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Abstract. Federated Learning has witnessed increasing popularity in
the past few years for its ability to train Machine Learning models in
critical contexts, using private data without moving them. Most of the
work in the literature proposes algorithms and architectures for train-
ing neural networks, which although they present high performance in
different predicting tasks and are easy to be learned with a coopera-
tive mechanism, their predictive reasoning is obscure. Therefore, in this
paper, we propose a variant of SHAP, one of the most widely used expla-
nation methods, tailored to Horizontal server-based Federated Learning.
The basic idea is having the possibility to explain an instance’s predic-
tion performed by the trained Machine Leaning model as an aggregation
of the explanations provided by the clients participating in the coopera-
tion. We empirically test our proposal on two different tabular datasets,
and we observe interesting and encouraging preliminary results.

Keywords: Explainable AI · Federated Learning · Features
Importance

1 Introduction

Federated Learning (FL) [14] has become a popular approach to training
Machine Learning (ML) models on distributed data sources. This approach was
originally proposed to preserve data privacy since the users involved do not
have to share their training datasets with a central server. Usually, the mod-
els trained with FL are deep learning models and therefore their transparency
remains a challenge [8,12]. Indeed, although the trained ML models present very
excellent performance in different tasks, their drawback lies in their complexity,
which makes them black-boxes and causes the non-interpretability of the internal
decision process for humans [5]. However, when it comes to making high-stakes
decisions, such as clinical diagnosis, the explanation aspect of the models used
by Artificial Intelligence (AI) systems becomes a critical building block of a
trustworthy interaction between the machine and human experts. Meaningful
explanations [16] of predictive models would augment the cognitive ability of
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domain experts, such as physicians, to make informed and accurate decisions
and to better support responsibility in decision-making.

In the last years, the scientific community posed much attention to the design
of explainable AI (XAI) techniques [1,4,8,12] but a relatively limited effort has
been spent in the study of interpretability issues in FL [2,6,18,19]. Most of
the studies of interpretability in FL are focused on the Vertical FL and exploit
method based on feature importance.

In this paper, we address the problem of interpretability by proposing an
alternative way to employ the explainer SHAP [13] in the context of FL. In
particular, our proposal enables the explanation of an instance’s prediction per-
formed by the trained global ML model by aggregating the explanation of the
clients participating in the federation. The proposed approach is based on the
requirements that in order to produce the explanation of the global model is not
necessary to access any information on the training data used by the clients. We
propose an analytical methodology that enables a comparison to determine the
approximation introduced by our approach with respect to a scenario where we
simulate a server which can access the training data. Preliminary experiments
conducted on two tabular datasets show that the approximation introduced by
our proposal is negligible and that our SHAP explanation tends to agree with the
explanation provided by the server in terms of the importance of each feature.

The remaining of the paper is organized as follows. Section 2 discusses the lit-
erature on XAI for FL. Section 3 provides an overview on FL and XAI and Sect. 4
presents our proposal and the analytical methodology adopted to validate it. In
Sect. 5 we discuss the preliminary experimental results, while Sect. 6 discusses
our findings and contributions to the field of XAI. Lastly, Sect. 7 concludes the
paper and discusses future research directions.

