
Explaining Socio-Demographic
and Behavioral Patterns of Vaccination
Against the Swine Flu (H1N1) Pandemic

Clara Punzi1,2,3(B) , Aleksandra Maslennikova2,3 , Gizem Gezici1,2 ,
Roberto Pellungrini1,2, and Fosca Giannotti1,2

1 Scuola Normale Superiore, Pisa, Italy
clara.punzi@sns.it

2 KDD Lab, ISTI-CNR, Pisa, Italy
3 Department of Computer Science, University of Pisa, Pisa, Italy

Abstract. Pandemic vaccination campaigns must account for vaccine
skepticism as an obstacle to overcome. Using machine learning to iden-
tify behavioral and psychological patterns in public survey datasets
can provide valuable insights and inform vaccination campaigns based
on empirical evidence. However, we argue that the adoption of local
and global explanation methodologies can provide additional support to
health practitioners by suggesting personalized communication strate-
gies and revealing potential demographic, social, or structural barriers
to vaccination requiring systemic changes. In this paper, we first imple-
ment a chain classification model for the adoption of the vaccine during
the H1N1 influenza outbreak taking seasonal vaccination information
into account, and then compare it with a binary classifier for vaccination
to better understand the overall patterns in the data. Following that,
we derive and compare global explanations using post-hoc methodolo-
gies and interpretable-by-design models. Our findings indicate that socio-
demographic factors play a distinct role in the H1N1 vaccination as com-
pared to the general vaccination. Nevertheless, medical recommendation
and health insurance remain significant factors for both vaccinations.
Then, we concentrated on the subpopulation of individuals who did not
receive an H1N1 vaccination despite being at risk of developing severe
symptoms. In an effort to assist practitioners in providing effective rec-
ommendations to patients, we present rules and counterfactuals for the
selected instances based on local explanations. Finally, we raise concerns
regarding gender and racial disparities in healthcare access by analysing
the interaction effects of sensitive attributes on the model’s output.
Keywords: Explainable AI · Chain classification · Vaccine hesitancy ·
Vaccination Patterns · Protected Groups

1 Introduction

In recent years, the Covid-19 outbreak has considerably raised global aware-
ness about pandemics. While the long-term effects of the strategies employed

The original version of this chapter was previously published non-open access. A Cor-
rection to this chapter is available at https://doi.org/10.1007/978-3-031-44067-0 33

c© The Author(s) 2023, corrected publication 2024
L. Longo (Ed.): xAI 2023, CCIS 1902, pp. 621–635, 2023.
https://doi.org/10.1007/978-3-031-44067-0 31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44067-0_31&domain=pdf
http://orcid.org/0000-0002-1366-9833
http://orcid.org/0000-0002-5877-9411
http://orcid.org/0000-0001-9782-5751
https://doi.org/10.1007/978-3-031-44067-0_33
https://doi.org/10.1007/978-3-031-44067-0_31


622 C. Punzi et al.

to defeat Covid-19 have yet to be determined, studies about other pandemics,
such as the 2009 pandemic caused by the A(H1N1)pdm091 virus (abbreviated as
H1N1 or “swine flu” which is responsible for between 150.000 and 575.000 deaths
globally in 20092), revealed that vaccination is a crucial tool whose effectiveness
extends beyond single-person immunisation by protecting entire communities
through a phenomenon known as “herd immunity” [13,29]. Therefore, national
governments must allocate the necessary resources and prepare the population,
beginning with informational and awareness-raising campaigns, so that the high-
est possible vaccination rates can always be achieved. Notably, understanding
local contexts and health-related behaviors is essential to the success of a vac-
cination campaign [18,41]. Vaccine-related concerns in particular pose a major
threat to adequate coverage [26]. Indeed, vaccine hesitancy, which the World
Health Organization (WHO) defines as “the delay in acceptance or refusal of
vaccination despite the availability of vaccination services” [28], is listed as one
of the top 10 threats to global health3.

