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Preface

The field of eXplainable AI (XAI) has seen significant growth recently. As part of
the larger field of Artificial Intelligence, it has evolved into a highly multi-disciplinary
and inter-disciplinary active field of research. Artificial Intelligence and its methods
have been used in many disciplines besides computer science, including medicine and
neuroscience, chemistry, biology, education, psychology and philosophy. Thanks to its
evolving subfield, machine learning, it has been applied inmany real-world applications.
This is due to its ability to learn and extract patterns automatically from sparse, com-
plex, non-linear data. These include prediction and forecasting, classification and rec-
ommendation, to mention a few. However, in some critical applications, such as finance
and health care, understanding machine-learned models and their underlying inferen-
tial mechanisms is paramount for creating trustworthy and responsible applications. In
addition, the requirements imposed by the GDPR, the new AI act, and those regulations
that will follow worldwide are leading scholars to develop methods for explaining AI
systems and their outputs. This is evident in the hundreds ofmanuscripts submitted to the
2nd World Conference of Artificial Intelligence, their diverse methodology, techniques
and approaches, and their application in various real-world contexts. Similarly to the first
edition, the second edition has attracted considerable interest from scholars in academia
and industry. The hundreds of authors, attendees and programme committee members
from more than 40 countries make the conference a truly world event. With an accep-
tance rate of roughly ~40%, with 95 manuscripts being accepted from 204 submissions,
it is our great privilege to present the proceedings of the second World Conference on
eXplainable Artificial Intelligence (xAI 2024), held in Valletta, Malta, from the 17th to
the 19th of July at the historic Mediterranean Conference Centre, a fascinating venue.

Split over four volumes, this book aggregates a collection of the best contributions
received and presented at xAI 2024, describing recent approaches, methods and tech-
niques for explainability. The accepted articles were selected through a rigorous, single-
blind peer-review process. Each article received at least three reviews, with an average of
four reviews per paper, frommore than 250 scholars in academia and industry, with 99%
of them holding a PhD in an area relevant to the topics of the conference. The programme
committee chairs of the conference carefully selected the top contributions by ranking
articles across several objective criteria and evaluating and triangulating the qualitative
feedback left by the international reviewers. The peer-review process was exhaustive
and intensive, ensuring that xAI-2024 adhered to the highest quality standards. All the
accepted research contributions are included in these proceedings and were invited to
give oral presentations.

Several special tracks and thematic sessions were organised, each proposed and
chaired by various scholars, to aggregate highly innovative areas within the larger field
of explainableArtificial Intelligence. A parallel trackwas organised forwork in progress,
specifically preliminary novel research studies relevant to xAI, which were presented as
posters during the event. A demo track was held where scholars presented their software
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prototypes on explainability or real-world applications of explainable AI-based systems.
A doctoral consortium was organised, with lecturers to PhD scholars who submitted
their doctoral proposals on future research related to eXplainable Artificial Intelligence.
These scholars pitched their preliminary doctoral work andwerematchedwith renowned
scientists who provided guidance and constructive feedback. A separate programme
committee was set up for the late-breaking work and demo and doctoral consortium
tracks. Finally, a panel discussionwas organised with renowned scholars in xAI, offering
a multidisciplinary view while inspiring the attendees with tangible recommendations
to tackle challenges toward designing responsible, trustworthy AI-based technologies
through explainable AI.

A thank you to all the volunteers who helped in the organising committee for the
2nd World Conference on eXplainable Artificial Intelligence (xAI 2024). In particular,
we would like to thank the local chair, Charlie Abela; the doctoral committee chair,
Grégoire Montavon; the inclusion & accessibility chairs, Mario Brcic and Verena Klös;
and the late-breaking work chair, Weiru Liu. Also, special thanks to the keynote speaker,
Fosca Giannotti. A word of appreciation goes to the organisers of the special tracks and
those who chaired them during the conference. Special thanks go to the researchers and
practitioners who submitted their work, the various programme committee members
who provided precious feedback during the peer-review process, and all who attended
the event and turned it into a fantastic networking opportunity to share findings and learn
from each other as a community.

The Mediterranean Conference Centre, a 16th-century marvel in historic Valletta,
was initially built as a hospital by the Order of St. John. Known as the Sacra Inferme-
ria, it was meant to receive Maltese and foreign patients and pilgrims travelling to the
Holy Land. Analogously, explainable artificial intelligence (XAI) is intended to be a
transit between current opaque AI-based technologies and the development of robust,
transparent, fair and trustworthy AI for the benefit of humankind.

May 2024 Luca Longo
Sebastian Lapuschkin

Christin Seifert
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Abstract. The interpretation of existing machine learning models has
become a critical task to facilitate the widespread adoption of AI across
different domains, leading to the emergent field of eXplainable AI (XAI).
However, dedicated approaches for time series data have received limited
attention compared to XAI methods for images or tabular data. More-
over, current approaches often overlook the unique challenges present
in time series classification problems. In this paper, we introduce
Subsequence-based Sparse Counterfactual Explanations (Sub-SpaCE), a
novel method tailored for time series classification problems. Sub-SpaCE
employs genetic algorithms, with customized mutation and initialization
processes, promoting changes in a small number of subsequences to gen-
erate highly sparse and plausible counterfactual explanations. Our empir-
ical evaluations on various datasets demonstrate Sub-SpaCE’s excellent
performance, achieving a good balance between sparsity and plausibility
in counterfactual explanations for time series data.

Keywords: eXplainable Artificial Intelligence (XAI) · Counterfactual
Explanations · Genetic Algorithm Optimization · Time Series
Classification

1 Introduction

In recent years, the field of Machine Learning, and especially Deep Learning, has
witnessed remarkable advancements, significantly impacting real-world applica-
tions [21]. The increased capacity and complexity of these models, however,
introduce a notable challenge: their interpretability. As a result, the field of
eXplainable Artificial Intelligence (XAI) has emerged to enhance human under-
standing of these models [17]. The utilization of XAI methods is always desirable,
and can even become imperative in critical domains such as healthcare, financial
and military applications.

Despite the increasing attention to XAI, there is a noted gap in the devel-
opment of methods tailored for time series data compared to tabular or image
data [19,20]. Time series data, commonly used in specialized domains, requires
expert knowledge, hindering the development of practical explanation methods
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
L. Longo et al. (Eds.): xAI 2024, CCIS 2155, pp. 3–17, 2024.
https://doi.org/10.1007/978-3-031-63800-8_1
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[22]. Regardless of their particular nature, most of the methods designed to work
with time series are adaptations of the popular methods used in computer vision
[19]. That approximation has already been noted as not appropriate for the
time-ordered structure characteristic of time series inputs [14].

This trend extends to counterfactual explanations, a particular type XAI
approach that tries to find the minimum changes that should be applied to
an original input in order to modify the classification outcome of a black-box
model [26]. Counterfactuals stand out by their alignment with human cognitive
processes, offering alternative scenarios to explain model outputs and aiding in
the detection of cause-effect relations [4]. Despite the interest and success of
counterfactuals, their adaptation to time series problems remains an active area
of research, with only a handful of recently proposed methods. These approaches
often focus on modifying inputs with contiguous sequences of changes, driven
by the observation that most time series classification problems can be solved
through the identification of class-specific patterns [9].

However, relying on a single sequence of changes, as most methods do, or
not limiting the number of independent subsequences of changes, can lead to
a decrease in the plausibility and/or understandability of the counterfactual.
Our novel and key observation is that the reduction of both, the number of
points changed and the number of subsequences used, must be performed jointly,
something that none of the current methods does. On the other hand, current
approaches leverage generative models [15,18] or prototype losses [10] to guide
the search away from outlier examples. However, this often drives counterfactu-
als to the center of the data manifold, neglecting the fact that the original input
might be far away from that center (or even that it could be out-of-sample), thus
increasing the total amount of changes needed to reach a plausible counterfac-
tual.

In response to these challenges, we introduce Subsequence-based Sparse
Counterfactual Explanations (Sub-SpaCE), a new counterfactual explanation
method tailored for time series classification problems that focuses on providing
highly sparse counterfactuals in the form of contiguous subsequences of changes
to the original input, while also mitigating the negative impact of plausibility on
the number of changes. Our contributions include designing a new loss function
emphasizing minimum changes and contiguity, developing a plausibility term
less conflicting with sparsity, and implementing a genetic algorithm with novel
initialization and mutation processes to achieve better convergence. Through
empirical evaluation of several datasets from the UCR repository (see Sect. 4),
we demonstrate Sub-SpaCE’s ability to achieve an excellent balance between
sparsity, contiguity, and plausibility in counterfactual explanations.

2 Related Work

The most common and basic definition of counterfactual explanation is tailored
to classification problems with binary labels. Given an input instance, x ∈ X, and
predictive black-box model, b : X → [0, 1], that produces the output y = b(x),
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a counterfactual explanation is the smallest variation of the original instance
x′ that is able to change the predicted outcome y′ = b(x′) in such a way that
y′ �= y [12]. Initially, the proposed algorithms treated counterfactual generation
as optimization problems, primarily emphasizing the proximity between x and x′.
However, researchers soon started to focus on designing methods that generate
explanations that fulfill additional properties, such as plausibility, sparsity, or
diversity (see [12,25] for a detailed review).

The vast majority of these methods are designed for their application in
tabular data sets, characterized by lower dimensionality. While extending these
methods to high-dimensional problems is feasible, and has been the typical app-
roach for time series classification problems, the resulting counterfactuals are
usually challenging to interpret [7] due to numerous individual time steps being
altered without forming coherent sequences. To avoid this issue, the contiguity
of changes is considered an additional counterfactual desideratum in time series
problems, as it can enhance the understandability of explanations [7,10,24].

An early work offering contiguous subsequences of changes as an explana-
tion is Native Guide [7], which finds the nearest unlike neighbor (NUN) of the
input sample x -the closest existing instance of the desired class- and substitutes
its shortest and most relevant subsequence into the original sample to create
a counterfactual. Boubrahimi et al. [10] improve on Native Guide by optimiz-
ing the values of the most relevant subsequence of the input sample x, instead
of substituting the subsequence of the NUN. This method also incorporates an
additional term in the objective function to guide the search towards plausible
solutions. Additionally, Ates et al. [1] extend Native Guide to multivariate time
series. They present an optimization problem to decide which -entire- variables
from the original sample should be substituted by values from the NUN. How-
ever, none of these works consider the use of multiple subsequences of changes,
which might be too limiting for complex datasets.

Recent research has focused specifically on modifying several subsequences.
Some works leverage the concept of the shapelets [2,3] to this end. They find
the most relevant shapelets of a class, spatially locate them in the input to
explain, and substitute them with the values of the NUN to alter the classifi-
cation outcome. Another notable approach is LASTS [23], which works in the
latent space of a Variational Autoencoder (VAE) to generate a set of exemplars
and counterfactuals in the neighborhood of the instance to explain. Then, they
derive classification rules based on the apparition of specific shapelets. Although
these methods are capable of generating explanations based on multiple sub-
sequences, they neither optimize for sparsity nor limit the number of different
sub-sequences used. This can easily result in counterfactuals with unnecessary
changes with respect to the original input, thus hindering the assimilation of the
explanation. This limitation also extends to AB-CF [16], which, instead of using
shapelets, creates a set of fixed-length subsequences using a sliding window over
the instance to explain. Subsequently, padding is added, the subsequences are
passed to the black-box model to discover the most relevant ones to the current
class, and they are replaced by the values of the NUN. Finally, TSEvo [13] is the



6 M. Refoyo and D. Luengo

only method optimizing for sparsity and plausibility while using sub-sequences
of changes obtained from the training dataset. However, it does not minimize
the number of subsequences employed, and the mutation strategies that it uses
result in extremely high execution times, even for a single explanation.

In this paper, we present Subsequence-based Sparse Counterfactual Expla-
nations (Sub-SpaCE). Our approach generates counterfactuals by using multiple
sub-sequences of changes, jointly minimizing the amount of sub-sequences and
the global sparsity of the explanation. It also accounts for plausibility of the
generated counterfactuals by incorporating a custom term in the objective func-
tion. Sub-SpaCE employs a genetic algorithm with initialization and mutation
techniques specifically tailored to this problem.

3 Proposed Method

3.1 Problem Formulation

Let x = {x1:L} ∈ R
L be the time series to explain, where L is its length,

m = {m1:L} ∈ {0, 1}L be the binary mask that specifies the points that will be
changed to generate the counterfactual x′ by using a generic function f : RL →
R

L such that x′ = f(x|m). In this work, we adopt the concept of the Nearest
Unlike Neighbor (NUN) proposed by Delaney et al. [7] to define the form of f .
Letting xn = {xn

1:L} ∈ R
L be the Nearest Unlike Neighbor (NUN), found as

the Nearest Neighbor of a different class of the original sample in the Euclidean
space, we can define (∀i ∈ {1, ..., L}):

x′
i = f(xi|mi, x

n
i ) =

{
xn

i , if mi = 1;
xi, else.

The main objective is to find the lowest number of changes in the original signal
that modify the classification outcome of the black-box classifier, b : X → Y , to
the true label assigned to the NUN: b(x′) = b(xn) = yn. We also assume that
we can access each class classification probability, pb(x, y). As highlighted in the
previous section, other desirable properties are also pursued. In particular, we
focus on acquiring sparse, plausible and structurally meaningful counterfactuals
for time series data in the form of contiguous subsequences of changes. To achieve
this, the following optimization problem is solved:

min
m

− αLadv + βLspa + ηLsub + λLos

s.t. b(x′) = yn

mi ∈ {0, 1} ∀i ∈ {1, ..., L}
(1)

where α, β, η, and λ are parameters that control the weight given to each term
in the objective function, and where:

– Ladv = pb(x′, yn) guides the counterfactual search to the desired yn class by
maximizing its output probability, which is by definition bound to [0, 1]. This
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term is widely used in optimization-based counterfactual generation meth-
ods as a relaxation of the class restriction [12]. We also use it to guide the
convergence when the solution does not lie within the feasible region.

– Lspa = ||m||0
L , where ||m||0 indicates the �0 pseudo-norm of m (i.e., the number

of non-zero elements in m), leads the solution to sparse counterfactuals, where
the mask m is activated only in a few time steps. The term is scaled by the
length of the time series, so the range is [0, 1].

– Lsub =
(∑L

i=2 1i

L/2

)γ

, where 1i is an indicator function that takes the value
1 whenever a new sub-sequence begins (i.e., mi−1 = 0 and mi = 1). The
contiguity of the changes is also desired for a time series problem, as the
counterfactual would be easier to comprehend for a human. Therefore, this
term seeks to minimize the number of individual sub-sequences that appear
in the solution. Again, the loss range is scaled to [0, 1] by dividing by the
maximum number of possible sub-sequences, L/2. Additionally, the γ hyper-
parameter sets the way in which the loss evolves with the number of existing
sub-sequences. In the case of γ = 1, the value of the loss increases linearly
with respect to the normalized number of sub-sequences, while values γ < 1
or γ > 1 change the relation to be convex or concave, respectively.

– Los is used to ensure that the counterfactuals lie in the same data manifold as
the original examples. Multiple approaches have been proposed in the litera-
ture to achieve this. In this work, we follow the approach of [24], by leveraging
an additional autoencoder, fAE : RL → R

L, trained to reconstruct the same
training set used to train the black-box classifier. The �2 reconstruction error,
||x′ − fAE(x′)||2, can then be interpreted as an outlier score metric which,
when used as a loss function, will penalize out-of-distribution counterfactuals.
However, instead of using the reconstruction error directly, we calculate the
increment in the reconstruction error of x with respect to the reconstruction
error of the original input: Los = e(x,x′)

emax
, where the term e(x, x′) is the incre-

ment in the outlier score, e(x, x′) = min(0, ||x′ −fAE(x′)||2 −||x−fAE(x)||2),
and emax is the maximum value of the AE’s error on the training set, used to
scale the values of the loss term to [0, 1]. Using this approach, we normalize
the metric with respect to the examples, acknowledging that some of them
can actually be far away from the data manifold learned by the autoencoder
(i.e., they can be outliers).

All the loss terms are scaled to be within [0, 1], to ease their weight balancing
through the parameters α, β, η, and λ, whose sum must be equal to one.

3.2 Sub-SpaCE: Subsequence-Based Sparse Counterfactual
Explanations

We propose to use a genetic algorithm to solve the optimization problem out-
lined in (1), as their efficiency and adaptability make them a compelling choice
to tackle complex, high-dimensional problems in which the solution should be
produced in a reasonable amount of time.
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When working with genetic algorithms, the convention is to define a fitness
function, which is typically maximized. Also, the constraints are not natively
supported, so they must be relaxed and added to the fitness function. Conse-
quently, we have derived the following fitness function from (1):

F(m) = αLadv − βLsparsity − ηLsubsequences − λLos − ν · 1class(x,m, yn) (2)

where 1class(x,m, yn) is an indicator function that takes a value equal to 1
when the black-box classifier does not classify the counterfactual as the desired
class. Note that the original restriction for obtaining the desired class is now a
penalization term, where ν is a scalar set to a large integer value. Note also how
the signs are inverted because a fitness function is typically maximized.

In its simplest form, a genetic algorithm starts from a random population
of candidate solutions, which are iteratively mixed, simulating reproduction
(crossover), and mutated to achieve higher values of the fitness score [11]. In
this work, we used a simple implementation that also incorporates elitism to
preserve the best individuals of each iteration [8]. The rest of the population
undergoes the standard steps of a genetic algorithm, including parent selection,
crossover, and mutation. The iterative process continues until the specified num-
ber of generations (iterations) is achieved. For parent selection and crossover, we
employ simple methods: roulette wheel and single point crossover respectively
[11]. The rest of the steps include adaptations tailored to this problem, which
are detailed in the following.

Initialization. Let P ∈ R
N×L be the initial population, where each row can

be interpreted as a candidate solution to the mask m. In our binary setting for
m, a basic random initialization would assign 1’s to random positions in P . The
initialization step is a way of introducing prior knowledge about the solution, and
a way of reducing the number of iterations required to reach a local maximum
of the fitness function. A natural way to incorporate prior knowledge about
the correct solution is to leverage feature-attribution methods, which indicate
the relevance of different time steps to the black-box classifier [17], something
already exploited by Native Guide [7] and TimeX [10].

Let fa : RL → R
L be a generic function that represents the feature impor-

tance generation of an input x (obtained using GradCAM++ in our case, see
Sect. 4). The idea is to increase the probability of setting to 1 the values of m
where the arithmetic mean of the importance of the original input x and the
NUN xn is higher: A = fa(x)+fa(xn)

2Amax
∈ R

L, where Amax is the maximum value of
fa over the whole dataset. To initialize the population, we take that importance
as the initial value of each individual, and add Gaussian noise, ε ∼ N (0, 1), to
introduce diversity. Subsequently, we set to 1 the h% most activated values and
set to 0 the rest, resulting in the initial population P ∈ R

N×L.
The choice of h influences the initialization: a low value would lead to starting

the counterfactual search from an already sparse solution, which would result in
highly sparse explanations. However, starting from an already sparse solution can
also make it difficult to find a valid counterfactual in cases where the true regions
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of interest to generate the counterfactuals are distributed across multiple sections
of the input. To automatically adapt the initialization to the complexities of the
datasets and the feature importance of individual samples, we dynamically adapt
the value of h during the optimization: we begin with a low value (h = 20) and, if
a valid solution has not been found within 50 iterations, reinitialize the algorithm
with a value 20 points higher than the previous initialization.

Subsequence-Based Mutation. The most naive mutation approach consists
of randomly changing the values of the candidate mask with a low probability,
usually controlled by a hyperparameter. For this particular problem, a random
mutation is likely to add new independent sequences to m, which would result in
abrupt changes in the Lsub term that could slow convergence as demonstrated
in the ablation study shown in Appendix 4.3. Therefore, we propose a modifica-
tion to restrict the mutation to the points where the sequences of ones can be
extended or shortened. That limits the exploration of the mutation step toward
solutions with a similar amount of subsequences, increasing the stability and
convergence properties of the algorithm.

4 Numerical Experiments

4.1 Set Up

Datasets. We selected several publicly available data sets from the University of
California at Riverside (UCR) Archive [6], which is widely used in the evaluation
of XAI approaches for time series, to test the proposed method: CBF, Chinatown,
Coffee, ECG200 and Gunpoint. The selected univariate time series data sets are
characterized by different lengths, classes, and types of patterns, and are the
same ones used by Delaney et al. [7].

Baseline Methods. The proposed method will be compared with three open-
source approaches proposed in the literature: (i) W-CF, proposed in [26], is one
of the first methods of counterfactual explanations. It complies with the basic
definition of counterfactuals and only takes into account the proximity property
during the search. We use the implementation available in the Native Guide
repository; (ii) Native Guide, proposed by [7], is the first method that directly
searches for contiguity in the explanations. We use the original implementation,
released by the authors; (iii) AB-CF, proposed in [16], a recent work that gen-
erates the counterfactuals using multiple subsequences of changes. Again, we use
the author’s implementation with the original parameters.

Evaluation Metrics. Multiple metrics have been proposed in the literature to
assess the quality of the generated counterfactuals:

– Validity: measured as the percentage of counterfactuals that change the
original output class: 1

N

∑
N 1class, where 1class is equal to 1 when the output

class of the original instance and the counterfactual’s class differ.
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– Proximity: quantified with the �2 distance between the original sample x
and the counterfactual x′.

– Sparsity: evaluated as the number of changes of the counterfactual, normal-
ized by the total length of the time series. A lower score is preferred. This
aligns with one of the loss terms of equation (1): ||m||0

L .
– Increment in Outlier Score (IOS) to quantify plausibility as depicted

in equation (1): min(0, ||x′ − fAE(x′)||2 − ||x − fAE(x)||2)/emax. Ideally, the
increment should be close to 0.

– Number of Subsequences (NoS) of changes in the counterfactual:∑L
i=2 1i, where 1i equals 1 when a new subsequence of changes is present

in the counterfactual x′. The lower the number of subsequences, the easier it
is to understand the explanation.

Implementation Details. For each of the data sets, a black-box classifier, b,
and an Autoencoder, fAE , are trained using the TensorFlow framework1. The
black-box classifier is the same one used by Delaney et al. [7] in their experi-
ments: a fully convolutional neural network. Regarding the feature importance
computation (fa), the well-known feature attribution method GradCAM++ is
used [5]. The choice resides in the ease of implementation and the fast gen-
eration of explanations that characterizes this method. Nonetheless, any other
feature attribution method could be used as well. On the other hand, the val-
ues given to the hyperparameters of the genetic algorithm are shared between
instances and data sets and are set empirically. The population size is set to
100 individuals and the maximum number of iterations is also set to 100. The
probability of mutation is set to 5% and the weights of the loss function are
set to α = 0.2, β = 0.24, η = 0.36, and λ = 0.2. Also, since every term in the
fitness function is scaled to the range [0, 1], we have noticed that ν = 100 is large
enough for the wrong class penalization term to behave like the original restric-
tion. Finally, to quickly penalize the increment in the number of sub-sequences
in the solution, we set γ = 0.25.

4.2 Results

This section shows the comparison of the proposed method with the baselines
across the five data sets used in our experiments. Average metrics for counterfac-
tuals on the complete test sets are summarized in Table 1 (with the performance
of the best method highlighted in boldface and the one of the second best under-
lined). The table is partitioned into five sub-tables, with each one corresponding
to a specific metric.

The proposed method is capable of delivering valid counterfactuals that out-
perform the baselines in terms of sparsity, consistently ranking as the top per-
former across data sets and exhibiting substantial improvements with respect
to W-CF, NG and AB-CF. It also achieves an excellent performance in terms
1 The code of Sub-SpaCE, the experiments, and the results can be found on https://

github.com/MarioRefoyo/Sub-SpaCE.

https://github.com/MarioRefoyo/Sub-SpaCE
https://github.com/MarioRefoyo/Sub-SpaCE
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Table 1. Results of method evaluation on the complete test set.

Method CBF Chinatown Coffee ECG200 Gunpoint

Validity

W-CF 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

NG 0.96 ± 0.19 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

AB-CF 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.94 ± 0.24 1.00 ± 0.00

Sub-SpaCE 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Sparsity

W-CF 0.68 ± 0.46 0.97 ± 0.18 1.00 ± 0.00 0.61 ± 0.48 0.94 ± 0.23

NG 0.31 ± 0.13 0.33 ± 0.08 0.13 ± 0.06 0.17 ± 0.22 0.19 ± 0.15

AB-CF 0.52 ± 0.18 0.38 ± 0.07 0.56 ± 0.16 0.59 ± 0.31 0.43 ± 0.27

Sub-SpaCE 0.20 ± 0.09 0.12 ± 0.04 0.08 ± 0.03 0.07 ± 0.04 0.09 ± 0.06

Proximity (�2)

W-CF 6.10 ± 13.22 662.70 ± 211.41 1.10 ± 0.25 2.22 ± 1.71 1.00 ± 1.04

NG 5.60 ± 1.44 393.09 ± 124.49 1.26 ± 0.24 2.62 ± 1.48 2.34 ± 1.74

AB-CF 7.46 ± 1.97 430.97 ± 123.65 1.38 ± 0.36 3.77 ± 1.85 2.92 ± 1.86

Sub-SpaCE 5.88 ± 1.40 399.87 ± 120.52 1.00 ± 0.25 2.41 ± 1.30 1.64 ± 1.12

IOS

W-CF 0.24 ± 0.56 0.19 ± 0.14 0.06 ± 0.04 0.12 ± 0.14 0.09 ± 0.09

NG 0.10 ± 0.09 0.02 ± 0.04 0.04 ± 0.04 0.07 ± 0.11 0.14 ± 0.16

AB-CF 0.13 ± 0.11 0.02 ± 0.04 0.01 ± 0.02 0.09 ± 0.11 0.11 ± 0.11

Sub-SpaCE 0.07 ± 0.06 0.02 ± 0.03 0.02 ± 0.03 0.05 ± 0.06 0.05 ± 0.05

NoS

W-CF 1.14 ± 0.44 1.00 ± 0.00 1.00 ± 0.00 1.21 ± 0.48 1.08 ± 0.38

NG 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

AB-CF 2.46 ± 0.75 1.10 ± 0.31 1.54 ± 0.74 1.61 ± 0.78 1.98 ± 0.52

Sub-SpaCE 2.39 ± 0.93 1.21 ± 0.41 3.07 ± 0.86 1.31 ± 0.61 2.19 ± 0.81

of plausibility (as measured by the IOS), although the improvements are less
significant, especially for the Coffee (in which it is the second best) and China-
town data sets. Regarding proximity metric, W-CF or NG are usually the best
performers, while Sub-SpaCE takes the second position in general, and occupies
the first position in the Coffee dataset. This is primarily due to Sub-SpaCE not
directly optimizing the proximity during the counterfactual generation.

Finally, the number of sub-sequences modified is crucial to the understand-
ability of the generated explanations. Therefore, sparsity and the number of
subsequences must be comprehended jointly: an increase in the number of sub-
sequences should only be performed if this leads to a reduction in the total num-
ber of points being changed, while a large amount of subsequences should also
be discouraged. To support this intuition, we can compute a simple metric that
summarizes the interaction between sparsity and the number of subsequences:
the arithmetic mean between their max-scaled values. Figure 1 shows that com-
parison using a box plot. Our proposed method is consistently able to obtain
the smallest value, indicating a good balance between sparsity and the number
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of subsequences. Figure 2 shows examples where this behavior is evident when
comparing W-CF, NG, AB-CF, and Sub-SpaCE.

Fig. 1. Arithmetic mean between sparsity and scaled number of subsequences.

Fig. 2. Examples of counterfactual explanations. The red and blue lines represent the
original input and the generated counterfactual respectively. The background in red
indicates the timestamps in which the counterfactual value differs from the original
one. (Color figure online)
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4.3 Ablation Study

In this section, we show the results of an ablation study that demonstrates the
effectiveness of the proposed mutation and initialization processes. We study the
results of Sub-SpaCE under different configurations:

– Sub-SpaCE (Basic). The proposed method is in its simplest form, without
including the proposed mutation or the initialization processes. That is, both
the initialization and the mutation are completely random.

– Sub-SpaCE (Mut.). The proposed method, including the mutation process
and excluding the initialization based on feature attribution methods. That
is, the populations are initialized completely at random.

– Sub-SpaCE (Init.). The proposed method without the adaptation in the
mutation process, but including the initialization based on feature attribution
methods. The mutation is now completely at random.

– Sub-SpaCE. The full version of the proposed method, the one used for the
experiments in Sect. 4.2.

We employed the same metrics as those utilized in the experiments out-
lined in Sects. 4.1 and 4.2. The outcomes for each configuration are presented in
Table 2. The results highlight how the proposed mutation significantly improves
the performance with respect to the Basic configuration, even surpassing the
full version of Sub-SpaCE in most of the metrics. However, this improvement
comes at the expense of not achieving a perfect validity score in some data sets,
something critical for counterfactual explanations. On the other hand, the pro-
posed initialization always results in an improvement across metrics and data

Table 2. Ablation study results.

Sparsity Proximity (L2) Validity IOS NoS

Dataset Method

C
B

F

Basic 0.33 ± 0.09 6.23 ± 1.28 0.96 ± 0.21 0.05 ± 0.06 21.27 ± 2.79

Init 0.30 ± 0.10 6.21 ± 1.35 1.00 ± 0.00 0.06 ± 0.06 19.74 ± 3.44

Mut 0.15 ± 0.05 5.05 ± 1.07 0.61 ± 0.49 0.06 ± 0.05 2.54 ± 1.07

Sub-SpaCE 0.20 ± 0.09 5.83 ± 1.45 1.00 ± 0.00 0.05 ± 0.06 2.42 ± 0.96

C
h
in

a
to

w
n Basic 0.13 ± 0.05 411.48 ± 131.24 1.00 ± 0.00 0.02 ± 0.03 1.40 ± 0.51

Init 0.13 ± 0.04 401.1 ± 123.88 1.00 ± 0.00 0.02 ± 0.03 1.32 ± 0.48

Mut 0.12 ± 0.04 396.66 ± 102.47 0.99 ± 0.08 0.02 ± 0.03 1.21 ± 0.40

Sub-SpaCE 0.12 ± 0.04 399.57 ± 120.63 1.00 ± 0.00 0.02 ± 0.03 1.21 ± 0.41

C
o
ff
ee

Basic 0.30 ± 0.07 1.22 ± 0.23 1.00 ± 0.00 0.02 ± 0.03 51.64 ± 6.98

Init 0.25 ± 0.06 1.16 ± 0.22 1.00 ± 0.00 0.03 ± 0.03 47.07 ± 7.19

Mut 0.07 ± 0.02 0.99 ± 0.29 0.71 ± 0.46 0.02 ± 0.03 2.80 ± 0.95

Sub-SpaCE 0.08 ± 0.03 1.02 ± 0.25 1.00 ± 0.00 0.03 ± 0.04 2.86 ± 1.01

E
C

G
2
0
0 Basic 0.19 ± 0.06 2.66 ± 1.23 1.00 ± 0.00 0.10 ± 0.09 12.32 ± 2.36

Init 0.17 ± 0.05 2.71 ± 1.29 1.00 ± 0.00 0.08 ± 0.07 9.81 ± 2.19

Mut 0.06 ± 0.04 2.29 ± 1.18 0.99 ± 0.1 0.06 ± 0.07 1.38 ± 0.67

Sub-SpaCE 0.06 ± 0.04 2.34 ± 1.16 1.00 ± 0.00 0.07 ± 0.08 1.37 ± 0.65

G
u
n
p
o
in

t Basic 0.26 ± 0.10 1.94 ± 1.28 1.00 ± 0.00 0.13 ± 0.12 23.15 ± 4.24

Init 0.24 ± 0.10 2.00 ± 1.19 1.00 ± 0.00 0.13 ± 0.12 21.13 ± 4.93

Mut 0.07 ± 0.05 1.23 ± 0.83 0.82 ± 0.39 0.05 ± 0.05 2.11 ± 0.86

Sub-SpaCE 0.09 ± 0.05 1.57 ± 1.07 1.00 ± 0.00 0.05 ± 0.05 2.09 ± 0.79
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sets, although its impact is marginal with respect to the mutation adaptation.
Notably, the validity of counterfactuals is consistently maintained at the high-
est possible score. The combination of both configurations (Sub-SpaCE) strikes
the desired balance, achieving a perfect validity score while benefiting from the
improvement in other metrics facilitated by the mutation adaptation.

Another interesting way of comparing the settings is by assessing the rate of
convergence to the solutions. To accomplish this, we exclusively consider valid
counterfactuals, storing the highest fitness score for each sample in every iter-
ation, and normalizing the curve by the last fitness value corresponding to the
given solution. This normalization eases the comparison between different set-
tings and data sets. Note that the focus is not comparing the quality of the solu-
tion, as in Table 2, but rather inspecting the algorithm’s convergence towards
that solution. Figure 3 illustrates the average normalized fitness evolution across
data sets. The mutation adaptation is observed to significantly increase the
convergence velocity of the algorithm, while initialization does not provide any
improvement in this sense. Additionally, we show the initial fitness values across
data sets in Fig. 4. As expected, the initialization results in better starting fit-
ness scores. By jointly analyzing both figures, we can observe how Sub-SpaCE
maintains the rate of convergence of the mutation configuration, while also ben-
efiting from the better starting points achieved by the proposed initialization,
thus demonstrating the effectiveness of this combination that leads to the per-
formance depicted in Table 1.

Fig. 3. Average normalized fitness score evolution with the number of iterations.
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Fig. 4. Box plot of the highest fitness score at the first iteration for every configuration.

5 Conclusions and Future Work

Our work addresses a gap in XAI applied to time series problems, where the
form of the explanations plays a key role in their understandability. The pro-
posed method, Sub-SpaCE, employs a genetic algorithm, with custom mutation
and initialization, to maximize an innovative fitness function, tailored for the
generation of highly sparse counterfactuals, while also imposing the explanation
to be formed by a small number of contiguous subsequences of changes. The
performed experiments demonstrate that Sub-SpaCE attains an excellent com-
promise between sparsity and plausibility in counterfactual explanations, while
also respecting the sequential nature of time series data.

As part of future work, we intend to conduct more comprehensive experi-
ments using additional and diverse datasets, as well as explore more thoroughly
the impact of the initialization and mutation strategies developed. We also plan
to extend our approach to address multivariate problems. Another interesting
avenue would be the inclusion of generative models to generate the counter-
factual values in those positions specified by the mask, instead of relying on a
Nearest Unlike Neighbor.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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Abstract. We introduce a new framework for generating counterfactual recourse
in machine learning that embraces a “human-in-the-loop" approach by incorpo-
rating user preferences. Traditional counterfactual tools neglect individual user
preferences when adjusting features. To address this, we tackle recourse gen-
eration as a multi-objective optimization problem, integrating conventional con-
straints with user preferences. Our framework, termed HIP-CORE, is specifically
crafted to estimate these preferences during the counterfactual generation phase.
We also introduce the “Personal Validity" as a measure of the effectiveness of
recourse for individual users. Through extensive theoretical and empirical analy-
sis, we validate the benefits of our proposal. Overall, this work enhances counter-
factual reasoning and paves the way for more personalized algorithmic recourse.
Code is available at https://github.com/federicosiciliano/hip-core.git.

Keywords: Personalized Counterfactual · Algorithmic Recourse ·
Explainability

1 Introduction

Algorithmic decision-making systems have become ubiquitous, influencing myriad
aspects of our lives, from personalized content recommendations to high stakes deci-
sions in finance, healthcare, and justice. While these algorithms offer efficiency and
scalability, their opaqueness often leads to concerns regarding fairness, accountabil-
ity, and transparency. As a response to these concerns, eXplainable Artificial Intelli-
gence (XAI) aims to clarify the complex workings of machine learning models, making
their decisions transparent, understandable, and interpretable for end-users, including
human-in-the-loop processes [23].

Human-in-the-loop refers to a collaborative approach that integrates human judg-
ment, feedback, and decision-making into automated processes, acknowledging that
there are instances where human intervention and expertise are crucial for ensuring
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quality, fairness, and ethical considerations of AI systems. Incorporating human-in-
the-loop processes can enhance the accountability and the transparency of AI systems,
making them more reliable and aligned with human values and predilections.

As a result of the emergence of international regulation (i.e., GDPR), increasing
attention has been devoted to the right to recourse [19]: i.e., in the event that an indi-
vidual receives an unfavorable decision from a model, he/she is also entitled to receive
an actionable explanation that can make him/her proactively adapt his/her features to
get a positive outcome from the model in the future. Central to this XAI endeavor is
the idea of counterfactual explanations, a form of example-based explainability that
provides insights by presenting alternative scenarios in which a given decision would
change [20]. When applied for algorithmic recourse [8], rather than merely explaining
why a decision was made, counterfactuals empower users with actionable insights by
suggesting how they might alter inputs to achieve a desired outcome [9,13].

Considering a real case in which a user applies for a loan and a credit-scoring model
gives as output “denied", but the user is presented with a counterfactual recourse. The
counterfactual recourse must allow the user to change the output to “accepted" (i.e.
validity), while not being too different from the user’s initial status, e.g. suggesting to
change only few features, sparsity, and asking to change the features values minimally,
proximity. Since the solution may not be unique depending on the definition of the prob-
lem and method used for the solution, to avoid eclipsing some potential explanations
and relevant alternatives to the user (personalization) [22], multiple counterfactuals can
be presented to the user (diversity) [12].

In this context, an individual has always been considered as a rational agent, so
the objective assumptions of proximity, sparsity, and other constraints related to the
underlying model or generic assumptions (a.k.a. user-agnostic), do not consider the
irrationality and the subjectivity of human judgment of an algorithm output. Therefore,
in this paper we consider the problem of creating counterfactual recourse that are tai-
lored to the subjective and irrational tastes of the user: a personalized counterfactual
recourse that includes the user in the generation process to estimate and integrate per-
sonal preferences in the solution.

Example. In Fig. 1, we show a dummy example of the advantage of generating a per-
sonalized counterfactual recourse. The plane represents a 2D projection of the feature
space hyper-plane for two features: Working hours and Income. The user x is
classified in the plane as negative − by the simplified line classifier (dashed line). The
counterfactual CF data point x′ is the optimal solution of a user-agnostic counterfac-
tual recourse problem, where the x′ counterfactual recourse solution recommends that
the user increases the Income feature to get a positive + output. Given the feasibility
of interacting with the user, we consider the user preference a central factor, represented
on the plane as a heat map: the user prefers darker areas. A counterfactual recourse
method based on user sentiment would output x′′, that is the optimal solution consid-
ering both generating a valid counterfactual (i.e. positive output) and maximizing user
intent to change the feature (increasing Working hours instead of Income), thus
leading to a solution more easily achievable for the user.

The goal of this paper is to propose such a system, which we dub HIP-CORE
(Human-In-the-Loop Preference COunterfactual REcourse).
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Fig. 1. Dummy example of personalized counterfactual recourse: given the original instance x,
classified in the negative class −, a counterfactual recourse algorithm produces x′, that asks
the user to increase the income. The heat-map on the 2D plane represents the user preference
over the counterfactual feature space. Our HIP-CORE framework, which takes the user bias into
account, produces x′′, that is an optimal solution considering the trade-off between counterfactual
validity and user-preference.

Summary of Contribution. The contributions of this work are summarized as follows:

1. We formalize the problem of Personalized Counterfactual Recourse (Sect. 3), as a
multi-objective optimization problem aggregating optimization functions for both
user-agnostic metrics (i.e., validity, sparsity, proximity) and user-level metrics (i.e.,
preference).

2. We present our algorithmic framework, HIP-CORE to generate preference-driven
counterfactual while estimating the preferences of the user (Sect. 4).

3. Key to the development of HIP-CORE is a mathematical framework to represent and
estimate user preferences over the complex space of counterfactual feature change
(Sect. 4.3).

4. We introduce a new metric called Personal Validity, a natural extension of Validity
to incorporate users’ preferences in the evaluation.

5. We assess our framework empirically on widely used benchmarks, comparing with
a user-agnostic baseline, confirming the importance of including user preferences in
the counterfactual recourse generation process (Sect. 5).
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2 Related Work

Counterfactual Recourse. Defining and searching for the target counterfactual, it is
not trivial in the complex feature space of the instances and the black-box classifier
[1]. Traditional assumptions to search a good counterfactual instance include the clas-
sification into the opposite class (termed as Validity) and its similarity to the original
instance [20]. The latter constraint is frequently expressed in terms of sparsity, trying
to minimize the number of features changed, and proximity, which tries to minimize the
magnitude of feature change. Other definitions of counterfactual instance are related
to the underlying features model, such as a Structural Causal Model [5,9], where the
solution has to be coherent with respect to the causal constraints between features [25].
If the distribution of the feature space is known (not data-agnostic), more feasible coun-
terfactuals can be created with the a priori knowledge, such as through data manifold
closeness [18].

