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Abstract—The increasing spread of artificial intelligence ap-
plications has led to decentralized frameworks that foster col-
laborative model training among multiple entities. One of such
frameworks is federated learning, which ensures data availability
in client nodes without requiring the central server to retain
any data. Nevertheless, similar to centralized neural networks,
interpretability remains a challenge in understanding the pre-
dictions of these decentralized frameworks. The limited access
to data on the server side further complicates the applicability
of explainers in such frameworks. To address this challenge, we
propose GLOR-FLEX, a framework designed to generate rule-
based global explanations from local explainers. GLOR-FLEX
ensures client privacy by preventing the sharing of actual data
between the clients and the server. The proposed framework
initiates the process by constructing local decision trees on each
client’s side to produce local explanations. Subsequently, by using
rule extraction from these trees and strategically sorting and
merging those rules, the server obtains a merged set of rules
suitable to be used as a global explainer. We empirically evaluate
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the performance of GLOR-FLEX on three distinct tabular data
sets, showing high fidelity scores between the explainers and both
the local and global models. Our results support the effectiveness
of GLOR-FLEX in generating accurate explanations that efficiently
detect and explain the behavior of both local and global models.

Index Terms—Explainable AI, TREPAN trees, federated learn-
ing, HOLDA, GLOCALX

I. INTRODUCTION

Artificial intelligence (AI) has become a vital part of
everyday life [1], especially since the blooming of deep
learning (DL) [2], with applications ranging from personalized
recommendations and voice assistants to image recognition,
self-driving vehicles, and aid diagnostic systems. However,
training robust AI models requires large amounts of data [3].
Unfortunately, gathering enough training data is not always
feasible due to privacy and copyright regulations [4], which
limit the ability of most individuals or organizations to train
their specialized models independently.

Federated learning (FL) [5] has been proposed as a promis-
ing solution to the problem of training in case of data lim-
itation. The idea is that multiple entities collaborate to train
a global model without sharing their private data. Despite its
success at training robust models, a main drawback of FL is
that it only produces a static global model to be used and
shared by all the participants, but it lacks the ability to deliver
personalized local models adapted to the requirements of each
specific participant [6].

To address this limitation, the Hierarchical crOss-siLo feD-
erated Averaging (HOLDA) method has been proposed [7].
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HOLDA introduces a hierarchical approach that allows each
participant to specialize their local models according to their
local data and needs, thereby ensuring that the training will
not only yield a robust global model, but also local models
tailored to the unique requirements of each participant.

However, the inherent opacity of AI models, especially
DL models, is a serious concern [8]. The vast majority of
models, including those trained through federated learning
(and HOLDA, in particular), generate predictions that are
challenging for humans to comprehend. This lack of inter-
pretability raises significant ethical and legal issues, since
users cannot trust the predictions made by AI models without
explanations [9]. Additionally, the enormous amount of data
used for model training might contain some human biases in
their annotations, which the model will inherit [10]. The need
for explainability is beginning to show up in legal regulations
and ethics guidelines, such as the General Data Protection
Regulation (GDPR) [11], which states the right of citizens
to an explanation of automated decisions affecting them, and
the European Commission’s Ethics Guidelines for Trustworthy
AI [12] and the EU Artificial Intelligence Act [13], which
insist on the organizations that make automated decisions to be
prepared to explain them at the request of the affected citizens.
Previous attempts to explain the predictions of DL models
have been based on the assumption that the model owner
possesses all the necessary elements to generate explanations.
This assumption holds true primarily in centralized settings.
However, in FL (and HOLDA), participants in the training
process own the data, and the centralized server does not. As a
result, the server is unable to build an explainer for the global
model due to the absence of data on its side.

CONTRIBUTIONS AND PLAN

Our work introduces a novel approach called Local
to Global Rule-based eXplanations for Federated Learning
(GLOR-FLEX) that explains the prediction of decentralized DL
systems, with a particular focus on the HOLDA hierarchy.
The proposed method aims to generate explanations of the
global model predictions by leveraging insights extracted from
individual participants in the training process while preserving
the privacy of participants.

