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Abstract. In this paper, we present Feature Space Navigator, an interactive
interface that allows an exploration of the decision boundary of a model. The pro-
posal aims to overcome the limitations of the techno-solutionist approach to expla-
nations based on factual and counterfactual generation, reaffirming interactivity as
a core value in designing the conversation between the model and the user. Starting
from an instance, users can explore the feature space by selectively modifying the
original instance, on the basis of her own knowledge and experience. The interface
visually displays how model predictions react in response to the adjustments intro-
duced by the users, letting them to identify relevant prototypes and counterfactuals.
Our proposal leverages the autonomy and control of the users that can explore the
behavior of the decision model accordingly with their own knowledge base, reduc-
ing the need for a dedicated explanation algorithm.

Keywords. Human-Centered AI, Human-AI Interaction, Interactive ML, Explainable
AI, Counterfactuals, Explanation User Interface

1. Introduction

Progress in the performance and efficiency of automatic decision-making systems has
incentivized AI-based solutions in pervasive and impactful contexts of daily life, such as
finance, healthcare, and transportation. A problematic aspect of these models is the lack
of explainability: it is difficult to provide the reasons behind the automated decisions due
to the complexity of the algorithms and the large amounts of data processed. This lack
of transparency and accountability can lead to mistrust and concerns about the ethical
implications of using AI in decision-making [1]. In some sensitive real-world contexts,
accounting for the algorithmic decision is necessary for the user to understand and con-
test the motivations behind the system’s output. This is especially important when the
outcome strongly impacts human life or has harmful consequences. Moreover, relevant
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Figure 1. Workflow of Feature Space Navigator.

policies such as the GDPR (General Data Protection Regulations) [2,3] claim the rele-
vance of appealing in case of rejection, i.e., to request what changes users should make
to be accepted in receiving a positive response, for example, to a loan application. In this
way, users can be empowered to understand how the algorithmic decision affects them.

In this work, we present Feature Space Navigator, an interactive interface that
allows an exploration of the decision boundary of any black box model. We report in Fig.
1 a visual workflow of our approach. Imagine a person applying for a loan to a bank that
leverages an automatic decision-making system. The instance x represents her current
situation (stage [1] of the workflow): she has a certain amount of capital, her current
working position is being a chef in a restaurant, and she has no degree. The decision
emitted by the black box model is negative, hence her request is denied.

Following the diagram, in stage [2a] an automatic counterfactual technique gener-
ates instances trying to optimize a predefined cost function that embeds a set of con-
straints, e.g., plausibility and diversity. Three counterfactual instances receiving a posi-
tive outcome are proposed to the user (stage [3a]). The scenarios suggested are: (i) the
person has a medium amount of capital and occupies a business role, (ii) the person re-
mains a chef, but she has a high amount of capital, and (iii) the person has a medium
amount of capital, she is a doctor and she has a degree in medicine. From the counter-
factuals returned, the user satisfaction is symbolized by the smiley and gloomy faces.
Following this pipeline, the subjective human satisfaction is impossible to capture and it
remains unknown or an irrelevant feedback.

Our proposal, exemplified in stage [2b], consists of an interface that lets the users
freely explore their options, changing the features at will. The set of constrains is not
directly embedded nor expressed through the interface, but it is implicitly delegated to
the common sense of the users. The resulting counterfactual user-crafted in stage [3b] has
the same amount of money, by profession she is a florist and has a degree. The difference
between our approach w.r.t. the traditional one consists in the possibility for the user to
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intervene again on the interface and generate a new, more effective counterfactual if the
one created is not useful or applicable, creating a continuous loop through the interaction.

The rest of the paper is organized as follows. In Section 2, we report a critical liter-
ature discussion and a review of the state-of-the-art solutions that closely align with our
contribution. Section 4 presents the proposed method. In Section 5, we report several ex-
amples testing different datasets to demonstrate our proposal’s novelty and effectiveness
for counterfactual generation. Finally, Section 6 indicates future research directions and
discusses the limitations of our approach.

