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Abstract. We introduce Frank, a human-in-the-loop system for co-
evolutionary hybrid decision-making aiding the user to label records from
an un-labeled dataset. Frank employs incremental learning to “evolve”
in parallel with the user’s decisions, by training an interpretable machine
learning model on the records labeled by the user. Furthermore, advances
state-of-the-art approaches by offering inconsistency controls, explana-
tions, fairness checks, and bad-faith safeguards simultaneously. We eval-
uate our proposal by simulating the users’ behavior with various levels
of expertise and reliance on Frank’s suggestions. The experiments show
that Frank’s intervention leads to improvements in the accuracy and
the fairness of the decisions.

Keywords: Human-Centered AI · Hybrid Decision Maker · Skeptical
Learning · Incremental Learning · Explainable AI · Fairness Checking

1 Introduction

Automated decision-makers based on Machine Learning (ML) are still not
widely adopted for high-stakes decisions such as medical diagnoses or court
decisions [22]. In these fields, humans are aided but not replaced by Artificial
Intelligence (AI), resulting in Hybrid Decision-Makers (HDM) [15]. While HDM
literature is flourishing, certain key aspects have not yet been considered, pre-
venting HDM systems from covering possible use cases. HDM systems promote
the collaboration between human and AI decision-makers, resulting in a final
set of “hybrid” decisions (some taken by the human, others by the machine). In
Learning-to-Defer [10] systems, the machine plays the primary role, deferring
decisions on records with a high degree of uncertainty to an external human
supervisor. In [22], a rule-based AI model with inferred rules suggests replacing
some user’s decisions to maximize fairness, whereas in [9], the model mediates
between a user and their supervisor if it is not confident in the user’s deci-
sions. On the other hand, in the Skeptical Learning (SL) paradigm, an ML
model learns “in parallel” to the decisions taken by a human and queries them
if it is “skeptical” of the human decision [4,19,23,24]. SL aims to help the user
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remain consistent with their past decisions, still giving them veto power against
the model’s suggestions. SL has been extensively applied to personal context
recognition [4,24] and image classifications [19]. In [19], SL suggestions are also
supported by contrastive explanations. Our system employs and extends tradi-
tional SL, by taking into account simultaneously fairness aspects, explainable
suggestions, and the involvement of the user’s supervisor. In line with [4], our
proposal is powered by a Incremental Learning (IL) model. IL, also known as
Continual Learning, is an ML paradigm where the model is continuously trained
on small data batches, potentially including only one data point, instead of the
entirety of the training set [12,21].

The eXplainable AI (XAI) research field aims to create humanly interpretable
proxies of “black-box” ML models used for decision-making. An explanation is
global if it unveils the whole model logic, or local if it justifies the decision
of a specific record [7]. A global explanation can be achieved by approximat-
ing black-box models with interpretable-by-design ones, such as a decision tree,
which also offers local explanations as decision rules [3]. Also, instance-based
explanations make use of examples and counter-examples, i.e., similar records
with the same/different decision by the AI system [6]. Our proposal offers both
a model approximation, employing an interpretable decision tree, and instance-
based (counter-)examples to explain the model’s suggestions to the user.

Finally, we also account for the fairness of the decisions. Two major
approaches have been proposed to quantify a dataset’s fairness [2]. For indi-
vidual fairness, similar individuals should receive similar treatment, while for
group fairness, each group should receive a similar treatment [16]. The discrim-
inatory feature to be monitored (e.g., Race, Gender) is often defined sensitive
or protected attribute [20]. Given a sensitive attribute, our proposal checks both
individual and group fairness, helping the user avoid discriminating behavior.

We propose Frank, a HDM system overcoming the current limitations of
SL related to explainability, fairness, consistency, and bad-faith users. As in SL,
if the user’s label is inconsistent with Frank’s prediction, the user is warned
of possible contradictions with their past behavior and suggested to modify
their decision. Besides, provides explanations that become increasingly detailed
as the model learns more from the user, who can, in turn, learn more about
their behavior. Also, can prevent bad-faith behavior and discriminating deci-
sions. Ultimately, and the human have a symbiotic co-evolutionary relationship,
with Frank’s model able to predict the user’s behavior, thus aiding them, and
the human feeding Frank’s model with new data. Experimental results show
that pairingwith less reliable users provides noticeable improvements in terms of
accuracy and fairness, and that the usage of explanations increases the number
of acceptance for suggestions in case of skepticism.

