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Abstract

While the impact of social biases in language
models has been recognized, prior methods
for bias evaluation have been limited to binary
association tests on small datasets, limiting
our understanding of bias complexities. This
paper proposes a novel framework for probing
language models for social biases by assessing
disparate treatment, which involves treating
individuals differently according to their affil-
iation with a sensitive demographic group. We
curate SOFA, a large-scale benchmark designed
to address the limitations of existing fairness
collections. SOFA expands the analysis beyond
the binary comparison of stereotypical versus
anti-stereotypical identities to include a diverse
range of identities and stereotypes. Comparing
our methodology with existing benchmarks, we
reveal that biases within language models are
more nuanced than acknowledged, indicating
a broader scope of encoded biases than
previously recognized. Benchmarking LMs
on SOFA, we expose how identities expressing
different religions lead to the most pronounced
disparate treatments across all models. Finally,
our findings indicate that real-life adversities
faced by various groups such as women and
people with disabilities are mirrored in the
behavior of these models.

1 Introduction

The unparalleled ability of language models (LMs)
to generalize from vast corpora is tinged by an in-
herent reinforcement of social biases. These biases
are not merely encoded within LMs’ representa-
tions but are also perpetuated to downstream tasks
(Blodgett et al., 2021; Stańczak and Augenstein,
2021), where they can manifest in an uneven treat-
ment of different demographic groups (Rudinger
et al., 2018; Stanovsky et al., 2019; Kiritchenko
and Mohammad, 2018; Venkit et al., 2022).

Direct analysis of biases encoded within LMs
allows us to pinpoint the problem at its source, po-
tentially obviating the need for addressing it for ev-

Figure 1: Social Bias Probing framework.

ery application (Nangia et al., 2020). Therefore, a
number of studies have attempted to evaluate social
biases within LMs (Nangia et al., 2020; Nadeem
et al., 2021; Stańczak et al., 2023; Nozza et al.,
2022a). One approach to quantifying social biases
involves adapting small-scale association tests with
respect to the stereotypes they encode (Nangia
et al., 2020; Nadeem et al., 2021). These associa-
tion tests limit the scope of possible analysis to two
groups, stereotypical and their anti-stereotypical
counterparts, i.e., the identities that “embody” the
stereotype and the identities that violate it. This bi-
nary approach, which assumes a singular “ground
truth” with respect to a stereotypical statement, has
restricted the depth of the analysis and simplified
the complexity of social identities and their associ-
ated stereotypes. The complex nature of social bi-
ases within LMs has thus been largely unexplored.

Our Social Bias Probing framework, as outlined
in Fig. 1, is specifically designed to enable a nu-
anced understanding of biases inherent in language
models. Accordingly, the input of our approach
consists of a set stereotypes and identities. To
this end, we generate our probing dataset by com-
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bining stereotypes from the SOCIAL BIAS INFER-
ENCE CORPUS (SBIC; Sap et al. 2020) and identi-
ties from the lexicon by Czarnowska et al. (2021).
In this paper we examine identities belonging to
four social categories: gender, religion, disability,
and nationality. Secondly, we assess social biases
across five state-of-the-art LMs in English. We use
perplexity (Jelinek et al., 1977), a measure of lan-
guage model uncertainty, as a proxy for bias. By
analyzing the variation in perplexity when probes
feature different identities within the diverse social
categories, we infer which identities are deemed
most likely by a model. This approach facilitates
a three-dimensional analysis – by social category,
identity, and stereotype—across the evaluated LMs.
In summary, the contributions of this work are:

• We conceptually facilitate fairness benchmark-
ing across multiple identities using our Social
Bias Probing framework, going beyond the
binary approach of a stereotypical and an anti-
stereotypical identity.

• We introduce SOFA (Social Fairness), a
benchmark for fairness probing addressing
limitations of existing datasets, including a va-
riety of different identities and stereotypes.1

• We assess social biases in five autoregressive
causal language modeling architectures by ex-
amining disparate treatment across social cat-
egories, identities, and stereotypes.

A comparative analysis with the popular
benchmarks CROWS-PAIRS (Nangia et al., 2020)
and STEREOSET (Nadeem et al., 2021) reveals
marked differences in the overall fairness ranking
of the models, providing a different view on the
social biases encoded in LMs. We further find
how identities expressing religions lead to the
most pronounced disparate treatments across all
models, while the different nationalities appear to
induce the least variation compared to the other
examined categories, namely gender and disability.
We hypothesize that the increased visibility of
religious disparities in language models may
stem from recent successful efforts to mitigate
racial and gender biases. This underscores the
urgency for a comprehensive investigation into
biases across multiple dimensions. Additionally,
our findings indicate that the LMs reflect the
real-life challenges faced by various groups, such
as women and people with disabilities.

1SOFA is available at https://huggingface.co/
datasets/copenlu/sofa. See the Data Statement in
App. A.

2 Related Work

Social Bias Benchmarking Prior work, such as
CROWS-PAIRS (Nangia et al., 2020) and STERE-
OSET (Nadeem et al., 2021), was pioneering in
benchmarking models in terms of social biases
and harmfulness. However, concerns have been
raised regarding stereotype framing and data reli-
ability of benchmark collections designed to ana-
lyze biases in LMs (Blodgett et al., 2021; Gallegos
et al., 2023). Specifically, Nangia et al. (2020)
determine the extent to which a masked language
model prefers stereotypical or anti-stereotypical
responses, while the stereotype score developed
by Nadeem et al. (2021) expands this approach to
include both masked and autoregressive LMs. A
significant limitation of both benchmarks is their
use of a 50% bias score threshold, where models
are considered biased if they prefer stereotypical
associations more than half the time, and unbiased
otherwise (Pikuliak et al., 2023). Another approach,
which does not rely on choosing one correct answer
from two options, is the proposed by Kaneko and
Bollegala (2022) All Unmasked Likelihood (AUL)
method which predicts all tokens in a sentence,
considering multiple correct candidate predictions
for a masked token, which is shown to improve
accuracy and avoid selection bias. Hosseini et al.
(2023) instead leverage pseudo-perplexity (Salazar
et al., 2020) in combination with a toxicity score to
assess the tendency of LMs’ to generate statements
distinguished between harmful vs. benevolent.

Our Social Bias Probing framework (i) probes
biases across multiple identities without assuming
the existence of solely two groups and contests the
need for a deterministic threshold for dividing these
groups; (ii) is developed with benchmarking social
bias in the autoregressive causal LMs in mind.

Social Bias Datasets Benchmarking social bias
is highly reliant on the underlying dataset, i.e.,
the bias categories, stereotypes, and identities it
includes (Blodgett et al., 2021; Delobelle et al.,
2022). STEREOSET presents over 6k triplets
(for a total of approximately 19k) crowdsourced
instances measuring race, gender, religion, and
profession stereotypes, while CROWS-PAIRS

provides roughly 1.5k sentence pairs (for a total
of 3k) to evaluate stereotypes of historically
disadvantaged social groups. Barikeri et al. (2021)
introduce a conversational dataset consisting of
11, 873 sentences generated from Reddit conver-
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sations to assess stereotypes between dominant
and minoritized groups along the dimensions of
gender, race, religion, and queerness.