Actionable and Diverse Counterfactual Recourse. Actionability of counterfactual
recourse [16] refers to taking into account only those feature changes that an agent can
feasibly implement. The personalization of counterfactual recourse is closely related
to the local actionability for a user, that in other works is pursued with an ex-ante
[16] or post-hoc [12] filter on the generated counterfactuals. We integrate user pref-
erences directly into counterfactual recourse generation, addressing the issue of action-
ability through explicit human judgment. Another strategy is to create a set of different
counterfactuals, therefore, a set of acceptable solutions that maximize a diversity func-
tion [10,12] is proposed to the user that choose the most appropriate one. We include
the diversity in the main multi-objective problem to accelerate avoid eclipsing relevant
counterfactual solution from the user preference evaluation.

Personalized Counterfactual Recourse. Few recent attempts have tried to incorporate
user tastes in the generation process of counterfactual recourse. The cost of adoption
of the counterfactual change is the pivotal point to discriminate among user-centered
approach, where the preference is incorporated in the cost function, and user-agnostic
method, where the cost function does not take into account the user preferences. To
incorporate the preference, some approaches request users to specify it over a set
of solutions [12,24], or attempt to quantify the cost of potential changes in advance
[17,21]. Such methodologies do not incorporate the user within the counterfactual gen-
eration loop, consequently neglecting the exploration of the counterfactual preference
space. Our method, instead, encompasses the estimation of user preferences within the
counterfactual recourse generation process. Our framework is not comparable to meth-
ods that do not encompass user preference, e.g. [11,15,20]. In terms of personalized
counterfactual, our approach can only outperform methods that do not optimize for it.

Human-in-the-Loop Algorithmic Recourse. Research on the human-in-the-loop app-
roach, combining preference elicitation to create solutions that align with user prefer-
ences, is notably limited. In contrast from previous work, we offer a broader approach
that does not estimate preference through the use of experts [17] but directly though the
interaction with the user. Furthermore, we do not rely on Structural Causal Models [5],
or impose constraints on preference modeling [25], to provide a more general frame-
work. These approaches are not compatible with our modeling because they rely on
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defining a cost of recourse. In contrast, we define the user’s preference on recourse
based on probability. This definition is more comprehensive, as it does not simply
presuppose a (linear) weight, varying for each feature, that changes with the distance
between the action required to obtain recourse and the current values of the user’s fea-
tures. Consequently, we can describe a broader class of preferences.

In summary, we define preference at a broader and more comprehensive level com-
pared to the limited scope of current works. Moreover, none of the existing approaches
encompass, within a unified multi-objective problem, properties intrinsic to counterfac-
tual recourse with user preference: user-centered (i.e., preference), general aspect (i.e.,
validity), and data-specific elements (i.e. proximity, sparsity).

3 Problem Statement

A user u ∈ U is described as a point xu ∈ X in a feature space X ⊆ Rn, with
n ∈ N+. Users are subjected to evaluation by a black-box classifier1 f : X → [0, 1].
The algorithmic recourse problem is defined when a user u gets a negative outcome
f(xu) < τ and needs to receive a recourse. The counterfactual formulation of the
recourse problem provides the recourse as a new counterfactual configuration of the
user point x′

u ∈ X that allows the user to get a positive outcome f(xu) ≥ τ , with τ ∈
[0, 1] (generally τ = 0.5). Differentiating x according to the user is important because
two users u, v ∈ U represented by identical vectors xu = xv, might have different
preferences (see following sections). Nevertheless, in the absence of ambiguity, the
subscript will be omitted.

Several requirements are typically incorporated into the standard counterfactual
recourse problem: the counterfactual x′ must be close to the original point x (Prox-
imity), x′ must change the minimum number of features of x (Sparsity), when produc-
ing multiple counterfactuals for the same x, they must be diverse in nature (Diversity).
Besides these standard requirements, we introduce user preference as a key property to
generate user-centered counterfactual recourse.

Definition 1. The preference of a user u ∈ U for a counterfactual x′
u ∈ X is a proba-

bility Πu(x′
u) = P (x′

u|xu, u) that the user accepts the counterfactual instance x′
u ∈ X

as a recourse, with Πu : X → [0, 1].

We do not define an absolute preference of a user within the space X , but rather
how willing the user u is to alter their current state x and in what manner.

We are now ready to formalize the main problem:

Problem 1 (Personalized Counterfactual Recourse Problem). Given a user u ∈ U , with
xu ∈ X , that received a negative outcome f(xu) < τ , from a black-box classifier

1 Our formulation is also applicable when f is a multi-class classifier by employing the one-
vs-all technique. In the opposite classification fashion, 1 − f(xu) can simply be used as the
classifier.
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f : X → [0, 1], find a set of k ∈ N+ counterfactual data point C = {x(1), . . . , x(k)}
such that

max
x(i)

Υ (x(i), xu) proximity
∀i∈{1,...,k}

min
x(i)

Γ (x(i), xu) sparsity
∀i∈{1,...,k}

max
x(i),x(j)

Δ(x(i), x(j)) diversity
∀i,j∈{1,...,k},i �=j

max
x(i)

Πu(x(i)) preference
∀i∈{1,...,k}

s.t. f(x(i)) ≥ τ validity
∀i∈{1,...,k}

(1)

where Υ, Γ,Δ,Πu : X 2 → [0, 1].

Since in the recourse setting, the user’s preference is initially unknown, Problem 1
cannot be solved as is. Instead, the user’s preference needs to be estimated by querying
user predilections (Sect. 4).

Counterfactual Metrics - Despite the generality of Problem 1, in this paper we
adopt metrics widely used in the counterfactual literature:

– Proximity can be defined as the Euclidean norm between a counterfactual x′ and
the original value x:

Υ (x′, x) =
1

||x′ − x||2 + 1

This is inverted to map it to 0, 1 and to align with maximization.
– Sparsity, representing the number of modified features, can be expressed using the
zero norm:

Γ (x′, x) = ||x′ − x||0
Since this norm is non-differentiable, it is preferable to use the absolute-value norm
|| · ||1 = | · |.

– Diversity, as in [12] we use a distance between the generated counterfactual, that is
the cosine distance ∀x(i), x(j) ∈ C, i �= j:

Δ(x(i), x(j)) = 1 − x(i) · x(j)

||x(i)||2||x(j)||2
We introduce an additional metric that replaces the traditional concept of validity,

which is defined as f(x(i)) ≥ τ . With the introduction of user preferences, it becomes
imperative to redefine the notion of a valid counterfactual: if the user does not accept
the counterfactual, can it truly be considered valid? Building upon this premise, we
introduce the following measure:

Definition 2 (Personal Validity). Given a user u ∈ U , with xu ∈ X and the user
preference probability Πu(x′

u) = P (x′
u|xu, u), the Personal Validity for the classifier

f : X → [0, 1] on counterfactual recourse x′
u ∈ X is defined as:

PV (x′
u) = Πu(x′

u) · f(x′
u)
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This novel metric preserves the properties of both Validity and Preference. The non-
binary nature of the recourse probability captures the nuances between full acceptance
and rejection of a counterfactual, thus providing a more detailed measure of validity
compared to the traditional binary definition.

4 Framework

In this section, we present our iterative algorithm (Sect. 4.4), dubbed HIP-CORE
(Human-In-the-Loop COunterfactual REcourse), designed to estimate user preference
Πu (Sect. 4.3) while generating candidate counterfactuals C (Sect. 4.1). Our approach
is agnostic to both model and data, making it applicable for generating personalized
counterfactual recourse with any black-box model.

4.1 Personalized Counterfactual Generation

Given the complexity of solving a multi-objective problem such as Problem 1, that in
some setting has been show to be NP-hard [9], we transform Problem 1 into a single-
objective problem, by considering a linear combination of the metrics, with the signs
appropriately inverted for those metrics that are to be minimized (i.e., sparsity). Addi-
tionally, the constraint of the class flipping (i.e. score) is directly incorporated, removing
the dependence on τ . Consequently, we provide the following single-objective problem.

Problem 2 (Relaxed Personalized Counterfactual Recourse Problem). Given the same
setting as in Problem 1, the problem can be relaxed as follows:

max
C

1
k

k∑

i=1

[λΥ Υ (x(i), x) + λΓ (1 − Γ (x(i), x))+

+ λΠΠ(x(i)) + λff(x(i))+

+ λΔ
1

k − i − 1

k∑

j=i+1

Δ(x(i), x(j))]

(2)

where Υ, Γ,Δ,Π : X 2 → [0, 1], λΥ , λΓ , λΔ, λΠ , λf ∈ [0, 1], such that λΥ + λΓ +
λΔ + λΠ + λf = 1

A counterfactual can be generated by solving the presented maximization problem.
To effectively address this, several optimization algorithms can be employed. In our
experiments, we solved this problem using the Powell Method [14].

The coefficients λ in Eq. 2 allow for adjusting the importance assigned to individual
metrics. They generate a challenging trade-off, between the user-agnostic counterfac-
tual properties (i.e. score, proximity, sparsity, diversity) and the user preference. In
the experimental evaluation, we discuss the implication of the trade-off.
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4.2 Preference Modeling

In this section, we introduce a set of assumptions and the resulting propositions, to
facilitate the modeling of preference and elaborate more on the framework. However,
our proposed framework is intentionally designed to be agnostic to preference mod-
eling, emphasizing its versatility across various preference representation schemes, as
elaborated in Limitations 4.6.

Assumption 1. The preference Πu of a user u ∈ U remains stable in the explanation
process.

Introducing a temporal component to the problem is not a straightforward task
because it would require considering users u who change both their instances xu and
their preferences Πu over time [6]. Consequently, the same counterfactuals generated
may no longer be valid at different times. For this reason, in the current work, we will
not account for the temporal component.

Assumption 2. For all users u ∈ U , there exists a counterfactual explanations x′ ∈ X ,
such that the user’s preference Πu (x′) is equal to 1.

Enforcing the preference to have a value of 1 allows us to evaluate preference as
if it were a normalized metric, thus facilitating a better assessment of the quality of a
counterfactual and determining if the preference optimum (1) has been reached.

Assumption 3. The preference Πu(x′) is maximal when x′ = x.

This assumption is based on the idea that users tend to maintain their current state,
making the maximum preference corresponding to minimal state change. However,
since they aim to flip their classification, they are willing to yield, take actions that
move them away from their current state, thereby reducing their initial preference.

Proposition 1. Let πu : X → [0, 1] a probability distribution. Then, Πu(x′) =
πu(x

′)
maxx′ πu(x′) represents a model for a preference of a user u ∈ U .

Proof. In order for Πu(x′) to be a preference, we need to check that it respects the
above two assumptions. To check Assumption 1 it suffices to observe that πu(x′) ∈
[0,maxx′∈X πu(x′)] therefore Πu(x′) ∈ [0, 1]. To check Assumption 2 note that
Πu(x∗) = 1 for the counterfactual x∗ such that πu(x∗) = maxx′ πu(x′), implying
that Πu(x∗) = 1.

The reason for introducing a probability distribution in the above proposition is
to imbue the preference with some desired properties. The probability distribution πu

allows us to sample counterfactuals where the probability is directly proportional to the
user’s preference value.

However, we cannot directly model the preference using a density function since
this would render values incomparable among different users. Let us consider two users,
i and j, where one user absolutely avoids taking actions to obtain the recourse, while
the other is willing to take any action to acquire it. User i would have a preference of
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1 at xi, and 0 elsewhere. On the other hand, the latter user would exhibit a preference
of 1/N for any value x′ (but only if a finite number N of actions exists, as if the set
were countable and infinite, even a uniform distribution would not exist). Not only
would these two preferences be incomparable, but we would not even know if we had
maximized the preference of user j, as the preference would have a different maximum
depending on the user.

Similarly, we cannot directly model the preference using a Cumulative Distribution
Function (CDF). This limitation arises from the specific behavior of a CDF, as defined:
it increases monotonically with the input, without any decrease. Consequently, we can-
not represent, for instance, a user’s preference that tends to favor staying around value
x, diminishing as one moves away-essentially a bell-shaped function.

It is reasonable to consider that the joint probability distribution πu might be com-
plex, and the assumption of feature independence rarely holds in reality. However, from
a joint distribution, it is still possible to derive a marginal probability density function
for each feature. These marginal probability density functions can often be related to or
approximated by known distributions. In the remainder of this section, we will intro-
duce a series of examples illustrating how one can model the preference of different
types of features using well-known distributions.

First, we can introduce two extreme scenarios, represented by features for which
the user has no desire or ability to change (e.g., place of birth) or holds no specific
preference.

Proposition 2. If a user u has no intention to or can not change a feature i, their
preference Πu(x′

i) can be modeled using a degenerate probability distribution πu over

xi, such that: Πu(x′
i) =

{
1 if x′

i = xi

0 otherwise

Proof. If a user u is unwilling to change a feature i, it is natural to assume that
Πu(x′

i) = 0 for all x′
i �= xi. Referring back to Definition 1, we can rewrite Πu(x′

i) =
πu(x

′
i)

maxx′
i

πu(x′
i)
. This leads to πu(x′

i) = 0 for all x′
i �= xi. Since πu is a probability distri-

bution and must satisfy the constraint
∑

x′
i∈X πu(x′

i) = 1, it follows that πu(xi) = 1,
and thus Πu(xi) = 1. This also agrees with Assumption 3, as Πu(x′

i) indeed attains its
maximum value at Πu(xi).

Proposition 3. If a user u has no preference for changing feature i, their prefer-
ence Πu(x′

i) can be modeled using a uniform probability distribution πu: Πu(x′
i) =

1 ∀x′
i ∈ Xi.

Proof. If πu is a continuous distribution, πu(x′
i) = 1

|Xi| ∀x′
i ∈ Xi (we are not con-

sidering the case when Xi is an infinite set). Since that same value is also the maximum
of πu, we would get Πu(x′

i) = 1.

In these extreme cases, preference is essentially estimated by definition, as there are
no unknown parameters to estimate. Expanding to non-extreme cases we can assume
that preference Πu is, in fact, dependent on an unknown set of parameters θ. For
instance, in the following section, we can define preferences for continuous features.
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Proposition 4. If a feature i is continuous, the preferenceΠu(x′
i) can be modeled using

a normal distribution πu with mean θ1 = xi and variance θ2 > 0, such that: Πu(x′
i) =

e
− 1

2

(
x′

i−xi
θ2

)2

Proof. Referring back to Definition 1, we can write Πu(x′
i) = πu(x

′
i)

maxx′
i

πu(x′
i)
. If πu

follows a normal distribution, it has a mean θ1 = xi according to Assumption 3. Thus,

it can be expressed as πu(x′
i) =

1
θ2

√
2π

e
− 1

2

(
x′

i−xi
θ2

)2

. Since the maximum is reached at

x′
i = xi, i.e.,maxx′

i
πu(x′

i) = πu(xi) = 1
θ2

√
2π

, we obtain Πu(x′
i) = e

− 1
2

(
x′

i−xi
θ2

)2

.

Proposition 4 proves that it is not critical to estimate the position of preference, as
it is always centered around the current value xi. What matters, instead, is the variance
θ2, which directly models the user’s willingness to deviate from the current value xi.

Proposition 5. If a continuous feature i can only increase2, the preference Πu(x′
i) can

be modeled using an exponential distribution with rate θ > 0, such that: Πu(x′
i) ={

e−θ(x′
i−xi) if x′

i ≥ xi

0 otherwise

Proof. If πu follows an exponential distribution, we can write:

πu(x′
i) =

{
θe−θ(x′

i−xi) if x′
i ≥ xi

0 otherwise
Noting that the maximum value πu(x′

i) = πu(xi) = θ does not violate Assumption

3, we can write Πu(x′
i) =

πu(x
′
i)

θ , following from Definition 1.

Proposition 6. If a feature i is categorical with K categories, the preference Πu(x′
i)

can be modeled using a categorical distribution πu with parameters θ1, . . . , θK , such
that: Πu(x′

i) =
θk

θxi
∀k ∈ {1, . . . , K}.

Proof. Given that πu(x′
i) = θi∀k ∈ {1, . . . , K}, based on Assumption 3 we derive that

maxx′
i
πu(x′

i) = θxi
. Consequently, we obtain Πu(x′

i) = πu(x
′
i)

θxi
, which attains value

of 1 if x′
i = xi, satisfying Assumption 2.

4.3 Preference Estimation

In the recourse setting, there is no access to Πu, and we cannot invoke it at will. Fur-
thermore, there could be a maximum number of feasible interaction to ask the user’s
preferences. Therefore, it is fundamental to be able to estimate Πu.

The preference can be estimated by solving the following system of equations:

2 The extension to non-increasing features is trivial.
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Fig. 2. Iteration t of HIP-CORE. During each iteration, a distinct set of personalized counter-
factuals is generated and presented to the user to elicit preferences. This iterative process refines
the preference estimate incrementally. Upon termination, the algorithm leverages the cumulative
preference estimate obtained throughout the iterations to generate a final set of counterfactuals.

Definition 3. Given a user u ∈ X , a set of preference values pu and a set of counter-
factuals C, preference can be estimated by solving the following system of equations in
θ:

Π̂u(x(i)|θ) = p(i)u ∀i ∈ {1, . . . , |C|} (3)

Solving this problem depends on both the quantity of generated counterfactuals
|C| for which true preferences pu are available and the number of parameters θ that
comprise Πu. These parameters are contingent on how the preference is defined, as
exemplified in Propositions 2, 3, 4, 5 and 6. In our experiments, we solved this prob-
lem by minimizing the mean squared difference between Πu(x(i)|θ) and p

(i)
u for all

i ∈ 1, . . . , |C| using the Powell Method [14] at each iteration t. We initialized the
parameters at each iteration using the estimates from the previous iteration θt−1.

4.4 HIP-CORE Framework

Figure 2 provides a graphical schematization of the functioning of HIP-CORE, while its
pseudocode is provided in Algorithm 1. At an high-level, at each iteration t, HIP-CORE
refines the estimate of user preference Π̂t

u with the human-in-the-loop true preference
pt

u, while generating more personalized counterfactual recourse Ct.
Initialization - The initialization of Π̂ is defined as uniform over the entire set X .

However, if some data are available, it could be initialized as uniform over all data
points in the dataset or only for those where the counterfactual is valid.

Iteration t - At each iteration t, the algorithm receives as input the original instance
x ∈ X , the set of counterfactuals generated in the previous iterations {Cη}∀η<t, and
the estimated user preference Π̂t−1.

At each iteration t HIP-CORE performs the following steps:
A A set of k ∈ N+ personalized counterfactual recourse Ct are produced with

get_c (check Sect. 4.1).
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Algorithm 1. HIP-CORE
Require: a user identifier u ∈ U , a user feature point x ∈ X ; a classifier f ; a number of

counterfactual generated at each iteration k ∈ N+; a maximum number of iterations T ∈
N+.

Ensure: A personalized counterfactual recourse {x′} and an estimation of user preference Π̂u

1: Π̂0
u ← g : X → 1 s.t. g(x) = 1

X | if x ∈ X else 0 Initialize the estimate of user preferences;
2: C0 ← {} Initialize counterfactuals’ set
3: t ← 1;
4: while (t ≤ T ) do
5: Ct ← get_c(x, Π̂t−1

u , k, {Cη}∀η<t) Generate counterfactuals;
6: pt

u ← {Πu(x
′)}∀x′∈Ct Ask user preference;

7: Π̂t
u ← update_pref(Π̂t−1

u , {pη
u}∀η≤t, {Cη}∀η≤t}) Update preference estimation;

8: t ← t + 1

9: C ← get_c(x, Π̂T
u , 1) Generate final counterfactual;

10: return C, Π̂T
u

B Ct is provided to the user for a human-in-the-loop interaction and he expresses
the preferences over the counterfactuals. At this stage, the true preferences
pt

u = {Πu(x′)}∀x′∈Ct of the user are stored.
C The algorithm updates the estimate of the user preference Π̂t

u given the new
true preferences pt

u with update_pref (check Sect. 4.3).
D The stopping rule is a straightforward maximum number of iterations T . Alter-

natively, it may depend on other factors, such as whether the generated counterfactuals
match those from the previous iteration.

E Once the stopping criteria are met, the final personalized counterfactual C =
{x′} is generated.

4.5 Complexity of User Feedback

The mental effort required to offer a feedback, such as assigning a numerical value to
a hypothetical scenario on a scale from 0 to 10, can be substantial. Hence, expecting
users to provide a density function when interrogated is realistically infeasible. There
are various approaches to model this user difficulty in providing the precise value of
their preference for a specific counterfactual. We have chosen to model it as the number
of decimal places to which the true preference is rounded when the user is queried.
Given that the preference resides within the interval [0, 1], if the decimal places are set
to 0, the user is essentially indicating whether they would accept the counterfactual (1)
or not (0). Using 1 decimal place would correspond to asking for a score within the
range [0, 10], while using 2 decimals would equate to requesting a score within the
range [0, 100], and so forth.

4.6 Limitations

The assumptions regarding the preference made in Sect. 4 could be perceived as mere
limitations of our framework. However, in our view, these assumptions are essential in
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imparting convenient properties to the preference, subsequently benefiting both the opti-
mization problem and the Personal Validty. Nevertheless, HIP-CORE is more general
and applies beyond these assumptions. More specifically, assumption 3 can be easily
circumvented by also modeling the value x∗ where the maximum preference is located.
For instance, in the case of a continuous variable expressed by a Gaussian distribution 4,
estimating the mean θ1 would suffice. Assumption 2, as previously mentioned, imparts
characteristics desired for the problem. However, if a user’s preference does not reach
a value of 1, HIP would still be applicable. Lastly, assumption 1 is an area where sub-
stantial enhancement of the framework could occur. It is important to note that even if
preferences were to change over time, the new inquiries made to users would still reflect
their true preferences. Therefore, the framework could still converge effectively.

5 Experiments

Table 1. Comparison of HIP-CORE and baseline model performance for each one of the classi-
fiers using maximum decimal precision. The direction of arrows indicates what is considered the
best performance: ↑/↓ denotes that higher/lower values are better. Best-performing values in each
category are highlighted in bold.

Dataset Model Validity(↑) Preference(↑) Sparsity(↓) Proximity(↑) Personal
Validity(↑)

XGBoost

Adult Income HIP-CORE 0.904 0.386 ± 0.107 0.695 ± 0.136 0.945 ± 0.064 0.317 ± 0.150

Baseline 0.943 0.346 ± 0.108 0.757 ± 0.135 0.975 ± 0.036 0.302 ± 0.099

GiveMeSomeCredit HIP-CORE 0.585 0.053 ± 0.006 0.759 ± 0.143 0.970 ± 0.152 0.030 ± 0.027

Baseline 0.002 0.0 ± 0.001 1.000 ± 0.007 0.970 ± 0.152 0.0 ± 0.0

HELOC HIP-CORE 0.515 0.070 ± 0.043 0.880 ± 0.086 0.702 ± 0.254 0.037 ± 0.050

Baseline 0.342 0.031 ± 0.047 0.925 ± 0.117 0.761 ± 0.261 0.005 ± 0.008

Logistic Regression

Adult Income HIP-CORE 0.277 0.203 ± 0.123 0.832 ± 0.14 0.907 ± 0.122 0.051 ± 0.105

Baseline 0.351 0.268 ± 0.152 0.77 ± 0.168 0.957 ± 0.055 0.046 ± 0.074

GiveMeSomeCredit HIP-CORE 0.452 0.058 ± 0.01 0.644 ± 0.107 0.96 ± 0.165 0.027 ± 0.031

Baseline 0.512 0.014 ± 0.014 0.955 ± 0.051 0.902 ± 0.205 0.001 ± 0.002

HELOC HIP-CORE 0.04 0.058 ± 0.041 0.931 ± 0.089 0.681 ± 0.259 0.003 ± 0.023

Baseline 0.006 0.014 ± 0.008 0.96 ± 0.041 0.738 ± 0.264 0.0 ± 0.0

MultiLayer Perceptron

Adult Income HIP-CORE 0.098 0.186 ± 0.104 0.855 ± 0.12 0.873 ± 0.168 0.024 ± 0.081

Baseline 0.056 0.109 ± 0.071 0.946 ± 0.074 0.927 ± 0.072 0.005 ± 0.011

GiveMeSomeCredit HIP-CORE 0.004 0.052 ± 0.006 0.799 ± 0.125 0.971 ± 0.152 0.0 ± 0.004

Baseline 0.004 0.005 ± 0.012 0.983 ± 0.039 0.971 ± 0.152 0.0 ± 0.0

HELOC HIP-CORE 0.592 0.069 ± 0.046 0.91 ± 0.06 0.673 ± 0.251 0.042 ± 0.05

Baseline 0.338 0.025 ± 0.049 0.938 ± 0.121 0.718 ± 0.274 0.006 ± 0.017
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5.1 Experimental Setting

To evaluate HIP-CORE, we define an experimental setting as follows. Each user u ∈ U
is described by a user feature data xu ∈ D and the true user-preference distribution
Πu is simulated as described in Sect. 4.2. Furthermore, we have made the assumption
of feature independence. Despite being an oversimplification, explicitly expressing a
joint distribution with dependencies can be exceedingly complex, particularly for high-
dimensional feature sets. Frequently, it necessitates specific modeling choices that rely
on the nature and interrelationships among the features under consideration.

More details about the experimental setup can be found in the appendix. To get the
feature data D, we used existing real-world datasets: Adult [2], GiveMeSomeCredit [4]
and HELOC [7]. Given the model-agnostic nature of HIP-CORE, we employed vari-
ous classifiers in our experimentation: XGBoost [3], Logistic Regression, a MultiLayer
Perceptron (MLP). Each classifier is trained on an appropriate subset of the complete
data.

To solve the personalized counterfactual recourse step of HIP-CORE, as defined in
Problem 2, as well as the preference estimation step, as defined in Problem 3, we have
chosen to employ the Powell’s method [14]. Furthermore, we have run a randomized
search for the λ parametrization in Eq. 2, to explore the trade-off between the differ-
ent properties. We ran HIP-CORE for a maximum of 100 iterations. Furthermore, we
tested the framework in scenarios where there were no limits on the decimal places for
preference, as well as decimal places in the set {0, 1, 2}.

The experiment are performed for the tested dataset with two distinct setting: one
user-agnostic (the baseline), i.e. λΠ = 0, and one including the preference, i.e. λΠ > 0,
to highlight the importance of using preference in generating personalized recourse.
The results are shown for the combination of λ parameters that achieves the maximum
Personalized Validity.

The comprehensive code required to replicate the experiments is accessible in our
GitHub repository3.

5.2 Overall Performance

In Table 1, we report the main results of our experiments for the tested dataset
for HIP-CORE with preference and a user-agnostic version. Metrics are generally
improved by the HIP-CORE across all datasets, with the exception of the proximity,
and validity in some cases.

Sparsity value is decreased, meaning that on average less features are modified by
HIP-CORE: we generated more concise counterfactual recourse using features that the
user prefers. Proximity is slightly decreased compared to the baseline. However, given
that proximity is a data-driven measure that do not consider the subjective and poten-
tially irrational user preference, we encourage the community to increase the relevance
of the user preference with respect to the proximity.

Finally, the preference is substantially enhanced by HIP-CORE compared with the
baseline. This underscores the importance of including the preference in counterfactual
recourse generation process.

3 https://anonymous.4open.science/r/hip-core-FS20.

https://anonymous.4open.science/r/hip-core-FS20
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Only on the Adult Income dataset and solely using Logistic Regression, HIP-CORE
yields worse results than the baseline across all metrics, except for Personal Valid-
ity. Considering that Personal Validity is, in fact, the primary metric to optimize as it
represents the genuine validity of the counterfactual for the user, we can observe that
HIP-CORE consistently outperforms the baseline.

5.3 Model-Agnostic Validation

HIP-CORE’s performance doesn’t seem to be significantly affected by the different
types of classifiers used (XGBoost, Logistic Regression, or MultiLayer Perceptron).
We can observe that it struggles more to outperform the baseline in Validity when the
classifier is Logistic Regression. Additionally, the metric values, in general, appear to
be better when XGBoost is the chosen classifier, possibly because XGBoost is notably
more effective on these tabular datasets.

5.4 Study on the Number of Iterations

In Fig. 3, the percentage of optimizations reaching convergence at each iteration is
illustrated. This represents the relative number of users for whom no new counterfactu-
als are being generated, indicating that their preference can no longer be updated.

Regarding the differences between models, it is noticeable that there is almost no
difference in the convergence of the three, further demonstrating how our optimization
algorithm operates independently of the classifier.

When discussing datasets, we observe that the Give Me Some Credit and Adult
Income datasets converge around the 15th and 20th iterations, respectively. However,
the HELOC dataset appears more complex, with only about 10% of the samples com-
pleting optimization. This does not imply invalidity in the generated counterfactuals, as
demonstrated in Table 1. It merely suggests that extended iterations might yield even
more refined outcomes.

A noteworthy observation is that HIP-CORE converges more quickly with the com-
bination of XGBoost and the Adult Income dataset.

5.5 Study on the Number of Decimal Places

Table 2 illustrates that the overall performance across all metrics remains largely unaf-
fected by the reduced decimal precision.

Table 2 illustrates the performance of HIP-CORE applied to logistic regression clas-
sifiers using different decimal precision of the preferences provided by the user during
interrogation. Comparing the results with those presented in Table 1, where a precision
of 16 decimal places is used, we find that the overall performance across all metrics
remains largely unaffected by the reduced decimal precision. Surprisingly, some results
even show an improvement. Furthermore, when we examine the metric variations with
increasing decimal precision, we see a consistent upward trend in improvement. This is
consistent with the concept that the more precise the user’s preference input, the more
accurately the model can estimate it.
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Fig. 3. Percentage of optimizations reaching convergence at each iteration, for each model type
and for the three datasets. The y-axes shows the percentage of users for whom no further counter-
factuals are produced, indicating that their preference can no longer be updated, wile the x-axis
represents the number of iterations. Almost no difference is noticeable between the three models.
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Table 2. HIP-CORE framework performance for the Logistic Regression classifier using dif-
ferent decimal precision. DC indicates decimal precision for the preference given by the user.

DC Dataset Validity(↑) Preference(↑) Sparsity(↓) Proximity(↑) Personal
Validity(↑)

0 Adult Income 0.341 ± 0.439 0.196 ± 0.134 0.839 ± 0.15 0.905 ± 0.114 0.058 ± 0.107

GiveMeSomeCredit 0.368 ± 0.482 0.019 ± 0.011 0.972 ± 0.049 0.949 ± 0.14 0.006 ± 0.009

HELOC 0.022 ± 0.134 0.058 ± 0.037 0.93 ± 0.055 0.704 ± 0.259 0.002 ± 0.019

1 Adult Income 0.256 ± 0.406 0.215 ± 0.129 0.826 ± 0.148 0.911 ± 0.12 0.049 ± 0.104

GiveMeSomeCredit 0.165 ± 0.371 0.05 ± 0.006 0.847 ± 0.095 0.962 ± 0.14 0.009 ± 0.021

HELOC 0.033 ± 0.179 0.06 ± 0.047 0.937 ± 0.057 0.68 ± 0.258 0.003 ± 0.019

2 Adult Income 0.305 ± 0.46 0.204 ± 0.121 0.833 ± 0.137 0.906 ± 0.121 0.054 ± 0.098

GiveMeSomeCredit 0.769 ± 0.5 0.06 ± 0.006 0.612 ± 0.126 0.957 ± 0.134 0.047 ± 0.03

HELOC 0.037 ± 0.188 0.076 ± 0.05 0.912 ± 0.059 0.684 ± 0.256 0.004 ± 0.025

5.6 Discussion and Ethical Implications

In the new preference-based framework, traditional metrics like Sparsity and Proxim-
ity have undergone a significant transformation. Previously, they served as automatic
methods to gauge a rational user’s preference. However, when applied in this new set-
ting, they risk providing solutions that may not align with the user’s actual preferences.
So, with the introduction of a more realistic modeling of user preference and Personal
Validity, these metrics become outdated.

When considering the ethical implications of our work, several key aspects deserve
attention.

– Privacy and Data Handling: Users have the option to keep their preferences con-
fidential, but expressing preferences accurately is important for optimal recourse.
Failing to provide preferences can affect preference estimation and recourse quality.
The algorithm should prioritize data security, not retaining user data beyond creating
recourse, to ensure user privacy.

– The presence of bias or unfairness in the treatment of features within the model
hinges on its design. To enhance fairness, a null preference for specific features can
be integrated, addressing potential bias or unfairness in the approach.

The broader issue of ethics in counterfactuals is multifaceted. However, we main-
tain that it falls beyond the scope of our current work. Our primary focus is on the
development of a methodology rather than the creation of an operational product. The
assurance of ethical practices ultimately hinges on the specifics of implementation.

6 Conclusions

In this study, we introduced HIP-CORE (Human-In-the-Loop Preference COunter-
factual REcourse) to incorporate user preference in the generation of counterfactual
recourse through a human-in-the-loop process. We have formalized the modeling of
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preference, positioning it as a fundamental property in the creation of personalized
counterfactuals. Acknowledging that user preference is not known a priori, we have
mathematically formalized the estimation of user preferences, establishing a founda-
tion for new opportunities in this area.

In future works, we plan to further investigate the mathematical implication of the
modeling and the estimation of the user preference in the counterfactual recourse set-
ting. For instance, we want to provide a more comprehensive analysis of the preference
estimate, considering more specific types of features, and exploring scenarios where the
problem might have solutions, and of which type (unique or multiple solutions might
exist).

We also intend to investigate possible solutions to the multi-objective problem,
which may lead to the identification of a variety of trade-off solutions across the objec-
tives. Furthermore, we will evaluate and integrate other counterfactual metrics in the
multi-objective problem with an in-depth analysis of the trade-off between them.

Similarly, we intend to expand the experiments to scenarios where feature inde-
pendence is not assumed, exploring potential feature interactions, as well as real-world
applications. We will also explore modeling preference and, consequently, counterfac-
tual recourse while considering the element of time.

In conclusion, we earnestly believe that this study underscores the paramount
importance of considering users and their preferences when generating recourse. We
hope this could serve as an encouragement for the counterfactual recourse community
to adopt our proposed modeling approach and incorporate user preferences into the
counterfactual recourse framework.
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A Appendix

Here, we outline how we modeled and simulated the preferences for the variables in the
datasets.

– Gaussian Preferences: θ2 ∈ (0, 10]
– Exponential Preferences: θ ∈ (0, 10]
– Categorical Preferences: θi ∈ (0, 1) ∀i ∈ {1, . . . , K} s.t.

∑K
i=1 θi = 1, where

K is the number of categories the feature has
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Adult Income

– age: exponential
– workclass: categorical
– education: categorical
– marital_status: categorical
– occupation: categorical
– race: degenerate
– gender: degenerate
– hours_per_week: gaussian
– income: target

GiveMeSomeCredit

– RevolvingUtilizationOfUnsecuredLines: gaussian
– age: exponential
– NumberOfTime30-59DaysPastDueNotWorse: exponential
– DebtRatio: gaussian
– MonthlyIncome: gaussian
– NumberOfOpenCreditLinesAndLoans: gaussian
– NumberOfTimes90DaysLate: exponential
– NumberRealEstateLoansOrLines: gaussian
– NumberOfTime60-89DaysPastDueNotWorse: exponential
– NumberOfDependents: exponential
– SeriousDlqin2yrs: target

HELOC

– ExternalRiskEstimate: gaussian
– MSinceOldestTradeOpen: gaussian
– MSinceMostRecentTradeOpen: gaussian
– AverageMInFile: gaussian
– NumSatisfactoryTrades: exponential
– NumTrades60Ever2DerogPubRec: gaussian
– NumTrades90Ever2DerogPubRec: gaussian
– PercentTradesNeverDelq: gaussian
– MSinceMostRecentDelq: gaussian
– MaxDelq2PublicRecLast12M: gaussian
– MaxDelqEver: exponential
– NumTotalTrades: exponential
– NumTradesOpeninLast12M: gaussian
– PercentInstallTrades: gaussian
– MSinceMostRecentInqexcl7days: gaussian
– NumInqLast6M: gaussian
– NumInqLast6Mexcl7days: gaussian
– NetFractionRevolvingBurden: gaussian
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– NetFractionInstallBurden: gaussian
– NumRevolvingTradesWBalance: gaussian
– NumInstallTradesWBalance: gaussian
– NumBank2NatlTradesWHighUtilization: gaussian
– PercentTradesWBalance: gaussian
– RiskPerformance: target

Regarding the classifiers employed, we adopted the default parameter settings from
the Python scikit-learn library implementations.
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Abstract. Deep learning is dramatically transforming the field of med-
ical imaging and radiology, enabling the identification of pathologies in
medical images, including computed tomography (CT) and X-ray scans.
However, the performance of deep learning models, particularly in seg-
mentation tasks, is often limited by the need for extensive annotated
datasets. To address this challenge, the capabilities of weakly supervised
semantic segmentation are explored through the lens of Explainable AI
and the generation of counterfactual explanations. The scope of this
research is development of a novel counterfactual inpainting approach
(COIN) that flips the predicted classification label from abnormal to nor-
mal by using a generative model. For instance, if the classifier deems an
input medical image X as abnormal, indicating the presence of a pathol-
ogy, the generative model aims to inpaint the abnormal region, thus
reversing the classifier’s original prediction label. The approach enables
us to produce precise segmentations for pathologies without depending
on pre-existing segmentation masks. Crucially, image-level labels are uti-
lized, which are substantially easier to acquire than creating detailed
segmentation masks. The effectiveness of the method is demonstrated by
segmenting synthetic targets and actual kidney tumors from CT images
acquired from Tartu University Hospital in Estonia. The findings indi-
cate that COIN greatly surpasses established attribution methods, such
as RISE, ScoreCAM, and LayerCAM, as well as an alternative counter-
factual explanation method introduced by Singla et al. This evidence
suggests that COIN is a promising approach for semantic segmentation
of tumors in CT images, and presents a step forward in making deep
learning applications more accessible and effective in healthcare, where
annotated data is scarce.
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1 Introduction

Deep learning is revolutionizing the field of medical imaging [5,26] and radiology
[12], offering the potential to aid radiologists by triaging incoming patients and
detecting various pathologies from medical images like computed tomography
(CT) or X-ray scans. However, the accuracy of deep learning models for medical
images hinges on access to substantial annotated datasets [10]. Collecting such
datasets is hard for two reasons: 1) labeling medical images accurately requires
the knowledge of trained medical professionals such as radiologists, 2) accu-
rate manual image labeling is very labor intensive. These problems are further
amplified by the limited access to medical image datasets due to data protection
laws [7].

Considering these challenges, there is a pressing need for methods that can
automate or simplify the manual data labelling process. Dense pixel-level annota-
tions, though highly informative, are particularly time-consuming to create [34].
In contrast, image-level annotations, which indicate the presence or absence of
certain organs or pathologies, are more feasible to obtain and can be derived from
accompanying radiology reports. This scenario raises an intriguing question: Can
one generate detailed pixel labels based solely on image-level labels?

This task falls under weakly supervised semantic segmentation (WSSS) and
it is often tackled with methods known from Explainable AI (XAI) [1,8,9,32]. In
computer vision, the XAI’s task is usually to explain a “black box” classifier by
highlighting the most important regions of the images for classifiers decisions.
The principle of generating saliency maps from a classifier is partly transferable
over to the task of WSSS as the saliency maps can be seen as segmentation
masks. However, as noted in [11], saliency maps, while visually intuitive, often
blend useful and non-useful information, making it hard to identify the specific
image features that are important for model’s decisions. This makes it difficult
to generate precise segmentations from the saliency maps.

Counterfactual explanations recently emerged that seeks for minimal change
in input to flip the decision output of classifier [24,36]. This approach aims
not only to flip the decision of a model in adversarial attack manner, but to
ensure that modifications are meaningful and interpretable in a real-world con-
text as highlighted in [17,39]. First trained counterfactual explanation models
with usage of conditional Generative Adversarial Network (cGAN) [33] showed
great promise in providing insights into decision-making processes of classifiers
and uncovering potential biases or failure modes. Building upon this work, this
research explores the potential of adapting the counterfactual explanation frame-
work for the domain of WSSS. It is argued that the difference between original
input and its respective counterfactual image can serve as implicit segmentation
masks, while also revealing critical features for classification decisions.