2 Setting the Stage

We keep the paper self-contained by reporting in the following a brief overview of
concepts necessary to understand our proposal. We indicate with X,Y a dataset
where X = {x1, . . . , xn} ∈ X (m) is a set of n records described by m attributes



238 F. Mazzoni et al.

(features), i.e., xi = {(a1, v1), . . . , (am, vm)}, where ai is the attribute name and
vi is the corresponding value, and X (m) is the feature space consisting of m
input features, while Y = {y1, . . . , yn} ∈ Y is the set of the target variable
in the target space Y. With A = {a1, . . . , am} we indicate the set of feature
names, and for an instance x ∈ X, we write x[ak] to refer to the value vk of
attribute ak. For classification problems, yi ∈ {1, . . . , l} = L where L is the set
of different class labels and l is the number of the classes, while when dealing
with regression problems, yi ∈ R. Without losing in generality, we consider l = 2,
i.e., binary classification problems. We indicate a trained decision-making model
with a function f : X (m) → Y that maps data instances x from the feature space
X (m) to the target space Y. We write f(x) = y to denote the decision y taken
by f , and f(X) = Y as a shorthand for {f(xi) | xi ∈ X} = Y .

Skeptical Learning. Given a ML model f and a dataset X, the user is tasked
to assign a label yi to each record xi ∈ X. In SL, the user assigns to xi the label
ŷi, according to their own belief and background and, independently from them,
f assigns the label ỹi, i.e., ỹi = f(xi). The ML model implementing f can be
pre-trained on a small training set. If ŷi �= ỹi and f is skeptical (see below), the
user is asked if they want to accept ỹi as yi. If they do, yi takes the value ỹi. If
the user refuses, if ŷi = ỹi or if the model is not skeptical, yi is assigned ŷi. The
ML model is then incrementally trained on xi and yi.

The definition of the model’s skepticality varies in the literature [19]. How-
ever, skepticism is always related to model’s epistemic uncertainty, which is
independent of the notion of confidence score towards a certain decision, i.e.,
the prediction probability1. Epistemic uncertainty is the model’s ignorance, and
given enough data, it should be minimized [8]. Only a limited number of ML
model offers by-design access to epistemic uncertainty, e.g., Naive Bayes, Gaus-
sian Process [4,8]. In the context of SL, it has been approximated by the empir-
ical accuracy of past predictions both of the user and the model, i.e., the ratio
between the number of times a label has been proposed by the user or predicted
by the model, and the times it has been accepted as y [23]. Thus, given xi and
the prediction ỹi, the skepticism towards the user’s ŷi is:

skpt(xi, ỹi, ŷi, Y, Ỹ , Ŷ ) = c(f, xi, ỹi) · ea(ỹi, Y, Ỹ ) − c(f, xi, ŷi) · ea(ŷi, Y, Ŷ ) (1)

where c(f, xi, ỹi) and c(f, xi, ŷi) are the model confidence score towards ỹi and
ŷi. The function ea computes the empirical accuracy of either the model or the
user toward their respective label. The empirical accuracy is computed as the
cardinality of the intersection between the subset of all their past decisions with
label either ŷi or ỹi and the corresponding subset in Y , i.e., the final decision, over
the subset of all their past decisions with either ŷi or ỹi. Therefore, each possible
label l ∈ L has two accuracy values – following the user’s and the model’s track
record. In [23], the user’s accuracy values are initialized with 1, and the model’s
with 0 (therefore, the model is not skeptical of earlier decisions).

1 Note that there’s a general lack of normativity w.r.t. these terms; e.g., [23] uses the
term confidence to refer to the epistemic uncertainty.
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Incremental Decision Tree. We employ Extremely Fast Decision Tree
(EFDT) [13], a variant of Hoeffding Tree, which offers performance on par with
the non-incremental counterpart [1,5]. EFDT splits a node as soon as the split
is deemed useful, with the possibility of later revisiting the decision [13]. Being a
decision tree, EFDT can also be exploited to provide explanations to the user [7].

