
proposed algorithm, we first evaluate its forecasting capabilities, comparing it
with LSTM Sect. 5.2 and cLSTM Sect. 5.1.

5.1 Comparison with cLSTM

Results of MASE for the algorithms presented in Table 2 indicate KcLSTM
outperforms cLSTM, but this may be explained by the hyper-parameter tuning
that was performed for the KcLSTM and not the cLSTM. As such comparison
between these two algorithms, can not be performed directly.

The Mariano-Diebold Test for cLSTM and KcLSTM resulted in 40 wins for
cLSTM, 111 wins for KcLSTM, and 48 draws. This shows an improvement in
forecasting accuracy by substituting the meta-learner with Kernel Smoothing.
Again the uneven conditions do not allow us to reach clear conclusions about
these two methods.

Results for the training time presented in Table 2 indicate that KcLSTM is
indeed faster than cLSTM, significantly. Nonetheless, the gain is not as large as
would be expected. Estimating the states with Kernel Smoothing is less com-
putationally expensive than predicting the states with SARIMA. However, this
is a cruder method that results in estimated states that are farther away than
from the original states when compared with. Consequently, more points are
considered anomalies that will be corrected, which will cause the training time
to increase.

Table 2. Comparison of each algorithm.

Mean Median Standard Deviation Average time (s)

LSTM 3.48 0.74 6.07 20.47

cLSTM 8.77 1.04 36.96 56.15

KcLSTM 4.64 0.83 11.96 48.77
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However, when performing the Mariano-Diebold test to compare LSTM and
KcLSTM at the significance level of α = 0.05 we get 102 wins for KcLSTM, 50
wins for LSTM, and 47 draws. We can conclude that KcLSTM is superior to
LSTM as it wins more often, although when it loses it is by a greater margin.
This is confirmed by the values of the standard deviation of MASE for LSTM
and KcLSTM and explains the (apparent) superiority of LSTM when analyzing
only the MASE. We see examples of a series with clear outliers that KcLSTM
is able to correct and as such increase their predictions in Fig. 3. Conversely, an
example of a series without outliers made KcLSTM wrongfully alter the data
which results in disastrous predictions in Fig. 4. These two examples reflect the
different behaviors mentioned before.

Fig. 3. Example where data reconstruction was successful.

5.2 Comparison with LSTM

Results of MASE for the algorithms presented in Table 2 indicate that LSTM
has an overall better performance than KcLSTM with lower values for both the
median and the mean for the MASE. However, when performing the Mariano-
Diebold test to compare LSTM and KcLSTM at the significance level of α = 0.05
we get 102 wins for KcLSTM, 50 wins for LSTM, and 47 draws. We can conclude
that KcLSTM is superior to LSTM as it wins more often, although when it loses

Fig. 4. Example where the data reconstruction destroyed the data which caused the
model not to capture the information of the series.
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it is by a greater margin. This is confirmed by the values of the standard deviation
of MASE for LSTM and KcLSTM and explains the (apparent) superiority of
LSTM when analyzing only the MASE. We see examples of a series with clear
outliers that KcLSTM is able to correct and as such increase their predictions
in Fig. 3. Conversely, an example of a series without outliers made KcLSTM
wrongfully alter the data which results in worse predictions in Fig. 4. These two
examples reflect the different behaviors mentioned before.

Results for the training time presented in Table 2 indicate that KcLSTM is
significantly slower than LSTM. This to be expected as KcLSTM has a data
correction component that is responsible for most of the execution time of the
algorithm.

6 Conclusion

The goal of our work is to create a forecasting algorithm that reconstructs data
that is faster than current solutions in the literature. We present a new algorithm:
Kernel Corrector LSTM (KcLSTM). This algorithm alters the training data
to improve its forecasting accuracy. Like in cLSTM, this is done by analyzing
the Hidden States Dynamics and finding anomalies in hidden states to detect
anomalies in data points and consequently correct them. However, the meta-
learner of cLSTM was replaced by the Gaussian Kernel Smoothing of the hidden
states to decrease the training time of cLSTM.

We empirically compare our algorithm with LSTM and cLSTM both in terms
of predictive performance and training time. Results show that KcLSTM obtains
a competitive forecasting accuracy surpassing both the LSTM and cLSTM in
the number of statistically significant wins. However, KcLSTM is more sensi-
tive to its training data and more prone to making worse forecasts than the
baseline, which caused the average MASE of LSTM to be inferior to the aver-
age MASE of KcLSTM. The measured training times also show that KcLSTM
indeed improves on cLSTM in terms of computational cost, but the margin is
smaller than expected because KcLSTM detects more points as anomalies than
cLSTM. The estimated hidden states by KcLSTM are more distant from the
real hidden states than the predicted states of cLSTM. The empirical study
showed that KcLSTM is a faster algorithm that corrects its training data than
cLSTM and that those corrections improve the forecasts by being superior to
LSTM. Future work comprises the possibility of implementing the algorithm
with different estimators.
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Abstract. In the automotive industry, sensors collect data that contain
valuable driving information. The collected datasets are in multivari-
ate time series (MTS) format, which are noisy, non-stationary, lengthy,
and unlabeled, making them difficult to analyze and model. To under-
stand the driving behavior at specific times of operation, we employ
an unsupervised representation learning method. We present Tempo-
ral Neighborhood Coding for Maneuvering (TNC4maneuvering), which
aims to understand maneuverability in smart transportation data via a
use-case of bivariate accelerations from three operation days out of 2.5
years of driving. Our method proves capable of extracting meaningful
maneuver states as representations. We evaluate them in various down-
stream tasks, including time-series classification, clustering, and multi-
linear regression. Moreover, we propose methods for pruning the sizes
of representations along with a window-size optimizing algorithm. Our
results show that TNC4maneuvering has the capacity to generalize over
longer temporal dependencies, although scalability and speedup present
challenges.

Keywords: Multivariate Time-series · Representation learning ·
Classification · Clustering · Regression

1 Introduction

Modern transportation is now equipped with more sensors than ever before,
making the term “smart transportation” more appropriate. This improves effi-
ciency, security, and helps keep up with ever-changing environmental and govern-
ment regulations. The sensors collect large amounts of data during operational
hours from various parts of the vehicle, including but not limited to engine per-
formance, external conditions, and tire states. These sensors measure different
driving behaviors and states as a function of operational time or mileage. For
example, the Global Positioning System (GPS) collects geographical data, while
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Fig. 1. Left: Smart vehicle with multiple sensors. Right: Encoding multivariate accel-
eration signals.

sensors inside the odometer read mileage coverage. Ambient temperature sensors
measure external driving temperature conditions, and Tire Pressure Monitoring
Systems (TPMS) measure the temperature and pressure inside the tires over time
as depicted in Fig. 1 (left). The collected data is often high sampled, lengthy,
noisy, and impractical to label. As a result, it is challenging to relate underly-
ing behaviors/states to other datasets. This highlights the need for representa-
tion learning methods, which can output vectorial summaries from multi-sensory
inputs of variables over a given time window. The resulting vectors are descrip-
tors of latent behaviors of the physical system as illustrated with the three input
accelerations in Fig. 1 (right). These accelerations are expected to describe dif-
ferent physical maneuvers of a vehicle, rendering them indirectly related. Vehicle
maneuvers are rather directly related to driving behavior because driving gener-
ally involves three main actions: controlling the steering wheel, stepping on the
accelerator, and pressing the brake pedal.

The three accelerations in Fig. 1 (right) are lateral acceleration (ax), longi-
tudinal acceleration (ay), and vertical acceleration (az), which pertain to steer-
ing actions, accelerator and brake pedal usage, and up-and-down movements
experienced by a vehicle, respectively. Following our work in [10] on simu-
lated datasets, we here present Temporal Neighborhood Coding for Maneuvering
(TNC4maneuvering), an unsupervised representation learning method to extract
states for understanding maneuverability. TNC4maneuvering is robust enough to
identify and locate temporal transitions between states without any prior knowl-
edge about labels of the states. It employs contrastive learning for its ability to
handle long, noisy, and non-linear MTS datasets without the need for reconstruc-
tion, significantly reducing computation costs. Furthermore, as an improvement
we propose two offline pruning methods for optimizing the sizes of learned rep-
resentations as well as a window-size selection algorithm. These are useful in the
absence of expert knowledge. We evaluate the obtained latent representations by
assessing key performance indicators (KPIs) of downstream tasks, namely clus-
tering, classification, and multi-linear regression based on three different driving
days to observe the generalization and scalability of our method. To sum up,
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our contribution is three-fold: 1) TNC4maneuvering, an unsupervised represen-
tation method for understanding maneuverability in smart transportation, 2)
an offline window-size selection and optimization method that avoids treating
it as an additional hyper-parameter, and 3) two offline representation pruning
strategies for optimizing dimensions of representations.

2 Related Work

Unsupervised representation learning has excelled in various MTS tasks, but its
application to smart transportation MTS datasets is generally limited if any.
Existing attempts, such as the application of Bag of Words (BoW) model in [1],
led to a representation like output with focus on classifying aggressive driving
maneuvers only. Such approaches do not generalize well making them incapable
of other alternative subsequent tasks. Recent works explore contrastive learn-
ing for representation learning by contrast of similar and dissimilar instances.
Examples include [3,4,6,7,9,13,15,18,19]. Notable exceptions are [17], which
disentangles seasonal-trend features using time and frequency domains, and [2],
which jointly learns contextual, temporal, and transformation consistencies, later
applying them to classification, forecasting, and anomaly detection tasks. To the
best of our knowledge this is the first work reporting the use of pure unsuper-
vised representation learning on acceleration MTS, specifically for understanding
vehicle maneuvering with capabilities of multitask downstream.

3 Method

In [10], we explored three state-of-the-art approaches [6,13,15] that use con-
trastive learning on simulated MTS datasets to extract underlying states. Build-
ing on these findings, we further enhanced TNC by incorporating offline window-
size selection, latent space tuning by pruning, and an exponentially dilated
convolutional neural network (CNN) encoder. In our extension, here dubbed
TNC4maneuvering, introduces an unsupervised representation learning frame-
work to extract underlying driver maneuver states from acceleration signals of
a vehicle. Our encoder is specifically designed to efficiently extract maneuver
states.

TNC4maneuvering: The backbone of our method is a non-linear composition
function encoder (Enc), typically a deep neural network, taking a static window
Wt ∈ R

F×δ centered at time t with sub-length δ and F number of features. A
tuple of samples, an anchor (Wt), a positive (Wl) and negative (Wk) windows
are sampled from input MTS where each window Wt,l,k ∈ R

F×δ generates a
representation vector Zt,l,k ∈ R

M , where M << F × δ is the size of the rep-
resentation vector. Wl and Wt ∈ Nt share the same neighborhood centered at
t, while Wk ∈ N t is at a distant non-neighbourhood. The semantic similarities
and dis-similarities between windows is controlled by the temporal neighbor-
hood around Wt. This region is defined as a region where acceleration signals
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Fig. 2. Overall TNC4maneuvering framework: Encoder: Enc(Wt) ∈ R
F×δ, outputs

representations Zt ∈ R
M , with Discriminator: D(Zt, Zl∨k) ∈ [0, 1].

are relatively stationary compared to their pre and post-windows, they are there-
fore assumed to be generated from the same underlying maneuvering state. The
objective function (1) is a partial contrastive loss that learns signals via encod-
ing and evaluates them using a Discriminator (D) that identifies representations
with similar underlying maneuverings.

L = −EWt∼X

[
EWl∼Nt

[
log

(D(Zt, Zl)
)]

+EWk∼Nt

[
wt log

(D(Zt, Zk)
)

+ (1 − wt) log
(
1 − D(Zt, Zk)

)]]
(1)

The unit root test, Augmented Dickey-Fuller (ADF)1 is used for determining rel-
ative stationarity regions. Furthermore, the objective function is weighted with
(wt) and (1 − wt), an ideas from Positive-Unlabeled (PU) learning to counter
potential sampling bias in the contrastive objective. This compensates for neg-
ative samples drawn from outside of the neighborhood which may in fact be
similar to those of an anchor window. The overall framework is depicted in
Fig. 2, details on this framework can be found in [10,15].

4 Experiments

TNC4maneuvering extends [10], it is implemented in PyTorch framework
(v1.12.1) and the source code is available on GitHub2. All experiments are con-
ducted using a single Nvidia Tesla P40 GPU with CUDA 11.2.152. All datasets
1 arch.unitroot.ADF.
2 https://github.com/ThabangDLebese/tnc4maneuvering.

https://github.com/bashtage/arch/
https://github.com/ThabangDLebese/tnc4maneuvering
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Table 1. Selected different driving days showing mileage coverage, time taken and
corresponding length of observations.

Operational day Mileage (Km) Time (Mins) No. observations

2018/10/23 (One Ds) 20 584 1957

2019/11/28 (One Dl) 665 932 16568

2018/10/24-31 (Eight D) 499 5260 19273

Fig. 3. Normalised bivariate (alat, alon) acceleration for One Dl operation day.

are normalized, and the evaluations include three downstream tasks: clustering,
classification, and multi-linear regression.

4.1 Vehicle Acceleration Datasets

Vehicle maneuvering is an automotive problem that is central to understanding
driving behavior from sensory signals. Our use-case vehicle is a Peugeot 208
model used as a fleet car, where operation time is accumulated as an amount of
time where driving activities are collected by different sensors. In this particular
work we focus only on the two accelerations, namely the lateral (alat) which is
the effective measure of cornering (negative is for right turning, 0 is straight line
or breaking and positive is left turning) and the longitudinal acceleration (alon)
where the straight line acceleration (negative braking, 0 is constant speed and
positive is accelerating).

Both accelerations are reported as a fraction of the gravitational acceleration
(ms−2). Analysing different vehicle acceleration behaviours on different driving
days can help to understand different maneuvering behaviors of a vehicle over
time. We consider three bivariate sample signals with different dates, signal
lengths, total covered time and mileage covered as depicted in Table 1.

As a pre-processing stage, we perform a data normalization to avoid sta-
tistical biases that can lead to misinterpretation of the encoded results. Both
input features are normalized such that each Xi = xi/xmax ∈ [−1, 1], for
xmax = max |xi|, i = {1, 2}, preserving the zero values on each feature. Our
bivariate acceleration datasets are extracted from different driving days from
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the overall 2.5 years of driving. From these datasets, we extract one short day
(One Ds), one long day (One Dl) and eight days (Eight D) that is inclusive of
(One Ds). These days correspond to separate driving dates with different mileage
coverage, time overall required time and total corresponding observation lengths.
Figure 3 depicts the normalized accelerations of the One Dl operational day.

4.2 Encoder Details

From [10], we replace the Bidirectional Recurrent Neural Network (BiRNN) with
an exponentially dilated Convolutional Neural Network (CNN) with causality
as our backbone encoder. Exponentially dilated convolutions efficiently capture
long-range dependencies without increasing network depth. Our CNN encoder is
tailored for encoding time series data into a lower-dimensional vector space, par-
ticularly suited for datasets with extended temporal dependencies and character-
istics like non-Gaussianity, intermittency, non-periodicity, and so on. It here com-
prises of three stacked convolutional layers, each using dilated convolutions to
extract inter-temporal features. The dilation parameter exponentially increases
(2i for the i-th layer), while fixed-size filters (f ∈ N) preserve temporal resolution
and alignment. The output undergoes global max pooling, compressing temporal
information into a fixed-size vector. This result is flattened and processed by a
linear layer, further reducing the dimensionality to produce an encoding of size
M , serving as a compressed representation based on a window size Wt.

Our encoder design offers flexibility by allowing customizable encoder sizes
(M), this is to say it incorporates a classification component for compatibility
with subsequent classification tasks. This design choice provides several advan-
tages, including enhanced generalization for downstream tasks and easy pruning
options. Each exponentially dilated convolution layer encodes data through a
convolution operation with dilation defined as:

F (s) = (Wt �d f)(s) =
k−1∑
i=0

f(i)W s−d·i
t , (2)

where F (s) represents the computed output on each layer for samples s ∈ Wt

(∈ R
F×δ), with a dilation rate of d, filter size k, and (s − d · i) accounting for

historical direction. Other hyperparameters include a batch size of 5, a learning
rate of 1× 10−5, and a weight decay of 1× 10−4, using the Adam optimizer. We
perform a train/test data split without validation, training epochs are limited to
30, 20, and 10 epochs for datasets One Ds, One Dl, and Eight D, respectively.

4.3 Hyperparameter Tuning

In [10], we recognized the need for further tuning two hyperparameters: the
window size (Wt) and the latent space dimension (M), while keeping the PU
learning parameter fixed at wt = 0.05.

Window Selection: An appropriate window size should capture important
information about maneuvering states without being too wide or too narrow.
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Table 2. Cross data performances on multi-task downstream before pruning.

TNC4maneuvering (Before pruning)

Operational day Wt Classification Clustering Regression

AUPCR Accuracy Silhouette DBI R2 Loss

One Ds 250 0.988 98.82 0.715 0.492 −0.290 2.075

One Dl 250 0.936 84.86 0.372 1.014 0.326 1.023

Eight D 250 0.976 84.47 0.320 1.202 0.288 1.255

Determining a suitable window size can be achieved by relying on expert knowl-
edge or by treating it as a hyperparameter. We here combine two offline methods
for selecting a suitable window-size, 1) we examine numerical first order deriva-
tives of acceleration signals of the window-size. If the derivative is constant, this
indicates no state change; otherwise, a different state. This is simultaneously
applied on both alat and alon, with windows non-overlapping. The numerical
gradients within each window are approximated using numpy.gradient3 approx-
imation, where interior4 and end5 points are approximated differently as the
window size increases until a predefined necessary condition is satisfied. For suf-
ficiency, 2) is employed using the Augmented Dicky-Fuller (ADF)6 test with
a p-value threshold similar to that in TNC4maneuvering encoder. As a result,
it was found that window sizes shorter than 250 do not contain enough non-
stationarity, especially in One Dl and Eight D. Therefore, we determined that
window size of Wt = 250 (≡ 4.2 min of driving) is suitable. We use this win-
dow size in all experiments, for instances where the window size is larger than
the sampled size, padding with zeros is applied. On the other hand, a downside
of this window selection method is that gradients are prone to total samples
evaluated compared to statistical variance.

Optimizing Representation Size: Determining the optimal size M for Zt ∈
R

M is a challenging open question in representation learning. A larger encod-
ing size captures more information but risks adding irrelevant details, affecting
interpretability. Conversely, a smaller size may lead to insufficient encoding and
reduced generalizability. Achieving the right balance is crucial. We propose two
methods for selectively removing unnecessary details from representations, a
technique referred to as latent space pruning. Initially setting M ∈ N, we obtain
the optimal pruned m ≤ M,m ∈ N using two proposed methods: 1) Pearson Cor-

3 numpy.gradient package.
4 Interior points:(f(x + h) − f(x − h))/2h, for evenly spaced (h = 1).
5 End points:(f(x+ h) − f(x))/h and (f(x) − f(x− h))/h, for evenly spaced (h = 1).
6 ADF(Wt), if p-value > 0.01 signals is non-linear, else linear..

https://numpy.org/doc/stable/reference/generated/numpy.gradient.html
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(a) One Ds (b) One Dl (c) Eight D

Fig. 4. t-SNE visualization of three representations of accelerations, before pruning.

relation Coefficient (PCC) [5], this method eliminates highly linearly correlated
representations with a preset absolute correlation threshold of 0.7, resulting in
representations of size m1 and 2) Principal Component Analysis (PCA) [8], it
utilizes a cumulative explained variance with preset threshold of 0.95 to deter-
mine m2, the number of components to retain. This threshold identifies the size
(m2) of the representations required to achieve it, and these representations are
considered important.

4.4 Evaluation

In order to evaluate the performance of TNC4maneuvering, we evaluate three
downstream tasks namely, time-series classification, clustering, and multi-linear
regression across our datasets.

Classification: In this subsequent task, we employ a linear classifier due to its
effectiveness in separating representations in high dimensions, assuming well-
separated representations. In the TNC4maneuvering model, setting the param-
eter (classify = True) triggers the classification task. Encodings are input
to a classifier comprising a dropout layer to prevent overfitting and a linear
layer mapping the encodings to predefined maneuver output classes (nclasses)
for classification. We evaluate using prediction accuracy and the area under
the precision-recall curve (AUPRC) score, specifically suitable for imbalanced
classification settings. The classification algorithm learns relationships between
representations and predefined maneuver labels (defined in Sect. 5), facilitating
accurate prediction and categorization of maneuvering states.

Clustering: Clustering of representations assesses their separability in the latent
space using k-means [12], offering insights about resulting encoding properties
with predefined maneuver labels (defined in Sect. 5). We employ two metrics
for evaluation: the Silhouette score and Davies-Bouldin Index (DBI). The Sil-
houette score measures the similarity of an encoding within its assigned cluster
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Fig. 5. One Dl accelerations in top and corresponding vector representations of size 64
encoded with a static window-size Wt = 250.

versus adjacent clusters, ranging from [−1, 1]. A higher score implies better cohe-
sion. The DBI assesses both intra-cluster coherence and inter-cluster separation,
with a lower score indicating better clusterability. Identified clusters in clustered
representations are expected to reflect similar characteristics related to vehicle
maneuver behavior.

Regression: In this subsequent task, peaks and valleys also known as turning
points are collected. By taking consecutive differences between turning points
and their square sums, quantifies their magnitudes in each window. This results
to a vector Xman ∈ R

M×1 as a summary. On the other hand, the resultant vector
should offer insights into the intensity and characteristics of extrema fluctuations
found in the datasets. We assume a linear mapping as a first trial where a vector
Xman ∈ R

M×1 is regressed by multivariate representations Z ∈ R
M , although

our perspective would be to propose a non-linear one. A train-test (70/30) data
split is performed, as evaluation coefficient of determination (R2) and learning
loss are used.

Representations: Visualized representations against acceleration signals over
time enhances the understanding and interpretation of extracted maneuver state
and how they are modeling in the latent space (Z ∈ R

M ). This visual metric
is crucial for comprehending vehicle maneuvering as it provides insights into
maneuver behavior through visualization, facilitating the recognition of changes
in maneuver states over time. Capturing these changes clearly enables deeper
insights into the severity or gentleness of driver maneuvers.
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5 Results and Discussion

Results Before Pruning. This section presents results of the subsequent down-
stream tasks before pruning. Table 2 shows task performances across all datasets
before pruning. The three subsequent ML tasks on three different operation days
exhibit variations. Linear regression performs the least consistently well, indi-
cating that localized manually extracted maneuver behaviors are not linearly
explained by representations. A perspective would be to resort to a non-linear
mapping to better link the proposed representations with the quantity interest
or further improve the quality of the representations. Overall, classification task
perform rather well based on the AUPCR and accuracy scores. In Fig. 4 are the
t-SNE [11] visualizations of representations of each dataset. In each visualization,
each point in the plot is a 64 dimensional representation from a window-size of
250, where colors indicate different maneuvering states. With no prior domain
knowledge on maneuver states, we propose a statistical approach serving as
ground truth unlike in the works of authors [14]. We therefore label each dataset
into four maneuvering activities, namely state 0: both alat and alon are station-
ary, state 1: only alon is stationary, state 2: only alat is stationary, and state 3:
both alat and alon are non-stationary. Stationarity refers to cases where the ADF
(p-values > 0.01) for each window-size of 250 of signals. We treat these states as
a ground truth without loss of generality. In Figs. 4a and 4b, the two subgroups
of states (1 and 3) and states (0 and 2) can be assumed to correspond to activities
of alon and alat respectively. However, distinguishing patterns between One Ds

Table 3. Pruned representations: PCC vs. PCA on various operation days.

Operational day Initial size (M) PCC (m1) PCA (m2)

One Ds 64 6 3

One Dl 64 4 7

Eight D 64 7 6

Table 4. Cross data performances on multi-tasks downstream after pruning.

Operational day Wt Classification Clustering Regression

AUPCR Accuracy Silhouette DBI R2 Loss

TNC4maneuvering (After PCA pruning)

One Ds 250 0.756 77.51 - - −0.407 2.262

One Dl 250 0.417 59.57 0.414 0.241 0.340 1.002

Eight D 250 0.450 48.15 0.497 0.202 −0.328 1.416

TNC4maneuvering (After PCC pruning)

One Ds 250 0.956 97.02 0.404 0.758 −0.269 2.040

One Dl 250 0.936 84.86 0.247 1.211 0.330 1.017

Eight D 250 0.903 79.25 0.189 1.494 −0.313 1.400
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and One Dl cluster patterns is challenging due to their difference of being short
and long distance operations. In Fig. 4c, no clear-cut pattern emerges of state
separability, as all states are present, reflecting that diverse driving behaviors
are collected over multiple days. Figure 5 shows both accelerations and learned
representations without additional for One Dl day. In this day of activity, we see
that in cases where both accelerations (alon, alat) have simultaneous activity, it
can also be observed with correspondence to the color code in the representa-
tion space, similar to when there is low activity. Overall, it appears that alon

strongly influences the characteristics of the representations. This is due to the
vehicle executing less full turns and rather accelerating and decelerating more on
this particular operation day. A co-interpretation of Figs. 4b and 5 suggests that
maneuverability is primarily governed by alon activity, corresponding to states
1 and 3 in Fig. 4b and the dark (negative) color codes in Fig. 5.

Results After Pruning. The two pruning methods yield different representa-
tion sizes, as shown in Table 3. These variations arise from the methods dis-
tinct selection criteria: PCC eliminates highly linear correlated representations,
while PCA determines the required representation count based on cumulative
explained variance. We apply pruning methods offline and subsequently evaluate
model performance as post-pruned representations, as illustrated in Table 4. Our
post-pruning methods further assume that representations are more disentangled
since unnecessary components are removed. There was no further training to fine-
tune and update model weights to recover some of the lost accuracy. Therefore,
after pruning there is no major improvement on the three subsequent tasks.
Linear regression performs the least further indicating that localized turning
points are not linearly explained by representations. Overall, there is a decline
in performance across each subsequent task. Consequently, our offline pruning
methods have a reduced performance, as there is no post pruning model weights
updates. In the work [16], the authors address this issue by implementing online
pruning, which enhances efficiency, generalization, and interpretability without
significant performance loss.

6 Conclusion

Our unsupervised representation learning method, TNC4maneuvering, effec-
tively extracts maneuverability representations from complex MTS vehicle
dataset. Its versatility is evidenced by performance in various downstream tasks,
especially on a classification task. Although it allows one to capture longer tem-
poral dependencies, scalability and speedup remain areas of challenge, which are
our next points of focus. Another win to claim is that we have managed to get
rid of two extra hyperparameters, the window-size and size of representations,
reducing the number of hyperparameters to a bare minimum and hence reduc-
ing further complexity. TNC4maneuvering holds great promise for enhancing
maneuverability analysis in smart transportation, laying a foundation for general
future usage in other applications. In our future work, we will replace gradients
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testing with a variance due to its insensitivity to total data samples and incor-
porate pruning within the training framework in order to update model weights
after pruning. Regarding scaling and speedup, we plan to replace the ADF test
with a pre-calculated stationarity matrix.
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zon 2020 Research and Innovation Programme, Grant Agreement no 955393. More-
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Abstract. The present study addresses the group detection problem
using spatio-temporal data. This study relies on modeling contextual
information embedded in the trajectories of surrounding agents as well
as temporal dynamics in the trajectories of the agent of interest to
determine if two agents belong to the same group. Specifically, our pro-
posed method, called T-DANTE, builds upon the Deep Affinity Network
(DANTE) [16] for Clustering Conversational Interactants using spatio-
temporal data and extends it by incorporating Recurrent Neural Net-
works (RNN) (i.e., Long Short-term Memory (LSTM) and Gated Recur-
rent Unit (GRU)) to capture the temporal dynamics inherent in the
trajectories of agents. Our ablation study demonstrates that including
context information, combined with temporal dynamics, yields promising
results for the group detection task across five real-world pedestrian and
five simulation datasets using two common evaluation metrics, namely
Group Correctness and Group Mitre metrics. Moreover, in the compar-
ative study, the proposed method outperformed three state-of-the-art
baselines in terms of the group correctness metric by at least 17.97% for
pedestrian datasets. Although some baselines perform better in simula-
tion datasets, the difference is not statistically significant.

Keywords: Spatio-temporal Data · Affinity Network · Group
Detection

1 Introduction

Group detection using spatio-temporal trajectories has wide-ranging applica-
tions such as studying human mobility [4,10,15,16], analyzing social behavior
in a community [9,11], and understanding migration patterns of animals [7,18].
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Group detection research has predominantly focused on classical machine learn-
ing methods involving feature engineering [14,19]. These approaches typically
require manual feature extraction to train the model, a process that can be
time-consuming and potentially introduce bias.

Recently, deep neural networks (DNN) gained popularity for modeling inter-
actions within spatio-temporal trajectories [6,10] due to their capability to detect
complex and nonlinear relationships between variables. GD-GAN [4], NRI [6],
and WavenetNRI [10] are all DNN-based approaches designed to decode the
spatio-temporal patterns to identify group behavior. The preliminary limitation
of this line of research is the focus of models only on the target agents, neglecting
the impact of surrounding agents in detecting group behavior.

To address this issue, Swofford et al. [16] introduced DANTE, which incor-
porates context features representing surrounding agents using spatio-temporal
trajectories, aiming to learn a graph representation for a single-frame scene via a
neural network. This method considers someone’s surroundings when estimating
conversational group membership. The main limitation of this study is the use
of multilayer perceptron (MLP), which are computationally intensive and not
suitable for modeling temporally-ordered data such as spatio-temporal trajecto-
ries. Moreover, the model focuses solely on a singular frame which may overlook
essential information embedded in data.

To address this gap, the present study introduces an approach, building upon
DANTE [16], that represents agents and their spatio-temporal trajectories as a
social graph using a DNN. The study proposes incorporating RNN layers to
account for the temporal aspect of agent movements, which was overlooked in
the original model and has demonstrated acceptable performance in predicting
vehicle trajectories [3]. Moreover, the proposed model builds on the concept of
context information that has previously shown promising results in identifying
group behavior [16] and is further refined by including scenes with multiple
timeframes. Subsequently, a community detection algorithm is applied to identify
groups among agents. Specifically, our main contributions are:

– Introducing a novel framework for group detection from spatio-temporal tra-
jectory datasets that extends the original DANTE by including multiple time-
frames and employing RNN layers (i.e., LSTM and GRU) to capture temporal
dependencies among trajectory data samples.

– Conducting extensive ablation studies to investigate the impacts of context
size and different RNN layer designs on the performance of the model.

– Introducing a novel trajectory simulation framework for interaction detection
by extending the spring simulation framework [6,10] to include the concept
of attraction points (i.e., points where group members often mingle around).

– Evaluating T-DANTE using five pedestrian datasets and five simulation
datasets against state-of-the-art baselines (i.e., NRI [6], WavenetNRI [10],
and DANTE [16]) in terms of Group Correctness and Group Mitre metrics.

The present study is organized as follows. Section 2 provides background infor-
mation and reviews the related works. Section 3 presents the problem formulation
and discusses the details of the proposed approach. Section 4 details the experi-
mental setup, the datasets, the evaluation metrics, the baselines and explains the
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key findings from the experiments. Finally, Sect. 5 summarizes the entire study
and presents potential directions for future research.

2 Background

The first models for solving the group detection task have mainly focused on
employing classical machine learning approaches involving manual feature selec-
tion process [14,19]. Manual feature engineering has various drawbacks such as
being time-consuming, requiring domain expertise, and having the potential to
introduce bias. To tackle these issues, recent studies have integrated DNNs into
their frameworks relying on their capability of automatically capturing the com-
plex dependencies between data [6,10,12]. The present study (i) employs RNN
models as a special form of DNN and (ii) incorporates context information to
address group detection tasks. The following sections focus on the related works
around these two main features of the proposed method.

Recurrent Neural Networks (RNNs): Many recent studies have inte-
grated DNNs to capture the complex dependencies in spatio-temporal data [6,
10,12]. Neural Relational Inference (NRI) [6] is an RNN-based approach that
models interactions between individuals. This work uses Graph Neural Networks
(GNNs) and RNNs to build an auto-encoder model to learn the latent vectors
that represent the interaction graph. Building upon this foundation, Nasri et
al. [10] introduced WavenetNRI, a model that integrates a gated Residual Dilated
Causal Convolutional Block [12] to capture both short and long-term interactions
in the sequences of edge features. This approach utilizes learned interactions to
effectively model group interactions among individuals. The main disadvantage
of these approaches is the complete reliance on the model to understand which
agents affect the trajectories of others. In contrast, the proposed method only
maintains the surrounding agents as part of the same group, thus, not all agents
are included in the learning process. In this way, the model focuses on the inter-
actions between agents that are close to each other while excluding insignificant
agents located at a distance from agents of interest. Excluding these agents may
reduce the computational cost of the model.

Including Context Information: Recent studies have demonstrated the
positive impact of modeling contextual information on the performance of the
group detection model. Deep Affinity Network (DANTE) [16] utilizes a specified
number of surrounding agents as context for clustering interacting agents. This
approach is limited due to the use of data within a single timeframe. Similarly,
Tan et al. [17] consider all agents in a given scene as contextual input and
predict affinities between agents. While these methodologies demonstrate the
importance of considering broader contextual cues for accurate group detection,
they overlook the temporal aspects of movement.

The present study is inspired by the aforementioned approaches to tackle
the group detection problem using spatio-temporal data. The proposed model
uniquely captures the temporal dynamics of the data by incorporating RNN
layers and further combines the temporal features with context information in
a scene.
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Fig. 1. Visualisation of T-DANTE framework.

3 Material and Methods

In this section, first, the problem of a group detection task is formulated. Sec-
ond, the proposed framework to learn the affinities between agents in a scene is
introduced. Since the proposed network is based on DANTE [16] combined with
temporal features of spatio-temporal data (i.e., including RNN layers), we name
it T-DANTE. Third, the Dominant Sets (DS) [5] community detection algorithm
is explained, which detects groups from a given graph. Figure 1 provides a visual
representation of the proposed framework.

3.1 Problem Formulation

Consider a dataset of trajectories of N agents over a scene of T consecutive
time steps. Xt

i is the location and velocity of agent i ∈ 1, ..., N in time step
t ∈ 1, ..., T . The trajectory of agent i can be represented by X1:T

i , respectively.
We are interested in detecting groups C = {cj |j ∈ [1,K]} in which each agent
belongs, where 1 ≤ K ≤ N is the number of groups. Assuming that agents in
the same group share similar spatial behavior over a scene of T time steps, the
group relationships do not change during a scene, and the duration T of the
scene is fixed.

Our proposed method is based on a DNN that approximates the pairwise
affinities between agents in each scene and produces the corresponding adjacency
matrix. The social graph represented by each adjacency matrix will then be
given to a community detection algorithm to discover groups by identifying
communities in a graph. This paper uses DS [5] as the community detection
algorithm.

3.2 Affinity Learning Network

This section introduces T-DANTE, a DNN that predicts the weights for each edge
in an affinity graph, i.e., a graph structure that represents the relationships or
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affinities between different nodes in a graph. T-DANTE is structured to exploit
two aspects: (1) local spatial information from the two nodes (i.e., individuals)
connected to an edge of interest, and (2) global spatial information from other
nearby agents, who form the social context of the pair of interest, as introduced
in DANTE [16]. T-DANTE advances this idea by using RNN layers (i.e., LSTM
and GRU) to include temporal data in addition to the spatial features and decide
the affinity score between two agents accordingly. During the training process,
the pairwise group relationships will be used as ground truth, and the difference
between them will be minimized using the log loss function. The proposed model
consists of three branches: (1) Pair Branch, (2) Context Branch, and (3) Combi-
nation Branch, which are explained in the following sections:

Pair Branch: The Pair Branch computes the local features of a pair of
agents of interest. The input of this branch is a matrix consisting of two rows,
one per agent in a pair. Each feature is transformed independently by an RNN
layer. This study investigates the performance of T-DANTE by using LSTM (and
conv1D) layers, so-called ‘LSTM-conv’, and GRU (and dense) layers, so-called
‘GRU-dense’, separately. The LSTM features memory cells and intricate gating
mechanisms, including input, forget, and output gates, which allow them to selec-
tively store and retrieve information over extended sequences. This capability is
particularly beneficial for tasks where modeling long-term dependencies is cru-
cial. The GRU employs simpler update and reset gates, offering computational
efficiency with fewer parameters. GRUs perform well in tasks where capturing
shorter-term dependencies is essential. The concatenation of the outputs of RNN
layers is then managed by a series of convolutional or dense layers. In the rest
of this paper, the term ‘T-DANTE’ is used for the model, which includes the
LSTM-conv block, and the term ‘T-DANTE-GD’ is used for the model, which
includes the GRU-dense block. Both designs are followed by a Dropout layer
and a Batch Normalisation layer. The Dropout layer reduces overfitting during
the training process and improves the generalization of the model. The Batch
Normalisation layer is used to avoid the covariate shift that occurs when input
feature distribution changes during training.

Context Branch: The Context Branch computes the global feature repre-
sentations of the social context of the pair of interests as depicted in Fig. 1. The
number of agents considered as social context is a hyperparameter of the model.
Similar to the Pair Branch, the Context Branch first applies RNN layers to the
features of each agent in the context. The convolutional/dense layer, Dropout
layer, and Batch Normalisation layer sequence is repeated x times with various
filters based on the defined configuration.

Combination Branch: The Pair Branch and Context Branch are followed
by a concatenate layer to combine their acquired information, the so-called Com-
bination Branch. In this branch, the tensors are flattened and used by a sequence
of a dense layer, a dropout layer, and a batch normalization layer n times with
different filter sizes. The number of layers and the filter size depend on the char-
acteristics of the dataset, such as the number of frames, the maximum number
of agents, and the data size. The last layer of the Combination Branch is a dense
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layer using a Sigmoid activation function to constrain the output to the [0, 1]
range. Given the specified context, this is the affinity score for a pair of agents.

3.3 Graph Community Detection

Once all the affinity values between pairs of individuals are computed within the
social affinity graph, the next step is modeling the group structures in the data.
To achieve this, the DS algorithm [5] is used to analyze edge-weighted graphs
and identify clusters based on high relative mutual affinity. In the context of this
study, the social affinity graph is used to identify groups.

4 Experiments

This section first explains the pedestrian and simulation datasets used in the
experiments followed by the evaluation metrics and baselines. Lastly, the results
of the experiments are reported in the ablation study and comparative study.

4.1 Datasets

Pedestrian Datasets: Five pedestrian datasets, eth, hotel [13], and zara01,
zara02 and students03 [8] are used in the experiments. These datasets are avail-
able in OpenTraj repository [1]1 and are commonly used as benchmarks for
group detection tasks on spatio-temporal data. They consist of the location and
velocity of each agent in multiple timeframes and the ground truth of the group
membership. The datasets include location data using world reference W . Each
agent in the context of a sample is transformed to a local coordinate system Lij

that represents relative locations. This local coordinate system is defined by tak-
ing the middle point of the line connecting agents i and j. This transformation
improves the learning and generalization of our proposed approach.

Simulation Dataset: In addition to pedestrian datasets, the simula-
tion dataset was used in the experiments, inspired by the spring simulation
dataset [6,10]. The advantage of simulation data is the availability of ground
truth and flexible sample size to train the model. In the original simulation
dataset [6,10], particles are distributed randomly in different groups moving in
a 2-D space, simulating the concept of particles moving along with each other
while the particles in the same group attract each other and repel particles from
other groups. The locations, velocities, and the group membership of the par-
ticles are included in this data. In the experiments, the simulation algorithm is
further enhanced by including group size as a simulation parameter and attrac-
tion points to stimulate group movements towards certain points, for example,
a spot in a playground where children play around. The attraction points are
implemented by defining a force that points each particle toward an attraction
point. All the forces have the same strength value, but their direction is based
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Table 1. Characteristics of pedestrian datasets and simulation datasets regarding the
duration of measurements (pedestrian dataset in seconds, and simulation dataset in
timeframe), the number of agents, and the number of groups.

Pedestrian Dataset

Dataset Duration Agents# Groups#

eth 773.4 360 58

hotel 722.4 390 41

zara01 360.4 148 45

zara02 420.4 204 58

students03 215.6 428 101

Simulation dataset

sim1 50 8 2

sim2 50 9 2

sim3 50 9 3

sim4 50 10 2

sim5 50 10 4

on the location of the particle towards the attraction points. Table 1 presents
the characteristics of pedestrian datasets and five simulation datasets.

4.2 Evaluation Metrics and Baselines

This section describes the two evaluation metrics used to assess the performance
of the models in the experiments. Next, the baselines used in the experiments
are explained.

Group Mitre [15]: This metric is a commonly used performance metric for
group detection [2,4,10] and is built on top of a scoring scheme to measure the
quality of the predicted groups. The exact procedure for calculating the Group
Mitre is presented by Solera et al. [15], and the details are omitted due to the
space limit. The F-1 Group Mitre score is used as an evaluation metric.

Group Correctness [5,16]: This metric considers a group as correctly esti-
mated if at least P ∗ |cd| of its members are correctly detected, where P ∈ [0, 1]
tunes the tolerance of the evaluation to the number of misclassified members and
|cd| indicates the size of the ground truth group d. The F-1 Group Correctness
metric is computed over the entire scene in the experiments.

Baselines: The performance of the proposed method, T-DANTE, is com-
pared with three baseline methods, namely DANTE [16]2, NRI [6]3, and

1 https://github.com/crowdbotp/OpenTraj.
2 The implementation details: https://github.com/mswoff/DANTE.
3 The implementation details: https://github.com/fatcatZF/WavenetNRI.

https://github.com/crowdbotp/OpenTraj
https://github.com/mswoff/DANTE
https://github.com/fatcatZF/WavenetNRI
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WavenetNRI [10] (see Footnote 3). These baseline methods are described in
Sect. 2.

4.3 Results and Discussions

Settings: Experiments were designed using the Python programming language.
The DNNs were implemented in Tensorflow. The detailed implementation of
T-DANTE and the trajectory simulation framework is available in the GitHub
repository4. Each pedestrian dataset has been split into 5 folds, and each method
has been evaluated 5 times for each fold, leading to a total of 25 runs per method.
The simulation datasets have not been split into folds, as they were generated
under controlled conditions without distribution shifts that need to be addressed
by cross-validation. The simulation experiments were randomly split into train,
test, and validation datasets. Each method has been evaluated 25 times for
each simulation dataset. The Wilcoxon signed rank test has been applied to
investigate the significant differences between the top two performing models.
This statistical test was selected as it is a non-parametric version of the paired
T-test and provides an interpretable statistic. In the following sections, first, the
results of the ablation study are demonstrated. Next, the performance of the
proposed model against three state-of-the-art baseline methods is presented.

Ablation Study: The ablation study is conducted for both the pedestrian
and simulation datasets. For this purpose, multiple experiments with different
design layers and context sizes are performed using the Group correctness (GC)
and Group Mitre (GM ) as the evaluation metrics. The employed context sizes,
includes 0, 4, and 8 context size, denoted as C0, C4, and C8, respectively. In
addition to various context sizes, two different DNN designs are used: (1) T-
DANTE with LSTM-conv block mentioned as T-DANTE, and (2) T-DANTE-
GD, which includes GRU-dense block.

Pedestrian datasets: The result of Group Correctness (GC) and Group Mitre
(GM ) of T-DANTE for different variations using the pedestrian datasets are
presented in Table 2. As demonstrated in this table, including context informa-
tion enhances the performance of T-DANTE, except in the eth dataset when
using the Group Mitre as the evaluation metric. Besides, a larger context size
seems to work more efficiently in both T-DANTE and T-DANTE-GD models
for zara02 and students03 datasets. In summary, each dataset may benefit from
using a different context size depending on the features of the dataset, such as the
average number of agents per scene. Moreover, T-DANTE performs better than
T-DANTE-GD in almost all of the pedestrian datasets. Thus, the LSTM-conv
block better processed the spatio-temporal data compared with the GRU-dense
block.

Simulation Datasets: The result of Group Correctness (GC) and Group Mitre
(GM ) evaluation metrics of T-DANTE and T-DANTE-GD using the simulation
datasets are presented in Tables 2. According to this table, the context of 4 agents
performed best in both evaluation metrics, GC and GM , either in T-DANTE or
in T-DANTE-GD design. This was expected since this dataset has a maximum of

4 https://github.com/ADA-research/context-group-detection.

https://github.com/ADA-research/context-group-detection
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Table 2. The result of Group Correctness GC and Group Mitre GM for T-DANTE
variations using pedestrian datasets and simulation datasets. Context sizes of C0, C4,
and C8 agents refer to no agent, 4 and 8 agents, respectively. The * sign shows that this
result is significantly different than all the other results in the same dataset according
to the Wilcoxon signed-rank test.

Pedestrian Dataset

eth hotel zara01 zara02 students03

GC GM GC GM GC GM GC GM GC GM

T-DANTE C0 0.585 0.674 0.523 0.602 0.810 0.825 0.849 0.848 0.542 0.713

±0.021 ±0.015 ±0.028 ±0.020 ±0.018 ±0.017 ±0.012 ±0.014 ±0.096 ±0.039

T-DANTE C4 0.574 0.669 0.534* 0.604 0.822 0.838 0.862 0.863 0.644 0.754

±0.019 ±0.012 ±0.029 ±0.021 ±0.015 ±0.014 ±0.010 ±0.011 ±0.082 ±0.037

T-DANTE C8 0.590 0.665 0.508 0.542 0.821 0.838 0.870* 0.873 0.696 0.781

±0.030 ±0.017 ±0.043 ±0.023 ±0.015 ±0.015 ±0.011 ±0.011 ±0.056 ±0.028

T-DANTE GD-C0 0.559 0.664 0.520 0.600 0.802 0.818 0.842 0.841 0.633 0.752

±0.027 ±0.0176 ±0.027 ±0.019 ±0.018 ±0.017 ±0.022 ±0.015 ±0.114 ±0.055

T-DANTE GD-C4 0.545 0.661 0.527 0.612 0.815 0.833 0.846 0.845 0.666 0.767

±0.026 ±0.017 ±0.026 ±0.014 ±0.019 ±0.017 ±0.012 ±0.011 ±0.084 ±0.038

T-DANTE GD-C8 0.566 0.654 0.524 0.557 0.808 0.829 0.853 0.853 0.678 0.770

±0.036 ±0.023 ±0.033 ±0.032 ±0.022 ±0.020 ±0.019 ±0.015 ±0.085 ±0.037

Simulation Dataset

sim1 sim2 sim3 sim4 sim5

GC GM GC GM GC GM GC GM GC GM

T-DANTE C0 0.965 0.979 0.954 0.970 0.947 0.975 0.948 0.979 0.932 0.974

±0.008 ±0.004 ±0.009 ±0.005 ±0.014 ±0.005 ±0.0088 ±0.003 ±0.009 ±0.003

T-DANTE C4 0.969 0.983 0.980* 0.989* 0.982* 0.988* 0.971 0.987 0.945 0.976

±0.002 ±0.002 ±0.002 ±0.001 ±0.006 ±0.003 ±0.006 ±0.002 ±0.011 ±0.003

T-DANTE C8 0.94 0.972 0.964 0.981 0.964 0.978 0.933 0.973 0.892 0.960

±0.012 ±0.004 ±0.009 ±0.004 ±0.012 ±0.005 ±0.012 ±0.005 ±0.016 ±0.004

T-DANTE GD-C0 0.978 0.985 0.966 0.977 0.960 0.984 0.967 0.99 0.945 0.979

±0.007 ±0.004 ±0.007 ±0.004 ±0.008 ±0.004 ±0.006 ±0.002 ±0.008 ±0.003

T-DANTE GD-C4 0.981 0.986 0.973 0.979 0.970 0.984 0.975* 0.988* 0.960* 0.980

±0.005 ±0.003 ±0.011 ±0.006 ±0.006 ±0.002 ±0.004 ±0.001 ±0.008 ±0.003

T-DANTE GD-C8 0.967 0.978 0.960 0.969 0.956 0.976 0.944 0.976 0.914 0.966

±0.010 ±0.005 ±0.013 ±0.006 ±0.012 ±0.004 ±0.015 ±0.005 ±0.014 ±0.004

8–10 agents across different simulations, which does not always fulfill the context
size of 8 agents around the pair of agents. Thus, C4 is the optimum number of
context sizes for this dataset.

The ablation study results across both pedestrian and simulation datasets
demonstrate that in almost all cases, the use of context is beneficial for the
performance of the model using either of the evaluation metrics. However, the
best context size is not the same for all datasets, as each dataset holds different
characteristics, such as the number of agents presented in each timeframe.

Comparative Study: In this section, the performance of T-DANTE is
compared with the baselines. The results of the experiments for the pedestrian
datasets and simulation dataset are presented in Table 3.

Pedestrian Datasets: T-DANTE with a context size of 8 (C8) agents is
selected in this section because, on average, it performed best in the abla-
tion study using the pedestrian datasets. According to Table 3, T-DANTE out-
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Table 3. The results of Group Correctness GC and Group Mitre GM for T-DANTE
compared with baselines using pedestrian datasets and simulation datasets. The * sign
shows that this result is significantly different than all the other values in the same
column according to the Wilcoxon signed-rank test.

Pedestrian Dataset

eth hotel zara01 zara02 students03

GC GM GC GM GC GM GC GM GC GM

DANTE 0.319 0.548 0.431 0.586 0.731 0.793 0.633 0.705 0.024 0.502

±0.047 ±0.019 ±0.043 ±0.035 ±0.051 ±0.028 ±0.038 ±0.026 ±0.012 ±0.013

NRI 0.201 0.571 0.169 0.540 0.285 0.597 0.106 0.417 0.006 0.280

±0.062 ±0.074 ±0.054 ±0.097 ±0.067 ±0.053 ±0.035 ±0.019 ±0.010 ±0.026

WavenetNRI 0.242 0.553 0.202 0.455 0.361 0.627 0.184 0.462 0.001 0.280

±0.059 ±0.057 ±0.048 ±0.080 ±0.091 ±0.066 ±0.065 ±0.040 ±0.004 ±0.024

T-DANTE 0.590* 0.665 0.508* 0.542 0.821* 0.838* 0.870* 0.873* 0.696* 0.780*

±0.030 ±0.017 ±0.043 ±0.023 ±0.015 ±0.015 ±0.011 ±0.011 ±0.056 ±0.028

Simulation Dataset

sim1 sim2 sim3 sim4 sim5

GC GM GC GM GC GM GC GM GC GM

DANTE 0.215 0.717 0.198 0.701 0.095 0.518 0.199 0.712 0.041 0.425

±0.007 ±0.004 ±0.008 ±0.003 ±0.011 ±0.011 ±0.011 ±0.005 ±0.007 ±0.009

NRI 0.984 0.991 0.983 0.993 0.988* 0.995* 0.996 0.999 0.988* 0.995

±0.004 ±0.002 ±0.007 ±0.002 ±0.004 ±0.002 ±0.003 ±0.001 ±0.007 ±0.003

WavenetNRI 0.996 0.998 0.995* 0.998* 0.977 0.988 0.998* 0.999 0.953 0.968

±0.006 ±0.002 ±0.004 ±0.001 ±0.008 ±0.004 ±0.004 ±0.001 ±0.011 ±0.009

T-DANTE 0.969 0.983 0.980 0.989 0.982 0.988 0.971 0.987 0.945 0.976

±0.002 ±0.002 ±0.002 ±0.001 ±0.006 ±0.003 ±0.006 ±0.002 ±0.011 ±0.003

performs all baselines, i.e., DANTE, NRI, and WavenetNRI, for all pedestrian
datasets using the Group Correctness metric. These results can lead us to the
conclusion that due to the superiority of T-DANTE versus DANTE, the addition
of a temporal aspect using the LSTM-conv blocks enhances the performance of
the model. Another notable aspect of the tables is the higher standard deviation
in NRI and WavenetNRI results compared to the rest of the results. This means
that these models do not consistently learn to distinguish the different classes
in every experiment run, which leads to the difference between their results as
represented by standard deviation.

Simulation Datasets: In the simulation dataset, the T-DANTE with a con-
text size of 4 (C4) was selected as it performed better in the ablation study.
According to Table 3, WavenetNRI and NRI performed better than T-DANTE
in all simulation datasets in both evaluation metrics, and T-DANTE performed
better than DANTE. In general, the results demonstrate the positive effect of
including the temporal dynamics of the data in the training process. Moreover,
the results of T-DANTE and DANTE show that using data from multiple time-
frames in a single sample enhances the model’s performance. Another point is
that T-DANTE surpasses the baselines in the pedestrian datasets, but in the
simulation datasets, NRI and WavenetNRI baselines share the first- and second-
best places. This behavior can be explained by the differences in the character-
istics of the pedestrian and simulation datasets. Simulation datasets include a
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higher number of scenes with groups of over 3 members than pedestrian datasets.
Besides, NRI and WavenetNRI models have the freedom to extract contextual
information computationally without having a limit on the number of surround-
ing agents. However, this is not a realistic assumption in real-world datasets.
Overall, the baselines were unable to capture the interactions of smaller groups
that appear more frequently in the pedestrian datasets while being able to effec-
tively find patterns in larger groups that are majorly included in the simulation
datasets.

5 Conclusion

This study focuses on detecting group behavior using spatio-temporal trajectory
data. Our proposed methodology, inspired by the neural network architecture
introduced by Swofford et al. [16] and enriched with RNN layers, is effective in
capturing the temporal dynamics inherent in agent movements. Our performed
ablation study shows that in almost all cases, the LSTM-conv block performed
better than the GRU-dense block and that the use of context is beneficial for the
performance of the model. Our comparative study against state-of-the-art base-
lines demonstrates that T-DANTE is the superior model for the group detection
task using real-world pedestrian datasets in which the sample size is limited.
Whilst T-DANTE is outperformed by parameter-free models on larger simula-
tion datasets, it still achieves competitive results.

The incorporation of dynamic context size based on the presented number
of agents and dynamic group membership per scene can be explored in future
research. Additionally, enhancing the generalization of the proposed approach
across different datasets and its scalability to real-time applications could be
another future approach. Various applications, such as analyzing students’ social
behavior in schoolyards, monitoring tourists’ behaviors in touristic sights, and
analyzing sports teams’ performances, may benefit from the presented work.
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OpenTraj: assessing prediction complexity in human trajectories datasets. In:
Ishikawa, H., Liu, C.-L., Pajdla, T., Shi, J. (eds.) ACCV 2020. LNCS, vol. 12627,
pp. 566–582. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69544-
6 34

2. Bae, I., Park, J.H., Jeon, H.G.: Learning pedestrian group representations for
multi-modal trajectory prediction. In: Avidan, S., Brostow, G., Cissé, M., Farinella,
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Abstract. State-of-the-art approaches for multi-target prediction, such
as Regressor Chains, can exploit interdependencies among the targets
and model the outputs jointly, by flowing predictions from the first out-
put to the last. While these models are very useful in applications where
targets are highly interdependent and should be modeled jointly, they are
however unable to answer queries in situations when targets are not only
mutually dependent but also have joint constraints over the output. In
addition, existing models are unsuitable when certain target values are
fixed or manually imputed prior to inference, and as a result, the flow of
predictions cannot cascade backward from an already-imputed output.
Here we present a solution to the aforementioned problem as a back-
ward inference algorithm for Regressor Chains via Metropolis-Hastings
sampling. We evaluate the proposed approach via different metrics using
both synthetic and real-world data. We show that our approach notably
reduces errors when compared to traditional marginal inference methods
that overlook joint modeling. Furthermore, we show that the proposed
method can provide useful insights into a problem in conservation science
in predicting the distribution of potential natural vegetation.

Keywords: Regressor Chains · Probabilistic inference · Multi-output
modeling · Potential natural vegetation

1 Introduction

In Regressor Chains, increasingly used for multi-output prediction, predictions
are cascaded across the outputs and are used as input features to model the sub-
sequent targets. Figure 1a illustrates the standard setting of Regressor Chains for
three targets. The same approach has been widely used in the context of multi-
label classification as Classifier Chains for binary outputs [15]. There are recent
successes also in the multi-target regression context with continuous outputs:
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Fig. 1. Illustration of a Regressor Chain depicted as a Bayesian network (shaded nodes
indicate fixed observations) for inputs x = {x1, x2} and outputs y = {y1, y2, y3}. (a)
illustrates the standard setting with forward inference; (b) demonstrates challenges
we address, i.e. backward propagation of imputed output information (label y3) while
maintaining a joint constraint and without training a new structure.

for example, Regressor Stacking [17], Ensembles of Regressor Chains [2,18], and
probabilistic frameworks [14].

However, the above-cited works make some standard assumptions: all outputs
are to be predicted in a pre-determined order, individually, and new models can
be structured and trained with relative ease. We consider a new computational
task setting bringing in the following constraints (c.):

1. Any output may be pre-imputed/fixed prior to prediction;
2. Base regression models cannot be retrained;
3. Outputs satisfy a joint constraint.

We aim at inferring a joint posterior distribution over labels, i.e. probabilistic
Regressor Chains, under these constraints.

Such constraints are realistic in many settings, e.g. if the data is not accessible
after training the model due to ethical or privacy concerns or if computational
resources and human resources required to form a model are tight.

Indeed, in this work, we consider the following motivating example: the esti-
mation of hypothetical distribution (i.e., constraints 3) of vegetation and land-
cover types (‘potential vegetation’) based on climatic conditions supposing that
no urban or agricultural activities are present (i.e., constraints 1) while only
data with urban activity observed was available for the model training (i.e.,
constraints 2).

Generally, let y = [y1, . . . , yL] be the targets. Since the outputs represent
compositional data, i.e. sum up to 1,

∑L
l=1 yl = 1 and yl ≥ 0. Our goal is to

answer queries of the form
p(y¬F |x,yF ), (1)

where F ⊂ {1, . . . , L} is a set of fixed/observed outputs, and ¬F = {1, . . . , L}\F
are the remaining outputs to predict; e.g. y¬F = [y1, y2] and yF = [y3] in Fig. 1b.

A Regressor Chain H = [h1, ..., hL] involves a model (regressor) hl for each
of the outputs y1, . . . , yL providing prediction ŷl = hl(x, y1, . . . , yl−1) which is,
typically, a function of probability density function (pdf) p(yl |x, y1, . . . , yl−1),
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e.g. with the expected value ŷi = Eyi∼p(yi |x,y1,...,yi−1)[yi]. This allows us to
provide a prediction for all outputs,

ŷ = [ŷ1, . . . , ŷL] = [h1(x), h2(x, ŷ1), . . . , hL(x, ŷ1, . . . , ŷL−1)].

Recall that each prediction becomes a feature for the following model in the
chain. By this mechanism, Regressor Chains aim to model the outputs jointly.
If the pdf is explicitly modeled (as in the case of Probabilistic Regressor Chains
[14]), Regressor Chains also provide the joint posterior distribution (e.g., by
forward or ancestral sampling):

p(y |x) =
L∏

l=1

p(yl |x, y1, . . . , yl−1).

Thus, Fig. 1a implies p(y |x) = p(y1 |x) · p(y2 |x, y1) · p(y3 |x, y1, y2). However,
here we face the challenge posed by the interaction of constraints 1. (fixed output)
and 3. (joint constraint): if y3 is a fixed observation, forward inference along the
chain cannot be completed while respecting the other constraints, specifically
the term p(y3 |x, y1, y2). A naive approach of simply predicting ŷ1 and ŷ2 and
then normalizing them to meet the constraint

∑L
l=1 ŷl = 1 is not valid, because

it answers the query p(y¬F |x) but not the target query p(y¬F |x,yF ).
We propose Metropolis-Hastings sampled Regressor Chains (mhsRC) and

Ensembles of Regressor Chains (mhsERC) which can provide a solution to
the aforementioned problem by combining Regressor Chains and Metropolis-
Hastings sampling for backward inference in the prediction step. We apply our
approach, mhsERC, on synthetic and real-world datasets and find that in the
case of synthetic data, the resulting distribution provided by mhsERC is very
close to the ground-truth, for given fixed values. The model naturally provides
a distribution for each instance in addition to a predicted mean value. In three
multi-target regression datasets, we provide values for one target explicitly and
compare predictions of the other targets, where mhsERC successfully infers
unknown targets and reaches significantly better performance than the base-
line methods. Finally, in the real-world climate and land-cover data, we extract
insights into the potential distribution of vegetation in the absence of urban
cover.