In this context, this study extends the application of the generative counter-
factual explanation method to facilitate the generation of segmentation labels.
The original methodology and architecture are refined to better suit the needs of
WSSS, thereby eliminating the dependence on pre-existing segmentation masks
for training. This approach allows for the development of a more efficient, weakly
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supervised learning framework, enhancing the precision of segmentation out-
comes. The method is tested by segmenting kidney tumors from CT images.
The adapted counterfactual pipeline efficiently produces accurate segmentation
labels from straightforward classification models. This innovation is substanti-
ated through comprehensive testing and validation on a synthetic dataset. Fur-
thermore, the novel counterfactual pipeline is compared against established attri-
bution methods—RISE [29], Score-CAM [37], and LayerCAM [18]—to affirm its
enhanced capability and practical applicability in generating segmentation labels
under weak supervision.

2 Related Works

2.1 Weakly Supervised Semantic Segmentation

WSSS has gathered a lot of attention as the idea of segmentation masks from
image-level labels makes it very cost-effective. WSSS methods often utilize class
activation maps (CAMs). In CAM methods the saliency maps are generated from
classifier model and input image to indicate the most important image regions
for the classifiers decision for each class. Frequently used CAM methods include
GradCAM, ScoreCAM and LayerCAM [18,31,37]. CAM based WSSS methods
consist of the following steps: 1) Training of the classifier 2) Extracting saliency
maps with a CAM method 3) Refining the saliency maps by postprocessing.
Additionally, sometimes these refined maps are used to train a segmentation
model and then the model is used to acquire the final segmentations.

However, CAM methods are not ideal for WSSS and are not without issues.
One of the major problem with CAMs is that they highlight only the most
discriminative regions of the image and not the full object that represents the
class. This can lead to poor segmentation performance. Secondly, the resolution
of saliency maps from CAMs is tied to the resolution of the activation maps
from the classifier model. Using the activations from deepest layers of the model
usually yields semantically more representative saliency maps. At the same time
these activations have low resolution which creates low resolution saliency maps.
Moreover, saliency maps can remain unchanged even when the underlying model
predictions are significantly affected by adversarial attacks as pointed in [11],
raising questions about their reliability as explanations.

The potential way to overcome these issues in WSSS is to use counterfactual
explanations instead of CAMs.

2.2 Counterfactual Explanations

Counterfactual explanation is model-agnostic instance-based method that
answers the question “What is the minimum input change that leads to the
flip of the prediction outcome?”. Originating from the fields of cognitive science
[6], psychology [20], and causality research [28], counterfactual explanations have
been explored as a way to understand AI’s decision-making processes. Wachter et
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al. [36], introduced a formal counterfactual optimization function for generating
explanations in continuous data, marking a significant milestone in XAI. Further-
more, Tim Miller’s insights from social sciences [23] highlighted the criticality of
contrastive explanations for human reasoning and decision-making processes and
the necessity of counterfactual explanations for XAI. Extensive surveys on coun-
terfactual explanations by Guidotti et al. [13] and Karimi et al. [19] showed big
variety of counterfactual explanation frameworks primarily focused on discrete
data. These frameworks either solve optimization problems or employ heuristics
search strategies to find counterfactual explanations. In image domain a notable
advancement introduced Akula et al. [2], who highlighted the importance of The-
ory of Mind for Explainability and developed a pipeline for generating counter-
factuals in images by identifying and modifying minimal semantic-level features,
such as altering the stripes on a zebra.

The application of Generative Adversarial Networks (GANs) for creating
counterfactual explanation has gained increasing attention, demonstrating the
versatility across a variety of domains. For instance, Kenny et al. [21] PIECE
method demonstrated this on MNIST data by altering exceptional image fea-
tures to generate plausible counterfactuals for black-box CNN classifiers. In
the domain of autonomous driving, a field where explainability is crucial due
to the safety-critical nature of its applications, Zemni et al. [39] proposed an
object-centric framework for counterfactual generation. Their method was specif-
ically designed for images with many objects, such as urban scenes common
in autonomous driving. By encoding the query image into a structured latent
space, this approach facilitates object-level manipulations, making it highly suit-
able for complex scenes. The method was tested on counterfactual explanation
benchmarks for driving scenes, demonstrating its capability to adapt beyond
classification to explain semantic segmentation models. Jeanneret et al. [17]
focused on transforming adversarial attacks into semantically meaningful per-
turbations for facial expression data. Their work hypothesized that Denoising
Diffusion Probabilistic Models could regularize adversarial attacks to generate
actionable and understandable image modifications, such as making sad people
happy. Bischof et al. [4] proposed a unified framework leveraging image-to-image
translation GANs to address interpretability and robustness in neural image clas-
sifiers. This framework was designed and assessed on two specific applications:
a semantic segmentation task for concrete cracks and a fruit defects detection
problem. Through this, they produced saliency maps for interpretability and
demonstrated improved model robustness against adversarial attacks.

In the medical field, counterfactual explanations have shown great promise
for diagnostic purposes, particularly in analyzing chest X-ray images. The work
by Atad et al., [3] employed a StyleGAN-based approach, StyleEx, to manipulate
specific latent directions in chest X-ray images. They demonstrated the use of
counterfactual explanations in analyzing chest X-ray images helping to identify
the patterns that models rely on for diagnoses, which was clinically evaluated
with radiologists. Similarly Singla et al. [33] used counterfactual explanation
generation for chest X-rays images to explain the decision-making processes of
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image classifiers. They trained a generative model capable of producing images
that would lead to a different classification by the original model by preserv-
ing original context from an instance. Their generative model was trained and
validated on chest X-ray images, with a human-grounded study confirming the
usefulness of the generated explanations in a medical context.

While these works have illustrated the prominent capabilities of counterfac-
tual explanations across various tasks, their application from the perspective of
WSSS remains unexplored. Most methods have relied on segmentation masks
within GAN training, which may not be available in this context. COIN aims to
bridge this gap by adapting the counterfactual approach for segmentation pur-
poses, particularly focusing on the work of Singla et al.’s [33] methodology and
adapting it to generate segmentation labels without using pre-existing masks.

3 Counterfactual Approach for WSSS

The counterfactual inpainting approach is introduced for producing semantic
segmentation masks. Counterfactual approach originates from Singla et al. [33]
with significantly enhanced architecture, adding perturbation-based generator,
skip connections, another loss measure and discarding the usage of segmentation
masks to make it more viable for WSSS.

3.1 Method Formulation

Our method is defined in the case of a binary classification. Let’s denote a
black-box classifier as f with assumption that it is differentiable with access
to its output value and gradient. The pre-trained binary classifier f accepts
an input image X and outputs whether an image X is normal (y = 0) if
f(X) < t or abnormal (y = 1) if f(X) ≥ t, where t is a threshold used to
binarize the prediction output of f . In Singla et al. [33], the generative model
(cGAN) accepts an input image X and a tweakable parameter δ, such that
the counterfactual image Xcf = E (X, δ) flips the prediction class y and E (·) is
used as an explanation function. Specifically, if the classifier predicts abnormal
for an image X, the generator aims to inpaint or remove the abnormal region,
effectively flipping the classifier’s prediction. Similarly, if the classifier predicts
normal, the generated counterfactual image should add the abnormal region,
flipping the classifier’s prediction. In contrast, this research argues that only
the inpainting case should be considered for WSSS purposes. Our generative
model predicts a normal counterfactual image Xcf only when the classifier
deems the input image X as abnormal. Subsequently, the absolute difference
between the counterfactual image Xcf and the original image X serves as a weak
segmentation label. The overview of the COIN method is depicted in Fig. 1.
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Fig. 1. Overview of the proposed counterfactual inpainting (COIN) pipeline. Given
the input image X and black-box classifier f that produces a classification label, the
image-to-image model (GAN) generates a counterfactual image Xcf with y = 0. If X is
abnormal, it is expected that Xcf no longer contains the abnormal part of the input
image. Computing the absolute difference of the original image X and counterfactual
image Xcf results in a weak tumor segmentation map. While training the pipeline,
only GAN weights are updated. Classifier predictions are used for classifier consistency
loss calculation.

3.2 Image Generation Architecture

The SNGAN [25] architecture is adapted for the generator and discriminator
networks. The original generative model (cGAN) consists of an encoder E(X) =
z and a decoder G(z, δ) = Xcf . Consequently, the explanation function can be
expressed as E (X, δ) = G(E(X), δ). The encoder transforms an input image X
into a latent representation z, which is then passed into the decoder along with
a condition label δ to produce a counterfactual image Xcf . Unlike the approach
by Singla et al. [33], where the parameter δ is utilized to provide unique offsets
by discretizing the [0; 1] range into N = 10 equal bins—each corresponding to a
unique condition vector c—COIN simplifies the architecture to handle only one
condition (cinp - to inpaint or remove the abnormal region). The model is trained
as a simple GAN that produces counterfactual image Xcf where f(Xcf ) < t. In
this case, the flipping happens only in one direction when the X is abnormal and
Xcf becomes normal, removing the area that affects the classifier’s prediction.
This approach addresses the challenge of needing a condition-balanced training
set for the cGAN by reducing the complexity and data requirements. The benefits
of decreasing number of condition is showcased in Appendix A Table 3.

Moreover, COIN distinguishes itself by implementing a perturbation-based
image generation within the GAN framework. The generator architecture is
unique with slight modification of having a residual connection of the model’s
input to the outputs. Instead of regenerating the complete image in the decoder
from the latent variable, the generator is trained to produce only the perturba-
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tion map which is fused into the input image. Therefore, the explanation func-
tion is modified such that E (X, δ) = G(E(X), δ) + X. This technique contrasts
with conventional counterfactual generation models [4,17,39], which typically
reconstruct the entire image. While full reconstruction can be effective in some
contexts, it often introduces artifacts - unintended alterations that can skew the
classification model’s interpretation and analysis. The impact of perturbation-
based architecture is illustrated in Appendix A Fig. 4 and Table 3.

Additionally, in contrast to reported Singla et al. architecture, the skip-
connections are integrated into the encoder-decoder model [30] together with
perturbation-based approach. This enhancement facilitates the generation of
more accurate perturbations, thereby improving reconstruction quality and pre-
serving the original image details. The impact of skip-connections is showcased
in Appendix A Fig. 5 and Table 3. This approach is beneficial for WSSS as it
ensures the generation of precise, artifact-free counterfactual explanations.

3.3 Loss Function for Training GAN

The same loss functions are inherited as described by Singla et al. [33], and intro-
duce an additional Total-Variation loss [16] to enforce smoothness in the gener-
ated images. The complete objective function for the counterfactual inpainting
pipeline is given as follows:

min
E,G

max
D

(λGANLGAN + λfLf + λidtLidt + λtvLtv), (1)

where E, G and D is the Encoder, Decoder and Discriminator of GAN; f is a
pre-trained classifier; LGAN is a data consistency loss term; Lf is a classification
model consistency loss term; Lidt is a domain-aware self-consistency loss term,
and Ltv is a Total-variation loss term; λGAN , λf , λidt, λtv are respective hyper-
parameters to configure contribution of each term.

Data Consistency Loss Term. Generated images should look similar to the
images in the training dataset. For GAN, the two networks are trained: generator,
which consists of encoder E(·) and decoder G(·), and discriminator D(·) and
compute binary cross-entropy loss on the real/fake labels.

LGAN = EX∼P (X) [log (D(X))] + EX∼P (Xcf )

[
log(1 − D(E(G(X))

]
, (2)

where P (X) and P (Xcf ) denote distributions of real and generated images
respectively.

Classification Model Consistency Loss Term. A GAN should generate
the counterfactual images that influence the classifier predictions in the desired
manner. The general formulation of the objective function computes the KL
divergence between the predicted and expected distributions of probabilities. In
the proposed reformulation for the inpainting pipeline, the condition-aware loss
simplifies to:
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Lf = DKL(f(E (X)) || 0), (3)

where E (X) is a counterfactual explanation derived from an input image X.

Domain-Aware Self-consistency Loss Term. Similarly to Singla et al. [33],
the main idea behind the objective function is to let the model learn cyclically
consistent counterfactual images when applying a series of counterfactual genera-
tions. One cycle of generations is computed to produce E (X) and E (E (X)), given
that E (·) - is an explanation function. Both counterfactual images should retain
as much details as possible from the input image perturbing it only if it is abnor-
mal. Additionally, Singla et al. [33] uses segmentation masks to enforce local
consistency over the foreground pixels of different segmentation labels present in
the image. However, this research employs a simpler supervision, not requiring
segmentation masks, to compute the reconstruction loss over the whole image
instead of local regions. The domain-aware self-consistency loss for the proposed
counterfactual inpainting pipeline is given by:

Lidt = L1(X,E (X)) + L1(X,E (E (X))), (4)

where

L1(X,X ′) =
||X − X ′||1

HW
, (5)

where H and W represent height, width of the images X and X ′.

Total-Variation Loss Term. To further improve the smoothness of the seg-
mentation masks, a Total-Variation (TV) loss [16] is adopted and computed
directly from the difference maps. TV loss enforces smoothness for the gener-
ated counterfactuals suppressing the noise and preserving the edges at the same
time. The formula for the objective function is as follows:

Ltv =
1

HW

⎛

⎝
H−1∑

i=1

W∑

j=1

(xi+1,j − xi,j)2 +
H∑

i=1

W−1∑

j=1

(xi,j+1 − xi,j)2

⎞

⎠ , (6)

where xi,j is the intensity of a pixel at position (i, j) in the input image X.
TV loss serves as a regularization term and improves consistency in the raw

difference maps enforcing the model to perturb only densely located regions.

4 Experiments

4.1 Datasets

TotalSegmentator. The TotalSegmentator [38] dataset is an extensive collec-
tion of CT imaging data, particularly designed to train and evaluate algorithms
for the task of image segmentation. Originating from a wide array of sources,



Counterfactual Inpainting for Weakly Supervised Segmentation 47

it encompasses a diverse set of medical scans, including those of the chest,
abdomen, and pelvis regions, among others. In addition to manually labelled
ground truth masks, a great portion of the dataset is annotated with pre-trained
segmentation models, which introduces some level of noise to the annotations.

Synthetic anomalies are generated inside the kidneys of these scans for devel-
opment of the model before moving to segmentation of real tumors. Generation
of synthetic anomalies is described in Sect. A.2. The dataset’s scans are split
randomly into training and validation sets with a ratio of 80%/20%.

TUH. The Tartu University Hospital kidney tumor dataset contains contrast
enhanced CT scans of 291 kidney tumor cases and 300 control cases with pixel-
level annotations for classes kidney, malignant lesion and benign lesion. Dataset
was annotated by five radiologist and each scan was annotated by at least two
of them. Final labels were produced by combining the two versions. If any
major disagreements presented themselves they were resolved in direct discussion
between radiologists. From pixel-level labels, the image-level labels are extracted
of whether the slice contains a malignant lesion (kidney tumor) or not and used
these labels for training of the classifier. Pixel-level labels were only used for eval-
uating the final segmentations quality. The dataset’s scans are split randomly
into training and validation sets with a ratio of 80%/20% stratified by the total
tumor area in voxels present in each scan.

4.2 Evaluation

Realism of Generated Images. The Fréchet inception distance (FID) score
[15] is a widely used for measuring the similarity between generated images and
a real sets of images. It involves the use of a pre-trained deep learning model
to extract feature vectors from both sets of images. These features encapsulate
various aspects of the images, such as textures, edges, and patterns. The simi-
larity is defined as the distance between the activation distributions of the real
image x and the synthetic explanations xc as,

FID(x, xδ) = ||μx − μxδ
||22 + Tr(Σx + Σxδ

− 2
(
ΣxΣxδ

) 1
2 ), (7)

where μ’s and Σ’s are mean and covariance of the activation vectors derived
from the penultimate layer of a pre-trained Inception v3 network.

Classifier Consistency. Counterfactual Validity (CV) score is a metric defines
the fraction of counterfactual explanations that successfully flipped the classi-
fication decision, e.g. if the input image is positive, the explanation should be
predicted as negative. Prediction flip is considered successful when the differ-
ence of predictions |f(X) − f(Xcf )| is over a certain threshold τ . Similarly to
the original study [33], τ = 0.8 is used.
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Segmentation Metric. Intersection Over Union (IoU) score is a widely
adopted metric for evaluating segmentation accuracy. It is computed as follows:

IoU(S, Sc) =
|S ∩ Sc|
|S ∪ Sc| =

TP

TP + FP + FN
, (8)

where S and Sc are ground truth and predicted segmentation masks respec-
tively and TP , FP , FN stand for true positive, false positive and false negative
predictions.

4.3 Implementation Details

All neural networks were implemented in PyTorch [27] and were trained on the
High Performance Computing (HPC) cluster of the University of Tartu on a
single Nvidia A100-SXM-40 GB GPU. Only kidney slices with kidney mask area
of at least 32 pixels per image are used from each dataset, which are resized to
256× 256 with bilinear interpolation and sampled into batches of 16 images. The
training pipeline consists of two independent stages, namely classifier and expla-
nation model training. The parameters of the classifier remain frozen through-
out training process of the GAN. As for the classifier architecture, the models
like ResNet18 [14] for the synthetic anomalies and EfficientNet-V2 [35] for real
tumors are used respectively. The Adam [22] optimizer is used for optimizing the
objective function with parameters α = 0.0002, β1 = 0, β2 = 0.9. The segmenta-
tion masks from counterfactual generation are extracted as taking the absolute
difference between the counterfactual and input images, and thresholding it with
a fixed value.

4.4 Comparison with Modified Singla et al.* Method

To establish a baseline comparison, the main purpose is to contrast the proposed
method with that of Singla et al. However, the direct comparison is challenging
due to the absence of the model’s code, necessitating a unique implementation.
To establish fair comparison, the reliance on segmentation masks should addi-
tionally be removed in the loss function, as the goal is to detect the masks for
WSSS without using them explicitly. Thus, the loss terms were adapted accord-
ingly. The reconstruction loss is computed as a plain L1 function averaging over
all the pixels in the generated and input images. This modification, however,
resulted in poor segmentation performance. Suspecting unreported skip connec-
tions in their cGAN model, the baseline was enhanced by incorporating skip
connections. In the given results, this adjusted model is referred as the modified
Singla et al*.
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5 Results

In this chapter, evaluation results are given for the proposed COIN method com-
pared to attribution methods [18,29,37]. To convert the attention maps produced
by all the methods, the outputs are normalized to the [0; 1] range and threshold
with a fixed value. The 0–1 range sweep is performed to find the best bina-
rization threshold that maximizes IoU for each method. For the counterfactual
methods, a morphological postprocessing of closing and opening is applied to
suppress noise and retain only one largest connected component in the masks.
The results are presented in the Table 1 and the Fig. 2 for synthetic anomalies
and real tumors respectively on a test set. In all the comparisons, COIN outper-
forms the alternative methods by a large margin in terms of IoU of up to 60%
on synthetic anomalies, and up to 14% on real tumors. Moreover, while attri-
bution methods like CAM and RISE are computationally inexpensive, as they
do not require training an auxiliary model, they generally yield less accurate
results and do not have static inference times, requiring multiple forward passes
to compute saliency maps, which makes them less efficient for large datasets.
In contrast, COIN, despite requiring approximately 20 h of training on a single
GPU, necessitates only a single forward pass and significantly enhances perfor-
mance, achieving superior results that justify the additional computation time
and making it more efficient for extensive data applications.

Table 1. Metric results for the attribution methods and the proposed counterfactual
inpainting pipeline on TUH dataset. Since CAMs and RISE do not create counterfac-
tual images, FID and CV metrics cannot be computed for these methods.

Datasets Methods FID↓ CV↑ IoU↑
TotalSegmentator ScoreCAM – – 0.030

LayerCAM – – 0.026

RISE – – 0.397

Singla et al.* 0.047 0.998 0.445

COIN 0.003 0.997 0.646

Tartu University Hospital ScoreCAM – – 0.293

LayerCAM – – 0.296

RISE – – 0.294

Singla et al.* 0.203 0.992 0.352

COIN 0.036 0.980 0.432

5.1 Ablation Experiments

In the ablation study of this research, the importance of each loss term’s contri-
bution to the final image realism is assessed, classifier predictions flip rate and
segmentation accuracy for the proposed counterfactual inpainting pipeline. This
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Fig. 2. Visualization of the attribution and the proposed counterfactual inpaint-
ing pipeline methods’ predictions on TotalSegmentator and TUH datasets. For each
dataset, the bottom row depicts thresholded masks obtained from saliency maps from
each method. For each masks, colors represent outcomes in terms of true positive
(green), false positive (red) and false negative (yellow) predictions. White masks denote
ground truth labels. Images are zoomed in for better clarity. (Color figure online)

Table 2. Ablation study results on each loss term contribution based on TotalSegmen-
tator dataset with synthetic anomalies.

Experiment FID↓ CV↑ IoU↑
λidt = 0 0.0024 0.997 0.500

λf = 0 0.0032 0.642 0.424

λtv = 0 0.0178 0.997 0.427

COIN baseline 0.0029 0.997 0.646

was achieved by zeroing out the weights of each loss term independently and
compare the metric results. The Table 2 presents the results of the experiment.

Classifier consistency loss plays a crucial role for learning good counterfactual
images, since excluding it from the loss practically removes the influence of the
classifier on the generator outputs, resulting in CV score degradation by 35%.
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Self-Consistency and TV losses are important for the model to avoid random
perturbations and force the model to focus on perturbing only densely located
regions, which enforces minimum change and increases IoU by up to 22%.

6 Discussion

In this study, a novel counterfactual inpainting approach is introduced for weakly
supervised semantic segmentation, which demonstrated to outperform existing
attribution methods and the baseline counterfactual method in the segmentation
of synthetic anomalies and real tumors on Tartu University Hospital dataset.
Aiming for a fair comparison, the best performing threshold is meticulously
selected for all attribution methods. Still, CAM methods substantially under-
performed compared to the proposed approach on both synthetic anomalies and
real tumors. They primarily rely on high-level classification-relevant image areas
and often fail to localize the central parts of anomalies accurately. RISE proved
to be more effective than ScoreCAM and LayerCAM methods as it produces
the saliency map based on the direct perturbations of the input image with
pre-generated masks. The intentions for comparison with original Singla et al.
approach were challenged by the unavailability of the code. This is addressed
through a custom implementation, enhancing their method with added skip con-
nections. It is assumed that the original methodology might have underreported
architectural details, given its poor initial performance. The modified Singla
et al.* approach achieved high segmentation results after postprocessing but pro-
duced lower fidelity images resulting in high FID score. Overall, COIN generates
consistent difference maps, enhancing the accuracy and confirming suitability for
the WSSS task. Figure 2 offers a qualitative evaluation of the generated coun-
terfactuals for the discussed methods.

Limitations and Future Works. A key limitation of the effectiveness of the
developed counterfactual inpainting pipeline is its dependency on the perfor-
mance of the underlying black-box classifier. Although simpler than training a
segmentation model, training a classifier to a satisfactory level of accuracy and
robustness may become a non-trivial task that requires substantial amounts of
labeled data, computational resources, and careful tuning of model parameters.
Any imperfections in the classifier, such as biases in the training data, overfitting,
or underfitting, can adversely affect the quality of the generated counterfactuals.
This, in turn, can lead to poor segmentation labels, which may not accurately
reflect the underlying data distribution or the specific features that are of interest
in the analysis.

Another notable limitation of the current pipeline is its restriction to 2D
analysis, despite the inherently 3D nature of the CT scans dataset. This simpli-
fication can lead to a loss of spatial context and information that is crucial for
accurate segmentation and analysis of medical images. This limitation highlights
the need for extending the pipeline to accommodate 3D data directly which is
planned for the future works. Developing methods that can efficiently process
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and generate counterfactuals in 3D would significantly enhance the applicability
and effectiveness of the pipeline in medical imaging contexts. Recognizing this,
future work will focus on extending COIN to accommodate 3D data, thereby
enhancing the precision of segmentation masks as 3D input will provide a more
comprehensive understanding of the input. Additionally, the weakly supervised
segmentation pipeline with counterfactual inpainting should not be confined to
tumor data and medical domain in general. Future studies will assess the gen-
erality of COIN method, testing its effectiveness across diverse applications and
datasets. This exploration is anticipated to be particularly beneficial in scenarios
where acquiring segmentation masks is more challenging than obtaining classi-
fication labels.

7 Conclusion

In this study, a novel strategy is proposed that utilizes explainability for weakly
supervised semantic segmentation task for medical domain. By adopting a coun-
terfactual method as a foundation, the method is enhanced with a perturbation-
based generator, simplified conditioning for inpainting or removing abnormal-
ity, elimination of the need for segmentation masks, and a new loss term for
enforcing smoothness in the counterfactuals. All these additions contributed to
precise generation of segmentation masks, demonstrating superiority over attri-
bution methods and original counterfactual approach. This innovative approach
enhances the capability to generate more nuanced and detailed counterfactual
examples resulting in a significant contribution to the field of weakly super-
vised learning. By addressing the inherent limitations of sparse annotations and
leveraging the power of counterfactual reasoning, the inpainting pipeline offers
a robust solution for improving semantic segmentation models without the need
for extensive manually labeled datasets. The code is released in the public repos-
itory:

https://github.com/Dmytro-Shvetsov/counterfactual-search
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Appendix A

In this chapter, a detailed experimentation is given for the iterative improve-
ments to the Singla et al.* method to obtain the COIN pipeline. Table 3 summa-
rizes all the performed experiments and obtained metrics based on the TotalSeg-
mentator and synthetic anomalies.

Table 3. Metric results for the iterative improvements of the original Singla et al. and
the COIN methods. Experiment H refers to the modified Singla et al.* method.

ID & iterative changes uses

masks

perturbations skip

connections

conditions FID↓ CV↑ IoU↑

A � 0 2 1.6190 0.992 0.020

B (+ perturbations) � � 0 2 0.5500 0.934 0.086

C (+ skip connection) � � 1 2 0.3254 0.968 0.284

D (+ skip connection) � � 2 2 0.1751 0.933 0.480

E (+ skip connection) � � 3 2 0.0849 0.961 0.463

F (+ skip connection) � � 4 2 0.0253 0.9542 0.509

G (− masks) � 4 2 0.0493 0.996 0.528

H (− perturbations) 4 2 0.0466 0.998 0.445

COIN � 4 1 0.0029 0.997 0.646

A.1 Loss Function for Dual-Conditioning in Singla et al.*

In this chapter, the main difference between COIN and the original Singla et
al.* is described in terms of loss functions for training the image generation
model. Firstly, the model of Singla et al.* with two conditions accepts an input
image X and a condition parameter δ, so that the counterfactual example Xcf =
E (X, 1−f(X)) yields a normal image if X is abnormal or an abnormal image
if X is normal. To achieve this, the classification model consistency loss
is introduced as follows:

Lf = DKL(f(Xcf ) || 1 − f(X)), (9)

In terms of domain-aware self-consistency loss, to achieve corresponding
counterfactual images when applying a series generations, the objective functions
is given as follows:

Lidt = Lrec(X,E (X, f(X))) + Lrec(X,E (X, 1 − f(X)), f(X)), (10)

where both components enforce the model to predict the identity image. How-
ever, the first component should generate one if conditioned on the f(X),
whereas the second one should generate the identity when doing counterfac-
tual generation two times in a row. For the experiments where it is referred
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that segmentation masks are used, the Lrec function is defined as the average L1
distance computed between foreground pixels of segmentation mask S for label
j.

Lrec(X,X ′) =
∑

j

Sj(X) · ||X − X ′||1.∑
Sj(X)

, (11)

In the case of the experiment with no masks used, Lrec is the L1 function similar
to COIN.

A.2 Synthetic Anomaly Generation

Fig. 3. Examples of the synthetic anomalies injected randomly inside kidneys for the
TotalSegmentator dataset.

In order to establish a robust benchmark for assessing the performance of the
modeling decisions, this research introduces a synthetic anomaly, meticulously
designed and integrated into the CT scans datasets. The synthetic anomaly is
conceptualized as a Gaussian blob, characterized by a fixed sigma and radius.
This design choice is deliberate, aiming to mimic typical radiological findings
that present as circular or ellipsoid structures in medical imaging. The synthetic
anomaly is sampled at random positions within one of the kidneys in the abdom-
inal slices of the scans in the TotalSegmentator dataset. This approach ensures a
diverse and unpredictable distribution of anomalies, closely simulating the ran-
domness and variability. To further enhance the complexity and variability of the
synthetic anomaly, a series of transformation and augmentation techniques are
employed, including random grid distortions, scaling and rotations. The exam-
ples of resulting gaussian blobs are visualized in Fig. 3.
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Fig. 4. Examples of images generated with original and perturbation-based Singla
et al.* pipelines.

A.3 Original vs Perturbation-Based Generator

Within this experiment, the counterfactual explainer of Singla et al. is taken to
validate the significant improvement employing the perturbation-based genera-
tion in terms of FID and IoU scores. The perturbation-based image generation
generates much higher fidelity images. Instead of reconstructing the whole input
image from scratch, the decoder learns to output only the changes needed to flip
classifier decision. Figure 4 gives qualitative evaluation of the generated images
following the two approaches.

A.4 Influence of Skip Connections on the Generated Images
Quality

In this experiment, the baseline of Singla et al. employing perturbation-based
counterfactual generation from the previous section is taken to showcase the
importance of skip connections in the generator network to mitigate drastic dis-
tortions of the input images. During the down-sampling process of the encoder,
the information loss is inevitable, so reconstructing the counterfactual images
with minimum perturbations becomes a challenge. Therefore, the skip con-
nections between different down-sampling and up-sampling layers are gradu-
ally injected to show the improvements in terms of FID and IoU scores. The
perturbation-based image generation leveraging skip connections results in less
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Fig. 5. Examples of images generated with and without skip-connections between
encoder-decoder layers of the perturbation-based Singla et al.* pipeline.

distorted images, hence, in lower FID score. Figure 5 gives qualitative evaluation
of the generated images with and without adoption of skip-connections.

A.5 Counterfactual Explanation vs Counterfactual Inpainting
Segmentation Accuracy

This experiment proves that the proposed counterfactual inpainting pipeline
outperforms the base counterfactual explanation approach. Both methods are
trained and evaluated in terms of segmentation accuracy for the extracted weak
segmentation labels from the counterfactual images.

The benefits of using the counterfactual inpainting are two-fold. First, it
does not require segmentation masks for enforcing local consistency. Second, the
IoU score is much higher due to the fact that the model is simplified to only
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Fig. 6. Examples of images generated with perturbation-based Singla et al.* method
equipped with skip connections and with the proposed counterfactual inpainting app-
roach.

either inpaint the anomaly or not to produce the segmentation mask. Figure 6
gives qualitative evaluation of the generated counterfactuals following the two
approaches.
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Abstract. A pressing issue in the adoption of AI models is the increas-
ing demand for more human-centric explanations of their predictions.
To advance towards more human-centric explanations, understanding
how humans produce and select explanations has been beneficial. In this
work, inspired by insights of human cognition we propose and test the
incorporation of two novel biases to enhance the search for effective coun-
terfactual explanations. Central to our methodology is the application
of diffusion distance, which emphasizes data connectivity and actionabil-
ity in the search for feasible counterfactual explanations. In particular,
diffusion distance effectively weights more those points that are more
interconnected by numerous short-length paths. This approach brings
closely connected points nearer to each other, identifying a feasible path
between them. We also introduce a directional coherence term that allows
the expression of a preference for the alignment between the joint and
marginal directional changes in feature space to reach a counterfactual.
This term enables the generation of counterfactual explanations that
align with a set of marginal predictions based on expectations of how the
outcome of the model varies by changing one feature at a time. We eval-
uate our method, named Coherent Directional Counterfactual Explainer
(CoDiCE), and the impact of the two novel biases against existing meth-
ods such as DiCE, FACE, Prototypes, and Growing Spheres. Through a
series of ablation experiments on both synthetic and real datasets with
continuous and mixed-type features, we demonstrate the effectiveness of
our method.

Keywords: Explainable AI · Counterfactual explanations · Diffusion
distance · Feasibility · Directional coherence · Post-hoc explanations ·
Model agnostic explanations · Tabular data · Interpretable machine
learning

1 Introduction

The demand for explainability of AI models has reached a new level of urgency
with the rapid adoption of AI in different domains. Fueled by deep learning
algorithms, applications in critical areas such as medical imaging [23,33], law
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[4], or finance [11] are seeking to automate and assist in decision-making [39].
However, the ability to explain why a certain prediction or decision was inferred
is a fundamental prerequisite for responsible deployment in high-stake fields
where accountability, transparency, and trust are valued [7,32].

Developing explanations of AI models for humans confront us with the com-
plexity of human explanatory processes [12,19]. Moreover, humans excel at rec-
ognizing patterns from limited examples, even in uncertain situations, and can
generalize concepts to address new problems [14]. While producing and evalu-
ating explanations is natural to us, the underlying processes depend on com-
plex mental models of the world which assist in inferring meaning from incom-
plete information based on previous experience [18]. Ideally, accessing a human’s
world model would allow for producing explanations that fill the specific gaps
in understanding, by contrasting input with prior knowledge of one’s mental
model. Without access to an accurate “theory of mind” model [2] as part of
one’s explainable model, another pathway to more human-centric explanations
is to incorporate the preferences or biases that humans have reported in their
judgment of explanations [34]. Following this perspective, our work incorporates
two cognitive biases in a novel way: feasibility with diffusion distance and direc-
tional coherence as consistency of proposed changes with prediction direction.

Counterfactual explanations have emerged as a powerful tool in Explainable
AI (XAI). Research in social sciences [22] highlights that human explanations
are usually contrastive, presented in a format “X because of Y rather than Z”,
where the “rather than Z” part is not always explicitly mentioned. A signifi-
cant subtype of contrastive explanations are counterfactual explanations which
answer questions such as “What would have happened if X had not occurred?”.
In the context of machine learning model explainability, counterfactual expla-
nations are used as local explanations [10,16]. Given a particular instance and
a trained model, they answer the question “What should the input have been
in order to change the decision outcome?”. The power of counterfactual expla-
nations lies in their ability to present alternative realities, aligning closely with
our natural hypothetical reasoning [42].

Despite significant advancements in the development of counterfactual meth-
ods such as DiCE [25], FACE [27], DACE [15], CLUE [1], Guided Prototypes
[36], CARE [30] and others, a complete integration of coherence within these
approaches continues to be challenging. There is a consensus within the commu-
nity that coherence is a crucial aspect distinguishing a basic explanation from an
effective one. However, the multifaceted nature of coherence complicates its def-
inition and application within AI explanations. Zemla et al. [42] highlight this
complexity by distinguishing between internal and external coherence, where
the internal coherence relates to the consistency among the components of an
explanation, while external coherence concerns the explanation’s alignment with
the user’s pre-existing knowledge. While existing approaches have attempted to
model external coherence through user-defined constraints or by tracing the
directional correlations within the feature space, the influence of the marginal
direction of features concerning model predictions has not been explored. On
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top of that, the use of diffusion distance ensures that counterfactual points are
obtained through feasible paths of connected points respecting underlying geom-
etry of the data manifold.

Our work contributes to this field by introducing CoDiCE, a framework
designed to generate Directionally Coherent Counterfactual Explanations. This
approach diverges from traditional methods by:

1. Replacing standard Lp distance measures used for proximity with diffusion
distance, prioritizing connectivity and feasibility of transitions towards coun-
terfactual scenarios.

2. Incorporating directional coherence as a constraint. This guides the selection
of counterfactual explanations which joint changes (changing multiple fea-
tures simultaneously) aligned with desired marginal changes (model of how
outcome should vary if one changes one feature at a time).

2 Related Work

Our work builds upon the literature about counterfactual explanations, by focus-
ing on their interpretation and integration of two cognitive biases: feasibility and
coherence.

To account for feasibility, different notions of distances between the original
point and counterfactual point were proposed. An early approach by Wachter
et al. [38] posits Manhattan distance, adjusted by the inverse median absolute
deviation, as a measure. Alternatives to this include the Euclidean (L2) or Gower
distances, with some methods employing a blend of L1 and L2 distances weighted
variably as an elastic net penalty. Despite accounting for scale variability, these
metrics might neglect data density variations, potentially placing the counter-
factual outside the data manifold. To mitigate this, CEM [6] propose training
an auto-encoder on the desired class data, introducing a novel objective function
term that penalizes the deviation of a counterfactual from its auto-encoded rep-
resentation. Similarly, [36] expands upon this concept by identifying a prototype
or class-representative instance through the autoencoder’s latent space. Further-
more, the DACE method [15] utilizes Mahalanobis distance, which accounts for
data correlations and Local Outlier Factor that penalize points that are out of
distribution.

Nonetheless, these methodologies do not sufficiently consider the transition
path from the original instance to its counterfactual. In contrast, FACE [27]
leverages k-NN to construct a connectivity graph, subsequently employing Dijk-
stra’s algorithm to identify the most feasible counterfactual pathway. This strat-
egy not only affirms the feasibility of the counterfactual point but also of its
pathway. A notable limitation of the FACE algorithm is its reliance on endoge-
nous data points, which can complicate feasibility in sparse datasets or higher-
dimensional spaces. Inspired by FACE, our approach utilizes diffusion distance,
initially training a diffusion map to generate a transition graph within the diffu-
sion space. This strategy accounts for data flow, enabling the projection of new
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points onto diffusion coordinates without the constraints imposed by reliance on
endogenous data.

An explanation is deemed coherent if it aligns with the recipient’s exist-
ing beliefs and knowledge, essentially reflecting the user’s mental model of the
application domain. Echoing Zemla et al. [42] understanding that there are two
types of coherence, Forster et al. [8] suggest that an explanation gains coherence
from consistency with the user’s knowledge. Additionally, when the counterfac-
tual scenario depicted is both realistic and typical of the alternative class dis-
tribution, they incorporate a loss term based on density estimate and external
knowledge, adding pre-defined constraints into the search. Alternatively, CARE
framework [30] interprets coherence as the consistency between the altered and
unaltered features from the original to the counterfactual point by training model
of correlations which guide the search towards more correlated features. Various
methods interpret the coherence measure as ensuring the point remains within
the same class distribution, modifying proximity with the Mahalanobis distance
[5], or incorporating auto-encoders [6,36] to maintain the counterfactual within
the data manifold.

Beyond data distribution conformity, coherence involves the transition from
the original point to the plausible counterfactual point. Some methods, such as
that proposed by [21], advocate for incorporating partial causal knowledge into
the search process, suggesting learning feasibility constraints from user feed-
back. This approach, while emphasizing feasibility, indirectly fosters coherence
by ensuring transitions adhere to plausible causal relationships. Additionally,
Raman et al. [29] utilize a Bayesian approach to model the relationships between
variables using conditional distributions. This allows for sampling counterfactu-
als from the posterior density while preserving domain-specific constraints. Pri-
mary methods underscore the significance of coherence by ensuring counterfac-
tual explantions adhere to partial domain constraints. However, most approaches
overlook the coherence of transitions from factual to counterfactual points with
respect to the model’s output.

3 Incorporating Novel Biases in Counterfactual Search

This section introduces our approach to refining the search for counterfactual
explanations by incorporating two terms that account for a feasibility and exter-
nal coherence biases in a novel way. The methodology aims to generate more
intuitive and human-centric explanations. Finally, we detail the integration of
these biases into the counterfactual objective function and optimization strategy.

3.1 Using Diffusion Distance to Search for More Feasible
Transitions

A strategy for generating meaningful counterfactual explanations is to develop
methodology that emphasizes the feasibility, coherence, and actionability of pos-
sible explanations. We propose the utilization of diffusion distance as a metric to
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assess the connectivity and potential actionability of counterfactual transitions.
Unlike traditional distance metrics such as Euclidean (L2), Manhattan (L1),
or shortest-path distance on the data manifold (as used in FACE or Isomap
[35]), diffusion distance offers a nuanced understanding of the data manifold
by prioritizing transitions between data points that are interconnected through
numerous, short paths. This approach brings points that are highly connected
by numerous short paths into closer proximity, and hence highlighting points
for which numerous short routes exist to transition from one point to the other
while being on the data manifold. The concept of diffusion distance and its role
in detecting counterfactual points that are more “accessible” from the original
instance (in the sense of the existence of numerous short distance routes between
the points) is illustrated in Fig. 1.

Fig. 1. Illustration of the concept of diffusion distance and its use for counterfactual
search. Left panel: Points connected by numerous short distance paths (A-C) exhibit
a shorter diffusion distance than pairs of points which connections pass through a
bottleneck or low density region (A-B). Note that evaluated by Euclidean distance the
pairwise distance A-C and A-B would be exactly the same. Right panel: 3D S-shaped
synthetic dataset with two classes. The input point belongs to class 0, the diffusion
distances between such point and 6 counterfactual candidates are displayed.