Preferential Sampling. We include an interactive variant of Preferential Sam-
pling (PS), an algorithm increasing group fairness [11]. PS assumes that in the
set of class labels L we can recognize a favorable + and an unfavorable − deci-
sion, i.e., L = {+,−}, while among A we can denote a binary sensitive attribute
sa ∈ A, e.g., Sex. The possible values {v, v̄} of sa refers to a discriminated group
v and privileged group v̄, e.g., Female and Male. The algorithm identifies the
size of the groups of D iscriminated records with a Positive (DP) or N egative
label (DN), and of Privileged records with a Positive (PP) or N egative label
(PN). Given X, it computes the dataset discrimination score as:

disc(X, sa, v) = |PP|/|PP∪PN | − |DP|/|DP∪DN | (2)

Then, it computes how many records from PP and DN should be removed, and
how many from DP and PN should be duplicated to reach disc ≈ 0. Records are
selected w.r.t. the prediction probability of a classifier trained on X. A variant
supporting non-binary sensitive attributes, and where the user does not need to
know a priori the discriminated group(s), is presented in [14].

3 A Frank System

Frank is a system for HDM, learning from the decisions of the human decision-
maker (typically identified as the “user”), continuously evolving with them, and
aiding the human to remain consistent by offering suggestions and explanations.
Frank is named after its frank behavior – it interacts with the user as soon
as something “unexpected” happens. Other thanand the user, in line with [9],
we also suppose a third agent, i.e., the user’s supervisor. Depending on the
context, the supervisor could be someone enforcing company policies to the
user’s decisions, e.g., making sure they are not biased by personal beliefs, or
someone with higher expertise than the user, e.g., a senior doctor.

The pseudocode ofis reported in Algorithm 1. Frank requires a set of records
to label X, which are received one by one, a set of rules R provided by the user’s
supervisor, a sensitive attribute sa, a skepticality threshold s, the number of
iterations k after which a group fairness check is performed on the records and
decisions analyzed so far, and a stopping condition stp. At this stage, we are very
general about the stopping condition stp as it might be implemented as reaching
a certain number of labeled records, or an accuracy higher than a threshold2

for f . The initialization of X ′, Y ′, Ỹ , Ŷ ,
...
Y in line 1 can rely on empty sets for

2 In our experiments, we consider as stp a certain number of instances to be analyzed,
leaving for future work the study of measures automatically unveiling when to stop
the training.
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a cold start execution, or they might be initialized with records and decisions
of previous runs. We use X ′ to collect the set of records analyzed so far, Y ′ for
the set of final hybrid decisions taken on the records in X ′, Ỹ for the set of
decisions of Frank’s EFDT model f alone, Ŷ for the set of decisions proposed
by the user alone, and

...
Y to store the decisions taken byand the user without

re-labelling due to fairness corrections. Also, f might be completely untrained,
pre-trained non-interactively on some records, or pre-trained in a past run of
Frank3. Until the stopping condition stp is met (line 2), receives a xi from X
(line 3). As in SL [19], the user assigns a label ŷi, and Frank’s model f a label
ỹi, i.e., the prediction (lines 4 and 5).

With Ideal Rule Check (IRC), checks if the record xi is covered by a rule in
the rule set R provided by the user’s supervisor (line 7). If it is, then the decision
ȳi is derived from the rule and assigned to the final decision yi (line 8). If none of
the rules from R cover the record, with Individual Fairness Check (IFC), checks if
the user’s decision complies with the individual fairness condition by comparing
ŷi to the labels assigned to “similar” past records (lines 9–13). The definition of

3 In our experiments, we consider the sets X ′, Y ′, Ỹ , Ŷ ,
...
Y initialized with empty sets

and f pre-trained non-interactively on 500 records. Future works will investigate
further these aspects.
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similarity is further defined below. Skeptical Learning Check (SLC) is triggered
if no similar records exist and the user’s decision ŷi and Frank’s prediction ỹi
are not the same. Ifis skeptical of ŷi, the user is asked if they want an explanation
for ỹi (line 15). If the user accepts, they are shown the explanation ei (line 16).
Regardless, the user is then asked if they accept ỹi as the final decision yi (lines
17). If the user refuses (line 18), ifis not skeptical, or if it agrees with the user
(line 19), the user’s decision ŷi is accepted as the final decision yi. Regardless of
the triggered checks, xi and yi are added respectively to X ′ and Y ′ (line 20), and
are used to update Frank’s model f (line 21). Similarly, ỹi and ŷi are added to
Ỹ and Ŷ , respectively. Also, yi is added to