2 Related Work

Although there exist a variety of methods for multi-target regression, e.g. Pre-
dictive Clustering Trees [11], Regressor Chains (RC) and Ensembles of Regressor
Chains (ERC) [18], Regressor Stacking [17], these approaches are typically used
in a standard predictive setting and do not directly target joint prediction of tar-
gets when some of the output values are provided before the prediction. In [14],
Regressor Chains were further developed into a probabilistic framework, however
only ancestral, or forward, inference along the chain is available which does not
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respond to the set constraints 1–3. Also, the authors did not propose how to use
non-probabilistic base classifiers such as Decision Trees.

The given problem (recall example in Fig. 1b) can be represented as a
Bayesian Network, specifically a Hybrid Bayesian Network [16] which can handle
continuous variables during inference as opposed to classic Bayesian Networks.
However, learning the structure of a Bayesian Network is extremely costly and
inference options are limited, normally corresponding to linear-Gaussian models
or approximate methodologies based on sampling, and variational inference.

The problem setting involving the distributional constraint, with missing
value, has been called ‘structurally incomplete’ by [3]; but authors here use a
neural network approach that can be built arbitrarily. Oppositely, we develop
a probabilistic inference approach under Regressor Chains. The general setting
for predicting a composition of outputs is known in the statistics literature as
‘compositional data analysis’ [1].

As an example of a real-world problem involving constraints 1–3, we consider
the prediction of potential vegetation distribution in the absence of urban activ-
ity. A similar setting was considered in [3]. In our work, we also face the issue of
the evaluation of ground-truth distribution for comparison, since the goal is to
explore alternative hypotheses. Our solution is to study the probabilistic chal-
lenge of deriving a joint distribution directly; whereas the authors of [3] focus
on the accuracy of predicting dominant vegetation types. Another important
difference is that we consider the additional constraint of tackling the problem
at inference time, rather than selecting different training regimes.

In ecology and biogeography, a related research question concerns the infer-
ence of potential natural vegetation, i.e. the anticipated state of vegetation under
specific environmental conditions, without a notable human intervention [4]. In
recent years, statistical and machine-learning techniques have gained popularity
for their application in constructing such models [9,10] but, in these works, the
focus is on exploring the relationship from climatic input observations to the
targets, rather than the probabilistic relationship among the targets, as we do.

3 Our Method: Metropolis-Hasting Regressor Chains

As mentioned in Sect. 1, we target inferring the probability defined by Eq. (1).
In other words, we want to evaluate the probability

π(ŷ) = p(ŷ¬F | x̂, ŷF )

for any particular ŷ and x̂, where ŷF are fixed and ŷ¬F are unknown. By the
definition of condition probability,

π(ŷ) =
p(x̂, ŷF∪¬F )

p(x̂, ŷF )
=

ΠL
l=1p(ŷl | x̂, ŷ1, ..., ŷl−1)

p(x̂, ŷF )
∝ ΠL

l=1p(ŷl | x̂, ŷ1, ..., ŷl−1).

To evaluate the probabilities p(ŷl | x̂, ŷ1, ..., ŷl−1), we assume that for each base
estimator hl, the corresponding distribution may be presented as a normal dis-
tribution, and it is possible to obtain its parameters, the mean μ and standard
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Algorithm 1: Evaluate the probability of the proposed estimate
Input : proposed estimate y′, Regressor Chain H = [h1, ..., hL]
Output: probability π of the proposed estimate

1: procedure π
2: for l in 1, ..., L do
3: μ, σ ← mean and std of hl(x̂, ŷ1, ..., ŷl−1)
4: pl ← pdf(y′

l) for N (μ, σ)

5: π = ΠL
l=1pl

Algorithm 2: Metropolis-Hastings sampled Regressor Chains
Input : number of iterations T , probability π estimated in Algorithm 1
Output: T samples from distribution defined by probabilities π

1 procedure mhsRC
2 y[0] ← initialization � First step of random walk
3 for 0 < t < T do
4 y′ ← y[t] + noise � Propose new y′

5 if y′ satisfies evaluation criteria based on π then
6 y[t+1] ← y′ � Accept proposed point
7 else
8 y[t+1] ← y[t] � Refuse proposed, keep previous

deviation σ (see Algorithm 1). In our work, we use Random Forests and calcu-
late the mean and the standard deviation for the predictions of individual trees
from the ensemble. Other possibilities to query these parameters include, for
example, direct inference from the model for Bayesian regression models, Monte
Carlo Dropout [7], or input perturbation (shallow Monte Carlo Dropout).

We propose to use the Metropolis-Hastings sampling [8,13] (though other
sampling approaches may be applied), basically a random walk where each new
proposed estimate y′ is evaluated by the distribution probability function π(y′)
and is accepted as a sample if it is likely to be found in the desired distribution,
summarized in Algorithm 2. Our method, Metropolis-Hastings sampled Regres-
sor Chains (mhsRC), is not specific to any particular chain order and can be
applied to an RC of any order with any set of fixed outputs. If an ERC was
given as a prior trained model, then the procedure is performed for all indi-
vidual chains in the ensemble, and their predictions are averaged, resulting in
Metropolis-Hastings sampled Ensembles of Regressor Chains (mhsERC). The
code is available on https://github.com/ekaantonenko/mhsERC.

4 Experiments

We remind the reader that our goal is to estimate Eq. (1). To evaluate possible
solutions to this problem, we perform the following experiments. First, we gen-
erate synthetic data where joint and marginal distributions including Eq. (1) are

https://github.com/ekaantonenko/mhsERC
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Fig. 2. Synthetic dataset.

fully known, and we can compare the distributions directly. Then, we perform
experiments on real-world data where we provide the values of fixed targets yF

and evaluate predictions for the other targets y¬F . Finally, we use real-world
data and expert intuition to make conclusions with regard to Eq. (1), given
hypothetical (not observed in the data) values of yF .

Synthetic Dataset. In this work, we present a synthetic dataset with one
feature x and targets y = {y1, y2, y3}, where yF = {y3} and the ground-truth
distribution p(y¬F |x,yF ) is known. It is based on our motivating example of
potential vegetation, distribution of land-cover y1, y2, and y3, with climatic
features x. We might suppose, e.g., snow, grass, and urban land cover y, and
temperature x. We designed this dataset such that a hypothetical urban activity
is more likely to be settled in the grass type, and snow and grass are not equally
masked by the presence of human activities. In this setting, we observe y1 and
y2 in the presence of urban and are interested in evaluating P (y1 | y3 = 0) and
P (y2 | y3 = 0), i.e. vegetation distribution in the absence of urban; see Fig. 2a.

This can be represented as follows: first sample three target variables of
interest, yy3=0

1 ∼ α, yy3=0
2 ∼ 1 − α, and y3 = 0, where α is a bi-modal

mixture of normal distributions, and y1, y2 are normalized afterwards so that
0 ≤ yy3=0

1 , yy3=0
2 ≤ 1 and yy3=0

1 + yy3=0
2 = 1. This gives us P (y1 | y3 = 0) and

P (y2 | y3 = 0). After that, the joint distribution is generated: y1 = yy3=0
1 ·(1−p),

y2 = yy3=0
2 · (1 − q), and y3 = yy3=0

1 · p + yy3=0
2 · q, where p ∼ N (0.1, 0.1) and

q ∼ N (0.5, 0.2), respectively (taking the absolute value if negative is generated).
This significantly shifts the distribution of the y2 variable when compared to
yy3=0
2 , see Fig. 2b. The x feature is generated by adding noise to the parameter

α and further linear transformation: x = −20 · (α + ε) + 10, ε ∼ N (0, 0.1).
Real-World Benchmark Data. Subsequently, we use three real-world

multi-target regression datasets. The compositional Arctic lake dataset [1]
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Fig. 3. Grid cells (learning instances) represented by a categorical distribution over 17
vegetation types; the map shows the dominant type within each grid cell.

describes the distribution of sand, clay, and silt (3 targets) in 39 water sam-
ples, at different depths (1 feature). The Slump dataset [20] describes the con-
crete properties (3 targets) and ingredients (7 features) in 103 samples. The
Energy Building dataset (Enb) [19] describes the heating load and cooling load
requirements of buildings (2 targets) and building parameters (8 features) for
768 instances. For evaluation, we split the data into train and test subsets (80:20,
5-fold cross-validation), and in the prediction phase provide explicitly the values
of the first target yF = [y1]. The metrics are calculated for the predicted targets
y¬F = [y2, . . . ].

Vegetation Data. Finally, we apply our method to a dataset describing the
distribution of land cover globally to infer a possible vegetation distribution in
the absence of urban activity (i.e. force the corresponding classes to 0 explicitly).
We aim to predict the set of 17 land cover classes, including water [6]. We use 19
bioclimatic variables [5] as predictive features, representing ecologically relevant
means, minima, and maxima in temperature and precipitation, averaged for the
period 1970–2000. Both land cover targets and bioclimatic features were obtained
from the Eco-ISEA3H database [12]. The dataset consists of 56,821 instances
which correspond to terrestrial cells measuring approximately 2600 km2 each.

We are interested in inferring the fractional distribution of natural land cover
classes in the absence of three cover classes associated with human activity,
namely croplands, urban and built-up lands, and cropland/natural vegetation
mosaics (mapped together in red in Fig. 3).

Evaluation. In the synthetic dataset both ground-truth distributions
P (y1 | y3 = 0) and P (y2 | y3 = 0) and observed distributions P (y1), P (y2), and
P (y3) are known, the goal is to reconstruct the ground-truth distributions from
the observed distributions. As objective evaluation metrics, we use Mean Squared
Error (MSE), Uniform Cost Function (UCF), and Wasserstein Distance (WD).
SE-based metrics are standard for point-wise evaluation, and WD is suited to
comparing distributions. UCF is motivated in [2]; here we use δ = 0.5.
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Fig. 4. (a) Re-discovering of ground truth P (y2 | y3 = 0) distribution in synthetic data.
Note, that y1 | y3 = 0 is equal to 1 − (y2 | y3 = 0) (by nature of compositional data) so
technically we are evaluating distributions of both targets. (b–e) Predicted per-instance
distributions for four individual instances.

We use Random Forests as base estimators for all chain-based methods.
Namely, we compare our proposed method to Regressor Chain (RC) with direct
order [y1, ..., yL], when the target with fixed values (y1) comes first in the chain,
and thus the fixed values are cascaded directly, without backward inference. Sec-
ond, we evaluate several marginal models that do not take the joint constraint
into account. Straightforwardly, we may set fixed targets to corresponding values
and re-normalize remaining targets without training a predictive model on fea-
tures (redistrib.), this is applicable only for the synthetic dataset. Otherwise, we
may predict with trained models, Ensembles of Regressor Chains (ERC), multi-
target Random Forests (mtRF), and individual single-target Random Forests
(stRF), plug in the fixed values after prediction and re-normalize the targets so
that their sum is equal to one.

5 Results and Discussion

Synthetic Data. Table 1 shows the comparison of different methods for the
synthetic data, where a model is expected to uncover the ground-truth distri-
bution without urban activity. First, to support the choice of Regressor Chains
for a predictive task, we evaluate the performance of all methods in a standard
setting when prediction from x to y = {y1, y2, y3} is required. To this end, we
perform 5-fold cross-validation and observe that Regressor Chains and Ensem-
bles of Regressor Chains outperform single- and multi-target Random Forests.

Second, we compare empirically the predictions of ŷ1, ŷ2 when y3 = 0 by the
models listed above and ground-truth y1, y2 when y3 = 0. We observe that the
metrics values differ significantly for different chain orders and mhsRC with the
order [3, 1, 2] shows the best result: this is unsurprising as we plug in directly the
constraint to the first regressor of the chain and further propagate its inference.
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Table 1. Performance on synthetic data: classic cross-validated regression (x → y)
and prediction with y3 = 0 vs. ground truth y1, y2 | y3 = 0 (a smaller value is better).
Best values are in bold, second best values are underlined. Orders of Regressor Chains
(permutations of 1, 2, 3) are given in square brackets.

Model x → y x → y1, y2 | y3 = 0

MSE MSE WD UCF

mhsRC [1, 2, 3] 0.016 0.019 0.052 0.099
mhsRC [1, 3, 2] 0.015 0.011 0.038 0.073
mhsRC [2, 1, 3] 0.017 0.169 0.132 0.281
mhsRC [2, 3, 1] 0.017 0.029 0.114 0.272
mhsRC [3, 1, 2] 0.017 0.007 0.016 0.054
mhsRC [3, 2, 1] 0.017 0.011 0.039 0.085
mhsERC 0.015 0.010 0.027 0.037
stRF 0.018 0.018 0.115 0.172
mtRF 0.018 0.019 0.115 0.176
ERC 0.016 0.016 0.108 0.117
redistrib. – 0.024 0.122 0.213
RC [3, 1, 2] 0.017 0.009 0.038 0.053
RC [3, 2, 1] 0.017 0.009 0.036 0.055

For some of the orders ([2, 1, 3], [2, 3, 1]) the task is more difficult. However,
mhsERC consisting of all possible 6 chain orders shows high-performing results
when compared to ‘naive’ models without joint inference: mhsERC runs first best
w.r.t. UCF and second best w.r.t. MSE and WD. Figure 4a also demonstrates
graphically the resulting distributions. The inference of the mhsERC model is
very close to the original bi-modal symmetric distribution of grass and snow.
Examples of individual per-instance distributions of ŷ2 | y3 = 0 (for given x) are
presented in Fig. 4b–4e. Again, we see that the predicted distributions tend to
center around the desired value of ground truth y2 | y3 = 0.

Real-World Benchmark Data. For three multi-target regression datasets,
we provide the values of the target y1 explicitly, and other targets are to
be predicted. Table 2 shows the comparison of mhsERC, an RC with direct
order [y1, ..., yL] (fixed values of y1 are simply propagated via chain), and three
marginal methods (ERC, mtRF, stRF). We observe that mhsERC obtains sig-
nificantly better results than the marginal methods and close to the ones of
RCs with direct orders concerning all three metrics. The statistical significance
is illustrated by the Friedman-Nemenyi diagrams in Fig. 5 for all three metrics,
the mhsERC method ranked along with RCs with direct order and significantly
higher than other methods.

Vegetation Data. First, we point out that ERC is a well-performing model
for the prediction of vegetation types from climate, see Table 3. The experiments
are done under 10-fold cross-validation with splits designed to account for spatial
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Table 2. Multi-target regression data, predictions when the first target is provided
explicitly; a smaller value is better. Best value in bold, second best value underlined.

Model Arctic Lake Slump Enb
MSE WD UCF MSE WD UCF MSE WD UCF

mhsERC 0.002 0.030 0.000 0.177 0.205 0.806 0.016 0.065 0.152
RC direct 0.002 0.029 0.000 0.173 0.188 0.825 0.015 0.068 0.132
mtRF 0.008 0.039 0.150 0.373 0.446 0.951 0.025 0.063 0.187
stRF 0.008 0.041 0.150 0.322 0.415 0.951 0.020 0.069 0.174
ERC 0.008 0.036 0.125 0.333 0.408 0.971 0.027 0.069 0.193

Fig. 5. Friedman-Nemenyi diagrams for the rankings of the empirically tested methods
for multi-target regression data (the y1 value is given explicitly). Lower rank is better,
statistically indistinguishable methods are connected by a horizontal line.

Table 3. Performance of multi-label models for vegetation prediction, 10-fold cross-
validation, best values in bold.

Model MAE std

stRF 0.047 5.07e−05
mtRF 0.045 4.55e−05
RC (with RFs) 0.061 6.12e−05
ERC (with RFs) 0.050 4.87e−05

correlations between neighboring grid cells to avoid information leakage between
train and test partitions. While stRF and mtRF show the best predictive perfor-
mance, we are not aware if it is possible to force these models to modify particular
targets in the prediction phase. ERC runs only slightly worse, and we propose a
powerful mechanism to impute fixed targets for any chain in the ensemble, while
other targets take this value into account. We set the values of three variables
(croplands, urban and built-up, cropland/natural vegetation mosaic) to zero and
apply the proposed method, mhsERC. Figure 6 demonstrates the predicted vege-
tation distribution in the absence of human activity in Europe. Subjectively, the
results are visually plausible, with no noticeable anomalies. This adds support to
our claim that our method can be used flexibly for real-world tasks. Although,
inherently, there can be no objective ground-truth evaluation for such a task,
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Fig. 6. Vegetation distribution per grid cell (a) in Europe and (b-c) at specific locations,
with (observed) and without (predicted) human activity.

we can take confidence in the relatively high performance on the synthetic and
real-world tasks investigated earlier.

6 Conclusion

We tackled a new challenging multi-output prediction setting with continuous
target variables: target prediction under a joint (distributional) constraint with
some targets fixed prior to prediction, without retraining base models. In the con-
text of Regressor Chains, we proposed a novel approach employing Metropolis-
Hastings backward inference and providing a posterior distribution for each tar-
get while comprising an estimated distribution and meeting all constraints. We
evaluated it on synthetic data and several use cases. It performed competitively
in all cases. We conclude that the proposed method successfully solves the task,
allowing flexibility and applicability of Regressor Chains beyond their predic-
tive performance in standard multi-target regression settings. Our method may
significantly contribute to practical applications, as demonstrated in its abil-
ity to predict the distribution of potential natural vegetation, highlighting its
effectiveness in scenarios involving complex and interrelated data.
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12. Mechenich, M.F., Žliobaitė, I.: Eco-ISEA3H, a machine learning ready spatial
database for ecometric and species distribution modeling. Sci. Data 10, 77 (2023)

13. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of
state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092
(1953)

14. Read, J., Martino, L.: Probabilistic regressor chains with Monte-Carlo methods.
Neurocomputing 413, 471–486 (2020)

15. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains: a review and
perspectives. J. Artif. Intell. Res. (JAIR) 70, 683–718 (2021)

16. Salmerón, A., Rumí, R., Langseth, H., Nielsen, T., Madsen, A.: A review of infer-
ence algorithms for hybrid Bayesian networks. J. Artif. Intell. Res. 62, 799–828
(2018)

17. Santana, E., Mastelini, S., Barbon, S.: Deep regressor stacking for air ticket prices
prediction. In: Anais do XIII Simpósio Brasileiro de Sistemas de Informação, pp.
25–31. SBC (2017)

18. Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., Vlahavas, I.: Multi-target
regression via input space expansion: treating targets as inputs. Mach. Learn.
104(1), 55–98 (2016)

https://doi.org/10.1007/978-3-031-01333-1_1
https://doi.org/10.1007/978-3-031-01333-1_1


Backward Inference in Probabilistic Regressor Chains 55

19. Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance
of residential buildings using statistical machine learning tools. Energy Build. 49,
560–567 (2012)

20. Yeh, I.C.: Modeling slump flow of concrete using second-order regressions and
artificial neural networks. Cement Concr. Compos. 29(6), 474–480 (2007)



Empirical Comparison Between
Cross-Validation and Mutation-Validation

in Model Selection

Jinyang Yu1 , Sami Hamdan1,2 , Leonard Sasse1,2,5 , Abigail Morrison3,4 ,
and Kaustubh R. Patil1,2(B)

1 Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7),
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Abstract. Mutation validation (MV) is a recently proposed approach
for model selection, garnering significant interest due to its unique char-
acteristics and potential benefits compared to the widely used cross-
validation (CV) method. In this study, we empirically compared MV
and k-fold CV using benchmark and real-world datasets. By employ-
ing Bayesian tests, we compared generalization estimates yielding three
posterior probabilities: practical equivalence, CV superiority, and MV
superiority. We also evaluated the differences in the capacity of the
selected models and computational efficiency. We found that both MV
and CV select models with practically equivalent generalization per-
formance across various machine learning algorithms and the majority
of benchmark datasets. MV exhibited advantages in terms of selecting
simpler models and lower computational costs. However, in some cases
MV selected overly simplistic models leading to underfitting and showed
instability in hyperparameter selection. These limitations of MV became
more evident in the evaluation of a real-world neuroscientific task of
predicting sex at birth using brain functional connectivity.

Keywords: model selection · mutation validation · cross-validation

1 Introduction and Related Work

The model selection process aims to find a model from a pool of candidate mod-
els, taking into account a variety of performance criteria encompassing predictive
accuracy and computational efficiency [9,12]. The estimated model generaliza-
tion error, which represents the expected error on unseen data, is a commonly
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used criterion for model selection. Generalization error can be empirically esti-
mated using resampling techniques like cross-validation (CV) [9]. Notably, while
holdout validation is particularly effective when a wealth of data is available, CV
emerges as the preferred method when dealing with limited data [10]. Nonethe-
less, it is imperative to acknowledge that CV, especially the commonly used
k-fold CV, can be computationally intensive due to the necessity of fitting mul-
tiple models. Additionally, research has demonstrated that CV, which relies on
excessively reusing the validation set, might lead to overfitting [7].

To address these challenges, Zhang et al. (2023) introduced a novel model
selection approach that does not partition the dataset. Unlike CV, this method
uses the entire dataset for training and validation while injecting noise into the
fitting process. This noise is generated by mutating the sample labels, hence the
name mutation validation (MV). While an over-complex classifier with a large
capacity can generate a flexible decision boundary resulting in high accuracies on
both original and mutated data, an over-simple classifier shows poor performance
on both. A good classifier, on the other hand, can detect the ground-truth pattern
despite the noise in the training labels and thus should show good performance
on the original data and perform worse on the mutated data. This behavior is
the intuition behind MV [18].

Zhang et al. [18] conducted extensive experiments on a broad range of
datasets. They demonstrated that MV consistently and effectively captured
underlying data patterns, thereby offering successful recommendations for the
most suitable machine learning algorithm. In contrast, CV occasionally strug-
gled to deliver comparable results. Further experiments showed MV’s consistent
preference for less complex models, when the algorithms were configured with
specific capacity-related hyperparameters. While Zhang et al. provided valuable
insights into the MV method, they did not assess the generalization performance
of models selected by MV using nested-CV, which is commonly used in many
application domains. Our study aimed to conduct a comprehensive comparison
of the generalization estimates of the selected models, seeking to fully evalu-
ate and understand MV’s performance in contrast to the more commonly used
CV method on further benchmark and real-world datasets. It is worth noting
that none of our benchmark datasets were previously utilized by Zhang et al.
Additionally, we employed Bayesian inference to support our analysis, a step not
taken by Zhang et al. Furthermore, our study delved into differences in runtime
(energy consumption), expanding the evaluation beyond merely generalization
performance.

In summary, our study provides insights into strengths and limitations of
MV with a basis on generalization performance, which can aid machine learning
researchers and practitioners in making informed decisions regarding the trade-
offs associated with those model selection approaches.



58 J. Yu et al.

2 Methods and Experimental Setup

CV and MV. We implemented CV in a standard way such that the samples
were randomly split in equally sized folds and each fold was used as the test set
once.

As MV is a relatively new method, we provide an overview here for complete-
ness. MV injects noise in the labels to generate mutated data. The generation
of noise is a crucial aspect of MV. To illustrate the mechanism of label muta-
tion, let’s consider a binary classification problem. First, a class list is created,
encompassing all unique class labels, i.e., 0, 1. Then, η proportion of the original
labels are randomly selected and swapped, resulting in mutated labels. That is,
labels of class 0 are replaced with 1, class 1 is replaced with 0. We used the
recommended value of η = 0.2 [18].

Two models f and fη are then trained, on the original training data S and on
the mutated training data Sη, respectively. The performance difference between
the models provides information regarding model complexity which is then used
for model selection. We use T̂S(f) to refer to the accuracy of model f on the
original training data S, T̂Sη

(fη) for the accuracy of model fη on the mutated
training data Sη, and T̂S(fη) for the accuracy of model fη on the original training
data S. An empirical scoring metric m is used to assess model performance based
on the theoretical metamorphic relation in MV [18]:

m = (1 − 2η)T̂S(fη) + T̂S(f) − T̂Sη
(fη) + η

The score m aims to capture the changes in training accuracies before and
after mutation, forming the foundation of MV model selection. For a good clas-
sifier, the performance difference (T̂S(f)−T̂Sη

(fη)) is expected to be substantial,
and the accuracy T̂S(fη) to be high, resulting in a high score m. Conversely, an
over-complex classifier, characterized by a small performance difference and a
low accuracy T̂S(fη), the score m is expected to be low. An over-simple classifier
is also anticipated to yield a low m score as both models will perform poorly.
Finally, the model with the highest m is selected.

Datasets. In this investigation, our emphasis was on binary classification prob-
lems. We utilized 12 benchmark datasets sourced from the OpenML platform
and the UCI repository [5,16] (Table 1).

The brain functional magnetic resonance imaging (fMRI) datasets were taken
from the Amsterdam Open MRI Collection (AOMIC) [15]. The collection com-
prises three datasets: ID1000, PIOP1, and PIOP2 (Table 2). We used the func-
tional MRI data from all three datasets: PIOP1 and PIOP2 obtained from
resting-state task, while ID1000 based on a movie-watching task.

For each of the fMRI datasets, the functional connectivity (FC) represent-
ing synchrony between brain regions across time was extracted. We employed
standard preprocessing steps, including motion correction and registration to
Montreal Neurological Institute (MNI) space with the fMRIPrep pipeline [6],
denoising and feature extraction with xcpEngine [1]. The parcellation of the pro-
cessed fMRI images was carried out using the Schaefer 100 parcellation scheme
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Table 1. Overview of the benchmark datasets. The datasets obtained from UCI are
marked with an asterisk (*).

Index Dataset name Number of
instances

Number of
instances
with label 0

Number of
instances
with label 1

Number of
features

1 mfeat-fourier 2000 200 1800 76

2∗ autism-screening 609 180 429 92

3 mfeat-karhunen 2000 200 1800 64

4 mammography 11183 260 10923 6

5 letter 20000 813 19187 16

6 satellite 5100 75 5025 36

7 fri-c2-1000-10 1000 420 580 10

8 segment 2310 330 1980 19

9∗ sonar 208 97 111 60

10 qsar-biodeg 1055 356 699 41

11∗ early-stage-diabetes-risk 520 200 320 16

12 ozone-level-8hr 2534 160 2374 72

which partitions the whole brain into one hundred non-overlapping parcels [14],
resulting in 100 time series (1 per brain region). Finally, the FC was calculated
as Pearson’s correlation coefficients between the time series of all pairs of brain
regions. The lower triangle of this symmetrical matrix was vectorized resulting in
4950 features. This process was done for all participants (i.e. samples) resulting
in 2-dimensional tabular data.

All benchmark datasets and FC datasets in our study are presented in a tab-
ular format, with features and a target associated with each sample. Specifically,
the target variable of FC datasets was binary labels with female (F) and male
(M) according to the participant’s sex assigned at birth, an important task for
basic and applied neuroscience [17].

Table 2. Overview of the FC datasets.

Dataset ID1000 PIOP1 PIOP2

Subjects 764 158 186

Target 382 (F) / 382(M) 79 (F) / 79 (M) 93 (F) / 93 (M)

Features 4950 4950 4950

Age min 19 18.25 18.25

Age max 26 26.25 25.75

Age mean 22.862 22.081 21.958

Age std 1.713 1.809 1.787
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Machine Learning Algorithms. Machine learning algorithms often have a
set of hyperparameters which need to be adjusted during the learning process.
In many cases this results in a set of candidate models with different capacity.
The capacity of a model can be seen as a measure of its ability to capture the
complex relationships present in the underlying data pattern [2]. Following the
principle of Occam’s razor, when dealing with multiple models exhibiting similar
performance, a preference is given to simpler models, namely those with smaller
capacities [13]. Hence, comparing model capacity can provide crucial information
regarding the behavior of the model selection methods.

Specific algorithms, such as decision trees (DT), are associated with capacity-
related hyperparameters, meaning that the resulting model’s capacity heavily
relies on the specific hyperparameter configuration. For instance, trees with
higher depth can be considered more complex. Similarly, support vector machines
(SVM) and Kernel Ridge Classifiers (KRC), when configured with the polyno-
mial kernel, namely the polynomial SVM and polynomial KRC, also exemplify
this characteristic. Additionally, multi-layer perceptrons (MLP) with various
dropout rates are well suited to investigate model capacity. Considering these
factors and the findings of Zhang et al., we designed experiments involving the
above algorithms to examine different capacity-related hyperparameters. Specif-
ically, DT involves the hyperparameter of maximum depth, with a range from 1
to 30. For MLP, the dropout rate serves as the hyperparameter, varying between
0.2 and 0.8. In the case of Polynomial SVM and Polynomial KRC, the hyperpa-
rameter is the polynomial degree, spanning from 1 to 15.

Bayesian Analysis. Considering the importance of properly comparing gener-
alization performance in model selection, the comparison of model capacity and
computational efficiency were based on Bayesian probabilistic analysis. Bayesian
analysis provides a valuable alternative to traditional Null Hypothesis Signifi-
cance Testing (NHST), offering potentially richer and more informative insights
[11]. The Bayesian framework involves modeling the posterior probability distri-
bution across the parameter space based on the observed data.

To illustrate, in situations involving two groups of data with equal length, a
difference vector is computed, and the posterior probability distribution of the
parameter, represented as the mean difference and denoted as μ, is subsequently
formulated. Crucially, in this approach it is feasible to accept the null value of
the evaluated parameter by setting the Region of Practical Equivalence (ROPE).
This region encompasses parameter values that are considered practically indis-
tinguishable from the null value. The size of the ROPE is determined according
to the characteristics of the applications. For our empirical comparison of the
two validation methods, the ROPE was set to [-0.025, 0.025], corresponding to
a 5% difference.

In our study, the comparison framework was applied to each dataset, result-
ing in a difference vector derived from the two sets of scores (CV and MV). Two
variations of the Bayesian paradigm were employed to evaluate the performance
of CV and MV. The Bayesian correlated t-test for a single dataset [3] offered
a probabilistic comparison on each dataset using the difference vector. Addi-
tionally, the Bayesian hierarchical test for multiple datasets [4] provided a final
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estimation based on the concatenated difference vectors from all datasets. The
Bayesian analysis yields three posterior probabilities:

1. PCV: the probability that the model selected by CV outperforms the model
selected by MV;

2. PP.E.: the probability that both models selected by CV and MV perform
practically equivalent;

3. PMV: the probability that the model selected by MV outperforms the model
selected by CV.

Comparison Framework. It is important to define an appropriate scheme to
allow for one-to-one comparison between CV and MV. We devised a framework
based on nested cross-validation, which is particularly suitable for real-world
datasets with a limited sample size. The inner loop is utilized for model selection,
e.g. by selecting particular hyperparameters, while the outer loop is employed to
evaluate the generalization performance of the selected model. We used a ten-
times repeated 10-fold CV following previous recommendation to obtain reliable
and robust estimates [3]. This generated three types of results:

1. 100 validation scores for the chosen models from the outer iterations;
2. 100 hyperparameter settings of the corresponding selected models;
3. the final model with the best hyperparameter setting, linked to the highest

validation score, trained on the entire dataset.

In the assessment of nested cross-validation results, we considered two pri-
mary aspects. First, we compared the generalization estimates through the appli-
cation of Bayesian tests. Second, guided by the probabilities obtained from these
tests, we compared two quantities; (1) model performance and capacity, as sig-
nified by the selected hyperparameter configurations, and (2) evaluation of com-
putational efficiency, encompassing runtime and CO2 emissions.

3 Results

Comparison of Model Performance and Capacity. The comparative anal-
ysis of generalization performance, conducted through Bayesian correlated t-
tests, showed that the models selected by both CV and MV exhibit practi-
cally equivalent performance (Fig. 1a, highlighted by inner cells in bright yel-
low), which is also confirmed by the results from the Bayesian hierarchical test
(Fig. 1b).

This observed pattern holds across all three machine learning algorithms:
polynomial KRC, polynomial SVM, and DT. On the majority of benchmark
datasets examined, probabilities exceeding 90% affirm the practical equivalence
between the two methods. In the case of MLP, it’s worth noting that while
certain specific datasets exhibit lower posterior probabilities regarding practical
equivalence compared to the other three algorithms, the overarching trend still
leans toward practical equivalence, remaining notably above chance level.
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Fig. 1. An overview of four algorithms evaluated on 12 benchmark datasets. Each
subfigure consists of four sectors, one for each algorithm, with dataset indices cross-
referenced in Table 1. (a) Each sector displays three tracks representing the posterior
probabilities PP.E., PCV, and PMV for each case. These probabilities are presented as
a heat-map. (b) The points represent samples drawn from the posterior probability
distribution of 4000 samplings (default setting [4]). The final posterior probabilities
PP.E., PCV, and PMV are located in the corners of each sector. (c) For each algorithm,
boxplots indicate results obtained from the top 100 hyperparameter values generated
by the comparison framework. Note that the dropout rate in the last sector is displayed
on an inverted vertical axis, inline with the interpretation of capacity across all four
sectors.
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We compared the model capacities selected by both methods, as shown in
Fig. 1c. A lower median line of the boxplots was interpreted as smaller model
capacity. For KRC and SVM, MV-selected models exhibited similar or slightly
lower median polynomial degrees. The interquartile range was small and compa-
rable for both methods. In the case of DT, MV consistently chose models with
notably lower maximum depths compared to CV, resulting in a more uniform and
less varied selection. For MLP, the dropout rates chosen by MV were largely equiv-
alent to those by CV. In summary, MV consistently favored models with lower
capacity. Given the practical equivalence in performance between models selected
by both methods, this suggests a preference for models determined by MV.

Comparison of Computational Efficiency. To achieve a balance between
bias and variance, Kohavi [10] suggests using k = 10 folds for CV. However,
selecting an appropriate value for k is not trivial. For instance, starting from
version 0.22, the default value used by the scikit-learn1 library was changed
to k = 5 from previous k = 3. Hence, to analyse the effect of different values of
k on CV and MV, we compared them using k = 3, 5, 10.

Fig. 2. The three sectors of each subfigure correspond to k = 3-, k = 5-, and k = 10-
CV. (a) This subfigure contains results obtained from Bayesian correlated t-test across
the 12 benchmark datasets. The indices of the datasets are listed in Table 1. In each
sector, there are three tracks, representing the three posterior probabilities PP.E., PCV,
and PMV. (b) The results from CV are shown in black and those from MV are shown
in red. In each sector, the horizontal axis lists the indices of the benchmark datasets.
The left vertical axis shows the total runtime of the procedure, and the right vertical
axis shows the equivalent CO2 emission.

1 https://scikit-learn.org/stable/modules/generated/sklearn.model selection.KFold.
html.

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
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Here we applied the algorithms to the benchmark datasets, KRC is pre-
sented as an example (Fig. 2a and Fig. 2b). The probability of PP.E. approaches
1, indicating practical equivalence in generalization performance between the two
selection methods (Fig. 2a). The findings lead to further comparisons in compu-
tational efficiency. Overall, the computational efficiency of CV with varying k
compared to MV yielded a consistent pattern (Fig. 2b). With k = 3, the perfor-
mance of both methods is comparable. However, as k increases to 5, MV shows
higher efficiency than CV. Finally, at k = 10, MV demonstrated a noticeable
advantage over CV in terms of efficiency and carbon emission.

Comparison on Brain FC Datasets. The brain FC datasets, like many other
real-world data, contain numerous features (in our case 4950 Pearson’s correla-
tion coefficients per sample). In this context, feature selection can be a desirable
preprocessing step [8]. Besides, the three FC datasets used differ largely in sam-
ple size (Table 2). In particular, ID1000 has over four times more samples than
PIOP1 and PIOP2.

Fig. 3. (a) The Bayesian correlated t-test was used to calculate PP.E. and PCV across
subsets of the FC domain with varying numbers of selected best features. The above
sector shows the results obtained from polynomial KRC, while the below sector displays
those obtained from polynomial SVM. The probability curves in purple, yellow, and
blue correspond to the datasets ID1000, PIOP1, and PIOP2, respectively. (b) The
mean of the 100 best polynomial degrees across subsets of the FC domain ID1000,
PIOP1, and PIOP2 for the polynomial KRC and SVM algorithms. Each point in the
plot represents the mean of the polynomial degrees and the error bars demonstrate the
standard deviation. The shaded areas in each sector shows the difference between the
mean polynomial degrees from CV and MV. (Color figure online)
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A commonly used feature selection method is calculation of F-scores using
an ANOVA, as provided by the SelectKBest in scikit-learn2 which selects
the top K informative features corresponding to K highest F-scores. We gen-
erated several subsets of the FC datasets, each by selecting a different number
of important features. This allowed us to compare CV and MV in a controlled
manner on a large number of datasets each with different number of informative
features. Each FC dataset was analyzed separately.

Two popular kernelized algorithms in neuroscience were investigated in this
experiment. The probability values of polynomial KRC and polynomial SVM
across the range of K (from 0 to 4950) are illustrated in Fig. 3a, respectively.
Notably, the trend reflected a consistent linear decline in PP.E. in four cases,
presenting a diminishing level of confidence in the practical equivalence between
the two methods. This decline is mirrored by the probability PCV, indicating a
shift towards better performance of CV associated with generalization estimates
as the number of features increased.

Exploring the relative relationship between the hyperparameters selected by
CV and MV can aid in a deeper interpretation of these results. On the ID1000
dataset, the mean polynomial degree selected by CV was higher than that of
MV for both cases (Fig. 3b, Poly. KRC, ID1000 and Poly. SVM, ID1000). The
variance of the polynomial degrees selected by MV was generally lower or similar
to that of CV, indicating more stable model selection by MV. Overall, MV
selected models with lower complexity, consistent with the observations and
results obtained on the benchmark datasets.

The results on the PIOP1 dataset were similar to those on ID1000 (Fig. 3b,
Poly. KRC, PIOP1). Generally, the models selected by MV were less complex
than those selected by CV. The relative performance of MV worsened as indi-
cated by declining PP.E. (Fig. 3a, Poly. KRC) which might suggest that MV
might tend to penalize complex models excessively and may encounter some
level of underfitting. The mean hyperparameter values selected by both meth-
ods were similar (Fig. 3b, Poly. SVM, PIOP1). However, here MV displayed a
more substantial variance, implying potential instability in the tuning process.

The PIOP1 dataset is challenging due to its limited sample size, a problem
that PIOP2 also shares. However, the results on the PIOP2 dataset exposed fur-
ther inconsistencies. As the number of features increased, MV selected models
with higher capacity and PP.E. decreased (Fig. 3b, Poly. SVM, PIOP2). Further-
more, the variance of MV also showed an increase. In this specific instance, MV
appears to have forfeited all of its advantages and performed worse than CV.

4 Discussion and Conclusion

Our systematic evaluation of generalization estimates involved the use of
Bayesian correlated t-tests and Bayesian hierarchical tests, revealing that CV
and MV exhibited practical equivalence in performance across the benchmark

2 https://scikit-learn.org/stable/modules/feature selection.html.

https://scikit-learn.org/stable/modules/feature_selection.html


66 J. Yu et al.

datasets. Building upon this observation, further experiments unveiled distinc-
tions in terms of both model capacity and computational efficiency. First, com-
parison of hyperparameters indicating model capacity revealed that MV gener-
ally tended to select lower complexity models compared to CV, which is desirable
in the light of Occam’s razor. Second, MV consistently demonstrated advantages
in runtime and a reduction in carbon emissions, particularly when the number
of CV folds k exceeded 3. Comparing the two methods on the neuroscientific FC
datasets, with number of selected most informative features ranging from low to
high, the results on the largest dataset (ID1000), revealed that MV remained a
practical alternative to CV.

Collectively, the results suggest that MV could function as a valuable comple-
ment to CV. In particular, MV can be leveraged as a preliminary tool to augment
the efficiency of hyperparameter tuning, particularly in resource-constrained
environments. This would facilitate a more thorough exploration of the hyper-
parameter space while maintaining an acceptable runtime and a lower carbon
footprint. Nevertheless, it is important to acknowledge limitations of MV. As
our experiments on the FC data showed, MV may be susceptible to underfitting
and instability leading to suboptimal model selection.

There remain opportunities for further enhancements that warrant explo-
ration in future research endeavors. While this study primarily focused on binary
classification problems, future investigations could extend this comparative anal-
ysis to encompass multiclass classification and regression tasks. Furthermore,
considering the widespread prevalence of neural networks in diverse domains,
it would be intriguing to examine how MV fares in comparison to CV within
the realm of deep learning architectures. Finally, examining MV’s behavior with
respect to data characteristics could provide further insights.
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Abstract. The problem of establishing the client’s marginal contribu-
tion is essential to any decentralised machine-learning process that relies
on the participation of remote agents. The ability to detect harmful
participants on an ongoing basis can constitute a significant challenge
as one can obtain only a very limited amount of information from the
external environment in order not to break the privacy assumption that
underlies the federated learning paradigm. In this work, we present an
Amplified Contribution Function - a set of aggregation operations per-
formed on gradients received by the central orchestrator that allows to
non-intrusively investigate the risk of accepting a certain set of gradients
dispatched from a remote agent. Our proposed method is distinguished
by a high degree of interpretability and interoperability as it supports the
gross majority of the currently available federated techniques and algo-
rithms. It is also characterised by a space and time complexity similar
to that of the leave-one-out method - a common baseline for all deletion
and sensitivity analytics tools.

Keywords: Federated Learning · Contribution Metrics · Sensitivity
Analysis

1 Introduction

Contribution analysis is based on the necessity to quantify the potential impact
of including (or excluding) a certain client from a learning cohort. A potential
solution to such a problem may be applicable in a range of scenarios. In the
cross-silo scenario, it may be that a number of enterprises want to indirectly
use their data to train one model. However, being competitors, they want to
ensure that no agent serves as a free rider - either noising its data completely or
sending a random noise as parameters. In a multi-device scenario, we may have
remote access to a number of devices without the possibility to assess directly
whether some of them are malfunctioning. We accept the risk of incorporating
unreliable data to some extent, but we still need to blacklist or recover those
devices that are negatively impacting the training. In both cases, a dynamic
evaluation method is crucial to the success of the federated process.
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In the current literature, this challenge is being approached from various
angles. A suitable solution should be comparatively straightforward to imple-
ment and employ - so as to interpolate it in the existing learning frameworks
smoothly. Our main motivation consists of giving the central orchestrator an
efficient and interpretable tool for dynamically validating clients’ contributions
to either filter out those that make training more difficult (to the point of jeop-
ardizing the whole process) or do not contribute in the long run anything to the
data discovery process. Our overall contribution is as follows:

1. We formalize the marginal contribution evaluation problem in a theoretical
framework that is suitable for federated learning. In connection with that,
we introduce the notion of Aggregation Masks and Collaborative Con-
tribution Function. This set of definitions can help with describing and
evaluating solutions similar to the one presented in this paper.

2. We introduce the Alpha-Amplified Function that can amplify and capture
the marginal impact of a selected client on a global model’s performance. The
proposed method is characterized by a time and space complexity similar to
the baseline leave-one-out while visibly enhancing the detection capabilities
of the orchestrator. Moreover, by introducing a modifiable parameter α, it is
possible to adjust the sensitivity of the analysis while still retaining the same
execution time.

3. We perform a simulation on three different datasets, exploring the possibili-
ties and limitations of the presented solution. Different task complexity allows
us to explore how the particular learning setting is influencing the behaviour
of our method. Additionally, we compare the behaviour of the method in
two different settings: one that envisages the independence of samples dis-
tributed across the nodes and another that covers a case of non-independent
and identically distributed data.

4. We introduce an experimental library that allows us to perform the fed-
erated learning process and an amplified contribution analysis in a simu-
lated environment. The code is available under the link: https://github.com/
MKZuziak/IDA 2024 demo.

2 Prerequisites and Related Work

2.1 Federated Learning

Federated Learning was first introduced in [10] as a method of decentralised
learning that allows for training a one global model using weights provided by
the nodes (often referred to as clients) that perform local training. Formally, the
federated learning objective function is formulated as follows:

minW∈Rn×dF (W ), where F (W ) =
1

|S|
∑

j∈S

fj(wj) (1)

where W is the n×d-dimensional matrix containing all the weights of the model,
F (·) is the global objective function, and fj(·) is the local objective function,

https://github.com/MKZuziak/IDA_2024_demo
https://github.com/MKZuziak/IDA_2024_demo
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which is generally the same on all respective clients. Each client receives a matrix
of weights W t, performs at most τ training epochs using local data, and then
broadcasts the weights wt

j back to the orchestrator. The orchestrator performs
an aggregation operation yielding a new set of weights W t+1. This process con-
tinues until convergences. In each round, the broadcasting and aggregation are
performed with a set of sampled clients S, which may not necessarily equal the
whole sampled population.

This vanilla method, called Federated Averaging (FedAvg) can be rewrit-
ten in terms of pseudo-gradients that depict the instantaneous change in the
learnable parameters of each local model. Formally:

W t+1 =
1

|S|
∑

j∈S

wt
j = W t − 1

|S|
∑

j∈S

(W t − wt
j) = Wt − 1

|S|
∑

j∈S

Δj (2)

where Δt
j ∈ R

n×d. It is easy to see that W t − wt
j = Δt

j is a type of pseudo-
gradient that reflects the change of parameters before and after the local training.
This observation was originally derived by [11], and it allows us to introduce
server-side optimization and momentum to the learning algorithm. It is also
surprisingly convenient for contribution analysis, as it allows us to think about
the process in terms of instantaneous changes1 in the direction of the global or
local optimum of the objective function, which we will use extensively throughout
our contribution. On the final note, Eq. 2 can be generalised as:

W t+1 =
∑

j∈S

φjw
t
j = W t −

∑

j∈S

φj(W t − wt
j) (3)

where φj for j = 1, 2, · · · , |S| are weights associated with each client s.t.∑|S|
j φj = 1. If the weights are distributed uniformly, i.e. φj = 1

|S| , then the
Eq. 3 is equivalent to Eq. 2 describing the basic Federated Averaging.

2.2 Contribution Measures for Federated Learning

The issue of quantifying the marginal impact of the particular subset of the
dataset on the general model has been under examination for several years up to
this date. In the current literature, the majority of available solutions are based
on the Shapley Value [4]. In 2017, [3] introduced the idea of using cooperative
games theory to evaluate personal data in networks. Similarly, [1] introduced
Data Shapley - a method for assessing the impact of each observation on the final
model’s performance. This was later expanded by [2]. Works of [5,6] employed
this approach to the federated learning scenario. By labelling each client as a
player and using the loss function as a value function, the whole learning process
is structured as a cooperative game and the client’s marginal contribution is
1 We acknowledge the term instantaneous is an abuse of a concept here, hence the

evident usage of the italics. The changes are, in fact, made over the training rounds.
However, this metaphor is still handy for illustrative purposes.
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embedded in the final pay-off vector. This approach comes with several issues,
such as relatively high computational complexity that can act as a prohibitive
factor, even if a sampling schema is employed to decrease the number of subsets
that must be considered (baseline Shapley Value requires calculating all the
O(2N ) subsets).

Some authors seek solutions outside the realms of cooperative game theory. In
the [8], authors propose using pairwise correlation for detecting malicious clients.
This approach can work efficiently, given that the group of unwanted models will
always share some degree of similarity in parameters, which was not proven to be
always guaranteed in the case of deep learning models. A data-driven approach
was presented in [9], where authors propose constructing a separate model for
grading the marginal contributions of clients. The most similar method to our
work was presented in [12], where authors also observe the usefulness of employ-
ing the cosine similarity between different vectors of parameters of local clients.
However, they employ a different approach to this problem, as the contribution is
calculated at the end of the whole training cycle, comparing the route of optimal
gradient descent to a proposed one. Conversely, we present a dynamic schema
that can produce contribution vectors each round without considerably slowing
the training process. Another work that bears a strong connection to ours was
presented in [7], where the observation that gradients received from clients can
be (temporarily) preserved to assemble and compare the efficiency of different
models. However, this technique was limited solely to Shapley Values. In the
course of our work, we have decided to create and present a uniform notation
that scales to every method of calculating the marginal differences between the
assembled clients.

3 Amplified Deletion Analytics

3.1 Notation and Aggregation Masks

The most important element that we define to simplify the further analysis is
the Aggregation Mask. The term aggregation mask is used to describe a process
of manipulating the client’s weights before the actual aggregation in order to
detect the difference in performance between the global and marginal coalition
of clients. Hence, the sole usage of masks neither influences the actual aggregation
of the clients nor impacts the sampling schema. However, results of comparing
different coalitions can be used to either adjust the weighting or sampling schema
or simply blacklist some clients from attending the training.

Definition 1 (Aggregation Mask). Given the aggregation procedure

W t+1
(m) =

∑

j∈S

φjw
t
j = W t −

∑

j∈S

φj(W t − wt
j) = Wt − 1

|S|
∑

j∈S

φjΔj (4)

aggregation mask is a set of weights {φj |∀j ∈ S} such that it fulfils
∑|S|

j φj = 1
and W t+1

(m) �= W t+1.
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In other words, a mask is an auxiliary weights aggregation that does not serve
as a direct update. Using the concept of aggregation mask, we will define the two
most important masks used throughout this work. Namely, the Leave-one-out
Mask and the Alpha-Amplification Mask, denoted respectively with W t+1

(L,i) and
W t+1

(α,i) (Fig. 1).

Fig. 1. Visual representation of the mask concept. Each time a set of agents (small
rectangles at the bottom of the infographic) sends gradients to an orchestrator (large
rectangle at the top of the infographic), the orchestrator can prepare a correspond-
ing mask that will be used for evaluation, irrespective of the weighting schema used
for performing an actual update. Leave-one-out mask zeros the contribution of the
i-th client, while the alpha-amplification reinforces it by alpha factor. Those masked
gradients may then be used in specific evaluation functions.

Definition 2 (Leave-one-out Mask). The Leave-one-out mask denoted by
W(L,i) is an aggregation mask that fully conceals the contribution of client i.
Formally:

W t+1
(L,i) = W t −

∑

j∈S

φjΔj (5)

where φi = 0 and
∑

j∈S

φj = 1 (6)

Definition 3 (The Alpha-Amplification Mask). The Alpha-Amplification
Mask denoted W(α,i) is an aggregation mask that amplifies the contribution of
client i by the parameter α. Formally:

W t+1
(α,i) = W t −

∑

j∈S

φjΔj (7)
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where φj = α and α +
∑

j∈S

φj = 1 (8)

Remark 1. The L (e.g. W(L,i)) is a constant signalizing use of the leave-one-out
mask. However, α ∈ R is a parameter that controls the amplification. If α is less
or equal to one, it should be treated as a weight multiplier. If the α is larger than
one, then it should be treated as preserving α copies of the client’s i gradient
during the weight’s aggregation. This provides an intuitive interpretation of the
mask and allows us to convert between those two interpretations. Hence, if α >

1, φi = α
n and φj = 1− α

n

n−1 .

Remark 2. The parameter α allows us to control the sensitivity of the analysis.
More precisely, it allows us to decide to what extent we want to amplify the
contribution of the evaluated client. Setting the parameter α to 0 reduces the
alpha-amplification mask to a leave-one-out mask, i.e. W(α=0,i) = W(L,i). On the
other hand, an increase in the alpha parameter will result in the marginalisation
of other clients. At the limit, the aggregation mask will provide weights that are
identical to those of an evaluated client.

In addition to what was presented above, we denote a loss function with L :
W −→ R. To simplify the notation, we use a shorthand notation that omits the
concept of the hypothesis function while defining the loss function, substituting
just the matrix of weights in that place. We often omit the dependence on data
matrix X and the corresponding label vector y.

3.2 Leave-one-out and Alpha-Amplified Function

Definition 4 (Collaborative Contribution Function). The Collaborative
Contribution Function Ψ , given the previous matrix of weights W t, set of gra-
dients {Δt|∀Δt

j ∈ S} and a loss function L(·) returns an n-dimensional vector
ψ ∈ Rd that maps every client to its respective marginal contribution calculated
by using a selected mask (m). Formally:

Ψ(m) : L,W t,Δt −→ ψ ∈ Rd (9)

where ∀i ∈ S : ψi ≈ L(W t+1) − L(W t+1
(m,i)) (10)

is called a Contribution Index of a client i.

This definition implies that the contribution index of each client should
always be bounded by a co-domain of a loss function. Hence, two collabora-
tive contribution functions are always expressed in the same units as long as
they are calculated using the same loss function.

Definition 5 (The Leave One Out Function). The Leave-one-out Function
is a Collaborative Contribution Function Ψ that calculates the contribution of
the client i using the leave-one-out mask:

Ψ(L) = L(W t+1) − L(W t+1
(L,i)) ∀i ∈ S (11)
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Definition 6 (The Alpha-Amplified Function). The Alpha-Amplified
Function is a Collaborative Contribution Function Ψ that amplifies the possi-
ble contribution of the client i by parameter α using an amplification mask and
is defined as:

Ψ(α) = L(W t+1 − L(W t+1
(α,i)) ∀i ∈ S (12)

Remark 3. Both functions calculate client contribution, but the yielded contri-
bution indices will have an opposite sign. For the leave-one-out function, if the
client has a positive impact on the training, masking its presence will result
in a lower score. Because of that, positive scores returned by the leave-one-out
method are evidence of a positive contribution, while negative scores are on the
contrary. For the alpha-amplification function, the difference will be positive if
the client is deemed to be harmful to the training while remaining negative if
the client is positively contributing. For this reason, alpha-amplification can be
interpreted as a threat score.

Remark 4. We must highlight the importance of noticing the difference between
the score returned by the collaborative contribution functions and the score of
the model that was updated using masked weights. The score of a model is
simply a loss value returned when evaluating this model against a given dataset,
i.e. L(W t

m,i). The contribution function is always a difference between the loss
of the baseline model and the masked model, i.e. L(W t) − L(W t

(m,i)).

A remark must be made about the time complexity. Without the loss of gen-
erality, we assume that forward propagation through the neural network (with-
out backpropagation) constitutes one computational unit. The complexity of the
baseline leave-one-out is O(N), as it is required to perform exactly N + 1 for-
ward propagations through the network. Similarly, alpha-amplification requires
testing only N + 1 combinations, so its time complexity is O(N). However, as
evidenced by the next section, it tends to capture better the behaviour of the
malfunctioning sensors (clients).

4 Experiments

4.1 Description

In the experimental section, we were mainly interested in testing two hypotheses.
The first hypothesis concerns the behaviour of the alpha-amplification function.
It states that the function, in relation to the leave-one-out baseline, can better
detect a set of weights that are harmful to the general training, i.e. the average
scores of such clients exceed one standard deviation of the sample. The second
hypothesis is connected to non-heterogeneous data splits. It states that when
the local splits are non-IID, the collaborative contribution function (be it LOO
or alpha-amplification) exhibits lower confidence in clients with original data,
which was not subject to any transformation or dilatations.

In order to test formulated hypotheses, we perform six different simulations
using three different datasets, namely: MNIST [13], FMNIST [14], and CIFAR10
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[15]. The datasets are split using two different methods to obtain heterogenous
and homogenous label distribution across the clients. Homogeneous distribution
assumes that the labels are distributed uniformly across all the clients. Het-
erogenous distribution is generated using Dirichlet Distribution, as this method
was employed before in some papers concerning Federated Learning, e.g. [11]
uses Dirichlet Distribution to create highly heterogeneous splits. While we test
homogeneous and heterogeneous distributions, we assume that the total num-
ber of data samples at each node is the same. Also, we assume that each client
shares the same neural network architecture. For solving the MNIST classifica-
tion problem, we employ a convolutional neural network with three convolutional
layers and another four fully-connected layers. Both types of layers use Rectified
Linear Units. Additionally, the fully connected layers employ neuron dropout
at a rate of 20%. FMNIST classification task is solved by a modified version of
ResNet34 with a changed classification head. The CIFAR10 problem is solved
with a modified version of ResNet101. For all three problems, we resort to a
generalized version of FedAvg - the FedOpt [11] with a learning rate η = 1.0
and a number of global epochs equal to 80. During the local training, we use
Stochastic Gradient Descent, with a learning rate equal to η̂ = 0.01 and batch
size equal to 32:

To simulate clients whose participation is detrimental to the training, we
perform transformation and dilatations on the first five clients in each split. We
distinguish three types of data modification: Gaussian noise addition, blur trans-
formation and rotation. All clients affected by those modifications are labelled as
malfunctioning sensors. The remaining five clients are labelled as valid sensors.
Noise addition is performed by firstly sampling a noise matrix from a Gaussian
Distribution N (0, 1) that is multiplied by a scaling constant c and then adding
it to the original image. For client number 0, the scaling constant equals 0.4,
while for client numbers 1 and 2, the constant equals 0.15 and 0.10, respectively.
Client number 3 is blurred by using a 3×3 Gaussian kernel, while the rotation on
client number 4 is performed by first selecting a random angle from the interval
o to 45 and then applying the rotation.

4.2 Results

In Fig. 2, we represent average values obtained in the six simulations run on
MNIST, FMNIST and CIFAR10 datasets. - one in homogeneous and one in het-
erogeneous setting for each dataset. The leave-one-out and alpha-amplification
values were calculated simultaneously in the same simulation-run to keep all
the constant fixed. While the leave-one-out is impossible to tune by default, the
alpha parameter in alpha-amplification was set to α = 5. The left-hand side of
Fig. 2 contains six plots representing leave-one-out and alpha-amplification val-
ues obtained during MNIST, FMNIST and CIFAR 10 simulations run in an IID
(homogeneous) setting. The right-hand side of this figure contains six plots rep-
resenting the leave-one-out and alpha-amplification values obtained during the
simulations run in a Non-IID (heterogeneous) setting. The identification num-
bers of nodes are plotted on the x-axis, while the average score is plotted on the
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y-axis. The malfunctioning sensors are coloured red, while the valid sensors are
coloured green. The solid black line represents the baseline value at point 0.0 (no
visible contribution), and the dotted black line represents the cut-off value at
the level of one standard deviation of a sample. Note that the leave-one-out and
alpha amplification scores are sign-flipped by definition: a negative leave-one-
out score indicates a negative impact on the trained model, while the positive
alpha-amplification value represents the same situation.

4.3 Commentary

Examination of the presented results allows us to draw several conclusions about
the behaviour of the alpha-amplification function and, as a consequence, allows
us to formulate a preliminary answer to our hypothesis. Firstly, the Alpha-
Amplification serves well when used as a threat detection tool. In almost every
of the simulation runs (except the non-IID CIFAR10 dataset), the tested func-
tion can detect all three clients with excessive noise, often also detecting clients
with datasets transformed by blur or rotation. On the other hand, the leave-one-
out fails in the majority of the cases, often detecting no more than one noised
client. Hence, it seems that the alpha-amplification can handle better the task
of malfunctioning clients detection than the leave-one-out baseline. This option
provides us with an answer to the first hypothesis. The empirical evidence sug-
gests that the alpha-amplification score of malfunctioning sensors exceeds one
standard deviation of the sample, while the leave-one-out score of the same sen-
sors often fails to do so.2 Secondly, in the case of alpha-amplification, there is
no observable detrimental effect of the data heterogeneity on the malfunctioning
sensor detection. Although alpha-amplification works well for threat detection,
it generally does not penalize the clients with healthy data, even in the case of a
heterogeneous environment. It can be explained by the fact that while increasing
the impact of a malfunctioning sensor is detrimental to training, the amplifica-
tion of weights provided by a valid sensor does not affect the training to that
extent in the homogeneous scenario or may cause drift of weights towards values
that better fit the local (client’s) distribution in the heterogeneous case. This
also implies, that while alpha-amplification is a promising threat-detection tool,
it may now be always advisable to use it as a method of universal contribution
quantification. However, this depends also on the chosen sensitivity. As the alpha
parameter was set to α = 5 during the experiments, the alpha-amplification func-
tion tends to heavily amplify the signal from the tested client. A lower value of
alpha would allow us to build a more universal contribution index (capturing
also the positive behaviour of valid sensors), but would not yield such conclusive
results for the malfunctioning batch. This also portrays well the flexibility of the
presented method, which is not present in the leave-one-out baseline.

