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Abstract
Machine learning models often struggle to generalize accurately when tested on new class 
distributions that were not present in their training data. This is a significant challenge 
for real-world applications that require quick adaptation without the need for retraining. 
To address this issue, few-shot learning frameworks, which includes models such as 
Siamese Networks, have been proposed. Siamese Networks learn similarity between pairs 
of records through a metric that can be easily extended to new, unseen classes. However, 
these systems lack interpretability, which can hinder their use in certain applications. 
To address this, we propose a data-agnostic method to explain the outcomes of Siamese 
Networks in the context of few-shot learning. Our explanation method is based on a 
post-hoc perturbation-based procedure that evaluates the contribution of individual input 
features to the final outcome. As such, it falls under the category of post-hoc explanation 
methods. We present two variants, one that considers each input feature independently, 
and another that evaluates the interplay between features. Additionally, we propose two 
perturbation procedures to evaluate feature contributions. Qualitative and quantitative 
results demonstrate that our method is able to identify highly discriminant intra-class and 
inter-class characteristics, as well as predictive behaviors that lead to misclassification by 
relying on incorrect features.
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1 Introduction

In recent years, Artificial Intelligence (AI) has made significant progress due to the avail-
ability of large datasets, powerful computing devices, and the development of sophisticated 
algorithms (Haenlein & Kaplan, 2019). Machine learning (ML) models are commonly used 
in AI systems because of their success in various fields such as image processing, time series 
analysis, and audio signal processing (Sarker, 2021; Purwins et al., 2019). However, tradi-
tional ML systems have a major limitation in that they rely on large-scale datasets, while 
real-world applications often have constraints that result in limited data availability (Ienca 
& Vayena, 2020; Jiang et al., 2014; Fries et al., 2017). Technical issues may limit the col-
lection of training data, while ethical or privacy concerns may restrict data access (Ienca & 
Vayena, 2020). Furthermore, traditional ML systems struggle to generalize from few sam-
ples and their performance is often better for classes with more training samples and worse 
for classes with fewer samples (Rahman et al., 2018). As a result, these systems are limited 
in their ability to expand their knowledge beyond the scope of the data they were trained on. 
In contrast, humans are able to quickly generalize from prior knowledge. For example, if a 
child is presented with a few pictures of a person or animal he/she has never seen before, he/
she will still be able to match and identify the correct individual among a reasonable num-
ber of pictures portraying different subjects/animals.

To overcome these limitations, recent studies proposed the use of few-shot learning 
frameworks, where a ML model must learn to classify new classes with only a limited 
number of labeled samples per class  (Wang, 2020). Few-shot learning methods typically 
consider a C-way k-shot classification task, where C represents the number of classes 
the model must recognize, while k is the number of labeled samples per class. The set 
of labeled samples is known as the support set, i.e., an auxiliary set of data that serves 
as guidance for the classifier. The goal of few-shot learning is to predict the class of an 
instance when only a small number of examples of that specific class are available. In this 
paper, our focus is on classifying an unseen sample using just one labeled sample of that 
specific class during inference. This means that the model has had no exposure to the test 
samples during training, as we have kept the training, validation, and test sets separate. We 
refer to this task as C-way one-shot learning, signifying that the support set comprises a 
single sample for each of the C classes. Consequently, the model’s objective is to correctly 
classify an unseen query class with only one additional sample from that class in the sup-
port set during inference.

Several algorithms have been proposed to address the challenge few-shot metric-
learning including Siamese Networks  (Koch et  al., 2015), Matching Networks  (Vinyals 
et al., 2016), Relation Networks (Sung et al., 2018), and Prototypical Networks (Snell et al., 
2017). These algorithms aim to learn a metric in an embedding space that can then be used 
to determine the similarity between unseen samples. Siamese Networks (SNs) (Koch et al., 
2015) are composed of two or more identical encoding sub-networks that map inputs into 
an embedding space, where a distance function is applied to calculate the distance between 
the resulting embedded representations. A similarity score is then computed based on 
this distance in the latent space. To date, the few-shot learning paradigm has been applied 
to image processing  (Koch et  al., 2015; Qiao et  al., 2018; Liu et  al., 2019), time-series 
analysis  (Iwata & Kumagai, 2020; Gupta et  al., 2021), and audio classification  (Vélez, 
2018; Honka, 2019).

However, one of the main challenges of SNs is the lack of explainability. Indeed, it is 
challenging to comprehend how these architectures can correctly generalize on unseen 
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samples. Understanding the reason why a model takes a specific decision is hugely impor-
tant to developers, organizations, and end-users on which such decision falls upon. While 
end-users may prioritize understanding an outcome’s explanation over the outcome itself, 
developers can use explanations to identify potential issues with a model and repeat train-
ing procedures in a controlled environment. Also, stakeholders may need to comprehend 
the reasoning behind a model’s decisions before deploying it in real-world scenarios that 
may have a significant impact on people’s lives. Indeed, the “right to know” (Dimitrova, 
2020), refers to an individual’s right to receive an explanation for a specific outcome pro-
duced by an algorithm. In recent years, researchers examined the eXplainable Artificial 
Intelligence (XAI) topic from various perspectives  (Guidotti, 2019; Adadi, 2018; Miller, 
2019). A characterization of XAI techniques distinguishes between gradient-based and 
perturbation-based approaches  (Guidotti, 2019; Adadi, 2018). While both aim to under-
stand the contribution that each input feature has on a specific outcome, they solve the 
problem differently. Gradient-based approaches estimate feature contribution through for-
ward and backward propagation in the network, while perturbation-based methods perturb 
the input and measure changes in the output relative to the original input. Although many 
XAI methods received positive feedback from the research community, only a limited 
number are designed to explain Siamese Networks (SNs) and, to the best of our knowledge, 
none has been developed to work on different data types within the framework of C-way 
one-shot learning.

In this work, we introduce a local data-agnostic explanation method for SNs in the 
setting of C-way one-shot learning. Our SIamese Networks EXplainer (sinex) aims to 
uncover the decisive features that enable the model to learn and generalize in a manner 
that resembles human cognition when making predictions on image, time series, and 
audio data. We aim to use our explainer to address questions such as: What factors is the 
model considering when it accurately identifies the class of two unseen objects? What 
makes a particular sample more similar to one object than to others? Why is the model 
miss-classifying a specific object? sinex employs a perturbation approach to calculate the 
contribution of each feature based on a segment-weighted-average evaluation. Additionally, 
we present a coalition-based variant of sinex, called sinexc, which takes into account the 
interaction between different parts of the input. These contribution values can be visualized 
as heatmaps, providing an intuitive representation of the behavior of Siamese Networks. 
An illustrative sinex explanation of a 5-way 1-shot classification is presented in Fig. 1. In 
the top left corner, the query sample x to be classified is shown, followed by a support set 
consisting of 5 samples (labeled from s1 to s5 ). Above each ith support sample, the similarity 
value computed by the Siamese Network between the pair (x, si) , represented in the range 
of [0, 1], is displayed. The bottom row displays the sinex contribution heatmaps for each ith 
sample in the support set, denoted as h1 to h5 . Positive contributions are highlighted in red, 
while negative contributions are shown in blue. Areas in grey are considered neutral with 
respect to the similarity score outcome. These heatmaps are min-max normalized within 
the same tasks and can be compared between them. In this example, both h1 and h3 show 
the largest positively influencing segments overall.

We apply sinex to explain SNs in the context of 5-way one-shot learning on grayscale 
and RGB images, time-series, and audio data. Our results demonstrate the effectiveness 
of sinex in identifying positive and negative contributing areas to the network outcome. 
Furthermore, our approach uncovers limitations in SNs, including erroneous dependence 
on specific colors (RGB images) or pixels (grayscale images), which can result in 
classification errors. This paper extends the conference version  (Fedele et  al., 2022) in 
several aspects. First, we introduce a perturbation methodology for feature contribution 
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allocation, that computes the importance of specific features by excluding them instead 
of solely considering them. Second, we generalize the applicability of sinex to any data 
type by extending the input data handled, including images and time series besides audio 
data. Third, we extend the explainer’s compatibility with the widely used 3-branched 
Siamese Network architectures  (Hoffer, 2015), which, in turn, accomodate for distance-
based SN approaches, besides the similarity-based ones previously addressed. Fourth, we 
introduce the �-LRP explainability technique as an additional baseline in our performance 
assessment. Fifth, we investigate the impact of shifted support sets on both the SN 
performance and the explainer itself. Finally, we perform a dependence-ness analysis of 
positive and negative contribution features by introducing two novel metrics.

The rest of paper is organized as follows. In Sect.  2, we review relevant studies. 
Section  3 outlines the problem we address, while in Sect.  4 we illustrate our proposed 
solutions. The results of our experiments are presented in Sect. 5 and extensively discussed 
in Sect.  6. Finally, Sect.  7 summarizes our contributions and suggests future research 
avenues.

2  Related works

In this section, we review existing works that aim to explain the behavior of Siamese 
Networks (SNs). In Zhang (2019) the authors focus on visualizing and sonifying the input 
patterns that activate certain neurons in the network using the activation maximization 
approach  (Erhan et  al., 2010). The authors suggest that by visualizing the patterns that 
activate random neurons from each layer, it is possible to get an idea of what the network 
considers important. However, the limited consideration of random neurons may result 
in an isolated effect with respect to the overall function of the SN. Additionally, it is not 
possible to determine whether the returned features have a positive or negative impact on 
the outcome. A similar approach is described in Acconcjaioco (2020), where the system is 

Fig. 1  sinex explanation on a 5-way 1-shot classification task on the Caltech-UCSD Birds 200 data-
set. Top row: query sample x followed by the support set samples s1 to s5 from left to right. The SN similar-
ity computed between each (x, si) pair is presented above the corresponding si sample. Bottom row: expla-
nation heatmaps h1 to h5 corresponding to the s1 to s5 support samples. Heatmaps display positive (red), 
negative (blue), and neutral (gray) contributions to the similarity score. Class labels from c1 to c5 are: Rose 
breasted Grosbeak, Eared Grebe, Summer Tanager, Carolina Wren and Canada Warbler. This layout is 
repeated as such for all explanations on this paper. Best viewed in colors (Color figure online)
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developed for one-shot learning to identify bird species. The authors visualize how audio 
spectrograms  (Flanagan, 2013) are decomposed by each layer and consider the last one 
as the explanation layer. Both in Zhang (2019) and Acconcjaioco (2020), the explanation 
is only derived from the convolutional encoders and does not take into account the core 
similarity scoring layer of the SN.