2. Related Work

2.1. Counterfactual generation techniques

Counterfactual approaches explain individual predictions describing what-if contrastive
scenarios [4,5,6]. Specifically, the explanations indicate to the user the minimum change
necessary in the feature space representing them so that the output of the automatic sys-
tem changes toward the desired outcome.

Various approaches have been devised for generating counterfactuals, including op-
timization, heuristic search, instance-based, and decision trees. We refer to [7] for a
more comprehensive overview. Evaluating the quality of counterfactual explanations re-
quires careful consideration of multiple desired qualities, which have been defined in the
literature as validity, sparsity, similarity, plausibility, discriminative power, actionabil-
ity, causality, and diversity [8,9,10]. The complexity of this range of evaluation metrics
presents a critical challenge in comparing the currently available algorithms and estab-
lishing benchmark procedures. Moreover, most of the current counterfactual generation
techniques do not allow for user interaction, thus limiting the practical applicability of
these methods in real-world contexts [11].

2.2. Human-Centered Approach

It is crucial to rethink new ways of interaction between humans and the XAI algorithm,
focusing more on the user’s point of view and needs [12,13,14,15]. The effectiveness of
an explanation is based on the extent to which the recipient regards it as comprehensible
and useful. A human-centered approach is needed to fill the gap between the algorithmic
perspective and an explanation that is truly intelligible to humans [13]. In fact, as stated
Liao et al. [13], XAI presents more of a design challenge than an algorithmic challenge.

Previous social science research has shown that human explanations are often con-
trastive. Therefore, counterfactuals are generally considered less cognitively demanding
and more intuitive [16]. Given these assumptions, our proposed interface and algorithm
are outlined as starting points for several case studies, see Section 5, and are therefore
designed for domain experts and lay users [17].

In 2018 the DARPA explainable AI initiative framed the explainable AI process
as a three-stage approach, distinguishing between the explainable model, the explana-
tion user interface. [18]. This definition draws a difference between the model through
which an explanation of a machine learning algorithm is generated and the means used
to communicate it to the user [19]. From this perspective, the explanation process has
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to be outlined as a continuous dialogue between a sender and a receiver [14]. Therefore
XAI has to consider interactivity as a fundamental part of the process [20,12,19], for
example, through the design of novel interfaces that allow model inspection at will [21],
and promote an understanding of the computational processes giving users control of the
algorithmic actions [22].

2.3. Interactive explanations and visualizations

In the following, we frame Feature Space Navigator in relation to existing literature
solutions, and critically discuss the novelty and positioning of our contribution.

DECE is an advanced counterfactual generation method tailored for both global and
local interpretability tasks [23]. With a strong focus on visualization and user interface
design, DECE automates counterfactual generation using established metrics such as di-
versity and validity. Notably, it facilitates user-driven constraint imposition through a de-
cision tree framework, offering fine-grained control over the generation process. More-
over, DECE extends beyond dataset limitations by exploring counterfactuals independent
of available data, while leveraging subset counterfactuals to dissect machine learning
model decision boundaries.

Prospector is a method designed to generate instance counterfactuals via a visual
interface [24]. It utilizes a semi-global score, specifically a partial dependence plot, to
estimate the probable prediction when specific features of the original instance are modi-
fied. This process involves three distinct phases: patient selection, patient inspection, and
the generation of partial dependence plots. Access to both the model and the dataset used
for training is required. The tool is specifically designed for data scientists. It allows them
to understand how features affect the prediction, thus improving a predictive model.

DiCE framework generates and evaluates counterfactuals according to two proper-
ties, namely plausibility and diversity [25]. The authors test DiCE on four real-world
datasets and compare its counterfactuals with popular local explanation methods and
other prior approaches.

T-LACE generates reliable counterfactual explanations leveraging on two properties
of a tailored transparent latent space, namely similarity and linearity [26]. An interactive
framework for auto-encoders allows a visual exploration of the latent space, shedding
insights on the links between input features and model prediction [27].

For a thorough overview, we refer to [28], where authors present techniques and
strategy designed to explore and explain model’s predictions at instance-level, i.e., for a
single record, and at dataset-level, i.e., for an entire collection.

