
Neurocomputing 597 (2024) 127960

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Drifting explanations in continual learning
Andrea Cossu a,∗, Francesco Spinnato b,c, Riccardo Guidotti a,c, Davide Bacciu a

a University of Pisa, Largo B. Pontecorvo, 3, Pisa, 56127, Italy
b Scuola Normale Superiore, Piazza Cavalieri, 7, Pisa, 56127, Italy
c ISTI-CNR, Via Giuseppe Moruzzi, 1, Pisa, 56124, Italy

A R T I C L E I N F O

Keywords:
Continual learning
Explainable AI
Lifelong learning
Recurrent neural networks

A B S T R A C T

Continual Learning (CL) trains models on streams of data, with the aim of learning new information without
forgetting previous knowledge. However, many of these models lack interpretability, making it difficult to
understand or explain how they make decisions. This lack of interpretability becomes even more challenging
given the non-stationary nature of the data streams in CL. Furthermore, CL strategies aimed at mitigating
forgetting directly impact the learned representations. We study the behavior of different explanation methods
in CL and propose CLEX (ContinuaL EXplanations), an evaluation protocol to robustly assess the change of
explanations in Class-Incremental scenarios, where forgetting is pronounced. We observed that models with
similar predictive accuracy do not generate similar explanations. Replay-based strategies, well-known to be
some of the most effective ones in class-incremental scenarios, are able to generate explanations that are
aligned to the ones of a model trained offline. On the contrary, naive fine-tuning often results in degenerate
explanations that drift from the ones of an offline model. Finally, we discovered that even replay strategies
do not always operate at best when applied to fully-trained recurrent models. Instead, randomized recurrent
models (leveraging on an untrained recurrent component) clearly reduce the drift of the explanations. This
discrepancy between fully-trained and randomized recurrent models, previously known only in the context of
their predictive continual performance, is more general, including also continual explanations.
1. Introduction

Continual Learning (CL) [1,2] studies the challenges of training
models in dynamic environments, where the data distribution drifts
over time. When trained sequentially on non-stationary data, neural
networks have been shown to forget previous knowledge [3]. The
problem of forgetting is attributed to the inability of neural networks
(and of models in general) to maintain a proper stability–plasticity
trade-off [4]. On the one hand, learning new information requires the
network to be plastic and to adapt over time. On the other hand,
preserving previous knowledge requires the network to be stable and to
avoid large, unnecessary changes. Over the years, CL researchers have
developed specific strategies to mitigate forgetting by finding a better
stability–plasticity trade-off than simply fine-tuning a model continu-
ously on an incoming stream of data [5]. However, a drop in the final
predictive performance is not the only pitfall of a model that forgets.
The hidden representations the model learns during continual training
are subject to changes depending on how the model is trained. Existing
CL strategies aimed at mitigating forgetting directly impact on what the
model is computing and how. Consequently, eXplainable AI (XAI) [6]
techniques that provide insights on the learned hidden representations

∗ Corresponding author.
E-mail address: andrea.cossu@di.unipi.it (A. Cossu).

can also be affected by forgetting and applying CL strategies. In fact,
XAI techniques are computed for trained, fixed models. In a CL setup,
some questions arise. Is an explanation affected by the fact that a model
has been trained continuously? How will the explanations differ with
respect to a model trained offline on the same set of data? How can we
clearly show the effect of non-stationarity and CL in an explanation?

Our main contribution is to quantify the degree of change of an
explanation with respect to a non-CL (offline) model. The alignment
between these two explanations is useful to understand the impact of
continual training on XAI techniques. In fact, it is not clear whether
we can still trust the explanations of a CL model. To this extent,
we propose CLEX (ContinuaL EXplanations) an evaluation protocol to
measure the performance of XAI strategies in a CL environment. CLEX
provides a qualitative and quantitative analysis of this alignment by
studying how much the explanations of the CL model drift with respect
to the ones of the offline model. We measure this drift through a
novel metric, the Explanation Drift (ED), and study its role with respect
to different data domains (images vs. sequences), model architectures
(feedforward/convolutional vs. recurrent), and CL strategies in 3 differ-
ent class-incremental scenarios [7] (where new classes are encountered
vailable online 3 June 2024
925-2312/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.neucom.2024.127960
Received 12 January 2024; Received in revised form 3 April 2024; Accepted 29 M
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ay 2024

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
mailto:andrea.cossu@di.unipi.it
https://doi.org/10.1016/j.neucom.2024.127960
https://doi.org/10.1016/j.neucom.2024.127960
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2024.127960&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Neurocomputing 597 (2024) 127960A. Cossu et al.

t
p
w
w
c

2

i
r
m
m

C
q
𝑒
e
p
c
i

𝜙

w
d
p
e
w
w
a
a
a

𝑔

I
l
o
t
I
f
p
n

over time) that are known to induce forgetting. The explanations
are computed with two different XAI techniques: SHapley Additive
exPlanations (SHAP) [8] and DeepLIFT [9,10].

This work is an extended version of the conference paper [11].
In this paper, we provide an extended experimental evaluation and

a more thorough analysis of our proposed metrics with respect to the
analysis carried out in [11]. In particular, we add an XAI technique to
highlight that our findings are not limited to the SHAP technique. More-
over, we also benchmark a recently published randomized recurrent
model [12]. The advantages discussed in [11] for randomized neural
networks are also observed for this additional model.

The main results of our experimental evaluation are threefold:

1. Models with similar final predictive accuracy are still subject to
generating different explanations. This is quite intuitive, consid-
ering that different optimization trajectories leading to a similar
predictive performance can easily lead to different learned rep-
resentations, even outside CL. Therefore, explanations can also
differ. We observed this phenomenon in all our experiments.

2. Different types of replay strategies effectively align explanations
with the ones of a model trained offline on the same data set.
This happens naturally, without engineering replay strategies for
a specific explanatory purpose.

3. Previous works already showed that recurrent neural networks
need particular care in a CL setting [13]. However, this was
never studied in the context of XAI. We show that explanations
in fully-trained recurrent models are not well aligned with the
explanations of an offline model, even when using replay. We
largely mitigated this effect by using randomized recurrent mod-
els, where the recurrent component is untrained. Interestingly,
and in agreement with the first point, the difference in the
explanation drift is not reflected in the final accuracy, which is
comparable across both fully-trained and randomized recurrent
models.

The rest of the paper is organized as follows: Section 2 introduces
he main concepts and definitions necessary to understand our pro-
osal. Section 3 describes the current state-of-the-art and the main
orks in the field of XAI for CL. Section 4 details our proposal, CLEX,
hich is benchmarked in Section 5. Finally, Section 6 presents our

onclusions and discusses future work.

. Background

Before delving deeper into our analysis, it is convenient to formally
ntroduce the topics of CL, XAI, and recurrent neural networks. For
ecurrent neural networks, we mostly focus on randomized recurrent
odels since they are usually less popular than fully-trained recurrent
odels, like Long Short-Term Memory networks [14].

ontinual learning. A data stream in CL is defined by an ordered se-
uence of experiences (or tasks)  = (𝑒1, 𝑒2,…), where each experience
𝑖 introduces a dataset 𝐷𝑖 [15]. The CL model is trained on each
xperience sequentially. In the case of supervised CL, each dataset
rovides a set of input–target pairs, 𝐷𝑖 = {𝑥𝑗 , 𝑦𝑗}𝑗=1,…,𝑁 . We consider
lassification problems where 𝑦 is the target class associated with the
nput 𝑥. Following existing literature [5], we call Naive the approach

of simply fine-tuning a model on the data stream one experience at a
time, without leveraging any CL-specific approach.

One of the most studied CL scenarios, also adopted in this paper,
is the class-incremental scenario [7], where each experience introduces
a new set of classes, never seen before. Class-incremental is a scenario
well known to induce a large amount of forgetting on previous expe-
riences. Therefore, class-incremental has been adopted as one of the
standard scenarios in which to assess the performance of CL strategies,
2

especially the ones aimed at mitigating forgetting. g
In many cases, to mitigate forgetting, replay strategies have
emerged as the most effective ones [16–18]. These strategies leverage
a memory buffer to store a subset of previous examples. During each
training iteration, the model is updated with a sample taken from
the memory buffer and the new examples coming from the stream.
Experience Replay (ER) [19,20] is a replay strategy that keeps a fixed-
size memory buffer. Usually, the buffer’s content is balanced across
classes or experiences [21] (e.g., the buffer contains the same number
of examples per class, reduced as new classes are added to the buffer).
Gradient-based Sample Selection (GSS) [22] is a replay strategy with a
custom selection policy. The policy selects the examples that satisfy
a set of constraints; namely, the loss on previously seen examples
should not increase. Besides ER, in this work, we adopt the greedy
version of the GSS algorithm, which trades off the exact solution for
the constraints in favor of a computationally efficient implementation.

Although other CL strategies exist [2], many of them are inef-
fective in class-incremental scenarios in the absence of replay [23].
For example, regularization strategies like Elastic Weight Consolida-
tion [24] or Synaptic Intelligence [25] are among the most popular
ones. Unfortunately, they are not able to overcome the drift in the
classifier [23], and they often need to resort to other CL approaches
(like replay). Therefore, we do not consider regularization strategies in
our evaluation, since their performance would be the same as without
any CL strategy.

