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Abstract. Explaining AI-based clinical decision support systems is cru-
cial to enhancing clinician trust in those powerful systems. Unfortunately,
current explanations provided by eXplainable Artificial Intelligence tech-
niques are not easily understandable by experts outside of AI. As a conse-
quence, the enrichment of explanations with relevant clinical information
concerning the health status of a patient is fundamental to increasing
human experts’ ability to assess the reliability of AI decisions. There-
fore, in this paper, we propose a methodology to enable clinical reasoning
by semantically enriching AI explanations. Starting with a medical AI
explanation based only on the input features provided to the algorithm,
our methodology leverages medical ontologies and NLP embedding tech-
niques to link relevant information present in the patient’s clinical notes
to the original explanation. Our experiments, involving a human expert,
highlight promising performance in correctly identifying relevant infor-
mation about the diseases of the patients.

1 Introduction

Recent efforts in Artificial Intelligence (AI) have shown great potential in helping
physicians in several of their daily clinical practices, for example, the interpre-
tation of medical scans [30] and the accurate assessment of prognosis [9] and
treatment recommendation [5]. While some worries have been raised about AI
systems replacing the role of doctors, human reasoning and oversight remain
indispensable for the proper functioning of such systems [10]. Indeed, current
AI applications focus on narrow tasks and have been shown to be sensitive
to adversarial attacks [23] and biased datasets and algorithms [26]. These short-
comings raised several concerns about the trustworthiness of such systems, espe-
cially because most state-of-the-art AI-based solutions are hardly interpretable
by humans. The transparency of AI systems in high-stakes domains such as
healthcare has been subject to many recent European regulatory efforts like the
GDPR and the recent proposal to regulate AI (AI Act).

For example, the European General Data Protection Regulation (GDPR),
which came into full effect in May of 2018, prescribes providing the data subject
of any automated decision-making process with “meaningful information about
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the logic involved, as well as the significance and the envisaged consequences
of such processing for the data subject” [14]. Furthermore, the recent proposal
for a European regulation of AI (AI Act) prescribes high-risk AI systems to be
developed in such a way that they enable users to interpret their output cor-
rectly and use them appropriately [15]. In response to these ethical and legal
issues, in the past years, the research community has been very active in devel-
oping several techniques to explain the reasoning of black box AI models, i.e.,
models whose internal decision-making process is obscure. The research field
that studies the interpretability of AI systems is that of eXplainable Artificial
Intelligence (XAI) [4]. Most XAI techniques offer interpretations of the black
box behaviour by providing explanations, i.e., interfaces between humans and
algorithms that allow the user to understand the AI decision-making process.
Developing AI systems able to support medical decision-making requires creating
appropriate human-computer interfaces to enable clinical reasoning. However,
most XAI explanations are designed to provide insights on model behaviour to
AI developers [3].

In this paper, we present a novel methodology that exploits access to the
patient’s clinical notes and the domain knowledge encoded in medical ontolo-
gies to semantically enrich the explanations provided by a state-of-the-art XAI
technique for clinical decision support systems (DSS). While the original expla-
nation considers only patient features that the AI algorithm received as input,
our methodology exploits medical ontologies to link such features to an exter-
nal source of knowledge on the patient. The result is an augmented explanation
that allows the physician to reason over the clinical context. Our experiments,
involving a human expert, show promising performance in correctly identifying
relevant information about the diseases of the patients.

The paper is structured as follows. In Sect. 2 we briefly present the field of
XAI, its applications in the healthcare context and the related uses of ontologies.
In Sect. 3 we formalize the problem we address in the paper, while in Sect. 4 we
describe the details of our methodology. Section 5 presents the experiments used
to validate our methodology. Finally, in Sect. 6 we discuss our results and we
present our ideas for future developments of our methodology.

2 Related Work

In this section, we overview some research work linked to our methodology.