2 The placed threshold was defined in relation to the standard deviation of the sam-
ple, but it is possible to test both functions against a different detection threshold.
We have chosen standard deviation, as it is fairly straightforward to interpret and
present.
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Fig. 2. The average value of leave-one-out and alpha-amplification scores obtained in
each of the six simulations.
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5 Conclusions

In this paper, we present our own contribution analysis tool for federated learn-
ing. Our main objective was to construct a method that is similar to the baseline
leave-one-out in terms of time complexity but which is also flexible in sensitiv-
ity range and can better capture the behaviour and impact of malfunction-
ing devices. As indicated by the experimental section, the alpha-amplification
method can serve as a threat detection model while achieving a moderate result
for creating a contribution vector for all clients. This opens many possibili-
ties, as dynamic client separation and evaluation allows us to perform train-
ing in a scenario where either some of the parties are dishonest or some of the
sensors are malfunctioning, and we do not possess the capabilities to evaluate
them beforehand. The alpha-amplification exhibits promising characteristics, as
it gives the orchestrator some degrees of freedom providing it with a modifiable
alpha parameter. By controlling the degree of sensitivity, we obtain the possi-
bility to hypothesize what would happen if the client had more impact on the
training. In addition, our presented method, just as leave-one-out, is character-
ized by a high degree of interoperability. It can fit into most of the federated
learning algorithms and schemas just by aggregating the gradients at the end of
each round. We also believe that this can open future inquiry into inexpensive
and interoperable marginal contribution metrics for collaborative intelligence.
From all the presented metrics and methods, those which are characterized by a
comparatively low space and time complexity have the most significant chance
of gaining popularity in practice, even notwithstanding their shortcomings and
sporadically lower precision.
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Abstract. Continuous federated learning (CFL), a recently emerging
learning paradigm that facilitates collaborative, yet privacy-preserving
machine learning (ML), bears the potential to shape the future of dis-
tributed ML. In spite of its great potential, it is - similar to continuous
ML - prone to suffer from concept drift (a change in data properties over
time). In turn, CFL can greatly benefit from employing drift detection to
react adequately to emerging drifts. Although various such approaches
exist, respective research lacks application of drift detection to CFL with
dynamic client participation as well as detailed analysis of the advantages
of different drift detection approaches such as error-based or data-based
drift detection. To this end, we apply these drift detection approaches to
a CFL platform that allows new clients to join even after the training has
started and measure the negative impact of concept drift on model per-
formance. Moreover, we uncover distinct differences between the error-
and data-based drift detection. In particular, we find the former ones to
be more suitable to detect the point in time where the joint models stops
benefiting from concept drift whereas the latter allows for a more precise
detection of the first occurrence of concept drift.

Keywords: Concept Drift · Federated Learning · Continuous Learning

1 Introduction

Federated learning (FL) has become an increasingly popular, privacy-preserving
approach towards distributed machine learning (ML) [13,20]. As such, it enables
mutually distrustful or legally separated participants (referred to as clients in
FL literature) to jointly train a ML model while maintaining full autonomy
over their respective data [13,19]. To do so, a central server orchestrates several
rounds of joint training, each consisting of (1) the central server sending out
the globally shared model to participating clients, (2) each active client locally
fitting the received model to their private data and afterwards sending model
updates back to the central server, and (3) the central server aggregating all
model updates received to a new shared model [13,19].

As of recently, traditional FL algorithms such as FedAvg [19] and FedProx
[15] have been extended to facilitate continuous learning [4,5,23]. This opens
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up various areas of research and application, including FL platforms open to
any client willing to participate [8]. Unlike previous applications of FL, such
platforms allow new clients to join even after the training has started (we refer
to this as dynamic client participation in the following) and therefore potentially
improving the performance of the joint model further. Likewise, dynamic client
participation bears the potential to introduce concept drift to the continuous
FL (CFL) platform that compromises the co-created value of CFL, i.e., the
improvements in terms of performance. In turn, concept drift - a change in data
properties over time - constitutes a major issue in CFL [11] and has therefore
recently been subject to a vast variety of research [3,6,11]. The goal of existing
methods is usually either to minimize the time it takes to recognize concept drift
[7] or maximize the performance of the shared model in face of concept drift [6].

In order to detect concept drift among clients in CFL, existing methods can
be divided into error-based drift detection or data-based detection [4,5,8]. Here,
the former methods detect concept drift by monitoring either each client’s local
loss [6] or the loss of the global model [5] during each round of training. The
latter type of approaches relies on federated analytics [21] or secure aggregation
[2] to monitor data properties such as label distributions and detect concept drift
accordingly [4]. However, existing approaches to detect concept drift and adapt
to it only consider FL platforms with static client participating (e.g., [3,25]).
Hence, they might not suite FL platforms allowing clients to join the federation
once the CFL procedure has started. Unfortunately, this significantly hinders
their real-world applicability. Furthermore, to the best of our knowledge, no
previous work compared error- and data-based drift detection approaches with
respect to their time required to identify concept drift as well as the performance
of the model trained using CFL. In this work, we therefore address these evident
gaps in existing literature by applying and evaluating both error- and data-
based drift detection for CFL platforms with dynamic client participation. More
precisely, the contributions of our work are as follows:

1. We apply drift detection to CFL platforms with dynamic client participation
and showcase the need for closely monitoring concept drift to sustain the
value of CFL for its clients;

2. We identify that error- and data-based approaches differ in terms of the
point in time when concept drift is detected. More specifically, error-based
approaches exceed their data-based alternatives in terms of the performance
of the jointly trained model at the time of intervention. This is due to the
fact that they can leverage the short period of beneficial drift during which
it actually improves model performance instead of harming it;

3. In contrast, data-based approaches excel in a timely detection of concept
drift after its first occurrence. Accordingly, subsequent drift adaptation can
intervene sooner, avoiding potentially harmful concept drift;

4. In a broader sense, our work necessitates a more nuanced discussion of concept
drift and fine-grained evaluation of drift detection approaches, introduces the
notions of beneficial and harmful drift, and encourages future research on the
subject.
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In turn, our findings are of great values for researchers and practitioners con-
cerned with the improvement and operation of FL platforms under concept drift.
Moreover, they complement existing work that neither addressed dynamic client
participation in CFL nor investigated the unique advantages that different types
of drift detection approaches come along with. Finally, our results suggest that
future work on concept drift for CFL should consider the inherent differences of
the aforementioned types of drift detection approaches and that their selection
should be done according to the task at hand.

To do so, we elaborate on related work in the following section. Afterwards,
we outline the proposed methodology in Sect. 3 before presenting the preliminary
results of our analyses in Sect. 4. Finally, we conclude the paper and discuss
limitations of our study and future research directions.

2 Related Work

FL is a novel distributed ML paradigm that, by design, maintains data privacy
of all involved clients. In turn, it is a perfect fit for a wide range of domains
with particularly sensitive data [13,22]. The most common approach towards
FL, namely FedAvg, relies on a central server orchestrating several rounds of
training among participating clients [19]. During each round, a global model
held by the central server is sent to the clients which fit it to their respective
local data [13,19]. Afterwards, all local model updates are sent back to the server
in a privacy-preserving manner [2,22]. Lastly, the central server aggregates all
received model updates to compute a new global model [19].

More recently, FL has been extended to CFL (e.g., [23]), allowing the jointly
trained model to smoothly integrate available continuous data streams [4] and
retain useful knowledge from environments that evolve over time [5]. Instead of
training a federated model once and deploying it afterwards, CFL fosters life-
long learning, continuously fitting the model to incoming data [4]. Despite its
unique advantages, the performance of CFL suffers from concept drift, posing the
threat of catastrophic forgetting and performance deterioration [8]. As concept
drift is a major cause of poor CFL performance [8], recent studies aim towards
making CFL more resilient against it [23]. Here, concept drift refers to changes
in various statistical properties such as feature and label distribution over time
[17]. To properly adapt to concept drift, it is crucial to reliably detect it in the
first place [17]. Respective concept drift detection approaches can be categorized
into error-based and data-based approaches [4,5], which we elaborate upon in
more detail in the following.

2.1 Error-Based Drift Detection

Error-based drift detection detects concept drift by constantly monitoring the
error of the model during training [4,8]. Although the most intuitive choice of
error measurement is the model’s loss (e.g., cross-entropy-loss), many exten-
sions and alternatives have been proposed in the past [24]. The intuition of such
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approaches is to identify concept drift through rapid changes in the model error,
as new concepts cannot (yet) be adequately predicted by the continuous model
[8]. As relying on a single increment in model error to detect concept drift is vul-
nerable to reporting false-positives, sliding windows can increase their reliability
significantly [18]. These approaches define a sliding window size and intervene
only if the increased error persists throughout the window size.

2.2 Data-Based Drift Detection

Unlike previous approaches, data-based detection relies on clients’ input data or
label distributions to detect concept drift [8]. Typically however, such approaches
require access to the respective client’s data (e.g., [10]), which would violate
data privacy when applied to FL environments. To avoid this, approaches such
as secure aggregation [2] allow the central server to collect data- and client-
specific characteristics as aggregates. Hence, they facilitate privacy-preserving
data analysis, also referred to as federated analytics [21]. Subsequently, these
data-specific properties allow to detect significant changes in feature and label
distributions that indicate the presence of concept drift [4].

3 Methodology

In order to apply concept drift detection to FL platforms with dynamic client
participation as well as to investigate advantages and disadvantages of different
drift detection approaches, we first set up a respective FL platform. Once the
platform is established, we apply different types of concept drift to the federation,
namely sudden, gradual, incremental, and reoccurring drift. Finally, we apply
both error- and data-based drift detection and compare their point in time of
intervention regarding the proximity to the first occurrence of concept drift as
well as the best performance of the joint model. Accordingly, we aim to unravel
their distinct advantages over another.

3.1 Concept Drift in CFL Platforms

CFL platforms extend existing FL strategies to leverage continuous streams of
input data [4,5]. Unlike traditional continuous learning, where a single client
constantly provides additional train data [17], in FL, this continuous growth
in data can be attributed to two different sources: either, participating clients
within a cohort generate new train data that is made available to the federation
[3], or new clients join the federation and serve as additional source of data
[8]. Existing literature on CFL only considers the former type of FL platform,
i.e., platforms that allow clients to continuously provide new data but do not
allow new clients to join the federation throughout the training (e.g., [3–5]).
In this work, we argue that this disregards an essential part of CFL platform
applications and consider such CFL platforms with dynamic client participation.
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Fig. 1. Types of concept drift applied to FL platforms [17] with dynamic client partic-
ipation, where each data silo represents 5 clients joining the federation.

To adequately simulate such platforms, we apply CFL using FedAvg [19] as
aggregation strategy. More precisely, we initiate the FL procedure among 5 sim-
ulated clients and subsequently perform 50 rounds of joint training. Afterwards,
we admit 5 new clients to the federation and repeat training for 50 rounds.
Through several such repetitions, each adding 5 new clients to the federation
and triggering continuous learning for another 50 rounds, the federation as well
as the amount of data contained in it grows step-wise.

In order to now introduce concept drift to the federation, our work relies on
simulating four different notions of concept drift, each of which being previously
considered in various studies on concept drift [4,9,18]. Therefore, we first sort
the dataset D used during evaluation (for more details, see Sect. 4) according to
the regression target value. Afterwards, the first half of data points (i.e., those
with target values smaller than the median) is assigned to a dataset named
DInitial, whereas the second half belongs to the dataset DDrifted. Then, we split
DInitial into 80% train (DInitial

Train ) and 20% test set (DInitial
Test ) before distributing

it among 40 simulated clients that belong to the cohort labeled Initial. Finally,
we do the same with the cohort named Drifted that consists of 80 clients and
that will introduce concept drift to the platform. The choice of cohort sizes and
data distribution is motivated by the subsequent simulation of different concept
drifts, which we elaborate upon in more detail hereafter. Given these 120 clients
belonging to one of the two cohorts, we provide details on the simulation of
different concept drifts in the following and visualize them in Fig. 1:

1. Sudden drift. Sudden drift is among the most frequently applied forms of
concept drift (e.g., [9,17]). In short, it assumes an immediate drift of con-
cepts in the data. Applied to CFL, sudden drift is simulated by first allowing
all clients from the initial cohort to join the federation and then admitting
all drifted clients. Complying with our previously outlined methodology, we
admit 5 clients at a time before continuing model training. Accordingly, 8
rounds of admission for initial clients take place, followed by 16 rounds of
admitting the remaining 80 drifted clients.
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2. Gradual drift. As stated by Liu et al. [16], concept drift rarely occurs at a
single point in time. Instead, it may take some time to transform from one
concept to another [17]. However, this transformation could either be gradual
or incremental [17]. In this regard, gradual drift assumes that no intermediate
concepts exist but each client either belonging to the initial or drifted cohort.
The actual drift is then characterized by frequent back and forth changes
between concepts [18]. To simulate gradual concept drift, we first admit 20
clients belonging to Initial, followed by 10 clients from Drifted and another
10 clients from Initial. Finally, 20 more clients from the drifted cohort and
10 clients from Initial join, before the remaining 70 clients from Drifted are
iteratively admitted. As depicted in Fig. 1, the number of admitted clients
holding the drifted concept increases gradually.

3. Incremental drift. To better understand how incremental drift differs from
gradual drift, Gama et al. [9] introduce the term intermediate concept, refer-
ring to the slow transformation from one concept to another [17]. During
incremental drift, some clients introduce these intermediate concepts and do
not strictly belong to the initial or drifted concepts. We simulate incremental
drift by controlling how the data contained within DDrifted

Train is allocated to
the 80 simulated clients. Instead of randomly distributing it, as we do for
the other three notions of concept drift, we sort DDrifted

Train according to the
regression target again. The lower half of samples is split among 40 clients
in accordance with the ordering we received previously. The other half is
again randomly distributed among the remaining 40 clients. Finally, we first
admit the 40 clients holding the initial concept interatively, followed by the
40 intermediate clients (maintaining their order) and the remaining 40 clients.

4. Reoccurring drift. Reoccurring drift is rather similar to sudden drift. But
for sudden drift, the shift from one concept to another is final, whereas for
reoccurring drifts, the shift might reverse at a later point in time. A typical
example for this would be seasonal changes in data that might reoccur several
times during the CFL lifetime [9]. Finally, we simulate this type of concept
drift by starting with 20 initial clients and then admitting all 80 drifted
clients. At the end, 20 clients from Initial are admitted to simulate shifting
back to the initial concept.

3.2 Drift Detection

“Drift detection refers to the techniques and mechanisms that characterize and
quantify concept drift via identifying change points” [17]. Usually, these change
points, i.e., occurrences of concept drift, can be detected by employing error-
based or data-based drift detection [4,5,8]. As our study aims to analyse and
compare both techniques, we follow a general approach towards implementing
them. As proposed by Mahgoub and colleagues [18] as well as Casado et al. [4],
we utilize window-based detection for drift detection, where a sliding-window
is used to detect concept drift based on measurements of model loss or data
distribution. In what follows, we present details on both techniques applied to
identify concept drift in CFL systems.
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1. Error-based detection. To apply error-based drift detection to CFL with
dynamic client participation, our work follows previously outlined approaches
such as discussed by Criado et al. [8]. Thus, our implementation of error-based
drift detection monitors the model error carefully and stores it persistently
throughout the CFL platform’s lifetime. Whenever new clients join the feder-
ation, the error reported by the model is compared to previous errors. If it is
further off the previous mean error than standard deviation, drift is detected
internally. However, to increase its reliability, we employ a sliding widow of
size 3 and drift detection only intervenes once three rounds of clients joining
subsequently fulfill the previous requirement. Here, a window size of 3 offers
the best trade-off between false-positives and false-negatives for the given
task.

2. Data-based detection. On the other hand, our implementation of data-
based detection is inspired by existing approaches tracking feature and label
distributions of training data [10]. To maintain data-privacy, we facilitate
tools from federated analytics [21] throughout the process. More precisely,
our implementation of data-based drift detection requires clients to self-report
on their individual label distribution. Here, each client is tasked to compute
their mean target value. Then, secure aggregation is applied to collect the
information about the average client labels in a privacy-preserving manner.
Whenever a new client joins the cohort, we again compare it to the exist-
ing cohort’s mean labels and decide if the new client is within standard
deviation of the previous mean. If not, the client is subsequently marked
as potentially introducing concept drift. Similarly to our implementation of
error-based detection, we deploy a sliding window of size 3 to reliably detect
concept drift and avoid false positives.

4 Preliminary Evaluation

4.1 Experimental Setup

Our preliminary evaluation relies on the public Uber Fares Dataset [1] containing
information and prices of nearly 200.000 Uber rides. The rationale behind our
choice of dataset is that its use-case fits to CFL platforms. Think of different
taxi companies that seek to provide their customers precise estimates of the
cost of transport from one place to another. In order to increase the accuracy
of these estimates, companies may join forces and utilize FL to jointly train a
ML model for fare prediction. However, the constant change of prices over time
(e.g., due to inflation) necessitates the use of CFL to properly adapt to them.
As companies start benefiting from their platform participation, additional taxi
providers might get attracted to join as well. These companies may either further
improve the shared model’s performance, or could introduce concept drift. The
latter could for example be the case if the companies are from other geographical
areas significantly different in terms of the fares per ride.
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Fig. 2. Model performance under different concept drifts. Blue and orange areas indi-
cate if clients of the Initial or Drifted cohort join the FL platform. (Color figure online)

Next, we prepare the datasets in accordance with the methodology presented
in Sect. 3. Hence, we define the two cohorts named Initial and Drifted, allocate
respective train and test datasets, and assign samples to clients.

Next, we define model architecture and FL setup for the CFL platform. The
model is a rather simple, 5-layered neural network, that is trained to minimize the
mean mean square error (MSE) defined in Eq. 1. Its input layer is of size 11, the
hidden layers are of sizes 50, 30, and 10 with ReLU-activation and dropout of 0.2.
As the target is a regression value, the output layer is a single neuron. In terms of
FL aggregation strategy, we apply FedAvg [19], the de-facto standard due to its
popularity and widespread application [14]. Training is applied for 100 rounds,
during each of which all clients perform 3 epochs of local training. To evaluate
the performance of the model, we apply 5-fold cross-validation throughout all of
our analyses and adopt the universally applicable, scale-dependent mean absolute
error (MAE) [12]. We chose MAE over alternatives such as root mean square
error, as it is less prone to high sample variance that would possibly affect
evaluation results. MAE is computed as follows:

MSE =
1
n

n∑

i=1

(yi − ŷi)2 and MAE =
1
n

n∑

i=1

|yi − ŷi|, (1)

where ŷi is the predicted and yi the actual fare for datapoint i.

4.2 CFL Performance Under Concept Drift

First, we apply the four previously introduced types of concept drift to our CFL
platform. During application, we monitor the model performance in terms of
MAE on DInitial

Test and DDrifted
Test and plot it in Fig. 2. This aims to assess the

impact of concept drift on federated model performance.
The results depicted in Fig. 2 indicate the detrimental effect of all types of

drift on model performance for the non-drifted, i.e., initial cohort. Figures 2
(a) to (d) show that the MAE of initial clients starts to worsen shortly after
the first occurrence of concept drift. Surprisingly however, for a short period of
time (usually between 1 to 2 rounds of admitting 5 drifted clients), they benefit
from the presence of concept drift. This is likely due to the added information
on such rides that were previously on the higher end of fares. In contrast to
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Fig. 3. Distance to first occurrence of different concept drifts

the subsequent phase of harmful drift, we refer to this type of concept drift as
beneficial drift. Moreover, Figs. 2 (b) and (d) show that whenever clients from
the initial cohort join the federation again, the respective MAE start to recover
immediately. Finally, it shows that clients from the drifted cohort experience
high MAE with small improvements throughout the platform’s lifetime. This
indicates that concept drift does not only affect clients that participated prior
to the concept drift, but also those clients introducing the drift to the federation.

Overall, our findings are mostly in line with previous work addressing concept
drift in CFL with static client participation. Beyond existing work however, we
identify the notion beneficial drift, which constitutes the small period of time
in which concept drift in FL platforms with dynamic client participation can
actually improve the predictive performance of the shared model.

4.3 Detecting First Occurrence of Concept Drift

Next, we compare drift detection with respect to the proximity of their interven-
tion to the first occurrence of concept drift. Accordingly, we determine the type
of detection with lowest time until intervention after concept drift first appears.

Figure 3 visualizes the points in time when concept drift first occurs during
our experiments as well as when error-based and data-based detection intervene.
Figures 3 (a) to (d) show that data-based approaches reliably detect concept drift
at the time of its first occurrence. Accordingly, it is capable of precisely detecting
concept drift as soon as possible and outperforms error-based approaches in this
regard. Error-based approaches tend to intervene at a later point in time and
therefore only provide detection with a delay in time. The magnitude of the delay
depends, among other things, on the ratio of non-drifted and drifted clients. In
(a) and (c), for example, detection is delayed by 10 to 15 clients. Here, however,
concept drift only occurs after the initial cohort already consists of 40 clients.
In (d), on the other hand, drift already appears after the initial cohort consists
of only 20 clients. In turn, the error-based detection recognizes the emerging
drift sooner. In (b), the constant change between drifted and non-drifted clients
joining the federation seems to delay the detection of error-rate based concept
drift, as this is where the intervention is delayed the most. This is likely due to
our choice of setting the window size to 3, negatively affecting the sensitivity
towards gradual drift but increasing its overall robustness.
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Fig. 4. Distance to best performing model under concept drift

4.4 Detecting Best Performance Under Concept Drift

Previous analyses investigated how well drift detection identifies the first occur-
rence of concept drift. However, this disregards our previous findings regarding
beneficial drift. In Fig. 4, we therefore monitor the distance of drift detection
intervention to the optimal performance of the joint model for the initial cohort.
To do so, we first identify the time at which the MAE is smallest for the ini-
tial cohort and relate it to the interventions of the respective drift detection
approaches. Thereby, we aim to identify the type of drift detection more suit-
able to differentiate between beneficial and harmful drift.

Figure 4 shows that while data-based detection has previously been found
to identify the first occurrence of data drift more precisely, their error-based
alternative excels when it comes to identifying best model performance. More
precisely, among all types of concept drift, error-based detection is off the point
in time providing best performance by not more than 10 clients (i.e., 2 rounds
of admitting 5 clients each). For (c) and (d), they even precisely identify the
point in time without delay. In turn, they outperform data-based detection for
all but sudden concept drifts. For Fig. 4 (b), we previously argued that error-
based detection is the furthest off the first occurrence of drift. Our findings
regarding the best model performance however show that gradual concept drift
comes along with the longest period of beneficial drift which is only taken into
account by this type of drift detection.

5 Conclusion, Limitation, and Future Work

In this paper, we apply concept drift detection to CFL platforms with dynamic
client participation and compare error- to data-based drift detection. In partic-
ular, we demonstrate that - similar to CFL with a static participation - concept
drift harms the performance of CFL platforms in terms of MAE and should
be taken care of. To do so, both type of drift detection reliably detect sudden,
gradual, incremental, and reoccurring concept drift. However, we find error-based
drift detection to better approximate the point in time where the jointly trained
model performs best. Accordingly, they are capable of facilitating beneficial drift,
which referrs to the small period of time where concept drift positively affects
model performance before eventually harming it. Data-based drift detection, on
the other hand, intervenes closer to the first occurrence of concept drift and is
therefore to be preferred when fast drift adaptation is the main objective.
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From our findings we argue that the novelty of our work does not lie within
the methods we apply to detect concept drift in CFL platforms but in our choice
to (1) consider dynamic client participation throughout the platform’s lifetime,
and (2) compare existing drift detection with respect to their point in time of
intervention. Accordingly, our work suggests that there is no approach towards
drift detection that performs better per se. Instead, the choice of approach can
greatly benefit from our presented findings.

Limitations. To start with the obvious: our findings are yet derived from a
single dataset only. While the results among the different types of concept drift
show the validity of our previous conclusions, applications on different datasets
might differ from those presented in this work. Moreover, due to the limited
scope of this work, we only consider a single drift detection approach for error-
and data-based detection, respectively.

Future Work. Our results indicate the differences between error- and data-
based drift detection. In future work, we will significantly extend our preliminary
evaluation to cover different model architectures, data types, and drift detection
approaches. Finally, some follow-up work will aim to develop a drift detection
framework leveraging both types of approaches to dynamically adjust drift detec-
tion to the current environment.
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Abstract. We present S+t-SNE, an adaptation of the t-SNE algorithm
designed to handle infinite data streams. The core idea behind S+t-SNE
is to update the t-SNE embedding incrementally as new data arrives,
ensuring scalability and adaptability to handle streaming scenarios. By
selecting the most important points at each step, the algorithm ensures
scalability while keeping informative visualisations. By employing a blind
method for drift management, the algorithm adjusts the embedding
space, which facilitates the visualisation of evolving data dynamics. Our
experimental evaluations demonstrate the effectiveness and efficiency of
S+t-SNE, whilst highlighting its ability to capture patterns in a stream-
ing scenario. We hope our approach offers researchers and practitioners a
real-time tool for understanding and interpreting high-dimensional data.

Keywords: dimensionality reduction · data streams · algorithm

1 Introduction

Dimensionality reduction techniques are an object of great interest in applica-
tions such as image or natural language processing. Dimensionality reduction
techniques simplify complex data, ensuring better interpretability of such data
and helping its visualisation. Furthermore, they enhance model performance by
employing feature selection and thus improving computation speed Construct-
ing efficient algorithms for dimensionality reduction in a streaming context opens
the possibility of working with potentially infinite datasets. Hence, such algo-
rithms could be used with arbitrary-size datasets, offline or online. For example,
it would be possible to visualise static, very large datasets typically used in deep
learning. Another example application would be to use this algorithm to improve
computation speed and provide a human-readable visualisation of data streams
in services like electricity, gas, and water maintenance.
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In this paper, we explain the limitations of existing dimensionality reduction
techniques when applied to data streams and propose a new method named
S+t-SNE to solve some limitations.

In Sect. 3, we explain how our approach works and handles common chal-
lenges, such as the continuously increasing volume of historic data and the con-
stant flow of new data entries, together with the possibility of concept change. In
Sect. 4, we delve into the tests performed to evaluate the performance of the pro-
posed algorithm. The version used for the tests is available in a code repository1

and follows implementation specifics to be integrated with the River2 framework,
as described in the aforementioned framework’s documentation.

2 Related Work

The t-distributed stochastic neighbour embedding (t-SNE) [1] specialises in
transforming a high-dimensional dataset into a two or three-dimensional dataset.
It does so by using a t-distribution as a basis for calculating the similarity
between points in the projected space and the original space while using the
KL divergence to guide the point positioning.

Dimensionality reduction techniques are classified into “out-of-sample” and
“in-sample” categories [5]. Out-of-sample techniques start with a small data sub-
set and map the rest accordingly, making them more scalable but less accurate
when the subset does not accurately represent the full dataset. In-sample tech-
niques, like t-SNE, classical Multidimensional Scaling (MDS), and UMAP [12],
process the entire dataset at once, resulting in more accurate results but with
higher computational costs. The algorithm discussed in this paper falls into the
out-of-sample category.

Developments in out-of-sample techniques focus on incorporating user knowl-
edge into the projection process. Examples include Piecewise-Laplacian Projec-
tion (PLP) [14], Least Squares Projection (LSP) [13], and Local Affine Multi-
dimensional Projection (LAMP) [7]. While these techniques can handle larger
datasets, they are often unsuitable for data streams, as they rely on the quality
of the initial data subset. Some online strategies have been developed to mitigate
this problem. Basalaj [4] introduces an online version of classical Multidimen-
sional Scaling. In his work, when a new data entry is received, MDS is applied
considering both the new entry and the already processed ones to create a new
full pairwise distance matrix. Alsakran et al. [3] apply a force-based approach,
updating to consider new instances and recomputing the full pairwise distance
matrix in memory. Jenkins et al. [6] and Law et al. [10] introduce online versions
of the ISOMAP in-sample technique. Upon receiving a new data entry, every
previous entry is also processed, and a full pairwise distance matrix must be
computed. Law et al. [9] make this process faster by sidestepping the require-
ment of a full pairwise matrix in their introduction of an online version of LMDS.
In this technique revision, the only distances the algorithm needs to compute are
1 github.com/PedrV/S–t-SNE.
2 riverml.xyz.

https://github.com/PedrV/S--t-SNE
https://riverml.xyz
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the ones between the new data entry and the pre-existing entries. Kouropteva et
al. [8] and Schuon et al. [17] present online revisions of the in-sample LLE tech-
nique through the definition of strategies that update neighbourhood relation-
ships when a new entry is introduced. Rauber et al. [16] introduce a Dynamic
t-SNE. This technique facilitates the projection of windows of datasets that
depend on time while maintaining spatial consistency in the positions of points
in projections. Although this has interesting results, Dynamic t-SNE must re-
project all received data to create an entirely new projection to compute the
most recent data. Consequently, it is necessary to keep the whole dataset in
memory, which is inadequate for streaming scenarios in which the data contin-
ues to grow. This is something that the method proposed in this paper attempts
to address. Furthermore, there is, to the best of our knowledge as of writing, no
attempt made by any of the methods described to deal with concept drift. Our
approach will address this problem.

3 Streaming T-SNE (S+t-SNE)

In a streaming scenario, data arrives continuously. This assumption hinders the
application of the traditional t-SNE. The two inherent challenges to this appli-
cation are (1) the duration or termination point of the data stream is often
unknown, rendering it impossible to determine when to halt the accumulation
of points and start the application of t-SNE; (2) the potential accumulation of
points due to an extensive or even infinite data stream poses obstacles on the
computation time and the computational resources.

3.1 Problem One - When to Start

One possible approach to using t-SNE in a streaming scenario involves accumu-
lating all encountered points until a change in the data stream is detected, at
which point the accumulated points are projected. However, for this technique
to work, the data would need to exhibit drift and we would have to establish
a threshold of “how much drift is enough drift”. An alternative is to adopt a
fixed batch-wise approach to mitigate these challenges in our work. Points are
accumulated until a predetermined batch size, B, is attained. Subsequently, t-
SNE is applied to project the accumulated points. This approach offers a swift
and agnostic solution that does not rely on specific data patterns, enabling its
off-the-shelf application.

One iteration of S+t-SNE consists of accumulating a new data point, checking
if the total accumulated is equal to B, and if so, applying t-SNE. The first
projection is made by applying t-SNE to the batch of data. Since there are
no points in the projection space, normal t-SNE will be applied in the first
projection. However, after the first iteration of S+t-SNE, subsequent iterations
will project in a space where points already exist.

In our approach, incorporating new data points from iteration t + 1 into the
projection space involves considering conditional probabilities between new and
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previously embedded points from iteration t. To achieve the intended outcome,
our approach is grounded in the openTSNE framework [15], with a primary
reliance on the technique of partial embedding. The concept of partial embed-
ding facilitates the incorporation of new points into an established embedding
space by considering only the conditional probabilities between points in t and
t+1. However, one limitation of this approach is that focusing solely on these con-
ditional probabilities may omit the natural inclusion of conditional probabilities
between new data points. Hence, groups with similar conditional probabilities
to already embedded points yet exhibiting low conditional probabilities between
themselves may converge into the same area of the lower-dimensional space. This
constraint arises from relying solely on information from old points for new point
embeddings. The method from Subsect. 3.3 will mitigate this effect by removing
unnecessary points.

3.2 Problem Two - Reduction of Space Fingerprint

Section 3.1, overcomes the issue of determining when to apply t-SNE in the
streaming context (Problem 1). However, the concern of accumulating points in
the projected space persists.

To address the accumulation of points in the lower-dimensional space, we
propose retaining the shape of groups of points by using a clustering algorithm
applied to t-SNE projections. Each group’s shape will be represented by convex
hulls (the calculation of a convex hull is done in O(n log n), where n is the size
of a cluster), minimising the number of retained points. However, convex hull
points are not informative enough for new point incorporations. We introduce
“PEDRUL” (Points Expected to Define Regions of Unambiguous Location) to
represent important points.

The PEDRUL within each 2D group is determined by their density in the
original D-dimensional space. Hence, for each group of points in the embedding
space, their PEDRUL is defined as the points in the original space with the
largest number of neighbours within a search radius, denoted as R. To control
the transitivity of the neighbourhood of dense points, the search identifies points
as candidates for being PEDRUL only if they are not in a neighbourhood of an
already defined PEDRUL point. This methodology may sacrifice the selection
of de facto densest points but maintains the integrity and unambiguity of the
dense regions that each PEDRUL spans within each group.

To efficiently obtain the PEDRUL, the KDTree [11] data structure is used for
nearest neighbour searches in multi-dimensional spaces. KDTree has a construc-
tion time complexity of O(n log n) and a balanced structure (the height of the
tree does not exceed O(log n)). Once the KDTree structure is constructed, it can
be queried to retrieve all points within a specified distance from a given point.
Each point in the current batch’s neighbourhood limited on R is estimated and
sorted by size. The resulting neighbours are stored in a hashable set, enabling
efficient intersection calculations and allowing the identification and selection of
sparse density points as required.
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In summary, PEDRUL reduces the number of points in the low-dimensional
space by preserving only points with maximal information (maximal points
around them) that will be used for subsequent embeddings. To aid visualisa-
tion and limit regions, we store the points delimiting the convex hull of each
group. Accumulating too many PEDRUL will not be a problem since for an
entire application of our algorithm, the number of PEDRUL remains constant.
If the initial indication is to hold 100 points, there will be 100 points in the
projection at all times. However, the points can change across iterations.

3.3 Handling Drift

Data streams often have non-stationary distributions, with drift taking the form
of sudden or gradual changes. Sudden drift is an abrupt shift in data distribu-
tion without temporal overlap between the pre and post-change distributions.
Gradual drift involves a slower, incremental overlapping transition [2]. Adapting
t-SNE for online use requires addressing these drift types.

In the following paragraphs, we propose a method that can be coupled with
incremental t-SNE proposed earlier and with any method using convex regions.
The proposed method is fit for online scenarios and handles drift by updating
the projections in the space of interest - the low-dimensional space. Furthermore,
it mitigates the possible artefacts referred to in Sect. 3.2.

When sudden drift occurs, data embeddings are likely to experience steep
changes. Hence, the old embeddings correspond to old views of the data and
must be immediately removed. Gradual drift necessitates gradually removing
examples as they become less relevant. Adjusting for different drifts is connected
with the concept of forgetting different points at different speeds.

Our solution involves using the convex hulls obtained from clustering and
dividing them into parts. Each partition will employ blind drift detection by
exponential decay based on the number of iterations in S+t-SNE. This allows
parts without new points during a period (given by exponential decay) to dis-
appear, ensuring consistency. We parameterise the exponential decay with three
parameters, α = 0.88, β = 1.6 and η = 0.01, yielding N(t) = αe−tη+β where t
is the number of iterations. This expression encapsulates our definition of drift.
In this configuration, a polygon in iteration 200 will have section x cut if said
section does not receive points for more than N(200) iterations.

The selected partitions are along the medians of the polygon (Fig. 1 - B)
and its concentric regions (Fig. 1 - A). These partitions allow us to monitor any
translation with arbitrary precision as long as enough iterations are completed.
Furthermore, they allow for arbitrary deletion while ensuring the result is always
a convex shape. Since shapes are always convex, maintaining the algorithm is
efficient.

Let n denote the maximum number of vertices of a polygon from the embed-
ding space, k the number of polygons, p the maximum number of PEDRUL
registered in a polygon, and m the number of concentric regions. The tempo-
ral complexity to determine the median regions is Θ(n), testing ownership of a
point to a region is Θ(1). Performing a cut takes O(n), where n is the number of
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Fig. 1. In shape A) we see the concentric cuts over a convex hull; In B) the median
cuts; In C) all cuts together, forming a structure similar to a cobweb.

vertices of the polygon. A cut is done by deleting points counter-clockwise from
one end of a point of a median region to another. Maintaining all median regions
of all polygons takes O(2 p k n). An important fact to speed up this procedure
is that all operations can be efficiently parallelisable polygon-wise. This means
that all polygons can run in parallel, reducing the total time to independent of
the number of polygons and linear on the number of PEDRUL.

Calculating a concentric region for a polygon has a Θ(n) complexity. As for
testing for point membership, it takes O(log n) using a Delaunay tessellation
of triangles. Constructing such a tessellation takes O(n log n), but this is only
done once per region. The total iteration complexity, including the construction
of the tesselation, takes O(m k p log n) + O(m k n log n). The factor m is gen-
erally small (≤ 5). Hence, we will disregard it in asymptotic analysis. Like the
median regions, the concentric regions have highly independent operations, mak-
ing them highly parallelisable. A parallel implementation reduces the complexity
to O(p log n) + O(n log n), which is effectively O(p log n).

From this point onwards, we will refer to the method described above as
Exponential Cobweb Slicing (ECS). The interplay between S+t-SNE and ECS
is displayed in Algorithm 1.

Points that suffer from the problem described in Subsect. 3.1 are projected
onto the wrong region A of the space. If new points that truly belong to A
appear, the algorithm self-corrects. If no points appear mapped to A then ECS
will trigger and cut A out. Hence, the visual artefacts are reduced.

4 Experiments

Our methodology does not compare itself with the alternatives delineated in
Sect. 2 due to those lacking an available implementation by the authors, blocking,
from our point of view, a fair comparison between algorithms.

However, we evaluate and compare S+t-SNE against t-SNE. With these tests,
we aim to understand the strengths and weaknesses of the proposed method in
comparison to its original variant. Hopefully, the comparison against a strong
baseline demonstrates the strength of S+t-SNE.

All tests used a system running Windows 10 Pro 22H2, with an AMD Ryzen
7 5800× 3.8 GHz (boosting to 4.5 GHz) processor and 32 GB (3200 MHz) RAM.
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Algorithm 1: S+t-SNE
Require: conn is alive
Ensure : dataStorage = ∅

1: proj ← EmptyProjection(NULL)
2: while True
3: newPoint ← ReceiveData(conn)
4: dataStorage ← StoreData(newPoint)
5: if dataStorage.length = B then
6: proj ← ProjectPoints(proj, dataStorage)
7: proj.PEDRUL ← CalculatePEDRUL(proj) � For new projections
8: proj.hulls ← CalculateConvexHulls(proj) � For visualization
9: dataStorage ← ∅

10: proj.iterations ← proj.iterations + 1
11: proj.hulls ← ECS(proj.hulls, proj.iterations)
12: for PEDRUL in proj.PEDRUL
13: if PEDRUL not in proj.hulls then
14: RemovePoint(proj.PEDRUL, PEDRUL)
15: end if

16: end for

17: end if

18: end while

Datasets. We use two datasets: MNIST, used in [8,9,16], and a synthetic dataset
to evaluate drift. The latter dataset was created by randomly selecting points
from three different spaces (structures) of dynamic 3D distributions. Each distri-
bution is configured with spatial movement, adjusting both mean and covariance
parameters at each time step emulated by a tick count and consist of 525000
points, or 175000 per structure. Two of the structures used will suffer translation,
contractions, and dilations in space, and the other will only experience the last
two effects. The structures overlap in the high-dimensional space, increasing the
difficulty of the dataset. The purpose of this dataset is to assess the performance
of S+t-SNE in a scenario closer to a real online one.

Configurations. All datasets will be streamed, emulating an online paradigm
for data acquisition. The parameters for t-SNE were used empirically, in a way
that resulted in the best-looking projections. For t-SNE to work, we adopt batch
projections akin to those utilized in S+t-SNE. Specifically, upon the accumula-
tion of B data points, t-SNE reprojects the entire dataset. Consequently, the
last reprojected iteration encapsulates a conventional application of t-SNE to
the entire dataset, similar to an offline approach. The parameters for the inter-
nal t-SNE used in S+t-SNE were the same as the ones used in the pure t-SNE.
Said parameters can be viewed in the code repository. The number of iterations
for t-SNE is 500 rounds of optimisation and 250 of early exaggeration. These
settings allow for the overall best results. Regarding the number of iterations,
factoring the time for ECS, S+t-SNE using 400 optimisation iterations and 250
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Fig. 2. Break-down of KLD, Peak Memory and Time for the MNIST dataset.

early exaggeration iterations is the comparable setting to t-SNE. Furthermore,
the parameters regarding the ECS and the selection of density points can be
revised in the repository. Since using different parameters yields cuts at different
iterations for the same dataset, hence a different “definition” of drift, we opted
to keep the parameters from Sect. (3.3) as they present good results visually.

4.1 Results

MNIST. Figure 2 shows the curves for comparing the algorithms on the MNIST
dataset. The S+t-SNE algorithm is represented by the continuous lines and
the t-SNE by the dashed lines. Each point in a line represents an action by the
algorithm, typically at the end of the batch. The main point of comparison is the
initial slice of the data used to define the opening space. That is the quantity
of data accumulated before projecting the first time. The slice is represented
fractionally regarding the total amount of data from 0 to 1. The lines representing
S+t-SNE represent the variation in the size of batch (B), the number of PEDRUL
(or density points) considered (D), and the number of iterations allowed for the
algorithm to run (Iter).

KLD. We used the Kullback-Leibler divergence (KLD) to measure the entropy
between the projection and the points in the original space. Looking at Fig. 2, we
see that the KLD for t-SNE increases as the number of points increases, mean-
ing that having more points deteriorates the t-SNE performance. This result is
not unexpected since more points can cause more entropy. As for S+t-SNE, all
configurations present a slow increase in the divergence as the number of points
increases. Based on our analyses, the global rate of change manifests, in the
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Fig. 3. Projections by S+t-SNE for MNIST. B:400 D:400 IT:700 Slice:0.2

least favourable scenario, as a progressively slow function relative to the num-
ber of batches processed by the S+t-SNE algorithm (figures in the repository).
We see that larger batches and more PEDRUL cause a smaller KLD. A larger
number of PEDRUL has more influence than larger batches. This may happen
because more PEDRUL points mean more anchors for incoming points to have
as a reference, meaning better projections. Technically, t-SNE uses all points of
the dataset as PEDRUL, serving as a benchmark for performance.

Memory. As expected, the peak memory used by t-SNE (Fig. 2) aggressively
increases as the number of points increases, achieving the same memory peak
in all slices in the last reprojection. As for S+t-SNE, the peak memory use is
achieved when getting the opening projection. The initial S+t-SNE iteration
(getting the opening projections) for slice x uses the same process of a t-SNE
application for the same slice x. However, the peak memory of S+t-SNE is higher
because it has to account for the search of the PEDRUL points. We notice that
larger slices further increase the initial memory peak gap between algorithms
because searching for PEDRUL points within more data is more costly. After
the first iteration, the peak memory reduces drastically and remains constant.

Time. The results for execution time (Fig. 2) were as expected. Larger batches,
number of points and iterations increase the computational time. Furthermore,
a large slice increases the initial time of S+t-SNE but contributes to a faster
decrease in the time consumed.

Knowing the final drop in memory and time for S+t-SNE is due to reaching
the end of the dataset, for the general case, based on this dataset, we would
want to have the initial slice as large as possible. We should hold as many
points as possible before the initial projection, increasing the quality of the
representation by trying to obtain a stable enough opening projection. However,
we must consider the larger memory footprint and initial computation time for
larger slices. The number of PEDRULs and batches should be as large as possible
until the limit of memory and time is available. However, more PEDRUL is
highly preferred to a larger batch. We believe the number of iterations has a
negligible influence. Hence, we advocate for selecting the minimum iteration
count necessary for convergence.
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Fig. 4. Break-down of KLD, Peak Memory and Time for the dataset with drift.

Figure 3 shows the evolution of the S+t-SNE embeddings for MNIST for
B:400 D:400 IT:700 Slice:0.2. Besides the points delimiting the hulls, the
PEDRUL are also visible. All ten classes are well distinguishable. Moreover,
ECS eliminates inaccurately projected points, as posited in Sect. 3.1. One exam-
ple is in the transition from the top-right figure to the bottom-left, where the
blue cluster had its stretched side removed. A typical ECS cut.

Synthetic Data. Figure 5 shows the results obtained for the synthetic dataset.
We were not able to run t-SNE past the initial slice. Hence, we ran S+t-SNE
only with a slice size of 0.005. Furthermore, it was impossible to calculate the
KLD due to the size of the matrix.

Memory. From Fig. 4, we can see that increasing the batch size and number of
points increases the peak memory consumption. However, the increase is very
small (in the order of single bytes), even though we are doubling batch size and
number of points. This result happens due to the capacity of larger batches and
the larger number of points, allowing us to pick points with better representa-
tional capabilities, lasting more iterations and triggering fewer operations and
consequently less accumulation of objects in memory. The results confirm the
ones obtained with MNIST: the memory used is near constant after reaching a
stable point where the representation is stable (initial peak removed in image).

Time. Figure 4 corroborates the findings derived from the MNIST dataset.
Notably, the quasi-constant computational time after the first iteration (initial
peak removed in image).

We believe the considerations taken from MNIST regarding the value to
use for each parameter hold in this case. Figure 5 shows the projections for
the synthetic data. The bottom-right plot shows the embeddings if no ECS
was used and all points were considered as PEDRUL. The plots show that our
techniques allow us to focus on the points of interest. Hence, we can see the most
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Fig. 5. S+t-SNE for synthetic data and total accumulated points (bottom-right).

recent movements of the dataset, these being the gradual shrinking of the green
structure and the orange and blue ones slowly drifting closer to each other until
they overlap.

The effect of ECS is not noticeable in the computational time due to its
small runtime footprint. Even without a parallel implementation, the main dif-
ference between configurations is the number of hulls/clusters found at each
iteration. However, this number is similar to all configurations because the clus-
tering parameters and dataset are the same for all configurations. Furthermore,
the number of PEDRUL has a constant effect in the time taken by ECS, and
since the gap between configurations in this regard is not very large the effect
is negligible. The drift has virtually no impact on memory consumption because
of its gradual nature.

5 Conclusion

In this paper, we developed an efficient adaptation of t-SNE called S+t-SNE
to work with data streams. Our version supports dimensionality reduction of
online data and can adapt to data drift. A possible direction for future work is
to test different mechanisms for obtaining PEDRUL and test the robustness of
the method to different types of drift. To allow for a uniform comparison across
online methods, it would be interesting to develop a metric for the comparison
of projections of arbitrary size.
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Abstract. State-of-the-art density based cluster algorithms offer
remarkable speed and robustness. However, they do not allow the user
to make local changes without affecting the global outcome. The user
thus has to choose between clustering a local region well or keeping the
global result.

We present a new approach, λ-DBSCAN, which augments the DBSCAN
algorithm to include local a priori knowledge. The parameters can be
specified per observation, rather than globally, which enables the user to
include local knowledge about the data without modifying other regions.
Furthermore, we define regions in the data that should be affected by
certain parameter choices, to reduce the workload for a user.

Keywords: prior knowledge · density-based clustering · DBSCAN

1 Introduction

Finding relations in data is one of the most common problems in data analysis.
For the unsupervised task of clustering the goal is to combine similar observa-
tions to clusters, whereas dissimilar observations should be in different clusters.
However, the solution to this task can often be ambiguous, since in general there
is no perfect clustering, i.e. a given ground truth, but rather multiple good ones.
This is especially true for real life datasets, since normally no ground truth exists
at all and all clusterings are open for interpretation by the viewer.

There exists a variety of cluster models, such as connectivity-, centroid-, and
density-based models. Density models assume a cluster to be a dense region of
observations bounded by less dense regions. The number of clusters does not have
to be known a priori, and neither are any assumption made about their possi-
ble shapes. In contrast centroid-based clustering algorithms (like k-means [6])
implicitly assume that all points within a cluster can be properly represented by a
single point. However, trivial density-based clustering algorithms, like DBSCAN [3],
encounter difficulties if the non-dense regions of observations that divide dense
regions do not clearly separate clusters. Several state-of-the-art density based
cluster models, like OPTICS [1] or HDBSCAN [2], can successfully find clusters with
varying densities. They do however tend to perform poor on datasets with close
high density clusters in combination with distant low density ones [7].
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Each approach to find clusters in a given data set must make assumptions
about what a cluster actually is and how clusters should be separated. These
assumptions are usually made implicitly by the choice of the clustering algorithm
(e.g. k-means finds hyperspherical clusters, or single linkage clustering is suitable
to follow lines in the data set) or explicitly by the choice of parameters for a clus-
tering algorithm (e.g. the choice of the metric used to calculate (dis)similarites,
or the choice of linkage method for hierarchical clustering). Another way to
direct the clustering process would be to incorporate a priori knowledge into
the clustering process.

However, even with a priori knowledge there might not be a sufficiently
good choice of a clustering method and its parameters. This can be the case for
datasets which show too large variety in different regions of the domain. Although
there are algorithms which try to adapt to local properties of the data, they still
can fail as the selected global parameters might only deliver good results for
some (or even only for single) regions of the whole domain.

In this work we present λ-DBSCAN which is a modification of the DBSCAN
algorithm presented in [3]. Our idea is to extend the algorithm slightly to allow
the integration of prior knowledge of the data to the parameters. This enables
us to change the way clusters are formed depending on the specific location of
a data point, i.e., besides global prior knowledge the user is able to apply local
prior knowledge as well.

2 Related Work

DBSCAN is a well studied density based cluster algorithm. Each observation is
classified as either a core point, a border point, or noise. The algorithm defines
a local neighborhood as a hypersphere of radius ε around each point and counts
the number of other data points within this neighborhood to decide which class
(core, border, or noise) a point belongs to.

Nε(�p) = {q ∈ D | dist(�p, �q) ≤ ε}. (1)

A point �p is considered to be a core point if and only if the size of its ε-
neighborhood is at least minPts or μ:

coresε,μ = {�p ∈ D | μ ≤ |Nε(�p)|} (2)

Thus, ε and μ are the two major parameters of DBSCAN.
Furthermore, an observation is a border point if at least one and less than μ

observations are contained within its ε-neighborhood, otherwise it is noise

borderPointsε,μ = {�p ∈ D | 1 ≤ |Nε(�p)| < μ} (3)

noiseε,μ = {�p ∈ D | 0 = |Nε(�p)|}
= D \ (coresε,μ ∪ borderPointsε,μ)

(4)

To form clusters DBSCAN needs to decide which of the core and border points
belong into the same cluster. For this [3] defines a set of relations to describe the
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interaction between different points. The first is directly density reachable. Two
points are directly density-reachable if their distance is less than ε and at least
one of them is a core point. Secondly, two points �p and �q are density reachable
if there exists a sequence of mutually directly density reachable points which
starts with �p and ends with �q. Clusters are then formed by the transitive closure
of the density reachability relation.

Note here that �p is in the ε-neighborhood of a point �q if and only if �q is in
the ε-neighborhood of �p:

�p ∈ Nε(�q) ⇔ �q ∈ Nε(�p) (5)

While DBSCAN enables the user to find clusters with similar densities, it strug-
gles to produce good results if the densities within different clusters vary vastly.
Other versions of the DBSCAN algorithms have been invented to cope with its
limitations, such as OPTICS [1] or HDBSCAN [2].

OPTICS [1] (Ordering Points To Identify the Clustering Structure) is a
density-based clustering algorithm designed to find patterns in spatial datasets.
It generates a reachability plot, revealing clusters with varying density and hier-
archies. HDBSCAN [2] (Hierarchical Density-Based Spatial Clustering of Applica-
tions with Noise) leverages a hierarchical approach combined with a density-
based one. It creates a tree of cluster relationships which allows the algorithm
to find clusters with varying densities.

A completely different approach able to cope with clusters of varying density
would be spectral clustering [9] which turn clustering into a graph-based prob-
lem and leverages the eigenvalues and eigenvectors of the similarity matrix to
identify clusters. It transforms the data into a lower-dimensional space using the
similarity matrix and runs a cluster algorithm on these structures.

While these also find clusters with varying densities, they fail to produce
good results in situations with close high-density clusters together with distant
low-density ones. All of these extensions to DBSCAN have in common, that they
use a set of global parameters which cannot be locally adapted. Although these
parameter choices may have local influences they are usually not very intuitive
to determine.

Another approach that is able to achieve comparable results is C-
DBSCAN [14], which uses pairwise must-link and cannot-link constraints to force
pairs of points into either the same cluster or into different clusters. Cannot-link
constraints can be used to separate a point from another cluster that it would
normally belong to. It could be seen as locally setting μ or ε to such values
that each of the points involved in the constraint is not contained in the others
ε-neighborhood. Must-link constraints on the other hand merge clusters that
would not be combined by DBSCAN because no two points’ ε-neighborhoods
overlap sufficiently. This can merge clusters that are close to each other (which
could be seen as modifying μ or ε again) but also those which are too dissim-
ilar to each other to be found by purely distance- based approaches. For both
types of constraints these have to be given for each involved pair of data points.
Creating a large set of constraint may therefore be prohibitively expensive or
counter-intuitive.
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Algorithm 1: Pseudocode of the λ-DBSCAN Algorithm
Input: DB: Database
Input: ε: Neighborhood size
Input: μ: MinPts
Input: dist: Distance function
Output: label: Points labels, initially undefined

1: for �p ∈ DB
2: if label(�p) �= undefined then continue

3: Neighbors N ← RangeQuery(DB, dist, �p, ε(�p) )

4: if |N | < μ then
5: label(�p) ← Noise
6: continue
7: end if
8: c ← next cluster label
9: label(�p) ← c

10: Seed set S ← N \ {�p}
11: for �q ∈ S
12: if label(�q) = Noise then label(�q) ← c
13: if label(�q) �= undefined then continue

14: Neighbors N ← RangeQuery(DB, dist, �q, ε(�p) )

15: label(�q) ← c
16: if |N | < μ then continue
17: S ← S ∪ N

18: end for
19: end for

3 Implementation

When we want to extend DBSCAN in a way that allows us to incorporate prior
knowledge (or different understandings of which points should be able to form a
cluster and which not) the only parameters within the original algorithm are ε
and μ and thus our first target for adjusting DBSCAN’s clustering behaviour.

The λ-DBSCAN algorithm is based on the DBSCAN implementation. We still
distinct between core, border, and noise points. The parameter ε which is used
to determine which of these classes a point belongs to can be chosen for individual
points rather than using one global value for each point, respectively. For the sake
of this paper we will not alter the meaning of μ as our adaption of ε is sufficient.
Technically a user of λ-DBSCAN could decide for each point individually which
class a point belongs to (without calculating the membership to each class)
but this will turn any practical application infeasible, of such a decision would
have to be made for many points, points in a high-dimensional space, or both.
Instead we select these parameters for whole regions of points, which enables the
algorithm to be reasonably autonomous. The algorithm only relies on provided
domain knowledge, if needed, except for one initial global choice of parameters.
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Fig. 1. Clustering of equidistant points with the classical DBSCAN and λ-DBSCAN.

The effect of this can be seen in Fig. 1 where we see 11 points arranged on a
grid of equilateral triangles such that for every choice of ε and μ DBSCAN must
either assign all points to the same cluster or to no cluster at all. Our Proposed
algorithm λ-DBSCAN can however be parameterized in a way that the upper five
points and the lower five points can be separated.

Algorithm 1 outlines an implementation with a global μ and individual ε
based on [15, Chapter 2.2]. The changes have been marked in Algorithm 1. Note
that we use a function ε(p) which returns individual εs for each data point.
Hence the name λ-DBSCAN, coming from the Python unnamed lambda functions.
Regarding a practical implementation each individual ε could be pre-computed
and stored in a list. This only adds a linear complexity to the algorithm (w.r.t.
to the complexity class of ε(p) which will mostly be in O(1)) and therefore does
not impact the performance by much (cf. Table 1). However, this computation
is only performed once before the clustering starts and will diminish with larger
datasets.

It is important to notice here that Equation (5) does not necessarily hold
anymore. If set accordingly, a point �p could be in the ε-neighborhood of another
point �q, without �q being the in the ε-neighborhood of �p. We see three possible
solutions:

1. Rely on the order in which the algorithm traverses the dataset.
2. Keep the original interpretation of Equation (5) intact and only consider �p

and �q as directly density reachable if they are mutually contained in each
other’s ε-neighborhoods

3. Alter the interpretation of Equation (5) such that �p and �q as directly density
reachable if either is contained in the other’s ε-neighborhood

We discard the first approach, since the clustering should be independent of the
iteration of the observations. We tested implementations 2. and 3., both yielded
the same result for all datasets in this paper.
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Fig. 2. Different clustering results for a dataset with clusters that form concentric
rings. The number of observations per cluster are the same, the densities vary due to
the different radii.

4 Evaluation

In the following, we compare results of λ-DBSCAN with selected algorithms on a
variety of artificial and two real world datasets. Table 2 shows the parameters
we used for each algorithm to cluster the synthetic datasets. Table 1 shows the
runtimes and scores.

4.1 Synthetic Datasets

Rings: Fig. 2 shows different cluster results for an artificial concentric ring data.
All rings contain the same number of elements, which results in different densities
because of their varying radii. Such datasets pose a challenge for density based
cluster algorithms. In order to separate the two inner rings one has to choose a
rather small value for ε which in turn leads to the points on the outermost ring
to not be assigned to the same cluster. With the variation in density in side of
the same clusters even HDBSCAN and OPTICS sometimes either detect noise where
none should be or separates one cluster into two different clusters. Only spectral
clustering yields a perfect result with the nearest neighbor affinity.

λ-DBSCAN allows us to define a ε parameter based on the location of the
points. Since it is known a priori that the clusters get sparser the farther away
they are from the origin, one can set the ε parameter to a value depending on
the distance of the point to the origin – in this case to one third of the distance
of a point to the origin. Spectral clustering however needed more than 28 times
longer to compute this result than DBSCAN or λ-DBSCAN (see Table 1).

Spirals: Figure 3 displays cluster results for an artificial spiral data. The spi-
rals are meet at the origin, which makes them indistinguishable for any basic
density based cluster algorithms. The points are farther away from each other
the further they are away from the origin, resulting in clusters with varying den-
sities. DBSCAN and OPTICS both fail to yield a result comparable to the ground
truth, not matter how the parameter are chosen. Spectral clustering finds three
clusters (because it has to given the parameter choice) but those have virtu-
ally nothing in common with the desired result. This stems from the underlying
cluster model that is implicitly encoded in the algorithm itself.

λ-DBSCAN can use knowledge about local regions and thus separate the clus-
ters around the origin. At the same time, it can use the knowledge about the
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Fig. 3. A dataset with clusters that form concentric spirals. The number of observations
per cluster are the same, the densities within each cluster decreases the further away
a point is from the origin.

Fig. 4. The ground truth and five different clusterings of the compound dataset.

spirals to solve the issue of varying densities in the clusters itself. Figure 3 and
Table 2 show that the way we calculate the individual ε is rather simple. A more
sophisticated choice might even lead to a perfect clustering result around the
origin.

Zahn’s Compound: The Compound dataset [4] represents a challenge for spectral
clustering, since it can not clearly distinguish the two clusters where one cluster
encapsulates another cluster with different densities. OPTICS fails to distinguish
them at all. Since DBSCAN uses the ε and μ globally it fails to cluster the shapes
without noise. λ-DBSCAN produces results better than DBSCAN while taking the
same amount of time (Fig. 4).

4.2 Real World Datasets

GPS Pickup Data: The GPS pickup dataset is a collection of roughly 2′800
GPS coordinates of pick-up and drop-off locations of customers of a ride pooling
company. The aim is to find a suitable selection of locations that represent a pick-
up or drop-off location for a group of users – or in other terms: find clusters in
the GPS data. The dataset contains groups of GPS points with varying densities
and member counts, as well as different distances between the clusters (Fig. 5).

While [7] finds clusters with varying densities and few points, they fail to
split close clusters with high densities. The train station, for example, is one



114 J. Dierkes et al.

Table 1. Comparison of the runtime and ARI scores for each algorithm and dataset.
The PC used for the experiments features an AMD Ryzen 7 5700G processor and 32
GB DDR4-RAM.