Within the broader context of vaccine hesitancy, we simulate a real case
scenario of H1N1 flu vaccine prediction and further examine the factors that
examine vaccine hesitancy with Explainable AI (XAI) techniques. We foresee
that explanations corresponding to the outcomes of the predictions will lead
to insightful observations. Health officers and practitioners could elicit pivotal
communication strategies to adopt based on the objectives of the vaccination
campaign (e.g., by refuting or supporting specific opinions or behaviors). More-
over, explanations can reveal demographic or social barriers to immunisation
that health officers primarily responsible for planning should address in order to
implement the required systemic changes (such as the elimination of administra-
tion fees). Additionally, within the EU, i.e., if the proposed model is implemented
in the EU, or its decisions affect EU citizens, explicability is required by law for
high-risk AI applications such as the ones pertaining to health4. In the scope of
this work, distinct explainable methods enable us to investigate the most influ-
ential features in the overall decision-making process of the presented AI-based
models as well as case-specific justifications, i.e., local explanations. We also pro-
vide counterfactual explanations for what-if inquiries, as research shows that,
in everyday life, individuals often rely on counterfactuals, i.e., what the model
would predict if the input were marginally tweaked [8]. Specifically, we devote a
substantial component of our analysis to the subsample of individuals that are
not-vaccinated (H1N1) despite being at risk for developing severe symptoms.
We also conduct an in-depth analysis of the correlation and impact of sensitive
attributes, such as ethnicity and gender, on vaccine hesitancy.

1 https://web.archive.org/web/20120505042135/http://www.who.int/influenza/
gisrs laboratory/terminology ah1n1pdm09/en/.

2 https://www.drivendata.org/competitions/66/flu-shot-learning/page/210/.
3 https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019.
4 https://gdpr.eu/tag/gdpr/.
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To the best of our knowledge, this is the first work that presents an Explain-
able AI-based Clinical Decision Support System (CDSS)5 that uses a compre-
hensive, carefully curated national survey benchmark dataset regarding the 2009
H1N1 flu pandemic, jointly prepared by the United States (US) National Cen-
ter for Health Statistics (NCHS) and Centers for Disease Control and Preven-
tion (CDC). Our proposed Explainable CDSS predicts whether a certain indi-
vidual will receive the H1N1 vaccine based on the given behavioral and socio-
demographic features, including one related to the uptake of the seasonal vaccine.
Additionally, we implement a baseline model consisting of a binary classifier that
only predicts whether a particular individual will get vaccinated or not regardless
of the type of vaccine (i.e., seasonal or H1N1) to disclose general vaccination pat-
terns in the US. The most similar work to ours is a recent preprint that presents
an AI-based CDSS for COVID-19 vaccine hesitancy [2]. Yet, in [2], researchers
do not use a comprehensive benchmark dataset that has been prepared by an
official agency, but rather they employ a small survey dataset that they collected
using Qualtrics (a web-based survey tool), which includes only 2000 instances
in total. In addition to this, the authors present a more coarse-grained study
in which the XAI methods are only utilised to find the most significant factors
that impact a person’s decision in the overall dataset and among different ethnic
groups without using local explanations or counterfactuals.

Our main contributions can be summarised as follows:

1. We propose an AI-based CDSS to predict vaccine hesitancy in the US using
a comprehensive benchmark dataset collected during the 2009 H1N1 flu pan-
demic by the US National Center for Health Statistics.

2. We leverage various XAI techniques to identify the most critical behav-
ioral, socio-demographic, and external factors that have the greatest influ-
ence on vaccine hesitancy, primarily in the critical situation of the H1N1 flu
outbreak, with the aim of providing evidence-based recommendations that
could aid health officials and practitioners in developing effective vaccination
campaigns.

3. Our findings demonstrate that doctor recommendations are essential for alle-
viating vaccine hesitancy, hence, we incorporate both local and global expla-
nations to assist healthcare providers by providing sample tailored recom-
mendations, particularly for the patients deemed at high risk of the H1N1 flu.
These explanations can be used to select the optimal communication strat-
egy based on a given patient, and if this patient is a non-vaccinated high-risk
individual, then we further generate counterfactuals that can be exploited to
persuade the patient.

4. As anticipated, our results from a real-world scenario also reveal social injus-
tice issues in accessing healthcare services and report that the lack of health
insurance is one of the most significant factors in vaccine hesitancy, which is
typically associated with sensitive attributes such as belonging to particular
gender and ethnic groups.

5 CDSS: An application that analyzes data to help healthcare providers make decisions
and improve patient care.
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The remainder of the paper is structured as follows. In Sect. 2 we first provide
some related work, then in Sect. 3 we describe the technical details of our vaccine
hesitancy prediction framework, which is composed of the classification models
and the XAI methods we used. In Sect. 4 we detail the experimental setup,
present the results and further discuss them. Finally, in Sect. 5 we mention the
limitations with several potential future work directions and conclude the paper.