In our approach, TREPAN decision trees [14] are employed
to create individualized local explainers for each training
participant. These local explainers capture the behavior of each
local model prediction. By using a Gaussian mixture model,
each participant then creates synthetic data with a distribution
similar to that of their real training data. These synthetic data
instances are subsequently transmitted through the hierarchy
to facilitate the construction of global explanations. The rules
extracted from each TREPAN decision tree are also transmitted
alongside the synthetic data to facilitate the generation of
the global explanation. At the upper level of the HOLDA
hierarchy, these rules are merged and generalized using the
GLOCALX technique [15]. This innovative approach allows
obtaining accurate global explanations originating from the

local explainers without compromising the privacy of the
training data owned by individual participants.

We conducted an empirical validation to demonstrate that
the local explainers accurately mimic the behavior of local
models on three distinct tabular data sets. Reported results
show high fidelity scores between the explainers and both the
local and global models. On the one hand, the rules extracted
from the explainers reliably captured their behavior. On the
other hand, on the server side, the merged rules appropriately
reflected the behavior of the global model. Finally, the predic-
tions made by the global model were accurately explained by
using the merged rules.

The remainder of this paper is organized as follows. Section
II summarizes previous research to explain the predictions of
federated learning. Section III presents the background used by
the proposed method. Section IV describes the GLOR-FLEX ap-
proach in detail. Section V reports and discusses experimental
results. Finally, Section VI gathers the conclusions and depicts
several lines of future research.

II. RELATED WORK

This paper addresses the problem of providing explanations
in an FL setting. For this reason, in this section we briefly
describe the state of the art in FL, followed by explainable AI
(XAI) techniques and finally, we tackle the problem of XAI
techniques for FL approaches.

a) FL: Neural networks (NN) exhibit good prediction
performance with large datasets. When data reside across
diverse parties, like mobile devices, centralized training is im-
practical due to privacy regulations (e.g., GDPR). In response,
McMahan et al. proposed federated learning (FL) [5], enabling
distributed parties to train a global model while safeguarding
their data privacy. Since then, FL has been applied to diverse
tasks, predominantly focusing on image and text data. FL has
two approaches: (i) cross-device, involving stateless mobile
devices (e.g., smartphones), and (ii) cross-silo, dealing with
stateful organizations (e.g., hospitals, data centers) capable of
saving and reusing intermediate training states. Further details
on these scenarios are explored in [16]. The first algorithm
in this context is federated averaging (FedAvg) [5]. In each
iteration, the server receives the updated local models from
the parties and subsequently aggregates these models to update
the global model. In this work we exploit HOLDA [7], a cross-
silo hierarchical FL approach in which the local clients share
only the model that generalizes best on the local data and
empirically showed best generalization capabilities. An in-
depth description of HOLDA is given in Section III.

b) XAI: Explainability is now a crucial area of research
in AI, especially for achieving trustworthy artificial intelli-
gence. A comprehensive overview of interpretability tech-
niques in machine learning (ML) is presented in [10], where
two types of explanation models are identified: global and
local explainers. The latter explain the prediction for individual
instances [17]–[20], whereas the former explain the logic of
the entire ML model [14], [21], [22]. We focus on global
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explanations and in particular on TREPAN [14], presented in
Section III.

A very important aspect of XAI techniques concerns the
nature of the explanations they offer, such as rules, feature
importance, or saliency maps. Given our interest in tabular
data, we opt for rules as the preferred explanation. Rules
mirror the logical reasoning of humans, involving premises
and consequences, and they articulate the use of feature values
within the dataset [10], [19], [23].