These datasets cover a limited set of identities
and stereotypes. Therefore, bias measurements us-
ing these resources could lead to inaccurate fairness
evaluations. In fact, Smith et al. (2022b) show that
they are able to measure previously undetectable bi-
ases with their large-scale dataset of over 450, 000
sentence prompts from two-person conversations.
Our SOFA benchmark includes a total of 408 iden-
tities and 11, 349 stereotypes across four social
bias dimensions, for a total amount of 1, 490, 120
probes, presenting an extensive resource for social
bias probing of language models.

3 Social Bias Probing Framework

Social bias2 can be defined as the manifestation
through language of “prejudices, stereotypes, and
discriminatory attitudes against certain groups of
people” (Navigli et al., 2023). These biases are
featured in training datasets and are carried over
into downstream applications, resulting in, for
instance, classification errors concerning specific
minorities and the generation of harmful content
when models are prompted with sensitive identities
(Cui et al., 2024; Gallegos et al., 2023).

To measure the extent to which social bias is
present in language models, we propose a Social
Bias Probing framework (see Fig. 1) which serves
as a technique for fine-grained fairness benchmark-
ing of LMs. We first collect a set of stereotypes and
identities (Section 3.1-Section 3.2), which results
in the SOFA (Social Fairness) dataset (Section 3.3).
The final phase of our workflow involves evaluat-
ing language models by employing our proposed
perplexity-based fairness measures in response to
the constructed probes (Section 3.4), exploited in
the designed evaluation setting (Section 3.5).

3.1 Stereotypes
We derive stereotypes from the list of implied
statements in SBIC (Sap et al., 2020), a corpus
of 44, 000 social media posts having harmful
biased implications written in English on Reddit
and Twitter. Additionally, the authors draw from
two widely recognized hate communities, namely
Gab3, a social network popular among nationalists,

2The term social characterizes bias in relation to the risks
and impacts on demographic groups, distinguishing it from
other forms of bias, e.g., the statistical one.

3https://gab.com/.

and Stormfront,4 a radical right white supremacist
forum.5 We emphasize that SBIC serves as an
exemplary instantiation of our framework. Our
methodology can be applied more broadly to any
dataset containing stereotypes directed towards
specific identities.

Professional annotators labeled the original
posts as either offensive or biased, ensuring each
instance in the dataset contains harmful content.
We decide to filter the SBIC dataset to isolate only
those abusive samples with explicitly annotated
stereotypes. Since certain stereotypes contain the
targeted identity, whereas our goal is to create
multiple control probes with different identities, we
remove the subjects from the stereotypes, to stan-
dardize the format of statements. Following prior
work (Barikeri et al., 2021), we discard obscure
stereotypes with high perplexity scores to remove
unlikely instances ensuring accurate evaluation
based on perplexity peaks of stereotype–identity
pairs. The filtering uses a threshold, averaging
perplexity scores across models and removing the
highest-scored stereotypes (Fig. 4 in Appendix).
We then perform a fluency evaluation of the
stereotypes to filter out ungrammatical sentences
through the distilbert-base-uncased-CoLA
model,6 which determines the linguistic accept-
ability. Lastly, we remove duplicated stereotypes
and apply lower-case. Further details on the
preprocessing steps are provided in App. B.

3.2 Identities

Although we could have directly used the identities
provided in the SBIC dataset, we opted not to, as
they were unsuitable due to belonging to multiple
overlapping categories and often being repeated in
various wording, influenced by the differing styles
of individual annotators. To leverage a coherent
distinct set of identities, we deploy the lexicon7

created by Czarnowska et al. (2021). In Tab. 3
in the Appendix, we report samples for each cate-
gory. We map the SBIC dataset group categories
to the identities available in the lexicon (Tab. 5
in Appendix). Specifically, the categories from

4https://www.stormfront.org/forum/.
5We refer to the dataset for an in-depth description (https:

//maartensap.com/social-bias-frames/index.html).
6https://huggingface.co/textattack/

distilbert-base-uncased-CoLA
7The complete list of identities is avail-

able at https://github.com/amazon-science/
generalized-fairness-metrics/tree/main/terms/
identity_terms.
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SBIC are gender, race, culture, disabilities, victim,
social, and body. We first define and rename the
culture category to include religions and broaden
the scope of the race category to encompass nation-
alities. We then link the categories in the SBIC
dataset to those present in the lexicon as follows:
gender identities are drawn from the lexicon’s gen-
ders and sexual orientations, nationality from race
and country categories, religion and disabilities
directly from their respective categories. This map-
ping excludes the broader SBIC categories–victim,
social, and body–due to alignment challenges with
lexicon entries and difficulties in preserving state-
ment invariance.8 While we inherit the assignment
of an identity to a specific category the underlying
resources, we recognize that these framings may
simplify the complexity of identities.

3.3 SOFA

To obtain SOFA, each target is concatenated to each
statement with respect to their category, creating
dataset instances that differ only for the target. See
Tab. 4 in Appendix for a sample of examples of
the generated probes. SOFA consists of a total of
408 coherent identities, over 35k stereotypes, and
1.49mio probes. In Tab. 5 in the Appendix, we
report the detailed coverage statistics of SOFA and
compare it to existing benchmarks.

To gain an overview of the topics covered by
the stereotypes, we conduct a clustering analysis.
In App. C.2, we describe the clustering algorithm.
Most of the stereotypes are associated with sexual-
ization and violence (over 1000 distinct stereotypes
each) with other topics such as family neglect, and
racial stereotypes, being mentioned (see Fig. 5 for
details). Moreover, we analyze stereotypes under
the lens of hate speech analysis, i.e., we quantify
how many stereotypes are also instances of hate
speech. The majority of stereotypes do not ex-
hibit hate speech features. Indeed, although often
the stereotypes do not contain explicitly offensive
terms, the underlying intent of the original com-
ment is still harmful, conveying a prejudicial, de-
meaning perspective. We describe our procedure
and results in App. C.3.

8This choice is motivated by the fact that the stereotypes
under these categories are often specific to a particular identity;
for example, they might have referenced body parts belonging
to one gender and not another.

3.4 Fairness Measures
We use perplexity (PPL; Jelinek et al. 1977) as a
means of intrinsic evaluation of fairness in LMs.
PPL is defined as the exponentiated average nega-
tive log-likelihood of a sequence. More formally,
let X = (x0, x1, . . . , xt) be a tokenized sequence,
then the perplexity of the sequence is

PPL(X) = exp

{
−1

t

t∑

d

loge pθ(xd | x<d)

}

where log pθ(xd | x<d) is the log-likelihood of
the dth token conditioned on the proceeding to-
kens given a model parametrized with θ. We mea-
sure the propensity of a model to produce a given
output based on PPL, identifying bias manifesta-
tions when a model exhibits low PPL values for
statements that contain stereotype-containing state-
ments, suggesting a higher probability of their gen-
eration. The purpose of our framework, is to pro-
vide a fine-grained summary of models’ behaviors
from an invariance fairness perspective, i.e., the
same statement referring to different demographic
groups should not cause a substantial change in
model behavior, or, in more general terms, individ-
uals from different demographic groups should be
treated equally.