The formal definition of diffusion distance between two points x and y at
time t is given by:

Ddiff(x, y, t)2 =
∑

z

(pt(x|z) − pt(y|z))2

φ0(z)
, (1)

where pt(x|z) represents the probability of transitioning from point z to x in
t steps following a diffusion process (random walk on the graph), and φ0(z)
is the stationary distribution of the diffusion process at point z. This formula
highlights the diffusion distance’s capacity to account for the data’s intrinsic
geometry through probabilistic transitions.
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Employing Diffusion Distance with Self-Tuning Kernel for Local Scal-
ing. Our implementation incorporates a self-tuning kernel within the diffusion
distance framework [41], adjusting dynamically to the variance in the data. This
adjustment ensures the robustness across different data domains and reduce the
number of parameters needed for fitting, as the only parameter we ask is number
of nearest neighbors, which is intuitive to set up.

Diffusion distance is rooted in the concept of diffusion processes on graphs,
encapsulating the connectivity and density of data points within a dataset. This
metric quantifies the ease of traversing the data landscape from one point to
another, factoring in the multitude of potential paths and their associated prob-
abilities. The key advantage of diffusion distance over the shortest-path distance
on the manifold as used by FACE or Isomap is its robustness to noise, which is
particularly valuable in high-dimensional settings where data sparsity and noise
are prevalent challenges. By facilitating the exploration of multiple paths, diffu-
sion distance looks for counterfactuals through a sequence of realistic transitions
which favour to in-distribution feasible point.

3.2 Directional Coherence

Directional Coherence formulates a bias designed to maintain consistency
between the marginal (one feature at a time) and joint (multiple features simul-
taneously) directions in feature space needed to flip the outcome of the model’s
prediction. This coherence facilitates the generation of counterfactual explana-
tions that not only adhere to the model’s predictions for individual feature alter-
ations but also align with the overall direction of change necessary to shift to
a desired counterfactual state. Such term can be use to tune the importance
of aligning counterfactual paths with intuitive human reasoning about a set of
causal expectations when changes are produced in marginal directions (changing
one feature at a time).

To illustrate this concept, consider the scenario of applying for a home loan,
where it is intuitively expected that an increase in income for either the applicant
or co-applicant would improve the chances of loan approval. We would be shocked
to learn that a bank advises increasing the applicant’s income, but decrease a
co-applicant income. This counterintuitive recommendation could arise from the
specific nature of the data distribution, reflecting scenarios where other people
with these factual scenario in the past got loan approval. We argue that although
observing such point is possible, it would represent an undesirable direction
for counterfactual explanation. Figure 2 illustrates this conceptual situation. An
input point highlighted with rectangular shape and belonging to Class 1, has two
counterfactual candidates CF1 and CF2, which are associated with the desired
Class 2. The data spread indicates that increases in Feature 1 and Feature 2
are correlated with a higher likelihood of predicting Class 2. Consequently, CF2

point is directionally coherent, as the joint increase in these features aligns with
the marginal direction of probability of Class 2. On the other hand, CF1 is
directionally incoherent, since the change in Feature 1 leads to decrease in the
posterior probability of predicting Class 2.
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Fig. 2. Illustration of Directional Coherence. The input point belongs to Class 1. Given
counterfactual candidates CF1 and CF2 at equal distance from the original input point,
we deem CF1 as incoherent with respect to the expected effect of changing Feature
1. Intuitively, CF1 suggests to decrease Feature 1, while the effect of increasing either
Feature 1 or Feature 2 is to increase the posterior probability of predicting Class 2.
For the other counterfactual (CF2), there is an agreement between the direction of
marginal changes (changing one feature at a time) and the joint direction of changes
resulting in a more coherent counterfactual point.

Thus, directional coherence is predicated on the intuition that certain feature
alterations should consistently lead to predictable changes in the model’s output.
This is especially crucial in complex domains where interpretability and action-
ability of counterfactual explanations are required. By assessing the directional
impact of each feature independently, we can ascertain the collective influence
exerted by all features on the transition towards the desired counterfactual state.

Mathematically, we formulate directional coherence as a term that quantifies
the preference for alignment between joint and marginal directional changes in
the feature space necessary to achieve a counterfactual outcome. For clarity,
we introduce here the case of a classifier. The corresponding formulation for a
regression model is an straightforward extension.

Let us denote f : X → Y the classification model. Given an original
instance as a vector x = (x1, x2, . . . , xn) ∈ X ⊆ R

n and a counterfactual
instance x∗ = (x∗

1, x
∗
2, . . . , x

∗
n) ∈ X ⊆ R

n that brings the desired outcome.
The goal is to evaluate the coherence of the transition from x to x∗ in achiev-
ing a specified outcome label y with a set of expected marginal transitions
{xi → x′

i | f(y|x1, x2, . . . , x
′
i, . . . , xn) ≥ f(y|x1, x2, . . . , xi, . . . , xn) , 1 ≤ i ≤ n}.

Notably, while marginal transitions are typically derived from the model, user-
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specified marginal transitions, when provided, take precedence over those sug-
gested by the model.

Then, the Directional Coherence score counts the excess of features which
have aligned marginal (′) and joint (∗) directions to increase the model’s predic-
tion probability towards the desired outcome y:

dcoherence =
1
n

n∑

i=1

sgn ((x∗
i − xi) (x′

i − xi)) . (2)

The information about incoherent features can be leveraged to introduce new
constraints or refine the model. Additionally, repeated patterns of incoherence
could indicate areas where the model’s sensitivity to changes in feature values
needs further investigation or adjustment. The implementation of calculating
directional coherence is illustrated in Appendix A Algorithm 2.

3.3 Bringing Feasibility and Directional Coherence
into Counterfactual Objective Function

Next we formalize the incorporation of the feasibility and coherence biases within
the objective function for the counterfactual search. We denote by f a trained
predictor function that maps the input space X to the output space Y, i.e., f :
X → Y. Given a factual point or the original input point x = (x1, x2, . . . , xn) ∈
X ⊆ R

n, our objective is to identify a counterfactual point c∗ = (c∗
1, c

∗
2, . . . , c

∗
n) ∈

X ⊆ R
n that yields the desired label y while minimising a weighted sum of

diffusion distance, sparsity, and directed coherence penalties. The optimization
problem is defined as follows:

c = arg min
x∗

(
loss(f(x∗), y) + λ1diffusion dist(x∗, x)

+ λ2sparsity(x∗, x) + λ3(1 − dcoherence(x∗, x))
)

, (3)

where:

– loss(f(x∗), y) is the loss term that checks if the counterfactual outcome is
equal to the desired outcome, we utilize commonly used loss measures hinge-
loss [9] for classification and mean squared error [28] for regression.

– diffusion dist(x∗, x) quantifies the diffusion distance between the original
point x and the counterfactual point x∗ (see formula (1)).

– sparsity(x∗, x) computes the l0 distance to count the number of features that
have been modified.

– dcoherence(x∗, x) assesses the directional coherence by aligning the joint
direction of the counterfactual point with its marginals. Since we are inter-
ested in minimizing objective function, we take the penalty measure (1 −
dcoherence).

The terms are weighted by hyperparameters λ1, λ2, and λ3, which can be
adjusted or set to 0 if a particular constraint is not applicable.
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There is a natural division between continuous and categorical features which
have different properties. For categorical features, the notion of diffusion dis-
tance does not apply, and measuring distance is challenging, necessitating a
context-specific approach. We employ the L0 norm to detect category changes,
which could be further refined based on the number of categories and the diffi-
culty of changing each feature.:

distcat(x, x∗) =
1
m

m∑

j=1

I(x∗
j �= xj) (4)

It is notable that the distance for categorical features overlap with the sparsity
term, we intend to keep it that way, as the user might want to tune down sparsity
weight term without accounting for its effect on the search of counterfactual
explanation. Therefore, the objective function for counterfactual search for mix-
type data is the following:

c = arg min
x∗

(
loss(f(x∗), y) + λ1diffusion distcont(x∗, x) + λ1distcat(x∗, x)

+ λ2sparsity(x∗, x) + λ3(1 − dcoherence(x∗, x))
)

(5)

We optimize this expression with genetic algorithm, similarly to DiCE
’genetic’ optimization [25] with the details of implementation described in
Appendix A Algorithm 3.

3.4 Evaluation Metrics

To assess the quality and compare the performance of the generated counterfac-
tual explanations, we utilize commonly accepted metrics (Validity, Weighted L1
Continuous, Categorical L0) as well us our novel metrics inspired by our inte-
grated biases: Diffusion Distance and Directional Coherence. For their detailed
description see Appendix A.

4 Experiments

We conducted expereiments on two synthetically generated datasets to visualize
the effect of diffusion distance. After that, we applied our framework for com-
monly used in counterfactual explanation literature classification datasets, such
as Diabetes, Breast Cancer [40] and mixed-type features Adult [3] and German
[13]. Additionally, we used energy consumption prediction dataset [31] for test-
ing regression settings as for this case we also had access to domain experts for
feedback.
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4.1 Synthetic Datasets

To illustrate the effect of diffusion distance we generated two synthetic datasets:
an S surface and a Swiss roll, utilizing the sklearn.datasets module for their
creation. We thresholded the parameter of the generated shapes, dividing each
dataset into two distinct classes. The dataset were partitioned into training and
test subsets with a 80/20 split. We trained a Support Vector Machine (SVM)
classifier with radial basis kernel on these datasets resulting in 97% accuracy on
the test set for a S surface and 99% accuracy for a Swiss roll.

4.2 Datasets with Continuous Features

The Diabetes dataset, sourced from the UCI Machine Learning Repository,
consists of diagnostic measurements for predicting the onset of diabetes within a
Pima Indian population. It features 768 instances, each with 8 numeric predictor
variables such as the number of pregnancies, plasma glucose concentration, blood
pressure, and body mass index, among others. The outcome variable is binary,
indicating the presence or absence of diabetes.

The Breast Cancer Wisconsin (Diagnostic) dataset, also from the
UCI Machine Learning Repository, comprises features computed from a digitized
image of a fine needle aspirate (FNA) of a breast mass. It includes 569 instances
with 30 continuous features, describing characteristics of the cell nuclei present
in the image. The prediction task is binary, distinguishing between malignant
and benign tumors.

Energy consumption dataset is a time series data of residential building
energy consumption contains of 473 instances with indoor temperature, outdoor
temperature, active electricity historical observations. The prediction feature
is future electricity consumption. The counterfactual question is what should
have been the input to decrease energy consumption. Details of the dataset are
available here [31].

4.3 Classification Datasets with Mix-Type Features

The Adult Income dataset, often referred to as the “Census Income” dataset,
contains demographic information from the 1994 Census database. It consists of
48842 instances and 14 features (6 numerical and 8 categorical), including age,
work class, education, marital status, occupation, and hours per week, among
others. The dataset’s target variable is binary, predicting whether an individual’s
income exceeds $50K/year.

The German Credit dataset comprises financial and demographic data
for 1,000 loan applicants. Each instance is described by 20 attributes, a mix
of continuous and categorical variables, such as credit history, savings account
balance, employment duration, and purpose of the loan. The objective is to
classify individuals into good or bad credit risks.

Compas dataset encompasses information related to defendants involved in
the criminal justice system. It consists of 7214 instances with 11 features (4
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continuous and 7 categorical), such as age, race, gender, criminal history, charge
degree, etc. The target variable is the risk of recidivism (high or low). The dataset
has been a point of analysis in discussions on the fairness, bias, and transparency
of predictive algorithms in legal settings.

4.4 Benchmarking with Other Frameworks

We compared our results with various counterfactual frameworks, focusing on
validity, diffusion distance, weighted L1 distance, directional coherence, and L0
categorical for mixed-type data. The compared methods are:

Diverse Counterfactual Explanations (DiCE) [25], the most popular
method in literature, generates diverse counterfactual instances using weighted
L1 for proximity on continuous features and L0 for categorical. Acknowledging
the trade-off between diversity and proximity, we generated a single, optimal
counterfactual explanation using DiCE’s original implementation.

Feasible and Actionable Counterfactual Explanations (FACE) [27]
considers feasible paths using the Dijkstra algorithm and produces counterfac-
tual points from existing training data. We ran the FACE algorithm using the
CARLA benchmark library [26] for algorithm comparison.

Guided Prototypes (Prototypes) [36] integrates the notion of coherence
by training an auto-encoder to select a prototype instance, ensuring the typicality
of the point. Prototypes use a combination of weighted L1 and L2 as an elastic
net regularizer for proximity.

Growing Spheres (GS) [20] employs weighted L2 and L0 norms between
counterfactuals and candidates. It is often reported to generate the closest coun-
terfactuals in terms of proximity. Importantly, GS does not support mixed-
feature datasets.

We ran Prototypes and GS methods from [24], a library created for bench-
marking counterfactual methods.

5 Results

5.1 Diffusion Distance and Directional Coherence on Synthetic
and Diabetes Datasets

We applied the CoDiCE framework on synthetic datasets to illustrate the effect
of diffusion distance on geometrically structured data. Figure 3 shows the “S”
surface and Swiss roll shape partition in two classes. We took original Input point
from class 0 and searched for counterfactual point minimising a L1 distance
(Fig. 3 (a), (c)), and diffusion distance (Fig. 3 (b), (d)). As indicated in the
figure, the counterfactual obtained using L1 distance crosses a low-density data
region and ignores geometrical structure of the data, while counterfactuals found
using diffusion distance respects the connectivity of the data manifold.
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Fig. 3. Counterfactual search on synthetic datasets. The counterfactuals obtained for
the S surface and Swiss roll illustrate the role of diffusion distance (panels b and d)
to take into account the connectivity of the data manifold as opposed to L1 (panels a
and b) or more generally other Lp distances.

To illustrate the effect of diffusion distance on the counterfactual search for
high-dimensional data, we also applied dimensionality reduction techniques such
as PCA and t-SNE. For the trained Logistic Regression model and diabetes test
set we searched for counterfactual explanations with weighted L1 ( L1 norm
with the inverse of the median absolute deviation that is commonly used in
counterfactual methods as it originates from Wachter et al. [38]) as well as dif-
fusion distance. We evaluated the search using 5 random samples as original
inputs and visualize them together with their counterfactuals on PCA and 10
random samples visualized on t-SNE coordinates (Fig. 4). The counterfactuals
obtained using diffusion distance point are significantly closer in both PCA and
t-SNE coordinates than the corresponding obtained with L1 distance. This type
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of visualizations further suggest that diffusion distances are useful to capture
the connectivity and clustering structure of the dataset.

Fig. 4. Counterfactual search on the Diabetes dataset projected onto PCA coordinates
(a) and t-SNE (b). The plot has triplets of points connected by doted lines Input
instance (blue circle) their respective Counterfactual point obtained with diffusion
distance (green triangle) and Counterfactual point obtained with weighted L1 distance
(red square). (Color figure online)

5.2 Comparison of CoDiCE with Other Counterfactual Methods
on Various Datasets

Beyond the visual illustrations, we set to compare the effect of diffusion dis-
tance and directional coherence against various popular conterfactual frame-
works. In particular, we evaluated the following statistics: validity, diffusion dis-
tance, weighted L1 distance for continuous features, L0 distance for categorical
features and directional coherence.

To make a fair comparison we adjusted the preprocessing of the data and
our choice of model to be compatible with other frameworks. For all datasets
we apply OneHotEncoding for categorical features and standardization for con-
tinuous features. After that we split the data into 80/20 train test split to train
Logistic Regression model. In our experiments model is treated as a black-box
and can be replaced with any other model. Finally, we generated counterfactual
explanations for the first 100 instances from the same test set across all methods
for every dataset.

To measure the effect of directional coherence isolated from that of the diffu-
sion distance, we implemented two versions of CoDiCE framework: CoDiCEdiff

that uses diffusion distance for proximity and directional coherence CoDiCEL1

that uses a weighted L1 proximity measure similarly to DiCE and directional
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Table 1. Evaluation metrics comparison across different frameworks for datasets with
continuous features. For distance and coherence metrics we report average and standard
deviation over 100 samples. Validity is expressed in %.

Dataset Metric Validity ↑ Diffusion ↓ L1 continuous ↓ DCoherence ↑

Diabetes CoDiCEdiff 100% 0.38 ± 0.22 1.11 ± 0.53 0.64 ± 0.15

CoDiCEL1 100% 0.72 ± 0.45 0.29 ± 0.16 0.76 ± 0.16

DiCE 54% 1.62 ± 0.73 1.10 ± 0.34 0.68 ± 0.13

FACE 70% 1.64 ± 0.67 1.08 ± 0.36 0.72 ± 0.14

Prototypes 26% 2.18 ± 0.88 2.12 ± 0.61 0.84 ± 0.07

GS 100% 0.67 ± 0.31 0.39 ± 0.19 0.57 ± 0.12

Breast Cancer CoDiCEdiff 60% 2.87 ± 1.21 2.18 ± 0.39 0.78 ± 0.10

CoDiCEL1 60% 2.62 ± 1.07 1.22 ± 0.37 0.67 ± 0.09

DiCE 46% 2.13 ± 0.87 0.97 ± 0.28 0.72 ± 0.08

FACE 63% 2.91 ± 1.08 0.98 ± 0.38 0.74 ± 0.10

Prototypes 31% 4.72 ± 0.45 2.22 ± 0.37 0.79 ± 0.01

GS 100% 2.25 ± 1.31 0.47 ± 0.28 0.58 ± 0.08

coherence. Table 1 shows the comparison of methods for Diabetes and Breast
Cancer datasets, both of which represent data with continuous features.

We report that for the Diabetes dataset only CoDiCEdiff, CoDiCEL1 , and
GS obtained 100% Validity, and hence all of the proposed counterfactual points
for these methods did actually flip the outcome. It is important to note that
the metrics are computed for valid points (points for which the desired outcome
change is realized). As expected CoDiCEdiff has the lowest diffusion distance
(0.38 ± 0.22) and both CoDiCEL1 has the lowest weighte L1 distance. FACE
showed to be more efficient method than Protypes having higher Validity, which
resulted in the highest directional coherence score, given that it was computed
on a very few valid counterfactuals (0.84±0.07). Surprisingly, GS is comparable
with CoDiCEL1 in terms of proximity scores, however directional coherence is
the lowest.

For Breast Cancer dataset we found that it is quite difficult to find both
directionally coherent and feasible points. The validity of all methods was low
except for GS, which produces the least coherent counterfactuals. The highest
performing methods in terms of directional coherence were Prototypes (0.78 ±
0.10) and CoDiCEdiff (0.79 ± 0.01). However, Prototypes’ validity only reached
31%, and hence it discovered less than half the number of valid counterfactuals
than CoDiCE methods found (which reached 60% validity). Overall, as we will
explicitly show in ablation experiments directional coherence is in a trade-off
with diffusion distance (see Fig. 5) which resulted in the algorithm not having
lowest diffusion distance for this setting (specific weights for each term in the
cost function).
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Table 2. Evaluation metrics comparison across different frameworks for dataset with
mixed-type of features (continuous + categorical). For distance and coherence metrics
we report average and standard deviation over 100 samples. Validity is expressed in %.

Dataset Metric Validity ↑ Diffusion ↓ L1 cont ↓ L0 cat ↓ DCoherence ↑

Adult CoDiCEdiff 98% 0.001 ± 0.004 3.9 ± 1.4 0.2 ± 0.1 0.84 ± 0.09

CoDiCEL1 92% 0.005 ± 0.013 1.1 ± 0.6 0.4 ± 0.1 0.82 ± 0.08

DiCE 78% 0.005 ± 0.011 1.2 ± 0.6 0.1 ± 0.1 0.98 ± 0.02

FACE 82% 0.007 ± 0.013 0.7 ± 0.3 0.5 ± 0.2 0.81 ± 0.11

Prototypes 19% 0.013 ± 0.012 1.6 ± 0.4 0.7 ± 0.1 0.85 ± 0.05

German CoDiCEdiff 100% 4.3 ± 3.4 1.2 ± 0.5 0.1 ± 0.1 0.93 ± 0.04

CoDiCEL1 100% 6.4 ± 3.8 0.7 ± 0.4 0.1 ± 0.1 0.94 ± 0.04

DiCE 49% 8.2 ± 3.2 1.2 ± 0.4 0.5 ± 0.1 0.78 ± 0.07

FACE 63% 7.6 ± 2.4 1.0 ± 0.4 0.5 ± 0.1 0.79 ± 0.07

Prototypes 34% 10.1 ± 3.4 1.1 ± 0.6 0.7 ± 0.1 0.73 ± 0.05

Compas CoDiCEdiff 100% 0.03 ± 0.05 5.2 ± 1.9 0 0.92 ± 0.08

CoDiCEL1 100% 0.03 ± 0.05 0.8 ± 0.4 0 0.93 ± 0.07

DiCE 49% 0.03 ± 0.04 1.0 ± 0.6 0.4 ± 0.2 0.83 ± 0.11

FACE 18% 0.04 ± 0.06 1.2 ± 0.6 0.5 ± 0.2 0.79 ± 0.11

Prototypes 18% 0.01 ± 0.01 1.3 ± 0.7 0.6 ± 0.1 0.76 ± 0.09

Table 2 shows the comparison of counterfactual methods on mixed-type
datasets, such as Adult, German, Compas. Similarly as for the continuous case,
counterfactual instances were generate for the first 100 instances of the fixed test
set for the same Logistic Regression model.

Notably, for all datasets CoDiCEdiff and CoDiCEL1 results in the highest
validity. For both Adult and German dataset CoDiCEdiff has the lowest diffusion
distance. However, we note that for Adult and Compas datasets the standard
deviation of the diffusion distance is usually larger than its average. This indi-
cates that diffusion distance distribution is significantly skewed for these datasets
and the standard deviation might not fully capture the nature of its variability.
Also for Compas the low validity for DiCE, FACE, and Prototypes resulted in
the metrics for such methods to be evaluated from relatively few samples.

Furthermore, mixed-type data brings the question of the weighting between
the proximity metrics for continuous and categorical features. Depending on
such weighting the method can results in cases in which a higher preference
for changing categorical features results in a smaller difference in continuous
features needed to flip the prediction. Hence, for mixed-type of data the pressure
to minimize diffusion distance (which is exclusively computed for continuous
features) is also a function of the weighting between continuous and categorical
features proximity biases.
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As an additional metric, the running time for searching counterfactual expla-
nations using these methods was measured. We report the running time for the
most challenging dataset in terms of diffusion distance: Breast Cancer, which has
30 continuous features. The average speed of finding one counterfactual point on
such a challenging dataset averaged 27 s for CoDiCEdiff and 26 s for CoDiCEL1 .
The running times are comparable since the diffusion distance is calculated for
the entire dataset once. It is important to note that no code optimization efforts
have been made thus far. For other methods, FACE requires, on average, 13 s
to identify a counterfactual point, GS took 0.44 s, and the highly optimized
DiCE took 0.11 s per counterfactual point. Although not the focus of our cur-
rent investigation, we believe that code optimization efforts could significantly
enhance running times, an aspect we aim to explore in forthcoming studies.

Table 3. Evaluation metrics comparison across different frameworks for the Energy
consumption dataset (regression problem). For distance and coherence metrics we
report average and standard deviation over 100 samples. Validity is expressed in %.

Dataset Metric Validity ↑ Diffusion ↓ L1 continuous ↓ DCoherence ↑
Energy CoDiCEdiff 100% 0.005 ± 0.03 0.52 ± 0.33 0.67 ± 0.04

CoDiCEL1 100% 0.003 ± 0.02 0.41 ± 0.26 0.63 ± 0.11

DiCE 100% 1.64 ± 2.21 0.51 ± 0.47 0.62 ± 0.11

The energy the consumption dataset was fitted with a genetic programming
model (symbolic tree) trained with GP-GOMEA library [37]. It is a regression
problem, which similarly to the logistic regression models for previous datasets,
we treat as a black-box for counterfactual search. The target of interest was
decreasing energy consumption by 5%. We ran counterfactual search for 20 test
instances, where for every instance we targeted an energy consumption decrease
in the range [10%, 5%] of that predicted at the original input. Among methods
used in our comparison only DiCE supports a regression problem. The compar-
ison with DiCE for this model is shown in Table 3.

5.3 Ablation Experiments

To systematically explore the influence of each term within the CoDiCE objective
function (5), we conducted ablation studies on the Diabetes dataset reported in
Table 4. The ablations consist of setting the weights of all terms except the one
under investigation to zero. Specifically, λ1 corresponds to the weight assigned
to the diffusion distance, λ2 to the weight assigned to sparsity, and λ3 to the
weight assigned to directional coherence.
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Table 4. Evaluation metrics under various ablations of diffusion, sparsity, and direc-
tional coherence terms for the Diabetes dataset.

Dataset Inactive terms Validity Diffusion L1 continuous Sparsity DCoherence

Diabetes λ2, λ3 100% 1.49 ± 0.55 1.01 ± 0.48 1 0.56 ± 0.13

λ1, λ3 100% 2.38 ± 0.86 1.92 ± 0.43 0.85 0.56 ± 0.13

λ1, λ2 100% 2.19 ± 0.98 1.73 ± 0.44 1 0.82 ± 0.06

Figure 5 also illustrates the outcomes of trade-off experiments by evaluating
the impact of varying the weights assigned to diffusion distance and directional
coherence. Given a fixed sparsity weight λ2 = 0.5, we varied the weight of diffu-
sion distance λ1 while setting the directional coherence weight to be λ3 = 1−λ1.
As the weight on diffusion distance increases from 0 to 1, effectively reducing
the emphasis on directional coherence, we observe a notable trade-off.

Fig. 5. Trade-off between diffusion distance and directional coherence penalty is
explored as the diffusion weight is increased.

6 Discussion

This study proposes novel incorporations into an objective function of counter-
factual search through the integration of diffusion distance and directional coher-
ence. These are aimed to enhance the feasibility and alignment with intuitive
expectations of a candidate counterfactual point. The introduction of diffusion
distance as a component of the objective function ensures that the search for
counterfactial points takes into account the underlying geometry of the data
manifold. Additionally, diffusion distance is robust to noise which is particularly
valuable in high-dimensional settings. The directional coherence term promotes
that the counterfactual suggestion aligns with internal constrains or intuitions
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about how individual feature changes the model’s outcome. After systematic
experiments with various datasets (with both continuous and mixed-type data)
we found that these terms work as intended and overall promote counterfactuals
with shorter diffusion separation (being well connected or same cluster as the
original input) and higher coherence (respecting marginal constraints). However,
it is important to note that the inclusion of several terms simultaneously can
result in a trade-off between both aims. The ablation experiments demonstrated
notable trade-off between these two components, emphasizing the importance
of a balanced approach to counterfactual explanation generation. The search
for explanation can be adjustable by the user identifying and weighing different
biases, given that there are different usages for generating explanations or modus
of construal [18], such as debugging the model behaviour or suggesting the end
user to act on explanation.

Future Work could involve a deeper investigation into the role of diffu-
sion distance in enhancing the robustness of counterfactual explanations. Given
the importance of ensuring that generated counterfactuals closely mirror the
underlying data distribution, diffusion distance may also contribute to making
explanations more resistant to variations in data or model perturbations. It
would be interesting to assess the impact of diffusion distance on the stability
of counterfactual explanations under varying conditions of data noise and model
uncertainty. While this study has highlighted the importance of balancing diffu-
sion distance and directional coherence, the generation of diverse counterfactuals
that equally satisfy these criteria presents a challenge. Addressing this challenge
could involve the adoption of multi-objective optimization strategies, where dif-
fusion distance and directional coherence are simultaneously optimized. That
would enrich the set of available counterfactual explanations and allow to adapt
towards user preferences, enhancing applicability.

7 Conclusion

We explored the effect of integrating diffusion distance and directional coherence
into the counterfactual explanation generation process. The proposed approach
produces explanations that are more aligned with human intuition about tran-
sition from factual to counterfactual point and take into account the intrinsic
geometry of the data. The findings highlight a crucial trade-off between these two
factors, underlining the necessity for a balanced integration to optimize expla-
nation quality. By formalising insights from human cognitive processes into AI
explanation frameworks, the field is advancing towards AI systems that offer
both more human-centric and intuitive explanations.
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A Appendix

To ensure reproducible research, the code for CoDiCE with all experiments is
released in the public repository:

https://github.com/anitera/CoDiCE

Diffusion distance with Self-tuning kernel

Our implementation incorporates a self-tuning kernel within the diffusion dis-
tance framework [41], adjusting dynamically to the variance in the data. The
main difference of self-tuning kernel approach is the kernel used for local scaling:

K(x, y) = exp
(

−‖x − y‖2

σxσy

)
. (6)

Here, K(x, y) denotes the kernel similarity between points x and y, while σx and
σy are the local scaling parameters for x and y, respectively. These parameters
are typically determined based on the distances to their k-th nearest neighbors,
allowing the kernel to adaptively modulate its influence across different data
densities.

The transition matrix P , pivotal for the diffusion process, is derived from the
kernel matrix K through normalization:

P = D−1K (7)

where D is the diagonal degree matrix of kernel similarity Dii =
∑

j Kij . This
step converts the kernel similarities into transition probabilities, facilitating the
computation of diffusion distances.

For the exact implementation details of the method see Algorithm 1.

https://github.com/anitera/CoDiCE
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Algorithm 1. Self-Tuning Diffusion Maps (STDM)
Require: Data matrix X ∈ R

n×d, number of neighbors k, diffusion time scale α
Ensure: Diffusion map embeddings DMap, eigenvalues Λ, eigenvectors V
1: Initialize STDiffusionMap object with k, α
2: K ← construct affinity matrix(X, k)
3: L ← construct transition matrix(K, α)
4: DMap, V, Λ ← make diffusion coords(L)
5: function construct affinity matrix(X, k)
6: Compute k-nearest neighbors for X
7: Calculate local scales for each data point
8: Form affinity matrix K using self-tuning kernel
9: return K

10: end function
11: function construct transition matrix(K, α)
12: Calculate right normalization vector q
13: Normalize K to form transition matrix P
14: Derive Laplacian L from P
15: return L
16: end function
17: function make diffusion coords(L)
18: Compute eigenvalues and eigenvectors of L
19: Select top eigenvalues and corresponding eigenvectors
20: Calculate diffusion map embeddings DMap
21: return DMap, V, Λ
22: end function

Evaluation metrics for counterfactual explanations

Validity measures the proportion of generated counterfactuals that successfully
achieve the desired outcome when applied to the model and defined as:

Validity =
Number of successful counterfactuals

Total number of counterfactuals generated
∗ 100% (8)

In evaluating counterfactual proximity to the original instance, it is stan-
dard practice to use the Weighted L1 distance for continuous features, as sug-
gested by Wachter [38], and the L0 norm for categorical features [10,17]. While
less common, some approaches incorporate the Mahalanobis distance [15] to
assess the typicality of the counterfactual within the desired class distribution.
For assessing continuous features, we use Weighted L1 Distance to maintain
consistency with prior research, but we also add Diffusion distance. As com-
pared to Mahalanobis distance it is offering additional insights by considering
the connectivity along the entire path from the factual point.

The Weighted L1 is defined by adjusting the L1 norm with the inverse of
the median absolute deviation (MAD) for each feature. The formula is given by:

L1Wachter(x, x′) =
M∑

i=1

( |xi − x′
i|

MADi

)
(9)
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Algorithm 2. Compute Directional Coherence Score
Require: Input instance x, Counterfactual instance x′, Required label y′, Model M ,

List of features F
Ensure: Directional coherence penalty dir coherence, Uncoherent suggestions S
1: Initialize marginal signs ← {} � Dictionary with the marginal direction of

prediction change for each feature
2: N ← Length(F )
3: for each f in F do � Iterate over all features
4: marginal signs[f ] ← Marginal Pred Signs(x, x′, f , y′, M)
5: end for
6: dir coherence ← 1

N

∑
f∈F [marginal signs[f ] �= −1] � Calculate directional

coherence score as ratio of coherent features
7: S ← {f | f ∈ F, marginal signs[f ] = −1} � Features not changing as expected
8: return dir coherence, S
9: function Marginal Pred Signs(x, x′, f , y′, M)

10: control ← copy(x)
11: control[f ].value ← x′[f ].value � Change only the current feature value
12: if M.type == “classification” then
13: original pred ← M.predict proba instance(x) � If model gives access to

probability prediction instead of thresholded value, it gives more precise result
14: control pred ← M.predict proba instance(control)
15: prob sign ← SIGN(control pred[y′] − original pred[y′])
16: else
17: original pred ← M.predict instance(x)
18: control pred ← M.predict instance(control)
19: prob sign ← SIGN(control pred − original pred)
20: end if
21: return prob sign � Sign of prediction change due to the feature’s alteration
22: end function

Algorithm 3. Genetic Algorithm for Counterfactual Generation
Require: model, original instance, desired output, population size, max iterations
Ensure: counterfactuals
1: Initialize population with population size members for original instance
2: Evaluate fitness of each member in population using model and desired output
3: for iteration = 1 to max iterations do
4: Select top half of population based on fitness scores
5: Generate offspring through crossover and mutation operations
6: Evaluate fitness of new members
7: Select population size members for the next generation
8: if convergence criteria met or iteration = max iterations then
9: Extract counterfactuals meeting desired output

10: break
11: end if
12: end forreturn counterfactuals
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where M is total number of points, MADi is the median absolute deviation of
the i-th feature across the dataset, and xi and x′

i are the values of the i-th feature
in the original and counterfactual instances, respectively.

L0 Categorical counts the number altered features and defined as:

L0(x, x′) = ‖{i | xi �= x′
i}‖0 (10)

indicating the count of non-zero differences between corresponding features of x
and x′.

The Diffusion Distance captures the proximity of the counterfactual to
the original instance, taking into account the intrinsic geometry of the data
manifold. It is calculated as:

Ddiff(x, x′) =

√√√√
M∑

i=1

(pt(x, i) − pt(x′, i))2

φ0(i)
(11)

where M is number of instances, pt(x, i) denotes the transition probability from
point x to i in t steps, and φ0(i) represents the stationary distribution.

Directional Coherence assesses the consistency between the prediction
changes of counterfactual features (jointly) and their per feature marginal
directions with respect to the model prediction. Given an original instance
as a vector x = (x1, x2, . . . , xn) ∈ X ⊆ R

n and a counterfactual instance
x∗ = (x∗

1, x
∗
2, . . . , x

∗
n) ∈ X ⊆ R

n that brings the desired outcome. The goal is
to evaluate the coherence of the transition from x to x∗ in achieving a specified
outcome label y with a set of expected marginal transitions

{xi → x′
i | f(y|x1, x2, . . . , x

′
i, . . . , xn) ≥ f(y|x1, x2, . . . , xi, . . . , xn) , 1 ≤ i ≤ n}.

Then, the Directional Coherence score counts the excess of features which
have aligned marginal (′) and joint (∗) directions to increase the model’s predic-
tion probability towards the desired outcome y:

dcoherence =
1
n

n∑

i=1

sgn ((x∗
i − xi) (x′

i − xi)) . (12)
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1 Introduction

Machine learning (ML) algorithms are increasingly used in high-stakes scenarios.
For example, they help to decide whether you receive a loan, if you are suitable
for a job, or even which disease you are diagnosed with. While ML-based systems
are powerful at detecting complex patterns in data, the reasoning behind their
predictions is often not easy to discern for humans. Many ML models are black
boxes with a complex mathematical structure that do not follow transparent
logical rules [8].

The emerging field of interpretable machine learning (IML) (also known as
explainable artificial intelligence or XAI for short) promises to open up these
black boxes and aims to make the decisions of ML models transparent to humans
(see [2,37] for overviews). A particularly simple approach is to explain algorith-
mic decisions to end-users via so-called counterfactual explanations [48].

Example: Imagine you apply for a loan. You enter characteristics such as
your age, salary, loan amount, etc. in the online application form and after a
few seconds you receive the decision – your loan application has been denied.
A counterfactual explanation could be: If your salary had been e5,000 higher,
your loan would have been approved.

More generally, a counterfactual explanation points to a close alternative scenario
(the so-called counterfactual) that, in contrast to the actual scenario, would have
resulted in the desired outcome. Counterfactual explanations may be employed
for various purposes, such as helping to guide a person’s actions [27,32], enabling
them to contest adverse decisions [34], and providing insights into the decision
behavior of the model [36]. For all these goals, counterfactuals must be plausible,
which means the alternative scenarios they depict are realistic. For instance, in
the example above, suggesting a negative loan amount or a real estate loan with
an amount of e500 would not be very plausible counterfactuals.

When adding plausibility as another objective for generating counterfactuals,
its trade-off with other objectives like proximity, i.e., that the counterfactual is
close to the point of interest, should be taken into account. Dandl et al. [11] were
one of the first to address this trade-off by framing the counterfactual search as
a multi-objective optimization problem. Their approach – multi-objective coun-
terfactual explanations (MOC) – returns not just a single counterfactual, but
a Pareto set of counterfactuals (see [50] for a definition of Pareto-optimality),
which is advisable to account for the Rashomon effect, i.e., that multiple, diverse,
equally good counterfactuals may exist [6].

An intuitive approach to plausibility is searching for only those counterfac-
tuals that are close to actual instances in the dataset [22]. To operationalize this
goal, one objective in MOC minimizes the distance between counterfactuals and
the actual instances. However, as presented in Sect. 3.1, this approach has its
limitations if, for example, there are low-density gaps close to the point of inter-
est between high-density regions. Other approaches model plausibility via the
joint probability density. They rely on computationally intensive neural network
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architectures such as variational autoencoders (VAEs) [7,25,35,39] or genera-
tive adversarial networks (GANs) [38,45]. While these architectures have merits
for high-dimensional tensor data (e.g., images or text), they are less suited for
tabular data (see our discussion in Sect. 3.2).

Contributions. We leverage a tree-based technique from generative modeling
called adversarial random forests (ARF) [49] to generate plausible counterfac-
tuals in a mixed (i.e., categorical and continuous) tabular data setting. We call
these countARFactuals and propose two model-agnostic algorithms to generate
them:

1. We integrate ARF into the multi-objective counterfactual explanation (MOC)
framework [11] to speed up the counterfactual search and find more plausible
counterfactuals (see Sect. 4.1).

2. We tailor ARF to directly generate plausible counterfactuals without an opti-
mization algorithm (see Sect. 4.2).

A simulation study shows the advantages in plausibility and efficiency of our
ARF-based approaches compared to competing methods (Sect. 5). Moreover,
we apply our method on a real-world dataset, namely to explain coffee quality
predictions (Sect. 6).

2 Related Work

There is widespread agreement in the counterfactual community that plausi-
bility is an important concern [16,22,27,29,44,47]. Various suggestions have
been made to incorporate plausibility into the counterfactual search, for exam-
ple using causal knowledge [32,35], case-based reasoning [30], outlier detectors
[26], restricting the search space [3], imputing feature combinations from real
instances [20], respecting paths between datapoints [40], or, as described above,
staying close to the training data [11].

Many define plausibility theoretically through the joint probability density
[47]. Some works rely on VAEs or standard autoencoders: they directly generate
counterfactuals [35,39], use VAEs in the optimization [25] or just for measuring
plausibility [7]. Other works rely on GANs to generate counterfactuals [38,45].
However, these approaches differ substantially from our work, as they are tailored
for neural network models [35], focus only on plausibility thereby ignoring other
objectives like sparsity [35,39] (see Sect. 3.1), or work only for continuous data
[25,38]. The closest works to ours are Brughmans et al. [7] and Dandl et al. [11].
Both are designed to generate plausible and sparse counterfactuals in mixed
tabular data settings. Brughmans et al. [7] use the autoencoder reconstruction
loss as a plausibility measure and Dandl et al. [11] use the distance to the k–
nearest neighbors to evaluate plausibility. We show in our experiments in Sect. 5
that utilizing ARF to generate counterfactuals improves plausibility compared
to those approaches while being computationally fast.
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3 Background

Before we present our approaches, we provide background on the two meth-
ods we build upon: multi-objective counterfactual explanations (MOC) [11] and
adversarial random forests (ARF) [49].

We consider a supervised learning setup with a binary classification or regres-
sion problem.1 X denotes a p-dimensional feature space. The respective vector
X := (X1, . . . , Xp)T of random variables may contain both continuous and cat-
egorical features. With Y ∈ R, we denote a random variable reflecting the out-
come. In case of a binary classification model, we restrict Y to {0, 1}.

To predict Y from X, we trained an ML model f̂ : X → R on a
dataset Dtrain := {(x(1), y(1)), . . . , (x(ntrain), y(ntrain))} with ntrain observations.
For binary classification, the model output is restricted to f̂(x) ∈ [0, 1], reflect-
ing the probability for Y = 1. Most counterfactual explanation methods require
access to a dataset for generating counterfactuals. To reflect that this dataset
can differ to Dtrain, we denote it as D in the following and assume it to consist
of n observations.