XAI in Healthcare. XAI research studies how to provide explanations for AI
systems behaviour in human-understandable terms [4]. The need for XAI tech-
niques stems from the fact that many AI systems have an opaque internal rea-
soning process, i.e., they are considered black boxes. In the literature, the trans-
parency of AI systems is achieved mainly in two ways: by building transparent-
by-design models and by extracting explanations from black box models [16].
Some examples of transparent-by-design models employed in healthcare are mod-
els that allow the visualization of the relationships between input features and



218 L. Corbucci et al.

model output [6] and case-based reasoning models where the decision-making
process is entirely interpretable [2]. However, it is not always possible to build
transparent-by-design models for the task at hand. Therefore it might be nec-
essary to extract explanations from black box models. The two most known
examples of such XAI techniques are LIME [27] and SHAP [22]. While LIME
trains a local linear model on a feature space neighbourhood of the data point
to be explained and uses its weights as a local explanation for the model classi-
fication, SHAP assigns to each feature an importance value using a game theory
approach. In the healthcare field, an example of an explainer is MARLENA [25],
a model-agnostic solution to explain classifiers that perform multi-label tasks
such as multi-morbidity classification or unknown genes functional expressions.
Another example is Doctor XAI [24], the XAI algorithm employed in our experi-
ments which we detail in the next paragraph. However, none of these works really
takes into consideration end-user needs and domain expertise in the design of
their explanations.

Some examples of transparent-by-design models employed in healthcare are
the ones presented in [6] and [2]. In [6], the authors use Generalized Additive
Models (GAM) with pairwise interactions to predict the probability of 30-days
readmission to the hospital and the probability of death from pneumonia. GAM
allows the visualization of the relationships between single and pairs of input fea-
tures with the output, enabling the user to inspect what the model has learned.
In [2], the authors develop a case-based interpretable Deep Learning model to
classify mass lesions in mammographies. The case-based reasoning, highlighting
the classification-relevant parts of the image used to make the decision, makes
the model interpretable. However, it is not always possible to build transparent-
by-design models for the task at hand. Therefore it might be necessary to extract
explanations from black box models. The type of XAI technique that we employ
in this paper is post-hoc and model-agnostic. Post-hoc XAI techniques extract
explanations from trained models, and model-agnostic ones can extract such
explanations from any type of black box model because they do not use any of
its internal parameters in the explanation extraction process.

This kind of XAI techniques are agnostic w.r.t. the black box model, however,
they are not agnostic w.r.t. the type of input and output data processed by the
model. Therefore, they are considered specific for healthcare when they are able
to deal with the peculiarities of healthcare data.

Doctor AI and Doctor XAI. In this paper we semantically enrich the expla-
nations of Doctor XAI, which is a post-hoc model-agnostic XAI technique able
to deal with multi-label classification tasks and ontology-linked sequential data.
Doctor XAI exploits medical ontologies in its explanation extraction process.
Once the user selects one data point whose outcome needs an explanation, Doc-
tor XAI first finds a set of semantically close neighbours of that data point from
a set of available instances by employing an ontological distance metric. Then, it
augments such neighbourhood by ontologically perturbing the neighbour’s data
points, i.e. it masks ontologically similar features and queries the black box on
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such perturbed data points. Finally, it learns a multi-label decision tree on such
an augmented neighbourhood and extracts an explanation from it in the form
of a decision rule matching the decision path for that data point on the tree.

Doctor XAI is used to explain the outcomes of Doctor AI [12], a Recurrent
Neural Network (RNN) trained on the sequential representation of patients’
clinical histories encoded using International Classification of Diseases (ICD)
codes. Doctor AI predicts patients’ next clinical events, i.e. the set of diseases
(represented as ICD codes) that each patient will have in future visits to the
hospital.

Therefore, we use it in our experiments as clinical DSS and study how to
improve Doctor XAI explanations of Doctor AI predictions to enable clinical
reasoning.

Ontologies Use in XAI. Some XAI works already explored how to use ontolo-
gies (or knowledge graphs) to improve the explanation process or to tailor expla-
nations to specific user needs or characteristics. Besides Doctor XAI, also the
authors of Trepan Reloaded [13] use the ontology in the explanation extraction
process. In particular, they use ontology to constrain the training of the decision
tree acting as a local interpretable model. Closer to our research, other works
use ontologies to tailor the explanation to user-specific needs [7,21]. The authors
of [8] use an ontology that encodes all types of explanations to find the most
appropriate one for user questions.