Algorithm Runtime in ms ARI Homogeneity Completeness V-measure

Rings
DBSCAN 1.3 0.689 0.828 0.820 0.824
OPTICS 106.4 0.867 0.938 0.854 0.894
HDBSCAN 2.6 0.940 1.000 0.915 0.956
Spectral Clustering 36.7 1.000 1.000 1.000 1.000
λ-DBSCAN 1.3 1.000 1.000 1.000 1.000
Spirals
DBSCAN 1.0 –0.008 0.000 0.000 0.000
OPTICS 63.3 –0.008 0.000 0.000 0.000
HDBSCAN 1.3 0.034 0.220 0.314 0.259
Spectral Clustering 13.7 0.065 0.072 0.072 0.072
λ-DBSCAN 1.2 0.921 0.898 0.898 0.898
Zahn’s Compund
DBSCAN 1.4 0.976 0.949 0.953 0.951
OPTICS 164.1 0.788 0.767 0.942 0.845
HDBSCAN 2.9 0.826 0.819 0.900 0.858
Spectral Clustering 83.2 0.585 0.776 0.809 0.792
λ-DBSCAN 1.5 0.997 0.993 0.992 0.992

big cluster, while it could possibly be an aggregation of four to five close but
separate clusters. None of the referenced algorithms in [7] can cluster these close
bigger clusters effectively, leaving the customers with only one pick-up and drop-
off location for a rather large area. λ-DBSCAN can select these regions in the data
with appropriate ε and μ values.

Application in Flow Visualization. We also applied λ-DBSCAN to a practical
example in the field of flow visualization. We consider the finite-time Lyapunov
exponent (FTLE) for a 2D flow. FTLE fields are scalar fields, its ridges are lines
which one can see as a skeleton of the underlying flow. This skeleton divides the
flow into multiple regions. Material inside the same region which is moved by the
flow over time stays comparably close to each other over time. The extraction
of FTLE ridges can greatly assist in many modern fields, e.g. path planning for
autonomous underwater vehicles [13], tracking the movement of air pollution
and its effects [10], and understanding medical phenomenons like aortic valve
calcifications [8]. [16] recently proposed a new efficient and reliable attempt for
sampling FTLE ridges with a population of particles. It results in a uniform
sampling of these structures. Unfortunately, ridges in FTLE fields tend to be
sharp and closely located to each other which leads to numerical difficulties.
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Table 2. Parameters for the artificial datasets.

Algorithm Parameters

Rings
DBSCAN ε = 1, μ = 2

OPTICS μ = 26

HDBSCAN μ = 6

Spectral Clustering k = 5, affinity = nearest neighbors
λ-DBSCAN ε = |p|/3, μ = 3

Spirals
DBSCAN ε = 0.5, μ = 2

OPTICS μ = 10

HDBSCAN μ = 1

Spectral Clustering k = 3, affinity = nearest neighbors

λ-DBSCAN μ = 3, ε =

{
|p|0.2 |p| > 1

0.1 else

Zahn’s Compund
DBSCAN ε = 1.48, μ = 3

OPTICS μ = 20

HDBSCAN μ = 7

Spectral Clustering k = 5, affinity = rbf

λ-DBSCAN μ = 5, ε =

⎧⎪⎨
⎪⎩
1 |p − (16.5, 9.5)T | < 7 ∨ p0 > 25

0.0001 13.25 < p0 < 17.5 ∧ 15 < p1

2.5 else

[16] point out the need for an appropriate clustering method in order to to detect
outliers and to connect the correct ridges. We applied the cluster methods to an
extraction example for a 2D flow around a cylinder inside a channel [5,12]. In
this dataset the flow streams from left to right and is bounded by solid walls.

The FTLE ridge extraction resulting in 22,000 particles is shown in Fig. 6.
The particles create many lines on the left side of the cylinder, indicating a strong
turbulence with thin coherent regions. Further to the right, there are fewer lines,
thus, less turbulence. However, numerical problems lead to outliers and partly
discontinuous structures.

Figure 6 also displays five different clusterings of the ridges dataset. DBSCAN
with ε = 0.0008 and μ = 3 does yield a meaningful clustering of ridges that are
further away from the origin (approx. x > 0.5) with only some ridges merged.
The ridges near the origin however can not be separated at all. Other parameter
choices yield a better result for the ridges near the origin, but fracture the
clusters further away. OPTICS with μ = 2 and ξ = 0.00001 results in a lot of
noise mislabeling, while other parameter choices merge many ridges into one.
HDBSCAN with μ = 13 does a good job of finding ridges in less turbulent regions,
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Fig. 5. Different results for the GPS dataset. Parameters taken from [7] (except for
λ-DBSCAN)

however it also is unable to differentiate the lines in turbulent regions. Spectral
clustering with k = 50 and the nearest neighbors affinity splits and joins lines
almost at random, also merging the lines in the turbulent regions.

Given the prior knowledge that turbulent regions form around the origin and
contain more close ridges, while less turbulent regions form further away from
the origin and contain fewer ridges which are further spread apart, one can set
the parameters for the λ-DBSCAN algorithm accordingly. A clustering with

μ = 3, ε(x, y) =

{
0.0035 x < 0.5
0.008 else

is seen at the bottom of Fig. 6. The algorithm detects ridges around the origin,
with only some being merged that are very close to each other.
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Fig. 6. The ridges dataset and five possible clusterings.

5 Conclusion and Future Work

In this paper, we proposed a new algorithm for using local specific knowledge
λ-DBSCAN. Effectively our algorithms allows the user to run different instances
of the DBSCAN algorithm on different portions of the dataset while seamlessly
merging their outcomes into a single result.

The speed of λ-DBSCAN enables the algorithm to be used in interactive appli-
cations and be a drop-in for a pure DBSCAN implementation since it is usually not
slower while yielding at least the same – if not better – results. A program that
leverages the user as an oracle who marks regions that need parameter changes
comes to mind allowing some form of semi-supervised clustering. The cluster
result could update in real time (only re-cluster the parts that changed) and
thus allow processing big datasets.

The initial regions in which different parameters for λ-DBSCAN might be
needed could also be automatically be identified by running k-means with a
sufficiently large k and use the density around the so-found proto-clusters to
initialize the function ε(�p).
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Source Code. The implementation of our algorithm is based on scikit-
learn’s [11] implmention of DBSCAN. Our changes are available at https://
visual2.cs.ovgu.de/pubres/lambda-dbscan.
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Abstract. Many industrial scenarios are concerned with the exploration
of high-dimensional heterogeneous data sets originating from diverse
sources and often incomplete, i.e., containing a substantial amount of
missing values. This paper proposes a novel unsupervised method that
efficiently facilitates the exploration and analysis of such data sets. The
methodology combines in an exploratory workflow multi-layer data anal-
ysis with shared nearest neighbor similarity and hypergraph clustering.
It produces overlapping homogeneous clusters, i.e., assuming that the
assets within each cluster exhibit comparable behavior. The latter can
be used for computing relevant KPIs per cluster for the purpose of per-
formance analysis and comparison. More concretely, such KPIs have the
potential to aid domain experts in monitoring and understanding asset
performance and, subsequently, enable the identification of outliers and
the timely detection of performance degradation.

Keywords: Clustering · Heterogeneous data · Missing values ·
Hypergraph · Shared nearest neighbor similarity

1 Introduction

The majority of real-world data related to monitoring the performance of indus-
trial equipment or of production and engineering processes is typically collected
from multiple diverse sources and, thus, is very heterogeneous. It is a challenging
task [13] to analyze and derive meaningful insights, e.g., evaluate and compare
operational performance across sources, from such data. Moreover, industrial
data usually contains a lot of missing entities due to different reasons such as
incomplete metadata records, lack of standardization, equipment malfunction-
ing, registration errors, communication issues, etc. This missing data usually
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affects small but varying sets of parameters/measurements, while the rest of
the data records are available for analysis. However, mining information from
complex multi-source data with missing values can be challenging since many
state-of-the-art algorithms are not designed to handle missing values. In order
to enable the use of such algorithms, common practices are to either impute
missing values or to completely remove that particular instance or feature (the
ones with a high degree of missing values). Both of these approaches can neg-
atively affect the data quality though [8]. In addition, high-dimensional data is
often composed of entries of a very diverse nature, and it might occur that some
interesting, specific properties are associated only with a certain subset/type of
features. There exists a risk of missing these when all the available features are
explored together. Studies like [6,7,11], highlight the importance of viewing data
from different perspectives or views (i.e., considering relevant feature subsets).

To address these challenges, we propose here a hybrid clustering methodol-
ogy, realizing a multi-layer data analysis workflow, which is employing shared
nearest neighbor similarity (SNNS) and hypergraph clustering. The approach is
capable of extracting meaningful insights from high-dimensional data and, at the
same time, is efficient at handling missing values without losing valuable infor-
mation. More concretely, the method allows to organize the assets into separate
(overlapping) groups such that the assets in each group share similar proper-
ties and, thus, are expected to exhibit comparable performance. In this way, it
facilitates the complex task of monitoring and making sense of the performance
of a large portfolio of heterogeneous in nature industrial assets. The potential
of the proposed methodology is validated on a real-world data set with a sub-
stantial amount of missing values originating from the condition monitoring of a
portfolio of industrial assets. These assets are very diverse in terms of technical
specifications and functionalities, are used in different application contexts, and
are produced by different manufacturers.

2 Related Work

Mining of data constructed across multiple domains or modalities (categori-
cal, numerical, transactional, etc.) has been receiving high attention in the last
decades due to the continuous increase of the variety in data sources [1]. This
kind of data analysis is required within the context of grouping and understand-
ing multi-view, heterogeneous, or multi-modal data in many real-world scenar-
ios. The traditional clustering techniques usually fail to identify the cluster of
objects with different characteristics due to difficulties in finding suitable simi-
larity measures, or they are not capable of capturing the intrinsic structure of
clusters.

To reduce these limitations, multi-view [6], multi-layered [7] or multi-type [11]
clustering techniques are introduced. For example, multi-view clustering uses
more than one set of attributes to improve the quality of generated clustering
solutions [6]. In [7], a multi-layer clustering technique is introduced, originally
designed for analysis of network data available in more than one layer [3]; where
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in contrast to multi-view clustering, conditional independence of layers is not
assumed. In real-life scenarios, heterogeneous information networks (HINs) could
be formed by the existence of multiple types of objects that are connected to
each other through different kinds of links. In [15], the authors have studied
the multi-type co-clustering problem in general HINs. They have proposed a
clustering framework that can model general HINs and simultaneously generate
clusters for all types of objects. In [11], a novel method that performs both
clustering and classification tasks on HINs is proposed. The proposed technique
is able to group heterogeneous objects in a network together and assign labels
to unlabeled objects.

A common industrial challenge that impacts these methods is the presence
of missing data. It is usually addressed by removing entries with missing data
or imputing the missing data, e.g., replacing missing values of a feature with
the average of known values for that feature or predicting them based on other
known features of that entry. For instance, in [14], Yang et al. have proposed a
multi-view clustering methodology that tackles missing data through imputation
but also addresses inconsistencies between views.

However, data imputation always carries the risk of imputing noisy data,
especially for industrial assets that are often highly heterogeneous. The creation
of multi-view clustering approaches that deal with missing data in their input is
still in its infancy. In [5], the authors use an indicator matrix whose elements indi-
cate which data entries are observed and assess cluster validity only on observed
entries. However, this approach cannot easily be generalized to all clustering
approaches. Moreover, the proposed methodologies deal with incomplete views
or missing values with some constraints, but they struggle when all views have
missing values and even when the samples just miss a few features in a view [4].

In this work, we propose a novel multi-view clustering approach, which
exploits the power of multi-layer clustering data analysis to transform the highly-
dimensional heterogeneous data set into a hypergraph. Subsequently, the final
clustering solution is obtained by applying a creative hypergraph clustering
methodology. Our method goes beyond the existing state-of-the-art in its abil-
ity to deal efficiently with missing values without losing any information and to
produce overlapping multi-view partitions without imposing any constraints on
the underlying multi-source data.

3 Hypergraph-Based Clustering Analysis Method

In this work, we study a real-world industrial use case considering the explo-
ration and analysis of multi-source data originating from a large portfolio of
heterogeneous assets (compressors). The available data set is composed of both
metadata and sensor measurements (in the form of time series) and contains
substantial quantities of missing data. Analyzing and interpreting data from dif-
ferent types of assets is challenging as they cannot be directly compared since
they may substantially differ in technical specifications and other essential char-
acteristics. Asset comparison can be facilitated by grouping the assets into more
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Fig. 1. Illustrative summary of the proposed approach using two layers. SNNS stands
for shared nearest neighbor similarity.

homogeneous subsets (clusters), i.e., composed of assets with similar character-
istics and settings. The high-dimensional metadata, describing assets’ technical
specifications and various other properties, is used for this purpose. The avail-
able metadata is very suitable for having a realistic evaluation of the application
potential of our clustering approach.

In addition, the validity of the generated clustering solution is further eval-
uated on the time series data originating from the continuous monitoring of the
assets during their operation in the field. The assets’ performance is analyzed
by estimating and comparing the evolution of diverse, performance-related, Key
Performance Indicators (KPIs) (see Sect. 4.4 for more details).

The proposed clustering workflow for analyzing multi-source heterogeneous
data is divided into four main steps as illustrated in Fig. 1 and outlined in detail
in the subsections below.

3.1 Step I: Hypergraph Construction

Let us assume that multi-source information about a set D of data objects with
missing entities, which needs to be grouped into a number of similar categories, is
available. The data objects are described in terms of a set F of relevant features.
The workflow of the different steps used to construct a hypergraph with the data
objects acting as vertices is outlined below:

I.1: Layering. Initially, the features in F are categorized into L different the-
matic layers, each representing a particular aspect describing the data objects.
Domain knowledge is used in this step to identify the different layers. Each layer
i ∈ L is represented by a feature set Fi, Fi ⊆ F . Generalizing the layer con-
struction step to different use cases is not straightforward and requires investing
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time in engaging with domain experts and acquiring a good understanding of
the phenomenon under study. Section 4.1 provides more details on how this step
is performed for the use case studied here.

I.2: Multi-layered Clustering and Hypergraph Formation. Once the
layers are identified, a hypergraph is constructed as it is explained below. A
hypergraph is a generalized graph where edges, also referred to as hyperedges or
nets can connect more than two nodes [12].

• In each layer i, for i = 1, 2, . . . , l, data objects having missing values in feature
set Fi are removed thus a subset of data objects Di ⊆ D is produced. It must
be noted that these removed data objects are still considered in other layers
where their features are completely captured. This allows not to exclude data
objects with missing values from the analysis.

• Data objects Di, for i = 1, 2, . . . , l, in each layer are clustered to obtain a
disjoint clustering solution represented by Ci.

• The produced clustering solutions from all the different layers are united to
build an unweighted hypergraph H = (V,N). The set of vertices V of this
graph are the data objects, i.e., V ≡ D, and the set of hyperedges or nets
N contains all the clusters identified by clustering the different layers, i.e.,
N = C1 ∪ C2 ∪ . . . ∪ Cl.

3.2 Step II: Transformation to Simple Graph

Once the hypergraph is built, it is transformed into an undirected weighted
graph also known as a simple graph. This allows us to benefit further from the
produced lower data granularity and facilitates grouping the data objects into
the final clustering solution. In addition, this helps to handle missing entities,
since the raw data are not used in the rest of the computations.

The new simple graph can be represented as G = (N,E, s), where N , set of
graph vertices, also the set of edges of the hypergraph H; E is the set of the
edges of the simple graph, and s is a real value function assigning a weight to
each graph edge presented by the SNNS between vertices connected by this edge.

II.1: Neighborhood Identification. For each hyperedge ni, (for i =
1, 2, . . . ,m and m the total number of hyperedges) its set of neighbors Γ (ni)
is identified. A hyperedge is considered a neighbor of another hyperedge when
there is a non-empty intersection between the two, i.e. if they have at least one
common data object or pin (vertices in each hyperedge) of the hypergraph in
both. Note that the hyperedge itself is also added to the list of neighbors (used
while calculating the similarity). This can be formalized as:

Γ (ni) = {nj | nj ∈ N ∧ ni ∩ nj �= ∅}. (1)

Once the neighborhoods have been identified, the data objects will not be
used since the rest of the computation is entirely conducted using this informa-
tion.
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II.2: Calculating Shared Nearest Neighbor Similarity. We use the shared
nearest neighbor similarity (SNNS) to measure the resemblance between two
hyperedges of a hypergraph by considering their neighborhoods. Once the neigh-
bors are identified, SNNS (s) between each pair of hyperedges ni and nj , for
i, j ∈ {1, 2, . . . ,m} is calculated as follows (inspired from [10] and adapted):

s(ni, nj) =

{ |Γ (ni)∩Γ (nj)|
|Γ (ni)∪Γ (nj)| , if ni, nj ∈ Γ (ni) ∩ Γ (nj).

0, otherwise
(2)

3.3 Step III: Cluster Integration and Analysis

III.1: Partitioning into Overlapping Clusters. Once the graph G =
(N,E, s) is constructed, any clustering technique can be used to divide its ver-
tices into different clusters, e.g., k-medoids or some graph-based clustering algo-
rithm. In the obtained clustering solution, the vertices N of the simple graph
(which are also the hyperedges of the hypergraph) are replaced with the vertices
V of the hypergraph to generate the final clustering output. Note that we obtain
an overlapping final clustering solution of the data objects D ≡ V , i.e., each
data object can be assigned to more than one cluster. This is a desired outcome
as, in many application scenarios, it is difficult to categorize an object into just
a single category.

III.2: Deriving Peak Density Hyperedges. Furthermore, we can identify
the peak density vertices (hyperedges) in G similarly to the idea introduced
in [10]. Namely, the SNNS between different vertices of G = (N,E, s), can be
used to calculate local density ρ of each vertex ni, for i = 1, 2, . . . ,m, as follows:
ρ(ni) =

∑
nj∈Γ (ni)

s(ni, nj). Subsequently, a threshold t can be used such that
vertices having a local density greater than or equal to t, i.e., ρ(ni) ≥ t, are
considered as the peak density points (hyperedges). These hyperedges can be
interpreted as the most representative (typical) groups of objects.

3.4 Step IV: Deriving KPIs to Analyze Performance

The obtained clustering solution defines several different profiles, each charac-
terized by the specific feature values defining each cluster. Operational data
collected from continuous condition monitoring can then be used to enrich these
profiles, e.g., to characterize them. In most real-world scenarios hardly any
labeled data on the actual performance of the assets is collected. Instead, gen-
eral indicators like the mean time between failures, the percentage of unplanned
maintenance, or the overall maintenance cost are taken into account. These KPIs
could be used to link the profiles to asset health. However, often, as in our use
case, such data is not available and moreover, these indicators are not always
directly linked to operational efficiency and overall performance in general but
just to failures. We suggest instead using KPIs that allow us to compare oper-
ational behavior and performance across assets. In Sect. 4.4, different KPIs are
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described, being identified together with the domain experts, related to concrete
performance indicators concerning the use case.

4 Evaluation in Industrial Use-Case

This section presents a detailed overview of how the proposed methodology has
been evaluated on a real-world industrial use case concerned with the condition
monitoring of a fleet of compressors. Due to the heterogeneity of the available
data, it is very challenging to derive useful insights about the operational per-
formance of the different compressors. The research methodology proposed in
this paper allows to overcome these challenges by facilitating incremental data
exploration, resulting in partitioning the heterogeneous compressor population
into relatively homogeneous overlapping groups sharing similar characteristics.
Thanks to this partitioning, sensor data can be efficiently used to study and
compare the operational performance within and across homogeneous compres-
sor groups.

The data set used in our validation study has been offered to us by our
industrial partners in the context of a research project exploring how to aug-
ment conventional analytics with log data. The company manages data from
compressors installed worldwide and used in a wide variety of conditions, e.g., in
factories and subjected to harsh conditions, or in hospitals and required to com-
ply with very tight tolerance levels. The data set provided contains information
about 265 compressors, characterized by 393 different parameters, e.g., brand,
age, multitude of technical specifications. In addition, each of the compressors
is monitored in the field by a wide range of sensors. This study focuses on four
commonly used sensors: ambient temperature, compressor outlet temperature
and pressure, and internal pressure. The sensor data is reported at a granularity
of one second, but the amount of data varies considerably from one compressor
to another, from 6 months to 7 years.

4.1 Step I: Hypergraph Construction

Initially, the data set has been cleaned and analyzed to identify relevant fea-
tures, as using redundant features can negatively impact the final result. Over
the 393 different parameters, only 24 relevant features have been retained using
various techniques such as domain knowledge, dropping columns with a high
percentage of NaNs (> 60%), uniqueness of the feature values among different
compressors, and correlation between the features. Subsequently, the selected
features have been grouped into different conceptual layers using expert knowl-
edge. For instance, all features related to pressure tolerance are grouped together.
In addition, features of similar types (categorical, binary, and numerical) are kept
together. In this use case, a total of ten layers have been created, consisting of 1
to 4 features per layer. The layers are finalized after being validated by domain
experts, detailed information is given in Table 1. Based on the type of data avail-
able in each layer, different clustering techniques have been used (see Table 1).



126 V. M. Devagiri et al.

Table 1. An overview of the multi-layered clustering phase of hypergraph construction.

Layer Description Instances
with NaNs

Instances
Used

Type of
Features

Clustering
based on

Clusters

1 Supplier 42 223 Categorical Categories 25

3 Cooling type 47 218 Binary 4

10 Activated temp. sensors 19 246 4

9 Act. pressure sensors 19 246 11

2 Pressure tolerance 115 150 Numerical K-means 4

5 Outlet temp. tolerance 99 166 5

6 Output settings 87 178 2

8 Ambient temp. tolerance 118 147 2

4 Installation type 11 254 Domain
knowledge

2

7 Age 79 186 Binning 4

In layers where the k-means clustering technique is used, the optimal number
of clusters is identified by applying four different cluster validation measures,
namely Silhouette [2], Calinski Harabasz [2], Davies Bouldin [2], and Connectiv-
ity [9]. Once the clustering in each layer is finalized, an unweighted hypergraph is
obtained by combining the clustering solutions of different layers. The obtained
hypergraph has 63 edges (the sum of the number of clusters in each layer).

4.2 Step II: Transformation to Simple Graph

The obtained hypergraph in the previous step is transformed into a weighted
simple graph by considering the hyperedges as the vertices of the new graph.
The weight of each edge of the simple graph is obtained by using the SNNS
between the two vertices (hyperedges) the edge connects, which can also be
represented using a 63× 63 SNNS adjacency matrix. The obtained simple graph
is presented in Fig. 2 (left). It can be observed that the central region of the
graph is very dense. Interesting to note that the four vertices far away from the
center (7, 13, 21, 23) are the singletons obtained in the final clustering solution.

4.3 Step III: Cluster Integration and Analysis

The 63×63 SNNS matrix calculated above, converted into a dissimilarity matrix,
is the input for k-medoids clustering algorithm. The optimal number of clusters,
twelve, has been identified by Silhouette (0.08) and Connectivity (92.3) vali-
dation indices. In addition to this, we have also used the dissimilarity matrix,
with edges sorted based on the cluster they belong to (see Fig. 2, right), to visu-
ally validate the obtained clustering output. Well-formed similarity patterns can
be observed along the diagonal confirming to some extent the validity of the
obtained partition. Once the clustering is obtained, the vertices of the simple
graph are replaced with those of the hypergraph, thus resulting in an overlap-
ping clustering solution, as different hyperedges have common vertices.
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Fig. 2. Left: Visual representation of the simple graph, different layers are distinguished
by the color of vertices. Right: Dissimilarity matrix based on SNNS between different
vertices ordered according to their cluster belonging. White cells represent values closer
to one.

Figure 3 depicts the number of compressors per cluster and their uniqueness
in regard to how many clusters they have been assigned to. The clusters can be
grouped into three categories: 1) two large, heavily overlapping, clusters (clusters
6 and 7) with 237 and 245 compressors, respectively; 2) six medium-sized clusters
with between 6 and 63 compressors (clusters 0, 1, 3, 4, 9 and 11); 3) four singleton
clusters not visualized in Fig. 3. These four singletons are also part of the two big
clusters, 6 and 7. It is interesting to note that these singletons capture four unique
compressor brands, only registered for these 4 compressors, thus confirming the
potential of the approach to identify even small unique cluster groups. These
singletons are not considered in the further discussion.

The peak-density vertices (defined in Sect. 3.3, III.2) have been also identified
in the resulting simple graph. It is interesting to notice that all the twelve peak
density points lie within the two big clusters (6 and 7) of the k-medoids cluster-
ing solution. This confirms that all the dense regions of the graph are situated
together, thus making it difficult to identify robust clusters if a density-based
clustering algorithm is used. This is also visualized in Fig. 2 (left), where one can
see that the center of the graph is very densely populated.

It is interesting to investigate how the derived clusters differ in terms of
the importance of the different features used in the construction of the initial
hypergraph. The kernel density estimation of the different features in each cluster
has been calculated for this purpose and visualized for three features in Fig. 4.

It can be observed that there is quite some variability across the clusters per
feature, e.g., cluster 9 appears to have newer compressors, while the compressors
in cluster 0 have been in use longer; cluster 11 is characterized by a higher
motor casing temperature high in comparison to cluster 1; clusters 1 and 9 are
characterized with higher ambient temperatures high, than clusters 3 and 11.
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Fig. 3. Number of compressors (and their uniqueness) per cluster. The colors represent
the compressor uniqueness within the clusters, e.g., one compressor represented in lime-
green is present in 5 clusters (1, 3, 6, 7, 11). (Color figure online)

Fig. 4. Kernel density distributions of few selected features per cluster.

4.4 Step IV: Deriving KPIs to Analyze Performance

We also have a large sensor dataset at our disposal, which captures the compres-
sors’ performance in the field. Combining both data types (metadata and sensor
time series) allows to derive performance-related KPIs, e.g., assess the percentage
of time that the compressors are operating within the expected range as defined
originally in the metadata. Four sensors are considered: outlet pressure, internal
pressure, outlet temperature, and ambient temperature, and the results are shown
in Fig. 5. The first three capture the compressor usage/internal behavior, while
ambient temperature reflects the operational context.

Considering clusters 6 and 7 are the largest, they can be regarded as rep-
resenting the typical (baseline) situation. It can also be observed that very few
compressors operate at the desired/recommended ranges for ambient tempera-
ture. The KPIs based on other sensors show fewer periods outside the expected
ranges, except for cluster 9 which appears to meet specifications for only around
60% of operating time for outlet pressure, and with the highest standard devia-
tion for that feature. It is interesting to observe this is also the cluster that has
the lowest compliance, 21% of the time, with respect to ambient temperature
limits. These two deviations might be linked to one another, which is already
an interesting insight to be subjected to further investigation by our industrial
partners.
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Fig. 5. The percentage of time, mean, and standard deviation (std), the compressors
have been operating within the expected range for the different sensors.

Fig. 6. Kernel density distribution of the sensor data of selected clusters.

In general, three different groups of clusters can be distinguished: 1) clusters 6
and 7 representing regular/baseline behavior; 2) clusters 3, 4, and 11 are almost
always within range, indicating that these compressors are probably used in
an environment where it is of high importance to work within the expected
ranges; 3) clusters 0, 1 and 9 exhibit many more periods outside the expected
ranges, probably containing compressors operating in less constrained contexts.
Further characterization of these groups can be performed by examining the
kernel density estimation of the different sensor values. For readability purposes,
only group 2 (clusters 3, 4, and 11) is showcased in Fig. 6. It can be observed
that cluster 4 is characterized by lower ambient temperature but higher outlet
temperature, while these are the opposite for clusters 3 and 11. Cluster 4 is
also characterized by very stable outlet and internal pressures (around 7000)
supporting the hypothesis that some of these compressors are probably being
used in some strictly regulated environments.

5 Conclusion

This work has presented a hybrid clustering methodology for analyzing and
making sense of complex, multi-source heterogeneous data sets emerging nowa-
days from real-world industrial applications. Such data sets are typically, if not
always, characterized by a high rate of missing values, which makes their analysis
by traditional machine learning methods challenging. We have conceived a novel
data exploration workflow incorporating concepts such as multi-layered cluster-
ing, hypergraph, shared nearest neighbor similarity, and k-medoids, allowing us
to arrive at a multi-dimensional data partition without compromising data size
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due to missing values. The ability of the proposed methodology to derive mean-
ingful insights has been demonstrated in a real-world industrial use case, which
also convincingly confirmed the validity of the produced clustering solution.
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Abstract. Conventionally, decision trees are learned using a greedy
approach, beginning at the root and moving toward the leaves. At each
internal node, the feature that yields the best data split is chosen based
on a metric like information gain. This process can be regarded as evalu-
ating the quality of the best depth-one subtree. To address the shortsight-
edness of this method, one can generalize it to greater depths. Looka-
head trees have demonstrated strong performance in situations with
high feature interaction or low signal-to-noise ratios. They constitute
a good trade-off between optimal decision trees and purely greedy deci-
sion trees. Currently, there are no readily available tools for constructing
these lookahead trees, and their computational cost can be significantly
higher than that of purely greedy ones. In this study, we introduce an
efficient implementation of lookahead decision trees, specifically LGDT,
by adapting a recently introduced algorithmic concept from the MurTree
approach to find optimal decision trees of depth two. Additionally, we
utilize an efficient reversible sparse bitset data structure to store the fil-
tered examples while expanding the tree nodes in a depth-first-search
manner. Experiments on state-of-the-art datasets demonstrate that our
implementation offers remarkable computation-time performance.

Keywords: Decision Trees · Lookahead · Optimization

1 Introduction

Decision tree-based learning algorithms are among the most widely used methods
in machine learning, both for their predictive performance and because humans
can relatively easily interpret these models. Finding an optimal tree (that min-
imizes the learning error) on a data set is an NP-hard problem. This is why
learning a decision tree is usually done greedily, for example, using algorithms
such as CART [5] and C4.5 [18]. A greedy algorithm selects an attribute in a node
locally, starting from the root, down to the leaf nodes. The decision to select an
attribute is made based on a single split and is never reconsidered later. In recent
years, thanks to optimization solvers and new algorithmic ideas, approaches to
infer optimal decision trees have been introduced [1–3,8,14,16,20,21].

These approaches have sparked excitement in the scientific community due
to empirical evidence showing improved classification rates on unseen data [3].
Despite recent algorithmic enhancements, they struggle with inferring trees on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
I. Miliou et al. (Eds.): IDA 2024, LNCS 14642, pp. 133–144, 2024.
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Fig. 1. Illustration of iterations to discover the feature in each node using level-two
optimal decision trees. The level-two decision trees are rooted at dashed white nodes,
while the fixed features are represented in dark-gray nodes. The tree is grown level-
wise in this example. However, building it in a depth-first search order would result
in the same final decision tree since each decision splits the data into two separate
subproblems.

medium-sized datasets within reasonable computational times (e.g., German-
credit dataset [2]). To address the limitations of both greedy and optimal decision
trees, lookahead decision trees present a potential solution. These trees aim to
overcome greedy decision tree shortcomings by considering future decisions dur-
ing construction. A lookahead algorithm determines the next feature’s decision in
a less myopic, yet still greedy, manner based on sliding subtrees, as illustrated in
Fig. 1 with a depth of two. Standard approaches like C4.5 use heuristics to decide
each node’s best one-level subtree or stump [13]. This concept can be extended to
more than one level in lookahead decision trees [11]. Here, the attribute selected
at a node corresponds to the root of the optimal or suboptimal two-level decision
tree before moving to the next level. This allows the algorithm to anticipate the
next step and make a more informed choice regarding the subsequent attribute.
Setting the lookahead level to the maximum depth enables the identification of
the optimal decision tree.

Despite the potential benefits of using lookahead approaches their adoption
has been limited due to various factors. One of the primary concerns is the
additional computation cost associated with lookahead, which requires substan-
tial processing power and memory resources. Furthermore, while some studies
have reported better performance using lookahead compared to greedy methods,
there is no consistent evidence that lookahead consistently outperforms greedy
counterparts across a range of applications. [11] argued that lookahead is more
advantageous when there is high attribute interaction which was later confirmed
and reinforced by [10], whose work demonstrated that the superior performance
of lookahead decision trees is more pronounced when nonlinear relationships
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between feature pairs exist and when the signal-to-noise ratio is particularly
low.

The enhanced capability of lookahead decision trees in handling feature inter-
dependencies can result in more accurate predictive models. Despite their poten-
tial, there’s a lack of widely available tools for researchers and practitioners to
experiment with these methods. To address this, we introduce an efficient looka-
head algorithm with remarkable computation runtimes. Our two-level lookahead
approach achieves competitive error rates comparable to optimal trees, scaling
to larger depths similar to standard greedy decision tree algorithms like CART
or C4.5. We leverage an algorithmic concept from the MurTree algorithm [8] to
identify optimal level-two decisions, adapting it for both information gain and
misclassification error rate. Experiments on standard benchmarks show that this
hybrid, less greedy approach strikes an excellent balance between tree learning
speed and error rate. The paper structure includes a discussion of related work in
Sect. 2, technical background in Sect. 3, an exploration of our methods in Sect. 4,
and presentation of benchmark results in Sect. 5.

2 Related Work

Tree-based algorithms like CART and C4.5 often rely on heuristics for creating
greedy decision trees, where attributes are chosen based on metrics like infor-
mation gain or the Gini index. Despite their scalability, these trees may lack
accuracy due to their myopic nature. To address this, lookahead searches, aim
at optimizing upcoming iterations rather than just the next one. Norton [17] and
Ragavan and Rendell [19] demonstrated successful results with lookahead, with
the latter excelling in high attribute interaction scenarios at the cost of increased
computational complexity. Esmeir and Markovitch [11] introduced ID3-k and
LSID3 as lookahead strategies. ID3-k calculates k-level information gain (gain-k)
at each node, selecting the attribute maximizing it for further splits. LSID3, using
dynamic lookahead and a shallower tree-favoring criterion, surpasses greedy algo-
rithms, especially with more available time. Relying on this, Donick et al. [10]
introduced a random forest approach that is a stepwise lookahead variation.
It considers three split nodes simultaneously in tiers of depth two, enhancing
the identification of feature interdependencies. The lookahead algorithm outper-
forms the greedy algorithm in cases involving non-linear relationships between
feature pairs and a low signal-to-noise ratio.

Thanks to hardware advancements and optimization solvers, various
approaches for learning optimal decision trees have emerged. These fall into cat-
egories like mixed integer programming [1,3,4,21], constraint programming [20],
SAT solvers [15], and dynamic programming [2,8,16]. Among these, dynamic
programming methods, like DL8 [16], are considered the fastest and most accu-
rate in a depth-constrained setting. DL8 uses a caching technique to save
obtained subtrees, optimizing performance. DL8.5 [2] enhances DL8 with an
upper-bound strategy and a lower-bound technique to efficiently explore sub
search spaces. Further advancements by MurTree [8] include limiting tree nodes,
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an efficient depth-two tree computation, and a novel similarity-based lower
bounding approach.

3 Technical Background

We consider binary datasets in which each feature is a value in the set {0, 1}.
Let F be the set of n features and C = {+,−} the set of two classes1.
A binary dataset is defined by: D = {(f i, ci),∀i ∈ {1, 2, . . . |D|}}, where
f i = (f(i,1), f(i,2), . . . , f(i,n)) ∈ {0, 1}n is a feature vector of length n and ci ∈ C
is the class label for the i-th instance. Thus, each instance in D is represented
by a feature vector and a corresponding class label, and the feature vectors are
composed of elements from the set of features F . Given a feature vector f ,
fk = 1, indicating the presence of fk, is denoted as fk ∈ f and f̄k /∈ f other-
wise for its absence (we ignore i for simplicity). The binary dataset D can be
partitioned into the positive class of instances D+ and the negative class D−

such that D = D+ ∪D−. The MurTree algorithm [8] for finding optimal decision
trees of arbitrary depth uses a specialized algorithm for level-two decision trees
whenever it reaches the one level before the last layer (the final trees have a fixed
known limit on depth). This specialized level-two optimal algorithm is presented
next for the sake of completeness.

3.1 Level-Two Specialized Algorithm

MurTree uses a dynamic programming approach with the upper-bound notion of
DL8.5 to determine the optimal decision trees. It works in two phases. In the first
phase, it computes the frequency for each pair of features (fi, fj). Let FQ+(fi)
and FQ+(fi, fj) be the frequency counts in positive instances for a single fea-
ture fi and a pair of features (fi, fj), respectively. FQ−(fi) and FQ−(fi, fj)
are defined analogously for negative instances. Note that, based on FQ(fi)
and FQ(fi, fj), it is possible to compute FQ(f̄i), FQ(fi, f̄j), FQ(f̄i, fj), and
FQ(f̄i, f̄j) without explicit counting. The frequency counts FQ+ can be com-
puted in O(|D+| · m2

+) time with m+ the maximum number of features in a
single positive instance [8]. In the second phase, the tree is computed using the
missclassification score MS(fi, fj) = min {FQ+(fi, fj), FQ−(fi, fj)} for a cou-
ple of features (fi, fj). Given a depth two decision tree, let MSleft and MSright

denote the misclassification scores of the left and right subtrees:
MSleft(froot, fleft) = MS(f̄root, f̄left) + MS(f̄root, fleft) (1)

MSright(froot, fright) = MS(froot, f̄right) + MS(froot, fright), (2)

where froot is the feature of the root node, fleft and fright are the features of
the left and right-child nodes.

1 All the formula of this section can easily be adapted for multi-class contexts.
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The procedure then iterates over all pairs of (fi, fj) of F to find the triplet
(froot, fleft, fright) independently optimized for the left and right branches using
the following equation:

min
froot,fleft,fright∈F

MS(froot, fleft, fright)

= min
froot

[ min
fleft∈F

MSleft(froot, fleft)

+ min
fright∈F

MSright(froot, fright)].

(3)

The algorithm iterates through each pair (froot, fchild), computes the mis-
classification score of the left subtree using Eq. (1), updates the best left child
for the feature froot, and performs the same operation for the right child. Each
subtree can be computed in O(|F2|) time. The global complexity of the algo-
rithm is then O(|D|·m2+|F2|) with m the upper limit on the number of features
in any single positive and negative instance.

3.2 Level-Two Lookahead Information Gain

In our algorithm, we can also use a level-two lookahead on information gain.
This is based on the work of [11], where they developed ID3-k, which uses a
level-k lookahead for information gain at each node to evaluate each feature.
To fully take advantage of the level-two specialized algorithm, we only do a
lookahead of two as it is easy to compute the different frequencies using FQ+(fi)
and FQ+(fi, fj) and FQ−(fi) and FQ−(fi, fj). The information gain is then
computed using the following Eq. (4):

max
froot,fleft,fright∈F

IG(froot, fleft, fright)

= max
froot

[ max
fleft∈F

IGleft(froot, fleft)

+ max
fright∈F

IGright(froot, fright)],

(4)

with:

IG(froot, fleft) = H(froot) −
2∑

i=1

|leaf(froot, fleft)i|
|root| H(leaf(froot, fleft)i), (5)

IG(froot, fright) = H(froot) −
2∑

i=1

|leaf(froot, fright)i|
|root| H(leaf(froot, fright)i), (6)

and

H(S) = −
c∑

i=1

pi log2(pi), (7)

where IG(froot, fchild) is the depth two information gain of a branch from froot
to fchild and child ∈ {left, right}. leaf(froot, fchild)i corresponds to the leaves
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Algorithm 1: LGDT(D, minsup, maxdepth)
1 if maxdepth ≤ 2 then return opt dt(D, maxdepth)
2 solution ← Tree()

3 sub tree ← opt dt(D, 2)
4 solution.root ← make tree(sub tree.root)
5 Recursion(solution.root, maxdepth − 1, D)

6 return solution
7 Procedure Recursion(node, depth, D)

8 if depth > 0 and node.error > 0 then
9 left ← node.left

10 right ← node.right
11 if FQ(left) ≥ minsup and FQ(right) ≥ minsup then
12 ws ← min(2, depth)
13 D.save()
14 D.project(left)
15 sub tree ← opt dt(D, ws)
16 node tree ← make tree(sub tree.root)
17 child ← tree.set node(left, node tree)
18 Recursion(child, depth − 1, D)

19 D.restore()
20 D.save()
21 D.project(right)
22 sub tree ← opt dt(D, ws)
23 node tree ← make tree(sub tree.root)
24 child ← tree.set node(right, node tree)
25 Recursion(child, depth − 1, D)

26 D.restore()

27 end

28 end

of branches (froot, fchild), H(S) the entropy of a node or leaf S with pi the
probability that an element belongs to the class i. We independently maximize
the information gain of each branch of the tree to obtain a tree with the highest
information gain.

4 Less Greedy Decision Trees

This section presents Less Greedy Decision Trees (LGDT), a more informed deci-
sion tree algorithm than classical greedy algorithms. The pseudocode of LGDT
is described in Algorithm 1.

It fixes the feature of each node of the depth-limited tree in a depth-first way.
In each node, it relies on the use of a generated depth-two decision tree based
on the current data using the opt dt method(lines 1, 3, 15 and 22). It uses D,
the current data subset in a node, then computes FQ+ and FQ− and uses both
to build a level-two decision tree based on one of the following approaches:
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– The MurTree level-two specialized algorithm which returns an optimal deci-
sion tree minimizing the misclassification rate;

– a depth-two information gain tree taking advantage of the level-two special-
ized algorithm.

When the maximum depth is 1, the sliding window returns the depth-one tree
with the feature optimizing the evaluated metric. At first, when building up to a
depth-two tree, it is enough to return the tree generated by the sliding window
(line 1). On the other hand, for deeper trees, a subtree is generated using D and
the sliding window (line 3). The root node of the solution tree is set to the root
of the subtree (line 4). The make tree function generates for the feature and the
data its two leaves and computes the misclassification error. Recursion is then
called in a depth-first search fashion starting from the root node to build the
decision tree. An internal node is only refined if the depth constraint is respected
and the node is not pure (line 8). Otherwise, the recursion is stopped, and the
node is considered as a leaf node. Moreover, before expanding a node the search
ensured the number of data falling in its left and right branches (9-10) respects
the minimum support constraint at line 11.

The algorithm will then be called recursively on the left and right parts.
Lines 14 and 21 will update the data representation D to be able to list all
examples falling respectively in left and right. Using the updated D the slid-
ing window will build a subtree for the left and right (lines 15 and 22). The
algorithm will append the sub-node trees (lines 16 and 23) to the parent node
(lines 17 and 24). The recursive method is then called on the child with the
current data representation D and an increment to the depth (lines 18 and 25).

In our implementation, we use a special data representation to efficiently store
and process the input data. By using this representation, we aim to improve
the performance and scalability of the algorithm, while reducing the memory
consumption allowing us to efficiently generate decision trees for large datasets.

Data representation. Table 1 summarizes various dataset representations. Each
example, identified by a unique tid, is linked to a feature set (Feats). The tid-
list groups tids into example subsets. The boolean representation (Table 1a)
uses 0s and 1s to show feature presence (1) or absence (0) per example. The
horizontal representation (Table 1b) records present features. The vertical rep-
resentation [12] (Table 1c) aligns rows with features, simplifying tid-list length
computation. Intersection operations on tid-lists [12] locate transactions covered
by two features, e.g., A,C arises from t2, t3 ∩ t1, t2, t3 = t2, t3.

We use intersection operations to significantly reduce data processing, saving
time and memory. In this work, using the vertical data representation enhances
algorithm efficiency, and the reversible sparse bitset structure reduces unneces-
sary computation and enables fast bitwise operations.

Bitsets and Bitwise Operations. In the vertical representation, the feature tid-list
can be stored using arrays or bitsets. Arrays group all integer values (tid) asso-
ciated with a feature, while bitsets use bits to represent each possible tid value.
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Table 1. Dataset representations.

(a) Boolean.

tid A B C

t1 0 0 1

t2 1 0 1

t3 1 1 1

(b) Horizontal.

tid Feats

t1 {C}
t2 {A, C}
t3 {A, B, C}

(c) Vertical.

Feats tid-list

A t2, t3

B t3

C t1, t2, t3

Fig. 2. Performance Profile plots comparing the error rate of the two versions of LGDT
against C4.5 and DL8.5.

A bitset is the size of the dataset (|D|), with each bit at index i indicating the
presence (1) or absence (0) of the example at tid = i in the feature tid-list. For a
dataset with eight examples (tid ∈ Ω = {1, 2, . . . , 8}), an array retains valid val-
ues post-operations, while a bitset maintains the same size, setting unnecessary
values to 0.

When dealing with large sets, bitsets are more memory-efficient than arrays
due to each integer in an array requiring at least 32 or 64 bits, while a bitset
needs just 1 bit per integer. Bitsets are especially useful in frequent itemset min-
ing algorithms [6], where bitwise operations like counting and intersection are
essential and the number of elements important than the data. These opera-
tions are often optimized for 64-bit processing, making bitsets ideal for storing
parameters that require such operations. As a result, many data structures use
an array of 64-bit bitsets, commonly referred to as words, to take advantage of
these optimizations.

Reversible Sparse Bitset. The decision tree undergoes expansion via a recursive
depth-first search. After data operations such as the project in Algorithm 1, the
number of elements in the bitset decreases resulting in a sparser bitset. Elements
are restored on backtracking from the recursive calls.

The Reversible Sparse Bitset (RSBS) [7] exploits bitset sparsity down the tree
and is able to efficiently restore elements during backtracking. Operations are
performed per 64-bit word for improved performance. RSBS employs sparse bit-
sets, separating empty from non-empty words, eliminating unnecessary counting
of empty words. This sparsity aids intersection operations, ensuring unnecessary
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Fig. 3. Cumulative number of dataset (y-axis) for which the decision tree algorithm
has terminated within the time limit (x-axis).

intersections with a 0 bit are avoided. Moreover RSBS employs a reversibility
technique from constraint programming solvers, enabling the data structure to
recover previous states during searches, thus avoiding the overhead of copying
parameters between parent and child nodes.

When backtracking, the RSBS can revert to a previous state using its trail
of changes, which is implemented with a stack. In practice, only the size of the
number of non-empty words needs to be restored to retrieve the correct parti-
tioning between empty and non-empty words. Throughout the search, the entire
algorithm operates with a single instance of the data structure, facilitating incre-
mental changes at each step and ensuring consistency when exploring multiple
paths. The stack chronicles successive changes, and during backtracking, the top
layers are removed to revert to prior states.

LGDT uses a single instance of the RSBS(D) to maintain the data in the
current node. Before going further down, the state is saved (lines 13 and 20) and
the state bit vector is projected (using bitwise AND operations) with the next
node feature (a fixed precomputed bit vector) (lines 14 and 21). Each projection
reduces the dataset by filtering the examples that satisfy the condition of the
selected feature. Before exploring a node and proceeding to the second split,
the previous state must be restored, as indicated in lines 19 and 26. This save-
and-restore mechanism leverages the internal stack state of the RSBS. Every
save action corresponds to a push on the stack, and every restore action equates
to a pop, allowing for the restoration of the partitioning between empty and
non-empty words in constant time.

5 Results

This section presents the results of the experiments we have conducted. The
source code and data used for the experiments in the paper are available at
https://github.com/haroldks/pytrees. Our experiments compare three decision
tree learning algorithms: C4.5, DL8.52, and LGDT. LGDT had two implemen-
tations based on data representation. The first, labeled as LGDT, uses a reversible

2 https://github.com/aia-uclouvain/pydl8.5.

https://github.com/haroldks/pytrees
https://github.com/aia-uclouvain/pydl8.5
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Fig. 4. Performance Profile plots comparing the error rates of LGDT and DL8.5 on
large datasets.

sparse bitset structure, while the second, LGDT*, follows the original algorithm by
Esmeir and Markovitch (2004) using a double loop and boolean data view. For
comparison, we include a scikit-learn implementation of C4.53. DL8.5 was exe-
cuted with a 10-minute time limit. All experiments were conducted on an Intel
i5-1245U machine with 16 GB RAM running Arch Linux. The study involved
23 discretized datasets from CP4IM4, with a minimum support of 1.

First, we proceed with an experiment to determine the proximity of LGDT
tree errors to optimality. Using a performance profile [9], we contrast error rates
of two LGDT versions (LGDT+error using a level-two specialized optimal tree
algorithm, and LGDT+IG with level-two information gain optimization) with those
of C4.5 and DL8.5 on the aforementioned datasets, based on the training set.
This aims to ascertain LGDT’s viability as an alternative to C4.5 and to gauge
its divergence from DL8.5. Figure 2 illustrates performance profiles for instances
with maximum depths of 2, 3, and 4. The performance profile is a cumulative
distribution of an algorithm’s s ∈ S enhanced performance versus other algo-
rithms in set S across a problem set P : ps(τ) = 1

|P | × | {p ∈ P : rp,s ≤ τ} |,
with the performance ratio rp,s = tp,s

min{tp,s|s∈S} where tp,s signifies each algo-
rithm’s error rate. The performance profile is then visualized by plotting, for
each algorithm, the proportion of solved instances with the lowest error rate on
the y-axis against the difference from the lowest error rate on the x-axis. Results
reveal that, regardless of depth, LGDT consistently achieves superior error rates
compared to C4.5 across all datasets. At depth 2, both LGDT+error and DL8.5
immediately secure the lowest error rates as they yield optimal trees in this con-
text. LGDT+IG holds the lowest error rate for about 50% of instances, while C4.5
achieves it on around 30%. Moreover, permitting an error rate roughly double the
best, LGDT+IG solves all instances, whereas C4.5 remains unable. With increasing
depth, DL8.5 consistently outperforms others with the lowest error rate, except
for depth 4, where it times out on some. The error gaps widen with depth, reflect-
ing escalating performance ratios. Notably, the LGDT-C4.5 gap widens faster
than DL8.5-LGDT, showcasing LGDT’s greater reliability than C4.5. This may

3 https://scikit-learn.org/.
4 https://dtai.cs.kuleuven.be/CP4IM/datasets/.

https://scikit-learn.org/
https://dtai.cs.kuleuven.be/CP4IM/datasets/
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be due to C4.5’s inclination to make erroneous or sub-optimal decisions with
deeper trees, increasing the capabilities of LGDT to mitigate underfitting.

Figure 3 illustrates the cumulative termination count of each algorithm.
Notably, C4.5 exhibited the fastest performance, consistently producing deci-
sion trees within a second, regardless of depth. At a depth limit of 2, LGDT
and DL8.5 displayed similar performance, as both returned optimal trees at
this depth. DL8.5 and LGDT performed similarly due to their shared utilization
of the level-two specialized algorithm and reversible sparse bitset data struc-
ture. LGDT∗ lagged behind the RSBS implementation, attributed to individual
example checks for supported examples during each projection. With increasing
depth, C4.5 maintained its speed edge, while DL8.5 progressively slowed and
ultimately couldn’t solve all instances within a 10-minute window starting from
depth 4. Furthermore, when comparing LGDT implementations across depths,
LGDT outperformed LGDT∗ by an average factor of 10.

To evaluate LGDT’s effectiveness compared to optimal decision trees on large
datasets, we conducted a final experiment using 15 classification datasets from
the UCI Repository. These datasets had at least 30 features, binarized to create
datasets with a minimum of 300 features. Experiments covered tree depths of 4,
5, and 6, with DL8.5 constrained to a 30-second runtime to highlight challenging
scenarios. The performance profile on the runtime in Fig. 4 revealed that at depth
4, DL8.5 outperformed in about 40% of instances, but this advantage diminished
and disappeared at depth 6. DL8.5 consistently lagged behind LGDT, and as
depth increased, the error gap widened, showcasing LGDT’s superior reliability
for deeper trees. DL8.5’s declining performance with depth is attributed to its
tendency to become trapped in deeper search tree sections, prioritizing optimal
features over comprehensive search space coverage. This focus results in substan-
tial unexplored segments, leading to suboptimal outcomes compared to LGDT
approaches.

6 Conclusion

In this paper, we proposed an efficient lookahead algorithm for constructing deci-
sion trees that can capture feature interdependencies within binary datasets. To
offer the best computation time, and become a viable and practical alterna-
tive over pure greedy methods, the algorithm relies on two algorithmic ideas:
the Murtree level-two specialized algorithm and the reversible sparse-bitset data
structure also used in DL8.5. Through experiments on various datasets, we com-
pared the performance of our algorithm with two state-of-the-art decision tree
methods, C4.5 and DL8.5. Our results suggest that lookahead decision trees can
be a valuable addition to the toolkit of data scientists. In future research, we
aim to explore effective techniques for managing continuous features instead of
binarizing them in advance.
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Abstract. Learning curves are important for decision-making in super-
vised machine learning. They show how the performance of a machine
learning model develops over a given resource. In this work, we con-
sider learning curves that describe the performance of a machine learn-
ing model as a function of the number of data points used for training.
It is often useful to extrapolate learning curves, which can be done by
fitting a parametric model based on the observed values, or by using
an extrapolation model trained on learning curves from similar datasets.
We perform an extensive analysis comparing these two methods with dif-
ferent observations and prediction objectives. Depending on the setting,
different extrapolation methods perform best. When a small number of
initial segments of the learning curve have been observed we find that
it is better to rely on learning curves from similar datasets. Once more
observations have been made, a parametric model, or just the last obser-
vation, should be used. Moreover, using a parametric model is mostly
useful when the exact value of the final performance itself is of interest.

Keywords: Learning Curves · AutoML · Supervised Learning

1 Introduction

Learning curves are used for various types of decision-making in supervised learn-
ing. They show how the performance of a machine learning algorithm develops
over a given resource, for example, the number of epochs, run time, or number
of data points used for training. In this work, we look specifically at learning
curves across data points. They are generally used in the following three decision-
making situations [13,20]:

1. Data-acquisition [10,21]; in this situation the focus is on predicting if acquir-
ing additional data would significantly increase the performance of a machine
learning algorithm.

2. Early stopping [7,17]; for determining when training a given machine learning
model on more budget would not cause significant improvement.
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3. Early-discarding [8,14,19]; this situation focuses on picking the best learning
algorithm from a set of options. Instead of training all of the learning algo-
rithms on the entire dataset, which is computationally costly, they are trained
on increasing budgets. The learning algorithms that are predicted to perform
the worst can then be discarded early on.

In all decision situations, we typically have an incomplete learning curve and
want to extrapolate how the performance of the algorithm develops when more
budget is provided. Various model types are capable of extrapolating such curve
segments, for example, parametric models [5], meta-learning models [2,11] or
specialized classifiers [9]. Parametric models are usually fit to the points of the
curve segment and can then be used to make extrapolations. A popular para-
metric model used for learning curves is the inverse power law (IPL) [4,7]. Alter-
natively, meta-learning models utilize learning curves from earlier encountered
datasets [11,18]. For example, MDS considers a given pair of algorithms, utilizes
learning curves of the same algorithms from related datasets, and combines these
to extrapolate the learning curves on the current dataset [11]. Mohr et al. [15]
performed an in-depth comparison between parametric models for the extrapo-
lation of learning curves. They empirically evaluate several parametric models
over various datasets, and conclude that the IPL model is outperformed by the
Morgan-Mercer Flodin model (MMF). This extended the work of Gu et al. [5],
who had previously performed this comparison on a smaller database with fewer
parametric models and came to the opposite conclusion.

This paper complements the previous studies of Mohr et al. [15] by compar-
ing parametric extrapolation with meta-learning-based extrapolation. We inves-
tigate when it is beneficial to use a parametric model versus a meta-learning
model across various extrapolation settings, which are defined by the available
learning curve segment, the prediction target (the training set size to be extrap-
olated to) and the prediction objective. We consider the following questions:

1. How does the available curve segment (i.e., the size of the learning curve that
is already determined) influence the performance of parametric and meta-
learning models for the extrapolation of learning curves?

2. How does the prediction target (i.e., the point towards which the learning
curve needs to be extrapolated, this is typically determined by the size of the
dataset) influence the performance of the aforementioned models?

3. In some situations we need the exact performance prediction, resulting in a
regression task, and in other situations it suffices to select the best algorithm
from a set of several options, resulting in a classification task; how does this
decision situation influence the performance of the extrapolation models?

To compare these two extrapolation model types we take the best-performing
parametric model according to current insights from the literature, namely
MMF [5]. We compare it to the Meta-Learning on Datasamples (MDS) model
developed by Leite and Brazdil [11]. This is the most fundamental model we
are aware of that utilizes learning curves from other datasets. As an additional
baseline, we include a simple model that horizontally extrapolates from the last
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observation in the curve segment. Of course, our results are conditioned on the
choice of model per category (i.e., MDS, MMF, and the baseline), which leaves
room for a more general study that includes more model types per category.

We find that using learning curves on other datasets with the meta-learning
model is beneficial when only a few parts of the learning curve have been
observed. However, when more observations have been made, a parametric
model, or just the last observation, outperforms the meta-learning model. We
further find that using a parametric model is in particular beneficial when the
objective is to predict the exact performance of a classifier. When the objective
is to pick the best algorithm from a set of two algorithms, the surprising finding
is that simply choosing the algorithm with the best score on the last curve seg-
ment is better than picking the best one according to an extrapolation obtained
from a parametric model, no matter how few observations have been made.

2 Related Work

Learning curve extrapolation is performed in many different contexts of machine
learning. Various methods have been developed in this regard. Our main focus is
on learning curve extrapolation methods that can be used in general, and which
are usually tested on simple machine learning algorithms. In this section we show
research done into learning curve extrapolation in the different contexts.

Parametric Models for Learning Curves: Learning curves have often been
modelled by low-parameter models. Power-law models have successfully been
used in model selection to efficiently allocate resources to promising models [14].
They have also been used for early-stopping to stop the training of models once
it is highly probable that their performance will not significantly increase [7].
Theoretical works into the shapes of learning curves back up this line of work,
as they suggest that learning curves usually have power-law behaviour, however,
they also suggest that learning curves can have exponential behaviour [1,6].
Mohr et al. [15] compare all the parametric models used for learning curves that
they could find in the literature. They perform this comparison by looking at the
model selection capabilities of each learning curve model. They find that there
are parametric models that can outperform power-law and exponential models.

Alternatively, Klein et al. [9] developed a classifier specialized for learning
curve extrapolation, i.e., a Bayesian neural network that has built-in prior infor-
mation about the aforementioned parametric models.

Meta-Learning Models for Learning Curves: Meta-learning models try to
leverage knowledge across datasets [2]. Given a partial learning curve of a given
algorithm on a given dataset and several complete learning curves of this algo-
rithm on different datasets, the goal is to extrapolate the partial learning curve.
The Meta-Learning on Datasamples (MDS) method addresses this problem [11].
It introduces a distance measure between datasets, to select datasets for which
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Fig. 1. Learning curve extrapolation performed by MMF, MDS (k=4) and Last for the
given curve segment and target anchor. The blue line is the extrapolation performed
by MMF. The green line is the extrapolation performed by Last. The smaller circles
represent the k-nearest curves MDS uses to make its prediction, which is given by the
red cross. (Color figure online)

the completed learning curve is known. They use this to pick out the k closest
learning curves. The mean of these k curves at the target is then taken as the
extrapolation. Leite and Brazdil [12] build upon their work by also including
meta-features of the datasets. These are features that describe the dataset and
can be used to find similarities between datasets. Van Rijn et al. [18] build on
this work by introducing an algorithm that can rank a portfolio of classifiers.
Chandrashekaran and Lane [3] introduce a method similar to MDS [11] for hyper-
parameter optimization. The main difference is that the distance measure is to
completed learning curves on other hyperparameter settings instead of datasets.

3 Extrapolation Methods

We follow Mohr and van Rijn [13] in using the term anchor point or anchor
to refer to a specific dataset size. We denote the performance value (accuracy
in our case), for a learning algorithm a at an anchor point s of dataset d as
Ĉd(a, s), or simply Ĉ(a, s) in case the dataset is implicitly clear. This value is the
estimated out-of-sample accuracy of a model obtained with learning algorithm
a and using s training examples, which is acquired using a 5-fold Monte-Carlo
Cross Validation (MCCV) [15]. The extrapolation methods that we use are:
Morgan-Mercer Flodin (MMF), Meta-Learning on Datasamples (MDS) and the
performance at the last available anchor. We refer to the baseline that predicts
the performance on the last seen anchor as ‘Last’. Next, we will give an overview
of these methods. Figure 1 shows each method used on a learning curve.