2 Related Work

Machine learning has become more and more pervasive in our lives. ML models
are used nowadays in many different contexts and can impact our lives. Alongside
the development of novel ML techniques, there was a very active development of
techniques to explain the reasoning of black box models [1,4,7,12]. Explainable
Artificial Intelligence (XAI) is the research field that studies the interpretabil-
ity of AI models [8]. This research field aims to develop methods that can be
helpful to “open” these complex and not interpretable models and to explain
their predictions. To this end, a lot of approaches have been developed in the
past few years. Explanation methods can be categorized with respect to two
aspects [8]. One contrasts model-specific vs model-agnostic approaches, depend-
ing on whether the explanation method exploits knowledge about the internals
of the black-box or not. The other contrasts local vs global approaches, depend-
ing on whether the explanation is provided for any specific instance classified by
the black-box or for the logic of the black-box as a whole. Finally, we can distin-
guish post-hoc vs ante-hoc methods if they are designed to explain a pre-trained
approach or if they are interpretable by design. While the explanation of ML
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models has been widely addressed in recent years [1,4,8,12], quite surprisingly,
the use of XAI in FL has not gained much attention. A review of the current
approaches used to explain models trained with FL is presented in [2]. Most of
the approaches provide post-hoc explanation by feature importance [6,18,19].
Wang et al. [19] exploits Shapley values to explain models trained with FL. In
particular, they adopt SHAP [13] to compute the feature importance and mea-
sure the contributions of different parties in Vertical FL [20], where the users
that participate in the training have the same sample space but different fea-
ture space. The choice to use Shapley values in FL is justified by the possible
privacy risks that could arise from classical feature importance that may reveal
some aspect of the private local data. Since cooperative learning explanations
could reveal the underlined feature data from other users, it becomes essen-
tial to guarantee model privacy. Therefore, in [18], Wang proposes a method to
explain models based on SHAP values able to balance interpretability with pri-
vacy. The main idea is to reveal detailed feature importance for owned features
and a unified feature importance for the features from the other parties. In [6],
Fiosina studies the interpretability issues in Horizontal FL [20]. In particular,
they adopt a Federated deep learning model to predict taxi trip duration within
the Brunswick region through the FedAvg algorithm [14]. In order to explain
the trained model, the authors derive feature importance exploiting Integrated
Gradients [10]. Explainable AI techniques have also been used to explain the
misbehaviour of models trained using FL. Haffar et al. [9], focus on the wrong
predictions of an FL model because these predictions could be signs of an attack.
In order to observe changes in the model behaviour, the nodes involved during
the computation explain the trained model at each epoch. An attacker’s pres-
ence could be revealed by changes in feature importance between two consecutive
epochs greater than a predetermined threshold. To the best of our knowledge,
no previous work addressed the problem of interpretability in horizontal FL by
designing a SHAP variant while adhering to participants’ privacy.

3 Background

We keep this paper self-contained by summarizing the key concepts necessary
to comprehend our proposal.

Federated Learning. FL [14] aims to train an ML model by exploiting the
cooperation of different parties while protecting user data. The main idea is that
participants in the federation do not have to share their data among themselves
or with a server. Each participant first trains a local model using their own data.
Then, it sends the gradient or weights of the model to a central server or to the
other participants to the end of learning a global and common model1.

Depending on how many clients are involved in the training of the model
and their nature, we can have two different types of FL: cross-silo and cross-

1 We underline that the meaning of local and global in the context of FL is entirely
different from the meaning in the context of XAI.
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device [11]. In the cross-silo scenario, we only have a few clients (10–50) that
should always be available during the training.

On the contrary, in the cross-device scenario, we can have millions of devices
involved in the computation that can only train the model under certain
conditions.

The most widely used architecture is the server-based one, where a central
server orchestrates the communication between the clients and the server itself.

In this paper, we consider a cross-silos scenario with a server-based archi-
tecture. In particular, we adopt the Federated Averaging (FedAvg) aggregation
algorithm [14]. In each round of this algorithm, the updated local models of
the parties are transferred to the server, which then further aggregates the local
models to update the global model. FedAvg works as follows. We suppose to
have a central server S, which orchestrates the work of a federation of C clients.
The goal is to train a neural network N by executing a given set of Federated
rounds. The procedure starts with the server that randomly initializes the neural
network parameters w0 and then it executes the specified training rounds. We
refer to them as global iterations to distinguish them from the training rounds
executed on the client side, also called local iterations. A generic global iteration
j can be split into four main phases: sending, local training, aggregation and eval-
uation phase. In the sending phase, the server samples a subset Ci of k clients
and sends them wj , that is the current global model’s parameters, through the
dedicated communication channels. Every client c ∈ Ci, after having received
wj , starts training it for E epochs on its private dataset, applying one classic
optimizer, like SGD, Adam or RMSProp. The number of local epochs and the
optimizer are user-defined parameters. Finally, the client c sends back to the
server the updated model parameters wj+1

c , ending the local training phase of
the algorithm. When the server ends gathering all the results from the clients, it
performs the aggregation phase, where it computes the new global model param-
eters, wj+1 as wj+1 = wj +