In Utkin (2020), the authors use a special auto-encoder as the core of their explanation 
algorithm, similarly to  Guidotti (2019); Looveren (2021); Naudé (2020). The encoder 
is trained to reconstruct the input instances of the training set using the embedded 
representation provided by the SN’s built-in embedder. The decoder is then trained to 
reconstruct the original input based on the hidden representation. Once the auto-encoder is 
trained, it receives a pair of inputs to explain, which are also given to the SN. The vectors 
produced by the SN’s encoders are then perturbed on what the authors refer to as important 
features. These features are chosen based on the smallest distance between the two inputs 
if they are semantically similar, or the largest distance if they are dissimilar. The perturbed 
vectors are then passed through the decoder, which maps them back to the original input 
space. The embedded vectors are randomly perturbed, and the mean contribution value of 
each feature is calculated as the difference between its value in the reconstructed input after 
perturbation and its value in the reconstructed input without perturbation. The proposal 
suffers from various weaknesses like including a large number of parameters, the need for 
a large amount of data to train the auto-encoder, the access to the training set, and the 
requirement of training an additional ML model. In addition, also in this case, the SN’s 
distance function and similarity score are bypassed by the explainer.

In Chen (2021), is introduced another post-hoc explanation approach for SNs. The authors 
highlight the concern that existing perturbation-based XAI methods might become overly 
sensitive to irrelevant perturbations when dealing with unseen instances in the support set. 
To address this issue, they find global, invariant salient features for individual object using 
self-supervision. Then, they formulate an optimization problem to adapt the global salient 
features to explain a SN prediction for an input pair. The adaptation balances the conformity 
to the invariance and the local flexibility when comparing a query to different references. The 
authors design a gradient descent algorithm to solve a constrained optimization problem with 
KL-divergence regularization. However, also Chen (2021) does not account for the similarity 
scoring layer and only operates on the embedded representation of the data.

In  Ye (2020), a different approach is taken, where a class-to-class SN (C2C-SN) is 
trained to understand both the similarities and differences between classes. The authors 
show how the C2C-SN can be used for explanation purposes through prototypical case 
finding and contrasting cases. However, the proposal of Ye (2020) differs from our work as 
it does not query the model on unseen classes.

A very recent work (Tummala & Suresh, 2023) introduces a novel class activation 
mapping, which highlights critical regions for classification. The saliency map is crafted by 
employing the l1 distance lambda layer as a weight vector, which is then multiplied with the 
final convolutional layer responsible for query sample embedding.

Finally, in Fiaidhi et al. (2022), the authors exploit SNs to identify the ulcerative colitis 
from few training samples, while enhancing the network’s explainability by combining it 
with a LSTM model that provides relevant textual captions for a specific outcome. SNs are 
trained on RGB images using a triplet loss (Schroff et al., 2015) and are asked to classify 
eight different classes. With the help of expert-provided textual captions, the authors are 
able to train a LSTM model on textual input and form an explanation that combined the 
SN prediction with a textual caption learned from a field expert. Differently from the other 
existing explainers for SNs, this work shows that explanations might come in different 
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forms and that SNs can be embedded into bigger architectures instead of being treated as 
standalone systems.

The explanation approach presented in this paper differs from those described in Zhang 
(2019), Acconcjaioco (2020), and Chen (2021) as they utilize gradient-based methods 
that primarily focus on the encoder component of SNs. These works only examine the last 
convolutional layer of the network, ignoring the overall architecture of the SN. Moreover, 
our approach eliminates the need for training additional models and focuses on assessing 
differences in the SN outcome through input space perturbations, unlike  (Utkin, 2020). 
While sinex perturbs samples in the input space and measures differences in the SN 
outcome score, this approach perturbs the latent space post-CNN encoding and generates 
heatmaps for perturbed samples using a pre-trained decoder. Consequently, we decided not 
to use it for comparison since our goal is to evaluate the contribution of input features in 
the input space.

Additionally, our approach differs from  Fiaidhi et  al. (2022) as we aim to explain 
the SN as it is, without the need for training samples or external knowledge. Lastly, our 
explanation method can be directly applied during prediction time. Our aim is to provide 
a comprehensive explanation of how a SN works, with a particular emphasis on the layer 
that generates the final similarity or distance score. Additionally, our approach addresses 
the issue of explaining SNs within the context of C-way one-shot learning, an area that has 
not been explored in previous works.

3  Problem formulation

In few-shot learning, a dataset D = ⟨X, y⟩ is composed of n input samples, X = {x1,… , xn} , 
and their corresponding class labels, y = {y1,… , yn} . The class labels indicate which yi 
class each xi input sample belongs to, where yi ∈ [0,… , L − 1] . L is the total number of 
classes, which in few-shot learning is higher than traditional multi-class problems. In our 
experiments, L ranges from a minimum of 50 to a maximum of 60. In C-way one-shot 
learning, the support set S contains C input samples, each belonging to a different class 
and only appearing once in S. Typically, C is much smaller than L. In our experiments, 
C is set to 5. In this framework, a SN is a deep learning model f that takes as input a 
support (or reference) set S = ⟨{s1,… , sC}, {y1,… , yC}⟩ , a query instance x with an 
unknown label, and predicts the class label of x by comparing it to each input sample si in 
the support set. Each yi present in the support set represent the class label of the sample si . 
This comparison can be done using either a similarity sim (Koch et al., 2015), or a distance 
function, dis (Hoffer, 2015), to select the highest/lowest similarity/distance score, i.e.,

In this context, a correct classification occurs when the class yi of the support sample si , 
which yields the highest/lowest similarity/distance score, matches the class of the query 
input x. Otherwise, an incorrect classification occurs.

In our setting, we consider samples in the dataset X including images, time-series, or 
audio inputs. An image is typically represented as a matrix in ℝp×q×z , where p and q are the 
width and height Cartesian coordinate of the image and z is the number of color channels 
(usually 3 for RGB and 1 for grayscale images). Each element xi,j,k,w represents the inten-
sity value at width j, height k and color channel w for the ith image. The intensity is usually 

yi = f (x, S) = argmax
∀si,yi∈S

sim(x, si) yi = f (x, S) = argmin
∀si,yi∈S

dis(x, si).
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expressed as a value within the range of [0, 255]. A time series is an ordered set of p real-
valued observations (or time steps) in ℝp . We represent a time series as a grayscale image 
by plotting it on a Cartesian coordinate system as xi,j,k where j represents the value plotted 
on the temporal-axis and k represent the measurement value at that timestamp for the ith 
time series. Finally, an audio can be represented as a spectrogram (Acconcjaioco, 2020; 
Flanagan, 2013), which consist of a matrix in ℝp×q , where q is the length of the audio track, 
and p is the number of observed frequencies. Each element of the matrix xi,j,k represents 
the intensity value at time j of frequency k for the ith audio track. The intensity is usually 
expressed in decibel (dB). Figure 2 shows an RGB image, a grayscale representation of a 
time-series and an audio spectrogram.

The main goal of this paper is to identify what a pre-trained SN f considers among the 
characteristics of the records in the support set S when assigning class yi to a query instance 
x. To do so, we propose a local data-agnostic post-hoc explanation method g, which takes 
as input f, a set of support samples S, and a query instance x and returns an explanation E. 
More formally, our objective is to define a function g such that E = g(f , x, S) . The explana-
tion E is formalized as a set of heatmaps E = {h1,… , hC} , where each hi is the heatmap 
of the support sample si, yi ∈ S and represents the importance/saliency for each feature of 
its matrix value. For RGB images, the value hi,j,k,w indicate the importance of the pixel at 
width j and height k for the wth channel color. The same definition applies for grayscale 
images, regardless of whether they were generated from a time-series input or not. For 
audio tracks, the value hi,j,k indicates the importance/saliency of the kth frequency at time j 
for the ith support set spectrogram.

4  Siamese networks explainer

In this section, we describe sinex, a local data-agnostic SIamese Networks EXplainer for 
C-way one-shot learning. sinex is our proposal for implementing the function g to explain 
a SN f w.r.t. a query instance x and a support set S, as described in the previous section. In 
particular, sinex unveils the output of the SN by generating an explanation based on the 
final layers that measure either the similarity or the distance score. We design sinex as a 
perturbation-based method that measures the prediction of similarity in 2-branched SNs 
(2SN) or distance in 3-branched SNs (3SN) after various input perturbations and repeated 

Fig. 2  Left: RGB image of Rose breasted Grosbeak bird. Center: grayscale image representing a time-series 
formed by taking the height profile of a written word. Right: log-mel spectrogram of an audio recording 
featuring a speaker saying “zero” out loud. Darker areas represents lower dBs, i.e., silence, while lighter 
pixels indicate sounds that can be heard by humans (Color figure online)
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queries of the SN. In our C-way one-shot setting where the query input x is classified based 
on the instances in the support set S, we choose to segment and perturb the instances in S 
and observe how the outcome estimation between x and si changes when parts of si are hid-
den from the network.

We introduce two perturbation approaches, and use sinex� to distinguish them. The first 
approach with �=¬ , named sinex¬ , involves measuring the contribution of a specific seg-
ment by keeping it active while “silencing” all the other segments, i.e., replacing them with 
non-informative values. The second approach with �=� , named sinex

�
 , measures the con-

tribution of a specific segment by “silencing” it, while keeping all other segments active. 
Examples of both perturbation procedures are illustrated in Fig. 3. In the following, we first 
elucidate the segmentation process that precedes the perturbation runs. Then, we present 
sinex and sinexc, a coalition-based variant of sinex that extends the perturbation procedure 
to multiple segments rather than single ones. After that, we delve into the explanations 
generated by sinex and sinexc, providing details on how to interpret and compare them. 
Finally, we describe how 2-branched SNs (2SNs) differ from 3-branched SNs (3SNs) and 
explore how our explainers can provide support for both.1

4.1  SINEX segmentation approach

Input matrices, whether representing images, time series, or audio spectrograms, offer vari-
ous avenues for perturbation. A common approach is the window-occlusion-based tech-
nique (Zeiler, 2014). However, this method faces several limitations. Fixed-size occlusion 
windows could yield inaccurate results, as the contribution of the features can vary sig-
nificantly depending on the window size. Additionally, determining the correct window 
size can be difficult, as the same size may produce different outcomes even for different 

Fig. 3  First column: support set sample on the top row, and its segmentation on 56 regions in the bottom 
row. First row: �=¬ perturbation on the 24th and 35th segments respectively. Second row: �=� perturba-
tion on the same segments. Best viewed in colors (Color figure online)

1 sinex
�
 perturbation and 3SNs distance-based support not investigated in Fedele et al. (2022).



7731Machine Learning (2024) 113:7723–7760 

1 3

instances of the same class. Furthermore, dividing the input into fixed-length windows 
assumes that the two axes are independent, which is a rare assumption for inputs like 
images and spectrograms. For example, relying solely on time segmentation for a spec-
trogram means assuming that every sound event starts and ends at the same moment in all 
recordings of a given class, which is unrealistic in real-world scenarios.