c) XAI in FL: Despite the longstanding popularity of FL
and XAI, the task of explaining FL models has only recently
gained attention. In [24] the authors proposed a survey of
the XAI approaches tailored for FL models. Most of these
methods offer post-hoc explanations through the assessment of
feature importance [25], [26]. Given the potential privacy risks,
Wang proposes a method to explain models based on Shapley
values, that aims at striking a balance between interpretability
and privacy [26]. The approach reveals detailed feature im-
portances for owned features and provides a unified feature
importance for features from other parties. Another work is
[27], where Shapley values are employed in a horizontal FL
architecture. In this scenario, local models generate expla-
nations, and the global model merely aggregates client-side
explanations, ensuring that no records of the training data are
shared. In [25], Fiosina addresses interpretability challenges
in horizontal FL, using FL to predict the taxi trip duration
through the FedAvg algorithm. Integrated gradients are used
to explain the model [28]. Lastly, an interesting work is also
[29], in which the authors presented FED-XAI, a framework
that employs inherently interpretable models in an FL setting.
Notably, no other work has addressed the problem of providing
explanations for neural-network based FL by exploiting rules
as is our case.

III. BACKGROUND

This section provides insights into the various techniques
employed for generating explanations through the proposed
approach.

A. The HOLDA Federated Learning Approach

We leverage HOLDA (Hierarchical crOss-siLo feDerated
Averaging) [7] as our FL algorithm1. The main steps of the
training process of HOLDA are depicted in Figure 1. This
algorithm, which is tailored for tabular data, recursively trains
a neural network NN in a hierarchical cross-silo FL domain,
i.e., in a setting in which all the clients of the federation
are stateful. The main objective of HOLDA is to endow NN
with good generalization capabilities in all the nodes of the
federation, both at the local and the global levels. In the
remainder of this work, we consider the so-called centralized
setting, in which we have a set C of clients directly connected
to a server S, with no intermediate layers.

The process is started by the global server S, which ran-
domly initializes the parameters wg of its NN. At this point,

1The source code of HOLDA is available at https://github.com/
michelefontana92/HOLDA
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Fig. 1: Summary of the main training steps performed by
HOLDA

the server S begins the global training phase, which consists of
a loop of N global iterations. At each epoch j = 1, . . . , N , S
asks for model updating to its child nodes (that is, the clients)
starting from the parameters wj

g . Since in HOLDA the clients
are stateful, we associate to each client c ∈ C an internal
state σc = ⟨wbest, sbest⟩. Each client c trains the model with
the received parameters on its own private data. If, during
the local training, c finds a model w′ having a validation
score s′ > (σc → sbest), then it updates its internal state,
by marking w′ as the new best model. Formally, we have that
σc ← ⟨w′, s′⟩.

At the end of the local training, each client sends to the
parent node the weights of the model stored in its state.
After collecting the updated weights, S aggregates them into a
new base model with parameters wj+1

g . Finally, S (i) queries
the child nodes to get the evaluation of their models on the
validation set, (ii) computes the average evaluation, and (iii)
selects the best model among the ones produced so far. We
remark that if client c, after the evaluation of wj+1

g , finds out
that the model received from the server generalizes better than
the model c has in its state, c saves wj+1

g and its score into
σc.

Once the N epochs are concluded, as a final step of
personalization, HOLDA empowers the clients to fine-tune their
final best model σc = ⟨wbest, sbest⟩ and obtain σfine−tuned =
⟨wfine−tuned, sfine−tuned⟩. If the performance on the vali-
dation set satisfies sfine−tuned > (σc → sbest), the client
updates σc := σfine−tuned. Consequently, the internal state
of each node contains the parameters of the model that
generalizes best on its validation data. Thus, unlike other FL
algorithms, where the final output is just the global model,
HOLDA is able to train several models at the same time, i.e.,
it trains one model for each node of the federation.

B. GlocalX

GLOCALX (GLObal to loCAL eXplainer) is an explanation
method that hierarchically merges local explanations into a
global explanation by providing simple and faithful models.
For the purposes of this work, we exploit GLOCALX to explain
the behavior of the NN trained using HOLDA. Given a black-
box b, an ML model whose internals are difficult to understand,

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on January 07,2025 at 14:23:28 UTC from IEEE Xplore.  Restrictions apply. 