Explainable AI. Explainable AI encompasses a wide range of explain-
ers [6]. In this work, we focus on model-specific methods tailored for
neural networks. These methods usually exploit gradients or activations
to assign an importance score to each input feature [26]. Additionally,
these approaches are local; that is, they are designed to explain the
predictions of a neural network for individual instances. Only a few
model-specific local approaches applicable to neural networks can be
used across MLPs, CNNs, and RNNs. The two most notable among these
are GradientSHAP [8] and DeepLIFT [9].

GradientSHAP is based on SHAP [8], which computes the impor-
tance of each input feature by perturbing a given input instance 𝑥 using
a mask 𝑧′ ∈ {0, 1}𝐾 to decide which of the 𝐾 feature values to keep
or replace in 𝑥. The contribution of each feature to the model output
is computed by observing how the model output changes depending
on different perturbations. Formally, the SHAP value, 𝜙𝑘, for the 𝑘th
feature in a model’s prediction is the average marginal contribution of
feature 𝑘 across all possible combinations of features:

𝑘 =
∑

𝑃⊆𝐾⧵{𝑘}

|𝑃 |!(|𝐾| − |𝑃 | − 1)!
|𝐾|!

[

𝑓𝑥(𝑃 ∪ {𝑘}) − 𝑓𝑥(𝑃)
]

, (1)

here 𝑃 is a subset of features excluding 𝑘, 𝑓𝑥(𝑃) is the model pre-
iction with only the features in set 𝑃 , and 𝑓𝑥(𝑃 ∪ {𝑘}) is the model
rediction with the features in 𝑃 and feature 𝑘. Given that computing
xact Shapley values can be computationally infeasible for models
ith many features, SHAP usually approximates these values using a
eighted linear regression on a sampled subset of features. In this way,
positive or negative SHAP value 𝜙 is assigned to each feature value,

nd the resulting explanation is represented as an additive feature
ttribution method. Formally:

(𝑧′) = 𝜙0 +
𝐾
∑

𝑘=1
𝜙𝑘𝑧

′
𝑘. (2)

n other words, given an input 𝑥, the explanation model 𝑔 tries to
inearly approximate the output of a model 𝑓 in the local neighborhood
btained by perturbing 𝑥, i.e., 𝑔(𝑧′) ≈ 𝑓 (𝑥). The term 𝜙0 denotes
he base value, i.e., the default prediction for an ‘‘empty’’ instance.
n a classification setting, a SHAP value close to 0 indicates that the
eature is almost irrelevant to the classification of a given instance. A
ositive value indicates a contribution toward a specific class, while
egative values indicate a contribution toward the other classes. In
eneral, SHAP is model-agnostic, and can be used to explain any

Neurocomputing 597 (2024) 127960A. Cossu et al.

𝑡
t
(
d
m

b
c
s
t
t
F
u
t
a

u
r
R

ℎ

w
r
b
m
u
U
w
d
i
s

w
𝑦
v
a

3

p
C
e
w
n
r
t
c
r
t
t
i
a
t
b
C

b
p
b
p
e
e
t
f
t
i
t
o

n
a
t
o
i
t
l
w
c
t
d
t
g

b
w
e
w
n
v
m

black-box model, with the drawback of a high computational cost.
GradientSHAP [8] addresses this challenge by approximating the SHAP
values of an instance through the expected gradients over a distri-
bution of baselines. These baselines are reference instances provided
by the user, intended to represent a ‘‘neutral’’ instance and serve
as a benchmark for evaluating the influence of each feature in the
input. Specifically, the method introduces Gaussian random noise to
the instance under examination [27], then selects a baseline and a
random instance along the interpolation path between this baseline
and the original input. This process is repeated multiple times, and
GradientSHAP calculates the gradient of the model outputs with respect
to these randomly chosen interpolations. This approach effectively
approximates the impact of each feature on the prediction by averaging
over these gradients.

Unlike methods that rely on gradients, DeepLIFT [9] compares the
activation of each neuron to its ‘‘reference activation’’ and assigns
contribution scores based on their difference. This reference activation
is typically determined by a baseline input, often a neutral or average
input for the model. The core idea of DeepLIFT is to apply a modified
chain rule to decompose each input feature’s contribution across all
network layers. This rule is adapted to handle the non-linearities in
neural networks. DeepLIFT propagates the contribution scores back
through the network layers, distributing the output difference across
the input features. In practice, it calculates how much each input
feature contributes to the final prediction compared to its reference
value. This method is particularly useful for its ability to handle sit-
uations where small changes in the input feature lead to significant
changes in the output, a scenario where gradient-based methods might
struggle [9]. Similarly to SHAP, the feature importance scores output
by DeepLIFT can be either positive, negative, or zero, with the same
semantics as SHAP.

Randomized recurrent neural networks. Sequential data processing tasks
[28] deal with inputs structured in ordered sequences of items. Each
sequence 𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑇) has 𝑇 steps and a generic input at step

is the feature vector 𝑥𝑡 ∈ R𝐼 . Sequence classification tasks require
o predict a target scalar class 𝑦 associated to each input sequence 𝑥
e.g., predicting the heart condition of a patient given the electrocar-
iogram). We will focus on sequence classification tasks as they are the
ost popular ones in CL [13,29].

In machine learning, sequential data processing is often performed
y means of Recurrent Neural Network (RNN) models [30]. RNNs
omprise a recurrent state-update equation that allows learning a fixed-
ize memory state of previous time steps. The output is computed from
he hidden memory state by a linear projection. Our findings rely on
wo different types of RNNs: fully-trained RNNs and randomized RNNs.
ully-trained RNNs leverage adaptive weights matrices in the state-
pdate equation that are learned by backpropagation through time. In
his work, we use the Long Short-Term Memory (LSTM) network [14]
s our fully-trained RNN.

Randomized RNNs carefully initialize the parameters of the state-
pdate equation and learn only the linear output projection (called
eadout). We consider the Echo-State Network (ESN) [31] and the
andom Oscillators Network (RON) [12] as our randomized RNNs.

The ESN is defined by a simple state-update equation:

𝑡+1 = 𝜎(𝑊 ℎ𝑡 +𝑊 𝐼𝑥𝑡+1 + 𝑏), (3)

here 𝑊ℎ,𝑊 𝐼 are the hidden-to-hidden and input-to-hidden matrices,
espectively, 𝑏 is the bias, 𝑥𝑡 is the input at time 𝑡 and 𝜎 is the hyper-
olic tangent activation function. The recurrent state ℎ𝑡 represents the
emory of past time steps up to time step 𝑡. The matrix 𝑊 is initialized
niformly in [−1, 1], and its spectral radius is scaled to take on value 𝜌.
sually, 𝜌 < 1 is a necessary condition for the Echo-State Property [32],
hich guarantees that the asymptotic behavior of an ESN does not
epend on its initial conditions. The matrix 𝑊 𝐼 is initialized uniformly
n [−2, 2] and then scaled by the input scaling 𝜈. The bias 𝑏 is randomly
ampled in [−1, 1].
3

The RON network is composed of a randomly connected set of
damped oscillators. The state-update equation reads:

𝑦𝑡+1 = 𝑦𝑡 + 𝜏𝑧𝑡+1, (4)

𝑧𝑡+1 = 𝑧𝑡 + 𝜏(𝜎(𝑊 𝑦𝑡 +𝑊 𝐼𝑥𝑡+1 + 𝑏) − 𝛾𝑦𝑡 − 𝜖𝑧𝑡), (5)

here 𝑦𝑡 is the hidden state at time 𝑡, 𝑧𝑡 is a latent state used to compute
𝑡, 𝜏 is a time-step constant, 𝛾 and 𝜖 are the frequency and damping
ector coefficients, respectively. The matrices 𝑊 and 𝑊 𝐼 are initialized
s in an ESN and kept fixed, as is the bias.

. Related works

The studies at the intersection of XAI and CL are still in an early
hase. Most of the time, existing works focus on how to enhance
L performance by leveraging XAI techniques. For example, Ebrahimi
t al. [33] combined a regularization approach with a replay approach,
here the replay buffer stores both previous examples and the expla-
ation associated with each example. During training, the model is
egularized via minimization of the L1 distance between the explana-
ion stored in the memory buffer and the explanation computed by the
urrent CL model. The approach can be implemented on top of any
eplay-based CL strategies, and the authors showed that it contributes
o mitigating forgetting on image classification tasks. The main idea is
hat producing explanations that do not change much over time helps
mproving the CL model’s stability. Note that this is different from our
pproach, since we study the stability with respect to the optimal model
rained offline on the entire data stream (the usual model considered
y XAI approaches). Obviously, the offline model is unavailable during
L and cannot be exploited to build CL strategies.

More recently, Rymarczyk et al. [34] introduced a regularization-
ased CL strategy that does not rely on previous examples. The pro-
osed approach relies on many components, one of the most important
eing a modified distillation loss that includes a regularization com-
onent to promote the stability of currently and previously generated
xplanations. Therefore, although the method does not use previous
xamples for training, it still requires a separate external memory like
he replay approaches. Moreover, the approach is defined on a specific
amily of architectures based on prototypes. It is not obvious how
o generalize it to different types of networks. The evaluation shows
mprovements in both the final accuracy (mitigation of forgetting) and
he interpretability of explanations (measured through the intersection
ver union across the same explanation in different tasks).