Therefore, in order to provide a consistent approach for any type of data, aligning 
with the widely recognized data-agnostic explainer LIME  (Ribeiro, 2016), we suggest 
segmenting each input using techniques commonly employed for image inputs. Examples 
of these techniques include the Felzenszwalb approach (Felzenszwalb, 2004), which uses 
minimum spanning tree-based clustering to segment an image, and SLIC (Achanta, 2012), 
which segments images through k-Means clustering. Additional examples include an 
extension of SLIC called MaskSLIC  (Irving, 2016), that generates superpixels in specific 
regions of interest, Quickshift  (Vedaldi & Soatto, 2008), a local mode-seeking algorithm 
based on a kernelized mean-shift approximation, as well as Watershed  (Beucher, 1992), 
which identifies watershed basins in images flooded from user-given markers.

sinex does not use a default segmentation algorithm, hereafter referred to as seg , 
as its selection depends on the data type and the context. However, it is flexible as it 
technically supports all the algorithms described earlier, allowing users to choose based 
on their specific needs. For a detailed discussion on the suggested procedure to choose the 
appropriate seg , please refer to Appendix C.

Algorithm 1  sinex(f, x, S)

4.2  SINEX basic approach

In the following, the term “similarity” refers to the outcome of a 2SNs, meaning that the 
function f to explain is a 2SNs. Conversely, “distance” is used when f is a 3SNs. In both the 
pseudo-code and the subsequent description, “similarity/distsance” is used to generalize, 
as the supported f can be either a 2SN or a 3SN. Details on the support for such different 
architectures will be provided later in this section. The pseudo-code of the basic version of 
sinex is reported in Algorithm 1, and detailed as follows. For each sample in the support set 
S (lines 2–11), sinex calculates the initial similarity/distance v returned by the application 
of the SN f between the query input x and the support sample si (line 3). Then, it segments 
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the support sample si using the seg segmentation algorithm (line 4), resulting in a set of 
segments R with at least � segments. For each segment rj , its contribution is stored in the 
saliency map hi , which represents the importance of different areas in the support sample 
si , and it is computed as follows. The saliency maps are initially set to a matrix with all 
values equal to 0, with the same dimensionality as the support set sample (line 5). The 
support set sample si is then perturbed (line 7) based on the selected perturbation approach 
� , which can assume two values. If the �=¬ perturbation approach is used, everything 
except the region rj is obscured. In this case the notation of line 7 becomes si[¬rj] ← c , 
that indicates that the support sample si assumes value c in all regions except rj , i.e., we 
obtain the same Algorithm described in Fedele et al. (2022). Otherwise, if �=� , only the 
region rj is obscured. In such case, notation at line 7 becomes si[rj] ← c indicating that, 
the support sample si assumes the value c only in the rj region. The value c in Algorithm 1 
line 7 symbolizes a replacing value to be used when perturbing, which varies according 
to the sample data-type. For RGB images, any color might be a replacing value and it 
should be carefully chosen not to create out-of-distribution samples. In our study we use 
the gray color, which is commonly used for c in this case. Grayscale images are instead 
limited to only use color belonging to the grey-scale (from white to black). For this kind 
of input, we use the white as a replacing color for black pixels. Whenever dealing with 
audio spectrograms, a reasonable replacing value for c might be −80 as it is the smallest 
value in the dB scale in many cases. After perturbation, the new similarity/distance score u 
is calculated by the application of the SN f between the query sample x and the perturbed 
support set sample zi (line 8), and the difference � between the starting similarity/distance 
score v and the new score u is determined (line 9). Finally, the difference is weighted 
according to the size of the current segment |rj| and updated in the corresponding saliency 
map hi (line 10).

Algorithm 2  sinexc(f, x, S)

4.3  SINEX with coalitions

The basic version of sinex may suffer from well-known problems associated with perturba-
tion-based methods. First, perturbing instances may result in generating out-of-distribution 
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(OOD) data point, which may not guarantee the validity of the similarity/distance meas-
ures. To address this issue, one solution is to retrain the model on a dataset that includes 
the perturbed data points, but this requires additional time resources. Second, measuring 
the prediction changes of individual segment perturbations may help understand their 
contribution to the final outcome, but it may ignore the interaction between the segment 
and the other parts of the input (isolated effect). To tackle these challenges, we take into 
account the few-shot learning context and the fact that we evaluate the model on new 
classes, which make the similarity networks robust to OODs, since unseen sample might 
be considered OOD themselves. However, there is still no guarantee of the network f being 
robust when comparing a query sample x to a perturbed version of the support set sample 
si , irrespective of whether x and si belong to known or never-seen-before classes. Hence, 
our proposal to mitigate these limitations is to evaluate the contribution of a specific seg-
ment to the final outcome by considering its weighted-average value. Drawing inspiration 
by Lundberg (2017), we aim for this value to take into account the interplay between the 
segment in analysis and the remaining others. However, differently from SHAP, our context 
does not allow us to compute “baseline values” based on the training set. Nevertheless, 
we can adopt an approach similar to LIME (Ribeiro, 2016), where we perturb not only a 
single segment but also other randomly selected super-pixels in each step. We aim for our 
explainer to not only assess the impact of a specific segment on the final outcome, but also 
consider how its interaction with other parts of the sample influences the final similarity/
distance score. To do this, we have introduced two parameters, � and � , which control the 
number of per-segment coalitions to generate and the number of additional segments that 
must remain active or disabled in each coalition, depending on which � perturbation pro-
cedure is selected. It is important to emphasize that the selection of additional segments 
to target is random. Hence, we extend sinex to include coalitions in sinexc, as outlined in 
Algorithm 2 and detailed in the following.

Similar to the basic sinex version, sinexc calculates the initial similarity/distance v by 
applying the SN f between the query input x and the support sample si (line 3) for each 
sample in the support set S (lines 2–14). Then, the support sample si gets segmented 
using the seg segmentation algorithm (line 4), resulting in a set of segments R with at 
least � segments. The contribution of each segment rj is stored in the saliency map hi , ini-
tially set to a matrix with all values equal to 0, matching the dimensionality of the sup-
port set sample (line 5). Unlike sinex, sinexc now generates additional � coalitions with 
� �-active segments for each rj segment (line 7). Indeed, each coalition specifies � ran-
dom segments different from rj that will either remain active ( �=¬ ) or non-active ( �=� ) 
along with rj during the following perturbation procedure. For each coalition �k (lines 
9–11, Algorithm  2), we perturb the support sample si based on the selected perturba-
tion approach (line 10). If �=¬ perturbation approach is selected, line 10 of Algorithm 2 
becomes zi ← (si[{¬rj} + ¬�k] ← c) , indicating that everything except rj and the addi-
tional set of segments indicated by �k is obscured. Otherwise, if �=� , line 10 becomes 
zi ← (si[{rj} + �k] ← c) , indicating that only rj and the additional set of segments indicated 
by �k are obscured. Finally, the sum of the similarity scores obtained querying the model 
is stored in ū . We then compute the segment contribution � (line 12, Algorithm 2), as the 
difference between the original similarity score, v, and the mean similarity value ū∕|Π| 
obtained from the |Π| coalitions. Lastly, we weight the segment-average prediction value 
according to the size of the segment in analysis (line 13, Algorithm  2). This process is 
iterated pairing the query sample x with every sample of the support set S (line 2–14, Algo-
rithm 2), keeping x fixed and applying the coalition-based methodology to each si element 
of the support set S.
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4.4  SINEX explanation

Figure 4 illustrates an example of a sinex/sinexc explanation E that contains the saliency maps 
{h1,… , hC} (bottom row in Fig. 4) for each support set sample {s1,… , sC} (top row in Fig. 4). 
Each hi holds the contribution value for each segment of the support sample si , whether it is a 
positive or a negative value. These contribution values are normalized for comparability across 
all hi ∈ E within each C-way one-shot task. In case of similarity based approaches, the scale is 
normalized in [−N,+P] , where N is the maximum value within the negative contributions and 
P is the maximum value of positive contributions instead. Vice-versa, the min-max scale for 
distance-based approaches is in [−P,+N] . This normalization process is intentionally tailored 
for each specific C-way one-shot task, enabling meaningful heatmap comparisons within the 
confines of that task. Thus, it only allow relative comparisons across different explanations, 
since each one is generated on distinct query sample x and support set S samples.

A color-map must be selected to visualize E such that the contribution values close to 0 
are non influential to the final prediction. We adopt a blue-to-red color-map where negative 
contributing segments range from dark blue (stronger influence) to light blue (lower influ-
ence) and positive contributions range from light red (lower influence) to dark red (stronger 
influence). Non influential pixels are colored in gray. To respect the definitions of positive 
and negative colors, an inverse color-map is applied for the distance-based approach.

Combining such dual min-max scale for normalization and the inverse color-map for 
visualization, we ensure that the cognitive workload of the end-user watching the explana-
tion’s heatmap is oriented to a unique semantic meaning of positive or negative influencing 
segments. Thus, regardless of the approach being based on similarity or distances, sinex 
outputs the same visual result.

4.5  SINEX support for 2SN and 3SN

The SN architecture comprises two primary components. The first one transforms the 
inputs into an embedding space, while the second component evaluates the proximity of 

Fig. 4  sinex explanation on a 5-way 1-shot classification task on a hand-drawn characters dataset. Top row: 
query sample x followed by the support set samples s1 to s5 from left to right. Bottom row: explanation heat-
maps h1 to h5 corresponding to the s1 to s5 support samples. Samples belonging to the Latin ( s1 ), Oriya ( s4 ), 
and Hebrew ( s5 ) classes exhibit visual similarities. A segment in the top left corner of s5 is identified with 
a negative impact, as s5 would be more similar to the query x in its absence. Best viewed in colors (Color 
figure online)
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the embedded inputs. The first component can either be implemented as a 2-input-branch 
(2SN)  (Koch et  al., 2015) or a 3-input-branch (3SN)  (Hoffer, 2015) network, with the 
branches responsible for input embedding. Once the inputs are embedded, the second com-
ponent assesses their proximity, producing either a similarity or distance score for 2SNs 
and 3SNs, respectively. In our study, we use both 2SNs and 3SNs. 2SNs are explored by 
leveraging their similarity scoring output, which is more commonly described in the litera-
ture. We also consider 3SNs due to their superior discriminative performance compared to 
2SNs, especially in challenging tasks. While 2SNs produce similarity scores, 3SNs gener-
ate distance values. Throughout the manuscript, similarity will refer to an underlying archi-
tecture in the form of 2SNs, while distance will be used for 3SNs. In 2SNs, the query 
input x and the support set instance si are provided to the network, and the changes in the 
similarity score are captured after each si perturbation run. On the other hand, 3SNs take 
three inputs and are typically trained using a Triplet Loss function (Schroff et al., 2015), 
which enforces that dissimilar pairs are separated by a certain margin compared to similar 
pairs. The three inputs for the network are the query instance x, a positive sample x= from 
the same class as the query, and a negative sample x≠ . 3SNs are designed to measure the 
distance score between < x, x= > and < x, x≠ > pairs independently, by means of the same 
distance function and prior to the application of the triplet loss function. This creates a 
point of attachment for our explainers within the 3SNs architecture, which is not necessary 
in 2SN. In order to use sinex within this context, x≠ is disregarded and the support sample 
si is represented by the positive sample x= in the < x, x= > pair distance scoring.