GLOCALX provides an explanation of the overall behavior
of b. The GLOCALX process starts with a set of local post-
hoc explanations E = {e1, . . . , en}, where each ei is a single
explanation describing the reason behind the classification of
a single record x. Each ei is in the form of a logical rule,
composed of a set of premises and a consequence, which is one
of the target labels of b. Given the set E, GLOCALX iteratively
merges the explanations and returns a single explanation.

More specifically, GLOCALX first sorts explanations by
using a similarity function and a quality criterion. This sorting
guides the subsequent merging of explanations. After the
merging, the process checks if there is an improvement. If
there is, the merging is added to the final set of rules. At the
end, the rules are finally filtered by fidelity, i.e., GLOCALX
selects the rules with the highest fidelity for each class.

For our purposes, we apply GLOCALX by shifting from
merging local explanations to merging global explanations
coming from local clients.

C. Trepan Decision Trees

In 1995, Craven and Shavlik introduced TREPAN [14], one
of the pioneering efforts to define an explanation method for
neural networks. Their seminal work addressed the inherent
challenge of neural networks in terms of human comprehensi-
bility. In particular, the authors tackled the task of creating a
symbolic representation for trained neural networks. Despite
the absence of a well-defined taxonomy for explainable artifi-
cial intelligence (XAI) at that time, they proposed TREPAN as a
post-hoc, model-specific, and global explainer. The proposed
explanation method takes the form of a surrogate model –
specifically a decision tree–, designed to closely align with the
underlying neural networks and hence yield surrogate models
with high fidelity.

The core process of TREPAN involves an inductive learning
paradigm where the target concept is the function embodied
by the neural network. Given a neural network to be explained,
denoted as b, the TREPAN model e is built by exploiting b as an
oracle that can be queried at will. Moreover, the construction
of the tree follows a best-first expansion strategy. The selection
of the optimal node is determined by its potential to maximally
enhance the fidelity with respect to the behavior of the neural
network. The split selection process is also refined; unlike
traditional decision tree learning where the number of training
samples used for split selection decreases, TREPAN allows
selecting the best split considering a user-specified minimum
number of samples. In particular, during the split selection
for a given node, the oracle possesses knowledge of all the
previously chosen splits along the path from the root to that
node. This information serves as constraints on the feature
values. Additionally, TREPAN incorporates a stopping criterion
consisting of two conditions. One condition is user-defined,
representing a parameter that specifies the maximum allowable
number of nodes. This parameter is crucial for enhancing
comprehensibility. In the absence of a specified value, the
second stopping condition is that a leaf node exclusively
covers instances of a single class with high probability.

IV. LOCAL TO GLOBAL RULE-BASED EXPLANATIONS

Fig. 2: Description of the proposed GLOR-FLEX approach.
Given the FL structure of HOLDA, the explanations are ex-
tracted first from the local nodes, and then merged in the
intermediate and global nodes.

In FL structures, and particularly in the HOLDA framework,
the assumption is that central servers do not possess training
data, which makes them unable to construct global explainers.
In order to address this limitation and empower every partici-
pant in the NN training to elucidate predictions made by the NN
models, we introduce a novel approach named GLOR-FLEX.
Given the HOLDA structure, this innovative method employs
TREPAN trees and GLOCALX to generate global explanations
both at the client nodes and the global server. This enables
each participant to gain insights into the behavior of their
unique NN models, which makes predictions explainable at the
client level while equipping the server to offer explanations
about the behavior of the global model. These explanations
are tailored for expert users with extensive experience in ML,
who seek insights into the behavior of neural network models.
The process by which GLOR-FLEX generates explanations is
shown in Figure 2.

In line with the emphasis of the HOLDA hierarchy on
securing the best model at each client, at each iteration clients
selectively choose the model that performs best on their local
data set, which is either the model trained in the current
iteration or the previous best model. Moreover, clients retain
the flexibility to fine-tune the final model, thus enhancing
local model performance. As a result, each client possesses an
individualized NN model, which in general diverges from the
global model. To accommodate this divergence, GLOR-FLEX
constructs a separate explainer at each client. This explainer
comprises a TREPAN tree (see Section III) trained using the
same data set that was used to train the NN model.