A different line of work focused on producing interpretable expla-
ations directly in a CL setting. For example, Ye and Bors [35] designed
generative adversarial protocol that produces interpretable represen-

ations by maximizing the mutual information between the generator
utput and the latent variables provided as input to the generator
tself. The authors show that the resulting CL model, applied to vision
asks, can produce interpretable representations that are guided by the
atent variables. A similar study has been conducted for concept drift
ith Generative Adversarial Networks in [36]. There, the focus on

oncept drift is highlighted by introducing a new prequential metric
hat monitors the ability of the generative model to adapt to concept
rifts. Moreover, the authors also leverage the same metric to study
he relationship between change in the explanation and change in the
enerative capabilities of the CL model.

Overall, we believe many directions exist to study the interaction
etween XAI and CL. Our paper explores the under-studied question of
hether or not learning continuously impacts existing XAI techniques,
specially when combined with specific CL strategies. In particular,
e found novel evidence that the explanations computed by different
eural architectures (from feedforward to recurrent networks) behave
ery differently in a CL setting. As a result, blindly applying XAI
ethods can largely deteriorate the resulting explanations.

Neurocomputing 597 (2024) 127960A. Cossu et al.

p
𝑆
p
s
I
b
f
l
d
f
t
p

B

w
c
t
c
u
t

p
s
S
C
S
M

u
v
i
F
w
w
t

4. Continual explanations

In this section, we describe our proposal, CLEX, an evaluation proto-
col to measure the performance of XAI strategies in a CL environment.
Given an instance, 𝑥, and a classifier, 𝑓 , trained following the CL
aradigm as described in Section 2, CLEX assesses if the explanation,
, for the prediction, 𝑓 (𝑥), suffers from drift. In particular, we use this
rotocol to understand whether XAI techniques designed for offline,
tatic models behave as expected in the presence of dynamic CL models.
ntuitively, good CL models should preserve the explanation computed
y an optimal offline model. If this does not happen, we may observe
orgetting at the level of explanations, in addition to forgetting at the
evel of predictive performance. This can be formalized by defining a
istance metric to measure the divergence between the explanation
or a CL model and for a ‘‘baseline’’ model. Thus, CLEX comprises
hree components: a baseline, an explainer, and the evaluation metrics,
resented in the following paragraphs.

aseline. To detect an explanation drift, we must first define a baseline,
i.e., a model that produces a ‘‘correct’’ explanation, which must be
compared to the explanation obtained in a CL setting. The most natural
solution to this problem is to set a ‘‘static’’ explanation as the baseline,
given that we are sure it does not contain any artifacts that could be
caused by continual training. For this reason, beside the CL model, 𝑓 ,
trained continuously on a data stream, one experience at a time, our
proposed evaluation protocol considers as a baseline another (offline)
model, with the same architecture as 𝑓 , trained from random initial-
ization on the union of all experiences. Formally, the offline model is
trained on 𝐷 = ∪𝑖𝐷𝑖. Both the CL model and the offline baseline are
trained for multiple epochs until convergence.

Explainer. Once the baseline is trained, we select an explainer to
produce an explanation in terms of feature importance for the instance
𝑥, both for the prediction of the baseline model, i.e., 𝐽 ∈ R𝐶×𝐾 ,
and for the prediction of the CL model, 𝑆 ∈ R𝐶×𝐾 , where 𝐶 is the
number of classes, and 𝐾 is the number of features. We focus on
model-specific, local, XAI methods for neural networks. Given that
neural networks can be structured in various ways, for example, dense,
convolutional, or recurrent modules, to ensure maximum compatibility,
we need to select the most flexible XAI approaches, which can produce
an explanation for any of these specific types of networks. Two of the
most notable approaches that fit this purpose are GradientSHAP [8]
and DeepLIFT [9]. In particular, we can use any of these approaches
to explain the contribution of each of the 𝐾 input features in 𝑥 toward
the model prediction. We compute the explanations for both models at
the end of the training phase. For the CL model, this corresponds to the
end of training on all the experiences in the stream. CLEX considers the
explanation for the offline model, 𝐽 , jointly trained on all the data, as
the ‘‘ground truth’’ reference. In fact, this is what is usually computed
by XAI techniques. In such cases, the model is not expected to learn
new knowledge in the future. Clearly, the offline model does not suffer
from forgetting since it does not learn continually.

Metrics. To evaluate the quality of a continual explanation, we intro-
duce the Explanation Drift (ED) metric, which measures the distance
between the continual and baseline explanations. For a given reference
class 𝑐 ∈ 𝐶, ED is defined as follows:

ED(𝑐)(𝑆, 𝐽) = 1
𝐾

(𝐾
∑

𝑖=1
max(0, 𝑆(𝑐)

𝑖) −
𝐾
∑

𝑖=1
max(0, 𝐽 (𝑐)

𝑖)
)2

, (6)

here 𝑆(𝑐) ∈ R𝐾 and 𝐽 (𝑐) ∈ R𝐾 contain 𝐾 values that are the
ontribution values toward class 𝑐 for a given CL strategy and for
he baseline, respectively. We compute ED separately for each target
lass we are interested in, since the explanation for a given class
sually differs from the explanation for another class. We will drop
he 𝑐 superscript when not necessary. Note that, since we compute the
4

c

contributions toward each possible class, we consider only positive con-
tribution values, clamping any negative ones to zero. This is important
since we are interested in whether features that were relevant to predict
a given class in the offline model are still relevant for the same class in
the CL model. Positive contribution values, such as those produced via
GradientSHAP and DeepLIFT, denote exactly these kinds of features.
This allows us to investigate how much each input feature contributes
to driving the prediction toward the candidate class.1 We can compute
these values and, consequently, the ED metric at the end of training
on each experience. However, our primary focus is on the ED metric
for the classes present in the first experience. This is because the first
experience represents the most challenging setup for our experiments,
as it is the most susceptible to forgetting. In general, older experiences
are much more prone to be forgotten than recent ones.

With the ED metric, we aim to assess the similarity in magnitude of
the explanations, i.e., the extent to which the sum of the explanation
deviates from that of the baseline. In computer vision experiments,
the metric ED of Eq. (6) may fail to capture the spatial dependen-
cies between pixels. The sum, in fact, compares contribution values
independently of their position in an image. However, at the opposite
end of the spectrum, comparing explanations pixel-wise often results
in overly localized comparisons. For this reason, we address spatial
locality by proposing a second metric, 𝐸𝐷pool, allowing for a more
direct comparison of the explanations’ local properties:

ED(𝑐)
pool(𝑆, 𝐽) =

1
𝐾 ′

𝐾′
∑

𝑖=1
(pool(max(0, 𝑆(𝑐)

𝑖), 𝑝) − pool(max(0, 𝐽 (𝑐)
𝑖), 𝑝))2, (7)

where ‘‘pool’’ represents a 2D average pooling operation with a kernel
of 𝑝×𝑝 pixels, and 𝐾 ′, in this case, is the number of pixels produced by
the pooling operation. Contribution values are normalized to have zero
mean and unitary variance. The normalization allows us to compare
the distribution of the positive values instead of the scale (which is
considered by the ED metric in Eq. (6)). Metric EDpool includes spatial
locality since it compares neighborhoods of 𝑝 × 𝑝 pixels from one
strategy against the corresponding neighbor from Joint Training. Note
that this metric is not limited to images, but can also be used with
univariate or multivariate sequences, by applying instead a 𝑝×1 pooling
on the time domain.

5. Experiments

In this section, we describe our experimental setup, present the
results of the experiments, and finally discuss their implications.

5.1. Experimental setup

For our experiments,2 we benchmark CLEX using the three most
opular and widely-used CL benchmarks from computer vision and
ignal processing, i.e., Split MNIST [37], Split CIFAR-10 [25] and
ynthethic Speech Commands (SSC) [13,38]. Split MNIST and Split
IFAR-10 have 5 experiences, with 2 classes in each experience, while
SC is composed of pre-processed audio sequences of 101 steps with 40
el features.

We chose image classification benchmarks as they are commonly
sed in CL [5] given that recurrent models can operate on computer
ision datasets by taking each image one pixel at a time. However,
mage classification benchmarks do not have a true notion of time.
or this reason, we also selected a CL benchmark for audio processing,
here the time series is the pre-processed audio signal (SSC). In this
ay, we prevent our results with recurrent models from being nega-

ively affected by a lack of temporal correlation in the input data. We

1 Experiments considering all explanation values can be found in Appendix.
2 The code to reproduce all experiments can be found at https://github.

om/AndreaCossu/explainable-continual-learning.

https://github.com/AndreaCossu/explainable-continual-learning
https://github.com/AndreaCossu/explainable-continual-learning

Neurocomputing 597 (2024) 127960A. Cossu et al.

G

5

Q
d
o
c
e
G
b
t
(
o
G
a
i
t
f
r
S
a
c

o
w
B

o
w
B

Table 1
Final classification accuracy on the entire dataset at the end of training on all
experiences for MNIST, CIFAR-10 and SSC. The XAI method (SHAP or LIFT) does not
affect the predictive performance.