Formally, let C = {religion, gender, disability,
nationality} be the set of identity categories; we
denote one element of C as c. Further, let i be
the identity belonging to a specific category c,
e.g., Catholics and s be the stereotype belonging
to c, e.g., are all terrorists. We define Pi+s as
a singular probe derived by the concatenation of
i with s, e.g., Catholics are all terrorists, while
Pc,s = {i+s | i ∈ c} is the set of probes for s gath-
ering all the controls resulting from the different
identities that belong to c, e.g., {Catholics are all
terrorists; Buddhists are all terrorists; Atheists are
all terrorists; ...}. Finally, let m be the LM under
analysis. The normalized perplexity of a probe is
computed as follows:

PPL⋆m
(i+s) =

PPLm
(i+s)

PPLm
(i)

(1)

Since the identities are characterized by their
own PPL scores, we normalize the PPL of the probe
with the PPL of the identity, addressing the risk that
certain identities might yield higher PPL scores
because they are considered unlikely.

We highlight that the PPL’s scale across different
models can significantly differ based on the training
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data and, therefore, are not directly comparable.
We facilitate the comparison of the PPL values of
model m1 and model m2 for a given combination
of identity and a stereotype:

PPL⋆m1
(i+s) ≡ k · PPL⋆m2

(i+s) (2)

log10(PPL⋆m1
(i+s)) ≡ log10(k · PPL⋆m2

(i+s)) (3)

σ2(log10(PPL⋆m1
Pc,s

)) = σ2(log10(k) + log10(PPL⋆m2
Pc,s

))

= σ2(log10 PPL⋆m2
Pc,s

) (4)

In Eq. (2), k is a constant and represents the
factor that quantifies the scale of the scores emitted
by the model. Importantly, each model has its
own k,9 but because it is a constant, it does not
depend on the input text sequence but solely on the
model m in question. In Eq. (3), we use the base-
10 logarithm of the PPL values generated by each
model to analyze more tractable numbers since the
range of PPL is [0, inf). From now on, we call
log10(PPL⋆m

(i+s)) as PPL⋆ for the sake of brevity.
Our proposed perplexity-based SOFA score is

based on calculating variance across the probes
Pc,s (Eq. (4)). For this purpose, k plays no role and
does not influence the result. Consequently, we can
compare the values from different models that have
been transformed in this manner.

Lastly, we introduce the Delta Disparity Score
(DDS) as the magnitude of the difference between
the highest and lowest PPL⋆ score as a signal for
a model’s bias with respect to a specific stereotype.
DDS is computed separately for each stereotype s
belonging to category c, or, in other words, on the
set of probes created from the stereotype s.

DDSPc,s = max
Pc,s

(PPL⋆)−min
Pc,s

(PPL⋆) (5)

3.5 Fairness Evaluation
We define and conduct the following four types of
evaluation: intra-identities, intra-stereotypes, intra-
categories, and calculate a global SOFA score.

Intra-identities (PPL⋆) At a fine-grained level,
we identify the most associated sensitive identity
intra-i, i.e., for each stereotype s within each cat-
egory c. This involves associating the i achieving
the lowest (top-1) PPL⋆ as reported in Eq. (3).

9The constant k is not calculated; it is only formally de-
scribed. The assumption of the existence of this constant k
allows us to compare perplexity values.

Intra-stereotypes (DDS) We analyze the stereo-
types (intra-s), exploring DDS as defined in Eq. (5).
This comparison allows us to pinpoint the strongest
stereotypes within each category, i.e., causing the
lowest disparity with respect to the DDS, shedding
light on the shared stereotypes across identities.

Intra-categories (SOFA score by category) For
the intra-c level, to obtain a fairness score for each
m, for each c and s, we compute the variance as
formalized in Eq. (4) occurring among the probes
of s, and average it by the number of s belonging to
c: 1

n

∑n
j=1 σ

2(log10(PPL⋆m
Pc,sj

)) ∀s = {sj , . . . , sn} ∈ c.

We reference this as SOFA score by category.

Global fairness score (global SOFA score) Hav-
ing computed the SOFA score for all the categories,
we perform a simple average across categories to
obtain the final number for the whole dataset, i.e.,
the global SOFA score. This aggregated number
allows us to compare the behavior of the various
models on the dataset and to rank them according
to variance: models reporting a higher variance are
thus more unfair.

4 Experiments and Results

In this work, we benchmark five autoregressive
causal LMs: BLOOM (Scao et al., 2022), GPT2 (Rad-
ford et al., 2019), XLNET (Yang et al., 2019), BART
(Lewis et al., 2020), and LLAMA210 (Touvron et al.,
2023). We opt for models accessible through the
Hugging Face Transformers library (Wolf et al.,
2020), which are among the most recent, popu-
lar, and demonstrating state-of-the-art performance
across various NLP tasks. To enable direct compari-
son with CROWS-PAIRS and STEREOSET, we also
include LMs previously audited by these bench-
marks. In Tab. 6 in the Appendix, we describe the
selected LMs: for each model, we examine two
scales with respect to the number of parameters.
The PPL is computed at the token level through the
Hugging Face’s evaluate library.11

4.1 Benchmarks

We compare our framework against two other pop-
ular fairness benchmarks previously introduced
in Section 2: STEREOSET and CROWS-PAIRS.12

10We deployed LLAMA2 through a quantization technique
from the bitsandbytes library.

11https://huggingface.co/spaces/
evaluate-metric/perplexity.

12We used the implementation from https://github.
com/McGill-NLP/bias-bench by Meade et al. (2022).
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Models Datasets
SOFA (1.490.120) STEREOSET (19.176) CROWS-PAIRS (3.016)

Family Size Rank ↓ Score ↓ Rank ↓ Score ↓ Rank ↓ Score ↓

BLOOM
560m 1 2.325 6 57.92 5 58.91
3b 9 0.330 4 61.11 4 61.71

GPT2
base 7 0.361 5 60.42 6 58.45

medium 8 0.350 3 62.91 3 63.26

XLNET
base 4 0.795 8 52.20 7 49.84
large 2 1.422 7 53.88 8 48.76

BART
base 10 0.072 10 47.82 10 39.69
large 3 0.978 9 51.04 9 44.11

LLAMA2
7b 6 0.374 2 63.36 2 70
13b 5 0.387 1 64.81 1 71.32

Table 1: Results on SOFA and the two previous fairness benchmarks, STEREOSET and CROWS-PAIRS. We recall
that while SOFA reports an average of variances, the other two benchmarks feature the scores as percentages. The
ranking, which allows a more intuitive comparison of the scores, ranges from 1 (LM most biased) to 10 (LM least
biased ↓); for each of the scores, the best value in bold is the lowest ↓, connoting the least biased model. We note
the number of instances in each dataset next to their names.

Model Category ↓
Family Size Relig. Gend. Dis. Nat.

BLOOM
560m 3.216 2.903 1.889 1.292
3b 0.376 0.483 0.301 0.162

GPT2
base 0.826 0.340 0.161 0.116
medium 0.839 0.304 0.164 0.091

XLNET
base 0.929 0.803 0.846 0.601
large 2.044 1.080 1.554 1.012

BART
base 0.031 0.080 0.107 0.071
large 1.762 1.124 0.582 0.442

LLAMA2
7b 0.612 0.422 0.324 0.138
13b 0.740 0.372 0.312 0.123

Table 2: SOFA score reporting an average of variances
by category: best (↓) value in bold.