Our contribution We outline some of the distinguishing properties of Feature Space

Navigator, our method, setting it apart from existing literature. Firstly, it prioritizes the
user, who not only operates the tool but also indirectly defines the optimization metric,
ensuring subjective considerations are captured. Moreover, it requires minimal technical
skills, as no coding knowledge is needed, and users interact through intuitive sliders. It
works with any model and does not require access to the dataset, making it easy to ex-
plore different models without constraints. Furthermore, it is purely local, focusing solely
on the specific instance at hand, ensuring relevance to the user’s context. Users can adjust
instances feature by feature, enabling thorough exploration of the feature space. Over-
all, our method is user-friendly, adaptable, and effective for exploring machine learning
systems.
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3. Setting the Stage

Preliminaries Given a classifier b that outputs the decision y = b(x) for an instance x,
a counterfactual explainer E outputs a perturbed instance x′ such that the decision of b
on x′ changes, i.e., b(x′) �= y, and such that the cost of the action c(x,x′) to go from x to
x′ is minimal. Minimality refers to an abstract cost function that must be specified when
implementing any concrete method. Often, the choice falls on an �p norm [11]. In the
vast majority of cases c exhibits the following limitations:

Limitation 1. Stationarity: c(x,x′) is predetermined and not updated through user
feedback. Moreover, it lacks the ability for E to adapt during post-deployment usage,
which would allow for fine-tuning between user needs and the tool’s effectiveness (see
Research Challenge 9 in [29]).

Limitation 2. Translational Invariance: c(x,x′) depends solely on the distance be-
tween x and x′, i.e., c(x,x′) = c(x′ − x). For example, increasing the salary by 300£ is
assumed to be equally difficult for an individual earning 1000£ and one earning 3000£.

Limitation 3. Universality: c can not depend on exogenous factors of the system. In
other words, it is assumed that the same cost function is suitable for all users: in reality,
individual properties not visible to the system can influence c. For example, the ease of
changing jobs may depend on the types of available activities in the residential area. The
cost of an action in the real world depends on individuals and multiple, often subjective,
factors. Ignoring this aspect often proves to be overly restrictive (see Research Challenge
10 in [29]). An attempt to address this limitation can be found in [30].

Our contribution aims to address these limitations, especially from a user-focused
viewpoint.

4. Feature Space Navigator

Building upon [31], our method proposes an alternative formulation of the counterfactual
generation problem, departing from the algorithmic perspective and instead shifting the
focus to user interaction. Our proposal leverages the autonomy and control of the users
that can explore the behavior of the decision model accordingly with their own knowl-
edge base, reducing the need for a dedicated explanation algorithm. From this perspec-
tive, users are designated as the “domain experts” of their own real-word scenario.

Feature Space Navigator is local, post-hoc and agnostic, i.e., designed to ac-
count for any black box2. It offers an interactive interface of the areas where the model
returns the desired outcome by providing a graphical visualization. The entire process is
delegated to the users that are free to explore the feature space of the system and gener-
ate autonomously, “by hand”, effective counterfactual and prototype instances that they
deem feasible, desirable, and suitable to their specific evaluations and needs3. Users are
therefore empowered with complete autonomy and control over the process without the
mediation of an explanation algorithm between the human and the decision model. In

2Feature Space Navigator is available at https://github.com/Elecapp/Feature_space_

navigator.
3User interactions through the interface are not stored; hence, no concern occurs regarding the safety of

private information that users might input.
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Algorithm 1: GRIDEVALUATION(ranges, bins, X , x, model)
Input : ranges - features ranges, bins - number of bins, X - dataset, x - original

instance, model - black box
Output: Ŷ - model’s predictions

1 d ← len(x); // storing number of features

2 Ŷ ← [0]d×bins ; // creating a matrix of zeros

3 for i = 0 to d do
4 if categorical(xi) then
5 for v ∈ unique(Xi) do
6 x̂← copy(x) ; // creating a copy of x
7 x̂i ← v ; // changing x̂’s i-th feature with the new value

8 Ŷi,b ←model(x̂) ; // predicting score

9 else
10 min,max← rangesi ; // saving min and max of current feature

11 for b = 0 to bins do
12 v← min+ b

bins · (max−min) ; // computing the new value

13 x̂← copy(x) ; // creating a copy of x
14 x̂i ← v ; // changing x̂’s i-th feature with the new value

15 Ŷi,b ←model(x̂) ; // predicting score

16 return Ŷ

the following, we outline the interface, the underlying algorithm, and discuss evaluation
aspects of the outputs returned by Feature Space Navigator.