Morgan-Mercer Flodin (MMF): MMF is a parametric model given by fθ =
(ab + cxd)/(b + xd) where θ := (a, b, c, d). Given the anchor points s1, ..., sm for
a curve segment, the loss associated with parameters θ for the learning curve of
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some learning algorithm a is loss(θ) =
∑m

i=1 wi(Ĉ(a, si)−fθ(si))2 where wi is the
weight given to anchor si. Here, we follow Mohr et al. [15] and set wi = 2i, which
implies that the i-th anchor is more important than all the anchors before si

together. Exploring other weighing schemes could be interesting for future work.
Mohr et al. [15]1 use the Levenberg-Marquadt algorithm, we use the AdamW
optimizer in PyTorch [16] to optimize for the parameters of the model instead.
We experimentally found that this performs better.

Meta-Learning on Datasamples (MDS): To predict the better perform-
ing learning algorithm out of two, MDS [11] uses learning curves from these
algorithms on other datasets.2 This approach is parameter-free, so predictions
can only be made for anchors that have an observed performance on the other
datasets. As such, it is required that the curves obtained from other datasets
contain performance information for the target anchor. Among all the available
curves of other datasets, the most relevant ones for the prediction task are deter-
mined based on the similarity of the already observed curve segments for both
learners. Suppose that we want to predict which of algorithms a1 and a2 performs
better at a given target anchor, we have measured their performance on dataset
d for anchors s1, ..., sm. Then the (lack of) relevance of another dataset d′ for
the prediction task can be assessed through the similarity of the learning curves,
which in turn can be measured as the squared anchor-wise deviations summed for
both learners Ra1,a2(d, d′) =

∑m
i=1(Ĉd(a1, si)− Ĉd′(a1, si))2+

∑m
i=1(Ĉd(a2, si)−

Ĉd′(a2, si))2. Given that the k nearest datasets are d1, ..., dk, MDS takes the
mean performance of a1 and a2 at the target anchor s on these datasets and
makes the extrapolations 1

k

∑k
i=1 Ĉdi

(a, s) for both algorithms. The better per-
forming algorithm is then predicted to be the one with the better extrapolated
performance. Leite and Brazdil [11] improve their method by scaling curves on
other datasets before using the distance measure. Given a learning curve on a
dataset d′ �= d, each point of that curve is multiplied by the following constant
f =

∑N
i=1(Ĉd(a,si)·Ĉd′ (a,si))·wi)

∑N
i=1(Ĉd′ (a,si)·wi)

. We also include this scaling in our implementa-

tion. The weighting mechanism used by the authors is given by wi = i2. However,
we again use wi = 2i as initial experiments suggested this improves performance.

It should be noted that the proposed method is intended for the task of
(binary) algorithm selection. We also explore the situation in which we have a
single algorithm, and want to predict the performance at the target anchor. For
this, we simply remove the dependence of the second algorithm by excluding it
from the sum Ra(d, d′) =

∑m
i=1(Ĉd(a, si)− Ĉd′(a, si))2. We use a value of k = 4

in our experiments as it provides the best results in preliminary experiments.
The curve scaling could be applied before or after the computation of nearest
neighbours. We apply it before the computation of the neighbours.

The Last Anchor Baseline: A trivial baseline is to extrapolate the known
part of the learning curve simply with a horizontal line at the performance of
1 The authors use the name mmf4 for the version of MMF that is used in our work.
2 The authors use the name A_MDS for the version of MDS used in our work.
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the last available anchor. Accordingly, we call this baseline ‘Last’ as was done
by Mohr et al. [15]. For any target anchor, it predicts the value of the largest
anchor point in the given curve segment. Similar to the other two methods, this
prediction can utilize learning curves for both performance prediction as well as
algorithm selection tasks.

4 Experimental Setup

The extrapolation can be an intermediate step in a comparison between various
learning algorithms. In this case, the only result of interest is what learning
algorithm will perform better at the target anchor, essentially making this a
classification task. In other cases, we are interested in the exact performance
value, essentially making this a regression task. We consider the following two
learning curve tasks.

1. Performance prediction (regression task). Given a partial learning curve of an
algorithm, predict the performance of this algorithm at the target anchor.

2. Binary algorithm selection (classification task). Given the partial learning
curve of two algorithms, predict which of the two algorithms performs best
at the target anchor.

The performance of the extrapolation methods depends on the context of the
extrapolation setting. We define the context by the following variables: (1) tar-
get anchor (the anchor point to extrapolate to); (2) curve segment (the
anchor points for which the curve is already given, and extrapolation is per-
formed from this segment to the target anchor); and (3) prediction objective
(what the extrapolation is used for). Whether the extrapolation method is used
for performance prediction or binary algorithm selection. (4) Metadata. The
type of additional data that can be used for the extrapolation task. MDS utilizes
this meta-data, MMF does not. We published all experimental data online.3

Our analysis is based on the Learning Curve Database (LCDB) [15]. It con-
tains learning curves of 20 learning algorithms on 248 unique datasets. To get
a balanced overview of how the extrapolation methods work in different extrap-
olation settings, we consider a broad set of anchors. For each of 248 datasets
and each of the 20 algorithms, LCDB contains scores for anchor points at sizes
�2 7+k

2 � with k ∈ {1, 2, ..} until the maximum dataset size is reached. We pick
the anchor points that are present in at least half the datasets (i.e., leaving out
anchor points at higher values that are only obtained when using the larger
datasets). This leaves us with the following anchor points {16, 23, 32, 45, 64, 91,
128, 181, 256, 362, 512, 724, 1024, 1448, 2048, 2896, 4096}. We do not consider
the first anchor (16) as a target anchor, as we need at least one anchor point
in the curve segment to make a prediction. Similarly, we do not include the last
anchor (4096) in our curve segments. Regarding the curve segments, we start
with just the first anchor and keep adding the next anchor. This results in 16
possible curve segments.
3 See: https://github.com/ADA-research/LearningCurveExtrapolationSettings.

https://github.com/ADA-research/LearningCurveExtrapolationSettings
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We use three distinct metrics in our comparison. Let s be some target anchor
and a some learning algorithm (or a1, a2 two learning algorithms that are being
compared). If the estimated and true prediction performances of a at anchor s
are given by ŷ(a, s) and Ĉ(a, s) respectively, then the loss of the extrapolation
model is defined as:

– Absolute error (a, s) = |ŷ(a, s) − Ĉ(a, s)|
– Binary error (a1, a2, s) =

{
0 if best learner was predicted
1 else

– Risk (a1, a2, s) =

{
0 if best learner was predicted
|Ĉ(a1, s) − Ĉ(a2, s)| else

The absolute error is associated with the performance prediction task, while the
binary error and risk are associated with the binary algorithm selection task.
We use two metrics for this task, as we are interested in (1) how often the
extrapolation methods pick the wrong learning algorithm and (2) the loss in
performance if that learning algorithm were used instead of the better one.

5 Results and Discussion

Relative Performances of Extrapolation Methods for a Fixed Curve
Segment and Target Anchor: We first discuss the performance of the extrap-
olation methods on the binary algorithm selection task. We use all combinations
of 2 classifiers from the 20 classifiers of LCDB, resulting in 190 binary algorithm
selection tasks. Figure 2 shows a matrix with the relative performance on each
binary algorithm selection task of the three extrapolation methods, for a target
anchor size of 4096 and a fixed curve segment of 724. Each cell represents a per-
formance comparison between two extrapolation methods on such a task. The
results are symmetric, and the diagonal is empty. For each comparison between
extrapolation methods ‘A vs B’, the binary error of B is subtracted from the
binary error of A (for each pair of learning algorithms). As we do this over all
datasets considered in LCDB, the mean is taken over the performance obtained
over 248 datasets. Positive values (red) indicate that extrapolation method B
obtained a lower average error across datasets, while negative values (blue) indi-
cate that extrapolation method A performed better. Each of these plots gives a
global overview of which extrapolation method performed better in this setting,
although this is just by visual inspection. The distributions of these means are
then displayed as boxplots (right bottom).

The boxplots reveal that, for this particular curve segment and target
anchor, the last anchor baseline (Last) clearly outperforms Morgan-Mercer
Flodin (MMF) and Meta-Learning on Datasamples (MDS). This can be seen
as the means and median are well above the 0 line. We also see that in the
comparison between MMF and MDS in this specific extrapolation setting there
is a slight advantage for MMF as the mean and median are slightly above the
0 line. However, we note that these results are depending on the extrapolation
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setting that was selected. The conclusions might differ in other settings (e.g., a
different target anchor and a curve segment).

Fig. 2. Relative performances of the extrapolation methods for a fixed curve segment
with a largest anchor of size 724, and fixed target anchor of size 4096. Shown are the
results for the binary algorithm selection task with binary error as the metric. The
colour bar refers to the figures in the left column and the top right figure. Names of
learning algorithms are abbreviated (our GitHub project code contains the full name
mapping).

Performances of Extrapolation Methods for Increasing Curve Seg-
ments and a Fixed Target Anchor: Figure 3 now offers a slightly more
generalized view on the situation than Fig. 2 by varying over different curve seg-
ments (over the x-axis). The target anchor remains fixed at a size of 4096. The
left and middle columns are for the binary algorithm selection task and the right
column is for the performance prediction task. The left column uses the risk as
metric, the middle the binary error, and the right the absolute error. As such,
note that the metric in the middle column corresponds to Fig. 2. Results are
aggregated by first computing the mean over the datasets per pair of classifiers
(as in Fig. 2) or per individual learners (for the performance prediction task). We
ignore the very first value in the performance prediction task for MMF and any
comparison with MMF because it is unable to perform an extrapolation based
on only a single curve segment.
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Fig. 3. Performances of extrapolation methods for moving curve segments and a fixed
target anchor of size 4096. The lines represent the average, the dotted lines represent
the median, and the shaded areas show the interquartile range of the performances
according to the respective measure.

We see that MMF outperforms Last on average for the performance predic-
tion task but is outperformed by Last on the binary algorithm selection task. For
the performance prediction task, the interquartile ranges suggest Last outper-
forms MMF at times at some smaller curve segments. The reason for this is that
there are quite a few learning curves in LCDB that descend at the beginning
and then start rising at a later anchor point. When only the descending part
of the learning curve is available MMF will extrapolate in the wrong direction.
In these cases, another parametric model should be used. Even so, at smaller
curve segments an improvement of around 0 − −4% accuracy can be expected
for the prediction. For the binary algorithm selection task, we see that MMF
never improves over Last even at smaller curve segments. By looking at the
interquartile ranges we see that for any curve segment, Last outperforms MMF
for around 75% of cases. Last has quite a high error at lower curve segments,
larger than 30%. However, it seems that MMF cannot improve on this.

Furthermore, we see that MDS seems to outperform both MMF and Last
on smaller curve segments. For the performance prediction task, we can also see
that MDS is a lot more precise and accurate at these smaller curve segments. It
starts at an absolute error of around 0.1 and has closer quartiles than the other
methods. As the learning curves represent accuracy, this means that MDS can
predict the accuracy of a learning algorithm within ±10% with only the first
anchor point. For the binary algorithm selection task, we see that the binary
error of MDS is still quite high at the lower curve segments, but it stays about
5–10% lower than the other methods. Even though the binary error is large here
we see that the risk is under 1.5%, which is quite low. This shows that even
though MDS predicts wrong over 20% of times at lower curve segments when it
predicts wrong the loss in accuracy is only under 1.5%.
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Fig. 4. Relative performances of extrapolation methods for increasing curve segments
(indicated by the row) and target anchors (indicated by the column). A comparison of
extrapolation methods ‘A vs B’ means that the risk of B is subtracted from the risk
of A. The left column displays the results with the risk as metric, the middle column
displays the binary error, and the right column displays the absolute error. The left
side of the colour bar is for the risk and the right side is for both binary and absolute
error.

Relative Performances of Extrapolation Methods for Increasing Curve
Segments and Target Anchors: Figure 4 now further generalizes the previous
view by additionally ranging over different target anchor sizes. This results in a
matrix, where the row indicates the final curve segment, and the column indicates
the target anchor. Each cell indicates the difference in performance between two
extrapolation methods for that setting, aggregated over all datasets and pairs of
classifiers. The colour bar shows two different scales, the left side is used for the
risk values and the right for the absolute and binary error values. Values falling
outside of the bounds given by the colour bar have been set to the value of the
nearest bound. As in the previous section, for the performance prediction task,
we ignore the curve segment that only contains the anchor 16 for any compari-
son that includes MMF. From this figure, we see that the trend identified in the
previous section occurs for most target anchors. MDS outperforms both MMF
and Last on smaller curve segments. However, the smaller the target anchor the
smaller the anchor point at which Last or MMF becomes better than MDS. This
is because, in the setting where we regard smaller target anchors, fewer obser-
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vations are needed to complete the learning curve, thus smaller curve segments
give more information than they would for larger target anchors. This shows
that a meta-learning model that uses other learning curves is useful when there
is little information about the learning curve. As a rough estimate we see that
when the last anchor in the curve segment is under a 5th or 10th the size of the
target anchor, MDS performs better than the other two extrapolation methods.
It becomes clear that it is not beneficial to use a parametric model for the binary
algorithm selection task. This is because MMF is outperformed by simply using
only the last anchor in the curve segment. We see that as more data on the
learning curve becomes available the last anchor becomes a better estimation of
the target anchor and thus outperforms MDS. For the performance prediction
task, it is better to use a parametric model over just the last anchor. At larger
curve segments MMF will slightly outperform MDS. Thus, as more data on the
learning curve becomes available it is better to use a parametric model if a high
accuracy of prediction is required.

6 Conclusion

In this paper, we have compared two distinct learning curve extrapolation meth-
ods, i.e., the parametric model MMF and the meta-learning model MDS. Addi-
tionally, we have included a baseline which takes the performance at the last
anchor of the learning curve as its prediction. We have performed this comparison
across different extrapolation settings. In these settings, we vary the availability
of data for the extrapolation, the size of the target anchor, and the prediction
objective. Most importantly, we show that depending on the prediction task, dif-
ferent extrapolation methods can be considered the best. In particular, MDS is
the better performing extrapolation method when little information is available
on the learning curve. Due to the large amount of settings it is hard to exactly
quantify, but loosely speaking MDS performs better than the other methods
when the largest anchor in the curve segment is up to a 5th or 10th the size of
the target anchor. Once more data becomes available, both MMF and the base-
line generally outperform MDS. This goes to show that, with more data available
it is better to rely on a parametric model, or just the last anchor, and with less
data available it is better to rely on a meta-learning model. We find that, when
predicting which of two learning algorithms is better, the parametric model is
often outperformed by just using the information available on the last anchor.
However, this is not the case when the objective is to find the exact value of
the learning curve at the target. In that case, the parametric model outperforms
using just the last anchor in almost all cases.

Interesting further research could be: (1) A conditional analysis that depends
on the learners. (2) Including other parametric models in the analysis. (3) To
study the impact of weights in the methods. Here we used an exponential decay of
older anchors. (4) Performing the evaluation not in terms of curve segment/target
anchor combinations, but in terms of difficulty. (5) Including a multi-class objec-
tive in the analysis, where the goal is to predict a ranking of the classifiers.
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Abstract. Neural architecture search (NAS) is a challenging problem.
Hierarchical search spaces allow for cheap evaluations of neural network
sub modules to serve as surrogate for architecture evaluations. Yet, some-
times the hierarchy is too restrictive or the surrogate fails to generalize.
We present FaDE which uses differentiable architecture search to obtain
relative performance predictions on finite regions of a hierarchical NAS
space. The relative nature of these ranks calls for a memory-less, batch-
wise outer search algorithm for which we use an evolutionary algorithm
with pseudo-gradient descent. FaDE is especially suited on deep hier-
archical, respectively multi-cell search spaces, which it can explore by
linear instead of exponential cost and therefore eliminates the need for
a proxy search space.

Our experiments show that firstly, FaDE-ranks on finite regions of the
search space correlate with corresponding architecture performances and
secondly, the ranks can empower a pseudo-gradient evolutionary search
on the complete neural architecture search space.

Keywords: darts · hierarchical neural architecture search · automl ·
differentiable structure optimization

1 Introduction

Automatically finding structures of deep neural architectures is an active
research field. The exponentially growing space of directed acyclic graphs
(DAGs), their complex geometric structure and the expensive architecture per-
formance evaluation make neural architecture searches (NAS) a challeng-
ing problem. Methods such as evolutionary and genetic algorithms, bayesian
searches and differentiable architecture searches compete for the most promising
automatic approaches to conduct neural architecture searches [4].

Differentiable architecture search (DARTS) is a successful and popular
method to relax the search space into a differentiable hyper-architecture.
This relaxation allows to use differentiable search methods to learn both
model weights and architectural parameters to evaluate sub-paths of a hyper-
architecture [8]. While the combined and weight-shared hyper-architecture allows
for a very fast training of few GPU days, the search space is limited to subspaces
of the defined hyper-architecture. Evolutionary searches, in contrast, are way
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more dynamic in the way they restrict the search space. Without any weight-
sharing tweaks, this usually comes with a significant higher computational time.

We present a FAst Darts Estimator on hierarchical search spaces (FaDE ) that
aims at optimizing chained like hierarchical architectures while not resorting to
a proxy domain. By iteratively fixing a finite set of sub-module architectures
per neural sub-module and using DARTS for training, architecture ranks α are
estimated based on the relative performance within an iteration. As the esti-
mations are of relative nature, we require a state-less, batch-wise optimization
algorithm to determine from those estimations a new finite set of cell architec-
tures per cell. To this end, we apply an evolutionary approach which incorporates
a pseudo-gradient descent for candidate generation. FaDE runs one independent
optimization algorithm per cell which allows it to optimize additional depth with
linear instead of exponential cost.

Our contributions contain the first usage of differentiably obtained ranks for
neural architecture search in an open-ended search space. The usage is justified
with a correlation analysis. We provide code and data of our experiments for
reproducibility in a github repository. FaDE might be generalized to further
types of hierarchical search spaces and could also be employed with other state-
less, batch-wise search strategies in open-ended search spaces.

2 Fast DARTS Estimator

We construct chained hierarchical search spaces for neural architectures and use
their (relative) estimated performance as architectural ranks. The obtainedFaDE -
ranks guide a search on the complete (but open) search space. The structure of
finite regions is not arbitrary, but bounded to the set of architectures contained in
a hyper-architecture. We use DARTS to train such a hyper-architecture, FaDE
to predict the corresponding region of the search space from a trained hyper-
architecture, and a mapping of the search space into Euclidean space together with
a pseudo gradient descent to guide the exploration of the search space.

On Chained Hierarchical NAS Spaces. Motivated by repeated motifs in hand-
crafted architectures, [12] introduce hierarchy to NAS spaces by considering an
architecture to be constructed from several structurally identical sub-modules,
so called cells. By identical the same architecture, yet each cell with its proper
weights, is meant. A cell typically consists of several convolutional layers, each
with a variable operation type and with variable connections between layers.
Optimizing the cell architecture is often equivalent to finding the type of convo-
lutional operation for a fixed number of layers and determining which layers are
being connected. The macro-architecture determines how multiple, often identi-
cal, cells are being stacked to one complete architecture. Quite often, the stacking
is done in e.g. a simple chain structure [12]. Many search strategies on hierarchi-
cal search spaces fix the macro-architecture and solely optimize the architecture
of a single cell which is often done on a shallower proxy domain. For example,
in image classification, a proxy domain might consist in switching from CIFAR-
100 to CIFAR-10. Even though such search strategies can achieve very good

https://github.com/SimonNeumeyer/FaDE
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Fig. 1. (left) Discrete architecture BBD ∈ S3 featuring cell architectures B,D ∈ S.
(middle) BBD contained in a hyper-architecture H ∈ H3,4(S) that allows for sev-
eral cell architectures per row. Obtaining relative FaDE -ranks on trained hyper-
architecture: factorizing architecture parameters along the corresponding path of the
hyper-architecture. (right) Each step in the outer NAS optimization discovers new cell
architectures per row.

results, they are not always successful. On the one hand, the performance of a
single cell might not generalize to the performance of an overall neural network
architecture consisting of multiple structural copies of that cell.

2.1 DARTS

DARTS relaxes discrete architecture decisions within a differentiable hyper-
architecture. Liu et al. [8] consider a neural network module consisting of a
set of edges E, that densely connects several ordered vertices, and a finite set
of convolutional operations O. The goal is to find the top k ∈ N incoming edges
and respective operation per vertex. To this end, [8] dedicate one architecture
parameter αe,o per edge e ∈ E and operation o ∈ O, and calculate the output
for any edge e ∈ E as

Softmax(αe)�o(.), o ∈ O (1)

Finding the best architecture parameters α aims at solving the bi-level optimiza-
tion problem

arg min
α

Lval(α, arg min
ω

Ltrain(α, ω)) (2)

with Lval and Ltrain denoting the neural network loss on a dedicated set of
training samples each. [8] propose a second-order and a simplified first-order
objective for solving Eq. 2 via gradient descent. The latter can be implemented
by alternatingly fixing α and training ω on its respective split of training samples
and vice verca. After training, they derive an optimal discrete model by keeping
only those operations with large architecture parameters. A driving factor of [8]
becoming the baseline work of differentiable architecture search consists in their
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bi-level optimization algorithm and in their choice of search space. Liu et al.
work on a cell from [12] and further adopt their proxy concept, consisting of a
smaller dataset and a smaller chain of cells during training.

Gumbel-Softmax. [1] criticize the Softmax in Eq. 1 learning a well perform-
ing combination of architectures to which no single architecture will generalize
once selected after training. Instead, they propose a sampling mechanism in order
to only activate the connections of a single architecture during any forward pass,
while still applying back-propagation to the complete hyper-architecture. To this
end, instead of Softmax they apply

Gumbel-Softmaxτ (x) := Softmaxτ (x + Gn) (3)

to x ∈ R
n where τ > 0 is a temperature parameter for Softmax and Gn is an i.i.d.

vector of the standard Gumbel distributed random variable G. Gumbel-Softmax
adds stochastic noise to a Softmax transformation while supporting differentia-
bility. For their forward pass they use an additional one-hot encoding on Eq. 3.
[6] show that it holds for any τ > 0, x ∈ R

n: E[Onehot◦Gumbel-Softmaxτ (x)] =
Softmax(x)

2.2 Training a Chained Hierarchical Architecture Using DARTS

For an abstract space of cell architectures S and a depth d ∈ N, we build the
chained search space Sd, see Fig. 1. Given a window size w ∈ N, we consider
the corresponding space of hyper-architectures as H := Hd,w(S) := Sd×w, see
Fig. 1 (middle). We use a matrix notation for hyper-architectures for convenience.
Note, that any hyper-architecture H ∈ Sd×w can be identified with a subset
of the search space by considering ×i≤d{Hij | j ≤ w} ⊂ Sd, the cross product
modelling the combinatorics of chaining cells along the depth of the search space.
Hence, a row of H ∈ Sd×w represents the pool of cells that H features at the
corresponding depth.

Using differentiable architecture search (DARTS) [8], we endow a hyper-
architecture H ∈ H with architecture parameters α ∈ [0, 1]d×w, such that after
training H with a bi-level optimization algorithm, architecture parameter αij

reflects the performance of cell Hij in the context of exclusive competition within
each row of H. For convenience, αi, i ≤ d, always denotes the architecture param-
eters after the Softmax transformation.

In our work, the cells themselves serve as building blocks for DARTS as
opposed to [8] where DARTS is being applied to optimize the architecture of a
single cell. Following [3] and [11] we choose Gumbel-Softmax [6] to incorporate
the architecture parameters into the computation path. Usually, DARTS-based
methods consider the architecture parameters as variables over a convex loss
surface and optimize them in the same fashion as neural networks weights. As
we want to use the trained architecture parameters as performance predictors,
we found it reasonable to firstly regularize the architecture parameters and sec-
ondly use a constant learning rate to not interfere with the effect of the former.
Our regularization should serve the purpose of preventing the hyper-architecture
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Fig. 2. 2a Regularization We apply two modes, cell-dependent and cell-independent
regularization by means of a regularization factor ri ∈ R (here in [-1,1]) along training
epochs (up to 50). Cell-independent regularization applies a regularization factor r
which linearly decreases with increasing epochs (linearly decreasing line in the middle).
Cell-dependent regularization, however, applies a differently regularized loss per cell
i: ri decreases faster the smaller i. 2b Depiction of an outer optimization step with
gradient descent with finite differences in S respectively F . Compare Eq. 5 for the
update of an anchor point M (t) to M (t+1). Any memory-less search strategy can make
use of FaDE -ranks by making a step towards better ranked architectures.

from converging too early in favor of certain architectures while supporting such
a convergence in later epochs. To this end, we add the maximum norm on the
Gumbel-Softmax regularized architecture parameters to the loss function, scaled
by a factor r ∈ R linearly decreasing over epochs. Hence, we update our archi-
tecture parameters α := Gumbel-Softmax(α′

i)i≤d, α
′ ∈ R

d×w, according to the
following objective gradient:

∇α′(L(α, ω) + r‖α‖∞) (4)

where L(α, ω) denotes the neural network loss dependent on architecture param-
eters α and neural network weights ω.

Cell-dependent Regularization. We elaborate on the regularization fac-
tor r in Fig. 4 to regularize shallower cells earlier than deeper cells, compare
Fig. 2a This approach is motivated by a cell only being able to learn if its input
is somewhat stable.

Weight Sharing. In addition to implicit weight sharing within the hyper-
architecture, implied by a linear number of cells making up for an exponential
number of contained architectures, weights might also be shared per row, requir-
ing an implementation of the hyper-architecture where each row itself consists
of a hyper-cell that coalesces several cells. In our experimental setup, for exam-
ple, where cell architectures are modelled by graphs, we considered the largest
graph Gmax contained in the search space, fully connected, and implemented
a hyper-architecture of which each row solely consists of the implementation
of Gmax, the hyper-cell. Now any hyper-architecture can be derived from this
hyper-architecture by considering all graphs as sub-graphs of Gmax and renounc-
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ing on devoting strictly separate computation paths to each cell, but instead only
virtually separating them as different paths within the hyper-cell.

2.3 Deriving FaDE-Ranks on Hyper-Architecture

We use α to rank the subset of architectures contained in H based on

ψα : H → R, (H1k1 , . . . , Hdkd
) 	→

∏

i≤d

αiki

as shown in Fig. 1 (middle). Note that ψα is just one of many ways to apply
the information encoded in α to a ranking of corresponding architectures. The
benefit of this approach arises from the practical - not theoretical - assumption
of independence along the depth of an architecture, that allows for predict-
ing an exponential search space in linear time. Training several architectures
Hval ⊂ H ⊂ Sd from scratch yields a validation function ρ on Hval. A rank
correlation coefficient between ρ and ψα, the latter restricted to the validation
set, documents how well ψα predicts relative performances of single architectures
contained in H.

2.4 Joint Batch-Wise Pseudo Gradient Descent

A proper correlation between ρ and ψα indicates the usefulness of the information
contained in the α parameters and motivates us to use ψα in guiding a memory-
less, batch-wise search in Sd. The downside of the hyper-architecture approach
persists in the relative nature, implying that FaDE -ranks ψα can in general not
be compared among new hyper-architecture evaluations. Contrary to Pham et al.
[9] we argue though that changes in weights of a hyper-architecture eventually
invalidate former architecture evaluations within that hyper-architecture and
hence any information obtained, whether prediction or real evaluation, inhibits
a relative nature anyways, its information content fading during search. Search
methods such as gradient descent do not need memory and hence can use the
FaDE -ranks to navigate a NAS. To apply gradient descent, we assume the search
space to be Euclidean and use finite differences on a batch of FaDE -ranks to
approximate a gradient. Details on the caveat of S to be Euclidean are being
discussed further below.

The overall search works by iteratively sampling hyper-architectures H(t), t ∈
N where the i-th row of H(t+1), i ≤ d is solely dependent on the i-th row
of the corresponding architecture parameter α(t), obtained after training H(t).
Compare Fig. 1. Formally, we consider d independent w-dimensional stochastic
processes in Sw and we therefore refer to the search over Sd being a joint search
over S. The goal is to find hyper-architectures containing well-performing single
architectures. For any row i ≤ d, an anchor point M

(t)
i ∈ S is being maintained,

with M
(1)
i being randomly initialized. The cells of row i in H(t+1) are being

derived from the standard unit vectors originating from the anchor:

H
(t)
i = {M

(t)
i } ∪ {M

(t)
i ± γ ∗ ek | k ≤ w

2
}
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where the dimension of S is assumed to be w
2 and where ek denote the standard

unit vectors, k ≤ w
2 .

Fig. 3. Graph generation: a sample in embedding space determines a corresponding
bucket from which a graph is drawn.

The hyper-parameter γ > 0 controls the width of the local environment
around the anchor. After having obtained the architecture parameters for H

(t)
i by

training H(t), the anchor M
(t+1)
i is being derived from descending M

(t)
i according

to the finite differences along the standard unit vectors:

M
(t+1)
i = M

(t)
i − λ

w
2∑

k=1

ek(βi(M
(t)
i + γ ∗ ek) − βi(M

(t)
i − γ ∗ ek)) (5)

where λ > 0 controls the step size of gradient descent and βi(·) mapping sub-
modules to their corresponding architecture parameter after train iteration i.

Note that weight sharing could be considered among successive hyper-
architectures. We tested pre-initializing the normal neural network weights of
H(k+1) with the trained weights of H(k).

Fig. 4. Density of softmaxed
architecture parameters: pre-
dicted ranks based on averaged
architecture parameter per
graph architecture per cell
(dark=deep, light=shallow)

Search Space. We focus on the graph attributes
of neural network cell architectures. Therefore
we provide a bijective embodiment : G → S
from a space of directed acyclic graphs to the
space of cell architectures. We let embodiment
map a directed acyclic graph to a cell archi-
tecture by first prepending an input vertex to
vertices with no incoming edges and appending
an output vertex to all vertices with no out-
going edges. The input vertex just serves as
interface to distribute the input vector x to
all source vertices. On all edges, except those
originating from the input vertex, we place
structurally identical convolution layers. Ver-
tices with more than one input edge combine
their inputs by summation and ReLU non-
linearity. While channel count and feature map
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size within a cell are being fixed, between succeeding cells we approximately
double the channel count while proportionally reducing the feature map size. To
enable the pseudo gradient descent from Subsect. 2.4, we use a low-dimensional
feature space F and a (stochastic) generator : F → G that generates graphs
from Euclidean vectors. The generator function is desired to be surjective and
smooth with regard to the performance of cell architectures in S ∼= G. There are
several possible choices for G,F and generator, including F to be the parameter
space of a graph generation algorithm. In our experiments we settle for simple
choices, starting with a rather small G containing directed acyclic graphs with a
low number of vertices. Hoping on smoothness we consider several scaled graph
attributes that have been shown [10] to correlate with performance of the corre-
sponding sub-modules in a certain embodiment and training setting, to construct
the dimensions of F . We construct an embedding : G → F by determining the
required graph attributes for each graph of G. As this embedding is not dense in
F , we propose a mapping from the feature space to the space of cell architectures
as follows. F is being separated into disjunct dim(F)-dimensional intervals and
define interval : F → 2F to map a point in the feature space to its containing
interval. We then define generator as U ◦embedding−1 ◦ interval where U is the
discrete uniform sampling. Figure 3 visualizes the sampling process via G on an
exemplary two-dimensional Euclidean feature space. In addition to potentially
increasing sampling speed, dependent on the implementation, the sampling via
intervals adds some appreciated noise to the generator. [1] extend DARTS [8]
by sampling a single embedded architecture for each forward pass instead of
taking a weighted sum which, besides reducing memory, might even result in
more reliable training as the sparsity of a forward pass is the same for hyper-
architecture and target architecture. Also [3] and [11] feature a sparse forward
pass by using Gumbel-Softmax [6] instead of a weighted sum for aggregating
parallel architecture choices. [2] progressively drop the weakest connections as
training progresses to reduce memory footprint. They use the saved resources to
progressively increase depth of the hyper-architecture w.r.t. stacked sub-modules
and thus aim at closing the gap between proxy and target domain. However,
they feature only copies of the same sub-module. [5] propose a progressive app-
roach that successively searches a stack of different sub-modules. Progressive
approaches are also used without DARTS, e.g. by starting from a space contain-
ing very small network modules and end up in a space containing modules of
desirable size [7]. This restricts search space exploration to a constant complexity
in each iteration by step-wise building up from well performing smaller modules.
Weight sharing comes implicit in DARTS but is also used in other work, i.e.
[9] equip a recurrent NAS pipeline with a hyper-architecture such that instead
of training discrete architectures proposed by the pipeline from scratch, they
are initialized with the corresponding weights of the hyper-architecture. That
enhancement is applicable out of the box to most NAS approaches and shows a
significant decrease in resource usage while achieving comparable results.
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3 Experiments

We consider a multi-cell search space consisting of nc = 4 chained cells, each
cell featuring a DAG with less than nv = 6 nodes as cell architecture. In a first
experiment we obtain FaDE -ranks on a single hyper-architecture and show that
they correlate well with the actual performances of a small subset of architectures
contained in the hyper-architecture. Another experiment iteratively trains hyper-
architectures according to Subsect. 2.4 in order to search the complete search
space. For the latter we present that search results improve over iterations,
though not significantly.

Fig. 5. Correlation between pre-
dicted and evaluated ranks.

Dataset Preprocessing. All experiments
are conducted on the CIFAR-10 image clas-
sification dataset. The employed dataset split
is 1−1−4, meaning one part was used for test-
ing, one part for architecture training and four
parts for weight training. Between succeeding
cells, max pooling is applied for downsam-
pling. All convolutional cells have been using
the same kernel shape of 5 × 5. Gradient clip-
ping during backpropagation was employed
with an absolute value of 10.

We used the following hyperparame-
ters across all experiments and provide a
github repository for detailled reproducibil-
ity: activation function is ReLU, loss is cross-

entropy, DARTS aggregation is hard Gumbel-Softmax, the aggregation func.
temperature is ten. We used 16 or 32 channels for deepest cells and Max() as
pooling operation. For optimization we used a batch size of 128, Adam with
β1 = 0.1, β2 = 10−3, α = 10−3, ε = 10−8, a weight decay of 10−4, Kaiming as
weight initialization, N (0; 0.5) for the architecture initialization and a gradient
clipping value of ten.

3.1 Validating FaDE-Ranks

We construct a hyper-architecture that with ng = 5 manually selected DAGs
as parallel computation paths per cell. Once embedded, each DAG comes with
the same number of weights, approximately 0.25 · 106. The hyper-architecture
H spans a finite search space with nnc

g = 54 = 625 architectures. After training
the H, we obtain FaDE -ranks as described in Subsect. 2.3.

We consider the architecture parameter distributions per cell, averaged over
several experiment repetitions, as independent marginals of a joint discrete dis-
tribution on the finite architecture search space. Figure 4 illustrates the predicted
marginal distributions of the trained hyper-architecture.

Training a subset of 16 manually selected discrete architectures enables cal-
culating a spearman rank correlation between FaDE -ranks and evaluation ranks,
as shown in Fig. 5. The correlation coefficient of 0.8 is significant and shows that

https://github.com/SimonNeumeyer/FaDE


Efficient NAS with FaDE on Hierarchical Spaces 167

Fig. 7. Evaluation accuracy of architectures generated from points in the search tra-
jectory: The evaluation performance is slightly increasing

our methodology predicts the relative performances within the small architec-
ture subset quite well. That means, the obtained FaDE -ranks can be used to
guide an open-ended search with local information.

Fig. 6. Search trajectories in R
3 per

cell per dimension: per cell the anchor
point of the pseudo gradient descent
is plotted for 100 epochs. The anchor
point coordinates are color-coded by
feature space dimension which share
a common y-axis as their values are
normed to the same interval. We
observe a rough convergence of tra-
jectories.

From further experiments we observed
that weight sharing decreases the obtained
correlation compared to the results in
Fig. 5. However, weight sharing yields quite
significant correlation results already with
a few number of training epochs. This may
be owed to the fact, that weight shar-
ing implies weights to be trained more
often and thus counteracts the reduction in
epochs. We will resort to a fewer number
of training epochs while sharing weights in
later experiments.

3.2 NAS on Iterative FaDE-Ranks

We aim at iteratively improving the cell
architectures of the hyper-architecture from
Subsect. 3.1 according to the methodology
described in Subsect. 2.4. A pseudo gra-
dient descent serves as optimization strat-
egy on the feature space F . We consider
architectures with 4 cells, assign one fea-
ture space per cell and run independent,
parallel pseudo gradient descent algorithms
on them. The joint feature space refers to
the product of the 4 feature spaces. Build-
ing on [10], e : G → F maps a DAG to three dimensions according to its
normed eccentricity variance, degree variance and number of vertices, such that
F = R

3. A single experiments runs with 100 epochs, each featuring five epochs
of hyper-architecture optimization. For each cell i = 1, . . . , 4, we obtain fea-
ture space trajectories (M (t)

i )t=1,...,100. In order to validate these trajectories, in
regular intervals of t, we repeatedly construct an architecture from the DAGs
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generated from M
(t)
i , i = 1, . . . , 4, and evaluate it using 30 epochs of architecture

training. We thus obtain a validation function from the trajectory index space
into R. An increasing function, coarsely measurable by a linear regression on its
index, would indicate our search strategy to yield better architectures over time.
Figure 7 shows individual model evaluations, including a linear regression. The
pearson coefficient of 0.16 is barely significant. Figure 6 shows the trajectories
in all three dimensions per cell from shallow to deep and its bottom graphic
shows the trajectories aggregated over cells. We interestingly notice that the
trajectories already show convergence within 20 epochs. Note that convergence
in number of operations towards the high end of the scale occurs in every cell.
This convergence is in accordance with what one would naturally expect. We
also observe that the deeper the cell the more divergent its trajectories. There
are artifacts that could be attributed to the sparsity of our search space or poor
heuristics of our search space sampling, for example the large step sizes of the
trajectories and its occasional chainsaw pattern. To validate the outer Neural
Architecture Search, we compared to random search (RS) and bayesian opti-
mization (BO). For 50 epochs, the search methods propose a point in the joint
F for evaluation. The median accuracy of five such architecture generations and
evaluations is being fed back to the search algorithm. BO, similar to the pseudo
gradient descent on FaDE , assumes its stochastic models per cell to be inde-
pendent from each other. Even though, this is not the case, we argue that the
number of epochs is too small for a more complex bayesian model that does not
make this assumption of independence. For BO, we use the Upper Confidence
Bounds method with κ = 2.5, ξ = 0. We compare the results with the pseudo
gradient descent validation results, this time validating the trajectories for the
first 25 of 100 outer epochs. We do not use 50 epochs for the pseudo gradient
descent on FaDE as the trajectories already converge earlier. Figure 8 provides
test accuracies of the top 10 epochs per search method. Points in Fig. 8 are a
median of five accuracy evaluations, generated from the same point in F . The
distribution of accuracy evaluations of a single point represents an important cri-
teria on the suitability of the search space. A wide-spread distribution indicates
that the feature space does not capture well architecture features that correlate
with the corresponding evaluation performance. The mean standard deviation
across all data points in our plot is 0.014 which is quite high compared to the
observed magnitudes in Fig. 8.
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Fig. 8. Comparing the distribution of top architectures found by random search (RS),
bayesian optimization (BO) and FaDE on F spanned by variances of eccentricity,
degree and number of vertices. FaDE finds more well-performing architectures in
less time. RS provides a baseline which clearly shows a higher standard deviation
across found accuracy scores. BO is a common NAS method, especially when search-
ing through a low-dimensional search space as we used it.

4 Conclusion and Future Work

We presented FaDE , a method to leverage differentiable architecture search to
aggregate path decisions from a fixed hierarchical hyper-architecture into point
estimates for an open-ended search. The aggregated estimates are called FaDE -
ranks and show a positive rank correlation with individually trained architec-
tures. Justified with this correlation, FaDE -ranks can be used to guide an outer
search in a pseudo-gradient descent manner. The method is generalizable in a
way that alternative strategies for the outer search can be employed as long as
the relative nature of the ranks are respected. We see future work in both 1/ the
analysis of the quality rank information for global search as well as 2/ exper-
iments with more complex graph feature spaces, e.g. obtained from generative
graph models.
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Abstract. Combinatorial optimization problems, integral to various sci-
entific and industrial applications, often vary significantly in their com-
plexity and computational difficulty. Transforming such problems into
Quadratic Unconstrained Binary Optimization (Qubo) has regained con-
siderable research attention in recent decades due to the central role of
Qubo in Quantum Annealing. This work aims to shed some light on the
relationship between the problems’ properties. In particular, we examine
how the spectral gap of the Qubo formulation correlates with the origi-
nal problem, since it has an impact on how efficiently it can be solved on
quantum computers. We analyze two well-known problems from Machine
Learning, namely Clustering and Support Vector Machine (SVM) train-
ing, regarding the spectral gaps of their respective Qubo counterparts.
An empirical evaluation provides interesting insights, showing that the
spectral gap of Clustering Qubo instances positively correlates with data
separability, while for SVM Qubo the opposite is true.

Keywords: QUBO · Spectral Gap · Quantum Computing

1 Introduction

Combinatorial optimization problems lie at the core of many NP-hard problems
in Machine Learning (ML) [7]: Clustering a data set comes down to deciding, for
every point, if it belongs to one cluster or another. Training a Support Vector
Machine (SVM) involves identifying the subset of support vectors (SVs). These
decisions are highly interdependent, making the tasks computationally complex.

In the advent of Quantum Computing (QC), combinatorial problems have
gained renewed attention due to the possibility of solving them through the
exploitation of quantum tunneling effects. Particularly, the Ising model and the
equivalent Qubo problem have become the central target problem class for
Quantum Annealing (QA) [6,9]. In Qubo, a parameter matrix Q is given that
parametrizes a loss function over binary vectors, which we want to minimize. It
can be shown that, in general, this problem is NP-hard [15]. The value of Qubo
lies in its versatility: Many NP-hard problems can be reduced to it by means of
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Fig. 1. Workflow of embedding a problem into Qubo. Every solution candidate s in
the problem domain S has an easily computable corresponding z ∈ B

n.

computing Q from input data and hyperparameters, thus Qubo has seen many
applications in various domains [2,8,10,11,13,14,16]. Solving the Qubo formula-
tion yields a minimizing binary vector, which maps back to an optimal solution of
the original problem. Figure 1 shows a schematic view of this workflow.

However, despite the promise of quantum speedup, not every instance of
Qubo is equally easy to solve. It was shown that certain instances require expo-
nential annealing time [1], which may render solving them on quantum computers
equally infeasible as by brute force. A central determining factor is the minimal
spectral gap (SG) of the corresponding Annealing Hamiltonian (AH), which in
turn dictates the annealing speed (see Sect. 2): A small SG leads to a higher
probability of obtaining sub-optimal results (see e.g. [17]). The SG is a physical
property of the AH, and its connection to classical complexity theory is poorly
understood. One would expect that classically hard problems tend to be more
difficult to solve, even using non-classical methods like QA.

We investigate this connection, both by means of an empirical study and the-
oretical considerations. To this end, we take instances of optimization problems
from ML, embed them into Qubo, and compare their properties to uncover cor-
respondences. Our central research question is: What is the relation between
the hardness of a particular optimization problem and its correspond-
ing Qubo formulation? In the scope of this paper, “hardness” refers to data
properties rather than complexity. We find that the relationship surprisingly
not always aligns with intuition: With clustering, a stronger separation of data
corresponds with a larger SG, while for SVM learning the opposite is true.

This paper is structured as follows: In Sect. 2, we give an overview on the
background of Adiabatic QC. Qubo formulations for the two classical learning
problems, Binary Clustering and SVM, can be found in Sects. 3.1 and 3.2. In
Sect. 4, we conduct experiments and a conclusion is drawn in Sect. 5.

2 Background

In a Qubo problem, we are given an upper triangle matrix Q ∈ R
n×n, which

parameterizes the energy function fQ defined as

fQ (z) ..= z�Qz =
n∑

i=1

n∑

j=i

Qijzizj , (1)
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where z ∈ B
n is a binary vector with B = {0, 1}. The objective is to find a vector

z∗ that minimizes fQ , i.e., ∀z ∈ B
n : fQ (z∗) ≤ fQ (z). The Ising model is almost

identical to Qubo, but uses the binary set S = {−1,+1}. The model’s energy
function can be obtained from fQ through a simple change of z �→ (s + 1)/2.

QA is a promising method for approximating the minimizing solutions of
Ising models, first proposed by Kadowaki and Nishimori [9]. Instead of bits for
variables it uses qubits, which, when measured, take either state from S with a
certain probability. Further, systems of n qubits can exhibit arbitrary probability
distributions over the space S

n.
The rough quantum-mechanical equivalent of loss functions in ML are Hamil-

tonians, which are complex-valued hermitian matrices H ∈ C
2n×2n that describe

the total energy of a system. The expected energy of an n-qubit state |ψ〉 is given
by 〈ψ|H|ψ〉, where |ψ〉 is a 2n-element complex vector describing the qubits’
state, and 〈ψ| its conjugate transpose. The Ising model Hamiltonian is diagonal
and contains the energy values for all possible binary states Sn, which are simul-
taneously its eigenvalues. The minimizing state corresponding to the smallest
eigenvalue is called ground state. The Adiabatic theorem states that a system
with a time-dependent Hamiltonian H(t) tends to stay in its ground state, even
if the Hamiltonian slowly changes over time [4]. At the core of QA lies the idea
to prepare a quantum system in the ground state of an “easy” Hamiltonian HI

and slowly change it to the actual problem Hamiltonian HP over time:

H(s) ..= f(s)HI + g(s)HP , (2)

with f, g : [0, 1] → R≥0, such that f(0) 	 g(0) and f(1) 
 g(1). The speed at
which the Hamiltonian can safely evolve without the system leaving its ground
state depends on the minimal SG, which is the minimal difference between the
two lowest eigenvalues over time. Let λ1(s), . . . , λ2n(s) denote the eigenvalues of
H(s) in increasing order (λi(s) < λi+1(s) ∀1 ≤ i < 2n), then γ(H(s)) ..=
mins∈[0,1] λ2(s)− λ1(s). When a Hamiltonian H is not time-dependent, we sim-
ply write γ(H) to denote the difference between its lowest eigenvalues. A small
SG requires a slow change rate, which leads to a long, potentially exponential (c.f.
[1]) annealing time. It is therefore desirable to somehow increase the SG by choos-
ing HI, HP, f and g accordingly. As HI, f and g are usually prescribed by the
annealing hardware at hand, the only free variable is HP.

When talking about the SG of a Qubo instance Q, it is important to make the
distinction between the parameter matrix Q and its corresponding Hamiltonian
HQ : The entries along the diagonal of the latter correspond to the values z�Qz
for every possible z ∈ B

n. Therefore, the SG is simply the difference between
the lowest and second-to-lowest values of fQ (which is very hard to compute for
large n). The eigenvalues of Q hold no particular relevance.

3 QUBO Formulations and Their Spectral Gaps

The minimal SG γ(H(s)) cannot be easily predicted from either γ(HI) or γ(HP).
However, we can still make some statements about it using known results about
eigenvalues of Hermitian matrices.
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Theorem 1 (Weyl’s Inequality). Let M ,N ,R be m×m Hermitian matrices
with N +R = M . Let μi, νi, ρi denote their respective eigenvalues in ascending
order, i.e., μi ≤ μi+1 ∀1 ≤ i < m, and for νi, ρi analogously. Then the following
inequality holds for all 1 ≤ i ≤ m:

νi + ρ1 ≤ μi ≤ νi + ρm . (3)

Applying this inequality multiple times we find the following bound on the
SG of sums of two Hamiltonians:

μ2 − μ1︸ ︷︷ ︸
=γ(M )

≤ ν2 − ν1︸ ︷︷ ︸
=γ(N )

+(ρm − ρ1︸ ︷︷ ︸
..=Γ (R)

) . (4)

Recall the definition of the standard time-dependent AH given in Eq. (2).
Assume that f, g : [0, 1] → [0, 1], f(0) = g(1) = 1, f(1) = g(0) = 0, f is
monotonous decreasing and g is monotonous increasing. E.g., f and g can be
chosen as f(s) = 1−s and g(s) = s with s = t/Ta, where Ta is the total annealing
time and t the current time in the annealing process. With the assumption f(x) =
1 − g(x), we obtain mins∈[0,1] af(s) + bg(s) = mins∈[0,1] af(s) + b (1 − f(s)) =
min{a, b}, and from Eq. (4) follows

γ(H(s)) ≤ min{γ(HP), γ(HI)} ≤ γ(HP) . (5)

This result provides motivation to increase γ(HP) when trying to improve
QA performance, as it is an upper bound on γ(H(s)): Increasing it does not
guarantee a larger minimal SG, but is a necessary precondition.

3.1 Kernel 2-Means Clustering

Our first Qubo embedding of interest is clustering: Assume we are given a
set of n data points X ⊂ R

d, |X | = n. We want to partition X into disjoint
clusters X1,X2 ⊂ X , X1 ∪̇ X2 = X . We gather the data in a matrix X ..=[
x1, . . . ,xn

]
,∀i : xi ∈ X , and assume that it is centered, i.e., X1 = 0, where 1

denotes the n-dimensional vector consisting only of ones. A Qubo formulation
was derived in [2], which minimizes the within cluster scatter :

min
s∈Sn

−s�X�Xs ⇔ min
z∈Bn

−z�X�Xz + 1�X�Xz , (6)

where s = 2z − 1. A value zi = 1 indicates that data point xi is in cluster X1,
and in X2 for zi = 0. Observing that X�X is a Gram matrix leads to a possible
application of the kernel trick. For this, we consider a centered kernel matrix
K ∈ R

n×n with elements k(xi,xj), where k : Rn ×R
n → R is a kernel function.

k(xi,xj) indicates how similar data points xi and xj are in some feature space.
We can reformulate Eq. (6) to

min
z∈Bn

1�Kz − z�Kz ⇔ min
z∈Bn

n∑

i,j=1

Kij(1 − zi)zj ⇔ min
X1,X2

∑

x∈X1,y∈X2

k(x,y). (7)
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We can attribute problem properties to effects on the SG of the resulting Hamil-
tonian of the Qubo formulation, by observing that the similarities between the
different clusters are summed up. We see that the Qubo energy according to Eq.
(7) is negatively correlated to the similarities within the clusters and positively
correlated to the similarities between the clusters.

Thus, we claim that the SG of the Qubo formulation in Eq. (7) is (i) pos-
itively correlated to the separability (the inter-cluster distance), and (ii) neg-
atively correlated to the compactness (the intra-cluster distances), which we
validate in Sect. 4.1.

3.2 Simple Support Vector Machine Embedding

A linear Support Vector Machine (SVM) is a classifier that takes a labeled data
set D = {(xi, yi)} with xi ∈ R

d and yi ∈ {−1,+1} for i ∈ [n] ..= {1, . . . , n},
and separates them with a hyperplane [5]. As there may be infinitely many such
hyperplanes, an additional objective is to maximize the margin, which is the
area around the hyperplane containing no data points, in order to obtain best
generalization. The hyperplane is represented as a normal vector w ∈ R

d and
an offset or bias b ∈ R. To ensure correctness, the optimization is subject to
〈w,xi〉 − b) · yi ≥ 1 − ξi, i.e., every data point must lies on the correct side
of the plane. As for real-world data perfect linear separability is unlikely, slack
variables ξi > 0 allow for slight violations, which we want to minimize. This
yields a primal objective function of

minimize
1
2
‖w‖22 + C

∑

i

ξi

s.t. ∀i. (〈w,xi〉 − b) · yi ≥ 1 − ξi .

We optimize over w, b and ξ, while C > 0 is a hyperparameter controlling
the impact of misclassification. Typically this problem is solved using its well-
established Lagrangian dual

maximize
n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

αiαjyiyj〈xi,xj〉 (8)

s.t.
∑

i

αiyi = 0, 0 ≤ αi ≤ C ∀i . (9)

Following [14] we make the simplifying assumption that αi can only take the
values 0 or C, which allows us to introduce binary variables zi ∈ B and write
αi = Czi ∀i. The condition Eq. (9) can be included in the main objective by
introducing the penalty term −λ (

∑
i αiyi)

2, which is 0 when the condition is
fulfilled, and negative otherwise. Similarly to the Clustering case (see Sect. 3.1),
we can apply the kernel trick and derive the following Qubo formulation:

min
z∈{0,1}n

−1�z + Cz�
(
1
2
(Y � K) + λY

)
z , (10)
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Fig. 2. Distribution of the first dimension of the 2-dimensional synthetic data used
for our experiments (before applying the rotation): Two clusters are sampled such that
there is a separating margin of at least size D between them. The parameter w controls
the spread of data points, while r is the ratio between the number of data points in
the first vs. the second cluster.

where Y has entries Yij = yiyj ∀i, j ∈ [n] and � denotes the entry-wise product.
The parameter λ has to be chosen large enough to ensure Eq. (9) is fulfilled,
however, if it is much larger than the objective in Eq. (8), the SG will be very
small [3]. C controls how “soft” the margin is, i.e., how strongly misclassified data
points are penalized. A large C does so heavily, which may result in overfitting.

We claim that the SG is negatively correlated (i) with C, (ii) with λ, and
also (iii) with the separability, i.e., actual margin size of the data. We validate
this in Sect. 4.2.

4 Experiments

At the core of this work we conduct an empirical evaluation of Qubo formula-
tions and their properties. For each experiment, the steps we take are as follows:
1. Choose problem type and hyperparameters, 2. Sample data set with
known properties, 3. Compute QUBO parameters and record the SG. Using
the acquired data, we investigate the relationship between data parameters and
SG, which has a high impact on problem hardness for QC, as we have shown
before. We consider the two problems of binary clustering and SVM training,
which we described in previous sections. As input data, we sample synthetic
data sets for each repetition of the experiments. To this end, we consider two
different types, Cones and Circles, both of which have parameters allowing
us to vary the resulting optimization problems’ difficulty by adjusting the data
class separation.

CONES. Let n ∈ N with n ≥ 2 denote the number of data points, ρ ∈ (0, 1) the
cluster size ratio, w > 0 a spread parameter, and D ∈ R a separating margin
size. We set n1

..= min{1, �ρn�} and n2
..= 1 − n1 as the cluster sizes. We create

a matrix X ∈ R
n×2 where every entry Xij is sampled i.i.d. from a triangular

distribution within the interval [0, 2w] and with mode w. We chose the triangular
distribution over a normal distribution because it has no outliers, which allows
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Fig. 3. Exemplary instances of the data sets used for our experiments.

us to define a hard lower bound on the separating margin between clusters. For
all i > n1 we then set Xi,1 �→ Xi,1 + 2w + D, which shifts all of these points
such that ‖Xi,· − X�,·‖2 ≥ D is tight for all i ∈ [n1] and n1 < 	 ≤ n. The
distribution of X·,1 is visualized in Fig. 2; the distribution of X·,2 consists of
just a single triangle from 0 to 2w with height 1/w at mode w. Next, we sample
θ uniformly from [0, 2π) and apply X �→ XR(θ), where R(θ) is a 2D rotation
matrix. This rotation leaves the distances unchanged but introduces another
degree of freedom. Lastly, we center the data by computing μj

..=
∑n

i=1 Xij/n
and applying Xij �→ Xij − μj for all i, j ∈ [n] × [2]. The target vector y ∈ S

n is
set to yi = −1 for i ∈ [n1] and yi = +1 for n1 < i ≤ n.

CIRCLES. As a second data set type, we consider two circles, which are not
linearly separable in R

2. The radius of the outer circle is fixed to 1 and for our
experiments we vary the radius of the inner circle r. The circles consist of an
equal number of points n/2 and Gaussian noise with standard deviation σ is
added to every point (see Fig. 3, right). To bridge the gap to linear separability,
we project the data set to a higher-dimensional feature space via a feature map
φ : R

2 → R
3, φ(x) ..= (x1, x2, a ‖x‖2)�. In this space, the data is linearly

separable. A corresponding kernel function is given by k(x,y) ..= 〈φ(x), φ(y)〉 =
〈x,y〉+a2 ‖x‖2 ‖y‖2. For every experiment, we compare three different problem
sizes, that is, we consider n ∈ {8, 20, 32}. To make SG comparable between
Qubo instances of the same size, we scale each Q such that ‖Q‖∞ = 1.

4.1 Clustering

We first explore the Clustering Qubo in Eq. (7). Changing the maximum sepa-
rating margin size between the two clusters changes the SG of the corresponding
Qubo instance, as shown in Figs. 4 and 5: For Fig. 4, we sample 1000 different
Cones data sets with varying cluster distances in [0, 1] and fix w = 0.2, ρ = 0.5.
We find that the SG is increasing with an increasing problem size n and that
there is a clear quadratic positive correlation between the SG and the margin
size.
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Fig. 4. Spectral gap of Qubo instances according to Eq. (7) against maximum sepa-
rating margin size D for Cones; w = 0.2, ρ = 0.5 fixed, 1000 random data sets with
n ∈ {8, 20, 32} and D ∈ [0, 1] uniformly sampled. The yellow curve is a fitted quadratic
function. (Color figure online)

A similar setup can be found in Fig. 5, where 1000 different Circles data
sets are sampled with varying inner radius in [0, 1] and σ = 0.05, ρ = 0.5.
Again we find that the SG increases with an increasing margin size, but with a
linear correlation. Since different kernels are used in Fig. 4 and Fig. 5, the exact
correlation form is dependent on the exact data set and the used kernel.

Fig. 5. Spectral gap of Qubo instances according to Eq. (7) against maximum sepa-
rating margin size D for Circles; σ = 0.05, ρ = 0.5 fixed, 1000 random data sets with
n ∈ {8, 20, 32} and r ∈ [0, 1] uniformly sampled. The yellow curve is a fitted quadratic
function. (Color figure online)

In Fig. 6, the effects of a varying cluster ratio in ρ ∈ [0.1, 0.5] are depicted
for the Cones setup. We again sample 1000 data sets with fixing w = 0.2 and
D = 0.5. A positive correlation becomes evident between cluster ratio and SG.
That is, the Qubo problem is easier to solve with QC when the clusters have
the same size. The effect that the plots look like a step function for small n is
due to the fact that there n/2 different configurations, e.g., for n = 8, we can
have the four cases n1 = 1, n1 = 2, n1 = 3 and n1 = 4.
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Fig. 6. Spectral gap of Qubo instances according to Eq. (7) against cluster ratio
for Cones; D = 0.5, w = 0.2 fixed, 1000 random data sets for n ∈ {8, 20, 32} and
ρ ∈ [0.1, 0.5] uniformly sampled.

Fig. 7. Spectral gap of Qubo instances according to Eq. (7) against spread for Cones;
D = 0.5, ρ = 0.5 fixed, 1000 random data sets for n ∈ {8, 20, 32} and w ∈ [0, 1]
uniformly sampled.

In Fig. 7, we vary the spread w ∈ [0, 1] for 1000 different data sets and fix
D = 0.5, ρ = 0.5. We can see that the SG is negatively correlated to the spread
of the data set.

Putting the results together we can deduce that the is SG positively cor-
related with the inter-cluster distance (separability) and negatively correlated
with the intra-cluster distance, supporting our claims in Sect. 3.1.

4.2 Support Vector Machine

We move over to experiments with the SVM Qubo in Sect. 3.2. Again, we depict
the effect of changing the maximum separating margin size between the two
clusters on the SG of the corresponding Qubo in Figs. 8 and 9. We use the same
parameters for the data sets as in Figs. 4 and 5. Interestingly, we now observe a
negative correlation between the SG and the margin size, making the problem
harder to solve with a quantum computer if the data is well separable. For
n = 32 the spectral basically vanishes from a certain margin size for Circles.
Furthermore, we again observe that this correlation is quadratic for Cones and
linear for Circles, leading to a large dependence on the used kernel function
and the data set at hand.
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Fig. 8. Spectral gap of Qubo instances according to Eq. 10 against maximum separat-
ing margin size D for Cones. Same configuration as for Fig. 4.

Fig. 9. Spectral gap of Qubo instances according to Eq. 10 against maximum separat-
ing margin size D for Circles. Same configuration as for Fig. 5.