In [28] the authors use an ontology to customize the explanation to user
needs. However, to the best of our knowledge, ours is the first attempt to enrich
explanations of clinical DSS to enable clinical reasoning and the first method
that extracts sentences from clinical notes guided by ontology and ICD-9 codes
(the ninth revision of ICD). We are aware of the existence of semantic annotation
tools like [1], and [19]. However, our method is different, and it does not tag each
sentence in the clinical note with a corresponding entity. Our method highlights
only the relevant sentences of the note based on the associated ICD-9 codes and
the relations extracted from the ontology. This difference did not allow us to
compare our method with the already existing tools.

3 Problem Statement

Our aim is to use medical ontologies and external sources of medical knowledge
to semantically enrich the explanation provided by state-of-the-art explainabil-
ity techniques for clinical DSS. In particular, we are interested in augmenting
explanations, that consider only the features given as input to the model, with
external sources of knowledge in order to present to the end-user the complete
clinical picture relevant for a particular algorithmic decision and enabling clin-
ical reasoning. We focus our effort on the post-hoc explanations provided by
Doctor XAI [24] and use clinical notes representing the patient’s discharge sum-
mary as an external source of knowledge. We have already presented Doctor
XAI in Sect. 2 and now we provide more details on its explanations. In Fig. 1, we



220 L. Corbucci et al.

Fig. 1. An example of Doctor XAI Explanation.

show an example of an explanation of a Doctor AI outcome for a patient having
three visits. Each visit is represented by a set of ICD-9 codes and the explana-
tion for the multi-label classification provided by Doctor AI is the decision rule
depicted in the bottom right. Each conjunction of the rule premise follows the
following pattern: ICD code ≷ threshold value. Here, the threshold value is a
split value assigned by a decision tree to that ICD code. The internal encod-
ing of Doctor XAI allows giving a temporal interpretation of such value, e.g.,
threshold value = 0.5 means that the ICD code was present in the last visit.
At the top of the image, we have a more readable representation of the explana-
tion. The ICD-9 codes of the patient’s clinical history identified as meaningful
by Doctor XAI have been coloured to enhance the readability. However, the final
user who wants to exploit this explanation has to analyse the description associ-
ated with each highlighted code and derive the possible relationships and their
meaning. Furthermore, the explanation does not provide any information on the
clinical context of the patient. The method we are proposing aims to enrich the
Doctor XAI explanation with information derivable from clinical notes associ-
ated with each visit and written by nurses and physicians.

Our methodology enriches such an explanation by highlighting the parts of
the patient’s clinical notes mostly correlated with the ICD-9 codes and uses
medical ontologies to identify if, in that clinical note, there are references to
clinically relevant information such as the ICD-9 description, the parts of the
body affected by the disease, its causes and its effects.

4 Methodology

Our methodology exploits the SNOMED-CT medical ontology [29] to seman-
tically enrich XAI explanations. The SNOMED-CT ontology contains a com-
prehensive representation of clinical healthcare terminology including diseases,
symptoms, signs, diagnoses, medications and procedures. Our methodology first
finds all the SNOMED-CT concepts related to each ICD-9 code in the explana-
tion, then it selects some clinically relevant ontological relationships associated
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with these concepts (more details in Sect. 4.1), and finally uses clinical embed-
dings to find the parts of the patient’s clinical note most related to these relation-
ships and highlights them on the clinical note itself (more details in Sect. 4.2).
A bird-view of our methodology is provided in Fig. 2b. In Fig. 2a we show an
example of some of the concepts and relations contained in the SNOMED-CT
Ontology. In particular, for the concept “Bacterial Pneumonia” we have two
different relations, the Finding Site, which is “Lung Structure”, and the Due to
which is “Bacteria”. Note that all the diseases are also involved in a Parent-Child
relation where the parent node represents a more general disease than the child
e.g. “Pneumonia” is more general than “Infective Pneumonia”.

4.1 SNOMED-CT Relationships Extraction

Each ICD-9 of the explanation has a one-to-many mapping to the concepts
in the SNOMED-CT ontology. For example, consider the ICD-9 code 707.15,
which stands for “Ulcer of other part of foot”. This code is mapped to a set of
SNOMED-CT concepts such as “Ulcer of foot”, “Ulcer of big toe” and “Diabetic
foot”. For providing the clinician with the most accurate clinical context related
to the decision, we first consider all of these possibilities and for each of them,
we extract all the relevant clinical information. We focus on three SNOMED-
CT ontological relationships: (a) Finding Site, i.e., the body site affected by a
condition; (b) Associated Morphology, i.e., the morphological changes seen at the
tissue or cellular level that are characteristics of a disease; and (c) Due to, i.e.,
the cause of the clinical finding, might be another clinical finding or a procedure.