3.1 Multi-objective Counterfactual Explanations

Suppose we want to explain why a certain datapoint of interest x∗ was pre-
dicted as f̂(x∗) instead of a desired prediction within Ydes ⊂ R. Wachter et
al. [48] define counterfactuals as the closest possible input vector xcf to x∗

according to some distance on X such that f̂(xcf ) ∈ Ydes. This definition does
not explicitly demand sparse or plausible changes. When integrating all these
desiderata into an objective to generate counterfactuals, trade-offs between the
different objectives must be taken into account since the objectives conflict each
other. Figure 1a illustrates this for the properties plausibility and proximity to
the original instance x∗. If all high-density regions are far away from the decision
boundary, enforcing proximity leads to unrealistic counterfactuals.

To consider these trade-offs, Dandl et al. [11] turned the search for counter-
factuals into a multi-objective optimization problem:

xcf ∈ argmin
x∈X

(
ovalid(f̂(x), Ydes), oprox(x,x∗), oplaus(x,D), osparse(x,x∗)

)
. (1)

The different objectives denote:

1. Validity: Counterfactuals should have a predicted outcome in Ydes

ovalid(f̂(x), Ydes) := inf
y∈Ydes

|f̂(x) − y|. (2)

2. Proximity: Counterfactuals should be close to x∗ according to the Gower
distance dGower [19]

oprox(x,x∗) := dGower(x,x∗). (3)
1 Our framework also generalizes to multi-class problems; we restrict ourselves here

only for the sake of simplicity and notation.
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3. Plausibility: Counterfactuals should describe a realistic data instance, with
x[1], . . . ,x[k] indicating the k−nearest neighbors to x within data D and wi

denoting weights with
∑k

i=1 wi = 1

oplaus(x,D) :=
k∑

i=1

widGower(x,x[i]). (4)

4. Sparsity: Counterfactuals should vary from x∗ in only a few features

osparse(x,x∗) := ‖x − x∗‖0 =
p∑

j=1

1xj �=x∗
j
. (5)

Fig. 1. (a) Proximity and plausibility can be conflicting objectives [11]; enforcing prox-
imity may lead to unrealistic counterfactuals xcf . (b) To have high proximity (i.e., low
oprox in Eq. (3)) and high plausibility (i.e., low oplaus in Eq. (4), with k = 1), the
counterfactual may be in a low-density region.

Dandl et al. [11] adapted the nondominated sorting genetic algorithm or short
NSGA-II of Deb et al. [12] to solve the multi-objective optimization problem.
This algorithm follows three steps:

1. It generates a set of candidate instances close to the point of interest x∗.
Among these, it recombines and mutates the candidates that perform best
according to the above criteria. Per default, the mutator does not take feature
dependencies into account. To enhance plausibility, mutation can be option-
ally performed by sampling from conditional distributions learned on D by
conditional trees [24] – we refer to this MOC version as MOCCTREE.

2. Both new and old candidates are ranked using nondominated and crowding
distance sorting. Nondominated sorting ranks according to optimality with
respect to the above objectives (with the option to penalize invalid counter-
factuals) and crowding distance ranks according to diversity.
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3. Based on these rankings, optimal and diverse candidates are selected for the
next iteration. The search for counterfactuals ends after either a fixed num-
ber of predefined iterations or when the generated counterfactuals are not
significantly better according to the hypervolume of the objectives above. As
a final step, the algorithm outputs the Pareto optimal set of counterfactuals
over the generations.

The conceptualization of plausibility as Eq. (4) has its limitations as, e.g., illus-
trated in Fig. 1b: With k = 1 (the default in MOC), counterfactuals with low
values in Eq. (4) might still end up in low-density regions.

3.2 Generative Modeling and Adversarial Random Forests

Generative modeling is concerned with models that generate synthetic data D̃
that mimic the appearance of real data D. A well-known approach are VAEs [31],
which encode original data instances into a set of low-dimensional distribution
parameters and then reconstruct these instances with a decoder neural network
from samples of these distributions. Another common technique are GANs [18],
where two different neural network models play a zero-sum game – the generator
network aims to generate realistic instances, and the discriminator network aims
to discriminate these instances from real data. Other generative models based
on neural networks include normalizing flows [41], diffusion probabilistic models
[23] and transformer-based models [46] (see [4,15] for overviews). While there
exist adaptions of neural network models to tabular data, tree-based approaches
may be better suited [5,21,43].

ARFs are a tree-based procedure for generative modeling [49]. Similarly to
GANs, the ARF approach relies on an adversarial training procedure. However,
instead of neural networks, ARF relies on random forests, using the parameteri-
zation learned by the discrimination also for the generator (see [49], for details).
An ARF is trained in three steps: (1) Fitting an unsupervised random forest
[42], which generates a naive synthetic dataset D̃1 and subsequently trains a
random forest ĝ1 to distinguish between D and D̃1. (2) Sampling feature values
marginally from the instances in the leaves of ĝ1 to obtain a more realistic syn-
thetic dataset D̃2. Another random forest ĝ2 is trained to distinguish between
D and D̃2. (3) This process is repeated until the random forest classifier can no
longer distinguish synthetic from real data. We denote the final ARF model as
ĝ∗. As opposed to GANs, ARFs allow for both density estimation and generative
modeling. The two algorithms are called forests for density estimation (FORDE)
and forests for generative modeling (FORGE), respectively.

Density estimation with FORDE leverages the mutual independence across fea-
tures in the leaves after algorithm convergence, which allows modeling the joint
density p(x) as a mixture of univariate feature densities:

FORDE(x) := p̂(x) =
∑

l:x∈Xl

πl

p∏
j=1

p̂l,j(xj), (6)
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where Xl is the hyperrectangle defined by the l-th leaf, the corresponding mixture
weights πl are calculated as the share of real datapoints that fall into leaf l
normalized over all trees, and p̂l,j are (locally) estimated univariate density/mass
functions for the j-th feature in leaf l. The convergence of FORDE to the real
data distribution of X for infinite data is proven under some mild conditions in
Watson et al. [49]. A conditional density under a set of conditions C, e.g., fixed
values or intervals for certain features C ⊆ {1, ..., p}, can be derived from Eq.
(6) in the following way:

FORDE(x | C) := p̂(x | C) =
∑

l:x∈Xl

π′
l

p∏
j=1

p̂l,j(xj | Cj), (7)

where Cj ⊆ C denotes the subset of conditions concerning feature j ∈ C, and
the mixture weights π′

l are updated to reflect how likely their corresponding
leaves fulfill the condition. More formally, the mixture weights are updated and
normalized using the univariate marginals by

π′
l :=

πl

∏p
j=1 p̂l,j(Cj)∑

m:x∈Xm
πm

∏p
j=1 p̂m,j(Cj)

(8)

if the denominator does not equal 0 and by π′
l := 0 otherwise. Note that in the

case of conditioning on a fixed value or interval for a continuous feature j, the
univariate densities p̂l,j collapse to the indicator function 1Cj

or the uncondi-
tional densities truncated on the conditioning interval, respectively.

Generative modeling with FORGE is based on drawing a leaf l from the forest
according to the mixture weights in FORDE and sampling feature values from
the estimated univariate (conditional) densities p̂l,j . Thereby, FORGE allows
drawing samples that adhere to FORDE as an approximation to the real distri-
bution of X or X | C.

4 Methods

Our proposal is to leverage ARF for the efficient generation of counterfactual
explanations, i.e., countARFactuals, in mixed tabular data settings. More specif-
ically, we use and modify ARF to account for the desiderata that we discussed
in Sect. 3.1:

1. Validity: We train ARF on D but replace the target Y with the predictions
Ŷ . Here, Ŷ is treated just as any other feature in the data. Since FORGE
allows for conditional sampling, we can sample from X conditioned on our
desired outcomes Ŷ ∈ Ydes. Note, however, that ARF may not learn a per-
fect representation of the prediction function Ŷ := f̂(X). It therefore is not
guaranteed that ARF-samples are valid, it only becomes more likely. In our
algorithms, we only return those candidates with predictions in Ydes.
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2. Proximity: We restrict the output of our two methods to those counterfac-
tuals in the Pareto set, defined over the four objectives of Sect. 3.1, including
proximity (Eq. (3)). In the first algorithm described below, we additionally
use ARF combined with MOC, which accounts for proximity, as described in
Sect. 3.1.

3. Plausibility: ARF allows us to both evaluate the plausibility of datapoints
using FORDE (which is also used to determine the returned Pareto set) and
efficiently generate plausible data with FORGE.

4. Sparsity: FORGE allows sampling feature values XS based on the obser-
vation XC = xC . By fixing certain features C to the value of x∗

C , we only
change feature values in the sparse set S := {1, . . . , p} \ C.

With the desiderata in place, several decisions need to be made: Should we
integrate plausibility via density estimation (FORDE) or generative modeling
(FORGE)? What is an optimal trade-off between proximity and other objectives,
such as plausibility and sparsity? How should we search for the conditioning set
C for features that should not be changed? In the following, we provide two
algorithms that decide on these questions in different ways. The first integrates
ARF into MOC (Sect. 4.1). The second uses ARF as a standalone counterfactual
generator (Sect. 4.2).

4.1 Algorithm 1: Integrating ARF into MOC

In MOC’s optimization problem (Eq. (1)), we substitute the plausibility mea-
sure (Eq. (4)) by the density estimator of FORDE (Eq. (6)). Since the individual
objectives in MOC must map to a zero-one interval (with low values denoting
desired properties), we transform p̂(x), as estimated by FORDE, with the neg-
ative exponential function2

o∗
plaus(x) := e−p̂(x). (9)

We use FORGE as described above to sample plausible candidates in MOC in
the mutation step of the NSGA-II. This is a strategy to efficiently limit the
search space of MOC to plausible counterfactuals. Concerning sparsity, we find
the conditioning set C through iterated mutation and recombination, just like
in MOC, and we select candidates using NSGA-II according to optimality and
diversity. At last, the output comprises only the valid Pareto-set of counterfactu-
als over the generations, i.e., counterfactuals that have a prediction in Ydes and
are not dominated by other candidates that were generated (w.r.t. oprox, osparse
and o�

plaus). For details, we refer to the pseudocode in Appendix A.

4.2 Algorithm 2: ARF Is All You Need

For this algorithm, we leverage the ability of our modified ARF sampler to
directly and efficiently generate many relevant counterfactuals. As described
2 The negative exponential has the advantage that small changes at low values of p̂(x)

are more distinctive than at high values. Other transformation methods are also
possible but a comparison is beyond the scope of this paper.
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above, the modified FORGE method allows generating plausible datapoints.
To enforce sparsity, we sample m features with probabilities according to their
local feature importance, calculated as the standard deviation of the individual
conditional expectation (ICE) curve [11,17]. The m selected features describe
the features S we aim to change because they, according to the local feature
importance, impact the prediction the most. The remaining features then form
the conditioning set C = {1, . . . , p} \ S.

As for Algorithm 1, we output only the valid and Pareto-optimal set of coun-
terfactuals (w.r.t. oprox, osparse and o�

plaus). The pseudocode for this method is
given in Appendix B.

5 Experiments

We evaluate the quality of our proposed methods with respect to the following
research questions:

RQ (1) Do our proposed ARF-based methods generate more plausible counter-
factuals compared to competing methods without major sacrifices in sparsity
(osparse), proximity (oprox) and the runtime?

RQ (2) Does o∗
plaus (Eq. (9)) better reflect the true plausibility compared to

oplaus (Eq. (4))?

To objectively evaluate the plausibility of the generated counterfactuals, we
require access to the ground-truth likelihood. Because ground-truth likelihoods
are usually unavailable for real-world data, we evaluate our methods on synthetic
data. An illustrative real-world application follows in Sect. 6.

5.1 Data-Generating Process

For the experiments, we constructed three illustrative two-dimensional datasets,
namely cassini (inspired by [14]), two sines (inspired by the two moons
dataset), and three blobs (inspired by [39]). Moreover, we generated four
datasets from randomly sampled Bayesian networks of dimensionality 5, 10,
and 20, namely bn_5, bn_10, and bn_20, which all include both continuous and
categorical features as well as nonlinear relationships. An XGBoost model was
fitted on sampled datasets Dtrain of size 5 000 [9]. For each data-generating pro-
cess (DGP), ten additional points were sampled as instances of interest x∗. The
counterfactual generation methods received access to newly sampled datasets D
of size 5 000. Details on the dataset generation and model fit can be found in
Appendix C and in the repository accompanying this paper.3

5.2 Competing Methods

We compare our proposed MOC version based on ARF of Sect. 4.1 (referred to as
MOCARF) and the standalone ARF generator of Sect. 4.2 (referred to as ARF)
3 https://github.com/bips-hb/countARFactuals.

https://github.com/bips-hb/countARFactuals
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to the following competitors: MOC and MOCCTREE (MOC with a conditional
sampler, see Sect. 3.1) [11] and NICE [7] with a plausibility reward function
(see Eq. (4) in [7]). NICE generates counterfactuals by iteratively replacing one
feature after the other in x∗ by the values of xnn, which denotes a nearest
neighbor of x∗ in D with f̂(xnn) ∈ Ydes. In each iteration, the algorithm keeps
the feature change with the highest plausibility reward.

To allow for a fair comparison, all methods generate a set of counterfactual
candidates. For NICE, we apply the extension of Dandl et al. [10]; instead of
stopping the search once the point with the highest reward has a prediction in
Ydes, the search continues until xnn is recovered and all intermediate instances
with predictions in Ydes are returned. If possible, we selected the hyperparam-
eters for the methods such that each method generated an equal number of
candidates – namely, 1 000.4 ARF requires a maximum set size for S, reflecting
how many features are maximally allowed to be changed. We set it according
to the number of features p as mmax := min(�√p + 3	, p). Since also for all
MOC-based methods the maximum number can be specified, we used the same
mmax for MOC, MOCARF and MOCCTREE. For the evaluation, we focused
only on the unique counterfactuals that have predictions in Ydes. We further
reduced this set to the Pareto set, i.e., the set of counterfactuals that are non-
dominated according to proximity (oprox), sparsity (osparse) and plausibility. The
definition of the plausibility objective differed between the methods, with o�

plaus
for ARF and MOCARF, oplaus for MOC and MOCCTREE, and the autoencoder
reconstruction error for NICE (as proposed by [7]).

5.3 Evaluation Criteria

To answer RQ (1), we evaluated the generated counterfactuals with respect to
the ground-truth likelihood (denoted as plausibility, in the following), proximity
oprox and sparsity osparse (see Sect. 3.1). We aggregated the results per method,
dataset and instance of interest x� by computing (scaled) dominated hypervol-
umes [50]. We also measured the number of nondominated counterfactuals and
the runtime. To investigate the trade-off between plausibility and proximity, and
between plausibility and sparsity, we also computed median attainment surfaces
according to López-Ibáñez et al. [33] for each method and dataset. It reveals
how two objectives are distributed on average over the different x∗. To answer
RQ (2), all generated counterfactuals were evaluated with respect to o�

plaus and
oplaus. Per method, dataset and x�, we computed Spearman-rank correlations
between the true plausibility and o�

plaus and between the true plausibility and
oplaus. With a Wilcoxon signed rank test, we tested whether o∗

plaus has higher
correlations to the true plausibility than oplaus.

5.4 Results

Figure 2 presents the results for RQ (1) and shows the objective values per coun-
terfactuals as well as the hypervolume, number of nondominated counterfactuals
4 Specifying the exact number was possible for all methods besides NICE [7].
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Fig. 2. Boxplots of the logarithmic plausibility, proximity (1 − oprox), sparsity (1 −
osparse), hypervolume, number of nondominated counterfactuals and runtime for each
method and dataset. Higher values are better, except for runtime.

and runtime. On average, ARF and MOCARF generated more plausible counter-
factuals compared to the other MOC-based approaches and NICE. In alignment
with previous literature [11,13], our results suggest that higher plausibility might
be associated with lower proximity and sparsity. For further investigations on the
trade-offs, Fig. 5 and Fig. 6 in Appendix D detail the median attainment surfaces
per dataset and method. The plots illustrate Pareto dominance across individual
objectives within the multi-objective optimization problem, revealing that ARF
and MOCARF on average dominate the other methods in proximity, sparsity and
plausibility, with the differences being greatest in plausibility. The hypervolume
was on average similar for the different methods for low-dimensional datasets
(ARF had lower hypervolumes in cassini due to its inferiority in proximity
and sparsity), for higher-dimensional datasets (bn_10 and bn_20), ARF and
MOCARF performed better than the competing methods. Concerning runtime,
ARF generated counterfactuals the fastest on average, followed by NICE and
MOC. MOCARF was faster than MOCCTREE for datasets with more than
two features. The runtime differences increased with higher dimensional data.
On average, ARF and MOCARF generated the largest set of nondominated
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counterfactuals compared to the other methods (see Fig. 2). Note that for all
methods, the results on the objectives have high variance. The reason for this
variance stems from individual instances x� in the set of explained instances that
have particularly high variances, as can be inferred from the results of each x�

separated per method and dataset. ARF and MOCARF have particularly high
variance in the results, as they provide larger sets of nondominated counterfac-
tuals.

Considering RQ (2), the Wilcoxon rank sum test had a p-value close to 0
(7.16e − 06), i.e., the correlation of our proposed plausibility measure o∗

plaus to
the true plausibility was significantly higher than that of oplaus. The median cor-
relation to the true plausibility over all methods and datasets was 0.84 for o∗

plaus
and 0.69 for oplaus. Figure 4 in the Appendix shows a more detailed comparison
of the distributions of the correlations.

Overall, our study shows that on average our proposed methods – ARF and
MOCARF – generate a more plausible set of counterfactuals compared to our
competitors without major sacrifices in sparsity and proximity. Notably, ARF
achieves this with superiority in runtimes.

6 Real Data Example

We illustrate our approach on the publicly available coffee quality dataset.5
The data details the characteristics of several Arabica coffee beans, such as the
country of origin and altitude at which the beans were cultivated. Further, the
dataset includes information on a quality review score (cup points) specified by
an expert jury within the Coffee Quality Institute [1].

In this example, we use a random forest to predict coffee quality from selected,
actionable characteristics of the coffee beans. For simplicity, we binarize the
target score cup points. Aiming for balanced classes of good and bad quality, we
use the dataset’s median value of cup points as a cut-off point, i.e.,

quality =

{
good if cup points ≥ median(cup points)
bad otherwise.

(10)

For illustration, we generate counterfactual explanations for an instance of
bad coffee quality, answering the question: Which characteristics would need to
be changed to rate as good quality coffee?

This example illustrates the importance of taking into account the multiple
objectives of counterfactual explanations, such as sparsity and plausibility. For
example, a company that aims to improve the quality of their coffee may want
to make as sparse changes to the coffee characteristics as possible for economic
reasons. Similarly, some changes might not be plausible, think of changing the
country of origin independently of the altitude of the coffee plantations or the
variety of beans cultivated in the respective country (since the variety must suit
the natural conditions in the respective country).

5 https://github.com/jldbc/coffee-quality-database.

https://github.com/jldbc/coffee-quality-database
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Fig. 3. Exemplary countARFactuals for an instance of bad coffee quality. Arrows indi-
cate changes in comparison to x∗, i.e., a feature’s value increase ↑, decrease ↓ or change
in category ↔.

The generation of counterfactual explanations in this example is performed
using Algorithm 2 detailed in Sect. 4.2. In Fig. 3, we present a set of the generated
countARFactual explanations for an instance of coffee beans belonging to the
bad class that originate from Taiwan. Figure 3 illustrates that countARFactuals
yield plausible counterfactual explanations. For instance, for countARFactual
#3, both the country of origin is changed from Taiwan to Colombia and the
variety from Typica to Caturra. This seems reasonable because Typica was grown
in only few Colombian instances in the training dataset, and instead, Caturra was
the most frequently grown variety in Colombia. Further, the altitude at which
the beans are grown is elevated only a little within Taiwanese countARFactuals
(# 4 - 12), but more drastically for countries that – given the data – grow coffee
on higher altitudes on average, such as Mexico (# 1) and Colombia (# 3).

7 Discussion

In this paper we show that adversarial random forests (ARF) can be modified to
generate plausible counterfactuals, both as a subroutine to multi-objective coun-
terfactual explanations (MOC) and as a standalone approach. Our experiments
in Sect. 5 demonstrate that ARF can improve the plausibility of counterfactu-
als and the efficiency in their generation without substantially sacrificing other
desiderata such as proximity and sparsity. In contrast to other generative mod-
eling approaches for plausible counterfactuals, ARF handles mixed tabular data
directly without, e.g., one-hot-encoding categorical features, thereby improving
data-efficiency. Moreover, ARF-based counterfactual generation allows for spar-
sity via conditional sampling and is an off-the-shelf methodology that requires
minimal efforts in tuning and computational resources.

Our work faces some limitations. For example, we define the plausibility of
counterfactuals via the joint density. However, as highlighted by Keane et al.
[29], there are different conceptualizations of plausibility, for example, based on
the feasibility of actions or user perceived plausibility [27,32,40]. One might even
question if staying in the manifold is always desirable, e.g., if changing the class
requires extrapolation so should our counterfactuals. It should be noted that
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plausible counterfactuals, in general, cannot be interpreted as action recom-
mendations. Although they provide hints about which alternative feature values
would yield acceptance by the predictor, they do not guide the user on which
interventions yield the desired change in the real world. To guide action, causal
knowledge is required [28]. Furthermore, in the context of recourse, improvement
of the underlying target is more desirable than acceptance by a specific predictor,
which counterfactual explanations do not target [32].

Proximity and plausibility are conflicting objectives [7,11]. Oftentimes, there
is only little data close to the decision boundary, and jumping just over the
boundary can lead to implausible counterfactuals [16]. A trade-off between the
two objectives is desirable, which we implicitly address by generating a Pareto-
optimal set of diverse counterfactuals. Considering the low-density problem in
Fig. 1a, the estimation of the joint density with FORDE and consideration of
the empirical coverage when generating data with FORGE can circumvent low
density regions, however, proximity is not directly taken into account. In future
work, one could already incorporate such trade-offs in the counterfactual gener-
ation, e.g., by a parameter that directly controls for the proximity-plausibility
trade-off. One option would be to set a threshold for plausibility instead of a
trade-off parameter, as suggested by Brughmans et al. [7].

Like all works on counterfactual explanations, we face the Rashomon effect:
There exist many plausible counterfactuals that explain the same datapoint.
This raises the question of which one we should show to the user [29,47]. As
a bottom line, we return only the Pareto-optimal set of counterfactuals, which
at least guarantees that no strictly dominated option is shown. In future work,
integrating user preferences or considering additional objectives may improve
the final selection.

Our framework is tailored to mixed tabular data settings. For other data
modalities like image or text data, we advise for using neural network based
approaches for density estimation and generative modeling such as VAEs and
GANs. Finally, our framework is designed for binary classification and regression
but can be extended to multi-class classification.

In future work, we plan to investigate the role of the ML model in the ARF
approach to counterfactuals. We could also generate counterfactuals with ARF
without the model by directly training ARF on Y rather than the predictions
Ŷ . We would then get plausible counterfactuals that hint towards improvement
instead of acceptance [32]. While such counterfactuals appear different from
those discussed in the XAI literature so far, in fact, they essentially just turn
the generative model that conditions on X = x into a prediction algorithm.
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A Algorithm 1: Integrating ARF into MOC

The following pseudocode is based on Algorithm 1 in [10]. Blue lines highlight
the steps that differ from the original MOC algorithm proposed by [11].

Algorithm 1. MOC with ARF-based Sampler and Evaluation
Inputs:
Datapoint to explain prediction for x� ∈ X
Desired outcome (range) Ydes

Prediction function f̂ : X → R

Observed data D
ARF ĝ∗ trained on (xi, f̂(xi))

n
i=1 with xi ∈ D

MOC hyperparameters: Number of generations ngenerations, size of population µ,
recombination and mutation methods including probabilities, selection method for
features in the conditioning set and initialization method, stopping criterion
(Additional user inputs, e.g., range of numerical features, immutable features, distance
function, see [11])

1: Initialize population P0 with |P0| = µ (ICE-curve-based, see [11])
2: Evaluate candidates according to four objectives:

– Validity (L1)
– Sparsity (L0)
– Proximity (Gower distance)
– Plausibility (ARF-based likelihood transformed with e−x)

3: Set t = 0
4: for r ∈ {1, ..., niterations}
5: Ct = create_offspring(Pt), |Ct| = µ with given probabilities

1. Select best candidates (acc. to validity objective)
2. Recombine these pairwise
3. Mutate values jointly using ĝ∗: generate new datapoints with FORGE

6: Combine parents and offspring Rt = Ct ∪ Pt

7: Assign candidates to a front according to their objective values:
(F1, F2, ..., Fm) = nondominated_sorting(Rt)

8: for i = 1, ...,m
9: Sort candidates acc. to diversity (objective and feature space):

F̃i = crowding_distance_sort(Fi)
10: end for
11: Set Pt+1 = ∅ and i = 1
12: while |Pt+1| + |F̃i| ≤ µ
13: Pt+1 = Pt+1 ∪ F̃i

14: i = i + 1
15: end while
16: Choose first µ − |Pt+1| elements of F̃i: Pt+1 = Pt+1 ∪ F̃i[1 : (µ − |Pt+1|)]
17: t = t+ 1
18: end for
19: Return unique, nondominated (w.r.t. oprox, osparse and o�

plaus) candidates of
⋃t

k=0 Pk \ x� with f̂(xCF ) ∈ Ydes
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B Algorithm 2: ARF Is All You Need

Algorithm 2. ARF-based Counterfactual Generator
Inputs:
Datapoint to explain prediction for x� ∈ X
Desired outcome (range) Ydes

Prediction function f̂ : X → R

Observed data D
ARF ĝ∗ trained on data (xi, f̂(xi))

n
i=1 with xi ∈ D

Maximum number of feature changes mmax

Number of iterations niterations

Number of samples generated in each iteration nsynth

(Additional user inputs, e.g., immutable features)

1: Derive local importances (fij)
p
j=1 for each feature j ∈ {1, ..., p} (ICE-curve-based,

see [11])
2: for r ∈ {1, ..., niterations}
3: m ← sample(1, ...,mmax)
4: Select set C ⊂ {1, ..., p} by randomly sampling m features with probability

proportional to how unimportant feature is
5: CF ← sample nsynth observations with FORGE derived from ĝ∗ under

condition that ∀j ∈ C : Xj = x�
j & Ŷ ∈ Ydes

6: XCF ← (XCF , CF )
7: end for
8: Return unique, nondominated (w.r.t. oprox, osparse and o�

plaus) candidates xCF ∈
XCF with f̂(xCF ) ∈ Ydes

C Synthetic Data

As follows, we describe the three illustrative datasets as well as the sampling of
the randomly generated data-generating processes. An general overview on the
datasets is given in Table 1. The code that was used to generate the datasets and
pair plots visualizing their distribution can be found in the repository accompa-
nying the paper (https://github.com/bips-hb/countARFactuals).6

6 For an explanation of how to run the code, we refer to python/README.md. The
visualization can be found in the folder python/visualizations/.

https://github.com/bips-hb/countARFactuals
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Table 1. Overview of synthetic datasets.

Name No. continuous No. binary

cassini 2 0
two_sines 2 0
pawelzyk 2 0
bn_5 3 1
bn_10 7 2
bn_20 15 4

C.1 Illustrative Datasets

Cassini. The DGP, inspired by [14], is defined as follows:

Y ∼ Y1 + Y1Y2 with Y1 ∼ Bern(2/3), Y2 ∼ Bern(0.5)

X1|Y1 ∼
{

N(0, 0.2), if Y1 = 0
N(0, 0.5), otherwise

X2|X1, Y1, Y2 ∼
{

N(0, 0.2) if Y1 = 0
N((−1)Y2cos(X1), 0.2) otherwise

Two Sines. The DGP, inspired by the two moons dataset, is specified as:

Y ∼ Bern(0.5),
X1|Y ∼ N(Y, 3.0),

X2|Y,X1 ∼ N(sin(X1) − 2Y + 1, 0.3)

Pawelczyk. The DGP, taken from [39], is defined as:

L ∼ Cat( 13 , 1
3 , 1

3 )

X|μ ∼ N(μ, I2), μ|L =

⎧
⎪⎨
⎪⎩

(−10, 5)T if L = 0
(0, 5)T if L = 1
(0, 0)T otherwise

Y (X) := X2 > 6

Here I2 refers to the 2 × 2 identity matrix and Cat(13 , 1
3 , 1

3 ) to the uniform
categorical distribution with values 0, 1, 2.

C.2 Randomly Generated DGPs

For the generation of bn_5, bn_10, and bn_20, we randomly sample Bayesian
networks with categorical and continuous distributions as well as linear and
nonlinear relationships.
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1. First, we randomly sample a Directed Acyclic Graph (DAG) using the
networkx package. We select Y as the root node. To make sure that Y is
related to many of the features, for each node that is not directly neighboring
Y , a directed edge is added with probability 0.5 (directed such that the graph
remains acyclic).

2. From all nodes, 20% are randomly selected to be categorical nodes; Y is
always selected to be a categorical node.

3. For every node j, an aggregation function g is sampled that maps the parent
values xpa(j) to an aggregate, which then parameterizes the distribution of
the respective node.

g(x) = β + β1h(x) + β2h(x)2 with h(x) = sin

⎛
⎝ ∑

i∈pa(j)

wixi

⎞
⎠ (11)

The weights w are sampled from Unif(−1, 1)+3Bern(3/d). To make it more
likely that Y can be predicted well from its covariates, weights concerning Y
are increased by d ∼ Unif(3, 4) with probability 0.1. The weight vector w is
normalized. The coefficients β are sampled from Unif(−1, 1).

4. If the feature is categorical, the respective Bernoulli is parameterized with the
sigmoid of the aggregate of the parents Bern(ς(g(x))). Continuous features
follow N(μ, σ) with μ ∼ N(g(x), 1) and σ ∼ N(0, 2).

To ensure that a prediction model fitted on the data can discriminate between
the classes and that changing the prediction to the desirable class is feasible,
we randomly generated datasets until we found one with balanced labels (0.4 <
E[Y ] < 0.6), and where a xgboost model demonstrated good accuracy (> 0.95)
and balanced predictions (0.3 < E[Ŷ ] < 0.7).

D Additional Empirical Results

Fig. 4. Density plots of correlations of true plausibility and oplaus or o�
plaus.
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Fig. 5. Median empirical attainment function [33] for the negative plausibility and
negative proximity. Lower values are better.

Fig. 6. Median empirical attainment function [33] for the negative plausibility and
negative sparsity. Lower values are better.
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Abstract. A main drawback of eXplainable Artificial Intelligence (XAI)
approaches is the feature independence assumption, hindering the study
of potential variable dependencies. This leads to approximating black box
behaviors by analyzing the effects on randomly generated feature values
that may rarely occur in the original samples. This paper addresses this
issue by integrating causal knowledge in an XAI method to enhance
transparency and enable users to assess the quality of the generated
explanations. Specifically, we propose a novel extension to a widely used
local and model-agnostic explainer, which encodes explicit causal rela-
tionships within the data surrounding the instance being explained.
Extensive experiments show that our approach overcomes the original
method in terms of faithfully replicating the black-box model’s mecha-
nism and the consistency and reliability of the generated explanations.

Keywords: Causal Discovery · Interpretable Machine Learning ·
Causal Explanations · Post-hoc Explainability

1 Introduction

In past decades, the growing availability of data and computational power have
allowed the development of sophisticated Machine Learning (ML) models that
have provided a significant contribution to the progress of Artificial Intelligence
(AI) in many real-world applications [29]. Despite their success, the surge in per-
formance has often been achieved through increased model complexity, turning
such approaches into black-box systems. The lack of a clear interpretation of
the internal structure of ML models embodies a crucial weakness since it causes
uncertainty regarding the way they operate and, ultimately, how they infer out-
comes [21]. Indeed, opaque approaches may inadvertently obfuscate responsibil-
ity for any biases or produce wrong decisions learned from spurious correlations
in training data [12]. To mitigate these risks, the scientific community’s inter-
est in eXplainable Artificial Intelligence (XAI) has been increasingly emerging
in the past decade. According to the classification of XAI methodologies [12],
we focus on post-hoc explainability. Given an AI decision system based on a
black-box classifier and an instance to explain, post-hoc local explanation meth-
ods approximate the black-box behavior by learning an interpretable model in a
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synthetic neighborhood of the instance under analysis generated randomly. How-
ever, particular combinations of feature values might be unrealistic, leading to
implausible synthetic instances [2,20]. This weakness emerges since these meth-
ods do not consider the local distribution features, the density of the class labels
in the neighborhood [25], and, most importantly, the causal relationships among
input features [22]. Such inability to disentangle correlation from causation can
deliver sub-optimal or even erroneous explanations to decision-makers [31]. More-
over, causation is ubiquitous in Humans’ conception of their environment [6].
Human beings are extremely good at constructing mental decision models from
a few data samples because people excel at generalizing data and thinking in a
cause/effect manner. Consequently, integrating causal knowledge in XAI should
be emphasized to attain a higher degree of interpretability and prevent proce-
dures from failing in unexpected circumstances [3]. To this aim, Causal Discovery
(CD) methods can map all the causal pathways to a variable and infer how dif-
ferent variables are related. Even partial knowledge of the causal structure of
observational data could improve understanding of which input features black-
box models have used to make their predictions, allowing for a higher degree of
interpretability and more robust explanations.

In this paper, we propose calime for Causality-Aware Local Interpretable
Model-Agnostic Explanations. The method extends lime [30] by accounting for
underlying causal relationships present in the data used by the black-box. To
attain this purpose, we replace the synthetic data generation performed by lime
through random sampling with gencda [7], a synthetic dataset generator for
tabular data that explicitly allows for encoding causal dependencies. We would
like to emphasize that causal relationships are not typically known a priori,
but we adopt a CD approach to discover nonlinear causalities among the vari-
ables and use them at generation time. Thus, the novelty of calime lies in the
explicit encoding of causal relationships in the local synthetic neighborhood of
the instance for which the explanation is required. We highlight that our pro-
posal of the causality-aware explanation method can be easily adapted to extend
and improve other model-agnostic explainers such as lore [10], or shap [23].
Our experiments show that calime significantly improves over lime both for
the stability of explanations and the fidelity in mimicking the black-box.

The rest of this paper is organized as follows. Section 2 describes the state-
of-the-art related to XAI and causality. Section 3 presents a formalization of the
problem addressed and recalls basic concepts for understanding our proposal,
which is detailed in Sect. 4. The experimental results are presented in Sect. 5,
while the conclusions, as well as future works, are discussed in Sect. 6.

2 Related Works

lime [30] is a model-agnostic method that returns local explanations as feature
importance vectors. Further details are in Sect. 3 as it is the starting point for
our proposal. While lime stands out for its simplicity and effectiveness, it has
several weak points. A significant limitation is its reliance on converting all data
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into a binary format, which is assumed to be more interpretable for humans [9].
Additionally, its use of random perturbations to generate explanations can lead
to inconsistencies, possibly producing varying explanations for the same input
and prediction across different runs [35]. Furthermore, the reliability of additive
explanations comes into question, especially when noisy interactions are intro-
duced in the reference dataset used for generating explanations [8].

Over recent years, numerous researchers have analyzed such limitations and
proposed several works to extend or improve them. For instance, klime [14]
runs the K-Means clustering algorithm to partition the training data and then
fit local models within each cluster instead of perturbation-based data generation
around an instance being explained. In [16] is proposed lime-sup that approx-
imates the original lime better than klime by using supervised partitioning.
Furthermore, kl-lime [28] adopts the Kullback-Leibler divergence to explain
Bayesian predictive models. Within this constraint, both the original task and
the explanation model can be arbitrarily changed without losing the theoretical
information interpretation of the projection for finding the explanation model.
alime [33] presented modifications using an autoencoder as a better weighting
function for the local surrogate models. In qlime [4], the authors consider nonlin-
ear relationships using a quadratic approximation. Another approach proposed
in [32] utilizes a Conditional Tabular Generative Adversarial Network (CTGAN)
to generate more realistic synthetic data for querying the model to be explained.
Theoretically, GAN-like methods can learn possible dependencies. However, as
empirically demonstrated in [7], these relationships are not directly represented,
and there is no guarantee that they are followed in the data generation process.
In [35] is proposed dlime, a Deterministic Local Interpretable Model-Agnostic
Explanations where random perturbations are replaced with hierarchical clus-
tering to group the data. After that, a kNN is used to select the cluster where
the instance to be explained belongs. Finally, in [36] is presented bay-lime,
a Bayesian local surrogate model that exploits prior knowledge and Bayesian
reasoning to improve both the consistency in repeated explanations of a single
prediction and the robustness of kernel settings.

Despite considerable progress in lime variants, a significant limitation
remains unaddressed in the state-of-the-art approaches: they do not explicitly
account for causal relationships. This gap represents a fundamental shortfall.
Nonetheless, employing a causal framework for deriving explanations could lead
to a more reliable and solid explanatory process [3]. Our research demonstrates
that local surrogate models exhibit increased fidelity when trained within syn-
thetic environments, taking causality into account.

XAI methods integrating causal knowledge are a recently challenging research
area [26]. Among them, one of the most popular methods for Counterfactual
Explanation (CE) shows how the prediction result changes with small pertur-
bations to the input [34]. In [19], a focus is presented on the role of causality
towards feasible counterfactual explanations requiring complete knowledge of
the causal model. Another CE approach called Ordered Counterfactual Expla-
nation is in [18]. It works under the assumption of linear causal relationships
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and provides an optimal perturbation vector and the order of the features to be
perturbed, respecting causal relationships.

Even though the explainers mentioned above account for causal relationships,
to the best of our knowledge, no state-of-the-art XAI techniques incorporate any
causal knowledge during the explanation extraction. Some indirectly account for
causality through a latent representation or adopt a known causal graph, typi-
cally as a post-hoc filtering step [24]. Others consider causal relations between
the input features and the outcome label but are not directly interested in the
interactions among input features [17].

Hence, our method represents a novel post-hoc local explanation strategy by
embedding causal connections into the explanation generation process. In par-
ticular, it does not necessitate pre-existing causal information but independently
identifies causal relationships as part of the explanation extraction phase.

3 Background

This paper addresses the black-box outcome explanation problem [12]. A classifier
b is black-box if its internal mechanisms are either hidden from the observer or,
even if known, they remain incomprehensible to humans. Given b and an instance
x classified by b, i.e., b(x) = y, the black-box outcome explanation problem aims
at explaining e belonging to a human-interpretable domain. In our work, we focus
on feature importance modeling the explanation as a vector e = {e1, e2, . . . , em},
in which the value ei ∈ e is the importance of the ith feature for the decision
made by b(x). To understand the contribution of each feature, the sign and the
magnitude of ei are considered: if ei < 0, the feature contributes negatively
to the outcome y; otherwise, the feature contributes positively. The magnitude
represents how significant the feature’s contribution is to the prediction.

LIME. The main idea of lime [30] is that the explanation may be derived
locally from records generated randomly in the synthetic neighborhood Z of the
instance x to be explained. lime randomly draws samples and weights them
w.r.t. a certain distance function π to capture the proximity with x. Then, a
perturbed sample of instances Z is used to feed to the black-box b and obtain
the classification probabilities bp(Z) w.r.t. the class b(x) = y. Such bp(Z) are
combined with the weights W to train a linear regressor with Lasso regulariza-
tion considering the top k most essential features. The coefficients of the linear
regressor are returned as explanation e. A crucial weakness of lime is the ran-
domness of perturbations around the instance to be explained. To address this
problem, we employ a data generation process that provides more realistic data
respecting causal relationships.

GENCDA. In [7] is presented gencda, a synthetic data generator for tabular
data that explicitly allows for encoding the causal structure among variables
using ncda, a boosted version of ncd [15]. Assuming there is no confounding, no
selection bias, and no feedback among variables, ncd recovers the causal graph
G from the observational distribution by exploring a functional causal model in
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Fig. 1. The high-level workflow of our framework, with the blue dashed line showing
the difference in generating the synthetic neighborhood compared to lime (Color figure
online).

which effects are modeled as nonlinear functions of their causes and where the
influence of the noise is restricted to be additive. gencda takes as input the real
dataset X that has to be extended with synthetic data, the DAG G extracted
from X by ncda and a set of distributions. It generates a synthetic dataset with
variable dependencies that adhere to the causal relationships modeled in G.