STEREOSET (Nadeem et al., 2021): To assess the
bias in a language model, the model is scored us-
ing likelihood-based scoring of the stereotypical or
anti-stereotypical association in each example. The
percentage of examples where the model favors the
stereotypical association over the anti-stereotypical
one is calculated as the model’s stereotype score.
CROWS-PAIRS (Nangia et al., 2020): The bias of
a language model is assessed by evaluating how
often it prefers the stereotypical sentence over the
anti-stereotypical one in each pair using pseudo-
likelihood-based scoring.

4.2 Results

Global fairness scores evaluation In Tab. 1, we
report the results of our comparative analysis with

the previously introduced benchmarks, STERE-
OSET and CROWS-PAIRS. The reported scores
are based on the respective datasets. The ranking
setting in the two other fairness benchmarks re-
ports a percentage, whereas our global SOFA score
represents the average of the variances obtained
per probe, as detailed in Section 3.4. Since the
measures of the three fairness benchmarks are not
directly comparable, we include a ranking column,
ranging from 1 (most biased) to 10 (least biased).
Given that few values stand below 50, a value
considered neutral, according to STEREOSET and
CROWS-PAIRS, we intuitively choose to interpret
the best score as the lowest, consistent with SOFA’s
assessment, and choose to consider a model slightly
skewed toward the anti-stereotypical association as
best rather than the other way around.

Through the ranking, we observe an exact
agreement between STEREOSET and CROWS-
PAIRS on the model order for the first four
positions. In contrast, the ranking provided by
SOFA reveals differences in the overall fairness
ranking of the models, suggesting that the scope
of biases LMs encode is broader than previously
understood. We use Kendall’s Tau (Kendall, 1938)
to quantify the similarity of rankings. STEREOSET

and CROWS-PAIRS achieve a value close to 1
(0.911), indicating strong agreement, while both
benchmarks compared to SOFA reach −0.022,
a value that confirms the already recognized
disagreement. The differences between our results
and those from the two other benchmarks could
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Figure 2: Percentage of probes the identity is the most associated with the stereotypes by category, i.e., achieving
the lowest PPL⋆ as reported in Eq. (3).

stem from the larger scope and size of our dataset,
a link also made by Smith et al. (2022a).

For three out of five models, the larger variant
exhibits more bias, corroborating the findings of
previous research (Bender et al., 2021). Although,
his pattern is not mirrored by BLOOM and GPT2.
According to SOFA, BLOOM-560m emerges as the
model with the highest variance. Notably, and
similarly to BART, the two sizes of the model stand
at opposite poles of the ranking (1-9 and 10-3).

Intra-categories evaluation In the following,
we analyze the results obtained on the SOFA

dataset through the SOFA score broken down by
category,13 detailed in Tab. 2. In Fig. 8 in the
Appendix, we report the score distribution across
categories and LMs. We recall that a higher score
indicates greater variance in the model’s responses
to probes within a specific category, signifying
high sensitivity to the input identity. For the two
scales of BLOOM, we notice scores that are far apart

13Since the categories in SOFA are different and do not
correspond to the two competitor datasets, in the absence of
one-to-one mapping, we do not report this disaggregated result
for STEREOSET and CROWS-PAIRS.

when comparing the pairs of results obtained by
category: this behavior is recorded by the previous
overall ranking, which places these two models at
opposite poles of the scale.

Across all models except for BLOOM-3b, religion
consistently stands out as the category with the
most pronounced disparity, while nationality often
shows the lowest value. Given the extensive focus
on gender and racial biases in the NLP literature,
it is plausible that recent language models have
undergone some degree of fairness mitigation for
these particular biases, which may explain why re-
ligion now emerges more prominently. Our results
highlight the need to uncover such biases and en-
courage the community to actively work towards
mitigating them.

Intra-identities evaluation In Fig. 2, we report
a more qualitative result, i.e., the identities that,
in combination with the stereotypes, obtain the
lowest PPL⋆ score. Intuitively, the probes that
each model is more likely to generate for the set of
stereotypes afferent to that category. Our findings
indicate that certain identities, particularly Mus-
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Figure 3: Stereotypes with lowest DDS according to Eq. (5), per category.

lims and Jews from the religion category and non-
binary and trans persons within gender face dis-
proportionate levels of stereotypical associations in
various tested models. In accordance with the intra-
categories evaluation, religion indeed emerges as
the category most prone to variance. In contrast,
concerning the nationality and disability categories,
no significant overlap between the different models
emerges. A potential contributing factor might be
the varying sizes of the identity sets derived from
the lexicon used for constructing the probes, as
detailed in Tab. 5 in the Appendix.

Intra-stereotypes evaluation We display, in
Fig. 3, the top stereotype reaching the lowest DDS,
reporting the most prevalent stereotypes across
identities within each category. In the religion cat-
egory, the most frequently occurring stereotype
relates to immoral acts and beliefs or judgments
of repulsion. For the gender category, mentions
of stereotypical behaviors and sexual violence are
consistently echoed across models, while in the
nationality category, references span the lack of
employment, physical violence (both endured and
performed), and crimes. Stereotypes associated

with disability encompass judgments related to ap-
pearance, physical incapacity, and other detrimen-
tal opinions.

Overall, we observe that the harms that iden-
tities experience in real life, such as sexual vi-
olence against women (Russo and Pirlott, 2006;
Tavara, 2006), high unemployment of immigrants
(discussed in terms of nationalities) (Appel et al.,
2015; Olier and Spadavecchia, 2022), and stigma-
tized appearance of people with disabilities (Harris,
2019), are indeed reflected by the models’ behavior.

5 Conclusion

This study proposes a novel Social Bias Probing
framework to capture social biases by auditing LMs
on a novel large-scale fairness benchmark, SOFA,
which encompasses a coherent set of over 400 iden-
tities and a total of 1.49m probes across various 11k
stereotypes.

A comparative analysis with the popular bench-
marks CROWS-PAIRS (Nangia et al., 2020) and
STEREOSET (Nadeem et al., 2021) reveals marked
differences in the overall fairness ranking of the
models, suggesting that the scope of biases LMs
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encode is broader than previously understood. Fur-
ther, we expose how identities expressing religions
lead to the most pronounced disparate treatments
across all models, while the different nationalities
appear to induce the least variation compared to
the other examined categories, namely, gender and
disability. We hypothesize that recent efforts to mit-
igate racial and gender biases in LMs could be why
disparities in religion are now more apparent. Con-
sequently, we stress the need for a broader holistic
bias investigation. Finally, we find that real-life
harms experienced by various identities – women,
people identified by their nations (potentially immi-
grants), and people with disabilities – are reflected
in the behavior of the models.

Limitations

Fairness invariance perspective Our frame-
work’s reliance on the fairness invariance assump-
tion is a limitation, particularly since sensitive real-
world statements often acquire a different connota-
tion based on a certain gender or nationality, due
to historical or social context.

Treating probes equally Another simplification,
as highlighted in Blodgett et al. (2021), arises from
“treating pairs equally”. Treating all probes with
equal weight and severity is another limitation of
this work. Given the socio-technical nature of the
social bias probing task, it will be crucial to in-
corporate qualitative human evaluation on a sub-
set of data involving individuals from the affected
communities. This practice would help determine
how the stereotypes reproduced by the models
align with the stereotypes these communities ac-
tually face, assessing their harmfulness. Includ-
ing such evaluation would enhance the understand-
ing of the societal implications of the biases em-
bedded and reproduced by the models. Indeed,
although SOFA leverages human-annotated data
coming from SBIC, the nuanced human judgment
involved in labeling stereotypes could be better
preserved and exploited through this additional as-
sessment.