2 Background and Related Work

In recent times, XAI has drawn significant attention [1,19–21,27,35–37,39,40]
primarily due to the growing concern surrounding the lack of transparency in AI
applications. Humans seem to be programmed to investigate the causes behind
the action; hence, they are reluctant to adopt techniques that are not explicitly
interpretable, tractable, and trustworthy [24], particularly in light of the growing
demand for ethical AI [5]. Studies demonstrate that providing explanations can
increase understanding, which can help improve trust in automated systems [1].
Thus, XAI methods provide justifications that enable users to comprehend the
reason behind a system output in a specific context. These methods can be
divided into post-hoc, i.e. explanations obtained by external methods, such as
SHAP (SHapley Additive exPlanations) [27], LIME (Local Interpretable Model-
Agnostic Explanations) [35]), and LORE (LOcal Rule-based Explanations) [19],
and explainable-by-design (transparent) methods, i.e. built to be explainable,
such as linear models, k-nearest neighbours, and decision trees. The post-hoc
XAI methods can be classified as model-specific or model-agnostic based on the
underlying model to be explained and if an explainer does not consider the black
box internals and learning process, it is a model-agnostic approach. In addition
to the aforementioned post-hoc methods, ANCHOR [36] which is a successor of
LIME and outputs easy-to-understand if-then rules is a model-agnostic explainer,
as well. Moreover, the state-of-the-art XAI methods can also be differentiated
as global, or local. The global approaches explain the whole decision logic of a
black box model, whereas the local approaches focus on a specific instance. Based
on this categorisation, SHAP is a global explainer, whereas LIME, LORE, and
ANCHOR are local explainers. INTGRAD [40], DEEPLIFT [39], and GRAD-
CAM [37] are saliency mapping-based methods for neural networks that are
model-specific, and local explainers.

XAI in Healthcare. AI-based CDSSs are computer systems developed to assist
in the delivery of healthcare and can be helpful as a second set of eyes for clin-
icians [3]. The trust issue is particularly obvious in CDSS where health profes-
sionals have to interpret the output of AI systems to decide on a specific patient’s
case. Therefore, it is vital that XAI applications to AI-based CDSS increase trust
by allowing healthcare officials to investigate the reasons behind its suggestions.
Cai et al. reveal that clinicians expressed a desire for preliminary information
regarding fundamental, universal characteristics of a model, such as its inherent
strengths and limitations, subjective perspective, and overarching design objec-
tive, rather than solely comprehending the localized, context-dependent rationale
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behind each model decision. There have been many attempts to leverage XAI in
healthcare [9–11,17,33,38]. In [9], scholars investigate the expectation of pathol-
ogists from the AI-based CDSS assistant. This qualitative lab study reveal that
the medical experts have a desire for preliminary information regarding funda-
mental, universal characteristics of a model, such as its inherent strengths and
limitations, subjective perspective, and overarching design objective, rather than
solely comprehending the localized, context-dependent rationale behind each
model decision. In [17], researchers analyse an AI-based imaging CDSS designed
to assist health practitioners in detecting COVID cases in the scope of examin-
ing the explanation needs of different stakeholders. In [10], scholars propose an
AI-based CDSS that predicts COVID-19 diagnosis using clinical, demographic,
and blood variables and employs XAI to extract the most essential markers.
In [33], authors present the results of a user study on the impact of advices
from a CDSS on healthcare practitioners’ judgment. For detailed surveys, please
refer to [11]. Finally, in [38], the authors propose instead a classification model
on a social media dataset that first distinguish misleading from non-misleading
tweets pertaining to COVID-19 vaccination, then extract the principal topics
of discussion in terms of vaccine hesitancy and finally apply SHAP to identify
important features in model prediction.