5  Experiments

This section describes the experiments we conducted on five different datasets to validate 
sinex and sinexc, both implemented in Python.2 After presenting the experimental setting 
we report a qualitative and quantitative evaluation of the explanations. Then, we analyze 
sinex and sinexc using both the �=¬ and �=� perturbation procedures. We also compare 
sinex against conventional explainability techniques to assess their capability in identifying 
informative segments within the broader SN architecture. Finally, we further investigate 
positive and negative contribution segments using the novel wPe and wne metrics.

5.1  Experimental setting

We selected five diverse dataset for classification, encompassing two image datasets, 
namely Omniglot (OGT) and Caltech-UCSD Birds 200 (CUB), a time-series dataset known 
as FiftyWords (50W), and two audio datasets, AudioMNIST (AST) and ESC-50 (ESC). Our 
selection of these datasets was guided by the aim of developing few-shot learning models, 
a task that is greatly enhanced by the presence of a large number of classes during training. 
In Table 1 we report a comprehensive overview of the datasets showing the total number of 
records, their data-type, and their dimensions before and after the pre-processing. For con-
sistency across all datasets, we utilized five classes for validation and another five distinct 
classes for testing. Importantly, the testing classes were entirely separate from the training 

2 https:// github. com/ andre afede le/ SINEX.

https://github.com/andreafedele/SINEX
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classes, ensuring a robust evaluation of our models. Details about the datasets and the pre-
processing we performed are available in Appendix A.

We tailored the choice of SN architecture to align with the characteristics of each 
dataset. For AST, ESC, OGT and 50W datasets, following established practices (Koch et al., 
2015; Honka, 2019; Acconcjaioco, 2020; Zhang, 2019), we employed a 2-branched SN 
with slight variations to suit each dataset’s unique features. These 2SNs consist of two 
convolution-based encoders, a distance layer, and a final output similarity scoring layer. 
In contrast, for the CUB dataset, due to the more challenging discriminatory nature (3 
RGB channels), we implemented a 3SN architecture, in line with (Hoffer, 2015). This 3SN 
architecture includes three encoding-branches sharing the same architecture and weights 
between them. It differs from the 2SNs in terms of output and training requirements. 
Specifically, the 2SNs used binary Binary cross-entropy loss for classifying input pairs 
as belonging to the same class (label 1) or different classes (label 0). On the other hand, 
the 3SN used Triplet Loss  (Schroff et  al., 2015) with a margin of 0.5 to encourage a 
clear separation between similar and dissimilar input pairs. More details regarding the 
architectures and training processes can be found in Appendix B.

We evaluated the SN performance by conducting assessments every 100 training epochs 
on 300 randomly generated 5-way 1-shot tasks. In each task, the model’s objective was 
to classify a given query input, denoted as x, by comparing it with each support sample, 
si ∈ S (as described in Sect.  3). Successful classification occurred when the class, yi , of 
the support sample si with the highest similarity score (or lowest distance) matched the 
class of the query input x. Importantly, all evaluations were performed using sets that 
exclusively contained unseen classes, ensuring that no samples from the test classes had 
been encountered during the model’s training. We terminated the training procedure for 
all datasets when the model did not exhibit an improvement in 5-way 1-shot accuracy 
for 10 consecutive evaluation runs. Table  1 shows the mean 5-way one-shot accuracy 
for each dataset, as well as the accuracy on each singular class, to provide a complete 
overview of the model’s performance. Although the goal of this study is not to develop 
the best-performing SN in the given settings, we relied on average accuracy which can be 
considered satisfactory in 5-way 1-shot learning. The final mean accuracy of the SNs used 
in this study is in line, if not better (ESC (Honka, 2019)), than state-of-the-art networks in 
the same setting.

To maintain consistency across experiments, we used a uniform setting for the replac-
ing value (c parameter in Algorithm 1 and Algorithm 2). This involved selecting a silence 
value of −80dB for spectrograms (AST and ESC), a white background for grayscale images 
and coverted time series (OGT and 50W), and a gray RGB color [128, 128, 128] for CUB. 
The segmentation algorithms, referred to as the seg in Algorithm 1 and Algorithm 2, and 

Table 1  Left: characteristics of the datasets and their dimensions before (pre-dims) and after our processing 
(post-dims), with n being the total number of records, and L the number of classes used at training time

Right: individual accuracy for the 5-way 1-shot classification for each class, and the average accuracy

Dataset Type Pre-dims Post-dims n L c1 c2 c3 c4 c5 Avg. acc

OGT Gs-image 105 × 105 105 × 105 × 1 32k 40 .91 .88 .94 .97 .95 .93
CUB Rgb-image 500 × 500 224 × 224 × 3 3,6k 50 .85 .80 .70 .70 .55 .72
50W Time series 270 points 114 × 114 × 1 1k 40 .73 .91 .91 .99 .76 .86
AST Audio 1 sec 224 × 224 × 1 30k 50 .93 .91 .88 .82 .78 .86
ESC Audio 5 sec 128 × 431 × 1 2k 40 .99 .93 .91 .82 .71 .87
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their parameter configurations were selected according to the specific data type. Appen-
dix C provides a detailed description of the procedure that guided us in this selection and 
the parameters chosen for all experiments. Lastly, we set the sinexc � parameter at 200 for 
all experiments. Preliminary tests indicated that increasing this value further did not yield 
any improvement in terms of measured performance and would only negatively impact run 
times. Also, in Appendix G, we show how sinex explanations remain coherent across dif-
ferent sample augmentations, provided that the SN’s performance is not affected by the 
shifting.

5.2  Qualitative evaluation

Figures  1, 5, and  6 showcase examples of sinex explanations on CUB, AST, and 50W, 
respectively.3 We recall the reader that blue areas represent segments of negative influence, 
while red portions indicate segments that positively affect the similarity score outcome. 
Grey areas are instead neutral to the SN classification process.

Fig. 5  sinex
�
 explanation on a 5-way 1-shot task on the AST dataset. Class labels of the test set are com-

posed of one female speaker ( y = 56 ) and four male speakers. Best viewed in colors (Color figure online)

Fig. 6  sinex
�
 explanation on a 5-way 1-shot task on the 50W dataset. Each time-series represents the height 

profile of a written word. Best viewed in colors (Color figure online)

3 Explanation obtained from sinex
�
 on CUB and AST, and sinexc

�
 on 50W. Additional parameters are listed 

in Appendix C.
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Concerning Fig. 1, sinex highlights that the correct classification of the Rose breasted 
Grosbeak class in CUB depends primarily on the bird’s red breast color, while there 
is a possible miss-classification error towards the Summer Tanager class due to their 
similar red body color. This error is more likely to occur when the support set sample 
of the Rose breasted Grosbeak class contains a distant bird, making it difficult for the 
network to identify the red breast, and leading it to rely more on the full red body of the 
Summer Tanager bird. An example of such miss-classification is illustrated in Fig. 11 in 
Appendix E.

Figure 5 shows an example of explanation for AST. The query class represents a male 
produced audio scoring a .93 similarity value for the correct s1 support sample, despite 
triggering both s2 and s5 so to reach .25 and .45 scores respectively. The explanation 
helps in understanding that s1 is mainly composed of positive segments, which have an 
absolute influence bigger than the positive segments of the other two samples. In addition, 
samples s2 and s5 , present spectrogram portions which get marked as negatively impacting 
on the model outcome, therefore decreasing the similarity score value. Using sinex, we 
analyzed several 5-way one-shot tasks for AST and found that correct classifications of 
male/female speaker recordings depend mainly on medium-high/low frequency segments 
respectively, while miss-classifications are primarily due to segments at the opposite end of 
the frequency spectrum. An example of such miss-classification is illustrated in Fig. 13 in 
Appendix E. Additionally, unlike our previous study where �=¬ perturbation procedure is 
discussed (Fedele et al., 2022), we found that setting �=� removes the issue of explanations 
relying on silent areas in spectrograms.

In Fig. 6, we report an explanation of sinex for 50W, which reveals why the SN correctly 
classifies the query class labeled as 35 and highlights possible miss-classifications with 
class 5. The support sample s1 , which belong to the same class of the query sample x, 
achieves a .91 similarity score, thanks to a distinctive up-down-up trend at the beginning 
of the time-series. In contrast, s3 has a more relaxed curve drop that resembles the query 
input, which could lead to miss-classification with class 5. This is a lucky case example 
for s1 , since s3 reaches a very close similarity score of .90. Since y = 35 and y = 5 classes 
are very similar, the form of the query sample is fundamental for the final classification. 
We found that most of the y = 35 time series share the fast up-down-up trend of s1 , but the 
variability of word outlines can make them more similar to other classes. An example of 
such miss-classification is illustrated in Fig. 12 in Appendix E.

5.3  Quantitative evaluation

We evaluated the qualitative significance of the explanations generated by sinex following 
the methodology described in Petsiuk (2018). In particular, we calculated the insertion and 
deletion scores by incrementally adding or removing the most influential pixels identified 
by our explainers, starting from an empty or full object, respectively. We expect the 
insertion curve to exhibit a rapid increase after inserting only a small percentage of relevant 
pixels, resulting in a large insertion-area-under-curve iAUC . Conversely, we expected the 
deletion curve to exhibit a rapid decrease after only a few pixel removals, resulting in a 
small deletion-area-under-curve dAUC . A value close to one for iAUC , or close to zero 
for dAUC indicates that the explainer successfully identifies the important pixels for the 
classification process (Petsiuk, 2018). As a preliminary experiment, we studied the impact 
of � on sinexc. Detailed results are available in Appendix D. Based on these findings, we 
identified the � prioritizing a balance between high iAUC and low dAUC for each dataset 
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and used them in the following experiments. Our selections, is listed in Table 4 in the same 
Appendix. In our evaluation, we included the Gradient-weighted Class Activation (gRad-
cam) and Epsilon Layer-wise Relevance Propagation ( �-LRP) techniques (Selvaraju, 2020; 
Bach et  al., 2015) for comparison. Differently from sinex, gRad-cam utilizes a gradient-
based approach, and it is commonly employed to analyze how convolutional based neural 
networks break down matrix-like inputs  (Moujahid et  al., 2022; Majid et  al., 2022) 
at different convolutional stages. In our study, we use gRad-cam on the last layer of the 
CNN responsible for embedding, as it captures the final attention towards the input. The 
LRP technique explains predictions by back-propagating the outcome through the model 
to assign a relevance score for each layer, employing specifically designed propagation 
rules. In our application of the LRP technique, we utilize the � rule, referred to as �-LRP 
henceforth, with � = 1 , targeting the entire CNN for enriched explainability. While gRad-
cam and �-LRP are established techniques in the literature, they do not provide complete 
explanations for the SN as sinex does, as they cannot be applied on the distance layer. 
Therefore, these methods should not be considered “proper baselines” in the conventional 
sense, but rather comparisons for XAI techniques in the context of few-shot learning. 
The purpose of this comparison is to assess the degree of alignment between the features 
emphasized by the embedding networks and those utilized by the SN in its final scoring 
process. We compared the performance of sinex with its coalition version, sinexc, using 
both �=¬ and �=� perturbation procedures. The rationale for this comparison lies in 
assessing how different perturbation methods affect the explanation generation process. We 
measured the mean iAUC and dAUC values for 150 5-way one-shot tasks per dataset, split 
it into 30 experiments for each of the 5 test classes. The results in Table 2 compare sinex¬ , 
sinex

�
 , sinexc¬ , sinexc� , gRad-cam and �-LRP for the same one-shot tasks. Bold highlights 

the best scores, aiming for high iAUC and low dAUC . Also, Fig. 7 presents the average 
iAUC and dAUC curves for each dataset, showcasing the performance of the different 
explainability algorithm tested.

