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Abstract. Explaining opaque Machine Learning (ML) models is an
increasingly relevant problem. Current explanation in AI (XAI) methods
suffer several shortcomings, among others an insufficient incorporation
of background knowledge, and a lack of abstraction and interactivity
with the user. We propose reasonx, an explanation method based on
Constraint Logic Programming (CLP). reasonx can provide declara-
tive, interactive explanations for decision trees, which can be the ML
models under analysis or global/local surrogate models of any black-box
model. Users can express background or common sense knowledge using
linear constraints and MILP optimization over features of factual and
contrastive instances, and interact with the answer constraints at differ-
ent levels of abstraction through constraint projection. We present here
the architecture of reasonx, which consists of a Python layer, closer to
the user, and a CLP layer. reasonx’s core execution engine is a Prolog
meta-program with declarative semantics in terms of logic theories.

1 Introduction

Artificial Intelligence (AI) systems are increasingly being adopted for taking crit-
ical decisions impacting society, such as loan concession in bank systems. The
acceptance and trust of applications based on AI is hampered by the opaque-
ness and complexity of the Machine Learning (ML) models adopted, possibly
resulting in biased or socially discriminatory decision-making [33].

For these reasons, there has recently been a flourishing of proposals for
explaining the decision rationale of ML models [18,27,29,31], coined eXplanation
in AI (XAI) methods. These approaches lack sufficient abstraction for reasoning
over the decision rationale of the ML model. By reasoning, we mean the possibil-
ity for the user to define any number of conditions over factual and contrastive
instances, which would codify both background knowledge and what-if analyses,
and then looking at answers at the symbolic and intensional level.

To close this gap, we present reasonx (reason to explain), an explanation
tool built in two layers. The first is in Python, closer to users, where decision
tree (DT) models and user queries are parsed and translated. The DT can be the
ML model itself, or a surrogate of other ML models at global/local level. The
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second is in Constraint Logic Programming (CLP), where embedding of DTs
and background knowledge are reasoned about, using a Prolog meta-program.

We display an exemplary dialogue between a fictional user and reasonx
below. It is situated in the context of a credit application scenario, i.e. the user
is a person whose credit application has been rejected by an automated decision-
making system. Please note that while the information content is exactly what
reasonx can provide, we enhanced the dialogue by translating the interaction
into natural language, to mimic better a realistic interaction.

USER: Can I see the rule that led to the denial of my credit application?
REASONX: Your credit application was rejected, because your income is lower than
60,000 EUR/year, and you still have to pay back the lease of your car.
USER: Ok. Can you present me two options that will lead to a change of the
decision outcome? Please take into consideration that I need a credit of at least
10,000 EUR. I would like to see options that require as little change as necessary.
REASONX: You have the following two options: You pay back the lease on the car,
or you increase your age by 10 years (from 35 to 45 years).
USER: The second option presented is a bit strange. I am wondering whether this is
salient in the model. Can I please see the options to obtain credit for an individual
with the same properties as me, for a credit of at least 10,000 EUR, but with the
feature age at 35 years or less (i.e. young applicant), instead of fixed?
REASONX: For the given profile, the credit is always rejected.
USER: Given this profile, how can the decision reversed, under as little changes as
possible?
REASONX: Credit can be obtained, if the feature age is set to higher than 35 years.
USER: This interesting and worth investigating further. There could be bias w.r.t.
the age of the person that applies for credit.

Adding background knowledge to explanations has the potential to significantly
improve their quality [2,46]. Ignoring it can lead to explanations that disregard
the needs of the user, or do not fit the reality of our world - depending on
its purpose. An example is the minimum credit amount (“a credit of at least
10,000 EUR”). Further, interactivity arises naturally in reasonx: the user can
flexibly query it, choosing queries that best fit to her questions, e.g., by adding
constraints, and thereby building an own, personalized explanation.

Here, we focus on the CLP layer of reasonx. The Python layer and case
studies at the user level are thoroughly presented in a companion paper [47].

The paper is structured as follows. In Sect. 2, we discuss background and
related work. Section 3 describes the syntax, semantics, and meta-programming
features of CLP that reasonx builds on. The architecture of reasonx is
described in Sect. 4. We summarize contributions and future work in Sect. 5.