Note that we are considering a Qubo formulation for a soft-margin SVM:
even though the SG might be very small, the second best solution might also
be satisfactory for solving the original problem. In contrast, the second best
solution of a Clustering Qubo is much worse: changing a single bit leads to a data
point within the wrong cluster, which increases the energy more dramatically
the further the two clusters are separated.

In Figs. 10 and 11, we show the effect of varying λ and C on the SG for
Cones. We fix ρ = 0.5, w = 0.2, D = 0.5 and sample 10 000 data sets with
C ∈ [0, 0.1], λ ∈ [0, 100] for Fig. 10 and λ ∈ [0, 10] for Fig. 11, respectively. It is
evident from Fig. 10 that the SG decreases as λ and C are increase. However,
there are interesting intervals for λ when fixing C, such that the SG first increases
and then decreases with increasing λ, forming a triangular shape when plotted,
which gets more pointy with an increasing value of C – see Fig. 11 for a closer
view. We observe a similar effect with Circles.

Combining our observations we deduce that the SG is negatively correlated
with the inter-cluster distance (separability) and the parameters λ, C except for
a small region, supporting our claims from Sect. 3.2.
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Fig. 10. Spectral gap of Qubo instances according to Eq. 10 against λ and C for
Cones; w = 0.2, ρ = 0.5 fixed, 10 000 random data sets for n ∈ {8, 20, 32} and
λ ∈ [0, 100], C ∈ [0, 0.1] uniformly sampled.

Fig. 11. Same as Fig. 10, zoomed in on λ ∈ [0, 10].

5 Conclusion

In this paper, we investigated the connection between the problem hardness
of classical ML problems and their solvability on quantum hardware. We con-
sidered Qubo formulations for the 2-Means Clustering and SVM learning. We
highlighted that the SG of these formulations impact their solvability on quan-
tum hardware, and showed how the SG behaves when adapting the problem
parameters, which we underpinned with an empirical study.

We found that for 2-Means Clustering an easier problem also leads to a bet-
ter solvability on quantum computers. Here, “easy” refers to the separability and
compactness of the different classes. We found a positive correlation between
these properties and the SG of the corresponding Qubo. Interestingly, this is
not the case for the SVM problem, where we would expect a better solvability of
a problem with a large separation of the classes. However, we found a negative
correlation between separation and SG. Furthermore, other hyperparameters,
such as the one controlling the softness of the margin avoiding overfitting, are
negatively correlated to the SG. This is due to the balancing different objec-
tives in one single Qubo problem. Combining these two insights, we conclude
that the original problems’ hardness is not directly connected to the solvabil-
ity on quantum computers, as one might assume. Instead, it depends not only
on the data set at hand, but also on specifics in the used Qubo formulation.
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It would be insightful to compare the properties of more Qubo formulations of
more problems in future work. Furthermore, investigating the effect of the Qubo
parameters and not only the problem parameters is an interesting research direc-
tion [12]. This could strengthen our intuition about which problems are hard for
quantum computers in particular, and the potential and limitations of QC in
general.
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Abstract. A random forest prediction can be computed by the scalar
product of the labels of the training examples and a set of weights that are
determined by the leafs of the forest into which the test object falls; each
prediction can hence be explained exactly by the set of training examples
for which the weights are non-zero. The number of examples used in such
explanations is shown to vary with the dimensionality of the training set
and hyperparameters of the random forest algorithm. This means that
the number of examples involved in each prediction can to some extent be
controlled by varying these parameters. However, for settings that lead
to a required predictive performance, the number of examples involved
in each prediction may be unreasonably large, preventing the user from
grasping the explanations. In order to provide more useful explanations,
a modified prediction procedure is proposed, which includes only the
top-weighted examples. An investigation on regression and classification
tasks shows that the number of examples used in each explanation can be
substantially reduced while maintaining, or even improving, predictive
performance compared to the standard prediction procedure.

Keywords: Random forests · Explainable machine learning ·
Example-based explanations

1 Introduction

Random forests [2] is a very popular and competitive machine learning algorithm
that is widely considered to produce black-box models; even if each individual
tree in a forest is interpretable, it is very hard to grasp an explanation that
consists of several hundred (and sometimes even more) paths, each leading from
the root of a tree to a leaf node, often also providing conflicting predictions.
Techniques for explaining predictions of black-box models have received a lot
of attention in recent years, with LIME [12] and SHAP [7] being two promi-
nent examples of model-agnostic approaches that explain predictions by feature
scores. In addition to explaining random forest predictions using feature scores,
e.g., using TreeSHAP [6], techniques have also been proposed to approximate
the random forests by interpretable rule sets, e.g., [1,3,9,13].

In contrast to explaining predictions by feature scores and rule sets, example-
based explanation techniques explain the predictions by sets of examples [10].
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The latter can be useful in particular when the features are difficult to inter-
pret. Such techniques do however require that the training examples can be
presented to the user in an accessible way, e.g., as images. Apart from research
on counterfactual explanation techniques, see e.g., [5,15], which synthesize new
examples that lead to changing a prediction, example-based explanation tech-
niques for tree-based methods have received limited attention. One exception is
the prototype selection approach proposed in [14], which applies clustering to
find prototypical examples for each class to approximate a random forest by a
nearest-neighbor procedure. In contrast to this approach and also to the previ-
ous rule-based approaches, we will in this work focus on exact (perfect fidelity)
explanations; we hence do not rely on approximating the underlying model.

In [8], it was shown that a prediction of a random regression forest can be
expressed as a scalar product of the labels of the training examples and a set of
weights obtained from the leaf nodes into which the test object falls. In [8], the
weights and labels were used to form cumulative distribution functions for quan-
tile regression forests, while we will here instead consider them for explaining the
predictions. As noted in [4], the weight attribution also applies to classification;
class membership of each training example can be encoded by a binary vector,
which can be readily used when computing the scalar product. Using such a
formulation, we can hence identify exactly which, and to what extent, training
examples contribute to a prediction of a random forest for both classification
and regression tasks.

To the best of our knowledge, there has been no investigation of the effective
number training examples used in the predictions of a random forest, i.e., the
number of training examples with non-zero weights. This number may not only
be dependent on the dimensionality of the training set, but also on the leaf and
forest sizes. Even if we to some extent can control this number, potentially at
the cost of reduced predictive performance, e.g., by keeping the number of trees
in the forest small, we may still end up with a number of examples that is too
large to be useful, e.g., interpreting hundreds of training examples may be as
difficult as interpreting hundreds of paths. In this work, we propose to control
this number by a modified prediction procedure; only the top-weighted training
examples are used when forming the prediction for a test example. We hence end
up with a procedure that is constrained in number (or weight) of the involved
training examples, while providing an exact example-based explanation for each
prediction, i.e., there is no approximation involved in how the actual prediction
is computed. The main question that we will investigate is whether the effective
number of examples can be reduced without sacrificing predictive performance.

In the next section, we describe the proposed approach in detail and in Sect. 3,
we present results from an empirical investigation, where we first study how
the way in which the random forest is formed may affect the effective number
of training examples involved in the predictions, followed by an investigation,
using both regression and classification datasets, of how controlling this number
may impact the predictive performance. Finally, in Sect. 4, we discuss the main
findings and outline some directions for future work.
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2 Modifying the Prediction Procedure of Random Forests

We start out with some notation, before proceeding with the proposed modified
prediction procedure of random forests.

2.1 Random Forests

Each training example consists of an object and a label; let X = {x1, . . . ,xn}
denote the set of training objects and y = {y1, . . . , yn} the set of labels. For a
regression problem, each yi ∈ R. For a classification problem, where the class
labels of the training objects are {y′

1, . . . , y
′
n}, with each y′

i ∈ {c1, . . . , ck}, each
label yi = 〈1(y′

i = c1), . . . ,1(y′
i = ck)〉, i.e., a binary vector with zeros for all

classes except the class label of the object.
Let F = {T1, . . . , Ts} be a random forest; we refer to it as a classification

forest if each Tt is a classification tree, and a regression forest if each Tt is a
regression tree. Let ŷt = Tt(x) denote the output (prediction) of a regression or
classification tree Tt for a (test) object x; for a regression tree ŷt ∈ R and for
a classification tree ŷt = 〈p1, . . . , pk〉 ∈ [0, 1]k, such that

∑k
i=1 pi = 1, i.e., the

output is a class probability distribution. The prediction of the random forest F
for the test object x is:

F (x) = s−1
s∑

t=1

Tt(x) (1)

Note that for a classification forest, the prediction is a class probability dis-
tribution, similar to the individual trees in the forest. Following [8], the above
can be equivalently expressed as the scalar product of the labels of the training
objects (y) and a set of (non-negative) weights wx = {wx,1, . . . , wx,n}:

F (x) = y · wx (2)

where each weight wx,i is defined by wx,i = s−1
∑s

t=1 wx,i,t and wx,i,t is defined
by wx,i,t = bx ,i,t∑n

j=1 bx ,j,t
. Where bx,i,t denotes the number of occurrences of the

(possibly duplicated) training object xi in the leaf node of the tree Tt into which
x falls. Note that in case a training object has not been part in the construction
of a tree, i.e., it is out-of-bag for that tree, the corresponding weight will be zero
independently of what leaf node the test object falls into. Note also that in case
a training object does not occur in any of the leafs in any of the trees that the
test object falls into, the total weight for the training example will be zero.

2.2 Modifying the Predictions

Without loss of generality, we may assume that the weights for a test object are
sorted in decreasing order, i.e., we can form the random forest prediction by:

F (x) = 〈yσ1 , . . . , yσn
〉 · 〈wx,σ1 , . . . , wx,σn

〉 (3)
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where wx,σ1 , . . . , wx,σn
are the weights for the test object (x) sorted from the

highest to the lowest with each σi denoting the original index. We will inves-
tigate two alternative ways of making a prediction with a reduced number of
training examples; by choosing the k top-weighted objects only (Algorithm 1)
and choosing a set of examples such that the cumulative weight exceeds a spec-
ified threshold (Algorithm 2); for brevity, we denote each weight wx,i by wi in
the algorithms. Note that in both algorithms the selected weights need to be
normalized.

Algorithm 1: k top-
weighted
Require: y = {y1, . . . , yn}

w = {w1, . . . , wn}
0 < k ≤ n

1: σ1, . . . , σn ←
SortedIndex(w)

2: z ← ∑k
i=1 wσi

3: ŷ ← 〈yσ1 , . . . , yσk
〉 ·

〈wσ1/z, . . . , wσk
/z〉

4: return ŷ

Algorithm 2: Cumulative
weight
Require: y = {y1, . . . , yn}

w = {w1, . . . , wn}
0 < c ≤ 1

1: σ1, . . . , σn ← SortedIndex(w)
2: zj ← ∑j

i=1 wσi
, for j = 1, . . . , n

3: k ← min{1,...,n} s.t. zi ≥ c
4: ŷ ← 〈yσ1 , . . . , yσk

〉 ·
〈wσ1/zk, . . . , wσk

/zk〉
5: return ŷ

3 Empirical Investigation

In this section, we first investigate the effect of hyperparameter settings and
dimensionality of the dataset on the effective number of training examples needed
to form the predictions, i.e., the number of training instances with non-zero
weights. We then present results from controlling the effective number of training
examples on two prediction tasks.

3.1 Observing the Effective Number of Training Examples

Experimental Setup. We have chosen the Lipophilicity dataset from Molecu-
leNet [16], which contains measurements of the octanol/water distribution coef-
ficient for 4200 chemical compounds, represented by the simplified molecular-
input line-entry system (SMILES). The Python package RDKit1 is used to gen-
erate features from the SMILES strings, more specifically, Morgan fingerprints
(binary vectors, all of length 1024, if not stated otherwise). In addition to consid-
ering the original regression problem, we also frame it as a binary classification
problem, where the task is to predict whether the target is greater than or equal
to the mean of the targets, and as a multiclass classification problem, by equal-
width binning of the regression values into ten categories.

We employ 10-fold cross validation, using the same folds and random seeds
for all generated forests. In the first of four investigations for the three tasks,
1 https://www.rdkit.org.

https://www.rdkit.org
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we vary the number of training examples by subsampling from the available
training set, where a larger subsample always includes a smaller. In the second
investigation, we vary the number of features by considering Morgan fingerprints
of different sizes. In the third investigation, we vary the number of trees in the
forests, and finally, in the fourth investigation, we vary the minimum sample size
in each leaf. In addition to the average number of training examples that are
assigned a non-zero weight for each test example (N), we also report the pre-
dictive performance; root mean squared error (RMSE) and Pearson correlation
coefficient (Corr.) for regression, and accuracy (Acc.) and area under ROC curve
(AUC) for classification.

The regression and classification forests are generated using scikit-learn
[11], with the default settings, except when stated otherwise. The methods to fit
and apply the forests have been modified to allow for measuring and controlling
the number of training examples used in the predictions. It has been verified that
the generated predictions, when not limiting the number of involved training
examples, are identical to those generated by the original implementation.

Results for Regression. In Table 1, the results from the four investigations on
the regression task are shown. Table 1a shows that the predictive performance
is improved, as expected, when increasing the number of training examples.
More interestingly, the effective number of training examples can be observed to
decrease when increasing the training set size. A similar effect can be observed
when increasing the number of features, as shown in Table 1b; the predictive
performance is improving while the effective number of training examples is
decreasing. In contrast, increasing the number of trees in the forest leads to an
increased number of training examples with non-zero weights, while the predic-
tive performance is improved, albeit quite marginally, as seen in Table 1c. Finally,
Table 1d shows that increasing the minimum leaf sample size has a detrimental
effect on both predictive performance and the number of examples needed to
explain the predictions, assuming that fewer examples are preferred.

Results for Binary Classification. In Table 2, the results for the binary
classification task are shown. A first observation is that the number of training
examples with non-zero weights are much larger for this task compared to the
regression task; this can be attributed to the larger number of training examples
falling into each leaf. In Table 2a, the predictive performance is again observed
to be improved with the number of training examples, but in contrast to the
regression task, the effective number of training examples is consistently increas-
ing with larger training sets. The picture is a bit different when increasing the
number of features, as seen in Table 2b; although the predictive performance
is increasing with the number of features, the effective number of examples is
instead changing non-monotonically, with a maximum reached at 1024 features.
When it comes to increasing the number of trees in the forest, the results are
similar to when considering the regression task; larger forests lead to larger num-
ber of training examples with non-zero weights, while the predictive performance
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Table 1. Regression results for the Lipophilicity dataset

#Ex. RMSE Corr. N

500 1.042 0.503 61.7

1000 0.977 0.587 59.8

1500 0.940 0.630 58.8

2000 0.904 0.665 57.6

2500 0.894 0.674 56.2

3000 0.876 0.689 55.5

3500 0.860 0.703 54.1

(a) No. of training examples

#Feat. RMSE Corr. N

128 0.942 0.632 64.9

256 0.901 0.671 62.1

512 0.868 0.698 57.2

1024 0.848 0.713 53.6

2048 0.820 0.734 51.0

4096 0.806 0.744 48.7

8192 0.799 0.750 48.0

(b) No. of features

#Est. RMSE Corr. N

100 0.852 0.710 53.6

250 0.846 0.716 105.1

500 0.846 0.716 167.4

750 0.845 0.716 215.1

1000 0.844 0.717 255.9

1250 0.844 0.717 291.7

1500 0.844 0.718 322.5

(c) No. of trees

#Samp. RMSE Corr. N

1 0.849 0.712 53.5

5 0.872 0.698 267.2

10 0.910 0.664 466.3

15 0.938 0.638 632.0

20 0.960 0.616 767.9

25 0.977 0.598 879.3

30 0.992 0.580 978.3

(d) Minimum leaf sample size

(marginally) improves, as can be observed in Table 2c. Finally, Table 2d shows
that increasing the minimum leaf sample size again has a detrimental effect on
both predictive performance and the number of examples.

Results for Multiclass Classification. In Table 3, the results for the mul-
ticlass classification task are shown. The effective number of training examples
used in the predictions can be observed to fall in between of regression forests and
binary classification forests. Due to the more fine-grained class labels, the tree
growth typically continues beyond that of the binary classification trees, resulting
in leafs with fewer examples, which has a direct effect on the number of training
examples with non-zero weights. Table 3a shows that the predictive performance
improves when increasing the number of training examples, as observed also
for the previous tasks, but in contrast to these, the effective number of train-
ing examples is not monotonically increasing or decreasing with larger training
sets, but peaks near the middle of the considered range of training set sizes.
Again, the predictive performance is increasing with the number of features,
and similarly to the regression task, but different from the binary classification
task, the effective number of involved training examples is decreasing with the
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Table 2. Binary classification results for the Lipophilicity dataset

#Ex. Acc. AUC N

500 0.683 0.747 306.8

1000 0.718 0.789 402.4

1500 0.744 0.819 455.2

2000 0.751 0.828 493.1

2500 0.768 0.843 521.0

3000 0.774 0.853 545.7

3500 0.772 0.857 560.5

(a) No. of training examples

#Feat. Acc. AUC N

128 0.760 0.837 388.5

256 0.770 0.849 473.3

512 0.772 0.856 530.1

1024 0.785 0.863 565.5

2048 0.782 0.868 540.5

4096 0.791 0.874 489.7

8192 0.797 0.876 392.2

(b) No. of features

#Est. Acc. AUC N

100 0.789 0.865 566.3

250 0.786 0.865 983.8

500 0.788 0.867 1382.4

750 0.791 0.867 1624.7

1000 0.792 0.868 1807.5

1250 0.790 0.869 1939.0

1500 0.791 0.868 2050.3

(c) No. of trees

#Samp. Acc. AUC N

1 0.789 0.864 567.6

5 0.766 0.849 702.3

10 0.752 0.830 1295.9

15 0.740 0.816 1759.9

20 0.730 0.807 2135.4

25 0.721 0.800 2423.2

30 0.710 0.791 2668.6

(d) Minimum leaf sample size

dimensionality, as seen in Table 3b. As was observed for both the regression and
binary classification tasks, larger forests consistently lead to increasing the effec-
tive number of used examples, while the predictive performance is marginally
affected, as can be observed in Table 3c. Finally, Table 3d shows that similar to
the previous two cases, an increased minimum leaf sample size results in lower
predictive performance and larger number of examples.

Summary of the Findings. Two consistent patterns were observed across the
three considered predictions tasks; increasing the number of trees in the forests
leads to improved predictive performance and an increased number of training
examples involved in the predictions, while increasing the minimum leaf sample
size leads to deteriorated predictive performance and a substantial increase in
the number of training examples with non-zero weight. The last finding suggests
that the smallest possible minimum leaf sample size, i.e., 1, should be employed,
which indeed is the default for random forests in scikit-learn. When it comes
to the number of trees in the forests, there is a trade-off between the predictive
performance and the effective number of examples; there may be reasons to use
more than the default of 100 trees in scikit-learn, but the relatively small
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Table 3. Multiclass classification results for the Lipophilicity dataset

#Ex. Acc. AUC N

500 0.238 0.604 125.9

1000 0.257 0.637 136.0

1500 0.283 0.664 134.7

2000 0.292 0.679 134.7

2500 0.297 0.687 130.1

3000 0.303 0.701 128.1

3500 0.309 0.705 126.0

(a) No. of training examples

#Feat. Acc. AUC N

128 0.311 0.694 132.1

256 0.310 0.704 138.5

512 0.320 0.708 134.3

1024 0.310 0.714 124.8

2048 0.320 0.719 107.8

4096 0.315 0.723 92.2

8192 0.324 0.722 77.7

(b) No. of features

#Est. Acc. AUC N

100 0.318 0.715 123.7

250 0.320 0.723 256.2

500 0.316 0.724 421.5

750 0.313 0.725 549.9

1000 0.318 0.725 654.2

1250 0.319 0.727 743.3

1500 0.316 0.726 820.7

(c) No. of trees

#Samp. Acc. AUC N

1 0.321 0.715 124.0

5 0.291 0.722 698.0

10 0.278 0.713 1308.7

15 0.268 0.704 1782.8

20 0.261 0.698 2176.4

25 0.261 0.692 2436.8

30 0.250 0.687 2694.8

(d) Minimum leaf sample size

improvements beyond 500 trees or so come at a quite substantial cost in the
number of examples needed to explain the predictions.

The most surprising finding was that increasing the training set size may
not only lead to improved predictive performance, as expected, but also to a
reduced number of training examples used in the predictions, as was observed
for the regression and multiclass classification tasks. This means that reducing
the training set is not always a good strategy to minimize the effective number
of examples. A similar finding was made with respect to the number of features;
a higher dimensionality consistently lead to higher performance, and for the
regression and multiclass classification tasks, the lowest number of examples
were used when the highest number of features were considered. The two last
findings suggest that using as many training examples and features as possible
can, at least in some cases, be advisable as both the predictive performance and
the number of training examples used in the explanations benefit from this.

3.2 Controlling the Number of Examples Used in the Predictions

Results for Regression. As in the previous section, we here consider the
Lipophilicity dataset for the (original) regression task, using the largest num-
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ber of features (8192). Again, we perform 10-fold cross-validation, here using a
regression forest with 500 trees and with all other parameters set to the default.

Table 4. Regression results for the Lipophilicity dataset

k N W RMSE Corr.

1 1.0 0.222 0.988 0.656

3 3.0 0.398 0.850 0.723

5 5.0 0.481 0.822 0.737

10 10.0 0.586 0.803 0.747

15 15.0 0.644 0.796 0.751

20 20.0 0.685 0.793 0.752

30 29.9 0.743 0.789 0.755

50 48.6 0.818 0.788 0.756

100 87.5 0.915 0.791 0.755

(a) Varying number of examples

c W N RMSE Corr.

0.1 0.238 1.4 0.918 0.693

0.2 0.289 2.6 0.865 0.717

0.3 0.365 4.7 0.834 0.732

0.4 0.447 7.8 0.817 0.740

0.5 0.535 12.6 0.804 0.747

0.6 0.621 19.9 0.796 0.751

0.7 0.713 31.3 0.792 0.753

0.8 0.806 50.7 0.792 0.753

0.9 0.902 82.9 0.793 0.753

1.0 1.000 137.5 0.796 0.752

(b) Varying cumulative weight

In Table 4, the results from controlling the effective number of examples
(Table 4a) and the cumulative weight of the examples (Table 4b) are presented.
In column N, the effective number of training examples are shown; note that in
the first sub-table, this number may be less than the specified number (k), in
particular for large values of the latter, as the number of examples receiving a
non-zero weight may be less than k. Column W presents the average observed
cumulative weight of the examples; note that in the second sub-table, this num-
ber is typically larger than the specified cumulative weight (c), in particular for
smaller values of c, as the latter provides a lower bound. The predictive per-
formance of the standard regression forest is shown in the last row of Table 4b
(where c = 1.0), where on average 137.5 training examples receive a non-zero
weight. The results in Table 4a show that the same predictive performance as the
original forest can be obtained with as few as 15–20 training examples, which
corresponds to a reduction of 85–90% in the number of examples needed to
explain the predictions. Interestingly, it can be observed in Table 4b that using
a cumulative weight of 0.7 outperforms the original regression forest (as well as
most other considered settings for the cumulative weight), while reducing the
number of involved examples to less than a fourth.

In Fig. 1, we illustrate the use of the above model trained on 90% of the data
and applied to a random test object, using the top five (k = 5) training examples
for forming the predictions. Below the test object in Fig. 1a, the predicted (ŷ) and
actual (y) values are shown. Below each of the training objects in Fig. 1b-f, the
label (y) and the weight (w) are shown. Highlighted atoms in the training objects
indicate parts that are missing in the test object. Even without knowledge about
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Fig. 1. Test example and k = 5 training examples

the particular features used by the black-box model, the user can inspect and
reason about the actual objects that constitute the basis for the prediction.

Results for Classification. We here consider the MNIST dataset with 70 000
handwritten digits, represented by 784 features (28× 28 pixel boxes) and for
which the set of class labels is {0, . . . , 9}. We employ ten-fold cross-validation
and consider classification forests of 500 trees with all other parameters set to
default.

In Table 5, the results from controlling the effective number of examples (k
in Table 5a) and the cumulative weight of the examples (c in Table 5b) are pre-
sented, again with the columns N and W corresponding to the effective number
and the cumulative weight of the examples, respectively. The predictive perfor-
mance of the standard random forest is shown in the last row of Table 5b (where
c = 1.0), where on average 5846.9 training examples receive a non-zero weight.
The results in Table 5a show that the original forest can be outperformed with
as few as k = 10 training examples; this corresponds to a reduction of 99.8% in
the number of examples needed to explain the predictions. Similar results can
be observed for several of the settings in Table 5b.

In Fig. 2, we illustrate the use of a classification forest trained on 90% of
the data when forming predictions using the top five (k = 5) training examples.
We have randomly selected one test object with label y = 7 incorrectly pre-
dicted as ŷ = 2, shown in Fig. 2a; the predicted label is chosen according to the
predicted class probability distribution 〈0, 0, 0.75, 0.09, 0, 0, 0, 0.16, 0, 0〉 (over the
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Table 5. Classification results for the MNIST dataset

k N W Acc. AUC

1 1.0 0.008 0.861 0.923

3 3.0 0.020 0.922 0.988

5 5.0 0.029 0.952 0.996

10 10.0 0.048 0.974 0.999

15 15.0 0.064 0.980 0.999

20 20.0 0.077 0.982 0.999

30 30.0 0.101 0.983 1.000

50 50.0 0.140 0.984 1.000

100 100.0 0.217 0.984 1.000

(a) Varying number of examples

c W N Acc. AUC

0.1 0.101 51.7 0.983 0.999

0.2 0.201 136.8 0.984 1.000

0.3 0.301 252.4 0.984 1.000

0.4 0.400 403.4 0.983 1.000

0.5 0.500 600.3 0.982 1.000

0.6 0.600 859.4 0.980 0.999

0.7 0.700 1209.9 0.979 0.999

0.8 0.800 1712.8 0.976 0.999

0.9 0.900 2537.9 0.975 0.999

1.0 1.000 5846.9 0.972 0.999

(b) Varying cumulative weight

labels 0, . . . , 9), which is defined by the weights (w) and labels (y) of the training
objects in Fig. 2b-f. Again, the user may inspect the training examples that fully
explain the prediction, i.e., no other examples are involved in forming it, and
e.g., reason about whether the prediction is reliable or not.

Fig. 2. Test example and k = 5 training examples

4 Concluding Remarks

An investigation of the number of training examples involved in random for-
est predictions has been presented, highlighting the impact of dataset proper-
ties and hyperparameter settings. An approach to controlling this number by



196 H. Boström

including only the top-weighted examples has been proposed, and an empirical
investigation shows that this approach may substantially reduce the effective
number of training examples involved in the predictions, while maintaining, and
even improving, the predictive performance compared to the standard prediction
procedure.

Directions for future research include extending the empirical investigation,
e.g., by considering more datasets and hyperparameter settings, and investigat-
ing other approaches to selecting examples based on the weights. Other directions
concern studying the usability of the example-based explanations when solving
practical tasks, and also exploring combinations of explanation techniques, e.g.,
complementing the example-based explanations with rules or feature scores.
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Abstract. The need for explanation for new, complex machine learning
models has caused the rise and growth of the field of eXplainable Artificial
Intelligence. Different explanation types arise, such as local explanations
which focus on the classification for a particular instance, or global expla-
nations which aim to show a global overview of the inner workings of
the model. In this paper, we propose FLocalX, a framework that builds
a fuzzy global explanation expressed in terms of fuzzy rules by using
local explanations as a starting point and a metaheuristic optimization
process to obtain the result. An initial experimentation has been carried
out with a genetic algorithm as the optimization process. Across several
datasets, black-box algorithms and local explanation methods, FLocalX
has been tested in terms of both fidelity of the resulting global explana-
tion, and complexity The results show that FLocalX is successfully able
to generate short and understandable global explanations that accurately
imitate the classifier.

Keywords: XAI · Optimization · Metaheuristics · Fuzzy Rule-Based
Systems · Local Explanations · Global Explanations

1 Introduction

In recent years, the increasing amount of data has allowed new, more complex
models to be incorporated into a wide range of tasks [5,6,26]. However, the
increasing complexity usually causes a decrease in model interpretability [2],
which may not be advisable or suitable in certain critical fields, i.e., medicine,
law, aviation, etc. Current European legislation also deals with this topic by
means of the right to explanation included in the General Data Protection Reg-
ulation [18], which affects both humans and artificial intelligence techniques.
eXplainable Artificial Intelligence (XAI) [3,9] aims to push the usage of inter-
pretability and explainability in order to gain an understanding of complex black
box models used in sensitive contexts and critical areas.
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Within the XAI taxonomy, one important distinction is whether a method
generates local or global explanations. Local explanations are aimed at individ-
ual instances, and explain the decisions made by the model in a small neigh-
borhood of the feature space around an instance, while global explanations aim
to explain the entire behavior of the model. A common type of local expla-
nation are factual and counterfactual explanations [7,8]. Factual explanations
explain the reasoning behind a decision, while counterfactual explanations high-
light the necessary changes to revert that decision. Focusing on decision rules
as explanations, LORE (LOcal Rule-based Explainer) [8] is a well-known XAI
algorithm that generates both factual and counterfactual local explanations by
learning a proper neighborhood of the given instance, then inducing a crisp
decision tree from which crisp rules are extracted. Further building on this idea,
FLARE1 instead leverages a fuzzy decision tree, extracting fuzzy, rather than
crisp, rules. Due to their ease of extraction and high accuracy, local explanations
have become a building block for global ones, blurring the line between the two.
In [11] the authors turn local Shapley values into global explanations by means
of functional decomposition. Other works merge local and global explanations
through feature importance [15], concept relevance [19], saliency maps [20] and
strategy summaries [13]. Most related to our application on rules as explana-
tions, GLocalX [22], from which this paper takes inspiration, merges local crisp
explanations to build a global explanation theory.

In this paper, we introduce FLocalX, a framework to create an agnostic global
explanation theory for a black-box classifier in the form of a fuzzy rule-based
system built using local fuzzy explanations. This global fuzzy explanation theory
mimics the behavior of the underlying black-box classifier, and can be used to
provide factual explanations for novel, previously non-explained instances whiel
providing a general understanding of the model. This way, a user can better
understand how the classifier works, and how it will behave upon new instances,
rather than generate explanations ex-novo. Building a global theory with fuzzy,
rather than crisp, rules leads to additional benefits, making the global explana-
tion more understandable, flexible, and faithful to the black-box model. Fuzzy
rules leverage linguistic labels, which improve their readability by associating
high-level human-understandable concepts with their premises and have been
widely used to design explainable systems [16,25] Fuzziness also allows us to
infer several, rather than one, explanations per instance, effectively providing
the user with alternative explanations. Performance-wise, fuzzy rule-based sys-
tems are particularly apt to leverage different types of local explanations [23].

The rest of the paper is structured as follows. Section 2 presents the problem
and identifies the relevant elements. Section 3 illustrates the workflow of our
proposal. Section 4 shows the experiments and behavior of FLocalX. Finally,
Sect. 5 presents the conclusions and indicates some future research lines.

1 https://dsi.uclm.es/descargas/technicalreports/DIAB-24-02-1/
FLARE_Tech_Rep.pdf.

https://dsi.uclm.es/descargas/technicalreports/DIAB-24-02-1/FLARE_Tech_Rep.pdf
https://dsi.uclm.es/descargas/technicalreports/DIAB-24-02-1/FLARE_Tech_Rep.pdf
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Fig. 1. Strong fuzzy partition for a fuzzy variable age

2 Setting the Stage

The Local to Global Explanation Problem [22] we aim to solve consists of finding
a function g that, from a set of local explanations extracted from a black box
classifier, yields a global explanation theory that describes its underlying logic.

First, let us revise some related concepts. In a classification problem, an
instance x = (x1, . . . , xn) ∈ X1 × · · · × Xn, where X1, . . . ,Xn are n sets of input
variables, is mapped to a decision y ∈ Y = {y1, . . . , yn} by a function (classifier)
f : X1 × · · · × Xn → Y. We write f(x) = y to denote the classification y
given to x. Let us denote by ncont (resp. ndisc) the number of continuous (resp.
discrete) variables in X , s.t. 0 ≤ ncont, ndisc ≤ n, ncont + ndisc = n. Let us
assume that, associated with each continuous input variable Xi, there is a fuzzy
(linguistic) variable Fi = {vi,1 . . . , vi,ki

} defined through a Ruspini partition [1]
of ki ordered fuzzy sets (see Fig. 1)2. We use vi,zi to denote both the fuzzy set
and its corresponding associated linguistic label, indistinctly. A triangular fuzzy
set is defined by a triple of real-valued points: (start, peak, end), i.e. teen =
(15, 15, 25) and young = (15, 25, 45) in Fig. 1a. . If we know the minimum and
maximum values of dom(Xi), the partition becomes specified by ki − 2 values.
Given a value δ ∈ dom(Xi), let μi(δ) = (μi,1(δ), . . . , μi,ki

(δ)) be the vector of
membership degrees of δ to the ki fuzzy sets of Fi. In other words, μi,zi(δ) is
the membership degree of δ to the set vi,zi . A linguistic hedge, or linguistic
modifier, is a function that alters the membership function of a fuzzy set, which
can modify the shape of the fuzzy set (see Fig. 1b). In this work, we use two of
the most common linguistic hedges, “very” and “slightly”: μvery

i,zi
(xi) = (μi,zi(xi))2

and μslightly
i,zi

(xi) =
√

μi,zi(xi). Finally, for discrete variables, we can interpret
each value as a linguistic label whose associated fuzzy set has membership degree
1 in case the instance takes that value and 0 otherwise.

Let b() be a classifier whose decision-making process needs to be
explained, i.e., a black-box model, learned from a training dataset TR =
2 Triangular membership functions are used in this article to illustrate the proposed

method for simplicity/convenience. The framework allows other types of member-
ship functions (Gaussian, trapezoidal, etc.) to represent the underlying fuzzy sets.
However, the partitions must cover the complete domain for Eq. 1 to be valid.
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{(xt
1, . . . , x

t
n, yt)}Tt=1. Let e = {r1, . . . , re} be a multi-rule explanation formed

by one (or more) fuzzy decision rules. Each rule r = P (r) → y(r) consists of
a set of premises in conjunctive form P (r) = ps1 ∧ · · · ∧ psr and an outcome
y(r) ∈ Y. Each premise pi = 〈Fi, vi,zi〉 is an attribute-value pair. For the contin-
uous variables, Fi is a fuzzy variable and vi,zi is one of its corresponding fuzzy
sets. For the discrete variables, Fi = Xi and vi,zi is a value from its domain. As
an example, let us consider the following explanation for a loan request for a
user x = {(age = 30), (job = Accountant), (amount = 20k)}:

e = {(r1 = age is young ∧ job is Accountant → accept),
(r2 = age is adult ∧ amount is high → accept)}

One property of multi-rule explanations is that, given an explanation e that
explains the instance x, then y(r) = b(x) for all r ∈ e. Fuzzy rules differ from
crisp rules in that, while a crisp rule has a binary (0 or 1) match with an instance
x, a fuzzy rule r has a matching degree with the instance, md(r, x), defined as:

md(r, x) = min
i∈{s1,...,sr}

{μi,zi(xi)} ∈ [0, 1]

An explanation theory E = e1∪· · ·∪eq consists of a union of explanations which
may have different outcomes.

Thus, the Local to Global Explanation Problem can be defined as follows:
Given a black box b(), a set of instances X = {x1, · · · , xq} and their local
explanations {e1, · · · , eq}, the Local to Global Explanation Problem consists in
deriving a global explanation theory EG = e′

1 ∪· · ·∪e′
q′ that aggregates the local

explanations in order to summarize the logic of b.

3 Fuzzy Local to Global Explanation Framework

In this paper we propose FLocalX, a Fuzzy Local to Global Explanation frame-
work that generates a global explanation theory which mimics a black box clas-
sifier given an initial set of local explanations. FLocalX takes the following ele-
ments as input a set of instances X and an explanation theory EL = e1 ∪· · ·∪eq
formed by the union of the explanations of every instance in X, and generates
the global explanation theory EG by applying the following steps:
– First, it transforms, i.e., maps, the local fuzzy sets Fj defined for each ej ∈ EL

to a common definition of fuzzy sets FC . This ensures that all local explana-
tions in EL share the same set of fuzzy variables. We name this explanation
theory with common fuzzy sets EC .

– Second, it encodes EC into a simple, unique representation that will be the
initial configuration CEC of the optimization process.

– Third, it generates the global explanation theory EG from CEC through an
optimization process.

This process results in a global explanation theory EG that closely resembles
the behavior of b(), and can provide a factual explanation for novel instances.
Factual explanations can be extracted from EG by obtaining, for instance, the
minimum robust factual explanation defined in [7].
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Fig. 2. Representation of the encoding of a FRBS

3.1 Local to Global Fuzzy Set Transformation

Depending on the method employed to extract the local explanations, they may
not share the same fuzzy variable definitions, thus the same linguistic features
may be defined by different fuzzy sets. For the sake of homogeneity, we uniform
the fuzzy variable definitions F1

i , . . . ,F |EL|
i of a given variable Xi, and establish

a global fuzzy variable definition FC by partitioning the domain of the numerical
variables into equal-width sets, unless expert-provided sets are available.

Given two fuzzy sets vi,zi ∈ Fi and v′
i,z′

i
∈ F ′

i , we compute their similarity as

S(vi,zi , v
′
i,z′

i
) = A(vi,zi ∩ v′

i,z′
i
)/A(vi,zi ∪ v′

i,z′
i
)

where A(v) is the area of the fuzzy set v. As usual in the literature, we use min
as the intersection and max as the union. Then, given a variable Xi, we define

M(v′
i,z′

i
,Fi) = arg max

vi,zi
∈Fi

S(vi,zi , v
′
i,z′

i
), (1)

which takes a fuzzy set v′
i,z′

i
∈ F ′

i and returns the set vi,zi ∈ Fi with the greatest
similarity. We get EC by applying Eq. 1 to every premise of each ei ∈ EL.

3.2 Global Fuzzy Set Theory Encoding

In FLocalX, we frame the objective of building a global explanation theory as
the process of optimizing the Fuzzy Rule-Based System (FRBS) formed by the
set of fuzzy decision rules in EC . To this aim we need an encoding of EC , this
is, a representation of a potential solution to the problem which will be used by
the metaheuristic algorithm in the optimization process.

The objective of the optimization process used by FLocalX is twofold. First,
maintaining the degree in which the FRBS mimics the black-box classifier as
accurate as possible. Second, making the FRBS as compact as possible (in terms
of number of rules), to favor interpretability [9]. Inspired by [4], we design a pro-
cedure to tune FRBS maintaining interpretability by using a genetic algorithm.
To this aim, there are two elements of the FRBS that must be optimized:
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– Surface Structure. It is a shallow description that defines the rule as the
relation between the input and output variables. We optimize it by (i) using
linguistic hedges, and by (ii) altering the premises of a rule. Optimization can
modify the linguistic hedge applied to a particular premise p = 〈Fi, vi,zi〉, the
fuzzy set vi,zi associated with p, and whether or not Fi appears in a rule.

– Deep Structure. It is a more specific description which expands the surface
structure with the definitions of the membership functions. Optimization only
affects the membership functions of the fuzzy sets. Using a metaheuristic algo-
rithm we can reduce the explainability of the system in exchange for greater
accuracy. We control this by preserving the shape of the fuzzy partitions, i.e.,
triangular Ruspini partitions as explained in Sect. 2.

Configuration. Each configuration C of the optimization process represents an
explanation theory E, shown graphically in Fig. 2. For this purpose, we will use
a four-part configuration (CF + CR + CH + CU ) as follows:

– CF is the encoding of the fuzzy variables. We assume that the minimum and
maximum values of dom(Xi) are known. As an example, in Fig. 1a we know
ki = 3, min = 15 and max = 40, and so we only have a free value (25)
to codify the three fuzzy sets: {(15, 15, 25); (15, 25, 40); (25, 40, 40)}. Just by
changing the value 25 to, e.g. 20, we modify the fuzzy semantics of the vari-
able, obtaining a new partition: {(15, 15, 20); (15, 20, 40); (20, 40, 40)}. Thus,
CF has a length of (

∑ncont

i=1 ki − 2), all of them being real numbers.
– CR is the encoding of the rules. It has a length of n · |E| elements, where

|E| is the number of rules in the explanation theory, i.e., in the FRBS. Each
n consecutive elements codify a rule with an ordinal encoding from the set
{0, . . . , ki}, where 0 represents that the i-th variable does not appear in the
rule and 1 to ki identify each fuzzy set or value of the variable Fi, depending
on whether Xi is numerical or categorical.

– CH is the encoding of the linguistic hedges. It has a length of ncont · |E|
elements, where each element belongs to the set {−1, 0, 1} representing no
linguistic hedge (-1), very (0) or slightly (1), for that particular continuous
(fuzzy) variable.

– CU is the encoding of the used rules. |E| elements-long, encodes whether a
rule is used in the final FRBS (1) or not (0).

3.3 Global Explanation Theory Generation

In order to generate the global explanation theory EG, we exploit the encoding
illustrated in the previous section to create the chromosomes of a genetic opti-
mization process. Since the optimization process aims to simultaneously (i) accu-
rately mimic the black box b(), and to (ii) have a compact FRBS, we designed
an objective function that takes into account both aspects. In particular, we
measure the first goal as the Area Under the ROC curve (AUC) to correctly
handle imbalanced datasets, while we measure the second goal as the number
of rules used in the system. Specifically, the objective function f(C) that we
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maximize in our experimentation is defined as follows:

f(C) = α · (1 −
∑|CU |−1

i=0 CU [i]
|CU | ) + (1 − α) · AUC

with α used to balance the two values optimized. Note that this is an implemen-
tation of the objective function, but others may be used.

FLocalX can employ any metaheuristic algorithm as optimizer in order to
obtain the global explanation theory. For this work, we adopted a genetic algo-
rithm [12]. Inspired by evolutionary adaptation, genetic algorithms encode solu-
tions in a chromosome space, and sequentially evolve them, each generation
selecting, merging, and improving on the previous one. In our case, merging is
encoded by (i) a crossover operation, which generates new solutions by blending
existing ones, and (ii) a mutation operation, which randomly alters a subset of
the current solutions. In genetic fashion, a selection operation picks the best
solutions (according to an objective function) which will be carried on to the
next generation. Next, we detail these crucial aspects of the genetic algorithm:

– Initial Population. The initial population of size ρ+1 for the genetic algo-
rithm is generated in an informed manner, i.e., by altering a known configu-
ration (CEC ) rather than generating all elements at random. Given an initial
configuration representing of a FRBS, each part CF , CR, CH and CU , gener-
ates 
ρ/4� chromosomes by applying the mutation operator to that part (see
below). The original configuration is also included in the initial population.

– Crossover. It selects pairs of chromosomes and crosses them with a proba-
bility pcross. Due to the encoding adopted, the chromosome is divided in two,
and different crossovers are applied:

• First, a min-max-arithmetic crossover [10] is applied in the CF part, gen-
erating four children.

• Second, a six-point crossover is applied in the remaining chromosome,
choosing two points for each part (i.e. two for CR, two for CH , and two
for CU ). This generates two children.

After recombining both parts, eight children are generated. The two best
children are selected in order to keep the same population size.

– Mutation. It selects chromosomes and mutates them with a probability pmut.
The mutation over each part of the chromosome is performed applying an
operation to a single bit C[i] of each part of the chromosome as follows:

• For CF , the bit is randomly generated by sampling a real number from a
uniform distribution in the range of the continuous variable.

• For CR, the bit is randomly chosen in the set {0, · · · , ki} \ C[i].
• For CH , the bit is randomly chosen in the set {−1, 0, 1} \ C[i].
• CU is generated as 1 − C[i], i.e., altering the bit.

– Selection. A rank-based selection with respect to the fitness is used.
– Replacement. A replacement with elitism is performed, i.e., the best con-

figuration from the previous population is kept.
– Stop Criterion. The genetic algorithm stops when the fitness of the best

individual does not offer enough improvement beyond a threshold ε over a
consecutive period of κ iterations.
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These operations provide great flexibility and generality, and allow to directly
learn, rather than define, the evolution of fuzzy rules. A challenging task such
as the Local to Global one, which is not directly differentiable, requires flexible
algorithms able to explore vast non-differentiable solution spaces, and adapt to
a wide variety of users, and thus objectives. Optimizing global explanations to
both be understandable by a user, as well as comprehensive enough to mimic a
complex black-box classifier, is thus a perfect fit for our purpose.

4 Experiments

We evaluated FLocalX on three widely used multi-class datasets, i.e., Iris3,
Wine4, and Beer5. The decision to use small datasets is driven by the main objec-
tive of developing and showcasing a framework to extract global explanations,
rather than focusing on a specific metaheuristic (in this case, the genetic algo-
rithm). As metaheuristic algorithms are resource-intensive and time-intensive
processes, they often require specific optimizations made for each case and algo-
rithm in order to tackle different problems. By employing simpler datasets, we
can shift our focus towards illustrating the capability of the framework of work-
ing with different types of local explanations, as well as how it can seamlessly
mimic a variety of black box algorithms. This is a first step in the line of work
of a more complex experimentation where multiple metaheuristic algorithms are
used and optimized with this framework in order to tackle much more complex
problems. The implementation of FLocalX is available on Github6. Experimen-
tal Setting. We adopted the following metrics to evaluate the performance of
FLocalX and the other classifiers used as baselines.

– Accuracy. It measures how close is the global explainer to the ground truth.
We measure the accuracy of the black box (Acc-B), of the explanation theory
formed by the union of the local explanations (Acc-U), and of the global
explanation theory after applying FLocalX (Acc-F).

– Fidelity. It measures how well the global explainer mimics the black box clas-
sifier. We measure the fidelity of the explanation theory formed by the union
of the local explanations (Fid-U), and the fidelity of the global explanation
theory after applying FLocalX (Fid-F).

– Number of Rules. The total number of rules in the system. More rules indicate
a more complex system and so a less interpretable system. We measure the
number of rules before (#R) and after applying FLocalX (#R-F).

– Number of Premises. The number of premises in the antecedent of the rules.
More premises are sometimes (falsely) perceived as being more helpful [14],

3 https://archive.ics.uci.edu/dataset/53/iris.
4 https://archive.ics.uci.edu/dataset/109/wine.
5 https://gitlab.citius.usc.es/ilia.stepin/fcfexpgen/-/tree/master/all_datasets/BEER_exp1.
6 GitHub: https://github.com/Kaysera/flocalx. FLocalX was programmed in Python 3.10, using

libraries such as numpy and scikit-learn to properly manage the data structures and efficiently
generate the explanations. To guarantee reproducibility, all the experiments are also published in
a separate public Github repository https://github.com/Kaysera/ida2024-experiments.

https://archive.ics.uci.edu/dataset/53/iris
https://archive.ics.uci.edu/dataset/109/wine
https://gitlab.citius.usc.es/ilia.stepin/fcfexpgen/-/tree/master/all_datasets/BEER_exp1
https://github.com/Kaysera/flocalx
https://github.com/Kaysera/ida2024-experiments
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Fig. 3. LORE interval transformation to fuzzy set.

so shortening the rule together with a proper communication of attribute
importance is a good practice. We measure the number of premises before
(#P) and after applying FLocalX (#P-F).

We used a train-validation-test (60%-30%-10%) split for the experimentation.
The training split was used to train the black box classifiers using default hyper-
parameters. The validation partition was used to fit the hyperparameters of the
local explanation methods, as well as to extract the local explanations (EL).
The test partition was used to measure the accuracy score for all algorithms.
The genetic algorithm was repeated 20 times, altering the random seed and
averaging the result between them. The parameters were chosen empirically7 as
follows: population size (ρ) = 128, size pressure (α) = 0.1, # iterations (κ) =
20, threshold (ε) = 0.01, # fuzzy sets (ki) = 5, pmut= 0.15 and pcross= 0.8. The
fuzzy sets for Iris and Wine were obtained using equal-width partitions, while
the fuzzy sets for Beer were obtained from [24].

We experiment with FLocalX with a set of different alternatives:

– Black-Box Models: We used SVM, Neural Network (NN) and Random Forest
(RF) as baseline classifiers as implemented by scikit-learn [17].

– Rule-Based Models: Algorithms from which a ruleset that can be used for both
prediction and explanation can be extracted. They are used as global expla-
nation systems. The algorithms used are Fuzzy Decision Tree (FDT) [21],
LORE [8] and FLARE.

– Local to Global Approaches : They set local explanations and merge them into
a global explanation theory that is able to predict and explain instances of
the dataset. We considered:

• FLocalX + LORE : We used LORE to extract local explanations and
then applied FLocalX. As FLocalX takes fuzzy rules, the intervals were
expanded into fuzzy sets as if they were an α-cut of 0.5 of the correspond-
ing fuzzy set. For example, the interval [1, 3] would become the fuzzy set
(0, 2, 4) as shown in Fig. 3.

• FLocalX + FLARE : We used FLARE to extract local explanations and
then FLocalX was applied.

7 With these datasets, a large population size which is a power of 4 shows better
results, and a small size pressure allows for faster convergence with a high accuracy.
The rest of the parameters are standard for genetic tuning.
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Table 1. Performance and Explainability of Different Models

Method Black Box Fid-U Fid-F Acc-B Acc-U Acc-F #R #R-F #P #P-F

Iris FDT – – – – 1.00 – 12.00 – 1.42 –
FLARE NN 0.97 0.93 1.00 0.95 0.91 32.00 5.05 1.31 1.27

RF 0.94 0.91 0.93 0.94 0.91 26.00 4.16 1.81 1.70
SVM 0.93 0.95 1.00 0.95 0.92 19.00 4.47 1.26 1.32

LORE NN 0.93 0.94 1.00 0.94 0.93 45.00 4.79 1.96 1.55
RF 0.97 0.93 0.93 0.97 0.93 45.00 4.16 2.07 1.85
SVM 0.92 0.95 1.00 0.94 0.92 45.00 4.37 1.58 1.36

Wine FDT – – – – 0.94 – 36.00 – 3.00 –
FLARE NN 0.86 0.76 0.89 0.82 0.77 48.00 8.68 1.42 1.54

RF 0.61 0.61 1.00 0.61 0.61 41.00 2.89 1.39 1.23
SVM 0.99 0.73 0.67 0.71 0.76 17.00 4.95 1.00 1.32

LORE NN 0.77 0.78 0.89 0.76 0.76 54.00 4.79 2.52 1.94
RF 0.90 0.88 1.00 0.90 0.88 54.00 6.21 3.19 3.02
SVM 0.93 0.76 0.67 0.68 0.71 52.00 5.05 1.02 1.56

Beer FDT – – – – 1.00 – 69.00 – 2.42 –
FLARE NN 0.69 0.71 0.80 0.67 0.79 128.00 20.42 1.85 1.78

RF 0.87 0.88 1.00 0.87 0.88 129.00 26.68 2.34 2.18
SVM 0.86 0.77 0.85 0.85 0.82 99.00 15.21 1.96 1.93

LORE NN 0.74 0.76 0.80 0.70 0.80 119.00 13.42 2.01 1.98
RF 0.92 0.89 1.00 0.92 0.88 119.00 14.63 2.54 2.60
SVM 0.78 0.82 0.85 0.67 0.86 119.00 15.58 2.02 2.07

Results. We compare the results of FLocalX for two different local explana-
tion methods, using the union of the local explanations as a global explainer
and studying how much improvement our framework provides. We also use a
rule-based white box method (i.e., FDT) as baseline. Table 1 reports both the
performance of the global explainers, as well as its level of complexity.

As one objective of the optimization process is to minimize the size of the rule-
based system, testing the impact on performance is necessary. We can observe
that problems where Acc-U is really high (i.e. >0.9), Acc-F is lower than Acc-U,
likely because most rules are necessary to achieve that degree of accuracy. How-
ever, that decrease in accuracy is not so much as to lose trust in the explainer.
On the other hand, in more complex problems where the starting point is not
as good (the Beer dataset with FLARE and NN, or LORE and SVM are exam-
ples of this), the optimization process can even improve the starting point’s
accuracy. This suggests that a metaheuristic approach, while time-consuming,
benefits hard-to-solve problems. Finally, it is worth mentioning that LORE rules
tend to be a better starting point for FLocalX than FLARE rules. This finding
might suggest that either crisp rules are better than fuzzy rules as a starting
point, or that more premises provide a better starting point. More experiments
will be done to explore the cause.
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Turning to explanation complexity, the most relevant part is in the reduction
of rules from the union of local explanations (#R) to after FLocalX is applied
(#R-F). We can observe that we need around 10% − 15% of the number of
rules from which FLocalX starts. Beer shows the largest explanation theories
(at around 20 rules for FLARE and 14 for LORE), which are still readable
for humans. Moreover, there is a great reduction from the baseline white-box
classifiers, needing around 40% of the rules in simpler datasets and around 20%−
30% of the rules in more complex problems. The number of rules generated by
the FDT increases with the complexity of the problems, which makes it unfit
as a global explainer for difficult problems, i.e., valid for Iris and Wine but
unreasonably long at 70 rules for Beer. On the other hand, looking at the number
of premises, most rules have around 1–3 premises, also manageable for a human
reader.#P-F is only marginally smaller than #P because f(C) does not consider
the length of the rule. Finally, we can see that LORE global explanations usually
have fewer rules than FLARE, with some more premises per rule.

The results of this preliminary experimentation, with a single optimization
algorithm (i.e., a genetic algorithm) and smaller datasets, showcase the flex-
ibility of the framework, which can generate compact and performant global
explanation theories that can be useful to a human reader.

5 Conclusions and Future Work

This work introduces FLocalX, a model agnostic local to global explanation
framework based on fuzzy logic that leverages the power of evolutionary com-
puting to obtain a global explanation of a black-box model. FLocalX uses local
explanations formed as fuzzy rules as the starting point from which it builds a
global fuzzy explanation that summarizes the model underneath. Using a genetic
algorithm as the optimization method, the experimentation carried out in this
paper shows that FLocalX is able to generate a short and accurate global expla-
nation theory, improving upon the trivial union of local explanations, as well as
upon the used baseline white box model. As future research directions, we intend
to perform a comprehensive study on the different hyperparameters, as well as
different operators and objective functions for the genetic tuning process of FLo-
calX. Moreover, we would like to study the usage of a different metaheuristic
algorithm to replace the genetic procedure. Finally, the difference in performance
shown between using FLARE to generate the local explanation theory and using
LORE motivates the need to experiment with other local explainers.
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Abstract. The field of machine learning is subject to an increasing
interest in models that are not only accurate but also interpretable and
robust, thus allowing their end users to understand and trust AI systems.
This paper presents a novel method for learning a set of optimal quan-
tile regression trees. The advantages of this method are that (1) it pro-
vides predictions about the complete conditional distribution of a target
variable without prior assumptions on this distribution; (2) it provides
predictions that are interpretable; (3) it learns a set of optimal quantile
regression trees without compromising algorithmic efficiency compared
to learning a single tree.

Keywords: Interpretability · Robustness · Quantile regression ·
Optimal decision trees

1 Introduction

Recently, many studies have focused on rendering complex machine learning sys-
tems interpretable from a human perspective [5,6,15]. Indeed, in many domains,
the explanation is of equal interest as the accuracy of the prediction; especially
in medical settings, business strategy settings, etc., both because one wants
to understand why the prediction is made, but also to gain insights into the
data by inspecting the model’s structure. However, most post-hoc techniques’
results remain complex to understand and often fail to explain the whole deci-
sion process of the AI system [7]. Therefore, work has been conducted in the
direction of inherently interpretable models [9,14]. Within this family of inher-
ently interpretable models falls the family of decision trees. Indeed, given a tree
of reasonable depth, a human can quickly analyze it and see how and why the
model predicts a particular class or value.

Traditionally, decision trees are learned top-down by training them with a
Mean Squared Error (MSE) heuristic, and by putting a single prediction in each
leaf of the tree, corresponding to the mean of the target variable over the train-
ing examples. In this paper, we study quantile regression. A quantile regression
tree does not predict a mean; for a given quantile parameter q, a quantile regres-
sion tree for that choice of q would predict a value such that q percent of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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observed values are below the predicted value. Hence, for q = 10% such a tree
would underestimate, while for q = 90% the tree would overestimate. This can
be important in applications where well-motivated under- or overestimation is
important, for instance, when using a tree to predict demand in retail, where
the retailer would prefer to have a larger stock than the demand predicted by a
standard regression tree. However, there is no consensus on an efficient heuristic
for quantile regression, which is why we interest ourselves in optimal decision
trees, such as DL8 [11], DL8.5 [1] and MurTree [4]. Advantages of these methods
include that (1) for trees constrained in depth these algorithms manage to find
more accurate trees; (2) these algorithms can be used to learn trees without
requiring the prior development of good heuristics for top-down tree induction.

This latter characteristic makes optimal decision trees very suitable to quan-
tile regression. However, an important weakness of learning a single quantile
regression tree is that one would have to choose a single parameter q. Moreover,
a single regression tree only provides limited insight in the complete conditional
distribution of the target variable. In this paper we argue that it is often desir-
able to model the whole target distribution without making one choice for q or
without making prior assumptions with respect to the shape of this distribution:
this increases trust in an AI system, provides insight in this target distribution,
and allows to provide well-motivated under- or over-estimations of the target
variable. We propose to do so by learning a set of decision trees, each corre-
sponding to a quantile regression tree. Indeed, predicting quantiles rather than
the most likely value renders the models more robust to outliers [12] and doing
this for many different quantiles gives information about the whole distribution.
We introduce Quantile DL8.5 (QDL8.5). This method efficiently learns a set of
optimal, shallow, and explainable decision trees for multiple quantiles, achieving
high accuracy and interpretability. QDL8.5 addresses the complexity of choosing
the right quantile in Quantile Regression by learning multiple trees for differ-
ent quantiles. We show that this can be done with virtually no computational
overhead compared to learning a single tree. The contributions of this paper are
twofold: (i) We first propose an extension of the DL8.5 algorithm that enables it
to perform quantile regression by one optimal tree per quantile while exploring
the tree space only once, thus limiting drastically the time increase of learning
many trees instead of one and (ii), we provide a robust assessment in terms of
accuracy, execution time performance and interpretability.

2 Related Work

Little work has gone towards performing quantile regression with interpretable
decision trees. However, there are some notable works to mention. A very popular
way to perform conditional quantile regression is Quantile Linear Regression
(QLR) [8]. Indeed, it is possible to derive a linear transform on features that
finds the best linear fit to optimize quantile loss. While easily interpretable, this
method is limited in terms of expressiveness. Quantile Regression Forests (QRF)
[10] represent a notable advancement in interpretable decision trees, sharing
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architecture with Random Forests [2]. Unlike traditional methods, QRF records
samples associated with each leaf and predicts the empirical quantile based on
the specified quantile during inference [10].

Cousins and Riondato introduced CaDET [3], a model that constructs inter-
pretable decision trees or random forests predicting density functions within
their leaves. They employ a selected statistical family (e.g., Gaussian, Pareto)
instantiated in leaves and use empirical cross-entropy as the impurity measure
for relevant splits. Despite fast training times due to heuristic-based tree growth,
models like CaDET [3] and QRF [10] require more trees for sufficient expres-
siveness. Efficient heuristics exist for optimizing cross-entropy or mean squared
error, but consensus is lacking for heuristics optimizing quantile loss in decision
tree growth. Some other works have used more expressive but less interpretable
methods to estimate conditional quantiles. Wang et al. [17] propose to use dif-
ferent standard regression models (random forests, support vector regressor and
gradient-boosted decision trees) and combine them linearly to optimize quan-
tile loss. Finally, they use Kernel Density Estimators (KDE) on the quantiles
to predict a conditional probability density function. Similarly, Zhang et al. [18]
combined linearly different methods that already perform quantile regression
including QLR and QRF. They also combine those quantile results into pdfs
using KDE. Both of these methods combine models that are complicated to
interpret, making them uninterpretable.

Another approach might be to use model trees like those introduced by Quin-
lan et al. [13], where, rather than having a single prediction in the leaf, a simple
model (e.g. QLR) is fitted on the mapped samples. While this is purposeful for
point predictions, it increases complexity of the models and it does not help to
give a fuller picture of a sample’s distribution without prior assumptions on said
distribution. These will therefore not be included in the experimental evaluation.