4 Causality-Aware LIME

This section describes our method for Causality-Aware Local Interpretable
Model-agnostic Explanations (calime). Before introducing it, we provide a prac-
tical example to demonstrate the potential limitations of generating explana-
tions without considering causal relations. Consider a dataset X that describes
a bank’s customers requesting loans. This dataset includes features such as
age, education level, income, and number of weekly working hours. Let b be
the AI system based on a black-box adopted by the bank and used to grant
loans to customers x ∈ X. Consider x = {(age, 24), (edu_level,high-school-5),
(income, 800), (work_hours, 20)} a customer who was denied the loan. To offer
additional explanations for the loan denial, the bank decides to apply the lime
algorithm to the instance x. A possible explanation for b(x) could be e =
{(age, 0.3), (edu_level, 0.9), (income, 0.2), (work_hours, 0)}. Thus, according to
e, it appears that the primary factor contributing to the loan denial is the low
education level. By examining the neighborhood Z generated by lime, we may
come across several synthetic instances like z = {(age, 24), (edu_level,phd−8),
(income, 900), (work_hours, 20)} where a higher education level is observed. If
we had known the causal relationships among the customers in the training set
of the black-box, we would have discovered that there is a relationship between
age and education level, i.e., age → edu_level, and that synthetic instances like
z are implausible because they do not respect such relationship.

Therefore, the key idea of calime is to locally explain the predictions of any
black-box model while considering the underlying causal relationships within the
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Algorithm 1: calime(x, b, X, k, N)
Input : x - instance to explain, b - classifier, X - reference dataset, k - nbr of

features, N - nbr of samples
Output: e - features importance

1 Z ← ∅,W ← ∅; // init. empty synth data and weights
2 G ← ncda(X); // extract DAG modeling causal relationships
3 I ← fit_distributions(G,X); // learn root distributions
4 R ← fit_regressors(G,X); // learn regressors
5 foreach i ∈ [1, . . . , N ] do
6 z ← gencda_sampling(x,G, I,R); // causal permutations
7 Z ← Z ∪ {z}; // add synthetic instance

8 W ← W ∪ {exp(−π(x,z)2

σ2 )}; // add weights
9 e ← solve_Lasso(Z, bp(Z),W, k); // get coefficients

10 return e;

data. The novelty of our proposal is actualized in the generation of the neighbor-
hood around the instance to explain. Indeed, instead of random perturbation,
calime uses gencda as a synthetic dataset generator for tabular data, which
can discover nonlinear dependencies among the features and use them during
the generation process. While the improvement of calime over lime may seem
straightforward, the ability to encode explicitly causal relationships provides a
significant added value to explanations. In particular, respecting dependencies
during the explanation process ensures that local explanations are based on
plausible synthetic data and that the final explanations are more trustworthy
and less subject to possible noise in the data. Figure 1 illustrates a high-level
workflow depicting our proposal.

The pseudo-code of calime is reported on Algorithm 1, the main differences
with lime are highlighted in blue1. First, calime runs on X the CD algorithm
ncda and extracts the DAG G that describes the causal structure of X (line 2).
After that, for each root variable j with respect to G, i.e., such that pa(j) = ∅,
calime learns the best distribution that fits X(j) and produces a set of distri-
bution generators I (line 3). For each dependent variable j in G, i.e., pa(j) �= ∅,
calime trains a regressor using as features Xpa(j) and as target X(j), and pro-
duces a set of regressor generators R (line 4). For each instance to generate, it
runs gencda locally on x. Then, calime takes as input the instance x, the DAG
G, the set of distribution generators for root variables I, and the set of regressor
generators for dependent variables R (line 6). The gencda_sampling randomly
selects the features {j1, . . . , jq} to change among the root ones2. For each root
feature, the corresponding data generator Ij generates a synthetic value zj . After
all the root features have been synthetically generated, calime checks the causal

1 We highlight that the gencda algorithm does not explicitly appear in calime
pseudo-code as it is decomposed among lines [2 − 4] and 6.

2 The number of features to change q is randomly selected in [2, q].
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relationships modeled in G. For all dependent variables j such that pa(j) con-
tains a variable that has been synthetically generated, the regressor generator
Rj responsible for predicting the value of j is applied on zpa(j) to generate the
updated value for feature j by respecting the causal relationship captured in G.

To clarify how calime works, we recall the toy example presented at the
beginning of this section. Through ncda, calime discovers a DAG G indicat-
ing the causal relation age → edu_level. Therefore, it learns the best distri-
butions to model age, income, and work_hours. After that it learns a regres-
sor Redu_level on 〈X(age),X(edu_level)〉. Let consider the instance to explain
x = {(age, 34), (edu_level, 6.5), (income, 1000), (work_hours, 35)}. When a syn-
thetic instance z has to be generated, then (i) education level can not be changed
if age is not changed, and (ii) when age is also changed education level must
be changed according to Redu_level. For instance, if zage = 32 then we can have
zedu_level = Redu_level = phd-8. This way, the regressor will consider only syn-
thetic customers with a higher age when the education level is higher.

5 Experiments

We report here the experiments carried out to validate calime3. First, we illus-
trate the datasets used, the classifiers, and the experimental setup. Then, we
present the evaluation measures adopted. Lastly, we demonstrate that our pro-
posal outperforms lime in terms of fidelity, plausibility, and stability.

5.1 Datasets and Classifiers

We experimented with calime on multiple datasets from UCI Repository4,
namely: banknote, magic, wdbc, wine-red and statlog which belong to diverse
yet critical real-world applications. Table 1 (left) summarizes each dataset. The
banknote dataset is a well-known benchmark data set for binary classification
problems. The goal is to predict whether a banknote is authentic or fake based
on the measured characteristics of digital images of each banknote. The statlog
dataset is an image segmentation dataset where the instances were drawn ran-
domly from 7 outdoor images. Each instance is a 3x3 region, and the images
were hand-segmented to create a classification for every pixel. wine-red repre-
sents wines of different qualities with respect to physicochemical tests from red
variants of the Portuguese Vinho Verde wine. The wdbc dataset is formed by
features computed from a digitized image of a fine needle aspirate of a breast
mass. They describe the characteristics of the cell nuclei found in the image.
The magic dataset contains data to simulate high-energy gamma particles in a
ground-based atmospheric Cherenkov telescope.

3 Python code and datasets are available at https://github.com/marti5ini/CALIME.
4 https://archive.ics.uci.edu/ml/datasets/.

https://github.com/marti5ini/CALIME
https://archive.ics.uci.edu/ml/datasets/
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Table 1. Dataset statistics and classifiers accuracy. We present the number of records
(n), the number of features (m), the number of labels that the class can assume (l),
and the number of training records for black-box (Xb), the number of explanations
records (Xt), and the number of records to evaluate the causal relations founded (Xc).
Additionally, we report Random Forests (RF ) and Neural Networks (NN) accuracy.

n m l |Xb| |Xc| |Xt| RF NN

banknote 1,372 4 2 890 382 100 .99 1.0
statlog 2,310 19 7 1,547 663 100 .98 .96
magic 19,020 11 2 13,244 5,676 100 .92 .85
wdbc 569 30 2 328 141 100 .95 .92
wine-red 1,159 11 6 358 203 154 .82 .70

We would like to highlight that, due to the nature of gencda, all these
datasets are tabular datasets with instances represented as continuous features.
As part of our future research direction, we plan to extend calime with a differ-
ent CD approach capable of handling also categorical and/or discrete variables.

We split each dataset into three partitions: Xb, is the set of records to train
a black-box model; Xc, is the set of records reserved for discovering the causal
relationships; Xt, is the partition that contains the record to explain. We trained
the following black-box models: Random Forest (RF), and Neural Network (NN)
as implemented by scikit-learn5. For each black-box and dataset, we performed
a random search for the best parameter setting6. Classification accuracy and
partitioning sizes are shown in Table 1-(right).

5.2 Comparison with Related Works

We evaluate the effectiveness of the calime framework through a comparative
analysis, contrasting it to several state-of-the-art proposals designed to outper-
form the limitations of lime. We specifically select two baseline methods: f-
lime [32], which employs a Conditional Tabular Generative Adversarial Network
to create more realistic synthetic data for model explanations, and d-lime [35],
a Deterministic Local Interpretable Model-Agnostic Explanations approach that
replaces random perturbations with hierarchical clustering to group the data.

The rationale for selecting these specific methods is grounded in several key
factors: i) similar to calime, they innovate by altering the neighborhood gener-
ation mechanism while preserving the core algorithmic structure; ii) they have
been developed relatively recently; iii) the presence of accessible source code
enhances reproducibility. For their implementation, we used the versions avail-
able in the respective repository7. The parameter settings followed the original
paper.
5 Black-boxes: https://scikit-learn.org/.
6 Detailed information regarding the parameters used can be found in the repository.
7 The f-lime code can be accessed at https://github.com/seansaito/Faster-LIME,

while d-lime at https://github.com/rehmanzafar/dlime_experiments.

https://scikit-learn.org/
https://github.com/seansaito/Faster-LIME
https://github.com/rehmanzafar/dlime_experiments
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5.3 Evaluation Measures

We evaluate the quality of the explanations returned to three criteria, i.e., fidelity,
plausibility, and stability of the explanations.

Fidelity. One of the metrics most widely used in XAI to evaluate how good an
explainer is at mimicking the black-box decisions is the fidelity [12]. There are
different specializations of fidelity, depending on the type of explanator under
analysis [12]. In our setting, we define the fidelity in terms of the coefficient of
determination R2:

R2
x = 1 −

∑N
i=1(b(zi) − r(zi))2
∑N

i=1(b(zi) − ŷ)2
with ȳ =

1
N

N∑

i=1

b(zi)

where zi ∈ Z is the synthetic neighborhood for a certain instance x, and r is the
linear regressor with Lasso regularization trained on Z. R2 ranges in [0, 1] and
a value of 1 indicates that the regression predictions perfectly fit the data.

Plausibility. We evaluate the plausibility of the explanations regarding the
goodness of the synthetic datasets locally generated by lime and calime by
using the following metrics based on distance, outlierness, statistics, likelihood,
and detection. In [27] is presented a set of functionalities that facilitates evalu-
ating the quality of synthetic datasets. Our experiments exploit this framework
to compare the synthetic data of the neighborhood Z with Xb.

Average Minimum Distance Metric. Given the local neighborhood Z generated
around instance x, a synthetic instance zi ∈ Z is plausible if it is not too much
different from the most similar instance in the reference dataset X.

Hence, for a given explained instance x, we calculate the plausibility in terms
of Average Minimum Distance (AMD):

AMDx =
1
N

N∑

i=1

d(zi, x̄) with x̄ = arg min
x′∈X/{x}

d(zi, x′)

where the lower the AMD, the more plausible the instances in Z, the more
reliable the explanation.

Outlier Detection Metrics. We also evaluate the plausibility of outliers in the
synthetic neighborhood Z. The fewer outliers are in Z to X, the more reli-
able the explanation is. In particular, we estimate the number of outliers in Z
by employing three outlier detection techniques8: Local Outlier Factor (LOF),
Angle-Based Outlier Detection (ABOD), and Isolation Forest (IF) [5]. These
three approaches return a value in [0, N ], indicating the number of outliers iden-
tified by the method. We report the Average Outlier Score (AOS) that combines
the normalized scores of these indicators.

8 LOF and IF: https://scikit-learn.org/stable/modules/generated/sklearn.neighbors;
ABOD: https://pyod.readthedocs.io.

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors
https://pyod.readthedocs.io
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Fig. 2. (Left). Feature importance computed by calime and lime. (Right). Causal
graph of banknote inferred by a causal discovery method [15].

Statistical Metrics. To compare X with Z, we exploit the statistical measures
outlined in SDV [27]. Specifically, we opted for the Gaussian Mixture Log Likeli-
hood, (GMLogLikelihood), Inverted Kolmogorov-Smirnov D statistic, (KSTest),
and Continuous Kullback-Leibler Divergence (ContinuousKLDivergence).

GMLogLikelihood fits multiple Gaussian Mixture models to the real data
using different numbers of components and returns the average log-likelihood
given to the synthetic data. KSTest performs the two-sample Kolmogorov-
Smirnov test using the empirical Cumulative Distribution Function (CDF). The
output for each column is one minus the KS Test D statistic, which indicates the
maximum distance between the expected CDF and the observed CDF values.
ContinuousKLDivergence is an information-based measure of disparity among
probability distributions. The SDV framework approximates the KL divergence
by binning the continuous values into categorical values and then computing the
relative entropy. Afterward, normalize the value using 1/(1+DKL). The metric
is computed as the average across all the column pairs. We report the Average
Statistical Metric (ASM) that aggregates these three indicators.

Detection Metrics. A way to test the plausibility of a synthetic dataset is to use
a classification approach to assess how much the real data differs from synthetic
ones [27]. The idea is to shuffle the real and synthetic data together, label them
with flags indicating whether a specific record is real or synthetic, and cross-
validate an ML classification model that tries to predict this flag [27]. The output
of the metric is one minus the average Area Under the Receiver Operating Curve
across all the cross-validation splits. We employ a Logistic detector and SVM as
“discriminators” and report the Average Detection Metric (ADM).

Stability. To gain the users’ trust, explanation methods must guarantee stabil-
ity across different explanations [13]. Indeed, the stability of explanations is a
fundamental requirement for a trustworthy approach [8]. Let E = {e1, . . . , en}
be the set of explanations for the instances X = {x1, . . . , xn}. In line with [11],
we asses the stability through the local Lipschitz estimation [1]:

LLEx = avg
xi∈Nk

x

‖ei − e‖2
‖xi − x‖2
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Fig. 3. Fidelity as R2 varying the number of features for statlog, wdbc and wine-red.
Markers represent the mean values, while vertical bars are the standard deviations.

where x is the instance to explain and N k
x ⊂ X is the k-Nearest Neighborhood

of x with the k neighbors selected from Xt. The lower the LLE, the higher the
stability. In the plots illustrating the stability through LLE, besides the average
value, we also report the minimum and maximum, using them as contingency
bands. According to the literature [1], we used k = 5.

5.4 Results

We propose a qualitative comparison between calime and lime by examining
the explanations generated by both approaches for a specific instance within the
banknote dataset (Fig. 2 - Left). It is important to note that calime is based on
the causal framework illustrated in Fig. 2 on the right discovered using a causal
discovery method [15], where entropy causes variance, which in turn influences
curtosis9. This sequence mirrors the actual physical process whereby the textu-
ral features of a banknote determine its classification as genuine or counterfeit.
We notice that the feature importance scores for variance and curtosis obtained
through calime are significantly higher compared to those attained using lime.
This is due to the fact that the neighborhood of the explained record is generated
by adhering to the causal relationships outlined in the causal graph. Conversely,
lime may not adequately capture this causal sequence, potentially undervalu-
ing variance due to its dependence on correlation, which can be confounded by
spurious relationships in the data. Hence, calime offers a more contextually rel-
evant explanation by incorporating the causal relationships intrinsic to banknote
verification processes. It ensures that model explanations are also meaningful,
reflecting the dynamics involved in the real-world task.

9 To avoid misinterpretation of these variables, it is important to note that their names
are not intended to refer to their mathematical meanings.
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Fig. 4. Plausibility errors as AMD, AOD, ASM , and ADM in box plots aggregating
the results across the scores obtained with different numbers of features. Best viewed
in color. (Color figure online)

In Fig. 3 we show the fidelity as R2 of lime and calime for statlog, wdbc
and wine-red varying the number of features k. Results show that calime
provides an improvement to lime except wdbc for which the performance of
calime is slightly worse than lime. More in detail, for k = 30, lime is more
faithful for the NN classifier trained on wdbc since it achieves .44 in contrast to
.41 for calime. For the standard deviation, we notice that calime is more stable
than lime. To summarize, calime provides explanations more trustworthy than
those returned by lime at the cost of a slightly larger variability in the fidelity
of the local models.

In Fig. 4, we illustrate the plausibility of lime and calime through box plots
aggregating the results obtained for the different number of features k for the
selected datasets considering simultaneously results for the different black-boxes.
We remind the reader that all the scores observed, i.e., AMD, AOD, ASM ,
and ADM , are “sort of” errors: lower values indicate higher plausibility scores.
Analyzing the results, we observe that calime outperforms lime in terms of
plausibility for all the metrics analyzed. The enhancement in calime’s perfor-
mance can be credited to the acquired knowledge of relationships among the
dataset variables, which enables the generation of data points in the local neigh-
borhood of x that closely resemble the original data. Concerning the AMD and
AOS scores, we observe the results focusing the analysis on banknote, magic
and statlog. In general, calime consistently produces a closer and more con-
densed neighborhood. In contrast, the randomly generated samples by lime are
further apart and exhibit lower density around the instance being explained.
For the banknote dataset, we notice relatively similar results between the two
methods, whereas the most noticeable difference, particularly in terms of AMD
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Fig. 5. Instability as LLE varying the number of features. Markers represent the mean
values, while the contingency area highlights the minimum and maximum values.

and AOS, becomes evident when analyzing statlog. Regarding the ASM and
AMD metrics, for which we provide insights concerning banknote, magic, wdbc,
and wine-red, calime offers a more realistic and probable synthetic local neigh-
borhood compared to lime. Notably, the datasets that show the most signifi-
cant improvement in lime’s performance are wdbc and wine-red. Consistent
with observations in fidelity, the greatest plausibility of calime correlates with
a more diverse neighborhood, as evidenced by the larger box plots (e.g., for
magic).

In Fig. 5, we illustrate the instability of lime and calime as LLE (the lower,
the better) for banknote, wine-red and wdbc varying the number of features k.
The colored areas highlight the minimum and maximum values of LLE obtained
by replacing the min and max operators in the previous formula. We notice that
lime is more stable than calime or comparable when the number of features
perturbed by the neighborhood generation procedures is small, i.e., k ≤ 4. Con-
versely, calime is more resistant to noise than lime when k > 4.

Finally, we show the comparison between calime, lime, and two other state-
of-the-art methods that replace the neighborhood generation in the original algo-
rithm to achieve explanations with higher fidelity and plausibility. In Table 2, we
provide the results obtained w.r.t. these metrics. Regardless of how the neighbor-
hood is generated, all methods perform better than lime. Our approach excels,
especially in terms of AMD, AOS, and R2 when compared to all other methods.
About ADM and ASM , the results are nearly comparable between calime and
f-lime. This similarity may be attributed to the GAN-based generation used
by f-lime. In theory, GAN-like methods have the potential to capture possible
dependencies. However, as empirically demonstrated in [7], these relationships
are not explicitly represented, and there is no guarantee that they are faithfully
followed in the data generation process.
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Table 2. A comparative analysis of Fidelity and Plausibility between calime and
baseline methods.

Datasets Explainers AMD ↓ AOS ↓ ASM ↓ ADM ↓ R2 ↑
banknote lime .188 459 .409 .583 .657

calime .085 236 .346 .412 .661
f-lime .109 428 .336 .337 .643

d-lime .193 672 .360 .502 .608

wine-red lime .234 471 .518 .675 .489

calime .092 380 .287 .524 .683
f-lime .213 400 .106 .510 .625

d-lime .207 293 .173 .503 .611

statlog lime .608 794 .353 .490 .398

calime .487 349 .265 .418 .453
f-lime .553 441 .216 .375 .446

d-lime .610 597 .280 .478 .413

wdbc lime .340 453 .460 .516 .650

calime .298 400 .250 .244 .726
f-lime .338 440 .380 .248 .715

d-lime .393 490 .521 .251 .705

In summary, calime empirically exhibits better performance than lime on
the datasets and the black-boxes analyzed. However, one drawback of calime,
at least concerning the current implementation, lies in its slower execution, pri-
marily due to the additional time overhead associated with two specific tasks: (i)
the extraction of the DAG and (ii) the learning of probability distributions for
root variables and regressors to approximate dependent variables. For instance,
while lime can generate explanations in less than a second, calime necessitates
one order of magnitude more time for completion.

6 Conclusion

We have presented the first proposal in the research area of post-hoc local model-
agnostic explanation methods that discovers and incorporates causal relation-
ships in the explanation extraction process. In particular, we have used gencda
to sample synthetic data accounting for causal relationships. Empirical results
suggest that calime can overcome the weaknesses of lime concerning both the
stability of the explanations and fidelity in mimicking the black-box.

From an application perspective, there is a growing demand for trustworthy
and transparent AI approaches in high-impact domains such as financial services
or healthcare. For instance, in medicine, this need arises from their possible
applicability in many different areas, such as diagnostics and decision-making,
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drug discovery, therapy planning, patient monitoring, and risk management. In
these scenarios, due to mapping of explainability with causality, the exploitation
of calime will allow users to make an informed decision on whether or not to
rely on the system decisions and, consequently, strengthen their trust in it.

A limitation of our proposal is that adopting gencda that in turn is based on
ncda, calime can only work on datasets composed of continuous features. We
need to rely on CD approaches to simultaneously account for heterogeneous con-
tinuous and categorical datasets to overcome this drawback. For future research
direction, it would be interesting to employ gencda and, in general, the knowl-
edge about causal relationships in the explanation extraction process of other
model-agnostic explainers like SHAP [23] or lore [10]. Indeed, the calime
framework can be plugged into any model-agnostic explainer. Finally, to com-
pletely cover lime applicability, we would like to study to which extent it is pos-
sible to employ causality awareness on data types different from tabular data,
such as images and time series.
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Abstract. The opacity of deep learning models constrains their debug-
ging and improvement. Augmenting deep models with saliency-based
strategies, such as attention, has been claimed to help better under-
stand the decision-making process of black-box models. However, some
recent works challenged the faithfulness of in-model saliency in Natu-
ral Language Processing (NLP), questioning the causality relationship
between the highlights provided by attention weight and the model pre-
diction. More generally, the adherence of attention weights to the actual
decision-making process of the model, a property called faithfulness, was
oppugned. We add to this discussion by evaluating the faithfulness of
causality for in-model saliency applied to a video processing task for the
first time, namely, temporal color constancy. We assess by adapting to
our target task two tests for faithfulness from recent NLP literature,
whose methodology we refine as part of our contributions. We show that
attention does not offer causal faithfulness, while confidence, a particular
type of in-model visual saliency, does.

Keywords: Explainability · Black-box · Faithfulness · Saliency ·
Attention

1 Introduction

Deep Learning (DL) models, while accurate in various tasks, remain primar-
ily opaque, making their decision-making process challenging to comprehend.
This opacity limits the evaluation of their generalizability and impedes model
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Fig. 1. Example of CNN+LSTM architecture for the TCC task.

debugging and improvement. Our study seeks to enhance the explainability of
DL models, particularly for Sequential Data (SD). Prior research has mainly
focused on language data in this context [1], offering primarily anecdotal and
contradictory insights on how attention should be considered for explainability
(e.g., [2–4]). While explainability in non-SD models, like image object recogni-
tion, is better established [5], it is unclear how these findings apply to other
models and tasks, especially in emerging video-related domains [6].

Our research extends these studies to the explainability of DL models for
Temporal Color Constancy (TCC) in video data. TCC involves estimating the
illuminant color of video frames, aiding in digital camera processing to enhance
video quality by correcting color distortions [7,8]. An example is shown in the
left side of Fig. 1, where the green illuminant in the target frame (i.e., the last in
the sequence) is detected using information from the previous frames and used
to perform the color correction. Current State-of-the-Art TCC methods, like
TCCNet, use a CNN+LSTM (Convolutional Neural Network and Long Short
Term Memory Network) architecture [8], but their operational understanding
is limited, particularly regarding their performance strengths and weaknesses.
This architecture is exemplified in Fig. 1. A convolutional network processes
each frame in the sequence estimating feature maps (X) weighted by a spacial
saliency mask (S, either confidence or attention). The saliency-weighted feature
maps (XMS) corresponding to each frame are then further weighted temporally
(T , using either the mean of the confidence mask or learned temporal attention),
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producing the inputs (Y MT ) to the recurrent component of the architecture.
Finally, a fully connected layer produces the final illuminant.

Our study focuses on enhancing the explainability of CNN+LSTM models
for Temporal Color Constancy (TCC), aiming to provide developers insights into
model features crucial for prediction, aiding in debugging and improvement. We
explore in-model saliency techniques like “attention” [9], which modify the model
architecture by adding mechanisms, such as additional neural network layers, to
learn weights for each input component. Intuitively, these weights, visualized
through saliency maps like heatmaps, help identify key input components for
predictions, offering causal explanations. Attention methods, besides boosting
State-of-the-Art (SoA) accuracy in fields like Natural Language Processing [10]
and computer vision [11], have been used to decipher model decisions, highlight-
ing critical parts of the input [12–14]. We also examine the concept of “con-
fidence”, introduced in the FC4 method for single-frame color constancy [15].
FC4 estimates illuminant color in single-frame tasks based on a convolutional
neural network and confidence-weighted pooling. The pooling strategy leverages
“confidence”, a set of importance weights learned contextually to the illuminant
estimate as an additional output channel. When proposing the FC4 method, the
authors preliminarily examine the impact of confidence on accuracy and explain-
ability for illuminate estimation, showing promising results. Unlike attention,
confidence weights are learned alongside other feature maps, potentially reveal-
ing more about the model’s internal logic. This aspect, crucial for accuracy and
explainability, has not been extensively explored in previous research.

Our primary objective is to advance the explainability of CNN+LSTM mod-
els in the context of Temporal Color Constancy (TCC), focusing on attention and
confidence mechanisms within these architectures [8]. In this study, we concen-
trate on two pivotal aspects to determine the effectiveness of in-model explain-
ability techniques. First, we ensure that introducing these mechanisms doesn’t
detract from the original model’s accuracy. We aim to establish a causal rela-
tionship between the model’s saliency highlights and predictive outcomes.

The second and equally important aspect we examine is the faithfulness of
the explanations generated by these techniques. The concept of faithfulness orig-
inates from the Natural Language Processing (NLP) community [16–18] and has
been recently elaborated upon by Rizzo et al. [18]. They dissect the idea of an
explanation into two fundamental elements: evidence, which pertains to infor-
mation relating to the model in question, and interpretation, the human-derived
semantic meaning attributed to this evidence. Consequently, an explanation is
an inference drawn from interpreting specific evidence. An explanation’s faithful-
ness is thus gauged by how accurately this interpretation aligns with the model’s
internal processing when the evidence is involved. We anticipate a causal inter-
pretation of attention weights (our evidence) regarding the model’s output. In
other words, we expect that high attention scores correlate with the high impor-
tance of the related input component for the prediction in a causal fashion. Our
analysis of faithfulness focuses on this interpretation, which has been the intu-
ition and norm since attention was first introduced [9]. However, addressing its
faithfulness is vital for two reasons: firstly, it is foundational for examining other
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essential properties of explanations (like robustness and understandability), and
secondly, due to emerging skepticism about whether attention-based saliency
maps truly provide accurate insights into a model’s learning process [2–4,19].
While much past research depends on attention for generating explanations,
recent studies have produced mixed results about the reliability of attention in
crafting faithful explanations.

The absence of a definitive methodology to measure faithfulness in the liter-
ature presents a challenge [20]. However, the suite of tests proposed in previous
studies offers a means to explore the potential connection between interpreta-
tions of attention weights and the inner workings of a model. While these tests
cannot conclusively determine the faithfulness of an interpretation, they assist
in verifying whether an interpretation is likely unfaithful. Therefore, this paper
adapts and extends two of these tests to our TCC domain, aiming to evaluate
whether attention and confidence can be reliably considered causal and faithful
techniques for explainability.

Concerning the CNN+LSTM approach, we apply “attention”, “confidence”,
and the combination of the two to the architecture’s spatial (S) component
(CNN), temporal (T) component (LSTM), and both. Thus, we obtain nine
models that we evaluate for accuracy and faithfulness. Regarding accuracy and
explainability, the spatial and temporal dimensions of in-model saliency have
not been compared extensively by previous literature. Thus, our evaluation aims
to contribute to filling this gap. Our contributions are the following:

– We dive into the largely uncharted territory of explainability of in-model
saliency explanations for video data, experimenting with the under-explored
task of illuminant estimation from sequences of frames (i.e., TCC).

– We analyze the faithfulness of causal interpretations of two different types
of saliency (i.e., attention and confidence) and three different dimensions of
saliency (i.e., spatial, temporal, and both combined). A formal comparison
among these different types and dimensions of saliency is under-investigated
in current literature.

– We extend two tests for faithfulness previously investigated only for NLP to
the TCC scenario by applying a rigorous methodology1

2 Related Work

Prior studies on computational color constancy, mainly focusing on single images,
have briefly touched upon attention for accuracy improvements but have not
delved deeply into explainability [21,22]. Our work also investigates the confi-
dence method, first introduced by Hu et al. [15] for single-frame color constancy,
where it enhanced accuracy and hinted at the potential for explainability.

We assess these in-model saliency methods based on the faithfulness of their
causal interpretation. Following the framework by Rizzo et al. [18], we categorize
saliency weights as evidence, their causal relation of importance to the model
1 Code repository: https://github.com/matteo-rizzo/saliency-faithfulness-eval.

https://github.com/matteo-rizzo/saliency-faithfulness-eval
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output as interpretation, and the highlighted input components as explanation.
However, evaluations of saliency-based explanations’ faithfulness, particularly
in video data, are scarce and often lack a clear distinction between evidence,
interpretation, and explanation [2–4,19].

In this paper, we extend to video data two tests proposed by Wiegreffe &
Pinter [3] to evaluate the faithfulness of attention in NLP tasks by adapting
them to our assessment of faithfulness of the causal interpretation of the saliency
scores. The first test (WP1 from now on) is designed to assess whether or not
attention weights have a relevant impact on task accuracy in the first place. The
second test (WP2 from now on) tries to gauge whether attention weights embed
information about the relationship among input timesteps. Details on these tests
are provided in Sect. 4.

Before Wiegreffe & Pinter [3], Jain & Wallace [2] proposed two different tests
to evaluate the faithfulness of attention in NLP tasks. One test compares with
alternative measures of input feature importance, e.g. gradient-based measures,
assuming that attention-based importance is faithful if the feature importance
weights it generates highly correlate with those generated by the other mea-
sures. We do not look at this test because it relies on the unverified assumption
that the alternative feature importance measures are faithful. The second test
involves analyzing whether replacing learned attention weights with different dis-
tributions affects model prediction, assuming that if this change does not affect
prediction, then weights are not involved in the decision process. Thus, they can-
not provide faithful explanations of such a process. This test is complementary
to the WP1 mentioned above in that it checks the importance of learning the
weights through the attention mechanism, whereas WP1 corresponds that any
weights have a role in the decision process in the first place.

The later tests conducted by Serrano & Smith [4] aim to understand how well
attention weights represent the importance of the encoded input components by
zeroing out sets of weights and seeing how this affects prediction. Their findings
indicate that attention weights are poor indicators of the importance of encoded
input components. However, their methodology is limited to plotting trends and
lacks a quantitative assessment of whether a model passed or failed. These are
common issues across the existing evaluations of faithfulness [2–4], which we
address when applying the WP1 and WP2 tests from Wiegreffe & Pinter [3] to
the TCC task.

3 Proposed Neural Architectures

To rigorously evaluate saliency faithfulness in Temporal Color Constancy (TCC),
we experimented with nine distinct CNN+LSTM models encompassing three
dimensions: Spatial (S), Temporal (T), and Spatio-Temporal (ST). Our study
also investigated two saliency types, attention (A) and confidence (C), with a
particular interest in their potential for enhancing explainability. Additionally,
we explored a hybrid approach, denoted as CA, integrating confidence for spatial
information and attention for temporal aspects, in line with their initial design
purposes [9,15].
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Our CNN+LSTM architecture (depicted in Fig. 1) includes a spatial saliency
module that processes each CNN-encoded frame Xi, learning a mask MSi. The
sequence of masked encoded frames XMS = X · MS is then input into the
ConvLSTM, which is equipped with a temporal saliency mechanism learning
a temporal mask MTi. The output from this process is a series of temporally
encoded timesteps Yi weighted as Y MT = Y · MT . After processing through a
Fully Connected (FC) layer, this output is utilized for illuminant prediction and
subsequent color correction of the last frame in the sequence.

The implementation of attention modules, both spatial and temporal, was
adapted from Meng et al. [23]. Spatial attention is learned via a three-layer
CNN module that reduces the feature maps to one channel, employing batch
normalization and ReLU activations in the first two layers, followed by a Sigmoid
activation in the final layer. Temporal attention involves computing the Softmax
of the output from two feed-forward neural networks, which are trained jointly
with the rest of the system. At each timestep, the temporal attention mechanism
considers every timestep in the encoded sequence XMS

i and the previous hidden
state Ht−1, resulting in a weighted sum of features from all frames fed into the
ConvLSTM.

For confidence, spatially oriented as per its original conceptualization for
single-frame computational color constancy [15], it is learned as an additional
channel alongside feature maps and used to weigh encoded images. Temporal
weights are derived by averaging the values of spatial confidence masks, which
correlate with the accuracy of single-frame predictions [15].

Both attention and confidence can be visualized via heatmaps (Fig. 2), pro-
viding intuitive insights into the influential input features for model predictions.
This study builds upon earlier TCC research employing CNN+LSTM models
[8] and is a fundamental exploration of in-model saliency in neural networks.
Future research will expand this analysis to more intricate deep-model designs
like transformers.

4 Original Methodology of the Tests

The original methodology of the tests refers to “attention”, and is thus reported
in these terms despite our analysis also involving “confidence” saliency. Faith-
fulness is investigated in terms of the interpretation that saliency scores have a
causal relation of importance to the model output.

Test WP1 is designed to assess the role of attention in enhancing the accuracy
of deep neural architectures for specific tasks and datasets. It particularly exam-
ines whether the attention mechanism contributes to more accurate predictions,
a key factor in determining a model’s faithfulness in the decision-making pro-
cess. The concept of faithfulness here refers to how well the attention mechanism
reflects the model’s actual computational process in making decisions.

In WP1, the performance of a contextual model denoted as MC is evalu-
ated in two scenarios: (i) using its standard learned saliency weights (MC

C ), and
(ii) using an alternative version with randomly assigned uniform weights (MC

U ).
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Fig. 2. Saliency heatmaps for attention and confidence.

The contextual model, MC , typically includes a recurrent layer, such as LSTM,
capable of understanding temporal relationships among input components, in
contrast to a Non-Contextual (NC) model that would use linear layers instead
of recurrent ones. The effectiveness of the attention mechanism is validated if
MC

C demonstrates superior accuracy compared to MC
U . If MC

C outperforms MC
U ,

it implies that attention plays an active role in the model’s decision-making,
making it a candidate for further investigation regarding its faithfulness. Con-
versely, if MC

C does not surpass MC
U , attention may not significantly contribute

to the decision-making process, thus questioning its faithfulness. This test estab-
lishes a necessary condition for faithfulness, setting the stage for the subsequent
WP2 test.

Test WP2 delves deeper into the contextual nature of attention. It investi-
gates whether the saliency weights learned by the attention mechanism encode
contextual information about the input components. Contextual information
here refers to understanding how different parts of the input relate to each other
and their collective impact on the model’s output. WP2 tests this by replacing
the weights in a Non-Contextual model (MNC)-one that does not naturally cap-
ture temporal or sequential relationships-with weights learned by a contextual
model (MC). The aim is to see if introducing these contextual weights into a non-
contextual setting enhances the model’s decision-making process, as reflected by
improved accuracy. This is measured by comparing the performance of MNC

with contextual weights (MNC
C ) against both its original performance with non-

contextual weights (MNC
NC ) and the baseline uniform weights performance from

WP1 (MC
U ). A positive result in WP2 suggests that the attention mechanism is

not merely learning random weights; instead, it captures and transfers valuable
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contextual information from MC to MNC . This outcome reinforces the role of
attention in highlighting crucial parts of the input, leveraging an understanding
of the relationships among these components-i.e., the contextual information.
The comparison is made fair by training the linear layers in MNC alongside the
other layers, ensuring an equitable basis for assessing accuracy between contex-
tual and non-contextual models.

4.1 Adaptation of the Original Tests

WP1 and WP2 were originally proposed for experimenting with binary text
classification using a vanilla LSTM architecture. Thus, they must be adapted to
our target TCC task and CNN+LSTM design.

WP1 is a model and task-agnostic test that requires minor adaptations. We
independently generated the required random uniform distribution specified by
the original methodology at inference time, both for the spatial and temporal
saliency dimensions, using the same strategy for attention and confidence (i.e.,
the utility function offered by the PyTorch framework for DL v1.9.0). The uni-
formly distributed weights were then used to replace the model’s lessons. In the
spatial and temporal cases, we froze to a random uniform distribution of the
corresponding module’s saliency weights, leaving the other module’s unaltered.
At the same time, we tweaked the saliency weights of both modules at once for
the spatiotemporal scenario.

Concerning test WP2, we selectively replaced the convolutional and recurrent
layers of the CNN+LSTM architecture based on which dimension, among spatial,
temporal, and spatiotemporal, we were examining. This prevents the network
from accessing information about the relationship between input components,
such as pixels in the frames and timesteps in the sequences. In evaluating spatial
saliency, we applied one linear layer in place of the convolutional component
while keeping the recurrent component unaltered and vice versa to evaluate
temporal saliency. When looking at spatiotemporal saliency, we replaced the
convolutional and recurrent layers with linear ones.

5 Experimental Setup

We evaluated our models on the TCC dataset [8], which is the largest and most
realistic dataset available for TCC2. It comprises 600 real-world videos recorded
with a high-resolution mobile phone camera shooting 1824× 1368 sized pictures.
The length of these videos ranges from 3 to 17 frames (7.3 on average, the
median is 7.0, and the mode is 8.5). Ground truth information is present only
for the last frame in each video (i.e., the shot frame) and was collected using a
grey surface calibration target. Despite TCC being the largest dataset available,
2 Of the other existing datasets for TCC, [24] is very small, [25] was specifically

designed for experiments on AC bulb illumination and [26] features very low-
resolution images which are not in line with the standards of modern consumer
photography.
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the number of sequences is relatively small for effectively training a DL model.
Therefore, we perform data augmentation using the same procedure proposed in
[8] to train TCCNet. Namely, the frames in the sequences were randomly rotated
by an amount in the range [-30, +30] degrees and cropped to a proportion in
the range of [0.8, 1.0] on the shorter dimension. The generated patches were
flipped horizontally with a probability of 0.5. Data augmentation is achieved
by dynamically applying these transformations at training time to each batch
of sequences, which is the standard practice in PyTorch, our DL framework of
reference.

All models have been trained using a mix of Tesla P100 and NVidia GeForce
GTX 1080 Ti GPUs from local lab equipment and cloud services. It took about
24 h for a model to complete a single learning procedure. The training of the
saliency models was performed for 500 epochs using the RMSprop optimizer
with batch size 1 and learning rate initially set to 3e−5. We opted for a hidden
size equal to 128 and kernel size equal to 5, as suggested by the ablation study of
TCCNet in [8]. The SqueezeNet convolutional backbone was initialized with the
weights pretrained on ImageNet [27] provided by PyTorch3 The error ε between
the illuminant ĉ estimated by the saliency models and the ground truth cgt
has been computed using the angular error, a measure used in many works on
computational color constancy and reported in Formula 1.

εĉ,cgt = arccos(
ĉ · cgt

||ĉ|| · ||cgt|| ) (1)

As in previous works on computational color constancy, the metrics we
selected to evaluate model performance in terms of accuracy provide insights
into the distribution of the angular errors across the test items. These met-
rics include the Mean Angular Error (MAE), the median, and the trimean (the
weighted average of the median and upper and lower quartiles) across the test
set, indicating how the models performed on average and accounting for outliers.
We also report the MEA on the best 25th and worst 25th and 5th percentiles,
showing how the model performed on easy, hard, and very hard inputs, respec-
tively.

6 Method

To bolster the robustness of our faithfulness evaluations in Temporal Color Con-
stancy (TCC), our study incorporated a four-fold cross-validation using diverse
training-test splits of the TCC dataset [8]. This methodological choice was driven
by the need to balance the size of training and testing samples, considering the
overall size of our dataset. Consequently, our findings are presented as aver-
age results and standard deviations across these splits. A significant part of our
analysis centered around the MAE, a metric selected to concisely represent the

3 The pretrained models offered by PyTorch are available at https://pytorch.org/docs/
stable/torchvision/models.html.

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html


134 M. Rizzo et al.

central tendency of angular errors in predicting illuminates (find more detailed
metrics in the Appendix).