2 Background and Related Work

Logic and Knowledge in XAI. Several XAI approaches have used (proposi-
tional) logic rules as forms of model-agnostic explanations both locally [17,28,36]
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and globally [41]. Such approaches, however, do not allow for reasoning over pro-
duced explanations. Surveys on work at the intersection between symbolic and
sub-symbolic methods (incl. argumentation and abduction) are [10,14,20].

Contrastive Explanations. Contrastive explanations1 (CEs), i.e., instances
similar to those to explain but with different labels assigned by the black-box
(BB) classifier, are a key element in causal approaches to interpretability [11,
48]. [49] introduces contrastive explanations to the field of XAI, with several
extensions [21,39]. Moreover, while [9] argues in favor of CEs from a psychological
point of view, [27,30] make clear that explanations in a contrastive form are
highly desirable for (lay) end-users.

Interactivity. Interactivity aligns closely with our working definition of an
explanation: “[...] an interaction, or an exchange of information”, where it cru-
cially matters to whom the explanation is given, and for what purpose [46]. [45]
convincingly arguments for interactivity by presenting the glass-box tool [43].
[25] confirms the relevance of interactivity via an interview study with practi-
tioners.

Explanations and Decision Trees. Closely linked work is presented by a
series of papers of Sokol et al., introducing explanations for DTs [42], generalizing
it to local surrogate models [44], and exploiting interactivity [43]. Again, the main
difference to our work is our reliance on CLP, and thus reasoning capabilities.
Another related work is [4], providing CEs via (actual) causality.

Embedding Decision Trees into Constraints. In this paper, we assume
that the DT is already available. We reason over the DT by encoding it as a set
of linear constraints. This problem, known as embedding [6], requires to satisfy
c(x, y) ⇔ f(x) = y, where f(x) is the class as predicted by the DT, x the input
vector consisting of discrete and/or continuous variables, and c is a constraint
of some type. We adopt a rule-based encoding, which takes space in O(N log N)
where N is the number of nodes in the DT. Other encodings, such as Table and
MDD [6], require discretization of continuous features, thus losing the power of
reasoning over linear constraints over reals.

3 Preliminaries: Constraint Logic Programming

Logic programming (LP) is a declarative approach to problem-solving based on
logic rules in the form of Horn clauses [1]. It supports reasoning under vari-
ous settings, e.g., deductive, inductive, abductive, and meta-reasoning [13,40].
Starting with Prolog [12], LP has been extended in several directions, as per
expressivity and efficiency [24]. Constraint logic programming (CLP) augments
logic programming with the ability to solve constrained problems [19]. The CLP

1 To avoid confusion with the concept of counterfactuals as understood in the statisti-
cal causality literature, and following [27], we use the term contrastive explanations.
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scheme defines a family of languages, CLP(C), that is parametric in the con-
straint domain C. We are interested in CLP(R), namely the constraint domain
over the reals. We use the SWI Prolog system [50] implementation.

We rely on meta-programming, a powerful technique that allows a LP to
manipulate programs encoded as terms. This is extended in CLP by encoding
constraints as terms.

Further, CLP(R) offers mixed integer linear programming (MILP) optimiza-
tion functionalities [26]. Common predicates include the calculation of the supre-
mum and the infimum of an expression w.r.t. the solutions of the constraint store.
Complex constraint meta-reasoning procedures are based on such predicates,
some examples are [3,38].

4 Explaining via Reasoning: reasonx

reasonx consists of two layers. The top layer in Python is designed for inte-
gration with the pandas and scikit-learn standard libraries for data storage
and model construction. Meta-data, models, and user constraints specified at
this level are parsed and transformed into Prolog facts. The bottom layer is in
CLP(R) and it is written in SWI Prolog [50].

reasonx relies on a DT, the base model. Such a tree can be: (a) the model to
be explained/reasoned about2; (b) a global surrogate of an opaque ML model; (c)
a local surrogate trained to mimic a BB model in the neighborhood of the (local)
instance to explain. In cases (b) and (c), the surrogate model is assumed to have
good fidelity in reproducing the decisions of the black-box. This is reasonable for
local models, i.e., in case (c). Learning the tree over a local neighborhood has
been a common strategy in perturbation-based XAI methods such as LIME [35].
Following, we present an excerpt of the initialization code:

> r = reasonx.ReasonX(. . .)
> r.model(clf)

where the meta-data about the features are passed to the object r during its cre-
ation, and the DT clf is passed over. There can be more than one base model to
account for different ML models, e.g., Neural Networks vs ensembles. The user
can declare and reason about one or more instances, factual or contrastive, by
specifying their class value. Each instance refers to a specific base model. The
instance does not need to be fully specified, as in existing XAI methods. For
example, an instance F can be declared with only the following characteristics:

> r.instance(‘F’, label=1)

> r.constraint(‘F.age = 30, F.capitalloss >= 1000’)

to intensionally denote a persons with age of 30 and capital loss of at least 1, 000.
Background knowledge can be expressed through linear constraints over features
of instances. E.g., by declaring another instance CE classified differently by the

2 While DTs are generally thought interpretable, it depends on their size/depth. Large
DTs are hard to reason about, especially in a contrastive explanation scenario.
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base model (the contrastive instance), the following constraints require that the
contrastive instance must not be younger, and has a larger capital loss:

> r.instance(‘CE’, label=0)

> r.constraint(‘F.age <= CE.age, CE.capitalloss >= F.capitalloss + 500’)

The output of reasonx consists of constraints for which the declared instances
are classified as expected by the DT(s) and such that user and implicit con-
straints on feature data types are satisfied. The output can be projected on only
some of the instances or of the features:

> r.solveopt(project=[‘CE’])

> ---

> Answer: 30 <= CE.age, F.capitalloss >= 1500, CE.hoursperweek >= 40.0

where 30 <= CE.age, F.capitalloss >= 1500 are entailed by the constraints
and CE.hoursperweek >= 40.0 is due to conditions in the DT. Moreover, the
user can specify a distance function for the minimization problem to derive the
closest contrastive example, e.g., as in solveopt(minimize=‘l1norm(F, CE)’).

4.1 Embeddings into CLP

We are agnostic about the learning algorithm that produces the base model(s).
Features can be nominal, ordinal, or continuous. Ordinal features are coded as
consecutive integer values (some preprocessing is offered in reasonx). Nominal
features can be one-hot encoded or not. When embedding the DT into CLP,
we force one-hot encoding of nominal features anyway, and silently decode back
when returning the answer constraints to the user. A nominal feature xi is one-
hot encoded into xv1

i , . . . , xvk
i with v1, . . . , vk being the distinct values in the

domain of xi. We assume that the split conditions from a parent node to a child
node are of the form aTx � b, where x is the vector of features xi’s. The following
common split conditions are covered by such an assumption:

– axis-parallel splits for continuous and ordinal features, i.e., xi ≤ b or xi > b;
– linear splits for continuous features: aTx ≤ b or aTx > b;
– (in)equality splits for nominal features: xi = v or xi �= v; in terms of one-hot

encoding, they respectively translate into xv
i = 1 or xv

i = 0.

Axis parallel and equality splits are used in CART [7] and C4.5 [34]. Linear
splits are used in oblique [32] and optimal decision trees [5]. Linear model trees
combine axis parallel splits at nodes and linear splits at leaves [16].

Embedding Base Model(s) into Prolog Facts. Each path (root to the leaf
in the DT), is translated into a fact, a conjunction of linear split conditions:

path(m, [x], [aT1x �b1, . . . ,aTkx �bk],c,p).

where m is an id of the decision tree, [x] a list of (Prolog) variables representing
the features, c the class predicted at the leaf, p the confidence of the prediction,
and [aT

1 x � b1, . . ., aT
k x � bk] the list of the k split conditions.
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Encoding Instances. Each instance is represented by a list of Prolog variables.
The mapping between names and variables is positional, and decoding is stored
in a predicate feature(i, varname) where i is a natural number and varname
a constant symbol, e.g., vAge. All instances are collectively represented by a
list of lists of variables vars. Further, reasonx is defining a utility predicate
data instance with instance’s meta-data.

