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Abstract. The need for explanation for new, complex machine learning
models has caused the rise and growth of the field of eXplainable Artificial
Intelligence. Different explanation types arise, such as local explanations
which focus on the classification for a particular instance, or global expla-
nations which aim to show a global overview of the inner workings of
the model. In this paper, we propose FLocalX, a framework that builds
a fuzzy global explanation expressed in terms of fuzzy rules by using
local explanations as a starting point and a metaheuristic optimization
process to obtain the result. An initial experimentation has been carried
out with a genetic algorithm as the optimization process. Across several
datasets, black-box algorithms and local explanation methods, FLocalX
has been tested in terms of both fidelity of the resulting global explana-
tion, and complexity The results show that FLocalX is successfully able
to generate short and understandable global explanations that accurately
imitate the classifier.

Keywords: XAI · Optimization · Metaheuristics · Fuzzy Rule-Based
Systems · Local Explanations · Global Explanations

1 Introduction

In recent years, the increasing amount of data has allowed new, more complex
models to be incorporated into a wide range of tasks [5,6,26]. However, the
increasing complexity usually causes a decrease in model interpretability [2],
which may not be advisable or suitable in certain critical fields, i.e., medicine,
law, aviation, etc. Current European legislation also deals with this topic by
means of the right to explanation included in the General Data Protection Reg-
ulation [18], which affects both humans and artificial intelligence techniques.
eXplainable Artificial Intelligence (XAI) [3,9] aims to push the usage of inter-
pretability and explainability in order to gain an understanding of complex black
box models used in sensitive contexts and critical areas.
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Within the XAI taxonomy, one important distinction is whether a method
generates local or global explanations. Local explanations are aimed at individ-
ual instances, and explain the decisions made by the model in a small neigh-
borhood of the feature space around an instance, while global explanations aim
to explain the entire behavior of the model. A common type of local expla-
nation are factual and counterfactual explanations [7,8]. Factual explanations
explain the reasoning behind a decision, while counterfactual explanations high-
light the necessary changes to revert that decision. Focusing on decision rules
as explanations, LORE (LOcal Rule-based Explainer) [8] is a well-known XAI
algorithm that generates both factual and counterfactual local explanations by
learning a proper neighborhood of the given instance, then inducing a crisp
decision tree from which crisp rules are extracted. Further building on this idea,
FLARE1 instead leverages a fuzzy decision tree, extracting fuzzy, rather than
crisp, rules. Due to their ease of extraction and high accuracy, local explanations
have become a building block for global ones, blurring the line between the two.
In [11] the authors turn local Shapley values into global explanations by means
of functional decomposition. Other works merge local and global explanations
through feature importance [15], concept relevance [19], saliency maps [20] and
strategy summaries [13]. Most related to our application on rules as explana-
tions, GLocalX [22], from which this paper takes inspiration, merges local crisp
explanations to build a global explanation theory.

In this paper, we introduce FLocalX, a framework to create an agnostic global
explanation theory for a black-box classifier in the form of a fuzzy rule-based
system built using local fuzzy explanations. This global fuzzy explanation theory
mimics the behavior of the underlying black-box classifier, and can be used to
provide factual explanations for novel, previously non-explained instances whiel
providing a general understanding of the model. This way, a user can better
understand how the classifier works, and how it will behave upon new instances,
rather than generate explanations ex-novo. Building a global theory with fuzzy,
rather than crisp, rules leads to additional benefits, making the global explana-
tion more understandable, flexible, and faithful to the black-box model. Fuzzy
rules leverage linguistic labels, which improve their readability by associating
high-level human-understandable concepts with their premises and have been
widely used to design explainable systems [16,25] Fuzziness also allows us to
infer several, rather than one, explanations per instance, effectively providing
the user with alternative explanations. Performance-wise, fuzzy rule-based sys-
tems are particularly apt to leverage different types of local explanations [23].

The rest of the paper is structured as follows. Section 2 presents the problem
and identifies the relevant elements. Section 3 illustrates the workflow of our
proposal. Section 4 shows the experiments and behavior of FLocalX. Finally,
Sect. 5 presents the conclusions and indicates some future research lines.