While the structure of the TREPAN, coupled with its ex-
tractable logical rules, provides insightful and interpretable
explanations to each client regarding the behavior of their local
models, the complete tree cannot be shared with the proxies or
the server due to privacy considerations [30]. These concerns
arise from the sensitivity of the local training data: sharing
the TREPAN tree alongside the local model could potentially
reveal additional information about the local training data.
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Such a disclosure could render the system more vulnerable
to privacy attacks, including membership inference attacks
[31] and reconstruction attacks [32]. To ensure the privacy
of the clients’ data and mitigate potential risks, GLOR-FLEX
has been designed to avoid the need for clients to share the
TREPAN tree. To maximize client privacy, the proposed method
requires the creation of a generalized tree achieved through
regularization techniques [33], specifically by controlling the
depth of the trees. The controlled depth not only enhances the
model’s performance on unseen data and prevents overfitting,
but it also facilitates the generalization of rules extracted from
the trees. This strategic approach aims to mitigate the risk
of reconstructing the training data, thereby affording a robust
privacy protection.

Upon completion of the training of its local generalized
TREPAN tree explainer, each client proceeds to extract logical
rules from it [34]. Extracting rules from a decision tree
involves creating one rule for each path from the root to a
leaf node. Along a given path, each splitting criterion is joined
with a logical and to formulate the rule’s antecedent (“IF”
part). The class prediction held by the leaf node becomes the
rule’s consequent (“THEN” part). Subsequently, these rules
are shared with upper-level entities in the HOLDA structure, in
our setting the server.

For the server to sort and merge the received rules from the
various clients, it is essential to evaluate the performance of the
rules on test data. As previously highlighted, the server lacks
direct access to any data. To overcome this challenge, we have
opted for a solution wherein synthetic data sets accompany the
rules. These data sets are generated by each client to aid the
transition from local to global explanations. The creation of
the synthetic data involves fitting a Gaussian mixture model
(GMM) [35] to capture the distribution of the original local
training data of each client. The GMM is a statistical model
defined as

p(x) =

k∑
i=1

πi ·N(x|µi,Σi),

where k is the number of components of the mixture, πi

is the weight of the i-th component, and N(x|µi,Σi) is
the multivariate Gaussian distribution with mean µi and co-
variance matrix Σi. By sampling the fitted GMM [36], the
client produces entirely synthetic data while preserving the
distribution characteristics of its original local data set.

After receiving the logical rules and synthetic data sets
from the clients, the server, in turn, utilizes the GLOCALX
framework (see Section III) to assess the importance of these
rules and merges them. This process yields a representative
set of rules capable of providing comprehensive explanations
for the predictions made by the global NN model.

V. EXPERIMENTS

In this section we report the experiments conducted to
validate GLOR-FLEX2.

2All the codes for the experiments are available at https://github.com/
anonymous16534/GLOR-FLEX

All experiments were conducted on a machine equipped
with an AMD Ryzen 5 3600 CPU (base speed 3.6 GHz), and
32 GB of RAM, and an NVIDIA GeForce RTX 3060 GPU
(12 GB VRAM).

A. Data Sets

As mentioned above, our focus is on tabular data. We con-
sidered three data sets with different statistical distributions:

• ADULT data set [37]. This is a de facto standard data
set3. ADULT contains 48, 842 records of census income
information, with 14 numerical and categorical attributes.
For each categorical attribute, we re-coded categories as
numbers to obtain a numerical version of the attribute.

• “PAMAP2 Physical Activity Monitoring” (a.k.a. ACTIV-
ITY) data set [38]4. This data set contains continuous
measurements of 3 inertial body sensors and a heart-
rate monitor worn by 9 subjects who performed 18
different activities such as walking, watching TV, etc.
First, as recommended by the releasers of the data set,
we discarded the transient activity (e.g., going to the
next activity location). Second, we mapped the various
types of activity into two categories indicating whether
the activity involved displacement or not (e.g., walking
was mapped to “displacement” and watching TV to “not
displacement”). We obtained a data set of 1, 942, 872
records, of which 1, 136, 540 records were labeled as
“displacement” and 806, 332 as “not displacement”. Each
record contained 54 numerical attributes corresponding
to timestamp, heart rate, and 17 sensor data feeds. The
classification task consisted in detecting whether the
subject was performing an activity involving physical
displacement.