Our analysis points to �=� as the more effective perturbation procedure. Specifically, 
sinex

�
 outperforms other variations, showing excellent performance on four out of five 

datasets. While its coalition counterpart, sinexc
�
 , surpasses it marginally only in 50W, the 

difference is not significant. For the most part, �=� consistently yields satisfactory iAUC 
and dAUC results. Notably, it excels in CUB and AST, with commendable performance in 
ESC and 50W. Despite having the best dAUC among all datasets, OGT exhibits the poor-
est performance in terms of iAUC , with the lowest value compared to other datasets. This 
could be attributed to the distinctive nature of OGT, featuring black characters on a white 
background. The immediate increase in iAUC is not attained, as, at initial insertion per-
centages, the majority of the sample comprises only the background color. Consequently, 
a substantial number of black pixel insertions is required to convey valuable information 
to the model. This behavior is somehow reflected in 50W, which consists of black lines on 
a white background. Despite having the best dAUC among all datasets (0.14), the iAUC 
value for 50W is the second lowest after OGT. In general, sinexc

�
 does not show any signifi-

cant improvement over sinex
�
 . However, the good performance of sinexc

�
 on 50W suggests 

that coalition-based perturbation techniques could be useful in certain scenarios.
Turning our attention to �=¬ , we observe a decline in performance compared to the 

�=� configuration, affecting both sinex and sinexc. The insertion and deletion curves lack 
the desired abrupt rise and fall, suggesting a less than ideal perturbation approach. This 
observation is consistent with the results of our quantitative � analysis in Appendix  D. 
Similarly to the findings under �=� , we do not observe significant enhancements in iAUC 
or dAUC when sinexc is used in the �=¬ setting. This suggests that to discover a given 
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input-segments contribution to the final outcome, it is much more effective to deactivate 
the segment while maintaining intact the context in which it is included ( �=� ), rather 
than deactivating the whole context to only keep the segment in analysis as active ( �=¬ ). 
This behavior, which aligns with human intuition when evaluating the similarity between 
objects, is mirrored in the �=� perturbation approach of our explainer.

Furthermore, when comparing to the �=� configuration, gRad-cam and �-LRP typically 
demonstrate poorer performance across various datasets. Exceptions include 50W, where 
gRad-cam performs well in both measures simultaneously, and in the cases of OGT-dAUC 
and CUB-iAUC separately. These results indicate that the pixel areas considered interesting 
for the embedding sub-network within the SN architecture, according to gRad-cam and �
-LRP, may not be essential for the SN’s overall scoring. This conclusion is in line with our 
understanding that sinex is designed to provide a comprehensive explanation of the entire 
SN, while gRad-cam and �-LRP are not.

The runtime performance analysis of the compared explainability methods reveals that 
sinex outperforms its coalition version, being 12 times faster across all datasets. This obser-
vation is intuitive, given that sinexc has to navigate through the extra � coalition perturba-
tions. Notably, the perturbation procedure � does not impact the execution time for either 
sinex or sinexc. While the gRad-cam technique stands out as the fastest overall, it comes at 
the expense of the measured performances in terms of iAUC  and dAUC . This efficiency in 
gRad-cam’s runtime is primarily attributed to its gradient-based approach, requiring only 
forward and backward passes through the CNN. On the other hand, sinex and sinexc are 

Fig. 7  Insertions (left) and deletions (right) curves for sinex
�
 on AST, ESC, 50, CUB and sinexc

�
 on 

50W in the first row. Second and third rows respectively display curves for gRad-cam and �-LRP on the 
same datasets (Color figure online)
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perturbation-based approaches, measuring the output difference after a set of perturba-
tions. Such perturbation-based approaches are generally slower than gradient-based ones, 
as confirmed by our experiments. The slowest execution times for both sinex and sinexc 
are observed for the largest dataset CUB (3 channels). Additionally, the increased execution 
times on the CUB dataset can be attributed to its use of a 3SN, which is computationally 
more intensive than a 2-branched SN. This is due to the presence of three duplicated embed-
ding CNNs and three inputs, as opposed to two in the 2SN. Interestingly, sinex exhibits 
similar time performance to the gradient-based technique �-LRP. However, we remark that 
both sinex and sinexc have potential for time-performance improvement. Indeed, in sinex, 
the perturbations of individual segments (Algorithm1, line 7) are independent and could 
be parallelized. Similarly, in sinexc, perturbations of single segments (Algorithm2, line 10) 
could be computed in parallel once � coalitions are generated and shared (Algorithm 2, line 
7). Also, it is important to note that the time-performance is heavily reliant on the segmenta-
tion algorithm seg . Therefore, a preliminary assessments to select an appropriate segmen-
tation algorithm and parameter settings is recommended. In Appendix  C we discuss our 
proposal for selecting the segmentation technique seg for different data types.

Table 2 shows that the optimal configurations for each dataset are sinex
�
 for AST, ESC, 

OGT, and CUB, and sinexc
�
 for 50W. When examining the iAUC curves of sinex or sinexc, 

we observe a consistent and smoother trend across all datasets, differing from both gRad-
cam and �-LRP behavior. The sinex or sinexc iAUC curve display a swift rise in similar-
ity scores, followed by stabilization. Conversely, gRad-cam exhibits slower responses and is 
more prone to perturbations, particularly when a high percentage of pixels is inserted. This 
behavior may arise because the pixels highlighted by gRad-cam as crucial for the embed-
ding process might not accurately represent those essential for SN similarity scoring. For 
instance, consider the AST iAUC  curve in gRad-cam. It experiences a decline as the last 20% 
to 10% of remaining pixels are inserted. However, when the last 10% of pixels, i.e., those 
considered less important by gRad-cam, are inserted, the SN’s similarity score rebounds 
from 0.4 to 1. This suggests that the pixels gRad-cam deems of marginal importance may 
exert a mixed influence, being very negative from the last 20% to the last 10% and very 
positive from the last 10% to the complete picture. Insertion curves for the �-LRP technique, 
generally show a slower rise than gRad-cam ones, but are less prone to perturbation at high 
percentage of pixels insertion. Indeed, in the insertion curves of �-LRP, there is no dataset 
where significant drops and subsequent rises occur after inserting more than 80% of pixels, 
as observed in gRad-cam. However, such slow rise of insertion curves is the slowest in �
-LRP if compared to both gRad-cam and sinex and it is mainly due to the fact that �-LRP 
highlight as the most positive influential pixels areas that are typically at the border of the 
sample semantic value (i.e, the drawn line in OGT and 50W or the audible portion of high dB 
value in audio data). For instance, when applied to OGT, �-LRP highlights as important the 
background pixels that are at the boundaries of the written character, rather than the char-
acter itself. The entire character is considered neutral, leading to an immediate peak where 
approximately 0.5% of the pixels are inserted. Remarkably, even for the worst-performing 
iAUC  curve for the OGT dataset, sinex still outperforms both gRad-cam and �-LRP.

In terms of dAUC , sinex exhibits smoother trends compared to gRad-cam and �-LRP. All 
dAUC  curves, except for ESC, show a rapid drop even before 0.2% of pixels are removed, 
indicating very good performance. On the other hand, gRad-cam only performs well for 
50W and OGT datasets, with poor results for the remaining three datasets, which exhibit a 
much slower drop and are highly susceptible to perturbations at high percentages of pix-
els removed. Deletion curves for �-LRP are not satisfactory either, since they all seem to 
achieve the desired drop only after that 50% of the pixels are removed. The best �-LRP 
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deletion curve is on the ESC dataset, which drops earlier than sinex and stabilizes at lower 
similarity scores. In this case, relevant pixels align with the audible portions of the sample, 
characterized by higher dB values, while the background has minimal influence. Unfor-
tunately, �-LRP explanations for the ESC dataset are quite sparse with both positive and 
negative pixels scattered across the entire spectrum, therefore not conveying clear semantic 
insights. The superior performance of �-LRP on the ESC dataset compared to sinex may be 
attributed to the fact that sinex relies on super-pixel perturbations, potentially overlooking 
smaller, equally important pixels scattered sparsely across the sample. The least favorable 
deletion curve among all tested explainability methods is observed with �-LRP on the AST 
dataset. The curve displays two valleys and one peak when removing 20% to 40% of pixels. 
This suggests that the order of importance returned by �-LRP in this case may not align 
with the actual pixel importance within the samples.

In general, �-LRP performs worse in terms of both iAUC  and dAUC  compared to 
gRad-cam. Furthermore, while gRad-cam achieves acceptable results only for 50W, �-LRP 
consistently fails to exhibit high iAUC  and low dAUC  simultaneously. Our quantitative 
analysis indicates that sinex performs exceptionally well when combined with the �=� 
perturbation approach. This not only enhances its explanatory capabilities but also makes it 
a suitable choice for real-time applications requiring swift model explanations.

5.4  Dependence between positive and negative segments

We delved into an exploration of the dependence between positive and negative contrib-
uting segments within sinex. The motivation behind this choice arises from the observa-
tion that sinex demonstrates smoother iAUC  and dAUC  curves than �-LRP, implying a 
more precise assessment of the importance order of various segments. Unlike sinex and �
-LRP, gRad-cam does not identify positive and negative contributing pixels and is therefore 
excluded from this analysis. Specifically, we aimed to discern whether positive segments 
derive their positive influence solely from the presence of their negative counterparts, or if 
the reverse holds true. To investigate this, we introduced two novel metrics, wPe and wne, 
building upon the insertion and deletion processes outlined in Petsiuk (2018). wPe, short 
for Whole input ⟷ Positive only segments  ⟷ Empty input , involves a two-step deletion 
process and a two-step insertion process. The deletion process commences with the entire 
input and progressively removes negative segments to obtain an intermediary state contain-
ing only positive segments. Subsequently, all positive segments are removed to arrive at an 
empty sample. In contrast, the insertion process starts with an empty input and introduces 
positive segments followed by negative ones to restore the original input. Conversely, wne 
stands for Whole input ⟷ Negative only segments  ⟷ Empty input . In this scenario, the 
intermediary state requires solely negative segments, and the deletion process begins with 
the whole input, removing positive segments first and subsequently eliminating the remain-
ing negative segments. The insertion process starts with an empty sample and introduces 
negative segments followed by positive segments to reconstruct the original input. In our 
insertion and deletion framework, we always add or remove segments from the most to 
the least influential at each intermediary step, regardless of whether we are using wPe or 
wne. The idea is that by analyzing the area under the curve at each intermediary step, we 
can better determine the dependence between positive and negative segments. The areas 
under the curve are referred to as dAUCX

w
 and iAUCX

w
 indicating the deletion/insertion 

of negative segments for X = N , or positive segments for X = P , and w ∈ {WPE,WNE} . By 
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examining these areas, we can gain insight into the individual impact of positive and nega-
tive samples during both the deletion and insertion processes.