1 https://dsi.uclm.es/descargas/technicalreports/DIAB-24-02-1/
FLARE_Tech_Rep.pdf.

https://dsi.uclm.es/descargas/technicalreports/DIAB-24-02-1/FLARE_Tech_Rep.pdf
https://dsi.uclm.es/descargas/technicalreports/DIAB-24-02-1/FLARE_Tech_Rep.pdf
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Fig. 1. Strong fuzzy partition for a fuzzy variable age

2 Setting the Stage

The Local to Global Explanation Problem [22] we aim to solve consists of finding
a function g that, from a set of local explanations extracted from a black box
classifier, yields a global explanation theory that describes its underlying logic.

First, let us revise some related concepts. In a classification problem, an
instance x = (x1, . . . , xn) ∈ X1 × · · · × Xn, where X1, . . . ,Xn are n sets of input
variables, is mapped to a decision y ∈ Y = {y1, . . . , yn} by a function (classifier)
f : X1 × · · · × Xn → Y. We write f(x) = y to denote the classification y
given to x. Let us denote by ncont (resp. ndisc) the number of continuous (resp.
discrete) variables in X , s.t. 0 ≤ ncont, ndisc ≤ n, ncont + ndisc = n. Let us
assume that, associated with each continuous input variable Xi, there is a fuzzy
(linguistic) variable Fi = {vi,1 . . . , vi,ki

} defined through a Ruspini partition [1]
of ki ordered fuzzy sets (see Fig. 1)2. We use vi,zi to denote both the fuzzy set
and its corresponding associated linguistic label, indistinctly. A triangular fuzzy
set is defined by a triple of real-valued points: (start, peak, end), i.e. teen =
(15, 15, 25) and young = (15, 25, 45) in Fig. 1a. . If we know the minimum and
maximum values of dom(Xi), the partition becomes specified by ki − 2 values.
Given a value δ ∈ dom(Xi), let μi(δ) = (μi,1(δ), . . . , μi,ki

(δ)) be the vector of
membership degrees of δ to the ki fuzzy sets of Fi. In other words, μi,zi(δ) is
the membership degree of δ to the set vi,zi . A linguistic hedge, or linguistic
modifier, is a function that alters the membership function of a fuzzy set, which
can modify the shape of the fuzzy set (see Fig. 1b). In this work, we use two of
the most common linguistic hedges, “very” and “slightly”: μvery

i,zi
(xi) = (μi,zi(xi))2

and μslightly
i,zi

(xi) =
√

μi,zi(xi). Finally, for discrete variables, we can interpret
each value as a linguistic label whose associated fuzzy set has membership degree
1 in case the instance takes that value and 0 otherwise.

Let b() be a classifier whose decision-making process needs to be
explained, i.e., a black-box model, learned from a training dataset TR =
2 Triangular membership functions are used in this article to illustrate the proposed

method for simplicity/convenience. The framework allows other types of member-
ship functions (Gaussian, trapezoidal, etc.) to represent the underlying fuzzy sets.
However, the partitions must cover the complete domain for Eq. 1 to be valid.
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{(xt
1, . . . , x

t
n, yt)}Tt=1. Let e = {r1, . . . , re} be a multi-rule explanation formed

by one (or more) fuzzy decision rules. Each rule r = P (r) → y(r) consists of
a set of premises in conjunctive form P (r) = ps1 ∧ · · · ∧ psr and an outcome
y(r) ∈ Y. Each premise pi = 〈Fi, vi,zi〉 is an attribute-value pair. For the contin-
uous variables, Fi is a fuzzy variable and vi,zi is one of its corresponding fuzzy
sets. For the discrete variables, Fi = Xi and vi,zi is a value from its domain. As
an example, let us consider the following explanation for a loan request for a
user x = {(age = 30), (job = Accountant), (amount = 20k)}:

e = {(r1 = age is young ∧ job is Accountant → accept),
(r2 = age is adult ∧ amount is high → accept)}

One property of multi-rule explanations is that, given an explanation e that
explains the instance x, then y(r) = b(x) for all r ∈ e. Fuzzy rules differ from
crisp rules in that, while a crisp rule has a binary (0 or 1) match with an instance
x, a fuzzy rule r has a matching degree with the instance, md(r, x), defined as:

md(r, x) = min
i∈{s1,...,sr}

{μi,zi(xi)} ∈ [0, 1]

An explanation theory E = e1∪· · ·∪eq consists of a union of explanations which
may have different outcomes.