Synthetic data generation Generating state-
ments synthetically, for example, by relying on
lexica, carries the advantage of artificially creating
instances of rare, unexplored phenomena. Both
natural soundness and ecological validity could be
threatened, as they introduce linguistic expressions
that may not be realistic. As this study adopts a

data-driven approach, relying on a specific dataset
and lexicon, these choices significantly impact the
outcomes and should be carefully considered. As
mentioned in the previous paragraph, conducting a
human evaluation of a portion of the synthetically
generated text will be pursued.

English focus While our framework could be ex-
tended to any language, our experiments focus on
English due to the limited availability of datasets
for other languages having stereotypes annotated.
We strongly encourage the development of mul-
tilingual datasets for probing bias in LMs, as in
Nozza et al. (2022b); Touileb and Nozza (2022);
Martinková et al. (2023).

Worldviews, intersectionality, and downstream
evaluation For future research, we aim to
diversify the dataset by incorporating stereotypes
beyond the scope of a U.S.-centric perspective as
included in the source dataset for the stereotypes,
SBIC. Additionally, we highlight the need for
analysis of biases along more than one axis. We
will explore and evaluate intersectional probes
that combine identities across different categories.
Lastly, considering that fairness measures inves-
tigated at the pre-training level may not necessarily
align with the harms manifested in downstream ap-
plications (Pikuliak et al., 2023), it is recommended
to include an extrinsic evaluation, as suggested by
prior work (Mei et al., 2023; Hung et al., 2023).

Ethical Considerations

Our benchmark is highly reliant on the set of
stereotypes and identities included in the probing
dataset. We opted to use the list of identities from
Czarnowska et al. (2021). However, the identities
included encompass a range of perspectives that
the lexicon in use may not fully capture. Moreover,
the stereotypes we adopt are derived from SBIC,
which aggregated potentially biased content from a
variety of online platforms such as Reddit, Twitter,
and specific hate sites (Sap et al., 2020). These
platforms tend to be frequented by certain demo-
graphics. Despite having a broader demographic
than traditional media sources such as newsrooms,
Wikipedia editors, or book authors (Wagner et al.,
2015), they predominantly reflect the biases and
perspectives of white men from Western societies.

Finally, reducing bias investigation in models to
a single global measure is limited and can not com-
prehensively expose the nuances in which these
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severe risks manifest. When conducting a fairness
analysis, it is crucial to report disaggregated mea-
sures by demographic group to a more fine-grained
understanding of the phenomenon and the resulting
harms.

In light of these considerations, we advocate for
the responsible use of benchmarking suites (At-
tanasio et al., 2022). Our benchmark is intended
to be a starting point, and we recommend its appli-
cation in conjunction with human-led evaluations.
Users are encouraged to further develop and refine
our dataset to enhance its inclusivity in terms of
identities, stereotypes, and models included.
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Kartoziya, and Michael Granitzer. 2020. I feel of-
fended, don’t be abusive! implicit/explicit messages
in offensive and abusive language. In Proceedings
of the Twelfth Language Resources and Evaluation
Conference, pages 6193–6202, Marseille, France. Eu-
ropean Language Resources Association.

Tianyu Cui, Yanling Wang, Chuanpu Fu, Yong Xiao,
Sijia Li, Xinhao Deng, Yunpeng Liu, Qinglin Zhang,
Ziyi Qiu, Peiyang Li, Zhixing Tan, Junwu Xiong,
Xinyu Kong, Zujie Wen, Ke Xu, and Qi Li. 2024.
Risk taxonomy, mitigation, and assessment bench-
marks of large language model systems. CoRR,
abs/2401.05778.

Paula Czarnowska, Yogarshi Vyas, and Kashif Shah.
2021. Quantifying social biases in NLP: A general-
ization and empirical comparison of extrinsic fairness

14662

https://doi.org/10.3389/fpsyg.2015.00900
https://doi.org/10.3389/fpsyg.2015.00900
https://doi.org/10.18653/v1/2022.nlppower-1.11
https://doi.org/10.18653/v1/2022.nlppower-1.11
https://doi.org/10.18653/v1/2022.nlppower-1.11
https://doi.org/10.18653/v1/2021.acl-long.151
https://doi.org/10.18653/v1/2021.acl-long.151
https://doi.org/10.18653/v1/2021.acl-long.151
https://doi.org/10.1162/tacl_a_00041
https://doi.org/10.1162/tacl_a_00041
https://doi.org/10.1162/tacl_a_00041
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1007/978-3-319-73706-5_14
https://doi.org/10.1007/978-3-319-73706-5_14
https://doi.org/10.18653/v1/2021.acl-long.81
https://doi.org/10.18653/v1/2021.acl-long.81
https://doi.org/10.18653/v1/2021.acl-long.81
https://doi.org/10.18653/v1/D19-1176
https://doi.org/10.18653/v1/D19-1176
https://doi.org/10.18653/v1/D19-1176
https://aclanthology.org/2020.lrec-1.760
https://aclanthology.org/2020.lrec-1.760
https://aclanthology.org/2020.lrec-1.760
https://doi.org/10.48550/ARXIV.2401.05778
https://doi.org/10.48550/ARXIV.2401.05778
https://doi.org/10.1162/tacl_a_00425
https://doi.org/10.1162/tacl_a_00425


metrics. Transactions of the Association for Compu-
tational Linguistics, 9:1249–1267.

Thomas Davidson, Dana Warmsley, Michael Macy, and
Ingmar Weber. 2017. Automated hate speech de-
tection and the problem of offensive language. In
Proceedings of the 11th International AAAI Confer-
ence on Web and Social Media, ICWSM ’17, pages
512–515.

Ona de Gibert, Naiara Perez, Aitor García-Pablos, and
Montse Cuadros. 2018. Hate speech dataset from
a white supremacy forum. In Proceedings of the
2nd Workshop on Abusive Language Online (ALW2),
pages 11–20, Brussels, Belgium. Association for
Computational Linguistics.

Pieter Delobelle, Ewoenam Tokpo, Toon Calders, and
Bettina Berendt. 2022. Measuring fairness with bi-
ased rulers: A comparative study on bias metrics
for pre-trained language models. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1693–1706,
Seattle, United States. Association for Computational
Linguistics.

Mai ElSherief, Caleb Ziems, David Muchlinski, Vaish-
navi Anupindi, Jordyn Seybolt, Munmun De Choud-
hury, and Diyi Yang. 2021. Latent hatred: A bench-
mark for understanding implicit hate speech. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 345–363,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Antigoni Founta, Constantinos Djouvas, Despoina
Chatzakou, Ilias Leontiadis, Jeremy Blackburn, Gi-
anluca Stringhini, Athena Vakali, Michael Sirivianos,
and Nicolas Kourtellis. 2018. Large scale crowd-
sourcing and characterization of twitter abusive be-
havior. Proceedings of the International AAAI Con-
ference on Web and Social Media, 12(1).

Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow,
Md. Mehrab Tanjim, Sungchul Kim, Franck Dernon-
court, Tong Yu, Ruiyi Zhang, and Nesreen K. Ahmed.
2023. Bias and fairness in large language models: A
survey. CoRR, abs/2309.00770.