3 Background

As a first step into technical background, let us introduce quantiles.

Definition 1. Given a probability density function (pdf) f describing a distri-
bution, from which can be derived a cumulative density function (cdf) F , and
given a quantile q, the corresponding quantile value yq is such that the probability
that a realization y ∈ Y of the random variable Y is lower than yq is q.

Empirically, given a set of realizations y, it was shown [10] that the quantile
value for a given quantile q is the value ŷq that minimizes the quantile loss:

QLq(y, ŷq) =
|y |∑

i=1

max {q(ŷq − yi), (1 − q)(yi − ŷq)} . (1)

Quantile Regression is identical to standard Regression but the loss to opti-
mize is the loss in Eq. 1. Another main building block of this work is optimal
decision trees, and more specifically, the DL8 and DL8.5 implementations of
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these. DL8 [11] and its newer, more efficient version DL8.5 [1] are algorithms
that enable the learning of the best tree that optimizes any additive loss func-
tion under constraints of maximum depth, minimum support, etc. DL8.5 works
as follows. Given a binary featured dataset, it goes through each feature following
a dynamic programming principle in a branch-and-bound manner.

In these models, data is represented as itemsets, i.e. a collection of positive
f or negative ¬f items for each feature f . When a decision tree is built, it splits
each feature into its positive and negative branches, thus building larger itemsets
as it goes down in the trees. For the remainder of this paper, we will consider
our datasets to be binary as any dataset can be binarized (categorical features
turned into one-hot encoded features and continuous features turned into binary
bins). Each leaf of a decision tree will map to a certain subset of the samples
that all contain the corresponding itemset. For example, if a leaf contains the
itemset {a,¬d, g}, all samples having ones for features a and g and a zero for
feature d will be mapped to that itemset (and leaf).

Algorithm 1 shows how DL8.5 works. At each level of the search in DL8.5, a
split is performed on each feature (line 13) and the overall error associated with
each split is computed, going down recursively in the tree, always keeping track
of the path that leads to the lowest error. This is an exhaustive search, but the
search space is pruned by efficient lower and upper bounding. Indeed, the best
errors of the branches at the same level act as upper bounds for the following
negative branches (line 18). The upper bound used for the positive branches that
are explored after the negative ones is the difference between the previous upper
bound and the error of the negative branch, as errors are additive (line 19). To
summarize in a sentence: at each step of the exploration, a new feature is chosen
to be added to the itemset, the corresponding error is found for the two branches
(positive and negative) and this feature is saved if it yields the best error so far.
This is done by pruning as many unnecessary branches as possible.

DL8.5 also makes use of a cache (line 8 and 30). Indeed, each node in the
search tree can be seen as an itemset of positive or negative features that must be
present in the samples mapped to that node. However, an itemset is an unordered
collection of positive or negative features, meaning that it is possible to encounter
the same itemset in different parts of the search tree. Indeed, exploring a after
¬b yields the same itemset as exploring ¬b after a. The cache allows us to
save the best trees for these itemsets and therefore avoid performing the same
computation twice. If, for a particular itemset, the search yielded no result, this
is also saved with the upper bound that was used, as a later search might ask
for the same itemset with an equal or lower upper bound. This search can be
avoided as it is already known it will give no result.

Demirović et al. [4] proposed some optimisations to further the pruning by a
better lower bounding and using a special computation for depth-two trees. Some
of these optimisations are transferable to regression and have been included in
the implementation but not shown in the algorithm as they are not principal
for this paper. This dynamic programming approach combined with efficient
branching and bounding allows the algorithm to ensure finding the best decision
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Algorithm 1: DL8.5(maxdepth, minsup)
1: struct BestTree{lb : float, tree : Tree, error : float}
2: cache ← HashMap < Itemset, BestTree >
3: best_solution ← DL8-Recurse(∅,+∞, 0)
4: return best_solution.tree
5: Procedure DL8.5-Recurse(I, ub)
6: if leaf_error(I) = 0 or |I| = maxdepth or time-out is reached then
7: return BestTree(ub, make_leaf(I), leaf_error(I))
8: solution ← cache.get(sort(I))
9: if solution was found then

10: if solution.tree �= NO_TREE or ub ≤ solution.lb then
11: return solution

12: (τ, b, left_ub) ← (NO_TREE,+∞, ub)
13: for all attributes i in a well-chosen order
14: if cover(I ∪ {i}) ≥ minsup and cover(I ∪ {¬i}) ≥ minsup then
15: sol1 ← DL8.5-Recurse(I ∪ {¬i}, ub)
16: if sol1.tree = NO_TREE then
17: continue
18: if sol1.error < left_ub then
19: sol2 ← DL8.5-Recurse(I ∪ {i}, left_ub − sol1.error)
20: if sol2.tree = NO_TREE then
21: continue
22: feature_error ← sol1.error + sol2.error
23: if feature_error < left_ub then
24: τ ← make_tree(i, sol1.tree, sol2.tree)
25: b ← feature_error
26: left_ub ← b

27: if feature_error = solution.lb then
28: break
29: solution ← BestTree(ub, τ, b)
30: cache.store(sort(I), solution)
31: return solution

tree under the given constraints. This formulation of the DL8.5 algorithm is
already able to find the optimal decision tree optimizing quantile loss as it is an
additive function. The only change that has to be brought is the implementation
of the quantile loss as the leaf error function.

4 Quantile DL8.5

In this section, we will show how to extend the DL8.5 learning algorithm to per-
form simultaneous quantile regression1. This change in the algorithm will allow
it to learn, for each given quantile, an optimal decision tree while only exploring
the search space once, thus utilizing for all quantiles the common parts of the
search trees. This will be specially marked if the obtained decision trees are very
similar as they will have resulted from similar searches among possible decision
trees. The output of the algorithm is, for each sample, an array of quantile val-
ues, each corresponding to a different quantile. Given enough quantiles, they
describe most of the conditional distribution of a sample. The more quantiles,
the more this full distribution will be precise2.
1 Source code is available at https://github.com/valentinlemaire/pydl8.5.
2 We however recommend setting the number of quantiles to be lower than the mini-

mum support in each leaf to avoid skewed estimations.

https://github.com/valentinlemaire/pydl8.5
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4.1 Simultaneous Tree Learning

The quantile loss in equation (1) is parametric, meaning that its value is depen-
dent on the corresponding quantile. This also means that a tree that is optimal
for one quantile is not guaranteed to be optimal for another. For this reason,
we need to learn an optimal tree for each quantile. However, it is reasonable to
assume that these trees will not be very different from each other, especially for
close quantiles as they will describe close parts of the conditional distribution.
Therefore, running independent searches for the optimal trees would be ineffi-
cient as the searches will go through many common itemsets for the different
quantiles. For this reason, we have changed the DL8.5 algorithm to enable it to
learn the optimal decision tree for different quantiles while only exploring each
itemset once, no matter how many trees have to be learnt.

To enable DL8.5 to learn many trees at once a few changes had to be brought
to the algorithm. Algorithm 2 shows these changes. This algorithm is essentially
the same as Algorithm 1 except that all conditions of pruning change and some
computations need to be performed once for each quantile. Indeed, in QDL8.5, a
branch can only be pruned if all the searches relating to all the different quantiles
do not give any results. Thus, line 10 shows a call to a can_return function.
This function returns true if, for all quantiles, there is either no solution, either
the upper bound is lower than the lower bound or the leaf error has attained its
lower bound.

During the search, when considering an itemset, for each quantile we consider
each possible feature. However, if we consider a particular itemset for a particular
quantile, we compute the quantile values and quantile loss for all the quantiles.
Therefore, if we get back to that itemset for a different quantile later in the
search, the quantile value and loss will already be saved to the cache and therefore
no additional computation will be needed. Section 4.2 shows how we can compute
many quantile values and losses without additional computational cost. It can
also be seen that for each quantile and for each itemset explored, there are lower
and upper bounds and associated errors.

4.2 Efficient Quantile Loss Computation

The most costly operation in the DL8.5 (and QDL8.5) method is traversing the
data to compute the predictions and the errors for each node (itemset) explored.
It is therefore primordial to make that operation as efficient as possible. The
naive way would be to apply equation (1) which can be computed in O(N)
time for each quantile, leading to a calculation time of O(|q|N), where N is the
number of samples mapped to that itemset, i.e. the cover of that itemset, and
|q| is the number of quantiles. As a first step towards computational efficiency,
the complete data can be sorted according to the y values before starting the
tree search. Indeed, the empirical estimation of a quantile is defined as

ŷq = y
h� + (h − �h�)(y�h − y
h�) (2)
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Algorithm 2: QDL8.5(maxdepth, minsup)
1: struct

BestTree{lbs : vector < float >, trees : vector < Tree >, errors : vector < float >}
2: cache ← HashMap < Itemset, BestTree >

3: best_solution ← QDL8.5-Recurse(∅,+∞|q |)
4: return best_solution.tree
5: Procedure QDL8.5-RecurseI, ubs
6: solution ← cache.insertOrGet(sort(I))
7: leaf_errors ← quantile_errors(I, q)
8: if |I| = maxdepth or time-out is reached then
9: return BestTree(solution.lbs, make_leafs(I), leaf_errors)

10: if can_return(solution,ubs, leaf_errors) then
11: return solution

12: for all attributes F in a well-chosen order
13: if cover(I ∪ {f}) ≥ minsup and cover(I ∪ {¬f}) ≥ minsup then
14: sol1 ← QDL8.5-Recurse(I ∪ {¬i},ubs)
15: if all sol1.trees are NO_TREE then continue
16: if ∃i ∈ {1, 2, . . . , |q |} : sol1.errorsi < solution.errorsi then
17: sol2 ← QDL8.5-Recurse(I ∪ {i},ubs − sol1.errors)
18: if all sol2.trees are NO_TREE then continue
19: for i ∈ {1, 2, . . . , |q |}
20: feature_errorsi ← sol1.errorsi + sol2.errorsi

21: if feature_errorsi < solution.errorsi then
22: solution.treesi ← build_tree(F, sol1.treesi, sol2.treesi)
23: solution.errorsi ← feature_errorsi

24: ubsi ← feature_errorsi

25: if all f eature_errors = solution.lbs then break
26: for i ∈ {1, 2, . . . , |q |}
27: solution.lbsi ← ubsi

28: return solution

with h = q(N − 1) + 1. This can be computed in O(1) time if the array of
values y is sorted. This is also true for any subset of values as a subset of a
sorted array is itself sorted. Using this sorted array we can compute the quantile
values corresponding to all the quantiles q in O(|q|) time. We can also notice
that the quantile loss formulated in equation (1) can be rewritten as

QLq(ŷq,y) = (1 − q)
∑

i:yi≤ŷq

yi − (1 − q)
∑

i:yi≤ŷq

ŷq + q
∑

i:yi>ŷq

ŷq − q
∑

i:yi>ŷq

yi (3)

Notice there is no index on ŷq as the prediction is the same for all samples mapped
to a leaf. Using this formulation we can see that the only need for the data is
to store, for each quantile, the sum of the y values that are above the prediction
and the sum of those under the prediction. This can be used to compute the
errors for all quantiles by only traversing the data once. Indeed, it is possible to
go through the samples in increasing order (since the data is sorted) and bin the
different samples according to the quantile values. Then, with a loop over the
quantiles, it is possible to compute the sum of elements above and below each
quantile value, thus allowing us to compute the quantile loss for each quantile
efficiently. Using this technique, we get a temporal complexity of O(N + |q|).
However, it makes little sense to compute more quantiles than there are samples,
so we always recommend setting |q| ≤ minsup, with minsup ≤ N , thus making
the temporal complexity of this O(N).
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Probability Density Estimates. With this implementation of the algorithm,
the output at prediction time is an array of conditional quantile values, each cor-
responding to a different quantile. Given enough quantiles, they describe most
of the conditional distribution of a sample. For a more visual interpretation,
we can combine those quantiles in a distribution function using Kernel Density
Estimators in the same way as in other works [17,18]. This adds two new param-
eters, the kernel and the width of these kernels. In the remainder of this paper,
we’ll use Scott’s rule for kernel widths, which was shown to be optimal when
the underlying distribution is Gaussian [16]. Even though we cannot make this
assumption, we will use this method to estimate kernel widths. Correspondingly,
we’ll use Gaussian kernels.

5 Experiments

For our experiments, we consider three different aspects of the performance of
our model: (i) the accuracy by measuring how well the outputs of the model (esti-
mated quantiles and pdfs) describe the actual data, (ii) the efficiency in terms of
execution time and (iii) a study of how interpretable the obtained models are. We
consider our main competitors to be CaDET [3] and Quantile Random Forests
[10] as they are both ensemble methods using decision trees and outputting
distribution information. For our experiments, we have chosen 4 datasets; one
synthetic and 3 real-world. The synthetic dataset is generated as follows: using
9 binary features we created 15 categories represented by a combination of those
features. Each category has its associated Gaussian distribution, each with a
different mean and standard deviation, from which target values were drawn.
This dataset was created to have a dataset with a known conditional proba-
bility distribution. In addition to it, we measured quality on three real-world
datasets: Air Quality, Solar Flares, and Stock Portfolio Performance as they are
widely used benchmark datasets of varying sizes, with low dimensionality that
have categorical features (thus losing less information in binarization). All our
experiments were performed on a machine running Intel(R) Xeon(R) Gold 6134
CPU@3.20GHz processor with 32 physical cores and 128GB RAM with Ubuntu
18.04.6 operating system.

5.1 Metrics

To ensure the quality of the predictions we use different metrics. First is Mean
Integrated Squared Error (MISE), which measures the integral of the squared
difference between the true and predicted distributions. This can only be done for
the synthetic dataset of which we know the true distribution. We also use Mean
Quantile Error (MQE), which is the mean of all the different quantile errors over
the different quantiles. We also measured the Negative Log Likelihood (NLL)
of the samples with respect to the predicted distribution function and finally,
the Continuous Ranked Probability Score (CRPS), which measures the integral
of the squared difference between the predicted cdf for a sample and the step
function for the actual realization of that sample.
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Regarding interpretability, we wish to demonstrate that while we learn many
trees which can impede on overall interpretability, the resulting trees are mostly
similar and analyzing just a few trees would give sufficient insights to the analyst.
To this effect, we evaluated the partitions of the training dataset generated by
each tree and measured a Jaccard index on all pairs of these partitions. With this
metric, we would expect to see block matrices attesting that trees corresponding
to close quantiles are indeed similar, thus attesting to overall interpretability.

5.2 Results

This section will illustrate our experiments and related observations. Qual-
ity Our first experiment concerns the quality of the obtained regressors. In
Table 1, we show, for each dataset and each model, the different quality metrics.
All three methods get good results. QDL8.5 performs either as the best model
or second best model on all metrics and datasets, often being close to the best
result when not achieving it. From these observations, we can conclude that
QDL8.5 is competitive with existing methods and matches the state of the art
in decision trees that predict (some form of) conditional distributions.

Table 1. Quality metrics on all 4 datasets. For all metrics, lower is better. Bold
means best, underlined means second best. We performed hyperparameter tuning with
Bayesian search (20 trials) for each dataset and method.

Datasets Metrics Models
Quantile RF CaDET RF Quantile DL8.5

Synthetic dataset MISE 0.121 0.122 0.120
NLL 2.16 2.15 2.15
MQE 0.0700 0.0616 0.0603
CRPS 1.22 1.25 1.24
n. trees/depth 100/5 50/5 100/4

Air Quality NLL 1.49 1.48 1.46
MQE 0.0235 0.0312 0.0223
CRPS 0.802 0.832 0.818
n. trees/depth 100/5 100/5 100/4

Solar Flares NLL 1.10 –0.972 –0.0234
MQE 0.00185 0.00597 0.00367
CRPS 0.209 0.212 0.195
n. trees/depth 25/7 50/6 100/4

Stock Performance NLL –0.870 –0.578 –1.04
MQE textbf0.00124 0.00324 0.00124
CRPS 0.0824 0.0881 0.0777
n. trees/depth 50/4 25/6 100/3
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Fig. 1. Running times for naive and efficient
versions of QDL8.5. Both axes are in log
scale.

Efficiency. This work showed an
algorithm modification that enables
the DL8.5 algorithm to learn many
trees at once, each optimizing a loss
function with a different quantile
parameter, while only exploring the
tree space once. In this experiment,
we measured, for different numbers of
trees to learn, the execution time of
QDL8.5 compared to the naive ver-
sion that learns each tree by start-
ing a new search every time. Figure 1
shows the results of this experiment.
It shows that the naive version’s exe-
cution time is linear with the number
of trees. It also shows that the execution time of QDL8.5 is virtually indepen-
dent of the number of trees. This shows that QDL8.5 can learn arbitrarily many
trees, each describing a different point in the distribution range, at almost no
additional computational cost compared to learning a single tree. We can also
see that for 5 trees, the speedup of QDL8.5 is 4.74, which is close to the optimal
speedup we could expect by learning the trees jointly. The same observation can
be made for other numbers of trees.

Fig. 2. Similarity matrix of trees
learned by QDL8.5 for the Air
Quality dataset.

Fig. 3. Distribution plots for a category
within the synthetic dataset.

Interpretability. Using optimal decisions is a way to provide inherently inter-
pretable models. However, while we do generate shallow trees, we produce many
of them, which may increase interpretability difficulty. However, if those trees
happen to be similar, then inspecting only a few of them at different parts of the
distribution range would reflect the majority of the information of the quantile
regression ensemble. In this experiment, we have analyzed, for each tree, how
it partitions the training dataset and performed a Jaccard index on those par-
titions to see how similar the trees are. The result of this experiment is shown
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in Fig. 2. Based on this plot, a few observations can be made. First, generated
trees are all quite similar, as the lowest Jaccard index in this matrix is ∼ 0.4.
Secondly, we can see that trees corresponding to close quantiles partition the
feature space similarly, as attested by high Jaccard index values on blocks close
to the diagonal. In this example, if we define tree zones as being delimited by
a change of 10% in Jaccard index in successive trees, we would end up with 5
zones, and thus by picking only one among those zones, we can interpret whole
the distribution of the whole data with only 5 trees of depth 4.

Finally, we can see that the tails of the distribution (low and high quantiles)
are described by trees that differ from the centre of the distribution (large darker
blocks in the centre and diagonal corners of the matrix), thus justifying the use
of quantile regression to describe those parts of the distribution. Another way to
interpret the results of the QDL8.5 algorithm is to plot the predicted conditional
pdf. Figure 3 shows this for a particular category in the synthetic dataset. This
figure shows that the predicted pdf is quite close to the actual pdf and allows a
human to understand how the target variable behaves for a sample.

Another point where the interpretability of our method is improved compared
to other tree ensemble methods like Cadet RF and QRF is that in our case, each
tree is linked with an interpretable value. Analyzing the tree corresponding to
quantile 0.1 will give information about that specific part of the distribution
for the whole dataset. For the other methods, all trees have to be analyzed to
understand trends in the data, and their aggregation is not trivial. In addition,
the optimality criteria ensures that the partitioning of the data is the best one
for that quantile.

6 Conclusion

This work presents a variation of the DL8.5 [1] algorithm that enables it to per-
form simultaneous quantile regression, thus learning many trees at once, each
describing a different part of the distribution while only exploring the search
space once. This enables this model to generate shallow and interpretable deci-
sion trees that provide robust predictions via quantile regression and information
about the complete conditional distribution of the data. Experiments have shown
that this model achieves good quality matching or surpassing the state-of-the-art
in this domain, that learning many trees comes at a small additional comput-
ing cost compared to learning only one, and finally, that the obtained trees are
highly interpretable because they correspond to an interpretable parameter and
because they only differ incrementally with the different quantiles.
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Abstract. We propose a new supervised manifold visualisation method,
slipmap, that finds local explanations for complex black-box supervised
learning methods and creates a two-dimensional embedding of the data
items such that data items with similar local explanations are embed-
ded nearby. This work extends and improves our earlier algorithm and
addresses its shortcomings: poor scalability, inability to make predictions,
and a tendency to find patterns in noise. We present our visualisation
problem and provide an efficient GPU-optimised library to solve it. We
experimentally verify that slipmap is fast and robust to noise, provides
explanations that are on the level or better than the other local expla-
nation methods, and are usable in practice.

Keywords: Manifold visualisation · Explainable AI · Local
approximation

1 Introduction

The goal of manifold visualisation is to find a low-dimensional visualisation of
high-dimensional data. We recently introduced a method that combines manifold
visualisation with explainable artificial intelligence (XAI), called slisemap [6,7].
slisemap creates an embedding of data points such that points nearby in the
embedding have similar explanations. (for a given black box machine learning
model). Figure 1 shows an example of an embedding (left) and explanations in
the form of linear coefficients (right). slisemap has already been used in studying
physical systems [29], for studying molecular properties [4], and to reduce data
dimensionality in manufacturing [27].

The practical application of slisemap is hindered by four shortcomings: (i)
Speed. slisemap scales quadratically with the amount of data, so it is impracti-
cal to visualise large datasets (larger than ∼ 104 points). The solution in [7] is
subsampling: train on a subset of the data and, if necessary, add the remaining
points to the trained slisemap post-hoc. (ii) New data. However, adding new
data is only possible if the value of the target variable is known [7]. (iii) No
predictive model. Since there is no principled way of adding points to the embed-
ding, slisemap cannot predict the values of the target variable. (iv) Behaviour
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Fig. 1. slipmap embedding of the Jets dataset used in a classification task described
in Sect. 4 is shown on the left. The local models explaining the black box classifier have
been clustered, and the mean coefficients for each cluster are shown on the right.

Fig. 2. Both slisemap (left) and slipmap (2nd from the left) correctly find the three
modes for a toy data of 500 points constructed as in Fig. 1 of [7] (y = max(x1,x2,x3)+
N (0, 0.01) and x ∼ N(0, 1)4 ∈ R

4), each of the three visual clusters corresponding to
a linear model fj(x) ≈ xj , where j = argmaxi∈{1,2,3} xi. However, slisemap out-
puts visual clusters, even when the target variable y is Gaussian noise (2nd from the
right). In contrast, slipmap (right) overfits less due to the equally spaced prototypes
and Gaussian kernel (see Sect. 2.1), leading to fewer misleading visual structures; for
slipmap, noise looks like noise.

for noisy data. slisemap works well for low-noise data, but in the presence of
noise, it tends to cluster data in random clusters, as shown in Fig. 2.

The contributions of this paper are: we introduce a new prototype-based
variant, coined slipmap, that solves the scalability issues, define the computa-
tional problem, and present a simple modification to slisemap that allows it
to be a generative model that makes predictions (and is, therefore, an actual
interpretable model). We show that slipmap is fast, the modification results in
a predictive model having good fidelity, and the explanations are stable even in
the presence of noise, and valuable in practice.

Related Work. Starting at the introduction of ISOMAP in 2000 [30], countless
manifold visualisation methods have been developed, of which t-SNE [22] and
UMAP [23] are currently commonly used with several variants proposed (e.g.,
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[15,16]). Manifold visualisations present high-dimensional data in a typically
two-dimensional embedding such that neighbouring points in the embedding are
similar by some pre-defined criteria. Unlike slipmap and slisemap, none of the
prior methods defines the neighbourhood in terms of local explanations. Manifold
visualisations are an indispensable tool in various disciplines where understand-
ing of complex datasets is necessary, from genetics [11,18] to astronomy [3] and
linguistics [19].

XAI is essential due to the increasing complexity and widespread use of black-
box machine learning models. The primary objective in XAI is to understand
and explore black box supervised learning algorithms [14]. Explanation methods
can be divided into model specific and model agnostic, the latter of which can be
applied to any supervised learning model.

XAI methods can further be split into global and local. Global methods try
to explain the global behaviour of the supervised learning model for all data
points. The obvious drawback of this approach is that if the black box model is
too complicated, it is impossible to find a simple explanation that approximates
it with sufficient fidelity. On the other hand, local explanations methods such
as lime [28], shap [21], and slise [5] produce an explanation that is valid only
for individual data items. In this categorisation, slipmap falls into the class of
model-agnostic methods, which provide local explanations for all data points.
However, combined with the embedding, the local explanations effectively pro-
duce a global explanation of the black-box model.

A common approach for local, model-agnostic explanation methods is to
locally approximate the black box model with an interpretable model [5,7,21,
28]. However, most other methods rely on randomly sampling new data points
[21,28]. In contrast, slipmap only uses the training data. As a result, slipmap
is especially useful for explaining models where random sampling of new data
is not straightforward; e.g., with scientific data, generating random data that
obeys all physical constraints is often challenging.

2 Problem Definition

In this section, we define the computational problem we want to solve in Sect. 2.1,
and how we can get interpretable predictions for new data items, in Sect. 2.2.

2.1 SLIPMAP

The main difference between slipmap and slisemap is the introductions of
“prototypes” in the embedding (the regular grid of circles in Fig. 1). In slipmap,
only the prototypes have local models instead of every data item, making the
algorithm faster as we only need to optimise the parameters for a smaller number
of prototypes, yielding a linear computational complexity (Sect. 3.1).

slipmap also uses a Gaussian kernel instead of an exponential kernel (dis-
tances in the exponent are squared). The squared distances and the fixed spacing
of the prototypes reduce the tendency of slipmap to form clusters with random
data. slipmap solves the following optimisation problem:
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Problem 1. (slipmap) Assume you are given a dataset {(xi,yi)}i∈[n],1 prototype
vectors {cj}j∈[p], embedding dimensionality d ∈ N (typically d = 2), and a radius
r ∈ R>0, where xi ∈ R

m are the vectors of features, yi ∈ R
o are the targets,

and cj ∈ R
d are embedding coordinates. Find the embedding zi ∈ R

d and the
local models fj : Rm → R

o, where i ∈ [n] and j ∈ [p], that minimise

L0 =
∑n

i=1

∑p

j=1

e−‖zi−cj‖2
2

∑n
k=1 e−‖zk−cj‖2

2
l(fj(xi),yi), (1)

where ‖·‖2 is the Euclidean distance and l(·, ·) is a loss function for the local
models under the constraint that

radius(Z) =
(∑n

i=1

∑d

k=1
z2

ik/n
)1/2

= r. (2)

We use the following matrices: Xi· = xi, Yi· = yi, and Zi· = zi for i ∈ [n] and
Cj· = cj for j ∈ [p]. The rows Bj· of matrix B ∈ R

p×q contain the parameters
for the local models fj , where q is the number of parameters in the local models.
The loss function in Eq. (1) can be augmented with regularisation terms,

L = L0 +
∑p

j=1

∑q

k=1
(λlasso|Bjk| + λridgeB2

jk), (3)

where λlasso ∈ R≥0 and λridge ∈ R≥0 are the parameters for Lasso and Ridge
regularisation, respectively.

As local, interpretable models, we use linear models for regression problems
and multi-variate logistic regression for classification problems. The loss func-
tions are a quadratic loss for regression and Hellinger loss for classification; see
[7] for details and discussion.

2.2 Mapping from Covariates to the Target Variable

Next, we define a mapping from the covariates to the embedding coordinates
and the local models. In principle, these mappings could be arbitrary functions.
Here, we have chosen the 1-nearest neighbour regression model as the mapping
for simplicity and computational efficiency. The simplicity also makes the whole
prediction procedure very transparent since we “use an interpretable model that
works well for similar data items”.

The implied predictive model f : Rm → R
o for slipmap is then the distance-

weighted average over the local models in the embedding:

f(x) =
∑p

j=1

e−‖zi−cj‖2
2

∑p
k=1 e−‖zi−ck‖2

2
fj(x), (4)

where i = argmini∈[n] ‖x − xi‖2. We can define an equivalent mapping for
slisemap by replacing p with n and cj by zj in Eq. (4).

1 We use shorthand notation [n] = {1, . . . , n}.
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Algorithm 1: The slipmap algorithm, where L is given in Eq. (1). See
the text for discussion.
1 Function Slipmap(X , Y , C, r, d)
2 Z ← PCA(X)·,1:d // Initialise the embedding
3 Z ← Z · r/radius(Z) // Normalise the embedding
4 B ← argminB[L(X ,Y ,Z ,C ,B, r, d)] // Initialise the local models
5 do
6 Z ← Escape(X ,Y ,C ,B, r)
7 Z ,B ← argminZ ,B L(X ,Y ,Z · r/radius(Z),C ,B, r, d)

8 while not converged
Result: Z , B

9 Function Escape(X , Y , C, B, r)
10 Wjk ← e−‖cj−ck‖2

2/
∑p

l=1 e
−‖cj−c l‖2

2 for all j, k ∈ [p]
11 Lij ← l(fj(Xi·),Yi·) for all i ∈ [n] and j ∈ [p]
12 Zi· ← Ck· where k = argmink(LW )ik for all i ∈ [n]

Result: Z · r/radius(Z)

3 Algorithm

This section discusses how we implement and solve Prob. 1, including the com-
putational complexity in Sect. 3.1.

To optimise Eq. (1), we use the gradient-based quasi-Newton LBFGS opti-
miser [20]. We combine the optimiser with a heuristic for escaping local optima,
just as with slisemap [7]. The pseudocode can be seen in Alg. 1.

The algorithm starts by initialising the embedding for the data items and the
local models for the prototypes (lines 2–4 in Alg. 1). Then, it alternates between
the escape heuristic and the optimisation until no better solution is found (lines
6–8). The escape heuristic consists of greedily assigning each item the embedding
of the prototype that minimises the weighted loss (lines 10–12).

slipmap is implemented using PyTorch [26], which enables GPU acceleration.
The source code for our implementation and experiments (Sect. 5) is available
under an open-source licence at https://github.com/edahelsinki/slisemap.

3.1 Computational Complexity

The time complexity of Eq. (1) is O(np), not counting the time for evaluating
a local model on one data item. For many simple models and loss functions,
including linear and logistic regression, the time complexity increases by a factor
of O(m+q+o). The optimisation contributes an unknown number of iterations,
depending on the convergence difficulty. The memory complexity of Eq. (1) is
O(npo+nm+ pq), and the LBFGS optimisation only adds a constant factor for
the history. The complexities are empirically evaluated in Sect. 5.4.

https://github.com/edahelsinki/slisemap
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4 Datasets

We use the following datasets in the experiments (Sect. 5).
Air Quality [25] contains 7355 hourly instances of 12 different air quality

measurements. One of the measurements is chosen as a dependent regression
variable, and the others are used as covariates.

Covertype [8] is a classification dataset of forest cover types containing over
half a million instances with 54 features and seven classes. The instances are
various cartographic variables of natural forests.

Gas Turbine [1,17] is a regression dataset with 36,733 instances of 9 sensor
measurements from a gas turbine to study gas emissions.

HIGGS [31] is a two-class classification dataset consisting of signal pro-
cesses that produce Higgs bosons or are background. The dataset contains nearly
100,000 instances with 28 features.

Jets [10] contains simulated LHC proton-proton collisions. The collisions pro-
duce quarks and gluons that decay into cascades of stable particles called jets.
The classification task is to distinguish between jets generated by quarks and
gluons. The dataset consists of 266,421 instances with seven features.

QM9 [9] is a regression dataset comprising 133,766 small organic molecules.
As the dependent variable, we use HOMO energies obtained from [12], and create
interpretable features with the Mordred molecular description calculator [24].

5 Experiments

In this section, we empirically evaluate slipmap by first comparing predic-
tions on unseen data in Sect. 5.1. Then, we verify the embedding quality in
Sect. 5.2 and local explanations in Sect. 5.3. Finally, we validate the claims about
improved scaling in Sect. 5.4.

All experiments use normalised data (zero mean and unit variance). The
density of the prototype grid is one prototype per unit square, and the reg-
ularisation coefficients λlasso and λridge and the radius r have been optimised
using Bayesian hyperparameter optimisation. All experiments have been run ten
times with different seeds and randomly subsampled datasets. Since slipmap is
implemented with PyTorch [26], we run the experiments with GPU acceleration,
except for the experiments measuring time.

5.1 Predictions

In this experiment, we measure the predictive performance of slisemap and
slipmap, using Eq. (4). We also compare the predictions against the nearest
neighbours to verify that the local models improve the predictions. As target
values, we try both predictions from various black box models and the ground
truth labels, with increasing subsamples of the training data.

In Fig. 3, we see how the losses from the slipmap predictions on unseen test
data approach that of the predictions from the black box models. In some cases,
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Fig. 3. Loss curves for slipmap, slisemap, and nearest neighbour models trained on
predicted y:s and ground truth y:s compared to various black box models. The loss for
regression (top row) is mean squared error; for classification (bottom row), the loss is
Hellinger loss. Lower is better.

such as the Jets dataset, only very little data is needed. Predictions from black
box models provide smoothing, especially for discrete class labels. However, with
sufficient data, slipmap trained on ground truth labels often converge to similar
losses. The AdaBoost regressor is non-optimal for the Gas Turbine dataset since
slipmap and slisemap, trained directly on the ground truth, actually provide
better predictions. Generally, slipmap performs slightly better than slisemap
and clearly better than the nearest neighbour.

5.2 Robustness

Explanations are only helpful if they are consistent. If, for example, slightly
changing the training dataset causes a significant explanation shift, the expla-
nations are less trustworthy.

Local model consistency [29] measures how stable the set of local models
is with respect to resampling the data. If the local models are inconsistent,
the local models are not trustworthy as explanations. To measure local model
consistency, we train two models on subsamples taken from a dataset such that
there is no overlap between the samples. This yields two sets of local models
{f1, f2, ...fp} and {f ′

1, f
′
2, ..., f

′
p}. We then match each local model to its most

similar counterpart and calculate the average distance between the models:

MB = 1 − min
π

∑p
i=1 D(fi, f

′
π(i))

1
n

∑p
i=1

∑p
j=1 D(fi, f ′

j)
, (5)
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Table 1. Comparing local model consistency and neighbourhood stability. Here, we
consider ten samples of 104 items for each dataset, using predictions from the black
box models as labels. As the Air Quality dataset has less than 104 items, the miss-
ing items are generated by resampling the data. slisemap and slipmap show similar
performance, and the best (highest) results are highlighted in bold.

Data Local model consistency ↑ Neighbourhood stability ↑
slipmap slisemap slipmap slisemap

Air Quality 0.460 ± 0.097 0.530 ± 0.252 0.393 ± 0.062 0.263 ± 0.061

Gas Turbine 0.762 ± 0.051 0.682 ± 0.190 0.641 ± 0.039 0.433 ± 0.103

QM9 0.328 ± 0.106 0.443 ± 0.272 0.369 ± 0.086 0.164 ± 0.036

Covertype 0.540 ± 0.260 0.348 ± 0.380 0.301 ± 0.062 0.276 ± 0.082

Higgs 0.515 ± 0.193 0.167 ± 0.376 0.604 ± 0.206 0.771 ± 0.183

Jets 0.662 ± 0.061 0.865 ± 0.075 0.382 ± 0.075 0.523 ± 0.132

where D(fi, f
′
j) = ‖Bi· − B′

j·‖2 is the Euclidean distance (similarity) between
the local model parameters and π is the permutation minimising the distance
between the local models.

Neigbourhood stability measures the stability of the embedding with respect
to resampling. It measures how well models trained on partly overlapping data
retain the relative locations of the data items in the embedding, i.e., whether
or not the neighbouring relations between the items are preserved. To measure
neighbourhood stability, we train models on datasets sampled such that half of
the items overlap. Let S be the set of overlapping points. Then, for each shared
item, we form the set of neighbours in both learned embeddings (denoted as
N(i) = {j ∈ S|‖zi − zj‖2 < 1} and N ′(i) = {j ∈ S|‖z′

i − z′
j‖2 < 1}) and

calculate the Jaccard similarity between the neighbour sets:

Mneighbourhood = |S|−1
∑

i∈S |N(i) ∩ N ′(i)|/|N(i) ∪ N ′(i)| (6)

Table 1 shows a comparison between the explanation robustness of slipmap
and slisemap. slipmap performs comparably to slisemap with respect to local
model concistency and neighbourhood stability. As discussed in [7], local expla-
nations have inherent ambiguity; a given data item can have multiple local expla-
nations with comparable performance. The neighbourhood stability results show
slipmap also exhibits this behaviour.

5.3 Local Explanation Comparison

In this section we quantitatively compare the local models from slipmap with
other model-agnostic, local explanation methods: lime [28] (with and without
discretisation), (partition) shap [21], slise [5], and slisemap [7]. These all pro-
vide explanations in the form of local, linear approximations. As metrics, we
consider the following:

Time. How long does it take to get one explanation (dividing the setup time
between the data items)?
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Table 2. Comparing local explanation methods. We measure how well the approxima-
tion predicts the selected data item (local loss), the five nearest neighbours (stability),
and the number of other data items with a loss less than a threshold. All explanations
are based on 5,000 data items, and the best results are highlighted in bold.

Data Method Time (s) ↓ Local loss ↓ Stability ↓ Coverage ↑
Air Quality lime 3.648 ± 0.02 0.147 ± 0.07 0.180 ± 0.05 0.079 ± 0.00

lime (nd) 0.062 ± 0.02 0.041 ± 0.01 0.046 ± 0.01 0.464 ± 0.04
shap 0.723 ± 0.21 0.000 ± 0.00 0.049 ± 0.02 0.217 ± 0.01
slise 13.723 ± 2.36 0.000 ± 0.00 0.019 ± 0.01 0.853 ± 0.01
slipmap 0.005 ± 0.00 0.004 ± 0.00 0.021 ± 0.01 0.366 ± 0.01
slisemap 0.366 ± 0.14 0.001 ± 0.00 0.018 ± 0.00 0.759 ± 0.02

Gas Turbine lime 2.982 ± 0.02 0.205 ± 0.07 0.259 ± 0.07 0.219 ± 0.02
lime (nd) 0.030 ± 0.00 0.186 ± 0.07 0.180 ± 0.07 0.299 ± 0.04
shap 0.693 ± 0.10 0.000 ± 0.00 0.116 ± 0.05 0.333 ± 0.03
slise 26.577 ± 4.90 0.000 ± 0.00 0.056 ± 0.02 0.407 ± 0.04
slipmap 0.007 ± 0.00 0.004 ± 0.00 0.052 ± 0.02 0.325 ± 0.03
slisemap 0.482 ± 0.19 0.007 ± 0.00 0.048 ± 0.01 0.270 ± 0.04

QM9 lime 6.256 ± 0.09 0.773 ± 0.23 0.778 ± 0.25 0.153 ± 0.02
lime (nd) 0.029 ± 0.00 0.323 ± 0.05 0.366 ± 0.04 0.179 ± 0.01
shap 1.326 ± 0.79 0.000 ± 0.00 0.299 ± 0.07 0.207 ± 0.01
slise 28.176 ± 3.71 0.000 ± 0.00 0.218 ± 0.04 0.393 ± 0.01
slipmap 0.013 ± 0.00 0.011 ± 0.00 0.158 ± 0.03 0.303 ± 0.02
slisemap 0.737 ± 0.22 0.016 ± 0.00 0.160 ± 0.04 0.292 ± 0.01

Higgs lime 8.425 ± 0.13 0.025 ± 0.00 0.033 ± 0.00 0.349 ± 0.01
lime (nd) 0.032 ± 0.00 0.034 ± 0.00 0.037 ± 0.00 0.333 ± 0.01
shap 0.561 ± 0.04 0.000 ± 0.00 0.038 ± 0.00 0.315 ± 0.00
slise 24.785 ± 2.35 0.000 ± 0.00 0.042 ± 0.00 0.445 ± 0.01
slipmap 0.003 ± 0.00 0.023 ± 0.01 0.040 ± 0.00 0.337 ± 0.03
slisemap 1.103 ± 0.35 0.034 ± 0.00 0.041 ± 0.00 0.302 ± 0.00

Jets lime 2.346 ± 0.02 0.011 ± 0.00 0.016 ± 0.00 0.106 ± 0.01
lime (nd) 0.063 ± 0.01 0.013 ± 0.00 0.014 ± 0.00 0.179 ± 0.01
shap 0.246 ± 0.01 0.000 ± 0.00 0.007 ± 0.00 0.163 ± 0.01
slise 10.357 ± 1.34 0.000 ± 0.00 0.006 ± 0.00 0.431 ± 0.02
slipmap 0.018 ± 0.01 0.000 ± 0.00 0.006 ± 0.00 0.357 ± 0.02
slisemap 1.956 ± 0.57 0.000 ± 0.00 0.006 ± 0.00 0.308 ± 0.02

Local loss. [5,21] How well does the approximation match the black box model
for the selected data item using the losses mentioned in Sect. 2?

Stability. [2,5] Does a slight change in the input need a significant change in
the explanation? Measured by calculating the mean loss of the local models on
the five nearest neighbours.

Coverage. [7,13] Does the explanations generalise to other data items? Mea-
sured by counting the number of data items with a loss less than a threshold.
The threshold is the 0.3 quantile of the losses from a global linear approximation.
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Fig. 4. Comparison of time and memory scaling between slisemap and slipmap.
slipmap is consistently faster as sample size increases and needs radically less memory
in all six datasets (notice the logarithmic scale). Lower is better.

The results can be seen in Table 2 where slipmap performs comparably or
better than slisemap. slipmap does not guarantee a zero local loss like slise
and shap, but they are generally quite small (whereas lime sometimes have a
smaller loss for the synthetic neighbourhood than the item being explained [5]).

5.4 Scaling

This experiment shows that slipmap scales better with the number of data items
than slisemap, both in time and in memory. We measure the time on a CPU (to
avoid the overhead of GPU communication on small data sizes) and the memory
on a GPU, since that is usually the limiting factor slisemap. As the left panel of
Fig. 4 demonstrates, for each dataset, slipmap converges faster than slisemap
by at least an order of magnitude. The difference is even more dramatic when
considering memory complexity (Fig. 4 right panel), as slipmap scales linearly
(Sect. 3.1) compared to the quadratic scaling of slisemap [7].

6 Conclusions and Future Work

We propose slipmap, a novel model-agnostic method for explainable AI.
slipmap finds all local explanations for a complex black-box regression or classifi-
cation model and produces an informative embedding where data items with sim-
ilar explanations (local models) are embedded nearby. We substantially improved
our earlier work by making our algorithm fast and robust to noise, leading to
fewer false patterns in the embedding (Fig. 2). We have shown that the local
explanations produced by slipmap have high fidelity, good stability, and cov-
erage. When trained on the predictions of the black-box model (instead of raw
target values), slipmap is, in our use cases, always able to mimic the black-box
model with almost perfect fidelity.

Also, even though slipmap is not meant to replace purpose-built classifica-
tion and regression models, it performs similarly to the state-of-the-art models
in real-world use cases.



SLIPMAP: Fast and Robust Manifold Visualisation for Explainable AI 233

slipmap allows adding data items to the embedding and making predictions,
even when the target variable is unknown, unlike the original slisemap, extend-
ing the usage of slipmap from a pure XAI method (which requires a pre-trained
regression or classification model to work) to a more general supervised data
exploration tool (which finds an interpretable predictive model for the data).
In the future, we can still improve on slipmap, e.g., by replacing the simple
nearest neighbour model and kernel density estimate for making the predictions
with a more general model, such as Gaussian Processes. The improved scala-
bility, especially the GPU memory requirements, also unlocks applications with
larger datasets.
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Abstract. We introduce Frank, a human-in-the-loop system for co-
evolutionary hybrid decision-making aiding the user to label records from
an un-labeled dataset. Frank employs incremental learning to “evolve”
in parallel with the user’s decisions, by training an interpretable machine
learning model on the records labeled by the user. Furthermore, advances
state-of-the-art approaches by offering inconsistency controls, explana-
tions, fairness checks, and bad-faith safeguards simultaneously. We eval-
uate our proposal by simulating the users’ behavior with various levels
of expertise and reliance on Frank’s suggestions. The experiments show
that Frank’s intervention leads to improvements in the accuracy and
the fairness of the decisions.

Keywords: Human-Centered AI · Hybrid Decision Maker · Skeptical
Learning · Incremental Learning · Explainable AI · Fairness Checking

1 Introduction

Automated decision-makers based on Machine Learning (ML) are still not
widely adopted for high-stakes decisions such as medical diagnoses or court
decisions [22]. In these fields, humans are aided but not replaced by Artificial
Intelligence (AI), resulting in Hybrid Decision-Makers (HDM) [15]. While HDM
literature is flourishing, certain key aspects have not yet been considered, pre-
venting HDM systems from covering possible use cases. HDM systems promote
the collaboration between human and AI decision-makers, resulting in a final
set of “hybrid” decisions (some taken by the human, others by the machine). In
Learning-to-Defer [10] systems, the machine plays the primary role, deferring
decisions on records with a high degree of uncertainty to an external human
supervisor. In [22], a rule-based AI model with inferred rules suggests replacing
some user’s decisions to maximize fairness, whereas in [9], the model mediates
between a user and their supervisor if it is not confident in the user’s deci-
sions. On the other hand, in the Skeptical Learning (SL) paradigm, an ML
model learns “in parallel” to the decisions taken by a human and queries them
if it is “skeptical” of the human decision [4,19,23,24]. SL aims to help the user
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remain consistent with their past decisions, still giving them veto power against
the model’s suggestions. SL has been extensively applied to personal context
recognition [4,24] and image classifications [19]. In [19], SL suggestions are also
supported by contrastive explanations. Our system employs and extends tradi-
tional SL, by taking into account simultaneously fairness aspects, explainable
suggestions, and the involvement of the user’s supervisor. In line with [4], our
proposal is powered by a Incremental Learning (IL) model. IL, also known as
Continual Learning, is an ML paradigm where the model is continuously trained
on small data batches, potentially including only one data point, instead of the
entirety of the training set [12,21].

The eXplainable AI (XAI) research field aims to create humanly interpretable
proxies of “black-box” ML models used for decision-making. An explanation is
global if it unveils the whole model logic, or local if it justifies the decision
of a specific record [7]. A global explanation can be achieved by approximat-
ing black-box models with interpretable-by-design ones, such as a decision tree,
which also offers local explanations as decision rules [3]. Also, instance-based
explanations make use of examples and counter-examples, i.e., similar records
with the same/different decision by the AI system [6]. Our proposal offers both
a model approximation, employing an interpretable decision tree, and instance-
based (counter-)examples to explain the model’s suggestions to the user.

Finally, we also account for the fairness of the decisions. Two major
approaches have been proposed to quantify a dataset’s fairness [2]. For indi-
vidual fairness, similar individuals should receive similar treatment, while for
group fairness, each group should receive a similar treatment [16]. The discrim-
inatory feature to be monitored (e.g., Race, Gender) is often defined sensitive
or protected attribute [20]. Given a sensitive attribute, our proposal checks both
individual and group fairness, helping the user avoid discriminating behavior.

We propose Frank, a HDM system overcoming the current limitations of
SL related to explainability, fairness, consistency, and bad-faith users. As in SL,
if the user’s label is inconsistent with Frank’s prediction, the user is warned
of possible contradictions with their past behavior and suggested to modify
their decision. Besides, provides explanations that become increasingly detailed
as the model learns more from the user, who can, in turn, learn more about
their behavior. Also, can prevent bad-faith behavior and discriminating deci-
sions. Ultimately, and the human have a symbiotic co-evolutionary relationship,
with Frank’s model able to predict the user’s behavior, thus aiding them, and
the human feeding Frank’s model with new data. Experimental results show
that pairingwith less reliable users provides noticeable improvements in terms of
accuracy and fairness, and that the usage of explanations increases the number
of acceptance for suggestions in case of skepticism.

2 Setting the Stage

We keep the paper self-contained by reporting in the following a brief overview of
concepts necessary to understand our proposal. We indicate with X,Y a dataset
where X = {x1, . . . , xn} ∈ X (m) is a set of n records described by m attributes
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(features), i.e., xi = {(a1, v1), . . . , (am, vm)}, where ai is the attribute name and
vi is the corresponding value, and X (m) is the feature space consisting of m
input features, while Y = {y1, . . . , yn} ∈ Y is the set of the target variable
in the target space Y. With A = {a1, . . . , am} we indicate the set of feature
names, and for an instance x ∈ X, we write x[ak] to refer to the value vk of
attribute ak. For classification problems, yi ∈ {1, . . . , l} = L where L is the set
of different class labels and l is the number of the classes, while when dealing
with regression problems, yi ∈ R. Without losing in generality, we consider l = 2,
i.e., binary classification problems. We indicate a trained decision-making model
with a function f : X (m) → Y that maps data instances x from the feature space
X (m) to the target space Y. We write f(x) = y to denote the decision y taken
by f , and f(X) = Y as a shorthand for {f(xi) | xi ∈ X} = Y .

Skeptical Learning. Given a ML model f and a dataset X, the user is tasked
to assign a label yi to each record xi ∈ X. In SL, the user assigns to xi the label
ŷi, according to their own belief and background and, independently from them,
f assigns the label ỹi, i.e., ỹi = f(xi). The ML model implementing f can be
pre-trained on a small training set. If ŷi �= ỹi and f is skeptical (see below), the
user is asked if they want to accept ỹi as yi. If they do, yi takes the value ỹi. If
the user refuses, if ŷi = ỹi or if the model is not skeptical, yi is assigned ŷi. The
ML model is then incrementally trained on xi and yi.

The definition of the model’s skepticality varies in the literature [19]. How-
ever, skepticism is always related to model’s epistemic uncertainty, which is
independent of the notion of confidence score towards a certain decision, i.e.,
the prediction probability1. Epistemic uncertainty is the model’s ignorance, and
given enough data, it should be minimized [8]. Only a limited number of ML
model offers by-design access to epistemic uncertainty, e.g., Naive Bayes, Gaus-
sian Process [4,8]. In the context of SL, it has been approximated by the empir-
ical accuracy of past predictions both of the user and the model, i.e., the ratio
between the number of times a label has been proposed by the user or predicted
by the model, and the times it has been accepted as y [23]. Thus, given xi and
the prediction ỹi, the skepticism towards the user’s ŷi is:

skpt(xi, ỹi, ŷi, Y, Ỹ , Ŷ ) = c(f, xi, ỹi) · ea(ỹi, Y, Ỹ ) − c(f, xi, ŷi) · ea(ŷi, Y, Ŷ ) (1)

where c(f, xi, ỹi) and c(f, xi, ŷi) are the model confidence score towards ỹi and
ŷi. The function ea computes the empirical accuracy of either the model or the
user toward their respective label. The empirical accuracy is computed as the
cardinality of the intersection between the subset of all their past decisions with
label either ŷi or ỹi and the corresponding subset in Y , i.e., the final decision, over
the subset of all their past decisions with either ŷi or ỹi. Therefore, each possible
label l ∈ L has two accuracy values – following the user’s and the model’s track
record. In [23], the user’s accuracy values are initialized with 1, and the model’s
with 0 (therefore, the model is not skeptical of earlier decisions).

1 Note that there’s a general lack of normativity w.r.t. these terms; e.g., [23] uses the
term confidence to refer to the epistemic uncertainty.
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Incremental Decision Tree. We employ Extremely Fast Decision Tree
(EFDT) [13], a variant of Hoeffding Tree, which offers performance on par with
the non-incremental counterpart [1,5]. EFDT splits a node as soon as the split
is deemed useful, with the possibility of later revisiting the decision [13]. Being a
decision tree, EFDT can also be exploited to provide explanations to the user [7].

Preferential Sampling. We include an interactive variant of Preferential Sam-
pling (PS), an algorithm increasing group fairness [11]. PS assumes that in the
set of class labels L we can recognize a favorable + and an unfavorable − deci-
sion, i.e., L = {+,−}, while among A we can denote a binary sensitive attribute
sa ∈ A, e.g., Sex. The possible values {v, v̄} of sa refers to a discriminated group
v and privileged group v̄, e.g., Female and Male. The algorithm identifies the
size of the groups of D iscriminated records with a Positive (DP) or N egative
label (DN), and of Privileged records with a Positive (PP) or N egative label
(PN). Given X, it computes the dataset discrimination score as:

disc(X, sa, v) = |PP|/|PP∪PN | − |DP|/|DP∪DN | (2)

Then, it computes how many records from PP and DN should be removed, and
how many from DP and PN should be duplicated to reach disc ≈ 0. Records are
selected w.r.t. the prediction probability of a classifier trained on X. A variant
supporting non-binary sensitive attributes, and where the user does not need to
know a priori the discriminated group(s), is presented in [14].

3 A Frank System

Frank is a system for HDM, learning from the decisions of the human decision-
maker (typically identified as the “user”), continuously evolving with them, and
aiding the human to remain consistent by offering suggestions and explanations.
Frank is named after its frank behavior – it interacts with the user as soon
as something “unexpected” happens. Other thanand the user, in line with [9],
we also suppose a third agent, i.e., the user’s supervisor. Depending on the
context, the supervisor could be someone enforcing company policies to the
user’s decisions, e.g., making sure they are not biased by personal beliefs, or
someone with higher expertise than the user, e.g., a senior doctor.

The pseudocode ofis reported in Algorithm 1. Frank requires a set of records
to label X, which are received one by one, a set of rules R provided by the user’s
supervisor, a sensitive attribute sa, a skepticality threshold s, the number of
iterations k after which a group fairness check is performed on the records and
decisions analyzed so far, and a stopping condition stp. At this stage, we are very
general about the stopping condition stp as it might be implemented as reaching
a certain number of labeled records, or an accuracy higher than a threshold2

for f . The initialization of X ′, Y ′, Ỹ , Ŷ ,
...
Y in line 1 can rely on empty sets for

2 In our experiments, we consider as stp a certain number of instances to be analyzed,
leaving for future work the study of measures automatically unveiling when to stop
the training.
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a cold start execution, or they might be initialized with records and decisions
of previous runs. We use X ′ to collect the set of records analyzed so far, Y ′ for
the set of final hybrid decisions taken on the records in X ′, Ỹ for the set of
decisions of Frank’s EFDT model f alone, Ŷ for the set of decisions proposed
by the user alone, and

...
Y to store the decisions taken byand the user without

re-labelling due to fairness corrections. Also, f might be completely untrained,
pre-trained non-interactively on some records, or pre-trained in a past run of
Frank3. Until the stopping condition stp is met (line 2), receives a xi from X
(line 3). As in SL [19], the user assigns a label ŷi, and Frank’s model f a label
ỹi, i.e., the prediction (lines 4 and 5).

With Ideal Rule Check (IRC), checks if the record xi is covered by a rule in
the rule set R provided by the user’s supervisor (line 7). If it is, then the decision
ȳi is derived from the rule and assigned to the final decision yi (line 8). If none of
the rules from R cover the record, with Individual Fairness Check (IFC), checks if
the user’s decision complies with the individual fairness condition by comparing
ŷi to the labels assigned to “similar” past records (lines 9–13). The definition of

3 In our experiments, we consider the sets X ′, Y ′, Ỹ , Ŷ ,
...
Y initialized with empty sets

and f pre-trained non-interactively on 500 records. Future works will investigate
further these aspects.
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similarity is further defined below. Skeptical Learning Check (SLC) is triggered
if no similar records exist and the user’s decision ŷi and Frank’s prediction ỹi
are not the same. Ifis skeptical of ŷi, the user is asked if they want an explanation
for ỹi (line 15). If the user accepts, they are shown the explanation ei (line 16).
Regardless, the user is then asked if they accept ỹi as the final decision yi (lines
17). If the user refuses (line 18), ifis not skeptical, or if it agrees with the user
(line 19), the user’s decision ŷi is accepted as the final decision yi. Regardless of
the triggered checks, xi and yi are added respectively to X ′ and Y ′ (line 20), and
are used to update Frank’s model f (line 21). Similarly, ỹi and ŷi are added to
Ỹ and Ŷ , respectively. Also, yi is added to

...
Y , which might differ from the set

of labels Y ′ in the case of relabeling. Finally, every k records, performs Group
Fairness Check (GFC, lines 24–25), asking the user if they want to change the
label of some past records to reduce the dataset’s discrimination as computed
by Prefential Sampling [11]. Frank prioritizes IRC to follow the guidelines of
the supervisor, then IFC for fairness among similar records, and, finally, SLC.
To avoid contradictions, once a final label yi is set, checks with less priority are
never triggered, and GFC cannot relabel records labeled by IRC or IFC. We
stress that the user has to accommodate suggestions offered by IRC and IFC.
On the other hand, the user is free to disregard suggestions by SLC and GFC.
Depending on the use cases, certain checks might be turned off, e.g., IFC and
GFC in health contexts. As some functions cycle the previously-seen records,
Frank’s algorithmic complexity is O(n) with n = |X ′|. In the following, we
provide a detailed explanation of Frank’s four checks.

Ideal Rule Check. Each rule r ∈ R includes a set of conditions and a label
ȳ. The ideal rule function checks if xi follows the conditions of one of the rules
in R (line 6), and if it is, it provides the label ȳi (line 7), which is selected
as the final decision yi, regardless of the user’s label ŷi. In case of divergence
between the user’s decision and the supervisor’s rule, the user is notified that
their decision is not compliant. Since IRC leaves no freedom of choice, the rules
R should only cover very limited, specific, and ideal cases, describing records
which should absolutely receive a certain label. The supervisor should also make
sure the rules R are mutually exclusive. Besides, to avoid conflicts with fairness-
related functions, the rules’ conditions should not rely on sensitive attributes.

Individual Fairness Check. IFC is meant to reduce the pairs of records vio-
lating individual fairness condition, i.e., similar individuals should be treated
similarly, by assessing if records similar to xi received a different label than ŷi.
Frank checks through the individual fairness function (line 9) if there is at
least one past record x′

p ∈ X ′ identical or “similar” to the current record xi.
Given a binary sensitive attribute sa ∈ A, defines two records xi and x′

p similar
if vj = v′

j∀aj ∈ A − {sa}, i.e., xi and x′
p are similar if they are identical, save

for the value of sa. More than one similar or identical record x′
p ∈ X can be

found, and, by construction, they have all the same past label y′
p ∈ Y ′ (line 10).

If there is a disagreement between the current decision and past decisions, i.e.,
y′
p �= ŷi (line 11), then in line 12 solve conflict prompts the user either to change

their decision to make it compliant with past records, i.e., to select y′
p as yi, or
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to keep the decision but relabel past records with ŷi, i.e., modifying the labels
in Y ′4. If the latter is chosen, f is also retrained, accounting for the modified
labels. Otherwise, if y′

p = ŷi, xi is assigned ŷi, i.e., the user’s decision is accepted
(line 13) as it is consistent with past records.

Skeptical Learning Check. If there is a disagreement between the decision
of the user and f , i.e., ŷi �= ỹi, the skept function (line 14) computes Frank’s
skepticality following Eq. 1. If it is higher than s, is skeptical. Empirical accu-
racy values are initialized as in Sect. 2. We emphasize that skept does not take
as input Y ′, i.e., the set of decisions after possible re-labeling, but

...
Y , i.e., the

set of decisions made by the user after Frank’s checks for each record5. If skep-
tical, proposes ỹi for yi, and asks the user if they want an explanation ei (line
15). The user is then asked to accept ỹi (line 17). The user has the full veto
power against Frank, and if they reject ỹi, the user label is collected as the
final decision yi (line 18). If the user accepts to see an explanation, runs the
get and show expl function and provides it to the user (line 16). Frank can
provide Logic-based Explanations, where a global representation of the EFDT
is shown alongside the local decision rule followed for the record xi and ỹi
(such as IF Years of Experience > 5 AND Attitude = True THEN Hire), or
Instance-based Explanations, i.e., records similar to xi which can be either real
or synthetic. These records are classified by f either with ỹi, i.e., an example of
Frank’s decision, or ŷi, i.e., a counter-example. Frank’s explanations are the
result of a co-evolutionary relationship with the user, leading to more detailed
justifications over time. Thus, the user should progressively trustmore.

Group Fairness Check. GFC checks if one of the value of a binary sensitive
attribute sa ∈ A are discriminating against the other group w.r.t. Y ′. GFC is
independent from the other checks, and it is always triggered every k records (see
lines 22–23). Frank computes disc and the DN, DP, PN, and PP groups of the
set of records X ′ w.r.t. the labels Y ′, following [14]. Then, it orders the records
from DN and PP following the prediction probability of f , and calculates how
many of them should be removed. Finally, the records with higher probability are
shown to the user, who can choose to change their label. The new labels replace
the older ones in Y ′, and f is retrained from scratch. Thus, GFC is an interactive
implementation of PS, where the user is made aware of their discriminating
behavior and is asked to relabel past records to mitigate the discrimination.