Thus, the Local to Global Explanation Problem can be defined as follows:
Given a black box b(), a set of instances X = {x1, · · · , xq} and their local
explanations {e1, · · · , eq}, the Local to Global Explanation Problem consists in
deriving a global explanation theory EG = e′

1 ∪· · ·∪e′
q′ that aggregates the local

explanations in order to summarize the logic of b.

3 Fuzzy Local to Global Explanation Framework

In this paper we propose FLocalX, a Fuzzy Local to Global Explanation frame-
work that generates a global explanation theory which mimics a black box clas-
sifier given an initial set of local explanations. FLocalX takes the following ele-
ments as input a set of instances X and an explanation theory EL = e1 ∪· · ·∪eq
formed by the union of the explanations of every instance in X, and generates
the global explanation theory EG by applying the following steps:
– First, it transforms, i.e., maps, the local fuzzy sets Fj defined for each ej ∈ EL

to a common definition of fuzzy sets FC . This ensures that all local explana-
tions in EL share the same set of fuzzy variables. We name this explanation
theory with common fuzzy sets EC .

– Second, it encodes EC into a simple, unique representation that will be the
initial configuration CEC of the optimization process.

– Third, it generates the global explanation theory EG from CEC through an
optimization process.

This process results in a global explanation theory EG that closely resembles
the behavior of b(), and can provide a factual explanation for novel instances.
Factual explanations can be extracted from EG by obtaining, for instance, the
minimum robust factual explanation defined in [7].
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Fig. 2. Representation of the encoding of a FRBS

3.1 Local to Global Fuzzy Set Transformation

Depending on the method employed to extract the local explanations, they may
not share the same fuzzy variable definitions, thus the same linguistic features
may be defined by different fuzzy sets. For the sake of homogeneity, we uniform
the fuzzy variable definitions F1

i , . . . ,F |EL|
i of a given variable Xi, and establish

a global fuzzy variable definition FC by partitioning the domain of the numerical
variables into equal-width sets, unless expert-provided sets are available.

Given two fuzzy sets vi,zi ∈ Fi and v′
i,z′

i
∈ F ′

i , we compute their similarity as

S(vi,zi , v
′
i,z′

i
) = A(vi,zi ∩ v′

i,z′
i
)/A(vi,zi ∪ v′

i,z′
i
)

where A(v) is the area of the fuzzy set v. As usual in the literature, we use min
as the intersection and max as the union. Then, given a variable Xi, we define

M(v′
i,z′

i
,Fi) = arg max

vi,zi
∈Fi

S(vi,zi , v
′
i,z′

i
), (1)

which takes a fuzzy set v′
i,z′

i
∈ F ′

i and returns the set vi,zi ∈ Fi with the greatest
similarity. We get EC by applying Eq. 1 to every premise of each ei ∈ EL.

3.2 Global Fuzzy Set Theory Encoding

In FLocalX, we frame the objective of building a global explanation theory as
the process of optimizing the Fuzzy Rule-Based System (FRBS) formed by the
set of fuzzy decision rules in EC . To this aim we need an encoding of EC , this
is, a representation of a potential solution to the problem which will be used by
the metaheuristic algorithm in the optimization process.

The objective of the optimization process used by FLocalX is twofold. First,
maintaining the degree in which the FRBS mimics the black-box classifier as
accurate as possible. Second, making the FRBS as compact as possible (in terms
of number of rules), to favor interpretability [9]. Inspired by [4], we design a pro-
cedure to tune FRBS maintaining interpretability by using a genetic algorithm.
To this aim, there are two elements of the FRBS that must be optimized:
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– Surface Structure. It is a shallow description that defines the rule as the
relation between the input and output variables. We optimize it by (i) using
linguistic hedges, and by (ii) altering the premises of a rule. Optimization can
modify the linguistic hedge applied to a particular premise p = 〈Fi, vi,zi〉, the
fuzzy set vi,zi associated with p, and whether or not Fi appears in a rule.