Jasmine E. Harris. 2019. The aesthetics of disability.
Columbia Law Review, 119(4):895–972.

Lucy Havens, Melissa Terras, Benjamin Bach, and Beat-
rice Alex. 2022. Uncertainty and inclusivity in gen-
der bias annotation: An annotation taxonomy and
annotated datasets of British English text. In Pro-
ceedings of the 4th Workshop on Gender Bias in Nat-
ural Language Processing (GeBNLP), pages 30–57,
Seattle, Washington. Association for Computational
Linguistics.

Saghar Hosseini, Hamid Palangi, and Ahmed Hassan
Awadallah. 2023. An empirical study of metrics to

measure representational harms in pre-trained lan-
guage models. In Proceedings of the 3rd Work-
shop on Trustworthy Natural Language Processing
(TrustNLP 2023), pages 121–134, Toronto, Canada.
Association for Computational Linguistics.

Chia-Chien Hung, Anne Lauscher, Dirk Hovy, Si-
mone Paolo Ponzetto, and Goran Glavaš. 2023. Can
demographic factors improve text classification? re-
visiting demographic adaptation in the age of trans-
formers. In Findings of the Association for Compu-
tational Linguistics: EACL 2023, pages 1565–1580,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Fred Jelinek, Robert L Mercer, Lalit R Bahl, and
James K Baker. 1977. Perplexity—a measure of the
difficulty of speech recognition tasks. The Journal of
the Acoustical Society of America, 62(S1):S63–S63.

Masahiro Kaneko and Danushka Bollegala. 2022. Un-
masking the mask - evaluating social biases in
masked language models. In Thirty-Sixth AAAI Con-
ference on Artificial Intelligence, AAAI 2022, Thirty-
Fourth Conference on Innovative Applications of Ar-
tificial Intelligence, IAAI 2022, The Twelveth Sym-
posium on Educational Advances in Artificial In-
telligence, EAAI 2022 Virtual Event, February 22
- March 1, 2022, pages 11954–11962. AAAI Press.

M. G. Kendall. 1938. A New Measure of Rank Correla-
tion. Biometrika, 30(1-2):81–93.

Svetlana Kiritchenko and Saif Mohammad. 2018. Ex-
amining gender and race bias in two hundred senti-
ment analysis systems. In Proceedings of the Sev-
enth Joint Conference on Lexical and Computational
Semantics, pages 43–53, New Orleans, Louisiana.
Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023. Towards
general text embeddings with multi-stage contrastive
learning. arXiv preprint arXiv:2308.03281.

Sandra Martinková, Karolina Stanczak, and Isabelle
Augenstein. 2023. Measuring gender bias in West
Slavic language models. In Proceedings of the 9th
Workshop on Slavic Natural Language Processing
2023 (SlavicNLP 2023), pages 146–154, Dubrovnik,
Croatia. Association for Computational Linguistics.

Leland McInnes, John Healy, and Steve Astels. 2017.
Hdbscan: Hierarchical density based clustering.
Journal of Open Source Software, 2(11):205.

14663

https://doi.org/10.1162/tacl_a_00425
https://doi.org/10.18653/v1/W18-5102
https://doi.org/10.18653/v1/W18-5102
https://doi.org/10.18653/v1/2022.naacl-main.122
https://doi.org/10.18653/v1/2022.naacl-main.122
https://doi.org/10.18653/v1/2022.naacl-main.122
https://doi.org/10.18653/v1/2021.emnlp-main.29
https://doi.org/10.18653/v1/2021.emnlp-main.29
https://doi.org/10.1609/icwsm.v12i1.14991
https://doi.org/10.1609/icwsm.v12i1.14991
https://doi.org/10.1609/icwsm.v12i1.14991
https://doi.org/10.48550/ARXIV.2309.00770
https://doi.org/10.48550/ARXIV.2309.00770
https://www.jstor.org/stable/26632274
https://doi.org/10.18653/v1/2022.gebnlp-1.4
https://doi.org/10.18653/v1/2022.gebnlp-1.4
https://doi.org/10.18653/v1/2022.gebnlp-1.4
https://doi.org/10.18653/v1/2023.trustnlp-1.11
https://doi.org/10.18653/v1/2023.trustnlp-1.11
https://doi.org/10.18653/v1/2023.trustnlp-1.11
https://aclanthology.org/2023.findings-eacl.116
https://aclanthology.org/2023.findings-eacl.116
https://aclanthology.org/2023.findings-eacl.116
https://aclanthology.org/2023.findings-eacl.116
https://doi.org/10.1121/1.2016299
https://doi.org/10.1121/1.2016299
https://doi.org/10.1609/AAAI.V36I11.21453
https://doi.org/10.1609/AAAI.V36I11.21453
https://doi.org/10.1609/AAAI.V36I11.21453
https://doi.org/10.1093/biomet/30.1-2.81
https://doi.org/10.1093/biomet/30.1-2.81
https://doi.org/10.18653/v1/S18-2005
https://doi.org/10.18653/v1/S18-2005
https://doi.org/10.18653/v1/S18-2005
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2308.03281
https://aclanthology.org/2023.bsnlp-1.17
https://aclanthology.org/2023.bsnlp-1.17
https://doi.org/10.21105/joss.00205


Leland McInnes, John Healy, and James Melville. 2018.
Umap: Uniform manifold approximation and projec-
tion for dimension reduction.

Nicholas Meade, Elinor Poole-Dayan, and Siva Reddy.
2022. An empirical survey of the effectiveness of
debiasing techniques for pre-trained language models.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1878–1898, Dublin, Ireland.
Association for Computational Linguistics.

Katelyn Mei, Sonia Fereidooni, and Aylin Caliskan.
2023. Bias against 93 stigmatized groups in masked
language models and downstream sentiment classifi-
cation tasks. In Proceedings of the 2023 ACM Confer-
ence on Fairness, Accountability, and Transparency,
FAccT 2023, Chicago, IL, USA, June 12-15, 2023,
pages 1699–1710. ACM.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
StereoSet: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5356–5371, Online. Association for
Computational Linguistics.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel R. Bowman. 2020. CrowS-pairs: A chal-
lenge dataset for measuring social biases in masked
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1953–1967, Online. As-
sociation for Computational Linguistics.

Roberto Navigli, Simone Conia, and Björn Ross. 2023.
Biases in large language models: Origins, inventory,
and discussion. ACM Journal of Data and Informa-
tion Quality, 15(2):10:1–10:21.

Debora Nozza, Federico Bianchi, and Dirk Hovy. 2021.
HONEST: Measuring hurtful sentence completion
in language models. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2398–2406, Online.
Association for Computational Linguistics.

Debora Nozza, Federico Bianchi, and Dirk Hovy. 2022a.
Pipelines for social bias testing of large language
models. In Proceedings of BigScience Episode #5
– Workshop on Challenges & Perspectives in Cre-
ating Large Language Models, pages 68–74, vir-
tual+Dublin. Association for Computational Linguis-
tics.

Debora Nozza, Federico Bianchi, Anne Lauscher, and
Dirk Hovy. 2022b. Measuring harmful sentence com-
pletion in language models for LGBTQIA+ individ-
uals. In Proceedings of the Second Workshop on
Language Technology for Equality, Diversity and In-
clusion, pages 26–34, Dublin, Ireland. Association
for Computational Linguistics.