• GAUSSIAN data set. This is a synthetic binary classifi-
cation data set consisting of 40, 000 records, featuring
30 numerical attributes. It was generated by using a
GMM statistical model. Given the controlled generation of
these data, no pre-processing was needed. The decision to
employ this synthetic data set stems from our intention to
execute an experiment within a controlled environment.
This choice allows us to manipulate attributes precisely
and ensures a standardized setting for rigorous testing.

B. HOLDA Training

After preparing the data sets, we focused on the training of
the HOLDA models. In order to avoid having too small local
data sets, we considered 4 client nodes and 1 server. Given
the inherent decentralized nature of HOLDA, we considered
two settings: (i) iid setting, in which we distributed the data
randomly and equally among all clients, ensuring that no
records were repeated between any two different clients; (ii)
non-iid setting, in which we deliberately introduced an imbal-
ance by allocating 80% of records from one class and 20%
from the remaining class to individual clients. We proceeded

3https://archive.ics.uci.edu/dataset/2/adult
4https://archive.ics.uci.edu/dataset/231/pamap2+physical+activity+

monitoring
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to train all the different NN models for 10 global epochs.
Each global epoch comprised 3 local training epochs, with
each client completing the training by fine-tuning the local
model for an additional 10 local epochs. We also compared the
performance of the HOLDA models with that of centralized
networks with the same structure trained for 30 epochs. This
approach resulted in exceptionally good performance across
all data sets, as reported in Table I5. In this experiment, each
client employed 70% of its local data as training data, and the
remaining 30% as testing data to evaluate the local model’s
performance.

The best results in both settings were obtained with the
GAUSSIAN data set, in line with the results in the centralized
settings, due to the controlled creation of the synthetic data.
Very high performance was reached in all nodes for ACTIVITY
in both settings, which is consistent with the centralized set-
tings. However, although the converged global model exhibited
similar high performance as the local models in the iid settings,
in the non-iid settings it stayed below the local models, with
a global model accuracy of 68%. This can be primarily at-
tributed to the substantial divergence among the local models,
which makes it difficult to reach similar performance. In both
settings, slightly lower prediction performance was obtained
for ADULT. However, the results of ADULT are aligned with
those in centralized settings and the state of the art on this data
set [42]. Hence, we can claim that we achieved top prediction
performance for all data sets in both iid and non-iid settings.

C. Explanation Generation

Once the NN models were trained within the HOLDA frame-
work, we proceeded with the generation of the explanations.
We remark that our objective was to craft global explanations
that delineate the overall behavior of the model.

The explanation generation process started at the client
nodes. Each client trained a TREPAN decision tree on its local
data. We validated the TREPAN models by means of fidelity
and accuracy, as presented in Table II. Fidelity is the number
of the matching predictions between the NN model and the
explainer divided by the total number of predictions. Ensuring
high fidelity is of paramount importance: it serves as a key
metric in the XAI field, to validate the consistency between
the predictions of the explanation model and those of the NN
model under analysis. In Table II we find consistently high
fidelity values for all models in both settings. Thus, TREPAN
explanation models faithfully replicate the behavior of the
original local NN, thereby giving confidence in the provided
explanations.

A comparative analysis of the results in Table I on the per-
formance of HOLDA and those in Table II on the performance
of TREPAN reveals a direct correlation between the goodness
of the explanation model and the prediction performance of the
NN models. In particular, for GAUSSIAN and ACTIVITY, where

5The architecture of the NN is defined as (input features, 256, 256, 2),
following the configuration used in [39]. The model employs the cross-entropy
loss function, the Adam optimizer [40], the ReLU activation function [41], a
batch size of 512, and a learning rate of 0.005.

the local NN achieves very high performance, we observe both
high fidelity and accuracy in the explanation models. We can
also notice that the depth of the trees is not large (at most
15, reached in the case of the ACTIVITY data set, the one
with the highest number of attributes), which ensures effective
generalization. Note also that rules involving a reduced set of
attributes have been shown to be more comprehensible [43].