...
Y , which might differ from the set

of labels Y ′ in the case of relabeling. Finally, every k records, performs Group
Fairness Check (GFC, lines 24–25), asking the user if they want to change the
label of some past records to reduce the dataset’s discrimination as computed
by Prefential Sampling [11]. Frank prioritizes IRC to follow the guidelines of
the supervisor, then IFC for fairness among similar records, and, finally, SLC.
To avoid contradictions, once a final label yi is set, checks with less priority are
never triggered, and GFC cannot relabel records labeled by IRC or IFC. We
stress that the user has to accommodate suggestions offered by IRC and IFC.
On the other hand, the user is free to disregard suggestions by SLC and GFC.
Depending on the use cases, certain checks might be turned off, e.g., IFC and
GFC in health contexts. As some functions cycle the previously-seen records,
Frank’s algorithmic complexity is O(n) with n = |X ′|. In the following, we
provide a detailed explanation of Frank’s four checks.

Ideal Rule Check. Each rule r ∈ R includes a set of conditions and a label
ȳ. The ideal rule function checks if xi follows the conditions of one of the rules
in R (line 6), and if it is, it provides the label ȳi (line 7), which is selected
as the final decision yi, regardless of the user’s label ŷi. In case of divergence
between the user’s decision and the supervisor’s rule, the user is notified that
their decision is not compliant. Since IRC leaves no freedom of choice, the rules
R should only cover very limited, specific, and ideal cases, describing records
which should absolutely receive a certain label. The supervisor should also make
sure the rules R are mutually exclusive. Besides, to avoid conflicts with fairness-
related functions, the rules’ conditions should not rely on sensitive attributes.

Individual Fairness Check. IFC is meant to reduce the pairs of records vio-
lating individual fairness condition, i.e., similar individuals should be treated
similarly, by assessing if records similar to xi received a different label than ŷi.
Frank checks through the individual fairness function (line 9) if there is at
least one past record x′

p ∈ X ′ identical or “similar” to the current record xi.
Given a binary sensitive attribute sa ∈ A, defines two records xi and x′

p similar
if vj = v′

j∀aj ∈ A − {sa}, i.e., xi and x′
p are similar if they are identical, save

for the value of sa. More than one similar or identical record x′
p ∈ X can be

found, and, by construction, they have all the same past label y′
p ∈ Y ′ (line 10).

If there is a disagreement between the current decision and past decisions, i.e.,
y′
p �= ŷi (line 11), then in line 12 solve conflict prompts the user either to change

their decision to make it compliant with past records, i.e., to select y′
p as yi, or
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to keep the decision but relabel past records with ŷi, i.e., modifying the labels
in Y ′4. If the latter is chosen, f is also retrained, accounting for the modified
labels. Otherwise, if y′

p = ŷi, xi is assigned ŷi, i.e., the user’s decision is accepted
(line 13) as it is consistent with past records.

Skeptical Learning Check. If there is a disagreement between the decision
of the user and f , i.e., ŷi �= ỹi, the skept function (line 14) computes Frank’s
skepticality following Eq. 1. If it is higher than s, is skeptical. Empirical accu-
racy values are initialized as in Sect. 2. We emphasize that skept does not take
as input Y ′, i.e., the set of decisions after possible re-labeling, but

...
Y , i.e., the

set of decisions made by the user after Frank’s checks for each record5. If skep-
tical, proposes ỹi for yi, and asks the user if they want an explanation ei (line
15). The user is then asked to accept ỹi (line 17). The user has the full veto
power against Frank, and if they reject ỹi, the user label is collected as the
final decision yi (line 18). If the user accepts to see an explanation, runs the
get and show expl function and provides it to the user (line 16). Frank can
provide Logic-based Explanations, where a global representation of the EFDT
is shown alongside the local decision rule followed for the record xi and ỹi
(such as IF Years of Experience > 5 AND Attitude = True THEN Hire), or
Instance-based Explanations, i.e., records similar to xi which can be either real
or synthetic. These records are classified by f either with ỹi, i.e., an example of
Frank’s decision, or ŷi, i.e., a counter-example. Frank’s explanations are the
result of a co-evolutionary relationship with the user, leading to more detailed
justifications over time. Thus, the user should progressively trustmore.

Group Fairness Check. GFC checks if one of the value of a binary sensitive
attribute sa ∈ A are discriminating against the other group w.r.t. Y ′. GFC is
independent from the other checks, and it is always triggered every k records (see
lines 22–23). Frank computes disc and the DN, DP, PN, and PP groups of the
set of records X ′ w.r.t. the labels Y ′, following [14]. Then, it orders the records
from DN and PP following the prediction probability of f , and calculates how
many of them should be removed. Finally, the records with higher probability are
shown to the user, who can choose to change their label. The new labels replace
the older ones in Y ′, and f is retrained from scratch. Thus, GFC is an interactive
implementation of PS, where the user is made aware of their discriminating
behavior and is asked to relabel past records to mitigate the discrimination.