Building on the best-performing sinex/sinexc settings from our prior analysis, we 
conducted 300 experiments for each dataset, including CUB, 50W, and AST. These 
experiments were categorized into thirty correct and thirty incorrect 5-way one-shot 
tasks for each of the five test classes. We remind the reader that a correct classification 
occurs when the class yi of the support sample si , which achieves the highest/lowest 
similarity/distance score, matches the class of the query input x. Otherwise, an incorrect 
classification occurs. These experiments differ from previous ones for two main reasons. 
Firstly, we measure the resulting area-under-the-curve separately for positive and negative 
contributing segments, following a specified order (Whole input ⟷ Positive only 
segments ⟷ Empty input for wPe and Whole input ⟷ Negative only segments ⟷ 
Empty input for wne). In contrast, previous experiments considered the order of positive 
segments first and then negative segments, regardless of insertion or deletion procedures. 
Notably, the insertion procedure for wPe and the deletion procedure for wne remain 
consistent with the previous experiments. Secondly, these experiments include tasks of 
miss-classification, whereas previous experiments only focused on correct classifications. 
Our results, presented in Table 3, showcase mean area-under-curve values, demonstrating 
consistent outcomes across datasets and between correct and incorrect classification tasks 
within the same dataset. This consistency implies the robustness of the segments identified 
by sinex, capable of pinpointing both true positive and true negative influencing segments, 
irrespective of the classification accuracy. In Fig.  8, we present the mean wPe and wne 
insertion and deletion curves for CUB, reflecting the results from 300 5-way one-shot tasks. 
Comparable curves for 50W and AST are provided in Appendix F.

Our observations for wPe reveal high dAUCNwpe and low dAUCPwpe values, signifying 
that removing only negative segments initially does not lead to a curve drop and instead 
elevates the predicted similarity scores, aligning with the definition of negative segments in 
Sect. 4. Subsequent removal of positive segments causes the desired curve drop, reflected 
in low dAUCPwpe . On the contrary, the addition of important positive segments results 
in high iAUCPwpe and an immediate curve increase. The curve typically stabilizes or 
experiences a minor increase after the introduction of negative segments, as indicated by 
iAUCNwpe . In contrast, the results for wne exhibit an immediate drop in low dAUCPwne 
as soon as positive segments are removed. The curve may stabilize, increase, or decrease 
when negative segments are removed, as shown by dAUCNwne , implying that negative 

Table 3  Deletion and insertion area-under-the-curve (AUC) for wPe and wne for CUB, 50W and AST on 
both correct and incorrect 5-way one-shot classification tasks

↑ , ↓ indicate if a measure is preferred to be high or low, respectively

wPe wne

Classification dAUCN ↑ dAUCP ↓ iAUCP ↑ iAUCN ↑ dAUCP ↓ dAUCN ↓ iAUCN ↓ iAUCP ↑

CUB Correct .988 .169 .958 .898 .078 .197 .104 .906
Incorrect .967 .245 .892 .847 .106 .161 .155 .906

50W Correct .944 .128 .729 .842 .140 .018 .052 .645
Incorrect .829 .099 .625 .585 .120 .015 .072 .639

AST Correct .965 .221 .736 .871 .083 .151 .107 .627
Incorrect .930 .296 .714 .696 .081 .133 .087 .625
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segments do not exhibit a clearly defined behavior or a strong influence when they are the 
sole segments present in the sample. The behavior is also evident in dAUCNwne curves 
for 50W and AST, presented in Figs. 14 and 15 in Appendix F. Low iAUCNwne further 
supports this aspect, demonstrating an immediate curve rise as soon as positive segments 
are inserted, as indicated by high iAUCPwne.

In summary, these findings suggest that negative segments rely on positive ones, while 
positive segments operate independently of the negative ones. Combining sinex and the 
dependence analysis, developers can be better guided in refining the training of SNs. If 
positive segments are independent and have the greatest influence on the classification, and 
a miss-classification is caused by positive segments, there might be the need of fine-tuning 
the corresponding features that these segments focus on, i.e., the red color of the bird’s 
breast. However, retraining on areas indicated by negative segments may not be necessary 
since they do not have a strong impact.

6  Discussion

The qualitative evaluation of the explanations demonstrates that sinex is effective in 
uncovering limitations that SNs might encounter. For example, it can reveal the erroneous 
dependence of the model on specific colors in the case of RGB images or pixels for 
grayscale images that should not be considered as important features. For instance, we can 
consider the model’s reliance on the red color in the in the CUB dataset presented examples. 
To address this issue, a potential approach might consist in training the SN using color 
masks selected through sinex on the training samples to avoid such biases. Additionally, 
augmentation techniques, such as rotating the training samples, can be effective in 
preventing the development of strong associations between a class and a specific image 
region, like the bird’s breast, which may appear in different locations across various 
samples. These suggestions, which stem from a post-hoc sinex-guided analysis, can be 
addressed in two ways. The first approach involves retraining the SN from scratch with an 

Fig. 8  Deletion (left) and insertion (right) curves for wPe (top row) and wne (bottom row) procedures on 
the CUB dataset. Blue colored portions indicate the removal or insertion of negative segments. Red colored 
areas represent positive segments. Best viewed in color (Color figure online)
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augmented version of the original training set. The second approach is a subsequent fine-
tuning phase using an additional dataset that targets the limitations highlighted by sinex, 
such as augmented samples and color masks. In both cases, sinex can guide in deciding the 
augmentation technique to use.

The quantitative evaluation using iAUC and dAUC scores is an effective method for 
assessing the explainer’s performance. This approach might reveal, for instance, potential 
weaknesses that SNs may encounter when working with grayscale images. The OGT and 
50W datasets exhibited the lowest iAUC  values, scoring 0.42 and 0.70, respectively, while 
both achieved the highest dAUC score of 0.14. These results suggest that the explainer 
can indeed identify important pixels, as removing them individually leads to a decrease 
in deletion scores. However, introducing only a small portion of important pixels onto a 
white background still hinders the SN from achieving the expected high similarity score. 
This behavior may indicate that grayscale images pose a more challenging task for SNs, 
or additional training may be necessary. For instance, in the OGT dataset, training samples 
could be augmented by generating unfilled character outlines. This augmentation phase 
would enable the network to learn character shapes while emphasizing the concept of 
a prominent white background. By doing so, the SN can not only capture the complete 
character shape but also consider that the background has a significance.

While sinex serves as a valuable tool for comprehending why SNs classify a query 
sample with specific labels, its explanations remain localized, addressing each C-way 
k-shot independently. Therefore, human examination is necessary to integrate sinex 
explanations and gain a broader understanding of the network’s behavior. With respect to 
its current stage, it is left to human-agents to go through different explanations to gain a 
more global insight of the network’s behavior. Explainability is crucial for establishing trust 
in few-shot learning models, ensuring their safe deployment in real-world applications. For 
example, we can consider the context of a few-shot learning intrusion detection system for 
railway video surveillance, as examined in  Gong et al. (2021). While the authors did not 
develop it using SNs, such an approach remains entirely feasible. In such a scenario, sinex 
can help evaluate the system’s robustness. For instance, consider a situation where miss-
classifications of night intruders are associated with shadows in the pixel area related to the 
sky. Through a sinex analysis of the system’s classifications, segments of pixels related to 
these shadows might be revealed. Upon human evaluation of sinex explanations, a decision 
may be made that it is not safe to deploy the system in its current state.

7  Conclusion

We have introduced sinex, a local data-agnostic post-hoc explainer for Siamese Networks 
able to process images, time-series and audio inputs in the context of C-way k-shot learn-
ing. By using a perturbation-based approach, both sinex, and its coalition version sinexc, 
are able to identify the important areas for SN classification, covering both positive and 
negative contributing features. sinex enabled us to discover some of the limitations that 
SNs might encounter during their classification process, such as the significance of colors 
(on RGB images) or specific pixels areas (on grayscale images) that should not be con-
sidered important. Therefore, sinex provides an effective tool to highlight such limitations 
and guide a subsequent model re-training phase. Finally, the proposed wPe and wne met-
rics have allowed us to verify the independence of positive influencing segments and the 
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robustness of positive and negative segments on all datasets, regardless of both correct and 
incorrect classifications.

Future research directions will focus on various aspects. First, since a limitation of sinex 
is that it can only study the SN behavior locally on each few-shot task, requiring human 
oversight in multiple analyses of different tasks to get a comprehensive understanding of 
the network’s global behavior, inspired by Setzu et al. (2021) we aim at proposing a local-
to-global abstraction of the logic learned by SN. Second, by combining sinex explanations 
with wPe and wne, we would like to identify those tasks and behavior that go against the 
verified segment dependence and might reveal miss-classifications. Third, we would like 
to leverage the level of the explanations by linking the influencing positive and negative 
segments on the support set with positive/negative segments on the query image. Finally, 
we plan to conduct an extrinsic interpretability evaluation of sinex explanations through 
a human decision-making task driven by its explanations. This will help us objectively 
evaluate the effectiveness of our explanations.

Appendix A: Datasets

Omniglot (OGT) is a Grayscale image dataset containing 1623 different handwritten 
characters from 50 different alphabets, with each character drawn by 20 different people. 
“Background” alphabets are usually employed for training purpose, while “evaluation” 
alphabets are only used to test the model performance. In our study, background and 
evaluation alphabets were considered as a unique set, from which 40 training alphabets, 
5 validation alphabets and 5 test alphabets were drawn randomly. For this dataset, we 
pursued a character recognition task.

The Caltech-UCSD Birds 200 (CUB) dataset counts 200 different classes, each con-
taining from 41 to 60 RGB image samples per class with varying dimensions between 
[120, 500] for height and [121, 500] for width. In our study, we decided to randomly pick a 
total of 60 classes by filtering on those containing at least 60 image samples per class (the 
maximum) to be consistent with the other datasets train/val/test set split. By doing so, we 
reduced the number of total records from 12k down to 3,6k. Therefore, for CUB we have 
again 50 classes used for training, while the remaining 10 were split equally between vali-
dation and test set. We resized each RGB image so to result in height and width dimensions 
of 224 × 224.