Interface The interface, depicted in Section 5, visually displays how model predictions
react in response to the adjustments introduced by the users, letting them to identify rele-
vant prototypes and counterfactuals. It allows users to independently explore the feature
space by selectively modifying the original instance on the basis of her own knowledge
and experience, i.e., changing the value of one of the features that characterize the in-
stance x. This can be done introducing minimal changes through the adjustment of the
slider feature by feature within its designated range. Specifically, each slider is charac-
terized by a colored gradient representing the model’s scores for the different values of
the feature. Users can choose which feature to modify by moving the cursor to a value
that improves their score, selecting the feature they find most comfortable to change.
After each adjustment, the instance x is promptly updated with new values, generating
new gradients and enabling further modifications until the user is content with the set
of changes and insights. Through a number of attempts, generating both prototypes and
counterfactuals, the user intuitively guesses the feature importance of the classifier deci-
sion boundary through gradients change.

Algorithm The user can move along each axis in the feature space but can not make
diagonal movements. The cumulative nature of the modifications ensures the ability to
reach any point in the space. In Algorithm 1, we report the pseudo-code for a single
step of the process. It requires access to the model’s probability outputs and is specifi-
cally tailored for tabular data with a binary target variable. The number of predictions re-
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quired scales linearly with the number of features, ensuring the interface update remains
essentially real-time.

5. Scenarios

Dataset In this work, we implemented Feature Space Navigator on a dataset
widely used in academic research and freely accessed through the UCI Repository [32]:
the STATLOG (GERMAN CREDIT DATA) dataset [33], which categorizes individuals as
having good or bad credit risk through a binary classification task. It comprises 1000
instances and 20 features, all of which are categorical and integer types. The categori-
cal features are handled in the interface by preserving the original categorical feature’s
record alongside the value generated by the LabelEncoder.

Classifiers We performed an 85-15 split in train and test for STATLOG and a 70-30 split
for WINE. We ran our evaluation on Random Forest implemented by the scikit-learn
library4. The best parameters are identified through a Randomized Search over a dictio-
nary of possibilities. Both the classifiers were performed using a fixed random state.

Understanding the Effects of Interventions In the following, we provide examples of
potential usage of the interface on the adopted datasets, aiming to illustrate the function-
ality of Feature Space Navigator.

STATLOG Scenario Let us first examine a case from the STATLOG dataset, where a user
applies for a loan. The initial situation, depicted in Fig. 2a, receives a negative outcome
(the credit risk is bad, therefore the loan is not granted). The user, after scrutinizing the
interface, decides to lower the credit amount requested, as documented in Figure 2b.
Since the outcome issued by the black box remains negative, the user is not satisfied and
applies a different change, this time adjusting the duration in month of the loan (Figure
2c). In this case the user finally receives a good credit risk classification.

6. Conclusion

In this work, we have developed Feature Space Navigator, an interactive graphical
interface that facilitates exploration of the feature space of the decision boundary of a
black box, providing an intuitive visualization of the areas where the model produces the
desired outcomes. This user-centric approach enhances transparency and control in the
decision-making process, contributing to the advancement of XAI methodologies.

Embracing a human-centered perspective, the evaluation requires a conceptual shift
by involving users within it in order to understand whether the explanation is convinc-
ing for the intended user, the ultimate stakeholder in the process [34,35]. Concretely, a
qualitative evaluation in the form of a user study is necessary. The study will provide a
measure of human validation regarding the comprehensibility and usability of the inter-
face, as well as the usefulness of exploration as a means of generating explanations for
the underlying decision model.

4https://scikit-learn.org/stable/index.html
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(a) Starting situation.

(b) User changes Credit Amount; credit risk is still bad.

(c) User changes Duration in Month; credit risk becomes good.

Figure 2. STATLOG Scenario.
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