For WP1, our approach involved comparing the performance of models
utilizing learned saliency (MC

C ) with those employing frozen random uniform
weights (MC

U ). This comparison was conducted using paired t-tests, with p-
values adjusted through the Benjamini-Hochberg method to account for mul-
tiple comparisons. In the context of WP2, we conducted ANOVA tests with
MAE as the dependent variable. Factors in these tests included the dimension of
saliency (spatial, temporal, or spatiotemporal), the type of saliency (attention,
confidence, or combination), and the nature of weights used in inference (ran-
dom uniform, contextual, or non-contextual). The results from these ANOVAs
were further refined through post-hoc analysis using the Tukey-HSD method.
Additionally, the magnitude of the effects in both the t-tests and ANOVAs was
quantified using Cohen’s d value, providing a statistical measure of the size of
the observed effects.

Our methodology also examined the divergence between sets of saliency
weights, particularly when models of identical architecture with different saliency
weights were compared. This divergence was measured using the Jensen-Shannon
Divergence (JSD) for temporal saliency distributions and a combination of
binary cross-entropy, structural similarity index, and intersection over union for
spatial divergence. This combined approach allowed us to evaluate divergence at
pixel, patch, and feature-map levels.

The interplay between saliency weights divergence and model accuracy
becomes particularly pertinent when no significant difference in accuracy is
observed between models. In such cases, we identified three distinct scenarios:
(i) a significant discrepancy in accuracy regardless of saliency weight divergence,
(ii) a minimal difference in accuracy accompanied by substantial divergence in
saliency weights, and (iii) both minimal differences in accuracy and saliency
divergence. In scenarios (i) and (ii), the absence of a notable accuracy difference
likely indicates that saliency weights do not play a significant role in the model’s
decision-making process. In contrast, scenario (iii) necessitates additional inves-
tigation to ascertain whether the observed pattern is due to the saliency not
being faithful to its intended causal interpretation, potential model overfitting,
or a ceiling effect resulting from the simplicity of the task.

7 Results

In this section, we discuss how our saliency-augmented models compare to the
baseline in terms of accuracy. Then, we look at the faithfulness of the gener-
ated saliency maps concerning their causal interpretation. We apply the two
selected tests for faithfulness (WP1 and WP2) to three types of saliency across
three dimensions of a saliency-augmented CNN+LSTM architecture. The types
of saliency are Confidence (C), Attention (A), and both combined (CA). The
dimensions are Spatial (S), Temporal (T), and Spatiotemporal (ST).



Evaluating Faithfulness of Causality of Saliency for DL Models for TCC 135

7.1 Preliminary Accuracy Investigation

While making a neural model more transparent by modifying its architecture,
we would like its accuracy to remain unaltered (or possibly to increase). With
this premise in mind, we analyze the impact on the accuracy of augmenting
a CNN+LSTM architecture with a saliency mechanism. Specifically, we exam-
ine how our nine proposed saliency models compare the MAE to a baseline
CNN+LSTM without saliency mechanisms. Despite all models performing worse
than the baseline regarding sheer numbers, this trend did not prove significant
when running t-tests. The small effect sizes for attention spatiotemporal, atten-
tion temporal, and confidence temporal (A-ST, A-T, and C-T) indicate that
these models are likely to be equivalent to the baseline in terms of accuracy.
More details on these results are available in the Appendix.

7.2 Test WP1

Figure 3a compares the MAE achieved by models using either random uniformly
distributed saliency weights (MC

U ) or saliency weights derived from learned
model parameters (MC

C ). In terms of sheer numbers, we observe that the error
achieved by models using random, uniformly distributed weights is always higher
than that achieved by models using weights derived from learned model parame-
ters. This trend is particularly accentuated when spatial confidence is involved in
the evaluation. Running t-tests followed by Benjamini-Hochberg adjustments for
multiple comparisons confirm that the trend is statistically significant (p-value
< 0.05) for each of the examined configurations. Moreover, the corresponding
effect sizes are huge (Cohen’s d > 1). Thus, all our nine proposed models pass test
WP1. This means that the learned saliency scores carry valuable causal infor-
mation to the model for achieving accurate predictions. Accuracy is sensitive to
manipulation of the saliency distribution.

7.3 Test WP2

We remark that test WP2 is passed if the MAE achieved by the non-contextual
model using saliency weights derived from a contextual model (MNC

C ) is lower
than (i) the MAE achieved by the non-contextual model using weights derived
from its learned parameters (MNC

NC ), and (ii) the MAE achieved by the con-
textual model using frozen uniformly distributed saliency weights (MC

U ). We
performed these two comparisons for each of the nine proposed saliency mod-
els as the contextual model of reference. Figure 3b presents the MAE values for
comparison (i) for the considered saliency types and dimensions concerning the
type of weights the model uses.

The bar chart shows that (i) holds for attention spatial, confidence spa-
tial, confidence and attention combined spatial, and spatiotemporal (A-S, C-S,
CA-S, C-ST). For the other configurations, we need to check if the lack of a
significant difference could be due to low divergence in the saliency masks gen-
erated by the non-contextual model using learned saliency weights (MNC

NC ) and
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Fig. 3. Plot of Mean Average Error (MAE) values for Test WP1 (a) (models using
either random uniformly distributed saliency weights MC

U or saliency weights derived
from learned model parameters MC

C ) and Test WP2, comparison (i) (b) and (ii) (c)
(respectively, MAE from non-contextual models using saliency weights derived from
a contextual model MNC

C is lower than (i) the MAE achieved by the non-contextual
model using weights derived from its learned parameters MNC

NC , and (ii) the MAE
achieved by the contextual model using frozen uniformly distributed saliency weights
MC

U ).

the non-contextual model using saliency weights imposed from the contextual
model (MNC

C ). We look at the relationships between accuracy and the generated
saliency masks for the temporal and spatiotemporal models and interpret them
as discussed in Sect. 6. For all of the considered models, saliency divergence is
high (i.e., Divtemp > 0.7, Divspat > 125), which suggests that the low differ-
ence in accuracy is not due to saliency weights being very similar, but instead
to them not being involved in the decision-making process of the model in terms
of causal interpretation. Therefore, we do not consider these models in (ii).

As shown by the plot in Fig. 3c, comparison (ii) holds for confidence spa-
tiotemporal, confidence spatial, and confidence and attention combined spatial
(C-ST, C-S, CA-S). Thus, these models pass the test WP2. On the other hand,
comparison (ii) does not hold for attention spatial (A-S). In this case, the con-
textual architecture of the model has more impact on accuracy than the saliency
mechanism.
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Fig. 4. Summary table of the results of tests WP1 and WP2.

7.4 Discussion

Figure 4 summarizes the results of the accuracy analysis and the two tests for
our nine models.

First, we note that the temporal dimension is present in all three top-
performing model configurations, suggesting that this facet of saliency is essen-
tial for accuracy. However, no model appears faithful to our casual interpreta-
tion when leveraging the temporal dimension only. An intuitive justification for
this phenomenon stems from observing that temporal saliency focuses on a few
frames in a sequence. This means that a lot of possibly relevant spatial infor-
mation is discarded. Thus, a model might learn not to actively use temporal
saliency in its decision-making process to preserve accuracy.

Second, we observe that spatial confidence is present in all configurations
that pass the two assessments, which suggests that this saliency dimension and
type help support the faithfulness of the causal interpretation. This might be
due to confidence scores being jointly learned with the other feature maps and
thus more strictly connected to the inner decision-making process of the model.
On the other hand, attention configurations never succeed in upholding faithful-
ness. The crucial difference between attention and confidence is that a separate
ad hoc convolutional module learns the former while the latter is learned as an
additional feature map. As a result, the attention model is more complex (i.e.,
has a more significant number of trainable parameters, ∼x3). It might be that
attention networks get sufficiently complex to achieve high accuracy while ignor-
ing saliency in their decision-making process. That is, there could be a trade-off
between model complexity and the causal interpretation of saliency. A model
could be complex enough to solve the task effectively, and introducing further
parameters may result in a ceiling effect. In this case, the model could still fulfill
the target task without fully leveraging its complexity and, thus, regardless of
the learned saliency weights.
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8 Conclusions and Future Work

In this study, we explored in-model saliency methods, particularly attention and
confidence, in the novel context of video-based illuminant estimation, focusing on
their faithfulness in influencing model predictions. This assessment covered three
dimensions: spatial, temporal, and spatiotemporal. We adapted two tests from
previous NLP research to evaluate the causal relationship between saliency scores
and model predictions. We enhanced the methodology with statistical analysis
and examination of saliency weight divergence. Our findings indicate that spatial
and spatiotemporal confidence may be faithful to their causal interpretation,
while attention models generally failed these tests. This aligns with previous
research questioning the reliability of attention as an explanatory tool for causal
interpretation. On the other hand, the promising results achieved by confidence
shed light on the importance of how in-model saliency is integrated for driving
faithful causality in explanations. Additionally, our accuracy analysis showed
that temporal models tend to perform better.

However, our study has limitations, primarily its restriction to a single task
and dataset, challenging the generalizability of our results. Future work will
expand these assessments to a broader range of datasets and tasks, including those
from NLP literature, and explore diverse model architectures like transformers
and different attention methods (e.g., roll out and flow [28]). We acknowledge the
need for a clear threshold to distinguish a test’s failure due to insufficient diver-
gence in saliency weights, which we aim to establish. Additionally, we plan to
investigate other properties like robustness and plausibility. Despite these limita-
tions, our research provides a foundational analysis of the faithfulness of in-model
saliency in the TCC task and addresses methodological gaps in previous studies.

Disclosure of Interests. The authors declare no competing interests.

A Extended Results of the Experiments

(See Tables 1, 2, 3, 4 and 5).

Table 1. Accuracy. Metrics concerning the angular error for models using no saliency
(B), attention (A), confidence (C), and confidence and attention combined (CA).

Model Saliency Mean Median Trimean Best 25% Worst 25% Worst 5%

Avg Std dev Avg Std dev Avg Std dev Avg Std dev Avg Std dev Avg Std dev

B – 2.28 0.24 1.50 0.19 1.72 0.23 0.46 0.06 5.32 0.58 6.60 1.13

A ST 2.83 0.27 1.87 0.19 2.13 0.22 0.45 0.05 6.78 0.76 9.08 1.04

S 2.32 0.14 1.66 0.05 1.81 0.05 0.45 0.04 5.34 0.56 6.49 1.16

T 2.22 0.18 1.26 0.07 1.50 0.07 0.28 0.04 5.79 0.58 7.43 1.35

C ST 2.90 0.52 2.24 0.50 2.35 0.51 0.64 0.15 6.44 1.05 8.00 1.19

S 2.64 0.37 1.98 0.37 2.11 0.36 0.60 0.13 5.85 0.70 6.83 1.22

T 2.28 0.08 1.64 0.11 1.81 0.07 0.49 0.06 5.07 0.30 6.37 0.10

CA ST 2.84 0.27 2.05 0.21 2.27 0.22 0.59 0.12 6.44 0.65 7.94 1.52

S 2.45 0.07 1.71 0.09 1.89 0.06 0.47 0.07 5.66 0.30 6.99 0.21

T 2.60 0.22 1.77 0.22 1.98 0.22 0.52 0.10 6.04 0.43 7.62 0.57
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Table 2. Test WP1. Metrics concerning the angular error for models using random
uniformly distributed (R) versus learned (L) saliency weights.

Model Saliency Mean Median Trimean Best 25% Worst 25% Worst 5%

Avg Std dev Avg Std dev Avg Std dev Avg Std dev Avg Std dev Avg Std dev

B – 2.28 0.24 1.50 0.19 1.72 0.23 0.46 0.06 5.32 0.58 6.60 1.13

A ST (L) 2.83 0.27 1.87 0.19 2.13 0.22 0.45 0.05 6.78 0.76 9.08 1.04

ST (R) 3.66 0.34 2.42 0.24 2.69 0.27 0.67 0.10 8.77 1.02 11.42 1.28

S (L) 2.32 0.14 1.66 0.05 1.81 0.05 0.45 0.04 5.34 0.56 6.49 1.16

S (R) 2.74 0.06 1.99 0.08 2.20 0.09 0.58 0.04 6.08 0.18 7.22 0.22

T (L) 2.22 0.18 1.26 0.07 1.50 0.07 0.28 0.04 5.79 0.58 7.43 1.35

T (R) 2.90 0.21 1.87 0.06 2.14 0.10 0.53 0.11 6.92 0.56 8.85 1.08

C ST (L) 2.90 0.52 2.24 0.50 2.35 0.51 0.64 0.15 6.44 1.05 8.00 1.19

ST (R) 12.16 3.34 11.06 2.59 11.33 2.86 2.94 1.32 23.34 6.67 25.80 8.61

S (L) 2.64 0.37 1.98 0.37 2.11 0.36 0.60 0.13 5.85 0.70 6.83 1.22

S (R) 10.43 4.47 9.76 5.31 10.00 5.10 3.93 2.32 18.00 5.85 20.13 5.91

T (L) 2.28 0.08 1.64 0.11 1.81 0.07 0.49 0.06 5.07 0.30 6.37 0.10

T (R) 2.94 0.38 2.15 0.28 2.31 0.29 0.66 0.11 6.57 0.99 8.29 1.37

CA ST (L) 2.84 0.27 2.05 0.21 2.27 0.22 0.59 0.12 6.44 0.65 7.94 1.52

ST (R) 9.97 0.38 9.08 0.81 9.49 0.41 3.08 0.13 18.36 1.37 20.38 1.86

S (L) 2.45 0.07 1.71 0.09 1.89 0.06 0.47 0.07 5.66 0.30 6.99 0.21

S (R) 11.70 2.71 9.68 2.65 10.57 2.96 2.72 0.78 23.11 4.41 25.83 4.22

T (L) 2.60 0.22 1.77 0.22 1.98 0.22 0.52 0.10 6.04 0.43 7.62 0.57

T (R) 5.23 1.00 3.75 0.91 4.13 1.03 0.84 0.07 12.04 2.14 14.77 2.93

Table 3. Test WP2. Metrics concerning the angular error for models using attention.

Saliency Type Saliency Mean Median Trimean Best 25% Worst 25% Worst 5%

Avg Std Dev Avg Std Dev Avg Std Dev Avg Std Dev Avg Std Dev Avg Std Dev

Baseline ST 9.89 0.44 9.74 0.30 9.53 0.55 2.63 0.64 17.86 0.75 19.48 1.18

S 4.10 0.51 9.25 9.31 2.82 17.72 19.44 9.80 9.23 9.25 2.79 17.81

T 9.91 0.45 9.99 0.55 9.64 0.57 2.69 0.46 17.75 0.69 19.29 0.77

Learned ST 9.64 0.42 9.03 0.49 9.10 0.51 2.05 0.43 18.20 0.82 20.47 0.67

S 9.70 0.40 9.35 0.51 9.21 0.46 2.56 0.23 17.99 0.86 19.64 0.45

T 9.64 0.43 8.96 0.56 9.07 0.50 2.31 0.58 18.16 0.62 20.37 0.85

Contextual ST 7.12 2.81 6.21 3.24 6.31 3.08 1.65 0.84 14.42 4.20 17.24 3.60

S 4.10 0.51 3.18 0.25 3.40 0.35 1.05 0.08 8.79 1.40 11.01 1.72

T 9.65 0.43 9.30 0.68 9.17 0.61 2.39 0.31 18.06 0.73 20.49 0.71

Table 4. Test WP2. Metrics concerning the angular error for models using confidence.

Saliency Type Saliency Mean Median Trimean Best 25% Worst 25% Worst 5%

Avg. Std Dev. Avg. Std Dev. Avg. Std Dev. Avg. Std Dev. Avg Std Dev. Avg. Std Dev

Baseline ST 9.89 0.44 9.70 0.36 9.52 0.57 2.65 0.64 17.84 0.78 19.44 1.19

S 19.35 9.83 9.49 9.44 2.89 17.65 19.47 0.22 8.22 0.91 9.59 1.01

T 9.91 0.45 9.98 0.57 9.63 0.58 2.70 0.45 17.74 0.70 19.28 0.77

Learned ST 9.64 0.42 9.10 0.44 9.12 0.50 2.42 0.50 18.09 0.78 20.51 0.74

S 9.69 0.42 9.20 0.28 9.26 0.42 2.66 0.41 18.01 0.52 20.32 0.56

T 9.65 0.42 9.01 0.53 9.06 0.50 2.34 0.56 18.10 0.67 20.33 1.03

Contextual ST 5.03 2.89 4.14 3.11 4.33 3.02 1.09 0.80 10.51 4.58 13.09 5.09

S 3.86 0.43 2.99 0.44 3.20 0.37 0.96 0.22 8.22 0.91 9.59 1.01

T 9.65 0.42 9.30 0.66 9.19 0.59 2.35 0.40 18.12 0.91 20.43 0.74
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Table 5. Test WP2. Metrics concerning the angular error for models using confidence
as spatial saliency and attention as temporal saliency

Saliency Type Saliency Mean Median Trimean Best 25% Worst 25% Worst 5%

Avg. Std Dev Avg Std Dev Avg Std Dev Avg Std Dev Avg Std Dev Avg Std Dev

Baseline ST 9.89 0.44 9.71 0.39 9.53 0.57 2.67 0.63 17.82 0.79 19.38 1.19

S 9.83 0.49 9.49 0.53 9.44 0.70 2.89 0.53 17.65 0.41 19.47 0.68

T 9.91 0.45 9.99 0.56 9.64 0.58 2.69 0.46 17.75 0.69 19.29 0.77

Learned ST 9.64 0.42 9.12 0.44 9.13 0.50 2.43 0.50 18.07 0.79 20.46 0.75

S 9.69 0.39 9.16 0.60 9.17 0.49 2.60 0.34 18.04 0.82 19.76 0.54

T 9.64 0.43 8.95 0.58 9.05 0.52 2.31 0.59 18.16 0.62 20.40 0.85

Contextual ST 8.35 2.85 7.81 3.41 7.76 3.20 2.02 0.87 16.16 4.33 18.22 3.99

S 3.64 0.45 2.73 0.45 2.97 0.46 0.78 0.13 7.97 0.71 9.73 0.86

T 9.66 0.42 9.28 0.74 9.19 0.64 2.41 0.30 18.05 0.74 20.30 0.45

References

1. Danilevsky, M., Qian, K., Aharonov, R., Katsis, Y., Kawas, B., Sen, P.: A survey
of the state of explainable AI for natural language processing. In: Proceedings of
the 1st Conference of the Asia-Pacific Chapter of the Association for Computa-
tional Linguistics and the 10th International Joint Conference on Natural Lan-
guage Processing, Suzhou, China, December 2020, pp. 447–459. Association for
Computational Linguistics (2020). https://aclanthology.org/2020.aacl-main.46

2. Jain, S., Wallace, B.C.: Attention is not explanation. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Minneapolis, Minnesota, June 2019,
vol. 1 (Long and Short Papers), pp. 3543–3556. Association for Computational Lin-
guistics (2019). https://doi.org/10.18653/v1/N19-1357. https://www.aclweb.org/
anthology/N19-1357

3. Wiegreffe, S., Pinter, Y.: Attention is not explanation. In: Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), Hong Kong, China, November 2019, pp. 11–20. Association for Compu-
tational Linguistics (2019). https://doi.org/10.18653/v1/D19-1002. https://www.
aclweb.org/anthology/D19-1002

4. Serrano, S., Smith, N.A.: Is attention interpretable? In: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, Florence, Italy,
July 2019, pp. 2931–2951. Association for Computational Linguistics (2019).
https://doi.org/10.18653/v1/P19-1282. https://www.aclweb.org/anthology/P19-
1282

5. Hohman, F., Kahng, M., Pienta, R., Chau, D.H.: Visual analytics in deep learning:
An interrogative survey for the next frontiers. IEEE Trans. Visualization Comput.
Graph. 25(8), 2674–2693 (2018). ISSN 1941-0506. https://doi.org/10.1109/tvcg.
2018.2843369

6. Hiley, L., Preece, A.D., Hicks, Y.A.: Explainable deep learning for video recognition
tasks: a framework & recommendations. ArXiv arxiv:1909.05667 (2019). https://
api.semanticscholar.org/CorpusID:202565462

7. Ramanath, R., Snyder, W., Yoo, Y.J., Drew, M.: Color image processing pipeline.
IEEE Signal Process. Maga. 22(1), 34–43 (2005). ISSN 1558-0792. https://doi.org/
10.1109/msp.2005.1407713

https://aclanthology.org/2020.aacl-main.46
https://doi.org/10.18653/v1/N19-1357
https://www.aclweb.org/anthology/N19-1357
https://www.aclweb.org/anthology/N19-1357
https://doi.org/10.18653/v1/D19-1002
https://www.aclweb.org/anthology/D19-1002
https://www.aclweb.org/anthology/D19-1002
https://doi.org/10.18653/v1/P19-1282
https://www.aclweb.org/anthology/P19-1282
https://www.aclweb.org/anthology/P19-1282
https://doi.org/10.1109/tvcg.2018.2843369
https://doi.org/10.1109/tvcg.2018.2843369
http://arxiv.org/abs/1909.05667
https://api.semanticscholar.org/CorpusID:202565462
https://api.semanticscholar.org/CorpusID:202565462
https://doi.org/10.1109/msp.2005.1407713
https://doi.org/10.1109/msp.2005.1407713


Evaluating Faithfulness of Causality of Saliency for DL Models for TCC 141
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Abstract. As Artificial Intelligence (AI) is having more influence on our every-
day lives, it becomes important that AI-based decisions are transparent and
explainable. As a consequence, the field of eXplainable AI (or XAI) has become
popular in recent years. One way to explain AI models is to elucidate the predic-
tive importance of the input features for the AI model in general, also referred
to as global explanations. Inspired by cooperative game theory, Shapley values
offer a convenient way for quantifying the feature importance as explanations.
However many methods based on Shapley values are built on the assumption of
feature independence and often overlook causal relations of the features which
could impact their importance for the ML model. Inspired by studies of expla-
nations at the local level, we propose CAGE (Causally-Aware Shapley Values
forGlobal Explanations). In particular, we introduce a novel sampling procedure
for out-coalition features that respects the causal relations of the input features.
We derive a practical approach that incorporates causal knowledge into global
explanation and offers the possibility to interpret the predictive feature impor-
tance considering their causal relation. We evaluate our method on synthetic data
and real-world data. The explanations from our approach suggest that they are
not only more intuitive but also more faithful compared to previous global expla-
nation methods.

Keywords: Explainable Artificial Intelligence · XAI · Shapley values · Global
Explanation · Causality · Causal Explanations

1 Introduction

Explainable artificial intelligence (XAI) is a field of study in artificial intelligence (AI)
research that complements complex machine learning (ML) models with comprehensi-
ble insights, facilitating human understanding and trust [15]. It endeavors to unravel the
intricate decision-making processes of AI systems, providing clear, interpretable, and
accessible explanations that favorably align with human cognition and reasoning. As AI
technologies burgeon and permeate various sectors -from healthcare [22] and finance
[38] to criminal justice [39]- the imperative for XAI is magnified, demanding that the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
L. Longo et al. (Eds.): xAI 2024, CCIS 2155, pp. 143–162, 2024.
https://doi.org/10.1007/978-3-031-63800-8_8
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opaque “black-box” models are more transparent and the algorithmic decisions thereof
are justified.

In this ever-evolving landscape, various research lines and methodologies have been
proposed, each aspiring to shed light on different aspects of the workings of AI models
[27]. Among these, Shapley value-based methods such as SHAP [19] and SAGE [5]
have gained substantial traction, employing concepts from cooperative game theory to
attribute locally (instance-based) and globally (model-based) the contribution of each
feature to a model’s prediction, respectively. Despite their popularity (in particular the
former), these methods, built on assumptions of feature independence, often overlook
the nuanced causal relationships and interactions amongst features, potentially leading
to oversimplified or misleading explanations.

Pivotal work [20] underscores that genuine explanations are intrinsically tied to
causality, reflecting a philosophical viewpoint where explanations are crafted through
counterfactual reasoning - envisaging alternative scenarios and assessing their impact
on outcomes. Thus, causality emerges as a fundamental pillar in crafting meaningful
and intuitive explanations [20,21]. In such a pursuit, recent explorations such as Causal
SHAP [10] and Asymmetric SHAP [7] have sought to infuse causality into local expla-
nation frameworks, as they emerge as promising frontiers, endeavoring to intertwine
causal reasoning with local explanation techniques. These methods are argued to reflect
the human cognitive processes of causal inference, striving for explanations that res-
onate with innate human understanding and intuition while being grounded in strong
mathematical foundations [20].

In this article, we introduce a method that incorporates a causal lens into Shapley-
value based global explanations (i.e., SAGE), abbreviated by the acronym CAGE.
Empowered by its capability to express complex causal relations between features, we
show both theoretically and empirically that CAGE can alleviate the aforementioned
deficiencies, and result in more faithful global explanations. More specifically, the main
contributions of this article are as follows.

1. We introduce a model-agnostic causality-aware conceptual framework based on
Shapley values for the global explanations i.e., CAGE. In particular, we establish
a novel sampling procedure that respects the causal relations of input features;

2. We theoretically show that CAGE satisfies desirable causal properties; an indication
that it is designed from first principles.

3. We carry out an empirical analysis with both synthetic and real-world data, con-
cluding that explanations resulting from CAGE are more faithful compared to their
causally agnostic counterparts.

In the remainder of this paper, we start by introducing core concepts and our nota-
tion. We then present CAGE in detail, show that it derives causally sound explanations,
and present an algorithm to estimate its values. Furthermore, we apply CAGE to syn-
thetic and real-world data to substantiate our claims. Finally, we discuss the most related
works and provide an in-depth discussion about our results before we conclude. The
code for our framework and experiments is available at https://github.com/no-breuer/
CausalGlobalExplanation.

https://github.com/no-breuer/CausalGlobalExplanation
https://github.com/no-breuer/CausalGlobalExplanation
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2 Preliminaries and Notation

In this section, we introduce the key concepts and notations used throughout this paper.
These are additive importance measures, Shapley values, and fundamental notions of
causality.

2.1 Causal Models and Interventions

Structural Causal Models (SCM). We resort to structural causal models (SCM) to
express causal relations formally. An SCM is a tuple M = (X,F,U,P) of observed
variables X = {X1, . . . , Xn}, unobserved exogenous variables U = {U1, . . . , Un},
functional relations F that define direct causal effects, and P a set of pairwise indepen-
dent distributions of exogenous variables. Each SCM induces a directed acyclic graph
(DAG), where the direct causes of an endogenous variable are incoming edges (par-
ents). Formally, each variable Xi is determined by fi ∈ F s.t.Xi ← fi(Pai, Ui), where
Pai ⊆ X \ {Xi} (parents) are the direct causes of Xi. From the conditional indepen-
dence assumption a joint probability distribution P (X1, ...,Xn) =

∏n
i=1 P (Xi|Pai)

of the SCM can be inferred [23,29,30] which we will refer to as observational
distribution.

Causal Chain Graphs. We use the notion of causal chain graphs [16] as a relaxation on
the information encoded in causal graphs. Causal chain graphs represent a partial causal
ordering of sets of variables (chain components) among which the causal relationships
are not fully known. This means that variables are in the same component whenever
they have a common confounder or mutual interaction between them (see Fig. 1 for an
example).

Interventions. Interventions are purposefully modifying the values of variables to dis-
cern cause-and-effect relationships. Therefore, they are of vital importance for causal
reasoning. An intervention is formally expressed by the so-called do-operator, denoted
for Y ⊆ X as do(Y = c) or do(Y) when the value is clear from the context. This
forces one or more variables in an SCM to a particular value, effectively replacing
all corresponding functions with this value. Graphically, this corresponds to pruning
all incoming edges to that variable. Interventions result in a new joint distribution
P (X \ Y | do(Y = c)) [24] which we will refer to as the post-interventional distri-
bution. If there are changes between the observational and post-interventional distribu-
tions, conclusions can be drawn about the causal influence of the intervention variable
on the other variables [23,25].
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Fig. 1. Causal chain graph that shows the partial causal ordering of the Alzheimer dataset ADNI
[11] used later in the experiments. The chain graph consists of three components τ1, τ2, and τ3
that have a causal ordering. In the components, the complete causal relationships of the variables
are not known. Variables in τ1 and τ3 are assumed to have common confounders (green) and τ2
is assumed to have causal interaction (yellow). The target variable is marked in red. (Color figure
online)

2.2 Shapley Additive Global Importance

In the domain of XAI, additive importance measures are of common practice since
they provide model-agnostic explainability by dissecting contributions of individual
features in the target AI models. Intuitively, feature importance can be interpreted as
the amount of predictive power a feature provides for an AI model at hand. The main
characteristic of these measures is that the individual feature importances φi(v) sum up
to the models’ overall prediction power w.r.t. a value function v [6]. Whenever v is clear
from the context, we will only write φi.

A broadly used instance of additive measures are the so-called Shapley values. In the
context of XAI, the Shapley value of a feature i measures the marginal increase of the
value function v of a model if that feature is considered in the prediction. The Shapley
value of each feature i, φi is then the weighted sum of that increase over all possible
permutations of all features D of a specific subset of features S. This is inspired by
cooperative game theory and defined by [31] as follows:

φi(v) =
1

|D|
∑

S⊆D\{i}

(|D| − 1
|S|

)−1

(v(S ∪ i) − v(S)) , (1)

where D is the set of all feature indices, S is a subset of D also called the “in-coalition”
features, and i is the specific feature indices which is added to S and for which the
importance is computed. The value function v only gets a subset of feature indices, but
because we want to analyze the model that takes all featuresD as input, a way to sample
the values of the missing feature indices S̄ = D \ S needs to be devised.

To derive Shapley additive global importance (SAGE) values for a model, Covert et
al. [6] defines a value function that measures the change in the loss L of a model, shown
in Eq. 2:

vf (S) = −E[L(E[f(X)|XS ], Y )], (2)
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where XS are the variables for the “in-coalition” features S, X = XS ∪ XS̄ are all
feature variables, and Y is the prediction target. To compute the prediction f(X) one
must first sampleXS̄ of the “out-coalition” features S̄. The standard way [19] to do this
is to sample XS̄ from a conditional distribution P (XS̄ |XS = xS), where xS are the
realized values of XS . This is done in the inner expected value where we marginalize
the out-coalition features S̄. This sampling procedure assumes feature independence
which can lead to spurious explanations and misrepresenting feature dependencies [14].
vf (S), therefore calculates the prediction quality if only the values of the features S are
known by averaging over the features S̄ and this as an average over an entire data set.
For the average over the entire data set the outer expected value is used. In Sect. 3 we
describe how we overcome these shortcomings, i.e., the independence assumption, by
considering causal models of the data.

3 Causality-Aware Global Explanations

In this section, we introduce our causality-aware global importance measure. In addi-
tion, we show that this measure has some desirable (causal) properties (cf. Theorem 1).
And last, we provide an approximation algorithm for computing it.

3.1 Global Causal Shapley Values

Considering the complexity of many real-world systems, it is unlikely that the inde-
pendence assumption of [5] in the global explanation methods holds in general, hence
it can lead to spurious explanations [14]. For that reason, we propose a global expla-
nation method that considers causal dependencies when sampling out-coalition fea-
tures, following the recent works on computing causality-inspired feature importance
for local explanations [10,12,13]. For our sampling procedure, we assume a causal
graph to be given. More specifically, we sample the out-coalition features XS̄ from
a post-interventional distribution (after intervening on the known features of inter-
est XS) instead of a conditional distribution i.e., P (XS̄ |do(XS = XS)) instead of
P (XS̄ |XS = XS). This leads us to a sampling procedure from the post-interventional
distribution, resulting in the following causal value function:

vf (S) = −EXY [L(EXS̄
[f(X)|do(XS = xS)], Y )], (3)

which is determined by marginalizing the out-coalition features S̄ from the post-
interventional distribution [10]:

E[f(X)|do(XS = XS)] =
∫

f(XS̄ ,XS)P (XS̄ |do(XS = xS))dXS̄ . (4)

Through this intervention and by marginalizing the out-coalition features, we ensure
the independence of the in-coalition features.
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3.2 Properties of Global Causal Feature Importance

Our causal feature importance measure comes with a set of theoretical guarantees, that
have been introduced in Jung et al. [13]. Intuitively, these are the desirable properties
which ensure causal soundness of such measure. We present them below first, and then
show that they are satisfied also in our global method CAGE.

P1 Perfect assignment: The global causal contributions are perfectly assigned if
E[I(1)] − E[I(0)] =

∑
i∈D φi where I(1) and I(0) correspond to the loss in Eq. (3)

with intervention on all features and no intervention, respectively.
P2 Causal irrelevance: If Xi is causally irrelevant to Y for all W ⊆ X \ {Xi} s.t.

∀y, P (y | do(Xi,W)) = P (y | do(W)), then φi = 0, i.e., if a feature does not
have any causal predictive power then CAGE value is 0.

P3 Causal symmetry: If Xi,Xj ∈ X have the same causal contribution to the predic-
tive power of Y for all W ⊆ X \ {Xi,Xj} s.t. ∀y, P (y | do(Xi,W)) = P (y |
do(Xj ,W)), then φi = φj , i.e., if two features have the same causal predictive
power then the features have the same CAGE value.

P4 Causal approximation: For any S ⊆ D: ∀i ∈ S, φi well approximates E[Y |
do(XS)] i.e., {φi}n

i=1 = argmin{φ′
i}n

i=1

∑
S⊆D(E[Y | do(XS)]−

∑
i∈S φ′

i)
2ω(S)

for some positive and bounded function ω(S).

Intuitively, P1 means that the sum of all causal feature contributions corresponds
to the average treatment effect if we intervene on all features compared to no interven-
tion. In particular, it captures how each feature contributes to the predictive power. P2
ensures that if a feature does not have any causal contribution to the predictive power
then it has an importance value of zero. P3 means two features with the same causal
predictive power have the same importance values. Posing the importance values as the
solution to a weighted least square problem in P4 ensures that we can consider them as
approximations of the causal effect.

Theorem 1. CAGE is causally sound i.e., the derived values have properties P1 to P4.

Proof. Let the value function vf be defined as in Eq. (3).
To show perfect assignment (P1) i.e.,

∑
i∈D φi = E[I(1)]−E[I(0)], following [35]

we can write

φi(vf ) =
1

| D |!
∑

π∈Π(D)

{vf ({i} ∪ Preπ(i)) − vf (Preπ(i))}

where π is a permutation from the set of all possible permutations of feature indices
D and preπ(i) is the predecessor of i in the permutation π. By summing all feature
contributions we get
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|D|∑

i=1

φi(vf ) =
1

| D |!
∑

π∈Π(D)

|D|∑

i=1

{vf ({i} ∪ Preπ(i)) − vf (Preπ(i))}

=
1

| D |!
∑

π∈Π(D)

{vf (D) − vf (∅)}

= vf (D) − vf (∅)
= E[−L(E[f(X)|do(X)], Y )] − E[−L(E[f(X)|do(∅)], Y )]
= E[I(1)] − E[I(0)]

which shows the equality in P1.
To show causal irrelevance (P2), we assume Xi to have no causal contribution to

the prediction of Y for all S ⊆ D \ {i}. Then, according to Eq. (3):

vf (S ∪ {i}) = −E[L(E[f(X)|do(XS = xS ,Xi = xi)], Y )]
= −E[L(E[f(X)|do(XS = xS)], Y )]
= vf (S)

Hence, according to the definition of Shapley values (1) φi = 0.
Although the proofs for P3 and P4 correspond to the ones in [13], we include them

here for completeness and to provide an easy map to our notation. To show causal
symmetry (P3) we assume the features Xi and Xj have the same causal predictive
power. Therefore,

φi(vf ) =
1

| D |
∑

S⊆D\{i}

(| D | −1
|S|

)−1

{vf (S ∪ {i}) − vf (S)}

=
1

| D |
∑

S⊆D\{i,j}

(| D | −1
|S|

)−1

{vf (S ∪ {i}) − vf (S)}

+
1

| D |
∑

S⊆D\{i,j}

(| D | −1
|S| + 1

)−1

{vf (S ∪ {i, j}) − vf (S ∪ {j})}

=
1

| D |
∑

S⊆D\{i,j}

(| D | −1
|S|

)−1

{vf (S ∪ {j}) − vf (S)}

+
1

| D |
∑

S⊆D\{i,j}

(| D | −1
|S + 1|

)−1

{vf (S ∪ {i, j}) − vf (S ∪ {i})}

=
1

| D |
∑

S⊆D\{j}

(| D | −1
|S|

)−1

{vf (S ∪ {j}) − vf (S)} = φj(vf )

Causal approximation (P4) follows directly from [13], since the proof is on the
level of the value function vf the proof still holds for our global value function and our
specific sampling procedure. �	
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By taking into account the causal structure of the features and the guarantees that
Theorem 1 provides, we develop a method that also respects the properties of the addi-
tive global feature importance class. By interpreting the global importance of a feature
by its causal contribution it has to the predictive performance our method closes a gap
in explainability. Answering the questions to what extent a feature is a cause for an ML
model to have a good performance differs significantly from previous Shapley-based
explanability methods as they either do not measure causal contributions [5,19] or they
do not measure the contribution to the predictive performance [10,13]. Additionally, it
is worth mentioning that uniqueness directly follows from the fact that it is based on
Shapley value, and since it satisfies soundness (as showed in [13]).

3.3 Computing Causal Shapley Values

Calculating the Shapley values for each feature Xi presents some practical challenges:
(1) To compute the post-interventional distributions with our method the causal struc-
ture of the dataset must be known. (2) The post-interventional distribution must be
transformed in an observational distribution to sample from it. (3) Computing exact
Shapley values is a problem with exponential runtime because there are an exponential
number of subsets S of features D over which we must iterate. In this Section, we intro-
duce a pragmatic approach to handle these challenges to develop our global explanation
method.
Prior Knowledge on Causal Graphs. A main assumption of computing causal Shapley
values is that the causal structure is provided. This is a serious prerequisite since struc-
tural causal discovery is a challenging task itself. There are algorithms that are able to
infer a structural causal model from data [36] and experiment-based approaches that
identify the causal structure, but it is hardly realistic to infer a fully specified model
with all possible confounders in general [32]. To alleviate this issue, we use causal
chain graphs to calculate the feature importance. This allows us to have fewer assump-
tions on the causal structure of the features whenever the structure is partly unknown.
Sampling Out-Coalition Features. The second challenge is to estimate E[f(X)|
do(XS = xS)] by sampling from P (XS̄ |do(XS = xS)) according to Eq. (4), since
we assume no interventional data. To tackle this challenge we resort to the factorization
of the post-interventional distribution for causal chain graphs [10]:

P (XS̄ |do(XS = xS)) =
∏

τ∈Tconfounding

P (Xτ∩S̄ |XPaj∩S̄ ,XPaj∩S)

×
∏

τ∈Tconfounding

P (Xτ∩S̄ |XPaj∩S̄ ,XPaj∩S ,Xτ∩S) (5)

Equation (5) makes the distinction between confounded and not confounded chain
graph components τ . For chain components with confounded variables, the first part
of the Equation is used. If the dependencies in a component are only due to mutual
interactions between the variables the second part should be used. In contrast to Eq. (4),
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we can now use discrete marginalization, since the causal graphs fulfill the Markov
conditions.
Approximation Algorithm. Lastly, we combine the above insights to derive an algo-
rithm that computes causality-aware Shapley additive importance measures for global
explanations. Structurally, our algorithm follows the commonly used approach to
approximate global importance values [6], which guarantees that the algorithm con-
verges to the true φi values in the limit. The novelty of our algorithm lies in the way we
sample the out-coalition features. Instead of sampling them from the conditional, obser-
vational distribution, we sample values that adhere to the causal structure of the data as
described above. The pseudocode of the overall algorithm can be seen in Algorithm 1.

The algorithm requires various inputs including the dataset, a partial causal order
represented as a causal chain graph, and information about confounded components
or interactions in the chain graph. The algorithm works in such a way that it com-
putes the average of many samples (Line 2) of the expression L(E[f(X)|do(XS∪i =
xS∪i)], Y )−L(E[f(X)|do(XS = xS)], Y ) (Line 22) which corresponds to v(S ∪ i)−
v(S) in Eq. (1).

During each iteration, a data instance and a feature permutation are randomly cho-
sen (Line 3), initiating the additive process (Line 6). This process involves incremen-
tally adding the next feature j of the permutation to the in-coalition features S (Line
7). The pivotal CAGE causal sampling procedure commences in Lines 9 and 10, where
a batch of size M is drawn, followed by iterating over each component of the causal
chain graph τ in their causal ordering. |T | denotes the number of components in the
causal chain graph.