∑
c∈Ci

nc

n Δwj+1
c , where nc is the number of records

in the client c’s training set and n =
∑

c∈Ci
nc. Therefore, in the last phase, the

evaluation one, the server evaluates the new global model wj+1 according to the
chosen metrics.

Feature Importance Explanations. Feature importance is one of the most
popular types of explanation returned by local explanation methods [4,8]. For
feature importance-based explanation methods, the explainer assigns to each
feature an importance value which represents how much that particular feature
is important for the prediction under analysis. Given a record x, an explainer
f(·) models a feature importance explanation as a vector e = {e1, e2, . . . , ef}, in
which the value ei ∈ e is the importance of the ith feature for the decision made
by the black-box model b(x). For understanding the contribution of each feature,
the sign and the magnitude of each value ei are considered. W.r.t. the sign, if ei <
0, it means that the feature contributes negatively to the outcome y; otherwise,
if ei > 0, the feature contributes positively. The magnitude, instead, represents
how great the contribution of the feature is to the final prediction y. In particular,
the greater the value of |ei|, the greater its contribution. Hence, when ei = 0, it
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means that the ith feature is showing no contribution. An example of a feature
based explanation is e = {(age, 0.8), (income, 0.0), (education,−0.2)}, y = deny .
In this case, age is the most important feature for the decision deny , income is
not affecting the outcome, and education has a small negative contribution.

In this paper, we adopted SHapley Additive exPlanations (SHAP) [13] a local
post-hoc model-agnostic explanation method computing features importance by
means of Shapley values2, a concept from cooperative game theory. SHAP is one
of the most widely used explanation methods returning explanations in terms
of feature importance. The explanations returned by SHAP are additive feature
attributions and respect the following definition: g(z′) = φ0 +

∑F
i=1 φiz

′
i, where

z′ is a record similar to x obtained as a copy of x where some features and
values are replaced with some real values observed from the training set or from
a reference set X, while φi ∈ R are effects assigned to each feature, and F
is the number of simplified input features. SHAP retains three properties: (i)
local accuracy, meaning that g(x) matches b(x); (ii) missingness, which allows
for features xi = 0 to have no attributed impact on the SHAP values; (iii)
stability, meaning that if a model changes so that the marginal contribution of
a feature value increases (or stays the same), the SHAP value also increases
(or stays the same) [15]. The construction of the SHAP values allows us to
employ them both locally, in which each observation gets its own set of SHAP
values, and globally, by exploiting collective SHAP values. We highlight that
SHAP can be realized through different explanation models that differ in how
they approximate the computation of the SHAP values. In our experiments, we
adopted KernelExplainer, i.e., the completely model-agnostic version.

4 SHAP Explanations in Horizontal FL

Our proposal is to exploit SHAP [13] to explain the ML model learned by the
FedAvg algorithm [14], in the case of Horizontal FL architecture. We recall that
SHAP requires access to the training set Dtr, or to a “reference set” which is
similar to the training set used by the model to explain, to create records z′

to study the impact of each feature value in the final prediction. Sometimes, to
speed up the explanation process, a medoid of the dataset is used or a small set
of centroids [17] describing Dtr with a few records capturing the main charac-
teristics, i.e. feature-values [15]. As a consequence, in server-based FL, in order
to explain the learned global model, it is necessary that the server may gain
access to the complete set of training data of its clients or has the possibility of
computing the centroids of the dataset resulting from the union of the training
sets of all the clients. Since the basic idea of FL is to avoid data sharing, in this
setting we propose to have an explanation of the global model as the result of
the aggregation of local (client-side) explanations.