– Deep Structure. It is a more specific description which expands the surface
structure with the definitions of the membership functions. Optimization only
affects the membership functions of the fuzzy sets. Using a metaheuristic algo-
rithm we can reduce the explainability of the system in exchange for greater
accuracy. We control this by preserving the shape of the fuzzy partitions, i.e.,
triangular Ruspini partitions as explained in Sect. 2.

Configuration. Each configuration C of the optimization process represents an
explanation theory E, shown graphically in Fig. 2. For this purpose, we will use
a four-part configuration (CF + CR + CH + CU ) as follows:

– CF is the encoding of the fuzzy variables. We assume that the minimum and
maximum values of dom(Xi) are known. As an example, in Fig. 1a we know
ki = 3, min = 15 and max = 40, and so we only have a free value (25)
to codify the three fuzzy sets: {(15, 15, 25); (15, 25, 40); (25, 40, 40)}. Just by
changing the value 25 to, e.g. 20, we modify the fuzzy semantics of the vari-
able, obtaining a new partition: {(15, 15, 20); (15, 20, 40); (20, 40, 40)}. Thus,
CF has a length of (

∑ncont

i=1 ki − 2), all of them being real numbers.
– CR is the encoding of the rules. It has a length of n · |E| elements, where

|E| is the number of rules in the explanation theory, i.e., in the FRBS. Each
n consecutive elements codify a rule with an ordinal encoding from the set
{0, . . . , ki}, where 0 represents that the i-th variable does not appear in the
rule and 1 to ki identify each fuzzy set or value of the variable Fi, depending
on whether Xi is numerical or categorical.

– CH is the encoding of the linguistic hedges. It has a length of ncont · |E|
elements, where each element belongs to the set {−1, 0, 1} representing no
linguistic hedge (-1), very (0) or slightly (1), for that particular continuous
(fuzzy) variable.

– CU is the encoding of the used rules. |E| elements-long, encodes whether a
rule is used in the final FRBS (1) or not (0).

3.3 Global Explanation Theory Generation

In order to generate the global explanation theory EG, we exploit the encoding
illustrated in the previous section to create the chromosomes of a genetic opti-
mization process. Since the optimization process aims to simultaneously (i) accu-
rately mimic the black box b(), and to (ii) have a compact FRBS, we designed
an objective function that takes into account both aspects. In particular, we
measure the first goal as the Area Under the ROC curve (AUC) to correctly
handle imbalanced datasets, while we measure the second goal as the number
of rules used in the system. Specifically, the objective function f(C) that we
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maximize in our experimentation is defined as follows:

f(C) = α · (1 −
∑|CU |−1

i=0 CU [i]
|CU | ) + (1 − α) · AUC

with α used to balance the two values optimized. Note that this is an implemen-
tation of the objective function, but others may be used.

FLocalX can employ any metaheuristic algorithm as optimizer in order to
obtain the global explanation theory. For this work, we adopted a genetic algo-
rithm [12]. Inspired by evolutionary adaptation, genetic algorithms encode solu-
tions in a chromosome space, and sequentially evolve them, each generation
selecting, merging, and improving on the previous one. In our case, merging is
encoded by (i) a crossover operation, which generates new solutions by blending
existing ones, and (ii) a mutation operation, which randomly alters a subset of
the current solutions. In genetic fashion, a selection operation picks the best
solutions (according to an objective function) which will be carried on to the
next generation. Next, we detail these crucial aspects of the genetic algorithm:

– Initial Population. The initial population of size ρ+1 for the genetic algo-
rithm is generated in an informed manner, i.e., by altering a known configu-
ration (CEC ) rather than generating all elements at random. Given an initial
configuration representing of a FRBS, each part CF , CR, CH and CU , gener-
ates 
ρ/4� chromosomes by applying the mutation operator to that part (see
below). The original configuration is also included in the initial population.