The FiftyWords (50W) dataset  (Rath & Manmatha, 2003) consists of word outlines 
taken from the George Washington library, with each case representing a word and a series 
formed by taking the height profile of the word. We generated gray-scale images from each 
series by using a line-width that resembled a pixel density similar to the OGT data-samples, 
resulting in images dimension of 114 × 114 . The 50 classes were divided as 40 for train, 5 
for validation and 5 to test the model. We used this dataset to pursue a word recognition 
task.

The AudioMNIST (AST) dataset comprises 30k recordings of spoken digits (0–9) 
in English. Each digit is repeated 50 times by 60 different speakers (12 females and 48 
males). We used this dataset to pursue a speaker recognition task creating three disjoint 
sets: the training set was composed of 50 classes, while the remaining 10 were divided 
equally between validation and test set. For the ESC-50 (ESC) dataset, which consists of 
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2k annotated 5-second audio clips belonging to 50 different classes with 40 repetitions 
per class, we performed a environmental audio classification task. We used 40 classes 
for training, 5 for validation, and 5 for testing. Both datasets were pre-processed with 
librosa4 to extract their log-mel spectrogram representation, which is commonly used 
for audio classification tasks  (Hershey, 2017; Piczak, 2015). AST tracks were down-
sampled to 41kHz and zero-padded, so to have vectors of equal length. Then, each track 
was converted using an FFT window size of 4096, hop length of 197 samples, and 224 
mel-bands. The dimension of resulting spectrograms was of 224 × 224.

For the ESC dataset, the tracks were converted using a FFT window size of 2048, hop 
length of 512 samples, and 128 mel-bands. The spectrogram resulting dimension in this 
case was of of 128 × 431.

Appendix B: Siamese network architectures

In line with Koch et al. (2015); Honka (2019); Acconcjaioco (2020); Zhang (2019), we used 
a 2-branched SN architecture for AST, ESC, OGT and 50W datasets, with slight variations 
among them. The overall structure consists of two convolution-based encoders, a distance 
layer, and a final output scoring layer. The two encoders share the same architecture and 
weights, which are updated simultaneously during training to result in identical embedding 
sub-networks. Each encoder is composed of different 2D-convolution blocks followed 
by a max-pooling layer, and a fully connected layer that converts the encoded-input to a 
1-dimension form. The two encoded inputs are then compared using a distance layer, and a 
fully connected layer with a single unit uses a sigmoid activation function to calculate the 
similarity score. For AST, ESC and OGT, the encoders have three 2D-convolution blocks 
with 64, 32, 12 filters, and kernel sizes 5 × 5 , 5 × 5 , 3 × 3 , respectively. The fully connected 
layer consists of 4096 units, and the distance function we used is the Euclidean distance 
for AST and ESC, and Manhattan distance for OGT. For 50W, the architecture has four 
2D-convolution blocks with 128, 64, 32, 16 filters, and kernel sizes of 3 × 3 per block. Like 
for the other networks, the fully connected layer has 4096 units, and the Euclidean distance 
is used.

For the CUB dataset, we implemented a 3-branched SN architecture in line with Hoffer 
(2015), which includes three encoding-branches that shares the same architecture and 
weights between them. Each encoder has three 2D-convolution blocks with 64, 32, 16 
filters, and kernel sizes 3 × 3 for all blocks, and a final fully connected layer of 4096 units. 
The distance function in this case is the Sum of Squares. This 3SN architecture differs 
from the previously described 2SN networks in terms of its output and training phase 
requirements. Unlike the 2SNs, which directly output a similarity score between the two 
inputs in the range of [0, 1], the 3SN outputs two distances: one between the query input 
x and a positive sample x= , and the other between x and a negative sample x≠ . We trained 
2SNs to recognize whether a given input pair belongs to the same class (label 1) or different 
ones (label 0) with the Binary cross-entropy loss function. In contrast, the 3SN was trained 
using the Triplet Loss (Schroff et al., 2015) with a margin of 0.5, with the goal of pushing 
dissimilar pairs farther from similar pairs by at least a margin of 0.5.

4 librosa: https:// libro sa. org/.

https://librosa.org/
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We adopted the Adam optimizer to train all five networks. The SNs performances were 
evaluated every 100 training epochs on 300 random 5-way 1-shot tasks. For further details 
on how SNs are trained, including the ones used in this study, please refer to Koch et al. 
(2015); Wang (2020).

Appendix C: Segmentation algorithms

sinex employs an internal segmentation algorithm to generate segments for subsequent per-
turbation. The segmentation algorithms supported by sinex via the scikit-image5 Python col-
lection are: Quickshift, Felzenszwalb, Watershed, SLIC, and maskSLIC. We do not delve into 
the specific details of each algorithm here, as comprehensive descriptions are available in the 
official documentation. However, we outline the suggested approach for selecting the seg-
mentation algorithm that best suits a given application. First and foremost, when selecting the 
algorithm, it is essential to strike a balance between (i) identifying segments that effectively 
capture the input features with semantic significance and (ii) ensuring that the total number 
of segments remains computationally manageable. The number of segments should be rea-
sonable, allowing sinex to compute efficiently within the available resources. We recommend 
beginning the process with a visual inspection of how different segmentation algorithms are 
applied to a given dataset. This visual inspection helps in gaining a better understanding of the 
algorithms and their suitability for each specific application. By visual inspection, it is pos-
sible to identify algorithms that may not be suitable or worthwhile for further investigation, 
allowing their exclusion from internal use within sinex. In Fig. 9, we provide examples of the 
application of the various tested segmentation algorithms on both the CUB and OGT datasets. 
In our specific cases, we observed that Quickshift and maskSLIC performed better at segment-
ing areas of interest in the two datasets, respectively. However, we found that Watershed and 
SLIC tended to create equal square-like segments, failing to capture interesting pixel areas in 

Fig. 9  Top row displays a sample from the CUB dataset alongside the corresponding segments obtained 
using different segmentation techniques from left to right: Quickshift, Felzenszwalb, Watershed, SLIC, and 
maskSLIC. The bottom row illustrates segments generated for a OGT dataset sample. Blue boxes indicate 
our chosen techniques for each of the two datasets. Parameters setting for the different algorithms are the 
following: Quickshift: {kernel size:1, max dist: 3, ratio: 0.5}; Felzenszwalb: {scale:1, sigma: 0.5, min size: 
100}; Watershed: {markers:250, compactness: 0.01}; SLIC: {n segments:10, compactness: 100, sigma: 1, 
start label:1}; MaskSLIC: {n segments:10, compactness: 100, sigma: 1, start label:1  mask: {small objects 
min size: 200, small holes area threshold: 500}. Best viewed in colors (Color figure online)

5 https:// scikit- image. org/.

https://scikit-image.org/
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our datasets. Therefore, we excluded them from our experiments on these datasets. Indeed, 
these algorithms are better suited for samples where distinct objects within the same image 
require clear separation, as suggested in the documentation.

Moreover, it is worth mentioning that each algorithm’s performance can vary depending 
on different settings and configurations. Therefore, it is advisable to conduct various tests with 
different configurations before applying sinex. It is also important to note that, in some cases, 
certain segmentation algorithms may be easily disregarded from this investigation as they 
fail to segment areas of interest, i.e., Watershed and SLIC in Fig. 9 for both CUB and OGT. 
We designed sinex by drawing inspiration from established explainability techniques such as 
LIME, which also integrates segmentation algorithms with predefined settings. Consequently, 
we offer the flexibility to customize the choice of algorithm and its configuration to align with 
diverse application needs. As a starting point, we recommend selecting the algorithm through 
visual inspection.

In our experiments, we selected the following segmentation algorithms and set their 
additional parameters based on different preliminary experiments that allowed us to have a 
reasonable number of semantically meaningful segments to work with. For AST and ESC, 
we use the Felzenszwalb segmentation algorithm with a common setting of sigma = 0.5 
and scale = 1 parameters. However, we use min_size = 600 for AST and min_size = 900 
for ESC. The MaskSLIC algorithm segments OGT and 50W datasets, with a common setting 
of sigma = 1 and compactness = 100 , but varying with n_segments = 10 for OGT and 
n_segments = 20 for 50W. For CUB dataset inputs, we use the Quickshift segmentation 
algorithm with kernel_size = 3 , max_dist = 60 , and radio = 0.5.

Appendix D: SINEXC per‑coalition active segments analysis

To examine the impact of the � parameter on the performance of sinexc, we conducted 
an experiment measuring iAUC and dAUC values while varying � in the range of 
[0.0,  1.0] with a step of 0.1. We recall that � represents the percentage of segments 

Fig. 10  Mean iAUC (on the left) and dAUC (on the right) values for sinexc¬ (first row) and sinexc
�
 (second 

row), varying � per-coalition percentage of segments. Best viewed in colors (Color figure online)
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that remain active or are “silenced” during the perturbation procedure, together with 
the segment under examination (see Sect. 4). For example, if � = 0.2 and � = ¬ , each 
additional coalition of sinexc will keep an additional 20% of random segments active 
with the segment under examination. On the other hand, if � = � , each coalition will 
replace with non-informative values not only the segment in exam, but also an addi-
tional 20% of random selected other segments. We only considered 5-way 1-shot tasks 
with correct classifications for this experiment, and we kept the sinexc � parameter 
at 200 for all experiments. Figure 10 shows the resulting iAUC and dAUC mean val-
ues for each dataset. Recalling that we want high iAUC and low dAUC simultaneously, 
our experiments show that the � parameter has not significant impact on the iAUC 
and dAUC values, except when paired with the � = � perturbation procedure. Indeed, 
sinexc

�
 curves expose an interesting behavior since increasing � value resulted in a 

decreasing iAUC trend and an increasing dAUC trend, simultaneously. This behavior is 
shared among all datasets, except CUB, which despite an outperforming iAUC score, its 
same curve seemed to be stable and did not seem to be influenced by the � parameter 
at all. However, the same behavior is not observed for sinexc¬ , which mostly results in 
poor iAUC and dAUC . The iAUC curves do not show any significant variation on dif-
ferent � values, and the dAUC curves only showed a slight decreasing trend for ESC 
and AST. Although the general performance for these two datasets is poor for high val-
ues of � , they perform better (lower dAUC ) as we approach keeping the entire sample 
active during the perturbation procedure (i.e., close to � = 1.0).

Based on these findings, we identified the optimal � for each dataset and used them 
in experiments described in Sect. 5. Our selections, which prioritized a balance between 
high iAUC and low dAUC , are listed in Table 4. It is worth noting that the best � for 
sinexc¬ span a wide range of [0.1, 0.9], while for sinexc

�
 they are much smaller, ranging 

only between [0.1, 0.3]. This suggests that � has less influence on the first perturbation 
procedure and that increasing the percentage of additional segments considered in each 
coalition may lead to worse performance for the second perturbation procedure (i.e., 
determining each segment contribution by considering the whole sample every time). 
This experiment, beside assessing � influence on sinex, turned out to be a preliminary 
comparison of the two � perturbation procedures as well. Our results show that sinexc

�
 

is the better perturbation methodology, especially for the CUB, AST, ESC, and 50W 
datasets. In contrast, sinexc¬ resulted in insertion and deletion curves that did not pre-
sent an immediate raise or a instant drop respectively, which suggests that this method 
may not be able to accurately identify the important contributing segments. We suspect 
that sinexc¬ tends to consider all segments to be equally important, since it deletes a sig-
nificant amount of information at each perturbation step.