Based on the trained TREPAN models, the actual final global
explanation model is generated by the server by merging the
results of the clients. To that end, rules are extracted from
the local TREPAN trees. In this way, we can exploit a state-
of-the-art methodology, GLOCALX, to merge the explanations
and hence obtain a global explanation composed of the most
important rules. To sort and merge the rules, GLOCALX
requires data for evaluating the importance of each rule. To
cater for this, each client sampled 1000 synthetic records using
the GMM model and sent them to the server.

The outcomes obtained from the application of GLOCALX
are reported in Table III. This table incorporates a parameter,
α, which has significant importance within the GLOCALX
framework, as it enables the selection of rules based on
their fidelity. A higher value of α means higher fidelity
and corresponds to a reduced number of rules in the final
set. In other words, as the α parameter increases, fidelity
grows, whereas the number of rules decreases. For the sake
of comprehensiveness, we present results for various values
of α. However, to establish a definitive global set of rules,
we recommend a minimum value of α = 80. From our
experiments, this choice ensures that all data sets achieve a
fidelity of at least 77%.

Table III also incorporates additional metrics, such as
coverage, which represents the fraction of records satisfying
the antecedent of at least one rule. Notably, all experiments
demonstrate high coverage. Furthermore, the table provides
information on the number of rules, categorized by class (0 or
1), and their average length. It is noteworthy that the average
rule length is relatively short, with the average maximum
length reaching around 10 for the ACTIVITY data set in the
iid settings, which is the data set with the largest number of
variables. Whereas the number of rules may seem very large,
it is essential to realize that we aim to explain the overall
behavior of a complex NN model. Excessively restricting the
number of rules would compromise the effectiveness of the
explanation model.

An alternative solution would involve avoiding the entire
GLOR-FLEX process and allowing the server to train the
TREPAN tree using synthetic datasets generated by various
clients. This approach lacks personalized explanations for indi-
vidual clients, which may be undesirable in cross-silo FL where
client nodes are designed to function autonomously. However,
it has the advantage of speeding up the process by training a
single TREPAN tree, thereby reducing the information-sharing
overhead. We conducted an experiment in the iid setting to
explore this strategy. The results are summarized in Table
IV. To ensure a fair comparison, we maintained the same
depth for TREPAN indicated in Table III. The outcomes reveal
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TABLE I: Performance of the NN of HOLDA. Ci refers to the ith client’s local model and Global refers to the global NN model
in both the iid and non-iid settings. For comparisons, the C setting presents the results of the centralized setting, while the
NA stands for Non Applicable.

ADULT ACTIVITY GAUSSIAN
C0 C1 C2 C3 Global C0 C1 C2 C3 Global C0 C1 C2 C3 Global

Loss NA NA NA NA 0.29 NA NA NA NA 0.00 NA NA NA NA 0.00
Accuracy NA NA NA NA 0.83 NA NA NA NA 0.99 NA NA NA NA 0.99
Precision NA NA NA NA 0.86 NA NA NA NA 0.99 NA NA NA NA 0.99
Recall NA NA NA NA 0.81 NA NA NA NA 0.99 NA NA NA NA 0.99

C

F1 NA NA NA NA 0.82 NA NA NA NA 0.99 NA NA NA NA 0.99
Loss 0.35 0.36 0.36 0.37 0.38 0.01 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00
Accuracy 0.84 0.82 0.83 0.81 0.80 0.99 0.99 0.99 0.99 0.99 0.99 1 1 1 1
Precision 0.85 0.84 0.86 0.83 0.85 0.99 0.99 0.99 0.99 0.99 0.99 1 1 1 1
Recall 0.84 0.82 0.83 0.81 0.80 0.99 0.99 0.99 0.99 0.99 0.99 1 1 1 1