– Crossover. It selects pairs of chromosomes and crosses them with a proba-
bility pcross. Due to the encoding adopted, the chromosome is divided in two,
and different crossovers are applied:

• First, a min-max-arithmetic crossover [10] is applied in the CF part, gen-
erating four children.

• Second, a six-point crossover is applied in the remaining chromosome,
choosing two points for each part (i.e. two for CR, two for CH , and two
for CU ). This generates two children.

After recombining both parts, eight children are generated. The two best
children are selected in order to keep the same population size.

– Mutation. It selects chromosomes and mutates them with a probability pmut.
The mutation over each part of the chromosome is performed applying an
operation to a single bit C[i] of each part of the chromosome as follows:

• For CF , the bit is randomly generated by sampling a real number from a
uniform distribution in the range of the continuous variable.

• For CR, the bit is randomly chosen in the set {0, · · · , ki} \ C[i].
• For CH , the bit is randomly chosen in the set {−1, 0, 1} \ C[i].
• CU is generated as 1 − C[i], i.e., altering the bit.

– Selection. A rank-based selection with respect to the fitness is used.
– Replacement. A replacement with elitism is performed, i.e., the best con-

figuration from the previous population is kept.
– Stop Criterion. The genetic algorithm stops when the fitness of the best

individual does not offer enough improvement beyond a threshold ε over a
consecutive period of κ iterations.
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These operations provide great flexibility and generality, and allow to directly
learn, rather than define, the evolution of fuzzy rules. A challenging task such
as the Local to Global one, which is not directly differentiable, requires flexible
algorithms able to explore vast non-differentiable solution spaces, and adapt to
a wide variety of users, and thus objectives. Optimizing global explanations to
both be understandable by a user, as well as comprehensive enough to mimic a
complex black-box classifier, is thus a perfect fit for our purpose.

4 Experiments

We evaluated FLocalX on three widely used multi-class datasets, i.e., Iris3,
Wine4, and Beer5. The decision to use small datasets is driven by the main objec-
tive of developing and showcasing a framework to extract global explanations,
rather than focusing on a specific metaheuristic (in this case, the genetic algo-
rithm). As metaheuristic algorithms are resource-intensive and time-intensive
processes, they often require specific optimizations made for each case and algo-
rithm in order to tackle different problems. By employing simpler datasets, we
can shift our focus towards illustrating the capability of the framework of work-
ing with different types of local explanations, as well as how it can seamlessly
mimic a variety of black box algorithms. This is a first step in the line of work
of a more complex experimentation where multiple metaheuristic algorithms are
used and optimized with this framework in order to tackle much more complex
problems. The implementation of FLocalX is available on Github6. Experimen-
tal Setting. We adopted the following metrics to evaluate the performance of
FLocalX and the other classifiers used as baselines.

– Accuracy. It measures how close is the global explainer to the ground truth.
We measure the accuracy of the black box (Acc-B), of the explanation theory
formed by the union of the local explanations (Acc-U), and of the global
explanation theory after applying FLocalX (Acc-F).

– Fidelity. It measures how well the global explainer mimics the black box clas-
sifier. We measure the fidelity of the explanation theory formed by the union
of the local explanations (Fid-U), and the fidelity of the global explanation
theory after applying FLocalX (Fid-F).

– Number of Rules. The total number of rules in the system. More rules indicate
a more complex system and so a less interpretable system. We measure the
number of rules before (#R) and after applying FLocalX (#R-F).