Nicolas Ocampo, Ekaterina Sviridova, Elena Cabrio,
and Serena Villata. 2023. An in-depth analysis of
implicit and subtle hate speech messages. In Proceed-
ings of the 17th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 1997–2013, Dubrovnik, Croatia. Association
for Computational Linguistics.

J. S. Olier and C. Spadavecchia. 2022. Stereotypes,
disproportions, and power asymmetries in the visual
portrayal of migrants in ten countries: an interdisci-
plinary ai-based approach. Humanities and Social
Sciences Communications, 9:410.

Matúš Pikuliak, Ivana Beňová, and Viktor Bachratý.
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A SOFA Data Statement

We provide a data statement of SOFA, as proposed
by Bender and Friedman (2018). In Tab. 4, we
report the dataset structure.

Curation Rationale SOFA dataset consists of
combined stereotypes and identities. The stereo-
types are sourced from the SBIC dataset: we refer
the reader to Sap et al. (2020) for an in-depth de-
scription of the data collection process. For insights
into the identities incorporated within SOFA, see
Czarnowska et al. (2021).

Language Variety en-US. Predominantly US En-
glish, as written in comments on Reddit, Twit-
ter, and hate communities included in the SBIC
dataset.

Author and Annotator Demographics We in-
herit the demographics of the annotators from Sap
et al. (2020).

Text Characteristics The analyzed stereotypes
are extracted from the SBIC dataset. This dataset
includes annotated English Reddit posts, specif-
ically three intentionally offensive subReddits, a
corpus of potential microaggressions from Breit-
feller et al. (2019), and posts from three existing
English Twitter datasets annotated for toxic or abu-
sive language (Founta et al., 2018; Waseem and
Hovy, 2016; Davidson et al., 2017). Finally, SBIC
includes posts from known English hate communi-
ties: Stormfront (de Gibert et al., 2018) and Gab14

which are both documented white-supremacist and
neo-nazi communities and two English subred-
dits that were banned for inciting violence against
women (r/Incels and r/MensRights). Annotators
labeled the texts based on a conceptual framework
designed to represent implicit biases and offensive-
ness. Specifically, they were tasked to explicit “the
power dynamic or stereotype that is referenced in

14https://files.pushshift.io/gab/GABPOSTS_
CORPUS.xz.

the post” through free-text answers. Relying on
SBIC’s setup, we retain abusive samples having
a harmful stereotype annotated, leveraging state-
ments that are all harmful “by-construction”. More-
over, as mentioned, building from the SBIC dataset
allowed us to inherit its conceptual framework (So-
cial Bias Frames) designed to represent implicit
biases and offensiveness, rooting our SOFA dataset
on grounded perspectives. Indeed, following SBIC
’s authors (Sap et al., 2020), the implied statements
annotated by the human annotators are properly
interpreted as – and regarded as equivalent to –
harmful stereotypes.

Provenance We refer to the Data Statement15

provided with SBIC, the underlying source of the
stereotypes.

B SOFA Preprocessing

B.1 Stereotypes

Rule-based preprocessing To standardize the
format of the statements, we devise a rule-based
dependency parsing from a manual check of ap-
proximately 250 stereotypes. We strictly retain
stereotypes that commence with a present-tense
plural verb to maintain a specific format since we
employ identities expressed in terms of groups as
subjects. For consistency, singular verbs are de-
clined to plural using the inflect package.16 We
exclude statements that already specify a target,
refer to specific recurring historical events, lack
verbs, contain only gerunds, expect no subject, dis-
cuss terminological issues, or describe offenses and
jokes rather than stereotypes.

Perplexity filtering As mentioned in Section 3,
we operate under the assumption that statements
with low perplexity scores are more likely to be
generated by a language model, positing that re-
taining statements in the dataset that the models
deem unlikely could skew the results. Therefore,
when an identity-statement pair registers a high per-
plexity score with a given model, it signals a higher
likelihood of being generated by that model. Since
our dataset comprises only stereotypical and harm-
ful statements, the ideal scenario is for these state-
ments to exhibit high perplexity scores across all
sensitive identity groups, indicating no model pref-
erence. Additionally, in an unbiased scenario, there

15https://maartensap.com/social-bias-frames/
DATASTATEMENT.MD.

16https://pypi.org/project/inflect/.
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(a) Starting histogram. (b) Resulting histogram after cutting at a threshold of 150.

Figure 4: Perplexity-based filtering of SOFA stereotypes.

Religion Gender Disability Nationality

Christians Trans men Midgets Australians
Muslims Trans women Slow learners Saudi Arabians
Catholics Men Cripples South Koreans
Taoists Women Dwarves Italians

Table 3: Sample identities of the SOFA dataset. We deploy the lexicon created by Czarnowska et al. (2021).

should be no variance in associations between dif-
ferent identities and stereotypical statements. We
therefore discard stereotypes with high perplexity
scores to remove unlikely instances. Other works
in the literature also perform discarding statements
with high perplexity scores to remove noise, out-
liers, and implausible instances, see for example
Barikeri et al. (2021). Fig. 4 reports the perplexity-
based filtering of SOFA stereotypes. The filtering
is based on a threshold, specifically averaging per-
plexity scores from each model and creating a his-
togram to retain only stereotypes in selected bins
exhibiting reasonable scores. We highlight how the
same models tested in Section 4 and reported in
Tab. 6 are employed to filter the data, but the SOFA

dataset itself can be used independently. We oper-
ate under the assumption that the discarded points
are largely shared across the tested models and
we assume this consistency extends to the unseen
models as well.

B.2 Identities

We also preprocess the collected identities from
the lexicon to ensure consistency regarding part-of-
speech and number (singular vs. plural). Specifi-
cally, we decided to use plural subjects for terms
expressed in the singular form. For singular terms,
we utilize the inflect package; for adjectives like

“Korean”, we add “people”.

C SOFA Analysis

C.1 Dataset Statistics

In Tab. 3, we report example identities for
each category of the SOFA dataset. We
deploy the lexicon created by Czarnowska
et al. (2021): the complete list is available
at https://github.com/amazon-science/
generalized-fairness-metrics/tree/main/
terms/identity_terms. Tab. 4 shows a sample
of the probes included in our SOFA dataset. In
Tab. 5, we document the coverage statistics
regarding targeted categories and identities of
SOFA. We also include the descriptions of SBIC,
STEREOSET, and CROWS-PAIRS for comparison.
Since the categories in SOFA differ and do
not correspond to the two competitor datasets,
i.e., a one-to-one mapping is absent, we report
only quantities for overlapping categories, as
we shall specify (for completeness, we indicate
in parentheses the full size of their datasets in
the total column). To calculate the probes for
CROWS-PAIRS, we combine the categories of
nationality and race/color for Nationality, and the
categories of gender/gender identity and sexual
orientation for Gender. Lastly, considering that
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ID Category Identity Stereotype Probe

1 Religion Catholics are all terrorists Catholics are all terrorists
1 Religion Buddhists are all terrorists Buddhists are all terrorists
1 Religion Atheists are all terrorists Atheists are all terrorists
2 Gender Men stir up drama Men stir up drama
2 Gender Women stir up drama Women stir up drama
2 Gender Non-binary people stir up drama Non-binary people stir up drama

Table 4: Sample instances of the SOFA dataset. ID is unique with respect to the stereotype, and therefore repeated
for each specific probe.