ACC MNIST CIFAR-10 SSC

MLP CNN LSTM ESN RON CNN1D

Joint 0.97 0.87 0.98 0.97 0.99 0.99

Naive 0.20 0.19 0.18 0.18 0.19 0.18
ER 0.85 0.51 0.90 0.94 0.93 0.92
GSS 0.78 0.33 0.84 0.81 0.82 0.85

observed similar results independently from the specific benchmark,
thus highlighting the generality of our conclusions.

Specifically, we used a ReLU feedforward network with 1 hidden
layer on MNIST [37] and a Reduced ResNet18 [39] on CIFAR-10. For
SSC, since we are dealing with sequences, we used a fully-trained LSTM
and randomized ESN and RON models [40]. All recurrent networks use
one layer. In addition, for SSC, we also considered a one-dimensional
Convolutional Neural Network (CNN). The architecture comprises a
3 × 1 convolutional layer with 32 filters, followed by a max pooling
with a 3 × 1 filter and a 25% dropout. The same structure is repeated
in a second layer with 64 filters and without dropout. The output is
then flattened and given as input to the final classifier. We provide the
configuration for each model in Appendix.

We employ two Replay strategies: GSS [22] and Experience Replay
(ER). Also, we use Naive fine-tuning to control for the case in which no
CL strategy is used. We ensure that CL models achieve a performance
(average accuracy on the test sets of all experiences after training on
the last experience) that is on par with the expected CL performance
for each strategy. We report the final accuracy in Table 1. Note that,
as expected, Naive fine-tuning causes catastrophic forgetting while ER
and GSS achieve a much better performance.

For GradientSHAP and DeepLIFT, we used 600 examples as back-
ground and 50 per class as a test, taken from the test set of 𝑒1. We used
𝑝 = 4 for the experiments with ED𝑐

pool. For the implementation of the
CL algorithms, we used the Avalanche library [41]. To implement XAI
techniques, we used the Captum library.3 In particular, we adopted the

radientSHAP and DeepLift implementations.

.2. Results

ualitative analysis of drifting explanations. To provide a qualitative un-
erstanding of the explanation drift phenomenon, we plot the relevance
f each input feature on MNIST when using as a reference all the 10
andidate classes (Fig. 1). After the model has been trained on the
ntire data stream, the explanations are computed for Naive, ER, and
SS. We show 6 examples coming from the first 2 classes encountered
y the CL model (first experience). The Appendix also shows the same
ype of visualization for CIFAR-10 with SHAP and SSC with DeepLIFT
using the RON model). The plots show that training continuously with-
ut any CL technique clearly harms the explanations computed by both
radientSHAP and DeepLIFT. Fig. 1 shows that the Naive strategy
ssigns large SHAP values to the last two classes (last two columns
n the image), while the second and third columns corresponding to
he true classes are associated with low SHAP values. Basically, naive
ine-tuning results in explanations that suffer from the recency bias:
ecently seen classes dominate the feature relevance computed by both
HAP and LIFT. This well-known phenomenon connected to forgetting
ffects the predictive performance in CL, where last-seen classes are
lassified more accurately than previously seen ones [5]. We show that

3 The Captum library is available at https://captum.ai/.
5

Table 2
ED metric (lower is better) for GradientSHAP (SHAP) and DeepLIFT (LIFT) on the first
experience after training on all experiences. 𝑐0 represent class 0 and 𝑐1 class 1. Best
values for each class, dataset, and model highlighted in bold.

SHAP MNIST CIFAR SSC

ED MLP CNN LSTM ESN RON CNN1D

Naive 𝑐0
𝑐1

7.51
2.47

128.52
63.51

0.38
0.67

0.55
0.46

0.17
0.18

8.21
2.30

ER 𝑐0
𝑐1

4.06
2.95

0.01
0.20

0.82
0.75

3.2e−4
0.05

0.02
9.1e−6

0.35
3.73

GSS 𝑐0
𝑐1

0.19
0.69

6.65
19.53

1.47
0.64

0.05
0.04

1.0e−3
0.03

0.90
10.47

LIFT

Naive 𝑐0
𝑐1

1.55
0.44

45.91
163.02

0.35
0.24

0.12
0.12

1.4e−3
0.03

3.53
0.90

ER 𝑐0
𝑐1

0.27
0.57

85.77
6.66

0.21
0.19

0.02
1.3e−3

0.02
0.01

8.0e−3
0.81

GSS 𝑐0
𝑐1

0.07
0.30

3.56
1.84

0.15
0.02

6.7e−3
0.03

0.01
0.01

0.46
0.06

Table 3
EDpool metric (lower is better) for SHAP and LIFT on the first experience after training
n all experiences. Pooling is performed with a 4 × 4 kernel for MNIST and CIFAR and
ith a 1 × 4 kernel (on the time domain) for SSC. 𝑐0 represent class 0 and 𝑐1 class 1.
est values for each class, dataset, and model highlighted in bold.
SHAP MNIST CIFAR SSC

EDpool MLP CNN LSTM ESN RON CNN1D

Naive 𝑐0
𝑐1

0.26
0.31

0.28
0.36

0.52
0.52

0.10
0.13

0.26
0.26

0.34
0.40

ER 𝑐0
𝑐1

0.20
0.23

0.26
0.29

0.52
0.47

0.08
0.15

0.24
0.24

0.11
0.22

GSS 𝑐0
𝑐1

0.16
0.30

0.36
0.47

0.58
0.51

0.14
0.15

0.24
0.27

0.21
0.34

LIFT

Naive 𝑐0
𝑐1

0.17
0.24

0.22
0.27

0.85
0.74

0.11
0.31

0.36
0.22

0.31
0.33

ER 𝑐0
𝑐1

0.08
0.10

0.38
0.24

0.42
0.68

0.10
0.10

0.14
0.18

0.13
0.14

GSS 𝑐0
𝑐1

0.09
0.09

0.26
0.27

0.41
0.58

0.16
0.40

0.20
0.19

0.17
0.16

Table 4
EDpool metric (lower is better) for SHAP and LIFT on the first experience after training
n all experiences. Pooling is performed with a 8 × 8 kernel for MNIST and CIFAR and
ith a 1 × 8 kernel (on the time domain) for SSC. 𝑐0 represent class 0 and 𝑐1 class 1.
est values for each class, dataset, and model highlighted in bold.
SHAP MNIST CIFAR SSC

EDpool MLP CNN LSTM ESN RON CNN1D

Naive 𝑐0
𝑐1

0.13
0.20

0.15
0.22

0.27
0.29

0.02
0.03

0.11
0.10

0.14
0.18

ER 𝑐0
𝑐1

0.11
0.15

0.14
0.17

0.28
0.27

0.01
0.02

0.12
0.10

0.05
0.10

GSS 𝑐0
𝑐1

0.10
0.16

0.18
0.24

0.28
0.28

0.03
0.02

0.11
0.12

0.09
0.17

LIFT

Naive 𝑐0
𝑐1

0.09
0.09

0.11
0.17

0.44
0.38

0.03
0.02

0.16
0.08

0.12
0.13

ER 𝑐0
𝑐1

0.04
0.04

0.22
0.15

0.18
0.35

0.02
0.03

0.05
0.06

0.05
0.06

GSS 𝑐0
𝑐1

0.03
0.04

0.13
0.15

0.16
0.29

0.03
0.03

0.08
0.05

0.07
0.06

https://captum.ai/api/gradient_shap.html
https://captum.ai/api/deep_lift.html
https://captum.ai/

Neurocomputing 597 (2024) 127960A. Cossu et al.
Fig. 1. Positive SHAP values after training on the last experience. The first column shows the input image, and the other ten columns show the SHAP values for each class (the
more active, the higher the pixel’s contribution toward the class). Replay and GSS are able to effectively preserve the SHAP values for class 0 and class 1, while Naive is mostly
activated by class 8 and 9 (forgetting).
the same phenomenon occurs not only at the level of the predictions
but also at the level of the explanations.

Interestingly, applying CL strategies like ER and GSS mitigates
forgetting both at the level of predictive performance and at the level
of the explanations. Fig. 1 shows that, overall, ER and GSS assign larger
relevance values when computed with respect to the correct target
class (second column for the first three examples and third column for
the last three examples). However, this is only a qualitative analysis
that prevents from understanding the degree to which forgetting is
mitigated in the explanations. The evaluation protocol we propose, as
well as the ED metric, is specifically designed to study this phenomenon
quantitatively.

CL strategies reduce explanation drift. Tables 2–4 provide a detailed
report on both ED and EDpool, respectively, computed on the first
experience and averaged over the first two classes (class 0 and 1). We
report the value of both metrics separately for each class since different
classes require different explanations, and it would not make sense to
average them together. Each value is computed as the average metric
on all the test examples used for that class. By looking at the results of
6

Table 2, we can see that in most cases, the application of replay-based
CL strategies results in a better ED. In the few cases where this does
not hold (e.g., LSTM on SSC with SHAP, only for class 0), the difference
between Naive and the best replay strategy is either very low or the best
replay strategy takes on the same ED as Naive. This first result is quite
intuitive and reflects the qualitative analysis of the visualization of the
explanations presented at the beginning of this section. Still, it is useful
to show quantitatively that an effective CL model behaves similarly
to an offline model, not only in terms of predictive performance but
also in terms of explanations. The same reasoning applies when using
ED𝐩𝐨𝐨𝐥. Table 3 shows results with a 4 × 4 pooling, while Table 4 shows
results for a 8 × 8 pooling. We recall that the metric ED corresponds
to a pooling equal to the size of the entire image/sequence. Our results
are consistent with respect to all these metrics.