IID

F1 0.85 0.83 0.84 0.82 0.81 0.99 0.99 0.99 0.99 0.99 0.99 1 1 1 1
Loss 0.33 0.37 0.33 0.38 0.36 0.06 0.08 0.04 0.05 1.02 0.00 0.01 0.02 0.02 0.00
Accuracy 0.83 0.82 0.83 0.81 0.81 0.99 0.99 0.99 0.99 0.68 0.99 0.99 0.99 0.99 0.99
Precision 0.84 0.84 0.86 0.82 0.84 0.99 0.99 0.99 0.99 0.88 0.99 0.99 0.99 0.99 0.99
Recall 0.83 0.82 0.83 0.81 0.81 0.99 0.99 0.99 0.99 0.68 0.99 0.99 0.99 0.99 0.99

NON-IID

F1 0.84 0.82 0.84 0.81 0.82 0.99 0.99 0.99 0.99 0.69 0.99 0.99 0.99 0.99 0.99

TABLE II: Depth, fidelity, and accuracy of TREPAN trees trained as local explanations for each client node in the iid and
non-iid settings

ADULT ACTIVITY GAUSSIAN
C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

Max Depth 5 5 5 5 14 14 12 15 5 5 5 5
Fidelity 0.89 0.89 0.91 0.90 0.88 0.89 0.88 0.90 0.96 0.96 0.97 0.96IID
Accuracy 0.83 0.81 0.78 0.76 0.93 0.95 0.94 0.95 0.97 0.97 0.98 0.97
Max Depth 5 5 5 5 13 13 13 13 5 5 5 5
Fidelity 0.88 0.90 0.99 0.89 0.99 0.98 0.99 0.99 0.96 0.97 0.97 0.97NON-IID
Accuracy 0.80 0.82 0.81 0.83 0.99 0.99 1 1 0.97 0.97 0.98 0.98

lower performance in terms of fidelity and coverage compared
to GLOR-FLEX, with the exception of the ACTIVITY dataset,
where both methods perform similarly. In this case, it is
worth noting that the rules extracted are longer on average
(13 vs 10 rule length). This empirical analysis demonstrates
the superiority of our approach at generating high-performance
explanation rules. Moreover, it provides the added benefit of
producing personalized explanations for each client.

Finally, in Table V, we present the execution times of the
various steps of our procedure. The results are consistent with
state-of-the-art approaches in XAI. Furthermore, it is worth
noting that, to generate global explanations, the process only
needs to be carried out once, as an added step to the training
time.

VI. CONCLUSION

We have presented GLOR-FLEX, a framework that generates
local to global rule-based explanations for FL. Our approach
leverages TREPAN decision trees to generate explanations at
each participating client. By merging rules derived from these
local trees under GLOCALX, that strategically sorts and merges
these rules, we establish a comprehensive set of rules suitable
for a global explainer on the server side. GLOR-FLEX addresses
the inherent data limitations on the server side, which are
common in decentralized learning frameworks such as FL. This
enhances model interpretability both at the local and the global
levels.

Empirical results show high fidelity for the TREPAN trees
across three different data sets, both for iid and non-iid

settings. This attests to their ability to provide accurate
and comprehensive explanations for the local NN models.
Moreover, our experiments demonstrate that the merged rules
exhibit both high fidelity and coverage, thereby resulting
in accurate explanations for the global model. In particular,
GLOR-FLEX effectively addresses the lack of data on the server
side while preserving privacy for the local data of clients.
This is made possible by the transformation from local to
global explanations being seamlessly executed by GLOR-FLEX
without requiring any sharing of real data between the clients
and server.

As future work, we plan to explore rule selection mech-
anisms based on user preferences, which should allow de-
livering customized explanations. Furthermore, a study on
the privacy risks associated with sharing the local explainer
alongside updates for the NN model will be conducted. Finally,
we aim to conduct a user study to assess the quality of the
explanations provided.
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