Let C = {c1, . . . , cm} the set of m clients participating to the cooperation.
After the FL algorithm, each client ci ∈ C has its ML model Mi received by
2 We refer the interested reader to: https://christophm.github.io/interpretable-ml-

book/shapley.html.

https://christophm.github.io/interpretable-ml-book/shapley.html
https://christophm.github.io/interpretable-ml-book/shapley.html
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Fig. 1. Overview of our methodology. The server and all clients explain the model
obtaining a matrix of SHAP values. The clients compute the mean of these matrices.
To understand the difference between the explanations, we subtract the client’s average
explanation from the server explanation matrix.

the server. We denote with MS the model on the server side resulting from
the weights averaging. Each client ci can derive a SHAP explainer ψi of its
own model Mi which strongly depends on its training data. We propose to
exploit the additive property of the SHAP values to generate explanations of
the model MS as an aggregation of explanations of the models belonging to
M . More formally, given an instance x to be explained, the explanation of the
prediction performed by the model MS is obtained by ψS(x) = 1

|C|
∑

ci∈C ψci(x).
Specifically, the server’s explanation ψS(x) is composed by |x| values resulting
from the average of SHAP values of m clients, meaning that for each xj we have
vj = 1

|C|
∑

ci∈C ψci(xj), where we assume that ψci(xj) returns the SHAP value
associated by the client ci to the feature xj (Fig. 1).

Thus, according to our proposal, any client can derive its explanation for the
instance x exploiting its own training data without the need to share them with
the server, while the server only needs to receive the clients’ explanations.

Analytical Methodology. In our experiments, we aim at comparing the pro-
posed variant of SHAP explanations tailored for FL with the explanations
obtained by the server. Hence, we propose an analytical methodology for vali-
dating our proposal based on the comparison of two settings: (i) the server gains
access to training data of its clients i.e., Dtr = ∪ci∈CDci

tr; (ii) the server cannot
access training data and thus can only receive the clients’ explanation for each
prediction to be explained. In order to conduct our analysis given a test set Dte

the following analytical methodology is applied:

– Each client ci computes the SHAP explanation for each x ∈ Dte, i.e., it gets
ψci(x). Thus, each client produces a k × f matrix Eci where k is the number
of records in Dte and f is the number of the features.
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– A global explanation for each x ∈ Dte is computed by averaging the
clients’ explanations as described above. Therefore, given the matrices
{Ec1 , . . . , Ecm} we can compute the matrix Ê where each element eij =
1

|C|
∑

c∈C ecij . We call this explanation clients-based explanation.
– A server-based explanation is computed by simulating the server’s access to

the client’s training data. Accessing training data, the server can obtain the
SHAP explainer ψS which applies to each x ∈ Dte and the k × f matrix ES .

– Finally, given the two matrices ES and Ê we analyze the differences to under-
stand the degree of approximation introduced by our approach which does
not assume data access. We perform this analysis by computing: (i) a dif-
ference matrix Δ = ES − Ê; (ii) the average importance for each feature
j produced by the two methods in the dataset Dte and then, how the two
methods differ, this means computing a vector having for each feature j a
value δj = 1

|k|
∑

i∈[1...k] δij.

5 Experiments

This section presents the experimental results obtained by applying the ana-
lytical methodology described in the previous section. We use the CoverType
and Adult tabular datasets available in the UCI Machine Learning Reposi-
tory3. CoverType contains 581, 012 records, 54 attributes and 7 different class
labels. The attributes represent cartographic variables, and the class labels rep-
resent forest cover types. The classification task involves recognizing forest cover
types. On the other hand, Adult is composed of 48, 842 records and 13 variables
(after discarding “fnlwgt” and “education-num”), both numerical and categor-
ical. Information such as age, job, capital loss, capital gain, and marital status
can be found in it. The labels have values <= 50K or > 50K, indicating whether
the person will earn more or less than 50K in a fiscal year.