Models with similar predictive accuracy produce different explanations.
Models that achieve a comparable predictive performance may also be
expected to produce similar explanations since they build their predic-
tions on relevant features that do not depend on the specific choice
of the model. While this is usually true for XAI techniques applied to

Neurocomputing 597 (2024) 127960

7

A. Cossu et al.

Fig. 2. ED metric for SHAP for each strategy and benchmark (lower is better). In each plot, the 𝑥-axis represents the number of classes in the dataset. The dots indicate the value
of ED for the output unit corresponding to the target class. Each curve is averaged over 50 examples from the test set.

Fig. 2. (continued).

Neurocomputing 597 (2024) 127960A. Cossu et al.
Fig. 2. (continued).
offline models, it does not hold in our experiments for CL models. In
fact, in the SSC benchmarks, all models share a similar accuracy when
using the same CL strategy (Table 1). The joint training performance is
also very similar. However, the degree to which the models suffer from
explanation drift differs greatly. This fact prevents from using accuracy
as a proxy for the quality of the explanations. Correctly predicting
the class for a given example does not entail that the prediction is
based on a meaningful relationship or, conversely, that it is not based
on spurious correlation. Ultimately, this means that evaluating and
understanding the predictions made by a CL model requires looking
at those explanations since there is no general conclusion that can be
made by only looking at the model’s predictive performance.

Fully-trained recurrent models are prone to explanation drift. The exper-
iments on SSC highlight another interesting phenomenon. In all our
experiments with both ED and EDpool, fully-trained recurrent neural
networks like LSTM show a worse performance with respect to ran-
domized RNNs like ESN and RON when using replay strategies. This
result contributes to an already existing line of work showing how fully-
trained RNNs’ behavior is often unexpected in CL. For example, Cossu
et al. [13] showed that fully-trained RNNs are more prone to forgetting
(i.e., losing accuracy on) previously seen classes than feedforward
networks, even when using CL strategies. Moreover, Cossu et al. [40]
showed that randomized RNNs like ESN are able to largely mitigate this
effect. Our experiments in this paper stress the same point and extend
it to the realm of XAI techniques. Interestingly, 1D CNNs are also often
more effective than LSTM in reducing explanation drift, even though
their performance is less consistent than randomized RNNs.

Explanation drift for all 10 candidate classes. One advantage of CLEX
is that we can compare the explanation drift for any given class,
not only for the true target class (the superscript 𝑐 in the metrics
definition of Eqs. (6) and (7)). All the points raised in this section
can also be confirmed by looking at Fig. 2, which shows the value
of ED for all 10 candidate classes (the true class is marked with a
filled circle). In the Appendix, we provide the same type of plots also
8

for DeepLIFT. We observed very distinct behaviors for classes different
from the true target class, with an explanation drift that can either be
much larger or smaller. This also supports the fact that models with
similar accuracy cannot be automatically linked to similar explanations.
The optimization trajectory followed by each model (hence, each local
minimum) is relevant and affects how the model arrives at the final
prediction.

6. Conclusion and future works

Dynamic environments present non-stationary data streams that are
often challenging to learn with deep neural network models. With
our proposal, CLEX, we showed that forgetting previous knowledge,
a well-known phenomenon in deep neural networks, occurs not only
at the level of predictive performance but also at the level of the
explanations computed by XAI methods. In particular, we focused on
the explanation drift between a CL model and a baseline offline model,
jointly trained on the entire stream simultaneously. CL strategies that
mitigate forgetting are also beneficial for the computed explanations,
better aligning them with the ones computed by an offline model. We
consistently observed this behavior for different data domains (images
and sequences), with different models (feedforward, convolutional,
and recurrent models), and for two XAI techniques (GradientSHAP
and DeepLIFT). Replay-based strategies are effective in preserving the
final accuracy of the CL models as well as reducing the drift in the
computed explanations. Randomized recurrent models better exploit
replay strategies, with a clear decrease in explanation drift with respect
to fully-trained recurrent models.

Our experiments are a first step in understanding explanation drift
and the challenge of interpreting a model’s behavior in dynamic en-
vironments. GradientSHAP and DeepLIFT currently resort to some in-
formation about the neural network, like gradients and activations.
Admittedly, other forms of explanations do not need to rely on such
information, such as those obtained through intrinsically interpretable
models or model-agnostic approaches [26]. However, model-specific

Neurocomputing 597 (2024) 127960A. Cossu et al.
approaches are usually much faster and thus can be used in real-
world scenarios. Also, different kinds of model-specific approaches exist
for other types of classifiers outside the family of artificial neural
networks, for example, tree-based models such as Random Forests [42]
and Boosted Trees [26]. Our empirical evaluation does not include such
a family of models. The main reason is that, over the last decade, CL has
mostly focused on deep neural network architectures [1]. Therefore,
existing CL strategies mainly target this type of model. Future works
can study the explanation drift phenomenon in environments similar to
CL ones but using alternative models. For example, streaming learning
(or online learning in non-stationary environments) [43,44] often em-
ploy statistical models or machine learning models like Random Forest.
We see an opportunity to extend our empirical evaluation along these
research lines, where the combination of XAI and CL models to obtain
continual explanations is also promising.

Given the lack of existing ad-hoc solutions, there is space for future
works to explicitly target explanation drift in CL models. Similar to
what happens for the mitigation of forgetting [5], replay strategies look
like one of the best-performing options also to improve the stability
of explanations. However, all replay strategies optimize their mem-
ory buffer to preserve the model’s predictive performance. A buffer
designed to mitigate the explanation drift should probably include
information about the explanation itself, by also taking into account
that the model that computed the explanation is already changed.
The combination of regularization strategies that mainly stabilize the
feature extractor and replay strategies that mitigate forgetting at the
level of the classifier might constitute a viable solution. The interplay
between XAI and CL can also benefit CL itself, allowing to better
understand (when possible) how the key relevance of input and latent
features changes over time. Overall, to fully exploit the potential of
CL, it is important to design a reliable pipeline that covers all steps
of the model lifetime: from its design and training to its continuous
monitoring.

CRediT authorship contribution statement

Andrea Cossu: Writing – review & editing, Writing – original draft,
Software, Methodology, Investigation, Conceptualization. Francesco
Spinnato: Writing – review & editing, Writing – original draft, Method-
ology, Conceptualization. Riccardo Guidotti: Writing – review & edit-
ing, Validation, Supervision, Funding acquisition. Davide Bacciu:Writ-
ing – review & editing, Validation, Supervision, Resources, Funding
acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Andrea Cossu reports financial support was provided by European
Union. If there are other authors, they declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

Data is publicly available.

Acknowledgments

Work supported by: EU EIC project EMERGE (Grant No.
101070918), EU NextGenerationEU programme under the funding
schemes PNRR-PE-AI (PE00000013) FAIR - Future Artificial Intelli-
gence Research, PNRR-SoBigData.it - Strengthening the Italian RI for
Social Mining and Big Data Analytics - Prot. IR0000013, H2020-
INFRAIA-2019-1: Res. Infr. G.A. 871042 SoBigData++, G.A. 761758
Humane AI , G.A. 952215 TAILOR, ERC-2018-ADG G.A. 834756 XAI,
and CHIST-ERA-19-XAI-010 SAI, and by the Green.Dat.AI Horizon
Europe research and innovation programme, G.A. 101070416.
9

Table B.5
Mean and standard deviation over 3 random seeds for ED metric (lower is better) for
GradientSHAP (SHAP) and DeepLIFT (LIFT) on the first experience after training on
all experiences. 𝑐0 represent class 0 and 𝑐1 class 1. Best values for each class, dataset,
and model highlighted in bold.

SHAP MNIST CIFAR SSC

ED MLP CNN LSTM ESN

Naive 𝑐0
𝑐1

9.32 ± 1.08
3.51 ± 0.98

88.32 ± 10.1
75.42 ± 11.01

0.41 ± 0.04
0.70 ± 0.08

0.35 ± 0.1
0.53 ± 0.1

ER 𝑐0
𝑐1

4.2 ± 0.5
2.75 ± 0.8

0.05 ± 0.02
0.30 ± 0.05

0.8 ± 0.02
0.77 ± 0.03

2.1𝑒−3 ± 8.5𝑒−4
0.02 ± 0.01

GSS 𝑐0
𝑐1

0.18 ± 0.02
0.52 ± 0.1

6.33 ± 1.05
22.4 ± 5.7

1.3 ± 0.5
0.67 ± 0.08

0.1 ± 0.03
0.05 ± 0.01

LIFT

Naive 𝑐0
𝑐1

1.22 ± 0.05
0.36 ± 0.03

30.3 ± 9.01
80.4 ± 10.3

0.35 ± 0.03
0.32 ± 0.06

0.01 ± 0.03
0.08 ± 0.01

ER 𝑐0
𝑐1

0.20 ± 0.03
0.5 ± 0.08

55.2 ± 9.4
5.3 ± 0.98

0.23 ± 0.06
0.22 ± 0.02

0.02 ± 0.001
8.8𝑒−3 ± 3.1𝑒−4

GSS 𝑐0
𝑐1

0.04 ± 0.003
0.4 ± 0.1

3.55 ± 0.7
1.65 ± 0.13

0.13 ± 0.01
0.09 ± 0.01

9.3𝑒−3 ± 8.8𝑒−4
0.03 ± 0.01

Appendix A. Full experiments configuration

We report all model configurations and hyper-parameters that were
used in the experiments presented in this paper. In the online reposi-
tory, we provide the scripts to reproduce the experiments.