– Number of Premises. The number of premises in the antecedent of the rules.
More premises are sometimes (falsely) perceived as being more helpful [14],

3 https://archive.ics.uci.edu/dataset/53/iris.
4 https://archive.ics.uci.edu/dataset/109/wine.
5 https://gitlab.citius.usc.es/ilia.stepin/fcfexpgen/-/tree/master/all_datasets/BEER_exp1.
6 GitHub: https://github.com/Kaysera/flocalx. FLocalX was programmed in Python 3.10, using

libraries such as numpy and scikit-learn to properly manage the data structures and efficiently
generate the explanations. To guarantee reproducibility, all the experiments are also published in
a separate public Github repository https://github.com/Kaysera/ida2024-experiments.

https://archive.ics.uci.edu/dataset/53/iris
https://archive.ics.uci.edu/dataset/109/wine
https://gitlab.citius.usc.es/ilia.stepin/fcfexpgen/-/tree/master/all_datasets/BEER_exp1
https://github.com/Kaysera/flocalx
https://github.com/Kaysera/ida2024-experiments
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Fig. 3. LORE interval transformation to fuzzy set.

so shortening the rule together with a proper communication of attribute
importance is a good practice. We measure the number of premises before
(#P) and after applying FLocalX (#P-F).

We used a train-validation-test (60%-30%-10%) split for the experimentation.
The training split was used to train the black box classifiers using default hyper-
parameters. The validation partition was used to fit the hyperparameters of the
local explanation methods, as well as to extract the local explanations (EL).
The test partition was used to measure the accuracy score for all algorithms.
The genetic algorithm was repeated 20 times, altering the random seed and
averaging the result between them. The parameters were chosen empirically7 as
follows: population size (ρ) = 128, size pressure (α) = 0.1, # iterations (κ) =
20, threshold (ε) = 0.01, # fuzzy sets (ki) = 5, pmut= 0.15 and pcross= 0.8. The
fuzzy sets for Iris and Wine were obtained using equal-width partitions, while
the fuzzy sets for Beer were obtained from [24].

We experiment with FLocalX with a set of different alternatives:

– Black-Box Models: We used SVM, Neural Network (NN) and Random Forest
(RF) as baseline classifiers as implemented by scikit-learn [17].

– Rule-Based Models: Algorithms from which a ruleset that can be used for both
prediction and explanation can be extracted. They are used as global expla-
nation systems. The algorithms used are Fuzzy Decision Tree (FDT) [21],
LORE [8] and FLARE.

– Local to Global Approaches : They set local explanations and merge them into
a global explanation theory that is able to predict and explain instances of
the dataset. We considered:

• FLocalX + LORE : We used LORE to extract local explanations and
then applied FLocalX. As FLocalX takes fuzzy rules, the intervals were
expanded into fuzzy sets as if they were an α-cut of 0.5 of the correspond-
ing fuzzy set. For example, the interval [1, 3] would become the fuzzy set
(0, 2, 4) as shown in Fig. 3.

• FLocalX + FLARE : We used FLARE to extract local explanations and
then FLocalX was applied.

7 With these datasets, a large population size which is a power of 4 shows better
results, and a small size pressure allows for faster convergence with a high accuracy.
The rest of the parameters are standard for genetic tuning.
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Table 1. Performance and Explainability of Different Models

Method Black Box Fid-U Fid-F Acc-B Acc-U Acc-F #R #R-F #P #P-F

Iris FDT – – – – 1.00 – 12.00 – 1.42 –
FLARE NN 0.97 0.93 1.00 0.95 0.91 32.00 5.05 1.31 1.27

RF 0.94 0.91 0.93 0.94 0.91 26.00 4.16 1.81 1.70
SVM 0.93 0.95 1.00 0.95 0.92 19.00 4.47 1.26 1.32

LORE NN 0.93 0.94 1.00 0.94 0.93 45.00 4.79 1.96 1.55
RF 0.97 0.93 0.93 0.97 0.93 45.00 4.16 2.07 1.85
SVM 0.92 0.95 1.00 0.94 0.92 45.00 4.37 1.58 1.36

Wine FDT – – – – 0.94 – 36.00 – 3.00 –
FLARE NN 0.86 0.76 0.89 0.82 0.77 48.00 8.68 1.42 1.54

RF 0.61 0.61 1.00 0.61 0.61 41.00 2.89 1.39 1.23
SVM 0.99 0.73 0.67 0.71 0.76 17.00 4.95 1.00 1.32

LORE NN 0.77 0.78 0.89 0.76 0.76 54.00 4.79 2.52 1.94
RF 0.90 0.88 1.00 0.90 0.88 54.00 6.21 3.19 3.02
SVM 0.93 0.76 0.67 0.68 0.71 52.00 5.05 1.02 1.56