We defined ML models using Keras. In particular, for CoverType, we devel-
oped a model with three dense layers consisting of 1024, 512, and 256 units and
a final output layer, while for Adult, we used a model with three dense layers
with ten units. In both models, we used Relu as an activation function in each
layer except for the output layer, where we applied softmax. After each layer,
we used Dropout to prevent overfitting. We employed Flower [3] to simulate
FL training. The experiments were performed on a server with an Intel Core
i9-10980XE processor with 36 cores and 1 GPU Quadro RTX 6000.

In our experiments, we tested architectures with a different number of clients
m ∈ {8, 16, 32} involved in the computation. Indeed, one of the objectives of our
analysis is to understand how this parameter impacts the aggregated explana-
tion. In this preliminary experimentation, we considered a scenario where the
clients have IID data which we distribute by stratified sampling. Also, each client
has the same amount of samples. We are perfectly aware that this scenario is
unlikely in real applications, and indeed we plan to perform further experiments
on non-IID data. Nevertheless, the experimented configuration allows us to ana-
lyze FL impact on SHAP explanations without excessive variability.
3 https://archive.ics.uci.edu/ml/index.php.

https://archive.ics.uci.edu/ml/index.php
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Fig. 2. Heatmaps showing the magnitude of the difference between server-based expla-
nations and clients-based explanations for each sample. The first row shows the results
for CoverType while the second one shows the results for Adult.

Results. In this section, we analyze the differences among the explanations with
respect to two different aggregation criteria. Indeed, our goal is to investigate
both the differences in the explanations from the point of view of the features
and from the point of view of the clients.

In Fig. 2, we show through heatmaps, for each sample of the test set, the
differences between the SHAP values of the server-based explanations and the
ones of the clients-based explanations. These heatmaps are a graphical repre-
sentation of the matrix Δ introduced in Sect. 4. To guarantee the readability of
our results, in the plots of CoverType, we report only 10 features over 54, i.e.,
the features that, on average, have the highest discrepancy between the server-
based explanations and clients-based explanations. As expected, the differences
are negligible. For CoverType the features “Soil Type 31” and “Elevation” have
a greater divergence from 0. In particular, the clients-based explanation tends to
overestimate the SHAP values of “Elevation” and underestimate the SHAP val-
ues of “Soil Type 31”. We highlight that these two features present the highest
divergence regardless of the number of clients involved in the training process.
However, as we increase the number of clients, their divergence decreases. In
Adult, we observe even smoother results in terms of divergence between server-
based and clients-based explanations since the divergence varies in a smaller
range with respect to CoverType. We can notice that, in any setting, we have
only a couple of features having a magnitude of the difference more prominent
with respect to the others. For example, in the setting with m = 8, clients
“capital gain” and “realtionship” present higher divergence.
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Fig. 3. SHAP values for CoverType. Top: calculated by the server. Middle: calculated
by the clients. Bottom: Difference between SHAP values obtained by the server and
those obtained by the clients.

We also conducted a more detailed analysis focused on the features. We
report the results for CoverType in Fig. 3. The three plots in the first row depict
the average SHAP values per feature of the server-based explanations, while the
three in the middle row depict the average SHAP values per feature computed
by clients-based explanations. As expected, these plots indicate that the two
explanations almost always agree. The plots in the bottom row, instead, show
the mean of the SHAP values for the top 10 features we selected for CoverType.
They confirm our discussion based on the above heatmaps. Moreover, we observe
that with an increasing number of clients m, some picks disappear, and the
differences per feature vary in a smaller range of values.