On MNIST, we used a feedforward ReLU network with 1 hidden
layer and 256 units trained with SGD (learning rate 0.001 and mo-
mentum 0.9). The model is trained for 30 epochs during joint training
(batch size 128) and for 10 epochs for each experience (batch size 64).

On CIFAR-10, the Reduced ResNet is trained with Adam (learning
rate 0.001). The model is trained for 50 epochs during joint training
(batch size 128) and for 30 epochs for each experience (batch size 64).

On SSC, all models have been trained with Adam. The LSTM has 1
hidden layer with 256 units, learning rate 0.001. The model is trained
for 30 epochs during joint training (batch size 128) and for 10 epochs
for each experience (batch size 64). The ESN has 1 layer with 2000
randomly initialized units, spectral radius 0.9 and input scaling 1. The
training configuration is the same as the LSTM. The RON model has 1
layer with 500 randomly initialized units, spectral radius 0.99, input
scaling 1, 𝜏 0.1, 𝛾, 𝜖 ∈ [0.5, 2]. The joint learning rate is 0.001 and the
learning rate for each experience is 0.001. The batch size is the same
as the LSTM. Finally, the 1D CNN follows the LSTM training details.

The replay memory size is 300 examples for all experiments.

Appendix B. Statistical significance

In the experiments presented in the main text we never fixed the
seed. Therefore, each experiment uses a different random seed. This
avoids over-fitting on a given seed and shows that our results do not
depend on the choice of a specific seed. To further test the robustness
of our results, we ran experiments averaged over 3 random seeds.
The explanations are therefore computed from a given trained model
on different examples at each run (from the same test set, never
seen during training). Table B.5 provides the average and standard
deviations across these runs. The conclusions drawn in the main text
still hold when assessed over multiple runs, showing their statistical
significance.

Appendix C. Additional SHAP and LIFT plots

We report the same plot of Fig. 1 for MNIST also for CIFAR-10
(Fig. D.3) and SSC (Fig. D.4). Similar phenomena can be observed in

Neurocomputing 597 (2024) 127960A. Cossu et al.

i
c
a
s
i

Table D.6
Element-wise squared difference between SHAP/LIFT from jointly trained model and CL model (lower is better).
Only positive SHAP/LIFT values are considered. SHAP/LIFT is computed on the first experience after training on all
experiences. 𝑐0 represent class 0 and 𝑐1 class 1. Best value for each class, dataset, and model highlighted in bold.
SHAP MNIST CIFAR SSC

eED+ MLP CNN LSTM ESN RON CNN1D

Naive 𝑐0
𝑐1

2.3e−3
9.7e−4

0.01
0.01

1.6e−4
5.9e−4

3.5e−4
5.9e−4

6.8e−5
9.7e−5

6.7e−3
2.8e−3

ER 𝑐0
𝑐1

4.3e−3
2.4e−3

2.4e−3
3.5e−3

1.7e−3
2.0e−3

3.2e−4
4.8e−4

9.3e−5
1.0e−4

4.7e−3
4.3e−3

GSS 𝑐0
𝑐1

2.0e−3
1.7e−3

1.4e−3
2.0e−3

1.2e−3
1.0e−3

4.1e−4
4.7e−4

7.9e−5
9.5e−5

6.9e−3
7.3e−3

LIFT

Naive 𝑐0
𝑐1

1.0e−3
6.1e−4

1.3e−2
2.2e−2

6.5e−4
7.8e−3

2.7e−4
3.4e−4

7.7e−4
1.7e−4

5.9e−3
3.5e−3

ER 𝑐0
𝑐1

1.1e−3
1.2e−3

4.6e−2
5.1e−3

2.3e−4
4.7e−3

8.0e−4
2.8e−4

3.0e−4
1.7e−4

6.0e−3
5.3e−3

GSS 𝑐0
𝑐1

1.1e−3
1.1e−3

2.8e−3
2.5e−3

1.9e−4
4.8e−3

6.7e−4
1.2e−3

5.1e−4
1.5e−4

4.1e−3
4.1e−3
Table D.7
Element-wise squared difference between SHAP/LIFT from jointly trained model and CL model (lower is better). Both
positive and negative SHAP/LIFT values are considered. SHAP/LIFT is computed on the first experience after training
on all experiences. 𝑐0 represent class 0 and 𝑐1 class 1. Best value for each class, dataset, and model highlighted in
bold.
SHAP MNIST CIFAR SSC

eED MLP CNN LSTM ESN RON CNN1D

Naive 𝑐0
𝑐1

3.0e−3
1.4e−3

2.8e−2
2.2e−2

3.2e−4
9.9e−4

5.0e−4
7.3e−4

1.9e−4
2.3e−4

1.2e−2
6.0e−3

ER 𝑐0
𝑐1

5.4e−3
3.3e−3

6.0e−3
8.8e−3

2.2e−3
3.4e−3

8.5e−4
7.9e−4

2.0e−4
2.0e−4

0.01
0.01

GSS 𝑐0
𝑐1

3-1e−3
2.4e−3

3.5e−3
4.2e−3

2.4e−3
1.8e−3

8.9e−4
8.4e−4

1.9e−4
1.9e−4

0.01
0.02

LIFT

Naive 𝑐0
𝑐1

2.8e−3
1.4e−3

0.03
0.05

1.5e−3
9.4e−3

7.8e−4
1.4e−3

1.9e−3
4.1e−4

0.02
0.01

ER 𝑐0
𝑐1

3.1e−3
2.8e−3

0.10
0.01

5.1e−4
5.4e−4

2.9e−3
1.2e−3

1.1e−3
4.5e−4

0.01
0.02

GSS 𝑐0
𝑐1

3.0e−3
2.6e−3

7.0e−3
6.2e−3

1.0e−3
6.9e−3

1.7e−3
2.5e−3

1.6e−3
3.6e−4

0.01
0.02
W

e
a

terms of explanation forgetting and recovery when using CL strategies
like ER and SSC.

Fig. D.5 shows the same type of results as Fig. 2 but with LIFT
instead of SHAP.

Appendix D. Additional SHAP and LIFT tables

We present two alternative versions of the ED and EDpool metric
ntroduced in Section 4. We introduce these metrics to show that the
hoices we made in the design of the ED metric are based on reliable
ssumptions. In ED and its version with pooling, we either discard the
patial and temporal position of input feature relevance (ED) or include
t for a local neighborhood of input features (EDpool). We show that

using a fine-grained spatial or temporal locality returns meaningless
results. For example, comparing input relevance values on a pixel-by-
pixel basis may (and, in fact, does) introduce a strong noise component
that prevents the metric from capturing real patterns. To intuitively
10

f

show this behavior, let us imagine an explanator (SHAP or LIFT) that
takes the explanations computed by the joint model and swaps the
relevance values for adjacent pixels (each pixel takes on the relevance
of the pixel next/below/above it). This would result in a very large
value for the element-wise metric, despite the fact that the overall
explained pattern would not change significantly. Disregarding this
effect (ED) or taking it into account for local regions (EDpool) allows
to really extract patterns at the level of a region (spatial domain) or of
a consistent portion of a time series (time domain). The element-wise
ED (eED+) is defined as:

ED(𝑐)(𝑆, 𝐽) = 1
𝐾

(𝐾
∑

𝑖=1
max(0, 𝑆(𝑐)

𝑖) − max(0, 𝐽 (𝑐)
𝑖)

)2
. (D.1)

e can consider eED a version of EDpool with a 1 × 1 pooling.
We can also define eED as eED+ with both positive and negative rel-

vance values, i.e., dropping the max operator. We show in Tables D.6
nd D.7 that both versions of eED do not capture the explanation
orgetting effects discussed in Section 5.

Neurocomputing 597 (2024) 127960

11

A. Cossu et al.

Fig. D.3. Positive SHAP values after training on the last experience the CNN model on CIFAR-10. The first column shows the input image (channels summed), and the other ten
columns show the SHAP values for each class (the more active, the higher the time step’s contribution toward the class). Replay and GSS are able to effectively preserve the SHAP
values for class 0 and class 1, while Naive is mostly activated by class 8 and 9 (forgetting).

Neurocomputing 597 (2024) 127960

12

A. Cossu et al.

Fig. D.4. Positive SHAP values after training on the last experience the ESN model on SSC. The first column shows the input time series (time domain), and the other ten columns
show the SHAP values for each class (the more active, the higher the time step’s contribution toward the class). Replay and GSS are able to effectively preserve the LIFT values
for class 0 and class 1, while Naive is mostly activated by class 8 and 9 (forgetting).

Neurocomputing 597 (2024) 127960

13

A. Cossu et al.

Fig. D.5. Metric ED for LIFT for each strategy and benchmark (lower is better). In each plot, the 𝑥-axis represents the number of classes in the dataset. The dots indicate the
value of ED for the output unit corresponding to the target class. Each curve is averaged over 50 examples from the test set.

Fig. D.5. (continued).