4 Experiments

We evaluated Frank6 on three real-world datasets and, in line with [4,10], we
employed simulated users to assess its impact in a variety of conditions.

Users. We employed five kinds of simulated users: the Real Expert, who
always makes decisions following the ground truth (which is unknown in a real
4 Note that

...
Y is not modified, nor taken into account by IFC.

5 Y ′ and
...
Y coincide until the user relabel older records if prompted by IFC or GFC.

6 The Python code is available here: https://github.com/FedericoMz/Frank.

https://github.com/FedericoMz/Frank
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scenario), the Absent-Minded, an easily-distracted expert who follows the ground
truth 75% of times, the Coin-Tosser, who makes decisions by flipping a coin, and
the Bayesian and Similarity experts, simulated by Naive Bayes and KNN [18].
For IFC, we suppose that all the users have conservative behavior w.r.t. their
past decisions, with 80.00% of chance of changing the label assigned to the
current record xi, instead of re-labeling past records. For SLC, we set a thresh-
old s of 0.05, increasing the timesis skeptical. We assumed that the users can
always accept or decline Frank’s suggestions, or randomly choose. For Bayesian
and Similarity experts, we also envisioned users who request explanations, i.e.,
five synthetic examples and counterexamples, monitoring their reaction7. If they
agree with more than half, they accept Frank’s suggestions. For GFC, we sup-
pose that the user selects to re-label the top 25% DN and PP records.

Datasets. The Adult, COMPAS and HR datasets8 simulate classification tasks for
granting credits, predicting recidivism, or giving a promotion, i.e., possible real
use-cases for Frank. In HR, only 8% of records belong to the positive class,
compared to the 25% and the 50.00% in Adult and COMPAS, which are, however,
highly discriminating [17]. In contrast, HR is fair w.r.t. Sex. After removing dupli-
cated or incomplete records, we randomly selected 2,000 records to incrementally
train Frank, i.e., X. We set labeling all the records in X as our stopping con-
dition stp. The Naive Bayes and KNN models were trained on an additional 500
records. Half of them were also used to pre-train Frank’s ML model f . Finally,
a dataset XT includes 500 records reserved to test f . For IRC, we set the fol-
lowing rules: for Adult, IF capital gain > 9000 THEN ȳ = +; for COMPAS, IF
priors count > 0 THEN ȳ = +; for HR, IF awards won = True THEN ȳ = +.

Evaluation Measures. We measured the Co-evolutionary Accuracy (CA) by
comparing Y ′ with the ground truth Y , and the Model Accuracy (MA) by com-
paring the prediction of f on XT with its ground truth YT . Likewise, we mea-
sured the Co-evolutionary Discrimination (CD) and the Model Discrimination
(MD). The disc score was computed towards Female for all datasets9. Finally,
we counted the number of Unfair Couples (UC ), i.e., similar records violating
individual fairness by receiving a different label. Ideal values are 1 for CA and
MA, 0 for the others. Each experiment was repeated 10 times. The tables report
the average results, standard deviations are very low and not reported.

Results. As an ablation study of Frank’s structure, in Table 1, we report the
results when None of Frank’s functions are enabled, and when only IRC, IFC,
or GFC are enabled (oIRC, oIFC, oGFC ). The impact of IRC is minimal on
Adult and HR, whereas it negatively affects all the experts except for the Coin-
Tosser in COMPAS. This is probably due to the selected rules, either too narrow
in scope or inaccurate. These results highlight the importance of selecting good
rules for Frank. On the other hand, comparing the oIFC and oGFC columns to

7 As synthetic records lack a ground truth, this option cannot be implemented with
the other users.

8 kaggle.com/datasets/.
9 Note that a negative disc implies that Male is discriminated.
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Table 1. Ablation study of Frank’s checks.