Classification Models in Tabular Data. The state-of-the-art approaches for
prediction tasks on tabular data suggest the employment of ensemble tree-based
models. In general, boosting methods build models sequentially using the entire
dataset, with each model reducing the error of the previous one. Differently from
other gradient-boosting ensemble algorithms, such as XGBoost [14] and Light-
GBM [25], CatBoost (proposed by Yandex) [15] employs balanced trees that not
only allow for quicker computations and evaluation but also prevent overfitting.
For such a reason, together with the peculiar structure of our dataset, we decided
to firstly rely on this model. Notably, Catboost includes a built-in function for
feature selection that removes features recursively based on the weights of a
trained model. Feature scores provide an estimate of how much the average pre-
diction changes when a feature’s value is altered6. Consequently, despite being
classified as a black box, CatBoost retains some global interpretability. As a sec-
ond classification model, we use TabNet (proposed by Google) [4], a deep neural
network devised specifically for tabular data and classified as an explainable-
by-design model. TabNet’s architecture combines two important advantages of
state-of-the-art classification approaches: the explainability of tree-based algo-
rithms and the high performance of neural networks. In addition to global inter-
pretability, Tabnet implements local interpretability for instance-wise feature
selection, unlike CatBoost.

6 https://catboost.ai/en/docs/concepts/fstr.

https://catboost.ai/en/docs/concepts/fstr
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3 The Explainable AI-Based CDSS of Vaccine Hesitancy

3.1 Dataset

We used the dataset from the National 2009 H1N1 Flu Survey (NHFS), a ques-
tionnaire conducted in the US during the 2009 H1N1 flu outbreak7 to moni-
tor vaccination coverage and produce timely estimates of vaccination coverage
rates8. The survey contains questions about influenza-related behaviours, opin-
ions regarding vaccine safety and effectiveness as well as disease history etc.
(the full NHFS questionnaire can be found on the CDC website9). The dataset
contains 26.707 instances, 36 categorical features (the first being the ID of each
anonymized individual), all of which are binary, ordinal, or nominal, and two
additional binary variables that can be used as targets, namely, the seasonal
and H1N1 flu vaccination status. As anticipated, the features include demo-
graphic data (e.g. sex, race, geographic location), health-related behaviors (e.g.,
washing hands, wearing a face mask), and opinions about flu and vaccine risks.
Note that a competition has been launched on this benchmark dataset10 hence,
for a complete description of the dataset, please refer to the competition website.

Preprocessing. All features in the dataset are conceptually categorical, but
most of them are reported as numerical rankings or binary variables, so we only
applied transformation on the remaining 12 categorical features (4 ordinal, 3
binary, and 5 multinominal). We used manual ordinal encoding for the ordinal
and binary, and one-hot encoding for the multinominal ones. Also, since the
dataset contains missing values in most columns, we applied iterative imputation:
a strategy that models each feature with NaNs as a function of other features
in a round-robin fashion. We initialized it as the most frequent value of the
given variable and we set the Random Forest Classifier as the base model for the
iteration step. To avoid the imputation of missing values from other synthetic
data, we substituted the imputed values only at the end of the process. Lastly, in
the baseline model that does not consider vaccination type, to better interpret
the explanations, we merged vaccine-specific features by computing the average
of corresponding H1N1 and seasonal vaccine feature scores (for instance, instead
of having two separate features representing opinions about seasonal and H1N1
vaccine effectiveness, we used their average as a proxy for overall opinion about
vaccine effectiveness).

3.2 Classification Models

We implemented two binary classification models for predicting the uptake of
the H1N1 vaccine and the vaccine in general (regardless of the vaccine type,

7 https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-pandemic.html.
8 https://www.drivendata.org/competitions/66/flu-shot-learning/page/213/.
9 https://ftp.cdc.gov/pub/Health Statistics/NCHS/Dataset Documentation/NIS/

nhfs/nhfspuf DUG.PDF.
10 https://www.drivendata.org/competitions/66/flu-shot-learning/page/210/;.

https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-pandemic.html
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NIS/nhfs/nhfspuf_DUG.PDF
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NIS/nhfs/nhfspuf_DUG.PDF
https://www.drivendata.org/competitions/66/flu-shot-learning/page/210/
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seasonal or H1N1), with the latter serving as a baseline model. In both cases, we
used two state-of-the-art machine learning algorithms for classification on cate-
gorical tabular data, namely, CatBoost [34] and TabNet [4]. For the main task
of predicting the uptake of the H1N1 vaccine, we decided to rely on a multi-label
classifier chain since we discovered, during the data exploration phase, a posi-
tive correlation between the two target variables of seasonal and H1N1 vaccina-
tion (moderate Pearson coefficient: ρ = 0.38). We performed an exhaustive grid
search with cross-validation on the training dataset to determine the best hyper-
parameters, which were then used to train the classifiers. Furthermore, given the
significant imbalance in the distribution of the dataset with respect to the joint
combination of the seasonal and H1N1 vaccines, we compared the performance
of the selected models on augmented training datasets derived through various
upsampling strategies. These techniques included a naive random over-sampling
approach, where new instances of the underrepresented class were generated by
picking samples at random with replacement, as well as the Synthetic Minority
Oversampling Technique (SMOTE, [12]) and the Adaptive Synthetic sampling
method (ADASYN, [22]). Nevertheless, none of these methods led to a signifi-
cant improvement in the F1 score (see Table 1), hence we opted to maintain the
initial dataset for subsequent analyses. It should be noted that, in contrast to
the H1N1 model, the baseline classification model did not exhibit an imbalanced
class distribution. The best performance for both the baseline and H1N1 model
was achieved by CatBoost classifier.