Beer FDT – – – – 1.00 – 69.00 – 2.42 –
FLARE NN 0.69 0.71 0.80 0.67 0.79 128.00 20.42 1.85 1.78

RF 0.87 0.88 1.00 0.87 0.88 129.00 26.68 2.34 2.18
SVM 0.86 0.77 0.85 0.85 0.82 99.00 15.21 1.96 1.93

LORE NN 0.74 0.76 0.80 0.70 0.80 119.00 13.42 2.01 1.98
RF 0.92 0.89 1.00 0.92 0.88 119.00 14.63 2.54 2.60
SVM 0.78 0.82 0.85 0.67 0.86 119.00 15.58 2.02 2.07

Results. We compare the results of FLocalX for two different local explana-
tion methods, using the union of the local explanations as a global explainer
and studying how much improvement our framework provides. We also use a
rule-based white box method (i.e., FDT) as baseline. Table 1 reports both the
performance of the global explainers, as well as its level of complexity.

As one objective of the optimization process is to minimize the size of the rule-
based system, testing the impact on performance is necessary. We can observe
that problems where Acc-U is really high (i.e. >0.9), Acc-F is lower than Acc-U,
likely because most rules are necessary to achieve that degree of accuracy. How-
ever, that decrease in accuracy is not so much as to lose trust in the explainer.
On the other hand, in more complex problems where the starting point is not
as good (the Beer dataset with FLARE and NN, or LORE and SVM are exam-
ples of this), the optimization process can even improve the starting point’s
accuracy. This suggests that a metaheuristic approach, while time-consuming,
benefits hard-to-solve problems. Finally, it is worth mentioning that LORE rules
tend to be a better starting point for FLocalX than FLARE rules. This finding
might suggest that either crisp rules are better than fuzzy rules as a starting
point, or that more premises provide a better starting point. More experiments
will be done to explore the cause.
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Turning to explanation complexity, the most relevant part is in the reduction
of rules from the union of local explanations (#R) to after FLocalX is applied
(#R-F). We can observe that we need around 10% − 15% of the number of
rules from which FLocalX starts. Beer shows the largest explanation theories
(at around 20 rules for FLARE and 14 for LORE), which are still readable
for humans. Moreover, there is a great reduction from the baseline white-box
classifiers, needing around 40% of the rules in simpler datasets and around 20%−
30% of the rules in more complex problems. The number of rules generated by
the FDT increases with the complexity of the problems, which makes it unfit
as a global explainer for difficult problems, i.e., valid for Iris and Wine but
unreasonably long at 70 rules for Beer. On the other hand, looking at the number
of premises, most rules have around 1–3 premises, also manageable for a human
reader.#P-F is only marginally smaller than #P because f(C) does not consider
the length of the rule. Finally, we can see that LORE global explanations usually
have fewer rules than FLARE, with some more premises per rule.

The results of this preliminary experimentation, with a single optimization
algorithm (i.e., a genetic algorithm) and smaller datasets, showcase the flex-
ibility of the framework, which can generate compact and performant global
explanation theories that can be useful to a human reader.

5 Conclusions and Future Work

This work introduces FLocalX, a model agnostic local to global explanation
framework based on fuzzy logic that leverages the power of evolutionary com-
puting to obtain a global explanation of a black-box model. FLocalX uses local
explanations formed as fuzzy rules as the starting point from which it builds a
global fuzzy explanation that summarizes the model underneath. Using a genetic
algorithm as the optimization method, the experimentation carried out in this
paper shows that FLocalX is able to generate a short and accurate global expla-
nation theory, improving upon the trivial union of local explanations, as well as
upon the used baseline white box model. As future research directions, we intend
to perform a comprehensive study on the different hyperparameters, as well as
different operators and objective functions for the genetic tuning process of FLo-
calX. Moreover, we would like to study the usage of a different metaheuristic
algorithm to replace the genetic procedure. Finally, the difference in performance
shown between using FLARE to generate the local explanation theory and using
LORE motivates the need to experiment with other local explainers.
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