4 Experiments

We evaluated Frank6 on three real-world datasets and, in line with [4,10], we
employed simulated users to assess its impact in a variety of conditions.

Users. We employed five kinds of simulated users: the Real Expert, who
always makes decisions following the ground truth (which is unknown in a real
4 Note that

...
Y is not modified, nor taken into account by IFC.

5 Y ′ and
...
Y coincide until the user relabel older records if prompted by IFC or GFC.

6 The Python code is available here: https://github.com/FedericoMz/Frank.

https://github.com/FedericoMz/Frank
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scenario), the Absent-Minded, an easily-distracted expert who follows the ground
truth 75% of times, the Coin-Tosser, who makes decisions by flipping a coin, and
the Bayesian and Similarity experts, simulated by Naive Bayes and KNN [18].
For IFC, we suppose that all the users have conservative behavior w.r.t. their
past decisions, with 80.00% of chance of changing the label assigned to the
current record xi, instead of re-labeling past records. For SLC, we set a thresh-
old s of 0.05, increasing the timesis skeptical. We assumed that the users can
always accept or decline Frank’s suggestions, or randomly choose. For Bayesian
and Similarity experts, we also envisioned users who request explanations, i.e.,
five synthetic examples and counterexamples, monitoring their reaction7. If they
agree with more than half, they accept Frank’s suggestions. For GFC, we sup-
pose that the user selects to re-label the top 25% DN and PP records.

Datasets. The Adult, COMPAS and HR datasets8 simulate classification tasks for
granting credits, predicting recidivism, or giving a promotion, i.e., possible real
use-cases for Frank. In HR, only 8% of records belong to the positive class,
compared to the 25% and the 50.00% in Adult and COMPAS, which are, however,
highly discriminating [17]. In contrast, HR is fair w.r.t. Sex. After removing dupli-
cated or incomplete records, we randomly selected 2,000 records to incrementally
train Frank, i.e., X. We set labeling all the records in X as our stopping con-
dition stp. The Naive Bayes and KNN models were trained on an additional 500
records. Half of them were also used to pre-train Frank’s ML model f . Finally,
a dataset XT includes 500 records reserved to test f . For IRC, we set the fol-
lowing rules: for Adult, IF capital gain > 9000 THEN ȳ = +; for COMPAS, IF
priors count > 0 THEN ȳ = +; for HR, IF awards won = True THEN ȳ = +.

Evaluation Measures. We measured the Co-evolutionary Accuracy (CA) by
comparing Y ′ with the ground truth Y , and the Model Accuracy (MA) by com-
paring the prediction of f on XT with its ground truth YT . Likewise, we mea-
sured the Co-evolutionary Discrimination (CD) and the Model Discrimination
(MD). The disc score was computed towards Female for all datasets9. Finally,
we counted the number of Unfair Couples (UC ), i.e., similar records violating
individual fairness by receiving a different label. Ideal values are 1 for CA and
MA, 0 for the others. Each experiment was repeated 10 times. The tables report
the average results, standard deviations are very low and not reported.

Results. As an ablation study of Frank’s structure, in Table 1, we report the
results when None of Frank’s functions are enabled, and when only IRC, IFC,
or GFC are enabled (oIRC, oIFC, oGFC ). The impact of IRC is minimal on
Adult and HR, whereas it negatively affects all the experts except for the Coin-
Tosser in COMPAS. This is probably due to the selected rules, either too narrow
in scope or inaccurate. These results highlight the importance of selecting good
rules for Frank. On the other hand, comparing the oIFC and oGFC columns to

7 As synthetic records lack a ground truth, this option cannot be implemented with
the other users.

8 kaggle.com/datasets/.
9 Note that a negative disc implies that Male is discriminated.
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Table 1. Ablation study of Frank’s checks.

None oIRC oIFC oGFC
CA MA CD MD UC CA MA CD MD UC CA MA CD MD UC CA MA CD MD UC

A
d
u
l
t

Real 1.0 .83 .21 .18 7.0 .96 .82 .23 .15 7.0 1.0 .84 .22 .17 0.0 .84 .75 –.02 .01 6.0
Abs. .75 .77 .10 .09 5.3 .74 .76 .13 .09 5.3 .75 .77 .11 .12 0.0 .78 .76 .01 .04 4.2
Coin .50 .56 .00 .02 5.6 .52 .51 .03 –.01 5.6 .50 .52 .00 .00 0.0 .55 .55 .03 .04 5.3
Bayes .80 .77 .12 .07 0.0 .79 .76 .11 .09 0.0 .80 .77 .12 .07 0.0 .80 .77 .09 .09 0.0
Sim. .79 .76 .20 .24 1.0 .79 .76 .20 .24 1.0 .79 .76 .20 .24 0.0 .80 .77 .03 .17 0.0

C
O
M
P
A
S

Real 1.0 .69 –.14 –.21 42. .65 .61 –.15 –.21 18. .98 .68 –.14 –.24 0.0 .75 .64 –.06 –.15 17
Abs. .75 .63 –.07 –.19 50. .60 .61 –.12 –.21 24. .74 .64 –.08 –.19 0.0 .64 .62 –.03 –.17 24
Coin .50 .57 .00 –.17 56. .54 .55 –.09 –.08 27. .50 .52 –0.0 –.09 0.0 .49 .48 .01 –.01 32
Bayes .63 .63 –.20 –.19 0.0 .59 .62 –.18 –.25 0.0 .63 .63 –.20 –.19 0.0 .61 .63 –.15 –.18 0.0
Sim. .63 .66 –.31 –.18 25. .58 .62 –.21 –.25 15. .62 .66 –.28 –.17 0.0 .63 .66 –.01 –.21 17

H
R

Real 1.0 .93 –.01 .00 39. .99 .89 –.02 0.02 39. .98 .93 –.01 .00 .99 .94 .93 .00 .00 31
Abs. .75 .93 –.01 .00 24. .74 .92 –.01 –0.01 24. .74 .93 .00 .00 0.0 .85 .93 .00 .00 20
Coin .50 .93 –.01 .00 21. .50 .83 –.02 –.06 21. .50 .93 .01 .00 0.0 .62 .65 .01 .06 19
Bayes .89 .92 .00 –.02 0.0 .89 .92 .00 –.02 0.0 .89 .92 .00 –.02 0.0 .90 .93 .00 .00 0.0
Sim. .89 .93 .00 .00 0.0 .89 .91 .00 –.02 0.0 .89 .93 .00 .00 0.0 .89 .93 .00 .00 0.0

None, we can see a significant improvement in terms of fairness. IFC always suc-
cessfully minimizes UC with no side effects, whereas GFC consistently reduces
both CD and MD. For Adult and COMPAS and with the Real Expert, this is at
the expense of CA and MA. However, we should stress that the “accuracy” of
very biased datasets does not necessarily mirror “right” decisions. In fact, on the
already balanced HR, the impact on CA and MA with the Real Expert is minimal.
Additionally, with Adult and HR, GFC improves the accuracy of Absent-Minded
and Coin-Tosser experts without negatively impacting the model-based ones.

Table 2 compares traditional SL [19] withwith everything enabled, except for
IRC in COMPAS. As mentioned for IRC, consistently minimizes UC. In Adult,
provides each expert better CA and MA if they always accept the suggestions,
whereas CD and sometimes MD is slightly better with SL. By declining the
suggestions or randomizing the choices with SL, the Real Expert gets better
CA and MA, but worse CD and MD. With other experts, is better than, or
very close to, SL for CA and MA, while consistently improving CD and MD. In
COMPAS, always has a better CD, and often a better MD. When the Real Expert
and the Absent-Minded randomize or decline, this is at the expense of CA and,
to a lesser extent, MA, with a strong fairness-performance trade-off. In other
cases, performs a bit better or on par with SL. As for HR, the two methods
are very close for the Real, Bayesian, and Similarity experts, with SL slightly
better. With the Absent-Minded and the Coin-Tosser, declining or randomizing
decision greatly enhances the CA. In fact, the randomizing Coin-Tosser reaches
a CA comparable to the Absent-Minded ’s. Also, with the same example we can
notice a lower MA than SL’s. This might be due to the fact that IRC, IFC, and
GFC are not triggered when f makes decisions on XT .

Figure 1 shows CD and CA over time for different experts, randomly accept-
ing the suggestions fromand SL. Plots are in log scale along the x-axis. At first,
for each userand SL follow a similar pattern, both in terms of CA and CD. Their
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Table 2. Frank vs traditional SL. Best scorer in bold, parity in italics.

Real Expert Absent-Minded Coin-Tosser Bayesian Similarity
SL Frank SL Frank SL Frank SL Frank SL Frank

A
d
u
l
t

a
cc
ep
t

CA 0.74 0.78 0.73 0.78 0.73 0.78 0.73 0.78 0.74 0.77
MA 0.66 0.75 0.66 0.75 0.65 0.75 0.64 0.75 0.74 0.75
CD 0.02 0.05 0.03 0.05 0.04 0.05 0.04 0.05 0.00 0.01
MD –0.10 0.05 –0.06 0.05 –0.01 0.05 0.00 0.05 –0.02 0.01
UC 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00

d
ec
li
n
e

CA 1.00 0.83 0.75 0.77 0.50 0.57 0.80 0.79 0.79 0.80
MA 0.83 0.75 0.77 0.75 0.56 0.58 0.77 0.76 0.76 0.77
CD 0.21 0.03 0.11 0.01 –0.01 –0.01 0.12 0.11 0.20 0.03
MD 0.18 0.05 0.12 0.05 –0.04 0.05 0.07 0.09 0.24 0.17
UC 7.00 0.00 6.10 0.00 5.60 0.00 0.00 0.00 1.00 0.00

ra
n
d
o
m

CA 0.89 0.80 0.74 0.77 0.55 0.57 0.79 0.79 0.77 0.77
MA 0.76 0.75 0.71 0.75 0.58 0.58 0.76 0.76 0.73 0.75
CD 0.14 0.03 0.09 0.01 0.04 0.01 0.10 0.08 0.14 0.00
MD 0.09 0.05 0.04 0.05 0.09 –0.01 0.07 0.08 0.14 0.02
UC 4.60 0.00 3.10 0.00 4.20 0.00 0.10 0.00 0.60 0.00

C
O
M
P
A
S

a
cc
ep
t

CA 0.52 0.52 0.51 0.53 0.52 0.54 0.52 0.52 0.55 0.58
MA 0.52 0.51 0.49 0.54 0.49 0.55 0.52 0.51 0.56 0.62
CD –0.02 0.00 –0.01 0.00 –0.01 0.00 –0.02 0.00 –0.09 –0.05
MD –0.02 –0.04 0.01 –0.07 0.01 –0.08 –0.02 –0.04 –0.03 –0.11
UC 8.00 0.00 17.60 0.00 17.60 0.00 8.00 0.00 1.00 0.00

d
ec
li
n
e

CA 1.00 0.77 0.75 0.64 0.50 0.50 0.63 0.61 0.63 0.62
MA 0.69 0.66 0.65 0.62 0.53 0.52 0.63 0.63 0.66 0.65
CD –0.14 0.00 –0.06 –0.01 0.01 0.00 –0.20 –0.15 –0.31 –0.04
MD –0.21 –0.19 –0.21 –0.13 –0.07 –0.10 –0.19 –0.18 –0.18 –0.18
UC 42.00 0.00 50.00 0.00 51.10 0.00 0.00 0.00 25.00 0.00

ra
n
d
o
m

CA 0.80 0.66 0.65 0.58 0.50 0.54 0.62 0.60 0.62 0.62
MA 0.64 0.61 0.57 0.56 0.48 0.57 0.63 0.60 0.65 0.65
CD –0.15 –0.01 –0.10 0.00 –0.02 –0.01 –0.18 –0.08 –0.23 –0.05
MD –0.16 –0.12 –0.17 –0.11 0.00 –0.08 –0.18 –0.15 –0.17 –0.16
UC 34.00 0.00 45.20 0.00 43.30 0.00 3.20 0.00 23.70 0.00

H
R

a
cc
ep
t

CA 0.90 0.89 0.90 0.86 0.90 0.88 0.90 0.89 0.90 0.89
MA 0.93 0.92 0.93 0.89 0.93 0.91 0.93 0.92 0.93 0.92
CD 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
MD 0.00 –0.02 0.00 –0.02 0.00 –0.02 0.00 –0.02 0.00 –0.02
UC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

d
ec
li
n
e

CA 1.00 0.91 0.75 0.83 0.50 0.66 0.89 0.89 0.89 0.89
MA 0.93 0.92 0.93 0.92 0.90 0.71 0.92 0.92 0.93 0.92
CD –0.01 –0.01 –0.01 0.00 –0.01 –0.01 0.00 0.00 0.00 0.00
MD 0.00 –0.02 –0.01 0.00 –0.01 0.05 –0.02 –0.02 0.00 –0.02
UC 39.00 0.00 26.9 0.00 22.6 0.00 0.00 0.00 0.00 0.00

ra
n
d
o
m

CA 0.95 0.91 0.82 0.86 0.70 0.82 0.89 0.89 0.89 0.89
MA 0.93 0.92 0.93 0.90 0.93 0.86 0.93 0.92 0.93 0.92
CD –0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
MD 0.00 –0.02 0.00 –0.02 0.00 0.03 0.00 –0.02 0.00 –0.02
UC 18.10 0.00 17.40 0.00 16.20 0.00 0.00 0.00 0.00 0.00

lines then diverge due to fairness interventions. In Adult, this results in a drop
of CA for the Real Expert, and in COMPAS also for the Absent-Minded. In HR, the
Real Expert is far less affected, as the dataset is less biased. On the other hand,
the Absent-Minded and Coin-Tosser receive a noticeable boost in terms of CA.
In Adult and COMPAS, the Real and the Similarity experts make biased decisions
while paired with SL, whereas their CD withis near 0. Frank’s CD lines tend
to converge to 0 for all the datasets.

Table 3 compares the impact of having users accepting Frank’s suggestions
randomly (RND) against users deciding on top of Frank’s explanations (XAI).
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Fig. 1. CA and CD evolution over time with different experts.

Table 3. Users accepting randomly (RND) or w.r.t. explanations (XAI).

Adult COMPAS HR

Bayesian Similarity Bayesian Similarity Bayesian Similarity

RND XAI RND XAI RND XAI RND XAI RND XAI RND XAI

Agr % 96.38 88.72 77.14 77.37 89.64 74.53 68.83 60.42 100.00 100.00 99.12 99.16

Ske % 3.49 11.20 22.47 22.47 10.32 25.41 31.04 39.45 0.00 0.00 0.79 0.73

Dis % 0.11 0.05 0.37 0.15 0.03 0.05 0.12 0.13 0.00 0.00 0.08 0.10

Acc % 51.99 94.03 49.61 37.58 50.49 93.94 50.37 74.02 N/A N/A 54.30 0.00

Dec % 48.01 5.97 50.39 62.42 49.51 6.06 49.63 25.98 N/A N/A 45.70 100.00

CA 0.79 0.77 0.77 0.76 0.60 0.53 0.62 0.59 0.89 0.89 0.89 0.89

CD 0.08 0.03 0.0 0.01 –0.08 –0.01 –0.05 –0.02 0.00 0.00 0.00 0.00

The first three rows report the percentage of Agreements, Skepticism, and Dis-
agreement between the user and Frank. We notice that they tend to agree, and
the disagreement almost always leads to skepticism. The fourth and fifth rows
show the percentage of the Accepted and Declined Frank’s suggestions. When
XAI is used, we observe a lower agreement rate (Agr) in Adult and COMPAS, but
ultimately, looking at the acceptance rate (Acc), these users rely onmore than
their randomizing counterparts, also resulting in a better CD at the expense of
CA. This confirms thatis able to provide satisfying explanations to the Bayesian
and Similarity users. We underline that the Similarity expert on Adult is the
exception, as they tend to decline. Finally, in HR, SLC was never triggered by
the Bayesian, and only 14 times by the Similarity expert (who then declined the
14 suggestions, hence the anomalous percentage).

5 Conclusion

We have presented Frank, a system based on Skeptical Learning that evolves
with the user. Compared to traditional SL,checks the fairness of the decisions,
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if they are compliant with external rules, and provides explanations for the sug-
gestions. Through these additional functions,successfully improves the fairness
of the datasets and of the model, often outperforming SL in terms of accuracy,
especially with less-skilled users. Moreover, we noticed that our simulated users
accept Frank’s explanations most of the time. However, at the moment, is lim-
ited to tabular data and better suitable to those of low dimensionality. Future
works might extendto other data types and decision models, explore alternative
stopping conditions, and focus on the Frank-user relationships. For example,
could build trust or distrust towards the user, and react accordingly. Finally,
after being trained in the co-evolutionary process, Frank’s model f could be
used within a Learning-to-Defer system, withmaking decisions and asking the
user when uncertain.
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Abstract. We use Graph Neural Networks on signature-augmented
graphs derived from time series for Predictive Maintenance. With this
technique, we propose a solution to the Intelligent Data Analysis Indus-
trial Challenge 2024 on the newly released SCANIA Component X
dataset. We describe an Exploratory Data Analysis and preprocessing
of the dataset, proposing improvements for its description in the SCA-
NIA paper.
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1 Introduction

The growing sophistication and accessibility of machine learning and deep learn-
ing models have significantly impacted the automotive industry, particularly in
maintenance practices. Leveraging big data and data-driven models has rev-
olutionized vehicle maintenance by enabling the implementation of Predictive
Maintenance (PdM) strategies. PdM aims to optimize vehicle performance and
prevent component failure, thereby minimizing maintenance costs. However, the
scarcity of real-world PdM datasets presents a substantial challenge. Most exist-
ing datasets rely on synthetic data, which introduce biases into the models.

This paper addresses this challenge by investigating the performance of two
models on a real-world multivariate timeseries dataset, “SCANIA Component
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X”, for predicting maintenance needs in a vehicle fleet. One of the novelties
introduced in this paper is the application of Graph Neural Networks (GNNs)
[2] to PdM. GNNs demonstrate exceptional capabilities in processing data struc-
tured as graphs, making them well-suited to capture the complex and intricate
relationships present within sensor data collected from vehicles. We introduce
a framework that utilizes both time series signatures and visibility graphs for
effective PdM analysis. Timeseries signatures, a concept derived from path the-
ory, serve as a potent tool for identifying the most relevant variables crucial for
constructing an informative graph representation of the multivariate timeseries
data. Subsequently, these identified key variables are used to construct the graph
using the visibility graph algorithm, which is able to transform a time series in
a graph preserving its temporal characteristics such as trends [3,10].

Section 2 details the methods. Sections 3 and 4 focuses on data analysis and
preprocessing. Section 5 describe hyperparameters and results, and Sect. 6 pro-
vides potential avenues for future research.

2 Methods

Geometric Deep Learning. Graph Neural Networks (GNNs) represent a spe-
cific deep learning model tailored to data structured as a graph. When dealing
with multivariate time series, determining the graph structure becomes impera-
tive, as no predefined structure exists as in social networks, chemistry, or traf-
fic forecasting problems [4]. Two primary approaches emerge: constructing a
graph representation from a similarity matrix, typically utilizing the correlation
matrix, or selecting a variable and computing the graph using the visibility graph
method [3]. In our analysis, we opt for the latter approach due to its simplicity
and effectiveness. Utilizing the correlation matrix necessitates filtering it using
a threshold method to eliminate noise and irrelevant connections in the graph.
Not filtering creates a complete graph with all nodes interconnected, making it
complex and less useful.

Signature. The concept of the signature originates from the domain of path the-
ory, offering a structured and comprehensive depiction of the temporal evolution
within a time series. Its efficacy lies in capturing both temporal and geometric
patterns inherent in the time series. Temporal patterns encompass long-term
dependencies and recurrent trends over time, while geometric patterns involve
the shape of time series trajectories, including intricate behaviors such as loops
and self-intersections [6]. The signature structure offers a hierarchical interpreta-
tion, with lower-order components capturing broad path attributes and higher-
order terms revealing intricate characteristics, including higher-order moments
and local geometric features. Importantly, the signature remains invariant under
reparameterization, preserving integral values despite time transformations, and
adheres to translation invariance and concatenation properties [7].

Furthermore, when representing a stochastic process as a cumulative process
and computing its signature, referred to as the “cumulative signature,” we can
effectively capture and portray temporal patterns. Specifically, the cumulative
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signature aggregates information over time, thereby encapsulating the temporal
evolution of the data. Additionally, the final cumulative signature is influenced
by the entire sequence of signatures, reflecting the order in which information
accumulates over time. Lastly, it mitigates noise and fluctuations in the original
data, offering a more reliable representation of the underlying patterns [6].

Consider a discrete time series S = {s0, s1, . . . , sT }, and let T((Rd)) be the
tensor algebra ⊕∞

k=0(R
d)⊗k, encompassing the signatures of R

d-valued paths.
As the signature method is applicable solely to continuous processes, discrete
time series must undergo a transformation into a continuous form. This trans-
formation can be achieved through methods such as the lead-lag transformation
or the time-join transformation [8]. We opt to focus on continuous functions
mapping from a compact time interval J := [a, b] to R

d with finite p-variation,
denoted as Cp

0 (J,Rd). Thus, we choose the lead-lag transformation, denoted by
L, to convert the discrete time series S into a continuous form due to its abil-
ity to extract path volatility. Consequently, we define the signature, denoted as
S, and the truncated signature at level M , denoted as SM , as outlined in [9].
The rationale behind utilizing the signature of a time series to compare two or
more stochastic processes stems from the “Expected Signature” theorem [12].
This theorem asserts that if the signatures computed on two distinct stochas-
tic processes are equal, then the processes themselves are equal in distribution.
The expected signature theorem enables the comparison of different stochastic
processes because, under suitable assumptions, the expected signature uniquely
determines the distribution of the stochastic process, analogous to the role of
the moment generating function [13].

For a more comprehensive and precise mathematical definition, please refer
to [6,14,15].

Visibility Graph. In this study, we employ the visibility graph algorithm pro-
posed in [3] to derive the graph representation. The visibility graph algorithm
operates specifically on univariate time series data. To identify the time series
suitable for graph representation, we opt to compute the truncated signature for
each time series. Subsequently, leveraging the “Expected signature” theorem, we
construct a distance matrix wherein the entries correspond to the Euclidean Dis-
tance between the signature of each time series and all others. We then transform
this distance matrix into a similarity matrix using a strictly monotone decreas-
ing function, specifically F (x) = 1

a+x with a = 1. In order to ascertain the most
significant time series, we conduct Principal Component Analysis (PCA) [18] on
the similarity matrix. This analysis enables us to identify the most significant
eigenvalue and its associated time series. We generate the graph associated to
the selected time series using visibility graph algorithm.

The concept underlying the visibility graph entails representing time series
values as vertical bins, wherein each bin connects to others if an unobstructed
line of sight exists from one bin’s top to another’s. Therefore, given a discrete
time series S = {s0, s1, . . . , sT } with its associated set of discrete timestamps
T = {t0, t1, . . . , tT }, the visibility condition can be defined using the following
equation: sk < sj +(sj − si)

tj−tk
tj−ti

. Meaning that any two data points (si, ti) and
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Fig. 1. The visibility graph technique is applied to feature 171 of a randomly selected
truck from the training dataset.

(sj , tj) are connected in the graph if any other data point (sk, tk) satisfies this
condition. This approach yields a connected graph, with the number of nodes cor-
responding to the observations within the time series. Importantly, the visibility
graph is chosen for its ability to preserve both the temporal and structural char-
acteristics of the time series. Specifically, periodic time series result in regular
graphs, random time series yield random graphs, and fractal time series pro-
duce random graphs. Additionally, the visibility graph remains invariant under
affine transformations of the time series. The type of visibility condition applied
determines whether the resulting graph is undirected or directed. Computation
of the visibility graph is facilitated using the Python package “Time series to
visibility graphs” (ts2vg) [19]. Figure 1 illustrates the functioning of the visibility
graph using a time series extracted from the training set of a randomly selected
truck. The first plot displays the path trajectories of the time series, the middle
plot represents the visibility condition, and the last plot depicts the associated
undirected graph. For a more comprehensive understanding, including a formal
definition and visual representations, refer to [3].

3 Exploratory Data Analysis

Initially, we conducted an exploratory analysis of the features. This step was cru-
cial due to the lack of information about the origin of these features, caused by
the strong anonymization of the dataset. In this exploratory analysis description,
we also highlight some issues mentioned in [11] that, in our opinion, should be
corrected in a future version. Recall that the dataset describes 14 attributes mea-
sured at non-homogeneous timesteps for a fleet of vehicles. Six of these attributes
are divided into bins related to a certain condition imposed on that attribute,
and the columns represent the values of these bins. The remaining six attributes
are numerical counters.

The first analysis aimed to verify that NaNs appear jointly in attributes,
meaning that a NaN can appear at time t for vehicle i in attribute j if and only
if all other bins for attribute j at time t for vehicle i are NaN. This is consistent
with the fact that all bins of the same attribute measure the same type of data.
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According to the paper, the features are cumulative, meaning the values in
the columns should be increasing when restricted to individual vehicles. However,
this property only holds for intervals of values without NaNs. In the paper,
NaNs are explained in Sect. 2.1.1, where it is particularly mentioned that “the
data collection counters could be reset, i.e., start again from the beginning”,
but in reality, the value restarts from zero only in 3.4% of cases. If the columns
were increasing, or if the reason why they might not be was known, it would
be possible to interpolate missing data. Instead, the lack of information makes
imputation very difficult.

Another issue detected concerns the initial values of the features. If the
timestep column measures “the duration in time step that each vehicle has been
utilizing Component X during its operational lifespan,” it is reasonable to assume
that at time 0, the features should have a value of 0. This is not the case, see
for example vehicle 5.

The analysis also revealed that, only in train operational, in 7 cells the
non-decreasing property described above is not verified. This was interpreted
as a transcription error or artificial noise added during the compilation and
anonymization of the dataset, and it was corrected by linear interpolation. Note
that in val op and in test op, this does not occur.

Multiple statistics on validation operational data and test operational data
were evaluated and compared. These statistics showed that from all statistically
evaluable perspectives, the data distribution is similar, which is expected from a
dataset initially constructed for a challenge. This suggests that in future versions
of the dataset, it might be useful to artificially introduce a slight distribution
shift in the test, to better simulate real-world applications.

This analysis also allowed us to identify a significant outlier in the length
of the time series (number of timesteps per vehicle) in test operational data.
While in the validation, the maximum length is 209, and in the test, it is 262,
there is only one vehicle in test with this length, all the others being at most
209 timesteps long. This observation was used to reduce the computational com-
plexity of the training set during preprocessing.

4 Data Preprocessing

First, a new column, class label, was created using the information contained
in train tte. For each row, class label contains the ground truth for the vehicle
and the corresponding timestep. If in study repair = 0, class label = 0, otherwise
class label is 4, 3, 2, 1, 0 if length of study time step - timestep is in [0, 6), [6, 12),
[12, 24), [24, 48), [48,+∞), respectively. This highlighted another issue in the
data collection description: When in study repair = 1, what did the vehicle do
from the last timestep to length of study time step? If Component X continued
to work until that moment, the described ground truth is correct, but in that
case, measurements at time length of study time step, which are probably the
most important, are missing. Otherwise, it would seem reasonable to calculate
the ground truth with the last timestep.
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Given the significant scale difference between the values of a single vehicle
as the timestep increases, it was necessary to choose a normalization procedure.
The values of bin i of attribute j were divided by the average sum of the values
of all bins of attribute j across the entire dataset. Given the semantics of the
columns, this normalization represents a scaling change for attribute j.

Subsequently, the 8 columns taken from train specifications were integrated,
transformed into integers. Note that the statement that the specifications “can
take categories in Cat0, Cat1, ..., Cat8” is a typo, as these columns take integer
values up to 28.

NaNs were replaced with 0. Various other imputation methods were tried,
but none provided satisfactory results, also due to the issues described above.
The value 0, although rarely appearing as a true value in some measurements,
was deemed distinctive enough to allow a model with good predictive capacity
to use it.

Subsequently, for each vehicle with in study repair = 0, the final records were
removed until the last timestep t satisfied length of study time step −t ≥ 48.
This is because the ground truth = 0 at a time t ∈ [0, 48) might be wrong,
and false negatives have a very high cost. 202454 out of 1122452 records were
removed, but given the high proportion of class 0 compared to others, this did
not pose problems in the subsequent choice of time series to use for training.

For training, a dataset balanced between class 0 and non-zero classes was
chosen. Given the high cost of false negatives, it was preferred not to risk the
model learning to distinguish 0 better than the other classes. In the visibility
graph approach training was done by aggregating all positive classes as class 4.

To maintain a high number of training samples, data augmentation was per-
formed on time series with class label > 0, iteratively removing the last timestep
until the class became 0. At the end of this augmentation, time series with
class label = 0 were randomly chosen and cut to a random length, sampled from
the distribution of time series lengths in the test (which the EDA showed to be
similar to the distribution of lengths in the validation). This data leakage should
not be used for a model aiming to generalize in the real world, but it seemed
reasonable to use it for a challenge. Graphs were augmented with the time-series
signature as global feature.

For models that require time series of constant length, the option was to
bring all series to the maximum length using zero-padding inserted at the initial
timesteps. Semantically, this corresponds to performing some initial measure-
ments when the vehicle is not yet operational, and seemed more reasonable than
adding padding at the end. Thus, the maximum length should have been 262.
However, since the EDA highlighted that this length is only reached by a single
vehicle, for this single vehicle the option was to truncate the initial timesteps.
This allowed for a significant reduction in one dimension of the training set.

Finally, a tensor X of shape (50511, 209, 114) containing the timestep (nec-
essary because of the irregular sampling), all attribute bins (105), and specifica-
tions (8), and a vector y of shape (50511), with the ground truths were created.
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Fig. 2. Confusion matrix on validation.
True labels on rows.

Fig. 3. Number of predictions for each
class on validation and test sets.

5 Experiments

Graph Neural Networks. We used the pytorch-geometric [16] GIN [17] graph
neural network, with 114 input channels (the time-series features, time step, and
truck specifications), 8×114 = 912 hidden channels with 15 layers and 2 output
channels. We found that, due to the high cost involved in mispredicting a class
with a lower one, it was worth using only class 0 and class 4 for training and
classification. During training sequences that had a class in {1, 2, 3} were treated
as if they belonged to class 4. The undirected graphs on which the GNN operated
were visibility graphs constructed using the 171 0 time series for the truck. The
number of nodes was thus equal to the number of timesteps in the time series.
Using a threshold of 0.6 for class 0, our model obtains a cost of 40109.0 on the
validation set, where costs are given in [11]. In Fig. 2, the confusion matrix on
validation, and totals on validation and test in Fig. 3.

ROCKET. In the realm of time series analysis, the classification model known
as ROCKET (RandOm Convolutional KErnel Transform) stands out for its
remarkable efficiency and accuracy. Stemming from [1], ROCKET [5] generates
a vast feature space by applying thousands of random convolutions over the
input time series. We used ROCKET in its sktime implementation, with 10000
random kernels over fixed-length time series, see preprocessing in Sect. 4. This
resulted in an embedding space with 20000 dimensions, where we tested a Ridge
classifier, and a fully connected model augmented with multi-bias and global
connection as in [21,22]. However, the final performance was below the baseline,
and is not reported here. This is somewhat surprising, because ROCKET is
considered state of the art for multivariate time series classification. While this
is an indication of the complexity of the dataset, we think this low performance
could be due to how the training set was built, and deserves future investigation.

6 Conclusion

We show that the Component X dataset presents a significant challenge for PdM
and time-series analysis, marking a valuable contribution to the field. We antic-
ipate that updates to the foundational paper [11] will incorporate our feedback.
Our future work aims to expand the use of signature-augmented data beyond
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graph-based models. Moreover, we believe that adopting a multilayered graph
approach, as outlined in [20,23], could enhance graph prediction techniques.
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Abstract. Predictive maintenance is a crucial yet challenging task in
many industrial applications. This work explores a large repository of
existing techniques and approaches to process historical data and predict
if an asset is at risk of failure. In particular, the operational condition and
specification of Scania trucks in heavy-duty applications is considered as
part of the IDA 2024 Industrial Challenge.

Keywords: Predictive maintenance · Time series analysis ·
Contextual decision-making · Feature extraction · Survival analysis

1 Introduction

Predictive maintenance, i.e., predicting whether an industrial asset is at risk of
imminent failure, is a crucial yet challenging task in many industrial applica-
tions. Prediction of future failure allows maintenance to be planned before the
fault happens, which in turn reduces the downtime [4]. Monitoring capabilities
tremendously increased due to the paradigm shift towards Industry 4.0, enabling
the development of automated decision-making processes.

Specifically, we look at predicting the failure of an anonymized component
in Scania trucks in heavy-duty applications as part of the IDA 2024 Industrial
Challenge [3]. The dataset includes variables capturing the operational condition
of the trucks over time and the truck specification. In this work, we explore a
wide range of techniques and methods to predict upcoming component failures
for condition monitoring in general and for Scania trucks in particular. The main
contributions of this work are as follows:

1. Transformation of observational readouts into history-aware feature vectors;
2. Application of inherently different models for predictive maintenance based

on classification, regression, and survival analysis;
3. Open-source implementation of the methodology, including the source code,

notebooks, and raw experimental results, to ensure reproducibility1.

L. Carpentier and A. De Temmerman contributed equally to the paper.
1 https://gitlab.kuleuven.be/u0158714/ida-industrial-challenge-2024.
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Table 1. Size and amount of missing values in the train, validation, and test sets

Train set Validation set Test set

#vehicles 23 550 5046 5045

%vehicles 70% 15% 15%

#readouts 1 122 452 196 227 198 140

#readouts per vehicle (average) 48 46 45

#missing values 354 634 60 339 66 403

%missing values 0.0030% 0.0029% 0.0032%

2 Problem Formulation

The train, validation, and test datasets consist of 33 651 vehicles in total with
the following information:

1. Operational Readouts. Onboard sensors monitor crucial parameters
regarding the vehicle’s real-time condition and performance. To reduce stor-
age requirements, the data is stored locally in histograms. In particular, mul-
tiple ranges or bins are defined for each variable, and each bin has one counter.
Whenever a value is measured in a certain bin, the corresponding counter is
incremented. The operational readouts are snapshots of these counters taken
at irregular time intervals. Note that the operational readouts for each vari-
able are monotonically increasing because the counters are only incremented.
In total, 14 parameters were selected with varying numbers of bins, resulting
in 105 attributes. Figure 1 plots the ten bins of feature 158 in function of
the timestep for vehicle 100. Table 1 lists the total number of vehicles and
readouts together with the average number of readouts per vehicle and their
missing values. For each vehicle in the validation and test set, a random obser-
vation is selected, and only the earlier readouts are provided to simulate the
usage of a prediction model in a real-world setting.

2. Specification. The specification of a truck corresponds to its model, includ-
ing information such as engine type, weight capacities, and other technical
details. There are eight categorical features with a variable number of cate-
gories, which totals in 11 181 240 possible specifications, of which only 3 607
occur in the training data.

The train set also contains a time-to-event table, indicating if and when a
vehicle had a defect. The last observation of each vehicle in the validation set is
assigned 1 of 5 classes, indicating when the vehicle will fail: class 0 instances will
not fail in the next 48 time steps, class 1 instances will fail within 48 to 24 time
steps, class 2 instances within 24 to 12 time steps, class 3 instances within 12 to
6 time steps, and class 4 instances will fail within 6 time steps. Thus, classes 1,
2, 3 or 4 indicate failure with increasing severity. The goal of the IDA challenge
is to predict these labels for the last observation of each vehicle in the test set.
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Fig. 1. Sample of the ten bins for feature 158 in operational readout data in function
of the time step for vehicle 100

Table 2. Table of prediction costs

Predicted: 0 Predicted: 1 Predicted: 2 Predicted: 3 Predicted: 4

Actual: 0 C0,0 = 0 C0,1 = 7 C0,2 = 8 C0,3 = 9 C0,4 = 10

Actual: 1 C1,0 = 200 C1,1 = 0 C1,2 = 7 C1,3 = 8 C1,4 = 9

Actual: 2 C2,0 = 300 C2,1 = 200 C2,2 = 0 C2,3 = 7 C2,4 = 8

Actual: 3 C3,0 = 400 C3,1 = 300 C3,2 = 200 C3,3 = 0 C3,4 = 7

Actual: 4 C4,0 = 500 C4,1 = 400 C4,2 = 300 C4,3 = 400 C4,4 = 0

The costs associated with predictive maintenance are highly unbalanced,
caused by a larger cost to repatriate and repair a defective vehicle than to replace
a non-defective component pre-emptively. Therefore, a cost function is defined
by domain experts, which assigns a cost Ci,j for predicting j if the actual label
is i. These costs are shown in Table 2. In general, Ci,j indicates the cost of a
false positive if i < j, and the cost of a false negative if i > j. Consequently,
false negatives have a much higher cost. For some model M , denote Ni,j as the
number of times that M predicted class i if the actual label was j. Then, the
summarized cost of M is computed according to Eq. 1.

cost(M) =
4∑

i=0

4∑

j=0

Ci,j × Ni,j (1)

3 Methodology

3.1 Data Transformation

The non-uniform time-series from the operational readouts of the train, valida-
tion, and test dataset were processed to a) handle the missing values, b) produce
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Fig. 2. The fixed-size sliding window, fixed-time sliding window, fixed-time index-based
window for windows sizes of 2 and 4 on an illustrative data sample

rolling windows based on the time step, c) extract time-series features from these
rolling windows, and d) reduce the number of features with feature importance
and dimensionality reduction methods. The labels were transformed into the
necessary format for model training and validation. Finally, the features and
labels were resampled for a better representation of each defect class.

Feature Extraction. The operational readouts contain some missing values,
because not all features are captured for each readout. The readout values
increase linearly, as shown in Fig. 1. Therefore, linear interpolation was selected
to fill in the missing values.

As these features are cumulatively increasing counters, the difference between
the readouts is used to (a) focus on the change between consecutive readouts
instead of the cumulative value and (b) reduce the scale of the values.

Further processing is done by applying several sliding windows to the
time-series, using multiple, exponentially increasing window sizes w ∈
{4, 8, 16, 32, 64}, for improved temporal relevance of the extracted features. Sev-
eral types of sliding windows were applied and compared. Figure 2 compares
a fixed-size, fixed time-interval, and index-based sliding window. The fixed-size
sliding window creates windows with exactly w observations. While this gives
a constant number of observations in each window, there is a major variation
in the recorded timespan due to non-uniformly sampled data. The fixed-time
sliding window creates windows with a timespan w and stride 1. However, the
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windows are not necessarily synchronized with the labels and require an addi-
tional step to merge the newly created indexes of the windows to the labels.
The fixed-time index-based window creates a window before each readout with
timespan w, resulting in a less sparse dataset with a one-on-one corresponding
label.

For each type of window, a wide range of features was extracted through
tsfresh [2], resulting in 652 features for each window size and attribute, totaling
to 342 300 calculated features.

This procedure is applied to each readout of the train set, whereas only the
features for the last readout need to be calculated for the validation and test set.

Feature Selection. We removed irrelevant features using Kendall’s τB . For
some feature f , a pair of values fi and fj with corresponding labels yi and yj
is said to tie if either the feature values or the labels are equal. If both fi > fj
and yi > yj or both fi < fj and yi < yj , then the pair is said to be concordant,
otherwise, it is discordant. For each f , Denote with P the number of concordant
pairs, Q the number of discordant pairs, T the number pairs with fi = fj and U
the number of pairs with yi = yj . Then, τB of feature f is computed according
to Eq. 2.

The null hypothesis for Kendall’s Tau states that there is no association
between the two variables. The p-value represents the probability of observing a
value of Tau as extreme as, or more extreme than, the one calculated from the
sample data, under the assumption that the null hypothesis is true (Eq. 3). We
varied the threshold on the resulting p-values between 0.0005, 0.001, 0.005, 0.01,
and 0.05 to create multiple datasets with a variable number of relevant features.
At the end, a threshold of 0.01 was used.

τB =
(P − Q)√

(P + Q + T ) × (P + Q + U)
(2)

p = P (|τB | ≥ |τobserved |) (3)

Besides univariate feature selection, the Pearson correlation coefficient ρi,j
was used to remove highly collinear features fi and fj , and is computed as
ρi,j = cov(fi, fj)/(σfi ·σfj ). For two correlated features, we removed the feature
with the smallest τk. Here, the threshold on ρi,j was set to 0.5.

Label Transformation. Train labels can be inferred from the time-to-event
table. If a vehicle was repaired at time t, all its readouts with a time step in
[t − 6, t] are of class 4, those in [t − 12, t − 6] in class 3, and so on. Additionally,
for a healthy vehicle that was studied until time t, we removed the readouts
in the interval [t − 48, t] because it might fail immediately after the monitored
period.
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Resampling for Improved Class Representation. The dataset is highly
imbalanced because failures are rare. Specifically, there are 1 096 712 instances
of class 0, 12 503 of class 1, 6 179 of class 2, 3 200 of class 3, and 3 858 of class 4.
Training on this data introduces extreme bias in the models. To cope with this,
we undersample class 0 such that there are an equal number of healthy instances
as instances of class 1, the largest non-healthy class.

3.2 Predictive Model

Due to the openness of the training labels, multiple inherently different models
were used to predict component failure. In particular, we used the implementa-
tions from scikit-learn [5] and XGBoost [1].

Classification Models. The data can be treated as a multiclass classification
problem, with one healthy state and four failure states. We trained K-NN, Deci-
sion Tree, Random Forest, Logistic Regression, Support Vector Machine, and
XGBoost classifiers to predict the class labels directly.

Regression Models. Classification models typically treat each class indepen-
dently, while the classes in this dataset represent varying levels of severity. This
knowledge is encoded by treating the discrete class labels as regression val-
ues. Then, we trained several regression models, including K-NN, Decision Tree,
Random Forest, Linear, Support Vector Machine, and XGBoost regressors. The
models’ continuous predictions were rounded to derive discrete class labels. We
also experimented with using a ceiling function to convert predictions into class
labels, addressing the imbalanced cost function in Eq. 1, but this did not signif-
icantly impact the results.

Survival Analysis. The train data contains the failure time of a component,
providing more fine-grained information than the five discrete labels. Therefore,
we trained a survival analysis model that predicts the time until the component
fails, which can subsequently be translated to class labels. In particular, we used
XGBoosting with the Accelerated Failure Time model.

Including Truck Specification. Besides historical observations, the data also
includes vehicle specifications, which the models incorporate as contextual infor-
mation. Specifically, the distance between two vehicles is computed as a convex
combination between the number of matches in the vehicle specification, on the
one hand, and the Euclidean Distance of the min-max normalized trend of the
operational readouts, on the other hand. Hierarchical clustering with average
linkage is used to cluster the vehicles, which enables to train a model within
each cluster or context. During prediction, we check which cluster the vehicle
specification belongs to and use the corresponding model. Additionally, a global,
non-contextual model is trained using all data, which predicts the label for vehi-
cles that do not belong to any context.
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Fig. 3. Average prediction cost for the different models on the validation set

4 Evaluation

The validation set enables a quantitative comparison of the different models but
does not indicate if the models generalize properly to unseen data. Therefore,
we included several baselines:

1. Always predict X. A model that always predicts a single label, independent
of the observational readouts or vehicle specification;

2. Random. Predict a random label for each vehicle. This is done 100 times,
of which the average cost is taken to reduce variance;

3. Weighted random. Similar to random sampling, but a weight is assigned
to each class label based on the number of occurrences of each class in the
train data, thus taking class imbalance into account.

The prediction cost on the validation set, according to Eq. 1, over the number
of vehicles in the validation set is shown in Fig. 3. Multiple conclusions can be
drawn from this figure.

– Baseline Always predict 4 gives a comparatively low average cost per vehicle.
This is due to the highly imbalanced cost function. A model that overesti-
mates the actual time until failure is heavily penalized, while a model that
underestimates this time is penalized less. Although the healthy instances
significantly outnumber the unhealthy instances, always predicting 4 results
in a relative small cost on the validation set.

– Besides this baseline, the survival analysis models give the best results.
Depending on the chosen sampling method for the train set, the model ini-
tially produces representative predictions. However, the predictions do not
supersede Always predict 4 and converge to this prediction towards the later
boosting rounds. Including contextual information does not affect this.

– Classification models treat the different classes independently, while the
regression models encode the severity levels. Nevertheless, in general, the
classification models have a higher performance than the regression models.

– Generally speaking, including the specification as context does not increase
the performance. This is especially true for the SVM classifier, for which
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the average cost increases from 11.38 to 14.02 by the inclusion of context.
However, for linear regression, the cost decreases by including context, from
13.70 to 12.80. This is because the full dataset is not linear, but data within
a context follows a more linear trend.

5 Conclusion

This work explored a wide range of different models to predict if a compo-
nent is at risk of imminent failure, specifically for Scania trucks in heavy-duty
applications [3]. We showed that this task is non-trivial due to the highly imbal-
anced dataset and complex feature space. Therefore, we believe out-of-the-box
models are insufficient for predictive maintenance, and dedicated and fine-tuned
approaches must be developed for each application. Additionally, we illustrate
that it is crucial to compare with baselines. By only comparing out-of-the-box
models, one only measures the relative performance of different models without
actually knowing if the model performs well.
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Abstract. This paper explores the application of predictive maintenance (PdM)
in vehicle management, focusing on improving performance and reliability of
critical truck components. By leveraging a newly acquired, comprehensive real-
world dataset, the study aims to develop machine learning models for accurately
predicting component failures. The dataset, sourced from the Symposium on Intel-
ligent Data Analysis (IDA 2024), includes multivariate time series data from an
anonymized engine component of a fleet of trucks, featuring operational data,
repair records, and specifications. The research employs advanced deep learning
techniques like Convolutional and Recurrent Neural Networks, including Long
Short-TermMemory (LSTM) networks, to identify patterns indicative of potential
failures. This initiative aims to optimize maintenance interventions, resource allo-
cation, and fleet management by predicting the time or class of potential failures,
thereby reducing downtime and maintenance costs.

Keywords: Predictive Maintenance ·Machine Learning · Deep Learning · Time
Series Data · LSTM

1 Background

1.1 Predictive Maintenance

Predicting component failures is crucial for maintaining vehicle reliability and perfor-
mance, especially for trucks operating under diverse conditions [1]. The consequences
of a truck breaking down mid-journey are significant, not only in terms of repair costs
but also due to potential delays. These situations become even more challenging when
repair facilities lack the necessary components, leading to extended downtime.

Predictive Maintenance (PdM) emerges as a proactive solution to these challenges,
offering a proactive strategy to prevent failures before they occur [2, 3]. This enables
the performance of timely and cost-effective maintenance interventions, informed by
data-driven insights [4]. PdM with Machine Learning (ML) for automotive systems
has been investigated over a decade [5–11]. This development not only promises to
transform maintenance practices but also to ensure vehicles operate at peak efficiency
while minimizing downtime and maintenance costs.
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1.2 Contest Background Description

The newly released real-world dataset from SCANIA is described in detailed in the
reference [12], which holds significant potential for advancing the field of PdM. It is
a comprehensive multivariate time series dataset, demonstrating gradual degradation in
equipment in the form of time series readouts. The used dataset in our paper includes
information gathered from Scania trucks used in heavy-duty applications and it is intro-
duced for the ongoing Industrial Challenge 2024 at the 22nd International Symposium
on Intelligent Data Analysis (IDA) [13] with the title of “Developing an Effective Pre-
dictive Model for Imminent Component X Failures in Heavy-Duty SCANIA Trucks” in
Sweden.

This paper describes the approach for solving the challenge. The goal is to develop
predictive models that can accurately predict whether a specific engine component in
a vehicle is at risk of imminent failure. The remainder of the paper is organized as
follows: flowchart of input data preparation is described in Sect. 2. Section 3 explains
the modeling and results. Section 4 describes some reflection on the challenge. Finally,
Sect. 5 concludes the paper and discusses future research directions.

2 Analysis Method for Input Data Preparation

This section describes the critical steps for the preparation of input data to ML models.
Figure 1 demonstrates the flowchart of overall data preparation. The raw dataset under-
went extensive processing with high data quality [12], e.g. relevant features selected,
limited missing data rate and dataset divided into train, validation, and test subset, which
reduce much workload on data processing.

Fig. 1. Flowchart of the data preparation

2.1 Exploring Raw Data

Initially, an exploration of vehicle specification distributions within both the training
and validation datasets was conducted based on ‘*_specifications.csv’ files. From the
observation of the distributions, for example, as shown in Fig. 2 for Spec_0, there are
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small differences in the distributions between normal and repaired vehicles. Due to
page limitations, not all distributions of specifications are shown. However, observations
across the datasets remain similar, leading to the decision not to utilize specification
information for training the ML models.

Fig. 2. Comparison of specification distributions example over Spec_0 between normal and
repaired vehicles.

2.2 Preprocessing Raw Data

Feature Reduction
Subsequently, a feature reduction process was undertaken based on correlations iden-
tified within the dataset. The initial dataset ‘train_operational_readouts.csv’ contains
105 vehicle features alongside a time column feature which is also the same for the
validation and test dataset. Correlation matrix was used to reduce the correlated features
in the dataset and consequently 56 features are selected by excluding highly correlated
features.

Missing Values Filling and Normalization
A forward filling method was employed to address missing values. Following this,
data normalization was achieved through the application of the ‘PowerTransformer’
and ‘StandardScaler()’ methods from the Scikit-learn library [14]. Although the ‘Min-
MaxScaler()’ method was also evaluated, it did not yield an improvement in model
accuracy.

Padding and Augmentation
There are 56 features including the timeunit column for eachvehicle.Anotable challenge
arises from the varying number of data samples per vehicle, since the numbers of readout
for each vehicle are different. To make the input data of each vehicle the same length
or size, a fixed-length padding strategy was implemented. This technique ensures that
each vehicle’s data conforms to a consistent size.

Figure 3 shows an example of the padding process over one vehicle. The left plot
shows the raw data of the vehicle with 106 features, after feature reduction and padding,
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Fig. 3. Example of padding one vehicle’s operational readouts to a fix length.

the processed data is shown in the middle plot. The right plot illustrates the processed
data after augmentation.

Data Splitting and Balancing
The dataset contained in the “train_operational_readouts.csv” is segregated into train-
ing and validation dataset with 80-20 partition ratio. The validation dataset is used for
validation of the models. Because the distribution of data classes is imbalanced, as
depicted in Fig. 4, a weighted sampler function is implemented for creating a balance
training dataset [15]. This approach ensures that each class is represented proportionally
to its prevalence in the dataset, as shown in Fig. 4, contributing to a more equitable and
robust model training procedure. Although weighted loss function method [16] was also
evaluated, it did not yield an improvement in model accuracy.

Fig. 4. Distribution of classes in training dataset before and after weighted sampler function.

2.3 Preprocessing Train Labels

To create the class_labels for the training dataset, i.e. all the vehicles with unique
‘vehicle_id’ in the ‘train_tte.csv’, the following steps were conducted.
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Firstly, the computation of the delta time unit for each vehicle was accomplished by
subtracting the last entry of ‘time_step’
value recorded in of the ‘train_operational_readouts.csv’, from the last readout time
of ‘length_of_study_time_step’ within the ‘train_tte.csv’ document.

Secondly, binning the delta time to 5 classes for each vehicle. This classification
was based on the criteria provided by Scania, where a delta time unit exceeding 48 time
units denotes as Class 0, meaning the vehicle’s in normal healthy status. A delta time
unit that is greater than 24 but less than or equal to 48 time units falls into Class 1, with
successive classes defined in a similar descending structure of time units [12].

Figure 5 shows the delta time unit distribution. The left plot shows the overall vehicle
distribution, while the enlargement right figure demonstrates there are vehicles having
longer than 48 time units of the delta time indicating that they belong to class 0.

As a result, the labeled data for all vehicles contained in “train_tte.csv” is similar
to the content in “validation_labels.csv”. In our study, the provided validation datasets
(“validation_labels.csv” and “validation_operational_readouts.csv”) were treated as test
datasets to evaluate the final performance of the ML models.

Fig. 5. Distribution of the delta time unit between ‘length_of_study_time_step’
within the ‘train_tte.csv’ and the last entry of ‘time_step’ value recorded in of the
‘train_operational_readouts.csv’.

3 Modeling

3.1 Model Description

Deep learningmodels employed in this paper are based onMultilayer Perceptrons (MLP)
[17], Convolutional Neural Networks (CNNs) [18, 19] and recurrent neural network
(RNN) [20, 21]. Their hyperparameters are listed in Table 1.

MLP models can be a baseline for its computed relevance between features and
output, i.e. the class of vehicles, while CNNs are adept at identifying the relationships
among combined features. This implies that patterns formed by the values of multiple
features could be associated with the output. In this work, we also employ transfer
learning by utilizing a pretrained ResNet18 architecture and replacing the first and last
layers to better align with the input data dimension and the desired output classes.
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Table 1. Model description.

Deep Learning Architecture Hyperparameters

MLP Number of layers: 4
Layer 1 units: 1024
Layer 2 units: 256
Layer 3 units: 128
Activation function: ReLU

CNN Number of layers: 2
Layer 1 units: 64 (Convolutional)
Layer 2 units: 128 (Convolutional)
Activation function: ReLU
Fully Connected layers with 512 and 64 units

Bi-LSTM-attention Number of layers: 4
Layer 1–4 units: 128

Since the readouts of each vehicle are time series data, we input a sequence, which
consists a series of feature vectors across consecutive time steps, into a bidirectional
long short-term memory (Bi-LSTM) model for a single vehicle. The model’s output is
a condensed summary of the sequence, which is used to classify the vehicle or engine.
To accommodate sequences of varying lengths within the same batch, dynamic padding
ensures uniform sequence length. Furthermore, an attention-based Bi-LSTM [22] model
was implemented which can map a set of key-value pairs to the output. Such model
leverages the attention mechanism to assign weights to different parts of the sequence
enabling the model to focus on particular segments of the sequence instead of just
considering the sequence’s end.

Random search was conducted for each model to determine the optimal set of hyper-
parameters.All experimental results are averages over 5 runswith 5-fold cross validation.
It is worth mentioning that the weighted sampler function has been applied separately
in each fold.

3.2 Summary of Model Performance

Table 2 reports the best results obtained by hyperparameter optimization across various
deep learning architectures discussed in this study. To assess model performance, we
introduced a baseline scenario in which class predictions are deliberately set to false
negatives.

TheMLPmodel exhibits lower accuracy compared to theCNNandLSTMmodels but
maintains one of the lowest costs, albeit with significant uncertainty. Whereas the CNN
model achieves the highest accuracy but suffers a greater cost, potentially exceeding that
of a model with random initial weights, as illustrated in Fig. 6. Despite the high accuracy,
there’s a risk of overfitting to accuracy due to the loss function as Cross-Entropy loss,
where a small number of false negative predictions can significantly increase the cost.
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Apparently, model enhancements through augmentation did not yield improvements
in accuracy or cost, indicating the need for a better selection of augmentation. The
performance of ResNetmodels is reduced by the limited number of trainable parameters.

RNN models achieve moderate accuracy and nearly the best cost. Therefore, it was
chosen to generate the final submission file.

Table 2. Summary of model performance.

Model Additional processing Accuracy [%] Cost

All false negative 0 50460

MLP 75 ± 3.6 42385 ± 2342

CNN 88.2 ± 1.2 50636 ± 1136

Resnet18 53.7 ± 10.7 47187 ± 1542

CNN Augmentation 32.2 ± 7.4 61181 ± 2807

Resnet18 Augmentation 38.4 + 30.6 55369 ± 4011

Bi-LSTM 77.6 ± 5.6 41728 ± 1514

Bi-LSTM-attention 81 ± 4.2 43465 ± 1534

Bi-LSTM-attention Dynamic padding 81 ± 4.8 43224 ± 831

Fig. 6. Confusion matrix of the prediction and true label using CNNs. The left plot shows results
froma randomly initializedmodel,while the right one displays outcomes followingmodel training.

4 Reflection

In evaluating the performance of predictive maintenance models for this challenge, the
primary objective was to minimize the ‘Total_cost’, a metric defined by a cost function
[12] that aggregates ‘Cost_n_m’ across instances.

Total_cost = Cost_n_m × No_instances
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The function’s design inherently places differing penalties on false positive and false
negative predictions, with a significantly higher cost assigned to the latter. Upon reflec-
tion, it has been observed thatmodels are not subjected to optimization or comprehensive
training—thus inclined towards predicting a majority of instances in the ‘Cost_0_4’ cat-
egory—could paradoxically achieve a lower ‘Total_cost’ compared to models that offer
more precise predictions across all classes but incur higher total costs due to the severe
penalties of false negatives, as shown in Fig. 6.

This phenomenon underscores a critical issue: the cost function, while effectively
prioritizing the minimization of false negatives, may inadvertently encourage strategies
that compromise the overall accuracy and reliability of PdM models. A more effective
loss function needs to be developed that incorporates constraints aimed at optimizing
both cost and accuracy simultaneously. On the other hand, incorporating metrics that
specifically reward class accuracy could mitigate the risk of participants exploiting the
cost function’s bias towards lower penalties for certain types of errors.

5 Conclusion

In this study, various machine learning models, including MLP, CNN and RNN, were
explored for analyzing a comprehensive multivariate time series dataset, specifically
focusing on predictive maintenance (PdM) within the context of the Intelligent Data
Analysis Industrial Challenge 2024. Although CNNmodels had the best accuracy, RNN
models yielded the most favorable results according to the challenge’s evaluation crite-
ria. It’s important to note that this final choice did not coincide with the highest accuracy
model. This outcome highlights the needed balance between cost efficiency and predic-
tion accuracy in the domain of PdM, and it opens opportunities for further research to
refine predictive capabilities while also optimizing cost-related outcomes.
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Beigaitė, Rita II-43
Björklund, Anton II-223
Boeva, Veselka II-119
Boström, Henrik II-185
Bourinet, Jean-Marc II-15
Braune, Christian II-107
Broek, Ronald C. van den I-41

C
C. Vieira, Pedro II-95
Calero, Sofía I-129
Carpentier, Louis II-260
Cestnik, Bojan I-254
Choudhary, Manvi I-93
Cimiano, Philipp II-83
Clair, David II-15

D
Dagnely, Pierre II-119
Dang, Vu Minh Hoang I-217
De Raedt, Luc I-141
De Temmerman, Arne II-260
Deheeger, François II-15
Devagiri, Vishnu Manasa II-119
Di Cecco, Antonio I-53
Dierkes, Joel II-107
Doan, Tu My I-242
Duivesteijn, Wouter I-16
Düsing, Christoph II-83

F
Fadel, Samuel G. I-117
Fajri, Ricky Maulana I-28
Fantozzi, Marco I-53
Fernandez, Guillermo II-197
Ferré, Sébastien I-3
Fois, Andrea II-251

G
Gajane, Pratik I-41
Gama, João I-155, II-95
Gámez, Jose A. II-197
Gerlach, Thore II-171
Giannotti, Fosca II-197
Golik, Paweł I-191
Gourru, Antoine I-93
Granitzer, Michael II-158
Gregnanin, Marco II-251
Grzenda, Maciej I-191
Guidotti, Riccardo II-197, II-236
Gulla, Jon Atle I-242

H
Hamdan, Sami II-56
Hammer, Barbara I-77
Hinder, Fabian I-77

K
Karlsson, Axel I-65
Kastrin, Andrej I-254
Keraghel, Imed I-205
Kielhöfer, Lionel II-145
Kikaj, Adem I-141
Kille, Benjamin I-242
Kiossou, Harold II-133
Koloski, Boshko I-254

L
Laclau, Charlotte I-93
Largeron, Christine I-93

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
I. Miliou et al. (Eds.): IDA 2024, LNCS 14642, pp. 277–278, 2024.
https://doi.org/10.1007/978-3-031-58553-1

https://doi.org/10.1007/978-3-031-58553-1


278 Author Index
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