Figure 4 shows the same analysis for Adult. As for CoverType, the two types
of explanations almost always agree. Looking at the third row of the figure,
we notice that, in general, the magnitude of the differences between the two
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Fig. 4. SHAP values for Adult. Top: calculated by the server. Middle: calculated by
the clients. Bottom: Difference between SHAP values obtained by the server and those
obtained by the clients.

types of explanation decreases because, also in this case, some relevant picks
disappear. As an example, the pick we have with the feature “capital gain” in
the experiment with m = 8 clients disappears as the number of clients increases.

Besides considering the differences in terms of SHAP values of features, we
investigated the differences between the server-based explanation and the one
performed on each client. This gives us the opportunity to understand if there
are clients contributing more to the divergences between the two types of expla-
nations. We report the results in Fig. 5. In CoverType, we observe that in the
case of m = 8 clients, the difference with respect to the server is equal for all the
clients. As the number of clients increases, we notice different behaviour among
the various participants. Moreover, in the case with m = 32 clients, we observe
an increase in the divergences with respect to the setting with m = 16 clients.
This result is evident also in the last plot of the first row in Fig. 5.
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Fig. 5. Divergence of the server-based explanation w.r.t. clients-based. The first row
reports results for CoverType and the second for Adult. For each setting, we plot the
mean of the differences in the last plot of each row.

In Adult, we observe a different behaviour. The distance between the server
and the various clients is different even when we use only 8 clients. As we increase
the number of clients to 16, the distance increases, i.e., there are only a few clients
with very low divergence and more clients with higher divergence. However,
differently from the experiment with CoverType, when we increase the number
of clients to 32, the overall difference decreases again (see the last plot of the
second row in Fig. 5) because we have more clients with very low divergence.

In a nutshell, our results show that the clients-based explanation introduces a
negligible approximation to SHAP values, proving that our method is promising.

6 Discussion of Findings

By aggregating local explanations, the proposed methodology investigates
whether it is possible to derive an explanation for a model trained using Feder-
ated Learning. To achieve this goal, we exploited SHAP values’ additive property.
To be more specific, we aggregated the explanations computed by the individ-
ual clients to obtain a model explanation. We then compared this explanation
with that of the server. The results obtained from the two datasets we considered
support our initial guesses. Indeed, the differences between the aggregated expla-
nation and the server explanation are minimal. Therefore, the explainer trained
by the server and the one trained by the clients produce the same results. This
means that they are both suitable for explaining a Federated Learning model.
However, the explainer trained by the server requires some data to be trans-
ferred from the clients to the server to be trained. This is against the definition
of Federated Learning [14]. By successfully showcasing the viability of aggregat-
ing local explanations, we proved that clients do not need to transmit their data
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to a central server. This ensures confidentiality and mitigates potential privacy
risks due to data sharing.

By moving the explainers training from the server to the clients, we can also
reduce the computation overhead on the server side. This is because it has only
to perform the SHAP values aggregation. In addition, this approach could easily
be extended and adapted to a peer-to-peer Federated Learning setting, where
we would not have a server that could train an explainer. Instead, using our
clients-based explanations, each client could first compute the explanations and
then, after exchanging their SHAP values, aggregate them to derive the final
explanation without sharing any data.

7 Conclusion

In this paper, we have presented a method for providing SHAP explanations in
horizontal server-based Federated Learning systems. The basic idea is explaining
an instance’s prediction performed by the trained ML model by aggregating
the explanation of the clients participating in the federation. Consequently, the
proposed approach satisfies the strong requirements of a Federated Learning
system by avoiding sharing clients’ data with the server. We have presented
empirical evidence that our proposal introduces an acceptable approximation to
the SHAP explanations. In turn, it can be interpreted as a reasonable trade-off
between privacy and utility. In future work, we intend to analyze the impact of
adopting our method in a scenario with non-I.I.D. data distribution and in a
peer-to-peer Federated learning setting where we do not have a central server.
Moreover, we would also like to study the impact of a larger number of clients
involved in the training. Lastly, we would also like to investigate the impact of
privacy mitigation on explanation quality.
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