None oIRC oIFC oGFC
CA MA CD MD UC CA MA CD MD UC CA MA CD MD UC CA MA CD MD UC

A
d
u
l
t

Real 1.0 .83 .21 .18 7.0 .96 .82 .23 .15 7.0 1.0 .84 .22 .17 0.0 .84 .75 –.02 .01 6.0
Abs. .75 .77 .10 .09 5.3 .74 .76 .13 .09 5.3 .75 .77 .11 .12 0.0 .78 .76 .01 .04 4.2
Coin .50 .56 .00 .02 5.6 .52 .51 .03 –.01 5.6 .50 .52 .00 .00 0.0 .55 .55 .03 .04 5.3
Bayes .80 .77 .12 .07 0.0 .79 .76 .11 .09 0.0 .80 .77 .12 .07 0.0 .80 .77 .09 .09 0.0
Sim. .79 .76 .20 .24 1.0 .79 .76 .20 .24 1.0 .79 .76 .20 .24 0.0 .80 .77 .03 .17 0.0

C
O
M
P
A
S

Real 1.0 .69 –.14 –.21 42. .65 .61 –.15 –.21 18. .98 .68 –.14 –.24 0.0 .75 .64 –.06 –.15 17
Abs. .75 .63 –.07 –.19 50. .60 .61 –.12 –.21 24. .74 .64 –.08 –.19 0.0 .64 .62 –.03 –.17 24
Coin .50 .57 .00 –.17 56. .54 .55 –.09 –.08 27. .50 .52 –0.0 –.09 0.0 .49 .48 .01 –.01 32
Bayes .63 .63 –.20 –.19 0.0 .59 .62 –.18 –.25 0.0 .63 .63 –.20 –.19 0.0 .61 .63 –.15 –.18 0.0
Sim. .63 .66 –.31 –.18 25. .58 .62 –.21 –.25 15. .62 .66 –.28 –.17 0.0 .63 .66 –.01 –.21 17

H
R

Real 1.0 .93 –.01 .00 39. .99 .89 –.02 0.02 39. .98 .93 –.01 .00 .99 .94 .93 .00 .00 31
Abs. .75 .93 –.01 .00 24. .74 .92 –.01 –0.01 24. .74 .93 .00 .00 0.0 .85 .93 .00 .00 20
Coin .50 .93 –.01 .00 21. .50 .83 –.02 –.06 21. .50 .93 .01 .00 0.0 .62 .65 .01 .06 19
Bayes .89 .92 .00 –.02 0.0 .89 .92 .00 –.02 0.0 .89 .92 .00 –.02 0.0 .90 .93 .00 .00 0.0
Sim. .89 .93 .00 .00 0.0 .89 .91 .00 –.02 0.0 .89 .93 .00 .00 0.0 .89 .93 .00 .00 0.0

None, we can see a significant improvement in terms of fairness. IFC always suc-
cessfully minimizes UC with no side effects, whereas GFC consistently reduces
both CD and MD. For Adult and COMPAS and with the Real Expert, this is at
the expense of CA and MA. However, we should stress that the “accuracy” of
very biased datasets does not necessarily mirror “right” decisions. In fact, on the
already balanced HR, the impact on CA and MA with the Real Expert is minimal.
Additionally, with Adult and HR, GFC improves the accuracy of Absent-Minded
and Coin-Tosser experts without negatively impacting the model-based ones.

Table 2 compares traditional SL [19] withwith everything enabled, except for
IRC in COMPAS. As mentioned for IRC, consistently minimizes UC. In Adult,
provides each expert better CA and MA if they always accept the suggestions,
whereas CD and sometimes MD is slightly better with SL. By declining the
suggestions or randomizing the choices with SL, the Real Expert gets better
CA and MA, but worse CD and MD. With other experts, is better than, or
very close to, SL for CA and MA, while consistently improving CD and MD. In
COMPAS, always has a better CD, and often a better MD. When the Real Expert
and the Absent-Minded randomize or decline, this is at the expense of CA and,
to a lesser extent, MA, with a strong fairness-performance trade-off. In other
cases, performs a bit better or on par with SL. As for HR, the two methods
are very close for the Real, Bayesian, and Similarity experts, with SL slightly
better. With the Absent-Minded and the Coin-Tosser, declining or randomizing
decision greatly enhances the CA. In fact, the randomizing Coin-Tosser reaches
a CA comparable to the Absent-Minded ’s. Also, with the same example we can
notice a lower MA than SL’s. This might be due to the fact that IRC, IFC, and
GFC are not triggered when f makes decisions on XT .

Figure 1 shows CD and CA over time for different experts, randomly accept-
ing the suggestions fromand SL. Plots are in log scale along the x-axis. At first,
for each userand SL follow a similar pattern, both in terms of CA and CD. Their
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Table 2. Frank vs traditional SL. Best scorer in bold, parity in italics.