Encoding Implicit Constraints (Ψ). Constraints on the features x of each
instance derive from their data types. We call them “implicit” because the system
can generate them from meta-data:

– for continuous features: xi ∈ R;
– for ordinal features: xi ∈ Z and mi ≤ xi ≤ Mi where dom(xi) =

{mi, . . . ,Mi};
– for one-hot encoded nominal features: xv1

i , . . . , xvk
i ∈ Z and ∧k

j=10 ≤ x
vj

i ≤ 1
and

∑k
j=1 x

vj

i = 1;

Constraints for ordinal and nominal features are computed by the Prolog predi-
cates ord constraints(vars, COrd) and cat constraints(vars, CCat) respec-
tively. We denote by Ψ the conjunction of all implicit constraints.

Encoding User Constraints (Φ). The following background knowledge,
loosely categorized as in [23], can be readily expressed in reasonx:

Feasibility. Constraints concerning the possibility of feature changes, and how
these depend on previous values or (changes of) other features:

– Immutability : a feature cannot/must not change.
– Mutable but not actionable: the change is only a result of changes in

features it depends upon.
– Actionable but constrained : the feature can be changed only under some

condition.
Consistency. Constraints aiming at specific domain values a feature can take.

Constraints specified in Python are parsed and transformed into a list of CLP
constraints. An interpreter of expressions is provided which returns a list of linear
constraints over variables. The only non-linear constraint is equality of nominal
values and is translated exploiting one-hot-encoding of nominal features.

Encoding Distance Functions. We simplify the optimization proposed in
[49] by the assumption that declared instances have a class label3. The distance
function is defined as a linear combination of L1 and L∞ norms for ordinal and
continuous features and of a simple matching distance for nominal features:

min
∑

i nominal

1(xcf,i �= xf,i) + β
∑

i ord., cont.

|xcf,i − xf,i| + γ max
i ord., cont.

|xcf,i − xf,i| (1)

3 The split conditions from root to leaf do not necessarily lead to the same class
label with 100% probability. reasonx includes a parameter in the declaration of an
instance to require a minimum confidence value of the required class.
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where β and γ denote parameters. L1 and L∞ norms are calculated over max-
min normalized values to account for different units of measures. See [22,49] for
a discussion. To solve the MILP problem, we need to linearize the minimization.
This leads to additional constraints and slack variables.

4.2 The Core Meta-Interpreter of reasonx

We reason on constraints as theories and design operators for composing
such theories. The core engine of reasonx is implemented as a Prolog meta-
interpreter of expressions over those operators.

A (logic) theory is a set of formulas, from which one is interested to derive
implied formulas, and a logic program is itself a theory [8]. In our context,
a theory consists of a set of linear constraints {ci}i to be interpreted as the
disjunction ∨i ci. Theories are coded in LP by exploiting its non-deterministic
computational model, i.e., each ci’s is returned by a clause in the program.
The language of expressions over theories is closed: operators map one or more
theories into a theory. The following theories are included:

typec the theory with only the conjunction ∧c∈Ψ c of the implicit constraints;
userc the theory with only the conjunction ∧c∈Φ c of the user constraints;
inst(I) the theory of constraints ∧i aT

i x � bi where x are features of the
instance I, and primitive constraints aT

i x � bi are those in the path of the
decision tree M the instance refers to.

We provide the following operators on theories: the cross-product of con-
straints of theories, the subset of constraints in a theory that are satisfiable, the
projection of constraints in a theory over a set of variables, and the subset of
constraints in a theory that minimize a certain (distance) function.

The queries to the CLP layer of reasonx can be answered by a Prolog
query over the predicates instvar (building vars), proj vars (computing which
of those variables are to be projected in the output), and solve (evaluating
expressions over the cross-product of typec, userc, and the theories inst(I)
for all instances I).

5 Conclusion

We presented REASONX, a declarative XAI tool that relies on linear constraint
reasoning, solving for background knowledge, and for interaction with the user
at a high abstraction and intensional level. These features make it a unique tool
when compared to instance-level approaches commonly adopted for explain-
ing ML models. We aim at extending reasonx along three directions: i) the
implementation of additional constraints, possibly with non-linear solvers, ii)
an extensive evaluation based on some theoretical measures, as well as through
user-studies [37] and real-world data, and iii) extension to non-structured data,
such as images and text, e.g., through the integration of concepts [15].

Software. reasonx is released open source at https://github.com/lstate/REASONX.

https://github.com/lstate/REASONX
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