More formally, we define a function g that given an ICD-9 code cd and the
SNOMED-CT ontology O returns the corresponding set of the SNOMED-CT
concepts SC, i.e., g(cd,O) = SC. Then, starting from the set of concepts SC,
our method navigates the SNOMED-CT ontology and derives:

– A set of descriptions D = ∪s∈SCds, where each ds is the description associated
with the SNOMED-CT concept s;

– A set of finding sites F = ∪s∈SCFs, where Fs = f1
s , f2

s , . . . , fn
s is the set of

finding sites associated with the SNOMED-CT concept s;

Fig. 2. (a) SNOMED-CT Ontology relationships and (b) Bird-view of our methodology.
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– A set of associated morphology caused by the disease M = ∪s∈SCMs, where
Ms = m1

s,m
2
s, . . . , m

k
s is the set of associated morphology associated with the

SNOMED-CT concept s;
– A set of causes of the disease C = ∪s∈SCCs, where Cs = c1s, c

2
s, . . . , c

h
s is the

set of causes associated to the SNOMED-CT concept s.

We denote by f ∈ F , m ∈ M and c ∈ C any of the finding sites, associated
morphology and causes extracted from the ontology.

4.2 Information Extraction from Clinical Notes

We exploit biomedical word embeddings to encode the description of each clini-
cally relevant piece of information found in the previous step and find the most
similar piece of text in the clinical note associated with the patient. Given an
ICD-9 code and a clinical note N , our methodology, by using the function g
(defined above), first extracts from the ontology O the set of descriptions D
related to the concepts SC in SNOMED-CT, or the corresponding sets of find-
ing sites F , associated morphology M , causes C. Then, for each ds ∈ D, f ∈ F ,
m ∈ M or c ∈ C To this end, we use a sliding window of length r that generates
a set of word sequences W composed of r contiguous words that can be used
to represent the note N . We then embed each element of W obtaining the cor-
responding set of pairs 〈embedding, sentence〉 denoted by E. We also compute
the embedding for each ds, f ∈ F , m ∈ M , or c ∈ C and for each of them
we identify the most similar embedded sentence Ew corresponding to the pair
〈E w,w〉 ∈ E.

We use the cosine similarity metric to compute a similarity score between
these embeddings and those generated using the sliding window. Given two
embeddings A and B, the similarity is computed as follows: Similarity =

A·B
||A||||B|| . Thus, we obtain that each element of D, F , M and C is associated
with the most similar sentence of the note and a similarity score i.e., we have
four score vectors Dscore, Fscore, Mscore and Cscore.

To identify the descriptions in D, the finding sites in F , the associated mor-
phology in M and the causes in C referred to in the note N , we select from these
sets only the elements with a similarity score higher than a threshold τ . In our
experiments, the threshold τ is computed as the 90th percentile of the score vec-
tors. We compared several thresholds. In the end, we chose the one that allows us
to have the highest number of correctly highlighted sentences. By highlighting all
the sentences of the discharge summary having T scores ≥ τ , we present to the
end-user only the information relevant to the patient under study.

The length r of the sliding window has a clear impact on the embedding-
based representation of each note and on the resulting parts of the text that
are associated with specific concept descriptions, finding sites, etc. We propose
to select for each type of relationship the more appropriate r value by using
a data-driven approach. In particular, it finds the suitable r value for a given
relationship type by testing several sliding window length values on a separate
set of clinical notes and by selecting the value leading on average to the highest
similarity score.
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5 Experiments and Results

In this section, we experimentally show the ability of our approach to identify
the correct sentences of the patient’s clinical notes for explanation enrichment.1

We carried out two types of experiments with the help of a human expert.
In the first experiment, the human expert manually annotated a set of clinical
notes with the ICD-9 descriptions and their relevant ontological relationships.
This allowed us to build a ground truth for the automatic extraction of our
methodology. In the second experiment, we used our methodology to extract
the sentences from another set of clinical notes and then, we asked the human
expert to validate whether the identified sentences were correct.