Real Expert Absent-Minded Coin-Tosser Bayesian Similarity
SL Frank SL Frank SL Frank SL Frank SL Frank

A
d
u
l
t

a
cc
ep
t

CA 0.74 0.78 0.73 0.78 0.73 0.78 0.73 0.78 0.74 0.77
MA 0.66 0.75 0.66 0.75 0.65 0.75 0.64 0.75 0.74 0.75
CD 0.02 0.05 0.03 0.05 0.04 0.05 0.04 0.05 0.00 0.01
MD –0.10 0.05 –0.06 0.05 –0.01 0.05 0.00 0.05 –0.02 0.01
UC 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00

d
ec
li
n
e

CA 1.00 0.83 0.75 0.77 0.50 0.57 0.80 0.79 0.79 0.80
MA 0.83 0.75 0.77 0.75 0.56 0.58 0.77 0.76 0.76 0.77
CD 0.21 0.03 0.11 0.01 –0.01 –0.01 0.12 0.11 0.20 0.03
MD 0.18 0.05 0.12 0.05 –0.04 0.05 0.07 0.09 0.24 0.17
UC 7.00 0.00 6.10 0.00 5.60 0.00 0.00 0.00 1.00 0.00

ra
n
d
o
m

CA 0.89 0.80 0.74 0.77 0.55 0.57 0.79 0.79 0.77 0.77
MA 0.76 0.75 0.71 0.75 0.58 0.58 0.76 0.76 0.73 0.75
CD 0.14 0.03 0.09 0.01 0.04 0.01 0.10 0.08 0.14 0.00
MD 0.09 0.05 0.04 0.05 0.09 –0.01 0.07 0.08 0.14 0.02
UC 4.60 0.00 3.10 0.00 4.20 0.00 0.10 0.00 0.60 0.00

C
O
M
P
A
S

a
cc
ep
t

CA 0.52 0.52 0.51 0.53 0.52 0.54 0.52 0.52 0.55 0.58
MA 0.52 0.51 0.49 0.54 0.49 0.55 0.52 0.51 0.56 0.62
CD –0.02 0.00 –0.01 0.00 –0.01 0.00 –0.02 0.00 –0.09 –0.05
MD –0.02 –0.04 0.01 –0.07 0.01 –0.08 –0.02 –0.04 –0.03 –0.11
UC 8.00 0.00 17.60 0.00 17.60 0.00 8.00 0.00 1.00 0.00

d
ec
li
n
e

CA 1.00 0.77 0.75 0.64 0.50 0.50 0.63 0.61 0.63 0.62
MA 0.69 0.66 0.65 0.62 0.53 0.52 0.63 0.63 0.66 0.65
CD –0.14 0.00 –0.06 –0.01 0.01 0.00 –0.20 –0.15 –0.31 –0.04
MD –0.21 –0.19 –0.21 –0.13 –0.07 –0.10 –0.19 –0.18 –0.18 –0.18
UC 42.00 0.00 50.00 0.00 51.10 0.00 0.00 0.00 25.00 0.00

ra
n
d
o
m

CA 0.80 0.66 0.65 0.58 0.50 0.54 0.62 0.60 0.62 0.62
MA 0.64 0.61 0.57 0.56 0.48 0.57 0.63 0.60 0.65 0.65
CD –0.15 –0.01 –0.10 0.00 –0.02 –0.01 –0.18 –0.08 –0.23 –0.05
MD –0.16 –0.12 –0.17 –0.11 0.00 –0.08 –0.18 –0.15 –0.17 –0.16
UC 34.00 0.00 45.20 0.00 43.30 0.00 3.20 0.00 23.70 0.00