Table 4  The table shows the best 
performing � for sinexc¬ and 
sinexc

�
 , along with the resulting 

iAUC and dAUC for each dataset

sinexc¬ sinexc
�

� iAUC dAUC � iAUC dAUC 

OGT 0.2 0.3 0.25 0.2 0.44 0.11
CUB 0.1 0.51 0.85 0.3 0.96 0.22
50W 0.3 0.32 0.41 0.1 0.71 0.16
AST 0.5 0.5 0.46 0.2 0.73 0.17
ESC 0.9 0.68 0.51 0.1 0.89 0.30
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Appendix E: Additional qualitative evaluation

Examples of sinex explanations for miss-classifications on the CUB, 50W, and AST datasets 
are illustrated in Fig. 11,  12 and 13 respectively. In Fig. 11, the Rose breasted Grosbeak 
sample ( s1 ) is miss-classified as a Summer Tanager sample s3 , due to the bird in s1 being far 
and obscured by tree leaves, while the bird in s3 is in the foreground. The explanation ( h3 ) 
shows that the SN is mainly relying on the red color, rather than learning to discriminate 
between the birds themselves. In Fig. 12, the miss-classification on 50W occurs because 
the query sample x is more similar to samples belonging to class y = 5 due to the pres-
ence of the up-down-up trend (positive segment in h3 ). However, the s1 support set sample, 
belonging to the same class as the query sample, presents a poor visible curve hump and 
a low final pick, which leads to its miss-classification as s3 . Finally, Fig. 13 shows a miss-
classification example of woman generated recording ( s1;y = 56 ) as a male recorded audio 

Fig. 11  sinex
�
 explanation of a miss-classified 5-way 1-shot task on the CUB dataset. c1 (Rose breasted 

Grosbeak) is miss-classified for c3 (Summer Tanager). Best viewed in colors (Color figure online)

Fig. 12  sinex
�
 explanation on a 5-way 1-shot task on the 50W dataset. y = 35 is miss-classified for y = 5 . 

Best viewed in colors (Color figure online)
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( s2;y = 46 ). The miss-classification occurred because the model relied too heavily on the 
lower frequency range in h1 and placed too much importance on higher frequencies in h2.

Appendix F: WPE‑WNE analysis

The wPe and wne analysis resulted in the same curve behavior for all dataset we experi-
mented with, indicating that negative segments depend on positive ones, while the posi-
tives have a greater overall influence and are independent. In the cases where positive 
samples are independent the following results should be verified. The deletion of positive 
segments first results in a drop in the curve, while removing segments starting from nega-
tive ones does not result in such a drop ( dAUCNwpe ≫ dAUCPwpe ). Additionally, remov-
ing positive segments results in a drop in the curve, even after negative segments have 

Fig. 13  sinex
�
 explanation of a miss-classified 5-way 1-shot task on the AST dataset. y = 56 is miss-classi-

fied for y = 46 . Best viewed in colors (Color figure online)

Fig. 14  Insertion (left) and deletion (right) curves for wPe (top row) and wne (bottom row) procedures on 
correct and incorrect classifications in the 50W dataset. Blue colored portions indicate the removal or inser-
tion of negative segments. Red colored areas represent positive segments. Best viewed in color (Color fig-
ure online)



7754 Machine Learning (2024) 113:7723–7760

1 3

been removed, while removing negative segments alone keeps the curve small and sta-
ble ( dAUCPwpe ≃ dAUCNwpe ). Furthermore, the insertion of positive segments leads to an 
immediate raise in the curve compared to the insertion of negative segments into an empty 
sample ( iAUCPwpe ≫ iAUCNwpe ). Finally, adding negative segments after positive ones 
maintains the curve at high similarity scores, which can be achieved by an immediate raise 
in the curve from the addition of positive segments even after negative ones have been 
inserted ( iAUCNwpe ≃ iAUCPwpe ). Figure 14 and 15 show the wPe and wne curve for 50W 
and AST datasets respectively.

Appendix G: Shifted support sets analysis

To assess the influence of support set composition on both SN and sinex performance, 
we report additional experiments comparing their performance with the standard sup-
port set against various shifted versions of the support set. We emphasize that we did not 
retrain the SNs on data augmented versions of the dataset, considering the shifted records. 
Instead, we conducted experiments using support sets with shifted records. The shifting 
procedure involves displacing the sample’s content along the x and y axes. Specifically, 
we used x = y = 20 , resulting in four shifting labels: (−x,−y) , (x,−y) , (−x, y) , and (x, y). 
These shifting operations in 50W, involve moving the actual drawn time-series from its 
original position to the top-left (−x,−y) , top-right (x,−y) , bottom-left (−x, y) , and bottom-
right (x, y) areas of the image. Figure 16 illustrates the application of such shifting and the 
corresponding sinex explanations for class label 23. Additional examples are provided for 
class 47 and 31 in Fig. 18 and Fig. 19, respectively. In general, sinex explanations consist-
ently highlight important contributing segments within the same pixel-areas of the drawn 
time-series, regardless of the applied shifting procedure. This consistency is evident when 
comparing non-shifted samples to (−x, y) and (x, y) shifted samples in Fig. 16 and Fig. 18, 
as well as non-shifted samples to (x, y) shifted samples in Fig. 19. For these cases, sinex 

Fig. 15  Insertion (left) and deletion (right) curves for wPe (top row) and wne (bottom row) procedures on 
correct and incorrect classifications in the AST dataset. Blue colored portions indicate the removal or inser-
tion of negative segments. Red colored areas represent positive segments. Best viewed in color (Color fig-
ure online)
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Fig. 16  Shifted support set examples in the 50W dataset, class label 23. Top row consists of the query sam-
ple x followed by the original support set sample (no shift applied) belonging to the same class as x. Then 
from left to right the shifts are: (−x,−y) , (x,−y) , (−x, y) , and (x, y). The bottom row displays sinex explana-
tions for both the original and each shifted version of the support sample. Here, x = y = 20 . This layout 
is repeated for all other shifted support sets examples in this section. Best viewed in color (Color figure 
online)

Fig. 17  Insertions (left) and deletions (right) curves for sinex
�
 on the 50W dataset. Mean values across the 5 

different test classes are compared between the original support set (no shift) and shifted support sets with 
the content shifted across the x and y axis. Here x = y = 20 . Best viewed in colors (Color figure online)

Table 5  Mean iAUC  and dAUC  
for sinex

�
 on the 50W dataset

The label “no shift” denotes the performance of the original support 
sets, while the following rows represent shifts in the content of the 
support set along the x and y axes. Here, x = y = 20 . The table also 
presents the mean similarity score and the standard deviation between 
the query sample and the support set sample of the same class

iAUC dAUC Mean ± std

no shift 0.70 0.15 0.90 ± 0.07
(−x,−y) 0.52 0.24 0.48 ± 0.47
(x,−y) 0.46 0.12 0.17 ± 0.35
(−x, y) 0.69 0.28 0.81 ± 0.37
(x, y) 0.68 0.17 0.81 ± 0.37
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identifies the same segments as positive contributions to the final similarity score, albeit 
with varying degrees of importance. However, when applying the (−x,−y) and (x,−y) , they 
are sufficient to deceive the SN, while sinex identifies these regions as negatively influenc-
ing. This behavior is consistent across all presented examples.

We present the quantitative evaluation results for 50W in Table 5, including mean iAUC 
and dAUC . We also calculate the mean similarity predicted score and standard devia-
tion between the query sample x and the sample from the support set that belongs to the 
same class as x. The experimental setup mirrors the one used in the quantitative evaluation 
(Sect. 5), resulting in 150 5-way one-shot tasks per dataset, divided into 30 experiments for 
each of the 5 test classes. We compare the performance of each 5-way one-shot tasks using 
the original samples and after applying the four described different shifting processes to 
the support set samples. The mean insertion and deletion curves for this setting are illus-
trated in Fig. 17.

The best results are achieved on non-shifted support sets, characterized by high iAUC 
and low dAUC simultaneously. This indicates that the SN considers query samples x 
and support set samples from the same class to be very similar, and sinex effectively 
identifies the important segments for similarity scoring. However, when support set 
samples are shifted, performance degrades. Regardless of the shift dimension, the mean 

Fig. 18  Shifted support set example in the 50W dataset; class label 47. Here x = y = 20 (Color figure 
online)

Fig. 19  Shifted support set example in the 50W dataset; class label 31. Here x = y = 20 (Color figure 
online)
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similarity score decreases, and the standard deviation increases significantly, ranging 
from 0.35 to 0.47. This suggests that the SN struggles with sample shifting, reinforcing 
the need for SN fine-tuning on data-augmented samples to ensure robust performance. 
The worst performing shifts are (−x,−y) and (x,−y) (negative shift on the y axis), which 
is reflected in their iAUC  and dAUC  curves. The iAUC  curve for these negative shifts 
on the y-axis drops after 60% of pixels are inserted, reducing similarity scores to near 
zero. Also, the dAUC  curves for these same negative shifts on the y-axis do not exhibit 
the expected drop; instead, they start with a low similarity mean score and show a slight 
increasing trend upon pixel removal. Conversely, the shifting procedures (−x, y) and 
(x, y) yield mean similarity scores of 0.81, which closely approach the scores of non-
shifted support sets. Although there is still a relatively high standard deviation, these 
results demonstrate the SN’s ability to perform satisfactorily in these scenarios. This is 
also reflected in the sinex iAUC and dAUC values. The insertion and deletion curves for 
these shifting procedures closely resemble those of the non-shifted support sets. This 
suggests that when the SN achieves robust classification, sinex becomes a valuable tool 
for identifying the crucial segments contributing to these outcomes.

In conclusion, our analysis underscores the importance of additional fine-tuning for 
the SN or an enhanced training procedure that incorporates data-augmented samples. 
Specifically in 50W, it is critical to train the network using samples shifted negatively 
along the y-axis. The utilization of sinex provides valuable insights. Notably, the regions 
of interest for a query image and a support set sample remain consistent even when 
shifting is applied. This indicates the SN’s effectiveness in identifying discriminative 
segments across unseen classes during training. sinex explanations can be instrumental 
in guiding the generation of augmented samples for further fine-tuning or retraining. 
For instance, in 50W it signals the need for fewer samples with positive y-axis shifts 
and more samples with negative y-axis shifts. This observation is primarily due to the 
decline in mean similarity scores, but it is reinforced by the fact that sinex effectively 
identifies the segments that result in high iAUC and low dAUC values concurrently.
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