Neurocomputing 597 (2024) 127960A. Cossu et al.
References

[1] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, N. Díaz-Rodríguez,
Continual learning for robotics: Definition, framework, learning strategies, op-
portunities and challenges, Inf. Fusion 58 (2020a) 52–68, http://dx.doi.org/10.
1016/j.inffus.2019.12.004.

[2] G.I. Parisi, R. Kemker, J.L. Part, C. Kanan, S. Wermter, Continual lifelong
learning with neural networks: A review, Neural Netw. 113 (2019) 54–71,
http://dx.doi.org/10.1016/j.neunet.2019.01.012.

[3] R.M. French, Using semi-distributed representations to overcome catastrophic
forgetting in connectionist networks, in: In Proceedings of the 13th Annual
Cognitive Science Society Conference, Erlbaum, 1991, pp. 173–178.

[4] G. Carpenter, S. Grossberg, Adaptive Resonance Theory: Stable self-organization
of neural recognition codes in response to arbitrary lists of input patterns, in:
Proceedings of the Eight Annual Conference of the Cognitive Science Society,
Erlbaum, Hillsdale, NJ, 1986, pp. 45–62.

[5] M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh,
T. Tuytelaars, A continual learning survey: Defying forgetting in classification
tasks, IEEE Trans. Pattern Anal. Mach. Intell. (2021) 1, http://dx.doi.org/10.
1109/TPAMI.2021.3057446.

[6] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi, A
Survey of Methods for Explaining Black Box Models, CSUR, 2018.

[7] S.A. Rebuffi, A. Kolesnikov, G. Sperl, C.H. Lampert, iCaRL: Incremental classifier
and representation learning, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 2001–2010.

[8] S.M. Lundberg, S.I. Lee, A unified approach to interpreting model predictions,
Adv. Neural Inf. Process. Syst. 30 (2017).

[9] A. Shrikumar, P. Greenside, A. Kundaje, Learning important features through
propagating activation differences, in: Proceedings of the 34th International
Conference on Machine Learning, PMLR, 2017, pp. 3145–3153.

[10] M. Ancona, E. Ceolini, C. Öztireli, M. Gross, Towards better understanding of
gradient-based attribution methods for Deep Neural Networks, in: International
Conference on Learning Representations, 2018.

[11] A. Cossu, F. Spinnato, R. Guidotti, D. Bacciu, A protocol for continual explanation
of SHAP, in: European Symposium on Artificial Neural Networks, ESANN, 2023,
http://dx.doi.org/10.14428/esann/2023.ES2023-41, arXiv:2306.07218.

[12] A. Ceni, A. Cossu, M. Stölzle, J. Liu, C. Della Santina, D. Bacciu, C. Gallicchio,
Random oscillators network for time series processing, in: AISTATS 2024, 2024.

[13] A. Cossu, A. Carta, V. Lomonaco, D. Bacciu, Continual learning for recur-
rent neural networks: An empirical evaluation, Neural Netw. 143 (2021b)
607–627, http://dx.doi.org/10.1016/j.neunet.2021.07.021, URL https://www.
sciencedirect.com/science/article/pii/S0893608021002847.

[14] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9
(1997) 1735–1780, http://dx.doi.org/10.1162/neco.1997.9.8.1735.

[15] V. Lomonaco, L. Pellegrini, A. Cossu, A. Carta, G. Graffieti, T.L. Hayes, M.De.
Lange, M. Masana, J. Pomponi, M. van de Ven, Q. She, K. Cooper, J. Forest,
E. Belouadah, S. Calderara, G.I. Parisi, F. Cuzzolin, A.S. Tolias, S. Scardapane,
L. Antiga, S. Ahmad, A. Popescu, C. Kanan, T. van de Weijer, D. Bacciu,
D. Maltoni, Avalanche: An end-to-end library for continual learning, in: 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), IEEE, 2021, pp. 3595–3605, http://dx.doi.org/10.1109/CVPRW53098.
2021.00399.

[16] A. Robins, Catastrophic forgetting; Catastrophic interference; stability; plas-
ticity; rehearsal, Connect. Sci. 7 (1995) 123–146, http://dx.doi.org/10.1080/
09540099550039318.

[17] T.L. Hayes, G.P. Krishnan, M. Bazhenov, H.T. Siegelmann, T.J. Sejnowski, C.
Kanan, Replay in deep learning: Current approaches and missing biological
elements, Neural Comput. 33 (2021) 2908–2950, http://dx.doi.org/10.1162/
neco_a_01433.

[18] A. Soutif-Cormerais, A. Carta, A. Cossu, J. Hurtado, V. Lomonaco, J. Van de
Weijer, H. Hemati, A comprehensive empirical evaluation on online continual
learning, in: ICCV Visual Continual Learning Workshop, 2023.

[19] D. Rolnick, A. Ahuja, J. Schwarz, T.P. Lillicrap, G. Wayne, Experience replay for
continual learning, in: NeurIPS, 2019, pp. 350–360.

[20] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P.K. Dokania, P.H.S. Torr,
M. Ranzato, On tiny episodic memories in continual learning, arXiv (2019).

[21] G. Merlin, V. Lomonaco, A. Cossu, A. Carta, D. Bacciu, Practical recommen-
dations for replay-based continual learning methods, in: Workshop on Novel
Benchmarks and Approaches for Real-World Continual Learning (CL4REAL),
2021, arXiv:2203.10317.

[22] R. Aljundi, M. Lin, B. Goujaud, Y. Bengio, Gradient based sample selection for
online continual learning, in: NeurIPS, Curran Associates, Inc, 2019, pp. 11816–
11825, URL http://papers.nips.cc/paper/9354-gradient-based-sample-selection-
for-online-continual-learning.pdf.

[23] T. Lesort, A. Stoian, D. Filliat, Regularization shortcomings for continual learning,
arXiv (2020b).

[24] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A.A. Rusu, K.
Milan, J. Quan, T. Ramalho, D. Grabska-Barwinska, C. Clopath, D. Kumaran, R.
Hadsell, Overcoming catastrophic forgetting in neural networks, Proc. Natl. Acad.
Sci. USA 114 (2017) 3521–3526, http://dx.doi.org/10.1073/pnas.1611835114.
14
[25] F. Zenke, B. Poole, S. Ganguli, Continual learning through synaptic intelligence,
in: International Conference on Machine Learning, 2017, pp. 3987–3995.

[26] F. Bodria, F. Giannotti, R. Guidotti, F. Naretto, D. Pedreschi, S. Rinzivillo,
Benchmarking and survey of explanation methods for black box models, Data
Min. Knowl. Discov. (2023) 1–60.

[27] D. Smilkov, N. Thorat, B. Kim, F. Viégas, M. Wattenberg, Smoothgrad: removing
noise by adding noise, 2017, arXiv preprint arXiv:1706.03825.

[28] T.G. Dietterich, Machine learning for sequential data: A review, in: T. Caelli, A.
Amin, R.P.W. Duin, D. de Ridder, M. Kamel (Eds.), Structural, Syntactic, and
Statistical Pattern Recognition, Springer, Berlin, Heidelberg, 2002, pp. 15–30,
http://dx.doi.org/10.1007/3-540-70659-3_2.

[29] A. Cossu, A. Carta, D. Bacciu, Continual learning with gated incremental
memories for sequential data processing, in: 2020 International Joint Confer-
ence on Neural Networks (IJCNN), 2020, pp. 1–8, http://dx.doi.org/10.1109/
IJCNN48605.2020.9207550.

[30] J.L. Elman, Finding structure in time, Cogn. Sci. 14 (1990) 179–211, http:
//dx.doi.org/10.1207/s15516709cog1402_1.

[31] M. Lukoševičius, H. Jaeger, Reservoir computing approaches to recurrent neural
network training, Comp. Sci. Rev. 3 (2009) 127–149, http://dx.doi.org/10.1016/
j.cosrev.2009.03.005.

[32] M. Lukoševičius, A practical guide to applying echo state networks, in: G.
Montavon, G.B. Orr, K.R. Müller (Eds.), Neural Networks: Tricks of the Trade,
second ed., in: Lecture Notes in Computer Science, Springer, Berlin, Heidelberg,
2012, pp. 659–686, http://dx.doi.org/10.1007/978-3-642-35289-8_36.

[33] S. Ebrahimi, S. Petryk, A. Gokul, W. Gan, J.E. Gonzalez, M. Rohrbach, T.
Darrell, Remembering for the right reasons: Explanations reduce catastrophic
forgetting, Appl. AI Lett. 2 (2021) e44, http://dx.doi.org/10.1002/ail2.44, URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/ail2.44.

[34] D. Rymarczyk, J. van de Weijer, B. Zielinski, B. Twardowski, ICICLE: Inter-
pretable class incremental continual learning, arxiv (2023) http://dx.doi.org/
10.48550/arXiv.2303.07811, URL http://arxiv.org/abs/2303.07811 arXiv:2303.
07811.

[35] F. Ye, A.G. Bors, Lifelong learning of interpretable image representations, in:
2020 Tenth International Conference on Image Processing Theory, Tools and
Applications (IPTA), 2020, pp. 1–6, http://dx.doi.org/10.1109/IPTA50016.2020.
9286663.

[36] F. Guzy, M. Woźniak, B. Krawczyk, Evaluating and explaining generative adver-
sarial networks for continual learning under concept drift, in: 2021 International
Conference on Data Mining Workshops (ICDMW), 2021, pp. 295–303, http:
//dx.doi.org/10.1109/ICDMW53433.2021.00044.