H
R

a
cc
ep
t

CA 0.90 0.89 0.90 0.86 0.90 0.88 0.90 0.89 0.90 0.89
MA 0.93 0.92 0.93 0.89 0.93 0.91 0.93 0.92 0.93 0.92
CD 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
MD 0.00 –0.02 0.00 –0.02 0.00 –0.02 0.00 –0.02 0.00 –0.02
UC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

d
ec
li
n
e

CA 1.00 0.91 0.75 0.83 0.50 0.66 0.89 0.89 0.89 0.89
MA 0.93 0.92 0.93 0.92 0.90 0.71 0.92 0.92 0.93 0.92
CD –0.01 –0.01 –0.01 0.00 –0.01 –0.01 0.00 0.00 0.00 0.00
MD 0.00 –0.02 –0.01 0.00 –0.01 0.05 –0.02 –0.02 0.00 –0.02
UC 39.00 0.00 26.9 0.00 22.6 0.00 0.00 0.00 0.00 0.00

ra
n
d
o
m

CA 0.95 0.91 0.82 0.86 0.70 0.82 0.89 0.89 0.89 0.89
MA 0.93 0.92 0.93 0.90 0.93 0.86 0.93 0.92 0.93 0.92
CD –0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
MD 0.00 –0.02 0.00 –0.02 0.00 0.03 0.00 –0.02 0.00 –0.02
UC 18.10 0.00 17.40 0.00 16.20 0.00 0.00 0.00 0.00 0.00

lines then diverge due to fairness interventions. In Adult, this results in a drop
of CA for the Real Expert, and in COMPAS also for the Absent-Minded. In HR, the
Real Expert is far less affected, as the dataset is less biased. On the other hand,
the Absent-Minded and Coin-Tosser receive a noticeable boost in terms of CA.
In Adult and COMPAS, the Real and the Similarity experts make biased decisions
while paired with SL, whereas their CD withis near 0. Frank’s CD lines tend
to converge to 0 for all the datasets.

Table 3 compares the impact of having users accepting Frank’s suggestions
randomly (RND) against users deciding on top of Frank’s explanations (XAI).
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Fig. 1. CA and CD evolution over time with different experts.

Table 3. Users accepting randomly (RND) or w.r.t. explanations (XAI).

Adult COMPAS HR

Bayesian Similarity Bayesian Similarity Bayesian Similarity

RND XAI RND XAI RND XAI RND XAI RND XAI RND XAI

Agr % 96.38 88.72 77.14 77.37 89.64 74.53 68.83 60.42 100.00 100.00 99.12 99.16

Ske % 3.49 11.20 22.47 22.47 10.32 25.41 31.04 39.45 0.00 0.00 0.79 0.73

Dis % 0.11 0.05 0.37 0.15 0.03 0.05 0.12 0.13 0.00 0.00 0.08 0.10

Acc % 51.99 94.03 49.61 37.58 50.49 93.94 50.37 74.02 N/A N/A 54.30 0.00

Dec % 48.01 5.97 50.39 62.42 49.51 6.06 49.63 25.98 N/A N/A 45.70 100.00

CA 0.79 0.77 0.77 0.76 0.60 0.53 0.62 0.59 0.89 0.89 0.89 0.89

CD 0.08 0.03 0.0 0.01 –0.08 –0.01 –0.05 –0.02 0.00 0.00 0.00 0.00

The first three rows report the percentage of Agreements, Skepticism, and Dis-
agreement between the user and Frank. We notice that they tend to agree, and
the disagreement almost always leads to skepticism. The fourth and fifth rows
show the percentage of the Accepted and Declined Frank’s suggestions. When
XAI is used, we observe a lower agreement rate (Agr) in Adult and COMPAS, but
ultimately, looking at the acceptance rate (Acc), these users rely onmore than
their randomizing counterparts, also resulting in a better CD at the expense of
CA. This confirms thatis able to provide satisfying explanations to the Bayesian
and Similarity users. We underline that the Similarity expert on Adult is the
exception, as they tend to decline. Finally, in HR, SLC was never triggered by
the Bayesian, and only 14 times by the Similarity expert (who then declined the
14 suggestions, hence the anomalous percentage).

5 Conclusion

We have presented Frank, a system based on Skeptical Learning that evolves
with the user. Compared to traditional SL,checks the fairness of the decisions,
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if they are compliant with external rules, and provides explanations for the sug-
gestions. Through these additional functions,successfully improves the fairness
of the datasets and of the model, often outperforming SL in terms of accuracy,
especially with less-skilled users. Moreover, we noticed that our simulated users
accept Frank’s explanations most of the time. However, at the moment, is lim-
ited to tabular data and better suitable to those of low dimensionality. Future
works might extendto other data types and decision models, explore alternative
stopping conditions, and focus on the Frank-user relationships. For example,
could build trust or distrust towards the user, and react accordingly. Finally,
after being trained in the co-evolutionary process, Frank’s model f could be
used within a Learning-to-Defer system, withmaking decisions and asking the
user when uncertain.
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