Table 1. Model performances.

Model Upsampling AUC
(weighted)

F1-score
(weighted)

AUC
(macro)

F1-score
(macro)

CatBoost
Classifier Chain

- 0.75 0.87 0.77 0.77

Random
oversampling

0.79 0.83 0.79 0.75

SMOTE 0.77 0.84 0.77 0.76

ADASYN 0.77 0.84 0.77 0.76

TabNet Classifier
Chain

- 0.73 0.82 0.73 0.73

Random
oversampling

0.75 0.80 0.75 0.72

SMOTE 0.71 0.81 0.71 0.72

ADASYN 0.76 0.80 0.76 0.73

CatBoost
Baseline

- 0.77 0.77 0.77 0.77

TabNet Baseline - 0.75 0.75 0.75 0.75
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3.3 XAI Methods

We initially obtained the global feature importance scores from TabNet [4] and
CatBoost’s [15] built-in functions, and compared them to SHAP-based feature
rankings. This choice is based on the fact that SHAP [27] offers a wide range
of analysis tools and its feature rankings have demonstrated greater stability
compared to the built-in functions of tree-based ensemble models [42]. Then,
we inspected the interaction effects between features; in particular, we exam-
ined the impact of sensitive attributes, such as ethnicity and gender, on the
model prediction. After that, we locally explained specific test set instances: we
computed local feature importance scores with SHAP [27] and LIME [35] and
extracted counterfactuals from LORE [19]11 The instances were chosen from the
subpopulations of high-risk individuals declared by the US H1N1 recommenda-
tions12, for further discussion please see Sect. 4.2.

The goodness, usefulness, and satisfaction of an explanation should be consid-
ered when assessing the validity and convenience of an explanation technique [6].
In the scope of this study, we conducted both quantitative and qualitative assess-
ments. On the one hand, we ensured that our explainers had a high degree of
fidelity, i.e., that they could accurately approximate the prediction of the black
box model [30]. On the other hand, we discussed the actual usefulness of the
explanations from the perspective of the end-user, i.e., a health official or prac-
titioner.

4 Results and Discussion

4.1 H1N1 Vaccine Hesitancy Model vs Baseline

In this part, we compare the global explanations of the baseline and H1N1 vac-
cine hesitancy models. First of all, we retrieved feature importance rankings
using CatBoost, which is a black-box model that enables a certain degree of
global interpretability, and TabNet, which is an explainable-by-design method.
Figure 1a displays the feature importance rankings of the baseline model. Both
models significantly rely on whether a doctor recommended a vaccination, per-
sonal opinion regarding vaccine efficacy, and age. Notably, the CatBoost model
prioritises personal judgment about the risks of getting sick without vaccination
and the availability of health insurance, while TabNet disregards these features
entirely. In the H1N1 model (See Fig. 1b), the feature importance ranking of
CatBoost differed considerably from TabNet. Both models significantly rely on
the doctor’s recommendation and opinion on vaccine efficacy, but age was not
a determining factor. The features of opinions about the risk of getting sick
and health insurance were only considered by CatBoost in the baseline model,

11 We did not use the recent version of LORE [20] which is more stable and generates
actionable features as claimed by the authors since we could not execute the code
in their github repo.

12 https://www.cdc.gov/h1n1flu/vaccination/acip.htm.

https://www.cdc.gov/h1n1flu/vaccination/acip.htm
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(a) Baseline model (b) H1N1 model

Fig. 1. Comparison of different feature importance rankings, sorted according to SHAP
rankings.

while both models deem them significant for the H1N1 prediction. Interestingly,
TabNet ignores the most crucial feature of CatBoost which is the seasonal vac-
cination status.