5.1 Dataset

We tested our methodology on the Medical Information Mart for Intensive Care
database (Mimic-III) [18]. This dataset contains de-identified data of approxi-
mately 40.000 patients collected between 2001 and 2012 in the Beth Israel Dea-
coness Medical Center data in Boston. Data is stored in 26 different tables; in
particular, we used the NoteEvents table which contains all the clinical notes
written by nursing and clinicians during a patient’s stay in the hospital.

Note Cleaning. We applied a pre-processing to the clinical notes to clean them
and reduce noise: we have lower-cased the text; we have removed numbers; we
have substituted odd characters with space; we have removed stopwords; we have
removed the punctuation; and we have replaced the contractions in the text with
an extended form using a dictionary of possible contractions.

5.2 Implementation Details

We trained Doctor AI for 50 epochs, splitting MIMIC-III using 70% of its
patients as a training set, 15% as a validation set, and 15% as a test set. We then
used Doctor XAI as detailed in the original paper. To navigate the ontology, we
used a Python Library called PyMedTermino [20]. For the embedding of the
clinical notes’ sentences, we used three different methods:

– BioWordVec [31], a pre-trained word embedding for biomedical natural lan-
guage processing trained on PubMed and Mimic-III;

– ClinicalBert [17], a Bert based embedding trained on Mimic-III;
– and BioSentVec [11], a biomedical sentence embedding with sent2vec trained

on Mimic-III and PubMed.

1 Code available at: https://github.com/lucacorbucci/Semantic-Enrichment. Hard-
ware used: NVIDIA Quadro RTX 6000 GPU, Intel(R) Core(TM) i9-10980XE CPU
@ 3.00 GHz, 256 gb of RAM.

https://github.com/lucacorbucci/Semantic-Enrichment
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BioSentVec and BioWordVec are based on Word2Vec, the embeddings are
context-independent and we can use them without the model that generated
them because we just have <key, value> pairs where the keys are the words and
the values are the embeddings. ClinicalBert is based on Bert, the embeddings
are generated considering the context of a word, this means that we have to
give a sentence as input to the model and it will return the embedding. This is
computationally more expensive than the Word2Vec model.

Before applying the embedding we identified the suitable length value r of
the sliding window for each type of relationship: r = 7 for the Finding Site and
Associates Morphology relationships, r = 9 for Due to relationship and r = 10
for the Description. To this end, we tested values in the range between 3 and 30
using a subset of 500 clinical notes contained in the original dataset.

5.3 Human Validated Experiment

Clinical Notes Manual Annotation. The domain expert took into account
each ICD-9 code associated with the clinical notes and highlighted by Doctor
XAI. The notes were manually annotated highlighting the most similar sentences
to the following information: i) Code description; ii) Cause of the disease asso-
ciated with the code; iii) Finding site of the disease associated with the code;
and iv) Associated morphology of the disease associated with the code. In par-
ticular, we considered the clinical histories of nine different patients, involving a
total of 32 clinical notes. These patients have been diagnosed with ICD-9 code
250.00 i.e. diabetes, 584.9 i.e. Acute kidney failure, 428.0 i.e. Congestive heart
failure and 401.9 i.e. Unspecified essential hypertension, among other diseases.
Once the domain expert annotated the notes, we tested our method to com-
pare the extracted sentences with the manually annotated ones. In Table 1, we
report Accuracy, F1-Score, Precision and Recall for each ontological relationship
and the corresponding confidence interval at 1 − α = 0.95 confidence level. The
results are divided according to the type of relationship and in bold we highlight
the best performance. The confidence intervals for all the metric values are tight
meaning that the performances of the methods are reliable. To evaluate these
metrics, we have defined:

– True Positive as the number of sentences that were manually annotated in
the clinical notes and are correctly annotated by our method;

– False Negative as the number of sentences in the clinical notes that our
method does not annotate because they have a similarity score lower than
the input threshold and that were manually annotated by the domain expert.

– False Positive as the number of sentences in the clinical notes that our method
annotates and that do not have a corresponding manual annotation.

– True Negative as the number of sentences in the clinical notes that our method
does not annotate because they have a similarity score lower than the input
threshold and that do not have a corresponding manual annotation.