Type Nationality Gender Disability Religion Total

# Identities STEREOSET 149 40 – 12 201
# Identities SBIC 456 228 114 492 1.290
# Identities SOFA 224 115 55 14 408

# Stereotypes STEREOSET 2.976 771 – 247 3.994
# Stereotypes CROWS-PAIRS 675 346 60 105 1.186
# Stereotypes SBIC 14.073 9.369 2.473 9.132 35.047
# Stereotypes SOFA 4.552 3.405 572 2.820 11.349

# Probes STEREOSET 8.928 2.313 – 741 11.982 (19.176)
# Probes CROWS-PAIRS 1350 692 120 210 2.372 (3.016)
# Probes SOFA 1.024.200 394.980 31.460 39.480 1.490.120

Table 5: Number of identities of STEREOSET, SBIC and SOFA; number of stereotypes of SBIC and SOFA for
each category; resulting number of probes in SOFA (unique identities × unique stereotypes), CROWS-PAIRS and
STEREOSET. We report only quantities for overlapping categories: for completeness, we indicate in parentheses the
full size of CROWS-PAIRS and STEREOSET in the total column. Lastly, considering that CROWS-PAIRS do not
encode identities but only categories, we do not include the number of identities per category for this dataset.

CROWS-PAIRS do not encode identities but only
categories, we do not include the number of
identities per category for this dataset. Finally, we
also report in Tab. 4 the dataset structure along
with sample instances from SOFA.

C.2 Stereotype Clustering

We provide an overview of the main stereo-
type clusters included in SOFA. First, we use
gte-base-en-v1.5, a state-of-the-art pre-trained
sentence transformer (Li et al., 2023), to produce an
embedding for each stereotype. Second, we reduce
dimensionality to d = 15 with UMAP (McInnes
et al., 2018), to reduce complexity prior to clus-
tering. Third, we cluster the stereotypes using
HDBScan (McInnes et al., 2017), a density-based
clustering algorithm, which does not force clus-
ter assignment: 57% of prompts are assigned to
15 clusters and 43% are various stereotypes. We
use a minimum cluster size of 90, (≈ 1% of 9, 102
stereotypes) and a minimum UMAP distance of 0.

Other hyperparameters are default.
To interpret the identified clusters, we use TF-

IDF to extract the top 10 most salient uni- and
bigrams from each cluster’s prompts, and locate 5
prompts closest and furthest to the cluster centroids.
Finally, we use GPT-4 to assign a short descriptive
name to each cluster based on the top n-grams and
closest stereotypes. See the prompt used below.

Prompt used for assigning names to the
identified clusters

Your task is to create a concise and clear title
(1-2 words) for a cluster of texts based on
the information provided below. \n Typical
texts in the cluster: {top_texts}. \n Com-
mon words used in the cluster: {top_words}.
\n Provide the cluster title:

In Fig. 5, we present a distribution of stereotypes
in these clusters. Stereotypes associated with sex-
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Figure 5: Stereotype distribution by cluster.

ualization and violence are the most prevalent in
SOFA, followed by family neglect, while slavery
and sports restrictions are the least common.

C.3 Hate Speech Analysis

As reported in the Data Statement (App. A), SOFA

gathers implied statements expressing harmful
stereotypes. The stereotypes from our dataset do
not explicitly feature hatefulness. In particular,
they consist of not-ecological texts, i.e., produced
by professional annotators different than the people
who wrote and published the social media posts.
While often, the formalized stereotypes do not con-
tain explicitly hateful, offensive terms, neverthe-
less, the underlying intent of the original comment
is still harmful, conveying a prejudicial demean-
ing perspective. Indeed, hate speech can also be
implicit and verbalized in a more nuanced, subtle
way, being no less dangerous for that (Benikova
et al., 2017; Caselli et al., 2020; ElSherief et al.,
2021; Ocampo et al., 2023). As outlined through-
out the paper, we aim to focus on the phenomena
surrounding social prejudices, providing realistic
and diverse examples, displaying language features
used to convey stereotypes which are often charac-
terized by implicit expressions of hatred (Wiegand
et al., 2019).

The toxicity of the stereotypes is evaluated
through a state-of-the-art RoBERTa Hate Speech
detection model for English, trained for online hate
speech identification (Vidgen et al., 2021).17 We
applied a binarization process for the hate speech
scores returned by the classifier, using a threshold
of 0.5, resulting in two possible labels: hateful or
non-hateful statements.

Overall, the SOFA dataset, which comprises
11, 349 stereotypes, features 10, 375 instances of
Non-Hate Speech and just 974 ones of Hate. In

17https://huggingface.co/facebook/
roberta-hate-speech-dynabench-r4-target.

Figure 6: Labels distribution by category.

Fig. 6, we report the numbers of Hate and Non-
Hate Speech by category.

As expected, the stereotypes of SOFA do not
display evident features of Hate Speech since they
stand for different, more complex, and nuanced
phenomena. Furthermore, we highlight that we do
not have a ground truth concerning hatefulness for
these stereotypes. Therefore, we must also consider
a certain margin of error caused by the classifier
in ambiguous or uncertain instances. A more suit-
able lens for analyzing the contents of this dataset
could be harmfulness or hurtfulness (Nozza et al.,
2021), featured by apparently neutral statements.
Harmfulness can be implicit, and it is present in our
implied statements, which, as outlined in Appendix
A, express harmful stereotypical beliefs. However,
the harmfulness evaluation is more challenging to
grasp and still poorly explored. Crucially, stereo-
types and hate speech are two different phenomena
and, as such, need to be investigated and addressed
separately, requiring targeted approaches. Indeed,
identifying when a stereotype is expressed non-
offensively remains a challenge and an ongoing
research area (Havens et al., 2022).

D Experimental Setup

In Tab. 6, we list the LMs: for each, we examine
two scales w.r.t. the number of parameters.

E Supplementary Material

Fig. 8 illustrates the logarithm of normalized per-
plexity scores across the four categories – religion,
gender, nationality, and disability – indicating the
scores’ distribution for the analyzed LMs.

Fig. 9 shows correlation heat map between
PPL⋆ of the various LMs and stereotype length.
The correlation is negative but not extremely high,
indicating a weak relationship. Specifically, this
means that shorter lengths correspond to higher
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Family Model # Parameters Reference

BLOOM
560M 559M

Scao et al. (2022)
3b 3B

GPT2
base 137M

Radford et al. (2019)
medium 380M

XLNET
base 110M

Yang et al. (2019)
large 340M

BART
base 139M

Lewis et al. (2020)
large 406M

LLAMA2
7b 6.74B

Touvron et al. (2023)
13b 13B

Table 6: Overview of the models analyzed.

Figure 7: Stacked SOFA scores by category: numbers detailed in Table 2, where we conduct an in-depth discussion
of the results (Section 4, Intra-categories evaluation).

PPL⋆. We recall that the range of lengths is mod-
erate, i.e., reaching a maximum of 14 words.

In Fig. 7, we display the SOFA score by category;
numbers detailed in Table 2, where we conduct an
in-depth discussion of the results (Section 4).
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(a) Religion (b) Gender

(c) Nationality (d) Disability

Figure 8: Violin plots of PPL⋆ by category.

Figure 9: Correlation heat map between PPL⋆ of the various LMs and stereotype length.
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