In addition, we computed post-hoc explanations by applying SHAP [27] to
the model with the best classification performance, namely CatBoost [15]. It is
noteworthy that SHAP achieved a significantly high fidelity score of 0.92, which
is indicative of its capacity to accurately mimic the underlying black-box model.
Using Tree SHAP as the algorithm to compute Shapley values, we discovered,
as expected, that SHAP feature rankings were comparable to those provided by
CatBoost for both the baseline and H1N1 models. In the following sections, we
will refer primarily to SHAP when discussing about global explanations.

4.2 Vaccine Hesitancy in High-Risk Individuals

Due to the H1N1 vaccine’s limited availability during the campaign’s initial
phase, health officials advised people at the highest risk for viral effects or those
caring for them to receive the vaccine first. These target subpopulations were (1)
adults who live with or care for children under 6 months, (2) healthcare workers,
(3) adults aged 25 to 64 with certain chronic health conditions, (4) people aged
6 months to 24 years, and (5) pregnant women. In our work, however, we note
that the target group (5) could not be analyzed since the dataset did not contain
the related information, and condition (4) was slightly modified to (4’) 18-to-34-
year-old, as this is the lowest age group reported in the dataset.

We used XAI techniques to understand why some high-risk individuals do
not vaccinate in order to lay the basis for effective doctor recommendations.
Indeed, the findings discussed in Sect. 4.1 indicate that doctor recommendations
are crucial for promoting vaccination not only among the general population
but also, and most importantly, among individuals at high risk of being severely
affected by a pandemic influenza outbreak. In the following, we show how local
explanations generated by SHAP [27], LIME [35], and LORE [19] can be lever-
aged by physicians to design effective, patient-specific communication strategies
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for recommending vaccination. As a first example, consider the subject with the
identifier id = 24210, a white woman who satisfies criteria (3) and (4’). In this
instance, our model accurately predicted that she had declined the H1N1 vacci-
nation against the doctor’s recommendation. As depicted in Figs. 2a and 2b, the
feature importance scores computed by SHAP and LIME concur that her belief
that the vaccine was not very effective and her refusal to receive the seasonal
vaccine had a substantial negative impact on the vaccination outcome. Based on
LORE’s counterfactual (fidelity = 0.99), we found that the doctor’s recommen-
dation was ineffective because she or he failed to raise the subject’s opinion about
the vaccine’s efficacy and the swine flu’s threat. Furthermore, LORE identified
having health insurance and living in a particular geographical region as condi-
tions for a positive vaccination outcome. Unfortunately, the actionability of these
features is debatable, revealing the existence of social disparities in vaccination.

As a second example, we consider the subject with id = 23241, a black
woman who meets criteria (1), (3), and (4’). Similar to the previous subject,
the model accurately predicted that she had declined the H1N1 vaccination,
but this time we know she did not receive a doctor’s recommendation. SHAP
and LIME (fidelity = 1) evaluate this fact to be extremely negative in terms of
feature importance, along with other factors such as not having received the
seasonal vaccine, having a very low opinion of the risk of becoming sick with
H1N1 flu without vaccination, and not having health insurance. In addition,
LIME scored unfavorably for its lack of employment in specific industries and
professions. LORE (fidelity = 0.99) provided a coherent decision rule and a few
counterfactual explanations that, first and foremost, required a doctor’s rec-
ommendation and that, additionally, indicate that an effective recommendation
would be one capable of increasing the subject’s opinion regarding the effective-
ness of the H1N1 vaccine, allowing her to obtain health insurance, and convincing
her to also receive the seasonal vaccine. Interestingly, some counterfactuals also
included conditions indicating non-belonging to the “black” or “other or mul-
tiple” ethnic group, as well as geographically-based criteria, which however are
subject to the same limitations as those previously noted regarding the action-
ability of certain counterfactual.