Table 1 shows that BioWordVec presents the best performance across all rela-
tionships, for this reason, we chose to employ it in our methodology. Furthermore,
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Table 1. Validation on 32 manually annotated clinical notes of 9 patients. Confidence
of Accuracy, Precision, Recall and F1-score at 1 − α = 0.95 of confidence level.

Relationship Embedding Accuracy F1-score Precision Recall

Description BioWordVec Value
Confidence

0.718
0.715–0.719

0.707
0.704–0.708

0.819
0.815–0.819

0.622
0.619–0.624

Description BioSentVec Value
Confidence

0.662
0.659–0.663

0.664
0.661–0.665

0.804
0.800–0.804

0.566
0.563–0.567

Description ClinicalBert Value
Confidence

0.640
0.637–0.641

0.602
0.599–0.603

0.654
0.651–0.655

0.557
0.555–0.559

Finding site BioWordVec Value
Confidence

0.743
0.740–0.744

0.274
0.273–0.277

0.170
0.169–0.173

0.708
0.705–0.709

Finding site BioSentVec Value
Confidence

0.726
0.723–0.727

0.294
0.293–0.297

0.200
0.199–0.203

0.555
0.553–0.557

Finding site ClinicalBert Value
Confidence

0.686
0.683–0.687

0.214
0.213–0.217

0.150
0.149–0.153

0.375
0.373–0.377

Due to BioWordVec Value
Confidence

0.666
0.647–0.673

0.451
0.440–0.466

0.350
0.342–0.368

0.636
0.618–0.644

Due to BioSentVec Value
Confidence

0.600
0.582–0.609

0.091
0.091–0.119

0.050
0.050–0.080

0.500
0.486–0.513

Due to ClinicalBert Value
Confidence

0.568
0.552–0.579

0.214
0.211–0.238

0.150
0.149–0.176

0.375
0.366–0.392

Associated morphology BioWordVec Value
Confidence

0.856
0.845–0.856

0.577
0.571–0.581

0.464
0.459–0.470

0.764
0.755–0.766

Associated morphology BioSentVec Value
Confidence

0.803
0.793–0.803

0.409
0.405–0.415

0.321
0.318–0.329

0.562
0.556–0.566

Associated morphology ClinicalBert Value
Confidence

0.734
0.726–0.736

0.339
0.336–0.347

0.321
0.318–0.329

0.360
0.356–0.367

BioWordVec computational runtime was an order of minutes shorter if compared
with ClinicalBert, as previously observed in [19]. Our experiment pointed out
that the Description is the easiest relation to search for and in most of the
cases, our methodology is able to extract the same sentence highlighted during
the manual annotation phase. On the contrary, it is not easy to deal with Finding
Site and Due to. As explained by our domain expert usually this information is
often underlined by the clinicians and is not explicitly written in the notes. This
sometimes led to the extraction of wrong sentences.

A Kruskal-Wallis test was used to determine whether or not there are statisti-
cally significant differences between the medians of accuracy, precision, recall and
F1-score of the different embedding methods reported in Table 1 (BioWordVec,
BioSentVec, and ClinicalBert). The Kruskal-Wallis test is the non-parametric
test considered equivalent to the One-Way ANOVA and, given the low number
of observations that we are comparing, it is the best fitting for our setting. The
Kruskal-Wallis test uses the following null and alternative hypotheses: H0: “The
median is equal across all embedding methods”, H1: “The median is not equal
across all embedding methods”. For the accuracy we obtained that the Kruskal-
Wallis Statistics is 2.192 with a p-value of 0.334 (> 0.05) meaning no statistically
significant difference among the accuracy medians, so the H0 hypothesis cannot
be rejected. For the recall we obtained that the Kruskal-Wallis statistic is 8.800
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Table 2. Kruskal-Wallis test for the recall: results.

BioWordVec BioSentVec ClinicalBert

BioWordVec stat: 1.000 stat: 3.036 stat: 5.398

p: 0.000 p: 0.0814 p: 0.0202

BioSentVec stat: 1.000 stat: 5.333

p: 0.000 p: 0.0209

ClinicalBert stat: 1.000

p: 0.000

Table 3. Human validation of the extracted sentences using a 90th percentile threshold.