[37] G.M. van.de Ven, A.S. Tolias, Three scenarios for continual learning, in: Continual
Learning Workshop NeurIPS, 2018, arXiv:1904.07734.

[38] B. Cramer, Y. Stradmann, J. Schemmel, F. Zenke, The heidelberg spiking data
sets for the systematic evaluation of spiking neural networks, IEEE Trans. Neural
Netw. Learn. Syst. 33 (2020) 2744–2757.

[39] D. Lopez-Paz, M.A. Ranzato, Gradient episodic memory for continual learning,
in: Advances in Neural Information Processing Systems, Curran Associates, Inc.,
2017.

[40] A. Cossu, D. Bacciu, A. Carta, C. Gallicchio, V. Lomonaco, Continual learning
with echo state networks, in: ESANN 2021, 2021, http://dx.doi.org/10.14428/
esann/2021.ES2021-80, URL http://arxiv.org/abs/2105.07674.

[41] A. Carta, L. Pellegrini, A. Cossu, H. Hemati, V. Lomonaco, Avalanche: A PyTorch
library for deep continual learning, arxiv (2023) http://dx.doi.org/10.48550/
arXiv.2302.01766, URL http://arxiv.org/abs/2302.01766 arXiv:2302.01766.

[42] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32.
[43] D. Dell’Aglio, E. Della Valle, F. van Harmelen, A. Bernstein, Stream reasoning:

A survey and outlook, Data Sci. 1 (2017) 59–83.
[44] G. Ditzler, M. Roveri, C. Alippi, R. Polikar, Learning in nonstationary environ-

ments: A survey, IEEE Comput. Intell. Mag. 10 (2015) 12–25, http://dx.doi.org/
10.1109/MCI.2015.2471196.

Andrea Cossu has a Ph.D. in Data Science from Scuola
Normale Superiore, Pisa. He is currently a researcher at the
Computer Science Department of the University of Pisa. His
research interests revolve around continual/lifelong learn-
ing and recurrent neural networks. Andrea graduated with
honors in Computer Science from the University of Pisa.

Francesco Spinnato is a Ph.D. candidate in Data Science
at the Scuola Normale Superiore, and a researcher at the
University of Pisa. His research focuses on Explainable AI
(XAI) for sequential data, particularly on interpreting black-
box models for univariate and multivariate time series. In
2017, he earned a bachelor’s degree in Economics and
Management from the University of Padua, and in 2020,
he obtained a master’s degree in Data Science from the
University of Pisa.

http://dx.doi.org/10.1016/j.inffus.2019.12.004
http://dx.doi.org/10.1016/j.inffus.2019.12.004
http://dx.doi.org/10.1016/j.inffus.2019.12.004
http://dx.doi.org/10.1016/j.neunet.2019.01.012
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb3
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb3
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb3
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb3
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb3
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb4
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb4
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb4
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb4
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb4
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb4
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb4
http://dx.doi.org/10.1109/TPAMI.2021.3057446
http://dx.doi.org/10.1109/TPAMI.2021.3057446
http://dx.doi.org/10.1109/TPAMI.2021.3057446
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb6
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb6
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb6
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb7
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb7
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb7
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb7
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb7
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb8
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb8
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb8
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb9
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb9
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb9
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb9
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb9
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb10
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb10
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb10
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb10
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb10
http://dx.doi.org/10.14428/esann/2023.ES2023-41
http://arxiv.org/abs/2306.07218
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb12
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb12
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb12
http://dx.doi.org/10.1016/j.neunet.2021.07.021
https://www.sciencedirect.com/science/article/pii/S0893608021002847
https://www.sciencedirect.com/science/article/pii/S0893608021002847
https://www.sciencedirect.com/science/article/pii/S0893608021002847
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/CVPRW53098.2021.00399
http://dx.doi.org/10.1109/CVPRW53098.2021.00399
http://dx.doi.org/10.1109/CVPRW53098.2021.00399
http://dx.doi.org/10.1080/09540099550039318
http://dx.doi.org/10.1080/09540099550039318
http://dx.doi.org/10.1080/09540099550039318
http://dx.doi.org/10.1162/neco_a_01433
http://dx.doi.org/10.1162/neco_a_01433
http://dx.doi.org/10.1162/neco_a_01433
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb18
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb18
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb18
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb18
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb18
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb19
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb19
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb19
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb20
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb20
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb20
http://arxiv.org/abs/2203.10317
http://papers.nips.cc/paper/9354-gradient-based-sample-selection-for-online-continual-learning.pdf
http://papers.nips.cc/paper/9354-gradient-based-sample-selection-for-online-continual-learning.pdf
http://papers.nips.cc/paper/9354-gradient-based-sample-selection-for-online-continual-learning.pdf
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb23
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb23
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb23
http://dx.doi.org/10.1073/pnas.1611835114
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb25
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb25
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb25
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb26
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb26
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb26
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb26
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb26
http://arxiv.org/abs/1706.03825
http://dx.doi.org/10.1007/3-540-70659-3_2
http://dx.doi.org/10.1109/IJCNN48605.2020.9207550
http://dx.doi.org/10.1109/IJCNN48605.2020.9207550
http://dx.doi.org/10.1109/IJCNN48605.2020.9207550
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1016/j.cosrev.2009.03.005
http://dx.doi.org/10.1016/j.cosrev.2009.03.005
http://dx.doi.org/10.1016/j.cosrev.2009.03.005
http://dx.doi.org/10.1007/978-3-642-35289-8_36
http://dx.doi.org/10.1002/ail2.44
https://onlinelibrary.wiley.com/doi/abs/10.1002/ail2.44
http://dx.doi.org/10.48550/arXiv.2303.07811
http://dx.doi.org/10.48550/arXiv.2303.07811
http://dx.doi.org/10.48550/arXiv.2303.07811
http://arxiv.org/abs/2303.07811
http://arxiv.org/abs/2303.07811
http://arxiv.org/abs/2303.07811
http://arxiv.org/abs/2303.07811
http://dx.doi.org/10.1109/IPTA50016.2020.9286663
http://dx.doi.org/10.1109/IPTA50016.2020.9286663
http://dx.doi.org/10.1109/IPTA50016.2020.9286663
http://dx.doi.org/10.1109/ICDMW53433.2021.00044
http://dx.doi.org/10.1109/ICDMW53433.2021.00044
http://dx.doi.org/10.1109/ICDMW53433.2021.00044
http://arxiv.org/abs/1904.07734
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb38
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb38
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb38
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb38
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb38
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb39
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb39
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb39
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb39
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb39
http://dx.doi.org/10.14428/esann/2021.ES2021-80
http://dx.doi.org/10.14428/esann/2021.ES2021-80
http://dx.doi.org/10.14428/esann/2021.ES2021-80
http://arxiv.org/abs/2105.07674
http://dx.doi.org/10.48550/arXiv.2302.01766
http://dx.doi.org/10.48550/arXiv.2302.01766
http://dx.doi.org/10.48550/arXiv.2302.01766
http://arxiv.org/abs/2302.01766
http://arxiv.org/abs/2302.01766
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb42
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb43
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb43
http://refhub.elsevier.com/S0925-2312(24)00731-8/sb43
http://dx.doi.org/10.1109/MCI.2015.2471196
http://dx.doi.org/10.1109/MCI.2015.2471196
http://dx.doi.org/10.1109/MCI.2015.2471196

Neurocomputing 597 (2024) 127960A. Cossu et al.
Riccardo Guidotti is an Assistant Professor at the Depart-
ment of Computer Science at the University of Pisa and a
member of the Knowledge Discovery and Data Mining Lab-
oratory (KDDLab), a joint research group with ISTI-CNR of
Pisa and with Scuola Normale Superiore. Riccardo Guidotti
graduated with honors in Computer Science from the Uni-
versity of Pisa, where he also earned his Ph.D. in Computer
Science with a thesis on ‘‘Personal Data Analytics’’. He
won the IBM fellowship program in 2015, the DSAA New
Generation Data Scientist Award in 2018, and the Marco
Somalvico Award for Artificial Intelligence in 2021. He has
been the principal investigator of the FIS 2021 MIMOSA
project. His research interests include explainable artificial
intelligence, interpretable machine learning, personal data
mining, clustering, and the analysis of transactional data
and time series.
15
Davide Bacciu has a Ph.D. in Computer Science and
Engineering from IMT Lucca. He is Full Professor at the
Computer Science Department, University of Pisa, where he
heads the Pervasive AI Lab. His research interests include
machine learning for structured data, Bayesian learning,
deep learning, reservoir computing, distributed and embed-
ded learning systems. He has been the coordinator of the
HE-EIC EMERGE and H2020 TEACHING projects. He is the
Chair of the IEEE Neural Network Technical Committee and
a Senior Editor of the IEEE Transactions on Neural Networks
and Learning Systems.

	Drifting explanations in continual learning
	Introduction
	Background
	Related Works
	Continual Explanations
	Experiments
	Experimental setup
	Results

	Conclusion and Future Works
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Full experiments configuration
	Appendix B. Statistical significance
	Appendix C. Additional SHAP and LIFT plots
	Appendix D. Additional SHAP and LIFT tables
	References