4.3 Social Injustice in Healthcare

The US healthcare system has been widely acknowledged and recorded to exhibit
structural inequalities that are often linked to particular ethnic and gender cat-
egories [16,23]. The same holds true specifically in the campaigns for H1N1 [7],
COVID-19 [31], and seasonal vaccine [32]. Therefore, socio-demographic factors
like gender and ethnicity, as well as social injustice in healthcare access, should
be taken into account when interpreting studies about vaccine hesitancy, as the
refusal to be vaccinated may be due to structural barriers, such as a lack of
health insurance in a country where public health is not guaranteed. Indeed,
our results confirm that health insurance coverage is one of the most important
predictive factors, especially in the H1N1 model, as shown in Sect. 4.1, and the
counterfactual explanations in Sect. 4.2 consistently identified health insurance
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(a) SHAP (b) LIME

(c) SHAP (d) LIME

Fig. 2. Local explanations for id = 24210 (top row, true class = 0, predicted class = 0),
and id = 23241 (bottom row, true class = 0, predicted class = 0).

as a key driver in promoting vaccination in the subpopulation at high-risk with
respect to H1N1.

The impact of health insurance, ethnicity, and sex on the model’s predictions
is illustrated in the dependence scatter plots in Fig. 3. In these three plots, points
are displayed based on their coordinates (x, y) as feature value (x) and Shap-
ley value (y), where each point refers to an observation. For instance, Fig. 2a
displays that the perceived threat posed by H1N1 has the greatest interactive
effect with health insurance in predicting vaccine uptake, while in Fig. 2b and
Fig. 2c, for the sensitive attributes: ethnicity and gender, health insurance is the
most interactive feature. In Fig. 2b, ethnicity does not significantly impact the
model’s decision among the white subpopulation, since the corresponding data
points are not dispersed, whereas other three subpopulations exhibit a greater
degree of variation which might point to racial disparities in access to vaccina-
tion campaigns. In terms of gender, the plot in Fig. 2c reveals that men are more
likely to be vaccinated irrespective of their health insurance, as most Shapley
values are positive. This observed bias of the H1N1 classifier towards men con-
veys that there may have been real-world factors that favored men’s access to
the vaccine. Interestingly, women with health insurance are less likely to be vac-
cinated, whereas men are more likely. The aforementioned trend in the decision
rules of SHAP [27], LIME [35], and LORE [19] is corroborated by the plot in
Fig. 2a, as only a minimal fraction of points without health insurance (or with
no information provided) are associated with positive Shapley values. For repro-
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(a) Health insurance (b) Ethnicity (c) Sex

Fig. 3. Dependence scatter plots for the H1N1 model – the x-axis denotes the feature
values, the y-axis refers to Shapley values, coloring is based on the values of the feature
in the secondary y-axis (most interactive feature chosen by SHAP).

ducibility purposes, our code is publicly available at https://github.com/gizem-
gg/H1N1-VaccineHesitancy-CDSS.

5 Conclusion and Future Work

In this work, we proposed an AI-based Explainable CDSS for predicting and
assessing hesitancy towards the swine flu vaccination uptake. XAI methodolo-
gies assist us in identifying doctor recommendation, health insurance, seasonal
vaccine adoption, and personal opinion regarding vaccine efficacy as the most
influential factors in H1N1 vaccination. On the basis of counterfactual explana-
tions, we provided physicians with suggestions for effectively conveying to their
patients the need to receive the H1N1 vaccine, with a focus on those at high risk
for severe symptoms. In particular, we discovered that communication strategies
that can improve the subject’s opinion of the effectiveness of the H1N1 vaccine
and the threat posed by the swine flu are more likely to function as catalysts for
change. Moreover, our analysis highlights the crucial role of health insurance,
which reflects actual disparities in healthcare access in the US, and illustrates
how vaccination campaigns can be hampered not only by vaccine reluctance but
also by economic constraints. Likewise, it has been found that membership in
marginalized groups based on gender, ethnicity, or geography can result in indi-
viduals with a higher risk profile opting out of vaccination. A major limitation
of our analysis is the large number of missing values regarding health insur-
ance, which is one of the most important features for our model. Second, our
algorithm of choice for counterfactual explanation is based on a genetic algo-
rithm for neighborhood generation. It could be interesting to compare different
algorithms for neighborhood generation. Moreover, the choice of the attribute
to consider in counterfactual generation should be guided by the principle of
actionability, to focus on feature that healthcare professional can act upon. As
future work, we plan to address these limitations and evaluate the efficacy of the
proposed Explainable AI-based CDSS framework by conducting a comprehensive
user case study with health officials and physicians.

https://github.com/gizem-gg/H1N1-VaccineHesitancy-CDSS
https://github.com/gizem-gg/H1N1-VaccineHesitancy-CDSS
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