Relationship Description Finding site Associated Morphology Due to

Embedding valid non-valid valid non-valid valid non-valid valid non-valid

BioWordVec 75 (75%) 25 (25%) 65 (65%) 35 (35%) 21 (75%) 7 (25%) 13 (65%) 7 (35%)

BioSentVec 77 (77%) 23 (23%) 56 (56%) 44 (44%) 21 (75%) 7 (25%) 13 (65%) 7 (35%)

ClinicalBert 67 (67%) 33 (33%) 32 (32%) 68 (68%) 18 (64%) 10 (36%) 9 (45%) 11 (55%)

with a p-value of 0.012 meaning a statistically significant difference among the
recall medians, so the H0 hypothesis has been rejected. We performed both a
Kruskal-Wallis test and a Mann Whitney test on the pairs to verify which are
the pairs with a significant difference. In Table 2 we report the results of the pair-
wise comparisons of the Kruskal-Wallis test (equal results were obtained with
the Mann Whitney test).

Looking at Table 2, it is interesting to note how the pairwise comparisons
between BioWordVec vs ClinicalBert and BioSentVec vs ClinicalBert give sta-
tistically significant differences between the pairs (always lower for ClinicalBert).
For the F1-score (Kruskal-Wallis Statistics 1.505 with a p-value of 0.471) and
the precision (Kruskal-Wallis Statistics 1.462 with a p-value of 0.481) we found
no significant difference among at least one of the medians (both for F1-score
and precision), so the H0 hypotheses have to be accepted in both cases. Thus,
to summarize the three embedding methods present statistically significant dif-
ferences only for the recall: BioWordVec and BioSentVec perform statistically
better than ClinicalBert, reinforcing the choice of one of these two embeddings.

Classification of Extracted Sentences. We made a second experiment
exploiting the knowledge of the domain expert. We selected almost 100 notes
classified with the ICD-9 250.00 (diabetes), 584.9 (Acute kidney failure), 428.0
(Congestive heart failure) and 401.9 (Unspecified essential hypertension).

Then, we ran our method on each note to highlight the most similar sen-
tences to the Description, Finding Site, Associated Morphology and Due To
relation associated with all the ICD-9 with which the note is associated. We
used the previously mentioned method and the three different embeddings to
compute the similarity. After extracting the sentences with our method, the
domain expert analysed each sentence evaluating the correlation with the rela-
tion with which similarity was calculated and if the highlighted sentence provided
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helpful information about the patient’s clinical history. Each of the extracted sen-
tences was classified as “Valid Sentence” or “Non-Valid Sentence”. In Table 3
we report the result of this experiment with a similarity threshold of the 90th
percentile. The results show that the performances using embeddings BioWord-
Vec and BioSentVec are very similar while those using ClinicalBert are slightly
worse.

6 Conclusion and Future Work

We presented a methodology to semantically enrich the explanation of an XAI
technique in the healthcare context by exploiting SNOMED-CT ontology and
clinical notes. In particular, it highlights the relevant clinical information related
to one algorithmic decision directly on the patient’s clinical note. Thanks to the
domain expert, we were able to annotate a small part of the dataset and to
have a preliminary “human validation” of our methodology. The presence of a
“human validator” was crucial in our methodology. Unfortunately, we have not
found any pre-annotated dataset that could fit our needs and that could be
used as a ground truth. The “human-validated” experiment showed promising
results concerning the identification of sentences related to the description of the
disease and the associated morphology while selecting the correct finding site and
cause of the disease is more challenging. We studied many different approaches
to extract the information, and we compared different embeddings to have a
better representation of our notes. In terms of embeddings, we compared the
performances achieved with BioWordVec, BioSentVec and ClinicalBert, and we
concluded that, for the same performance, BioWordVec performs slightly better
in general and it is faster in computing embeddings. A limitation of an approach
that involves the use of pre-trained embeddings is that we would not be able
to generalise this task with the same performances when using a completely
different medical dataset. In that context, an embedding like ClinicalBert would
probably perform better. However, it would have a high computational cost to
the embedding computation.

In the future, we would like to validate our method on a larger quantity of
clinical notes and exploit our methodology to generate explanations expressed
by natural language.

In addition, we would like to test the methodology to understand if the
semantically enriched explanation could improve the interpretability of the
explanation. Lastly, we plan to investigate the opportunity to exploit our
methodology to generate explanations expressed by natural language.
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