If the features in a component τ are confounded then each data point xm
l can be

drawn independently (Line 13). If all feature dependencies in a chain component are
induced by mutual interaction we use Gibbs sampling [9] to draw the features xm

τt∩S̄
(Line 16). All sampled missing feature values xm

s̄ are then used in Line 19 for predic-
tion. These sampling procedures were introduced in Eq. (5) and proved by [10]. The
impact of the additional feature j on the predictive performance represented by the
difference in the loss with and without feature j (Line 21, 22) is then added to the
cumulative CAGE value in Line 23.

4 Experiments

To evaluate our causal explanation framework and to compare it with other approaches,
we will conduct several experiments. First, we will perform experiments on synthetic
datasets. Then, we will apply our framework to a real-world example. We compare
our global causality-aware explanation framework with the existing global explanation
method SAGE.
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Algorithm 1: Approximation algorithm for CAGE values.

Input: data {xk, yk}K
k=0, model f , loss L, N (outer samples), M (inner samples), causal

chain graph G, confounding, feature indicies D with dimension d
Output: shapley values φ1

N
, . . . , φd

N

1 φ1 = . . . = φd = 0
2 for i = 1 to N do
3 Sample (x, y) from {xk, yk}K

k=0 and permutation π of D
4 S = ∅
5 lossPrev = L( 1

K

∑K
k=1 f(xk), y)

6 for j = 1 to d do
7 S = S ∪ {π[j]}
8 ŷ = 0
9 for m = 1 to M do

10 for t = 1 to |T | do
11 if confounding(τt) then
12 for l ∈ τt ∩ S̄ do
13 xm

l ∼ P (Xl|XPat∩S̄ ,XPat∩S)
14 end
15 else
16 xm

τt∩S̄ ∼ P (Xτ∩S̄ |XPat∩S̄ ,XPat∩S ,Xτ∩S)

17 end
18 end
19 ŷ = ŷ + f(xs,x

m
s̄ )

20 end
21 loss = l( ŷ

M
, y)

22 Δ = lossPrev − loss
23 φπ[j] = φπ[j] + Δ
24 lossPrev = loss

25 end
26 end

27 return φ1
N

, ..., φd
N

28

4.1 Experiments on Synthetic Data

Experimental Setup. To ensure that we can assess which features are most important we
conducted experiments with synthetic datasets. For these datasets, the data-generating
process including its causal structure is completely known. We created three datasets
with different causal structures. The first dataset only consists of independent direct
causes that have the same influence on the target variable. The second dataset is of
Markovian nature in the sense that we have one variable that is completely deter-
mined by its parents. Therefore, the variable is conditionally independent of its non-
descendants, given its parents [8]. The third dataset is a mixed model consisting of both
causal structures from above. This means there are causal dependencies between some
variables but also direct independent variables. All three datasets are generated from
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structural causal models where the variables are sampled as linear combinations of the
parents and pairwise independent noise terms. The exact specification of the SCMs can
be found in Appendix A. The graphs in Figs. 2a–2c show the causal graphs induced by
the SCMs. Furthermore, they show the topological ordering translated into chain graphs
as the causal knowledge for our experiments.

For each dataset, we fit a linear regression model and a simple multi-layer per-
ceptron (MLP). To implement both model types we used the scikit-learn library with
default values. Then we apply conventional SAGE and our causality-aware global
explanation framework and compare the explanations.
Results. Figure 2 shows the explanatory results of the causal structures for both meth-
ods, the linear regression model (Figs. 2d, 2e, 2f) and the MLP (Figs. 2g, 2h, 2i). In the
plots, the striped bars depict our causal explanation method the solid bars depict the
results when applying SAGE.

SAGE explains the feature importance for the linear regression models solely on
how the target variable is built. Variables that have the highest coefficient in the deter-
ministic function of Y get the highest importance. In contrast, our causally aware frame-
work takes the causal structure into account. It assigns the importance of features based
on their causal contribution to the target variable. For example in the Markovian dataset,
even though variable 2 has the highest coefficient in the linear model of Y it gets
assigned the lowest importance score because it can be completely explained by vari-
ables 1 and 3. This also applies to the Mixed-data structure. If there are independent
features that do not have any causal relation with other features then the importance of
that feature is the same for both explanation methods.

In general, the following characteristics can be observed in the explanations for the
linear regression models: First, if there is a variable that can be completely explained
by other variables, i.e. the causal structure is clear, then this variable does not get any
importance. This is in line with the causal irrelevance property introduced in Sect. 3.2.
Second, if there are independent variables that are direct causes of the target then these
variables have the same importance in both frameworks. Third, variables that are causes
and effects at the same time get a reduction in importance but not a total deletion of
importance.

The explanations of the MLP show a more nuanced picture. For the Markovian
dataset, SAGE assigns feature importance similar to the linear regression model but for
the mixed model dataset, it does not assign importance according to the linear model
of Y. Our causally-aware method also shows different feature importance compared to
the linear regression model. Features that can be completely explained by other fea-
tures receive reduced feature importance but not a complete deletion of importance. For
example, in the Markovian data experiment variable 2 gets reduced in importance but
still gets assigned some importance, even though variable 2 is just a linear combination
of variable 1 and 3. Furthermore, in the mixed-model data variables which are effects
of other variables are reduced in importance. However, the root cause, variable 1, only
gets small importance even though it has a high impact on the target by being the cause
of variables 2 and 4. Nevertheless, the experiment with independent features shows the
same results. We can see that the MLP is only able to use some of the causal informa-



154 N. O. Breuer et al.

Fig. 2. Results and data-generating causal structures for our experiments. The first row (Figs. 2a,
2b, 2c) show the true causal structure (left) of the data-generating SCMs and the corresponding
causal chain graphs we use for the explanation (right). The second row (Figs. 2d, 2e, 2f, blue)
shows the importance values determined for the linear regression models that were trained and
evaluated on the causal structures above. The third row (Figs. 2g, 2h, 2i, green) shows the same
information, but for the MLP models. The solid bars show values coming from SAGE, and the
striped bars show values of our causally-aware global explanation method.

tion that is provided but the relationship of using the causal structure for explanation is
weakened.

4.2 Explanations on Alzheimer Data

Following the promising results of the synthetic datasets, in this Section we explore the
distinctions between the explanations SAGE derives and our causality-aware explana-
tions when applied to a real-world dataset.
Data. To apply our framework to a real-world dataset it is necessary that we know
the causal structure or at least a partial causal ordering of the features. For this exper-
iment, we chose the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset
(adni.loni.usc.edu) because the causal structure has been investigated for this dataset
[11]. The ADNI collects data from researchers to investigate the progression of
Alzheimer’s disease. The data includes MRI images, genetics, cognitive tests, and
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biomarkers as predictors of the disease. For this experiment, we do not use all fea-
tures that the dataset offers but only the biomarkers fludeoxyglucose (FDG), amyloid
beta (ABETA), phosphorylated tau (PTAU), and the number of apolipoprotein alleles
(APOE4) additionally the age, gender, and education level as features, for simplified
analysis are added.
Experimental Setup. We define a binary classification problem to use these seven fea-
tures and predict if a person has Alzheimer’s or not. For this classification problem, we
build two models. First a simple multilayer perceptron (MLP) with five layers (layer
sizes= 64, 128, 128, 64, 32) and Adam optimization. Second a Random Forest with 200
trees. After cleaning and normalizing the dataset it consists of 1500 instances which we
split into 25% test and 75% training sets (Details on data handling can be found in the
code repository). The trained models have an accuracy of 85% for the MLP and 88%
for the Random Forest on the test set.

We analyze the causal structure of the features by referring to the research of [32].
This study contrasts various causal structure discovery (CSD) algorithms and compares
the resulting structures to a gold standard graph shown in Fig. 3. For our experiment,
we use this gold standard graph which is based on biological and medical studies on
Alzheimer’s risk factors. Based on the gold standard, we define the partial causal order-
ing from this graph as the topological ordering: [(AGE, EDU, SEX, APOE4), (ABETA),
(FDG, PTAU)], to show the effectiveness of our approach when only the partial causal
structure is provided. Additionally, we assume confounding in the first and the third
chain graph components. The resulting causal chain graph for our experiment is shown
in Fig. 1.

Fig. 3. Gold Standard Graph from [32]. The gold standard graph shows the causal relations
between the seven features and the binary target variable DX. Blue nodes are biomarkers and
white nodes are personal information about patients. From that, we derive the causal chain graph
in Fig. 1.

Results. Figure 4 depicts, the results of the experiment with the MLP (Fig. 4a), and the
results of the Random Forest (Fig. 4b). The left bars show the explanation of SAGE
and the right bars the explanation of our causality-aware explanation framework. When
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comparing the two ML methods, only minor differences can be observed. More specifi-
cally, there are two dissimilarities in which the models have different feature importance
rankings. These two are the feature EDU (education) and the feature APOE4. Both are
more important for the Random Forest classifier. There are other differences in the
importance but they do not have an effect on the importance ranking. One noticeable is
that the importance of PTAU is higher for the Random Forest.

When comparing the two explanatory methods the differences are minor. There are
not as extreme differences in the ranking as there are with the synthetic data. However,
there are mentionable changes. For example, we observe that the importance of features
that are effects of other features, e.g. PTAU and FDG are reduced more compared to
other features in the causality-aware explanations.

Fig. 4. Importance values of the ADNI data experiment. The left plot shows the feature impor-
tances for the MLP model and the right plot the feature importance of Random Forest. For each
plot, the left set of bars shows the importance determined by SAGE and the right bars show the
importances for our causality-aware global explanation method.

In Sect. 6, we provide a detailed analysis and discussion of the possible reasons for
the observed differences between the frameworks and discuss the results in more detail.

5 Related Work

Local Explanation. Local explanations gravitate towards elucidating individual predic-
tions and unraveling the distinctive importance attributed to features for an individual
instance [19,26]. A noteworthy methodology leveraging local explanation is the uti-
lization of Shapley values [31]. Innovatively adapted from game theory, Shapley values
have been employed to measure feature contribution towards a model’s output, as show-
cased in frameworks like SHAP [19]. Since its inception, SHAP has evolved, adapt-
ing to a diverse array of tasks and explanatory objectives through various extensions
and modifications. Notable among these are KernelSHAP [4,19], TreeSHAP [18], and
LossSHAP [5,18]. KernelSHAP, a model-agnostic explainable method, is appreciated
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for its adaptability across numerous model types. In contrast, TreeSHAP is specially
tailored for tree models, offering dedicated insights into tree-based model interpreta-
tions. LossSHAP diverges in its explanatory focus. Rather than adhering to traditional
approaches, it emphasizes the influence of features based on evaluation metrics. For
instance, it evaluates the importance of a feature by analyzing its impact on specific
evaluation criteria such as the mean squared error in regression contexts.

Causal Local Explanation. An evolution in local explanations is witnessed in the inte-
gration of causality, fostering a more nuanced and reliable interpretation. Aas et al. [1]
extend the KernelSHAPmethod so that it can handle highly correlated features. Another
line of studies investigates how feature dependencies and Shapley values can be inter-
preted from a causal perspective. Frye et al. [7] present Asymmetric Shapley values
where they incorporate causal knowledge by only allowing possible permutations of
features that comply with the causal structure of the input features when computing
Shapley values. Janzing et al. [12] tackle the question of how to deal with out-coalition
features in SHAP-based methods. They replace conditional sampling in the Shapley
value computation with conditioning by intervention with do-calculus. Similarly, Hes-
kes et al. [10] and Jung et al. [13] use do-calculus to compute the causal contribution
of a feature to the models’ prediction. Shapley Flow is a Shapley value-based method
that explains model predictions from a causal perspective. The authors suggest not to
assign importance to variables in the causal graph but to assign importance to the edges
of the causal graph [37]. Another interpretation of causal feature importance is given
by abductive explanations which generate a minimal subset of features that are suffi-
cient for the prediction [2]. This interpretation is closely linked to the causal strength
quantification notion of [3].

Global Explanation. Global explanations pivot towards explaining the entire model
mechanism by, for instance, providing the most important features for the model to
make a prediction. SAGE (Shapley Additive Global Explanations) [6] emerges as a
quintessential global explanation methodology. SAGE introduces additive importance
measures as a similar class of methods like additive feature attribution methods [19].
In this class, the importance of a feature is defined as the predictive power that it con-
tributes rather than the absolute effect it has on the prediction. This means that SAGE
measures if a feature makes a prediction more or less correct, according to evaluation
metrics, whereas SHAP-based methods measure the pure change that features have on
the prediction. SAGE is, therefore, the global equivalent of LossSHAP. For an in-depth
review of global XAI methods, we refer to [28].

6 Discussion

In our study, we embarked on an exploration of causal global explanation methods. We
hypothesized that these methods, grounded in causal foundations, assign importance
to features in a manner that is more congruent with their actual causal contributions
towards model predictions, as opposed to the SAGE framework which lacks a causal
basis.
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Our results with linear regression on synthetic datasets substantiate this hypothesis.
By leveraging causal knowledge, our method assigns importance to features more intu-
itively, yielding explanations that closely mirror actual causal feature contributions to
predict the target variable. This precision is attributable to the availability of structured
causal models (SCMs), clarifying feature constructions and contributions. Remarkably,
the proposed method assigns minimal importance to features that significantly con-
tribute to the target but are the effects of other features, aligning the explanations with
actual causal contributions to the predictive power.

Interestingly, our causal framework exhibited a propensity to assign significance to
root causes within the SCM, even in scenarios where these root causes did not exert
direct influences on the target. This observation is pivotal, aligning with human cog-
nitive patterns in causality attribution, and echoes theories suggesting humans evaluate
each event within a causal chain based on its impact on the outcome [17,33,34]. The
crediting causality hypothesis suggests that all events in a causal chain are evaluated on
how much they change the outcome. This leads to the fact that in simpler mechanisms
the root cause is often given as one of the main causes [34].

A salient observation is the causal method’s tendency to attribute reduced absolute
importance values compared to the traditional SAGE framework. This discrepancy may
stem from algorithmic calculations and the dataset’s structural composition, necessitat-
ing cautious inter-framework comparisons. Furthermore, the causal sampling method,
by reducing outliers, may contribute to lower absolute importance values.

We additionally evaluated our method on a real-world example. As expected the
results of this experiment were not so clear as for the synthetic examples. As a prelim-
inary, it should be noted that Alzheimer’s is still a rather unexplored disease and the
underlying mechanisms are not fully understood. This is also how the gold standard
graph, which is used as a basis for causal knowledge, can be classified. The graph is
based on biological and medical observational analyses of the ADNI dataset in which
the true causal mechanisms are not fully known. This means that the possibility of
unobserved confounding needs to be assumed.

Nevertheless, we discuss our results for the real-world data based on the character-
istics we have developed for the synthetic data. A repeating pattern that can be observed
both in the synthetic data experiments and in the real-world application is that features
that are solely effects of other features have a reduced feature importance. This is in
line with the characteristics of our causality-aware explanation method that we put for-
ward above. However, the concentration of feature importance on the root cause cannot
be observed in real-world data experiments. We attribute this to these possible reasons:
First, the model is not able to learn and use the causal structure. Models like MLP and
Random Forests are high-dimensional ML models that only learn statistical correla-
tions. Augmenting their explanation with causal knowledge does not necessarily mean
that the models actually rely on it. Second, we do not provide complete causal order-
ing but only partial causal ordering with chain graphs. This means that some causal
knowledge is lost and cannot be exploited for the explanation. Signs supporting these
arguments can be observed in the explanations of the MLP with mixed-model synthetic
data in Sect. 4.1. There, where the causal relations are more complicated, we observe
the patterns of the real-world data application.
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The analysis of the results thus reveals some interesting aspects. For explaining
simple models like linear regression models the causal structure can be used to almost
exactly represent the causal contributions of features. If the models become more high-
dimensional this capability becomes less. Due to the fact that high-dimensional models
tend to learn merely statistical correlations, we suspect that the causal information we
provide is lost at the global level of explanation.

The primary challenge of our global causal explanation method lies in requiring a
predefined causal structure for features, a difficult task as determining causality itself
is an ongoing research area [36]. While we utilize causal chain graphs, their practi-
cality diminishes with an increasing number of features, complicating the division into
chain components. This complexity was evident in our ADNI dataset experiment, where
unclear causal structures and minimal causal effect strengths made the results and their
interpretations ambiguous. Users must scrutinize the causal structure’s origin, effect
strengths, and feature classifications in chain components for valid interpretations.

To the best of our knowledge, our work is the first one that incorporates causal
knowledge into global Shapley - value-based explanation methodologies. Preliminary
comparisons with local explanation methods [1,13] indicate a consensus, underscoring
the enhancement of explanatory accuracy and coherence when causal structures are
incorporated. The proposed method demonstrated similar results and improvements,
justifying our results on global-level explanations.

7 Conclusion

In this paper, we propose CAGE, a causality-aware global additive explanation frame-
work based on Shapley values. We show that it is able to generate explanations that
align with desirable causal properties, and outlined an algorithm for estimating its val-
ues. To this end, we introduced a novel sampling procedure for out-coalition features
that respects their causal relation. Most notably, in contrast to previous global explana-
tion approaches, our approach takes away the burden of the independence assumption
among input features. Application of CAGE to both synthetic and real-world datasets
shows that CAGE respects the causal relations of input features while explaining pre-
dictive models. We argue that this leads to more intuitive and faithful explanations
of AI.

In future work, causal explanation methods based on Shapley values should inves-
tigate how the strong prerequisite that the causal structure of the features must be given
can be overcome. This is the basis for the widespread use of causal explanation meth-
ods. Important points of orientation for this could be studies that investigate causal
reasoning and causal learning under uncertainty or partially confounded settings.
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A Data - Generating Causal Models

These are the structural causal models used for the data-generation process of the syn-
thetic data experiments used in Sect. 4.1.

A.1 Direct-Cause structure

The SCM that induced the graph in Fig. 2a:

N = N (0, 1)
X1 = N (0, 1)
X3 = N (0, 1)
X2 = N (0, 1)
Y = X1 + X2 + X3 + NY

A.2 Markovian Structure

The SCM that induced the graph in Fig. 2b:

N = N (0, 1)
X1 = N (1.5, 1)
X3 = N (0.5, 2)
X2 = X1 + X3 + NV2

Y = X1 + 2X2 + X3 + NY

A.3 Mixed structure

The SCM that induced the graph in Fig. 2c:

N = N (0, 1)
X1 = N (1.5, 1)
X3 = N (0.5, 2)
X4 = X1 + NV4

X2 = X1 + X4 + NV2

Y = 0.3X2 + X3 + 2X4 + NY

https://hybridintelligence-centre.nl
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Abstract. Explainable artificial intelligence (XAI) is an increasingly
important research field, fueled by the need for reliability and account-
ability in applications. For reinforcement learning (RL), achieving
explainability is particularly challenging because agent decisions depend
on the context of a trajectory, which makes data temporal and non-i.i.d.
In the field of XAI, Shapley values and SHAP in particular are among
the most widely used techniques. In this work, we investigate how SHAP
performs in explaining RL models, especially in multidimensional action
spaces that other XAI-for-RL methods struggle with. In particular, we
make three contributions: (1) We investigate how design choices of the
SHAP approach affect SHAP accuracy for RL models. We investigate
the size of the so-called background data that is utilized to represent
absent features, as well as the selection method with which the back-
ground data is formed. We find that SHAP for RL requires only modest
amounts of background data and that clustering is preferred over sam-
pling as a selection method. (2) Additionally, we analyze how SHAP-
based feature importance relates to overall agent performance (return).
We find that while feature importance is often correlated to agent per-
formance, notable exceptions occur, especially for environments that are
sensitive or fragile in the sense that small changes in actions may lead
to catastrophic failure. However, since a significant correlation is found
in the majority of the investigated environments, SHAP proves to be
a valuable XAI tool for RL with multidimensional, continuous actions.
(3) Illustratively, we show the time evolution of SHAP values and caution
against misinterpreting sharp changes therein.

Keywords: Reinforcement learning · Explainability · Shapley values ·
SHAP · XAI

1 Introduction

The issue of explainability in artificial intelligence (XAI) has been of increasing
importance during the last years and was often cited [1,2] as one of the main
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challenges when applying AI to real-world scenarios, especially in safety-critical
fields. As a consequence, a variety of methods have been developed with the goal
of increasing insights into opaque AI models. One of these methods is the SHAP
framework [3], rooted in mathematical game theory [4].

XAI for reinforcement learning (RL), and in particular SHAP for RL, can
be more challenging than XAI for supervised machine learning (ML). This is
due to the temporal and non-i.i.d. nature of the data in RL, where decisions
depend on the state of the environment. In the context of RL, agents with
multidimensional actions pose a particular challenge for XAI, and this article
examines in particular what contribution SHAP can make to this challenge.

1.1 Shapley Values

Named after Lloyd Shapley, Shapley values give a solution to the problem of
fairly distributing a given payout among the cooperative players of a game [4].
In short, the Shapley value corresponds to a player’s marginal contribution to
the possible coalitions or the expected performance gain when said player joins
a coalition. Given a game with a set N of n = |N | cooperative players and a
function v assigning a value to each coalition, player j’s added contribution to
coalitions S is given by

φj =
1
n

∑

S⊆N\{j}

(
n − 1
|S|

)−1

(v(S ∪ {j}) − v(S)) (1)

It can be mathematically shown that Shapley values are the only method with
a variety of desirable properties (efficiency, symmetry, dummy, and additivity)
that lead to a payout distribution that can be called “fair” [5]. For the exact com-
putation, 2n−1 values of coalitions containing a specific player must be compared
to 2n−1 values of coalitions without the player, hence the cost is exponential in
the number n of players.

1.2 Shapley Values for ML – SHAP

In the transition from game theory to machine learning, the prediction of an ML
model takes the place of the value function, while the input features take the role
of the single players. For large numbers of features, the exact computation of
Shapley values suffers from combinatorial explosion and is generally not feasible.
The framework SHAP [3] offers a variety of different approximation methods (one
of them being KernelSHAP, which will be explained in more detail in Sect. 4).

The framework has seen a remarkable success, has been expanded with differ-
ent approximation methods optimized for certain ML models as well as visual-
ization tools, and has often been cited as the go-to approach for model-agnostic
explainability of ML models.

When used to explain ML decisions, the first examples are typically the
explanation of single decisions (think of the often-used example of a denied
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bank-loan) or the discovery of general trends in classification examples. When
applied to RL, the prediction of the ML model is the action performed by the
agent in the environment, while the features are the observables accessible to the
agent. The words “features” and “observations” can be used interchangeably; the
terms “prediction” and “action” are also used as synonyms in the following. In
this setting, the SHAP values are the contribution of each feature towards the
model’s prediction, so that the RL agent’s action is the sum of its average action1

and the SHAP values of all observables. We note in passing, that taking the RL
agent’s action as the value function v in Eq. (1) for the SHAP procedure is not
the only possibility. Alternatively, one could also take the episode return as a
possible value function v. However, since this has higher computational demands,
it was not considered in this work, but left for future work instead.

Compared to supervised ML classification and regression tasks, where the
data can usually be assumed to be i.i.d., RL has structural differences. Given
the interaction between agent and environment, RL data are usually non-i.i.d.:
Decisions depend on the state of the environment and the overall success is
determined by a sequence of profitable actions. In addition, complex environ-
ments require the agent to perform multidimensional actions at each timestep.
As a result, each action dimension has its own set of SHAP values. Aggregating
this multitude of values and ensuring the meaningfulness of SHAP for RL is a
non-trivial task.

1.3 Contributions

The main contributions of this work are summarized as follows: (1) We empir-
ically test the effect of the quantity of background data2 and the method of
background data selection on the computed SHAP values, and relate the results
to the computation time. This evaluates the robustness of the approximation
method and might help practitioners to better find the appropriate compromise
between precision and computation time. (2) We expand the known definition of
SHAP feature importance to the case of multidimensional actions and evaluate
the computed feature importance on the RL task. (3) We interpret the time
evolution of SHAP values throughout the episode in the context of the agent’s
actions.

In Sect. 2, we discuss the related work on SHAP for RL. Section 3 describes
the RL environments we use as benchmark. In the three follow-up Sect. 4, 5, 6, we
describe our experiments and discuss results regarding the three main objectives
given above. Finally, we draw a conclusion and hint at possible future work in
Sect. 7.

1 When using KernelSHAP, the average action is the average model prediction on the
background data (see Sect. 4.1).

2 The background data are used by KernelSHAP to fill in data for features that are
absent in the currently investigated feature coalition. This will be explained in more
detail in Sect. 4.1.
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2 Related Work

With the success of AI and ML, which was often made possible with the help
of complex deep learning models, the last years have seen a growing interest in
XAI [6–9]. Important explanation techniques for ML in general (mostly classi-
fication and regression) are post-hoc explanations, like SHAP [3], LIME [10],
or LRP [11], and self-explainable models like linear models or decision trees
(DT) [12].

In the following, we focus on explainability for RL, which is often more chal-
lenging than for supervised ML classification or regression. This is due to the rea-
sons already mentioned in Sect. 1.2 (multiple steps contribute to overall return;
multiple actions or even multiple agents make it harder to find out which of the
model outputs is responsible for reaching a high performance). Explainability in
RL has been the topic of several reviews [2,13,14]. According to the review of
Hickling et al. [13], the most common XAI approaches in RL are similar to the
general ML case: either DTs as explainable surrogates for more complex DRL
models [15–17] or post-hoc explanations via SHAP [5,18–20] (or LIME or LRP).

DTs are often used to mimic simple (but not trivial) DRL agents (e.g. less
than 10 inputs, single-dimensional action space) as was shown in [15–17,21,22].
If DTs are successful, they deliver explanations through human-understandable
rules. However, for more complex environments (e.g. the MuJoCo environments
studied in this work with 8–27 observables and multidimensional, continuous
actions), it can be difficult or impossible to find simple DTs and large DTs are
no longer interpretable.

In those cases, many works resort to SHAP-based post-hoc explanations [13],
as they can be aggregated across multiple actions, or evaluated for many input
dimensions or for multi-agent RL (MARL). Heuillet et al. [5] use SHAP for
MARL environments where the contribution of a specific agent to the global
reward is measured via Shapley values. Their task is not to explain the actions of
a single DRL agent, but to evaluate each agent’s contribution. Another interest-
ing approach using SHAP in conjuction with RL is the one described by Sequeira
and Gervasio [23]. To the goal of gaining more insights into trained DRL agents,
the authors compute different human-inspired “interstingness dimensions”, e.g.,
“confidence” and “riskiness” from interaction data obtained by evaluating RL
agents in their respective environment for multiple episodes. Among other anal-
yses, they use the SHAP framework to investigate how features influence the
different “interestingness dimensions” on a global level or to better understand
local sudden changes throughout the episodes. Rizzo et al. [19] use SHAP to
explain a single agent for a traffic light control system. SHAP values indicate
which inputs are important in certain states. This is similar to our approach, but
they use SHAP only for a single-dimensional action space and for illustrating
the decisions made at certain timesteps. Zhang et al. [20] use RL and SHAP for
power system control. Liessner et al. [18] study a simple car control environment
where an agent follows a street lane and has to obey certain speed limits. They
present a so called RL-SHAP diagram where the agent’s inputs are placed on
the y-axes, color-coded by the SHAP values, while the x-axis shows the distance
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Fig. 1. Renderings of the benchmark environments

traveled. This method provides great visual understanding for this simple prob-
lem, but is harder to apply to more complex problems with multidimensional
action spaces.

3 Benchmark Environments

We conduct our experiments using a variety of RL environments from the Gym-
nasium [24] suite (see Table 1 and Fig. 1), in particular LunarLanderContinuous
and a set of MuJoCo tasks. In LunarLanderContinuous the goal is to operate
the main and lateral engines of the lander in order to safely land in a predefined
area of the lunar surface. The MuJoCo tasks all have the goal of fast directed
locomotion of simulated robots in various different shapes and therefore with
different numbers of joints and actuators. All these environments share proper-
ties relevant for our investigations: the observations are multidimensional and
continuous, as are the actions (corresponding to thrust of the engines in case of
LunarLanderContinuous or torque applied to the joints of MuJoCo robots).

For the training of DRL agents, we rely on Stable Baselines3 [25]. Agents are
trained using either TD3 [26] or TQC [27] in order to achieve state-of-the-art (as
reported on https://huggingface.co/sb3) high-performance and low-fluctuation
results. We used the hyperparameters from RL Baselines3 Zoo [28].

4 Experiment 1: Dependency of KernelSHAP
on Background Data

The research question of this experiment is whether the size and selection pro-
cedure (sampling or clustering) of the background dataset are critical for the

https://huggingface.co/sb3
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Table 1. Environments used as benchmark

Environment observation dim. action dim. DRL agent R: Performance in 100 episodes

LunarLanderCont.-v2 8 2 TQC 278.54 ± 29.29

Swimmer-v4 8 2 TD3 353.50 ± 2.41

Hopper-v4 11 3 TQC 3659.89 ± 6.30

Walker2d-v4 17 6 TD3 4470.01 ± 13.47

HalfCheetah-v4 17 6 TQC 12098.48 ± 107.42

Ant-v4 27 8 TD3 5966.68 ± 809.69

accuracy of the SHAP values, especially in high-dimensional environments. To
clarify the meaning of “background data”, we briefly summarize the KernelSHAP
approximation method.

4.1 KernelSHAP and Background Data

The KernelSHAP method approximates the features’ impact by observing the
output of the model when switching a feature from “absent” to “present”. To
compute the SHAP values of an observation x in J-dimensional space, first a
number M of coalitions are sampled. Each coalition is represented by a vector z ∈
{0, 1}J , where 0 means that the feature j is absent and 1 that the feature is part
of the coalition. A transformation function h translates these encodings z to valid
inputs for the model: while present features keep their actual value h(zj) = xj ,
absent features are replaced by values drawn randomly from the background
data, h(zj) ≺ Bj . This is the point at which the background data B come
into play. They can be understood as matrix with J columns (features) and Nb

rows. Nb is the size of the background dataset. B is constructed once prior to
all KernelSHAP computations, by either sampling or clustering from a larger
reservoir (see Sect. 4.2 for details). In the last step, a linear model

g(z) = φ0 +
J∑

j=1

φjzj (2)

is fitted to minimize the squared differences (f(h(z)) − g(z))2 for all M coali-
tions, where f(h(z)) is the model output for a given input h(z). The squared
differences are weighted by the SHAP kernel (Theorem 2 in [3]), which assigns
higher weights to coalitions with few and to coalitions with many present fea-
tures. The coefficients of the linear model g are the SHAP values φj . As a
consequence, the computed SHAP values are not only a function of the model,
but also of the background data (as well as stochasticity).

It is recommended to reduce the size of large background datasets by sam-
pling or clustering. To empirically study the impact of the background dataset’s
size and the effect of sampling or clustering, we propose the following experiment.
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4.2 Experimental Setup

First, the background dataset is filled with samples from 10 episodes of the RL
agent, leading to 10 000 samples for the MuJoCo environments and about 1700
for LunarLanderContinuous, where each sample is a point in the observation
space. This dataset is then reduced to size Nb either by sampling or using the
KMeans algorithm to produce Nb cluster centers. Based on these Nb background
data, we now compute SHAP values for a fixed set of Ne = 1000 samples drawn
from data logged during a number of different evaluation episodes. The consis-
tency of SHAP values computed with background data of various sizes is qualita-
tively visualized by the dependency plots in Fig. 2 and quantitatively evaluated
in Fig. 3 by computing the root mean squared error (RMSE), measuring the
difference between SHAP values with Nb ≤ 100 background data and approx-
imately “true” SHAP values based on a much larger dataset with Nb = 1000
background data as reference. The SHAP values corresponding to each action
dimension are normalized by the standard deviation of the actions σa to make
them comparable across the action dimensions. The RMSE is then computed
across all features j and actions a.

This approach is tested on the variety of simulated control tasks with
multidimensional, continuous observation and action spaces from Sect. 3.
We run tests with increasing number of background data points Nb ∈
{1, 5, 10, 20, 50, 100, 1000} and two different selection methods (sampling or
KMeans-clustering). For better statistics each run is repeated five times.

4.3 Robustness of KernelSHAP

Our results show a remarkable robustness of KernelSHAP. Visually inspecting
the resulting dependency plots (Fig. 2), we note that only the values based on 1
background sample stand out. Differences between other distributions are often
hardly noticeable to the naked eye. The RMSE of the respective set of SHAP
values w.r.t. the one based on the largest set of background data (Nb = 1000)
gives a quantitative measurement. The linear arrangement of measurements in
the log-log-plots of Fig. 3 suggests a power-law-relationship between the num-
ber of background samples and the error. The parameters of this law seem to
be rather consistent across different RL-tasks. This evaluation also shows, that
clustering leads to noticeable smaller errors than sampling. The results show
little variance across multiple repetitions, as indicated by the very small error
bars, and the qualitative results are consistent across all investigated benchmark
tasks.

For all environments, when using selection method sampling, the power-law
relationship follows a 1/

√
Nb power-law remarkably well. This can be under-

stood from the law of large numbers: If a measurement with i.i.d. fluctuations
is repeated N times, the error in all averages shrinks by a factor of 1/

√
N . The

number Nb of background data puts an upper bound on the number of i.i.d.
samples. With clustering we get a higher power law because the cluster centers
are better representatives of the underlying data distribution.
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Fig. 2. SHAP dependency plots of 5 out of the 8 features of Swimmer, computed using
differently sized background data (encoded by color) obtained by sampling. Colored
dotted lines signify the average SHAP value of each feature. The histograms on the
abscissa show the features’ distribution.

The horizontal line in each plot gives an idea of the upper tolerable limit for
the error. As a measure, we here use the standard deviation of the SHAP values,
normalized by σa. If the error is substantially smaller than the horizontal line,
the given number Nb of background data should be sufficient. Figure 3 shows
that this is the case for Nb ≥ 5.

The rapidly decreasing gains in precision when adding more samples to the
background dataset is especially relevant when put in context of increased com-
putational costs. Figure 4 shows the process time for computing SHAP values
of Ne = 1000 samples based on differently sized background data. When search-
ing for a trade-off between precision and computation time, this increase in
compute should carefully be taken into consideration, especially in conjunction
with the rapidly decreasing error. Since the overhead of KMeans clustering is
negligible compared to the computational costs of SHAP value approximation
(tens of seconds vs hours), this method of background data reduction is generally
preferable, given the smaller errors.

In general, the outcome of this experiment is quite surprising: Even for the
environments with many observation and action dimensions (meaning that the
estimation of marginal distributions for the “missing” features requires high-
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Fig. 3. RMSE of SHAP values computed with different numbers Nb of background
samples (using SHAP computed on the largest sample Nb = 1000 as reference) and
two dataset reduction methods: sampling (dash-dotted blue line) and clustering (dashed
orange line). The error bars mark ±1σ of five repetitions. The dotted horizontal line
marks the threshold described in the main text. (Color figure online)

dimensional integrals), a relatively small number of samples or cluster centers is
sufficient to reach reasonable accuracy.
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Fig. 4. Computational costs (μ±1σ across five repetitions) of KernelSHAP computing
SHAP values of Ne = 1000 samples, based on differently sized background dataset Nb

and the computational overhead of clustering with Nb cluster centers. Note that the
costs of KernelSHAP shown on the left y-axis are measured in hours, while the costs
for clustering shown on the right y-axis are measured in seconds. Thus, clustering costs
are generally negligible. The costs for sampling instead of clustering are in the order
of magnitude 1 ×10−4 s to 1 ×10−3 s and therefore completely negligible.
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5 Experiment 2: Empirical Evaluation of SHAP-Based
Feature Importance

SHAP is a method rooted in game-theory we use for attributing a certain action
difference to the single elements of the observation vector (features). The action
difference is the difference between the actual action of the agent, given an
observation, and the average action. Based on this attribution, the importance
of the single features can be defined. In the following experiment, we investigate
how the computed global feature importance correlates to the feature importance
in the RL task.

5.1 Generalized Feature Importance

Although the SHAP value for feature j and action a measures how this specific
feature influences this specific action, it is not a priori clear whether the impor-
tance for a single action implies a similar importance for the RL performance of
the agent (overall return from a RL episode). Molnar [7, Chap. 9.6.5] suggests
establishing a connection between SHAP values for a dataset with N instances
and feature importance as

FIj,a =
1
N

N∑

n=1

|φ(n)
j,a |, (3)

given by averaging the absolute SHAP values |φj | of a feature j over the
instances. Since in more complex RL tasks the agent has to perform multidi-
mensional actions, the definition of a global feature importance is not obvious.
The importance of a single feature can be very different for different elements of
the action vector, as can be seen for example in Fig. 2, where the feature vytip has
the biggest impact on the first dimension of the action vector, while having only
a marginal effect on the second one (rather flat distribution in the SHAP depen-
dency plot). In addition, the different elements ai of the action vector a ∈ R

A can
have very different ranges. This would have a strong impact on the associated
SHAP values according to their definition based on the difference between the
actual action and average action. To mitigate these problems, normalizing the
feature importances for each dimension by the standard deviation of the actions
along the specific dimension and averaging them seems a natural extension of
Eq. (3) to multidimensional actions. We therefore generalize feature importance
to the case of multidimensional actions by defining

FIj =
1
A

A∑

i=1

FIj,ai

σ(ai)
(4)

for a task with A action dimensions. Is the feature importance FIj correlated to
the change in agent performance (cumulative reward) when feature j is removed
from the observations? This research question is investigated in the following
experiment.
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5.2 Experimental Setup

We assess the research question, using the six different RL tasks described in
Table 1, with the following procedure:

1. The agents are evaluated in their respective environment for 10 episodes.
2. A KernelSHAP explainer is set up using Nb = 1000 background data samples.
3. SHAP values are computed for Ne = 1000 samples drawn randomly from 10

different evaluation episodes.
4. The feature importances FIj are computed according to Eq (4).
5. The agent is evaluated again for 100 episodes, this time being “blinded”

w.r.t. observation j. Observation j is substituted by its average value of the
evaluation samples from step 3. The resulting average return of the agent
blinded w.r.t. observation j is denoted by R\j .

5.3 Performance Drop Vs. Feature Importance

Plotting R\j , the performance of the agent blinded w.r.t. observable j, against
feature importance FIj in Fig. 5 shows the general correlation between the two
measurements. Table 2 contains the results in succinct form.

Table 2. Summary of the correlation between SHAP feature importance and perfor-
mance drop of partially-blinded agent

Environment Pearson r R2

LunarLanderCont.-v2 –0.829 0.687

Swimmer-v4 –0.909 0.826

Hopper-v4 –0.0364 0.00133

Walker2d-v4 –0.687 0.472

HalfCheetah-v4 –0.530 0.281

Ant-v4 –0.557 0.310

The results show, with the notable exception of Hopper, a correlation between
a feature’s importance in predicting an action and the agent’s performance when
that feature is absent. While this correlation is especially prominent in the “sim-
pler” environments Swimmer and LunarLanderContinuous, more complex envi-
ronments show a weaker correlation: a general trend is still visible, but there
are many examples where features with lower FI lead to stronger decreases in
performance and vice versa. The results suggest interpreting the FI as computed
by SHAP with caution.

The environment Hopper stands out, as apparently every single feature is
crucial to the agent’s success. Omitting any feature leads to almost the same
drastic decrease in performance. The feature importance therefore has almost
no correlation with R\j . To investigate whether the crucial role of every single
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observable is a property of this trained agent or an intrinsic property of the
environment, training was repeated with partially-blinded TQC agents. During
training and evaluation of each of these agents, one observable is set to zero.
Since such experiments require training multiple agents ex novo, and are there-
fore rather time-consuming, we performed this experiment only for the outstand-
ing case of Hopper. Figure 6 shows the relation between FIj , R\j , and R

(retrain)

\j ,
the performance of agents newly trained without the specific feature j. When
training new agents partially blinded ab initio w.r.t. one observable, the per-
formance increases notably. While for no feature the performance reaches the
fully-observable threshold, in most cases (except for θthigh, θtorso, and ωfoot) the
performance lies at least around 3000. The feature importance of the agent,
trained with all observables accessible, cannot be expected to correlate with the
performance of newly-trained, partially-blinded agents.

By visually inspecting episode renderings3 corresponding to low feature
importance and low performance for the partially-blinded agent (points in the
lower left part of the plots in Fig. 5), one common behavior emerges: These
episodes are always characterized by catastrophic failure of the agent falling
over (e.g., the ant falling on its back) or by premature termination due to reach-
ing a state defined by the environment as “unhealthy” (one or more observables
leaving a predefined range). The hidden observables are apparently crucial for
keeping the simulated robot in a safe state, even if they have been assigned a
relatively low feature importance.

It should also be noted, that the process of omitting a feature can usually
not be applied iteratively: Omitting several of the features together, that hid-
den individually have little impact on performance, often leads to a complete
breakdown of performance.

It is also worth noting that omitting some features has a greater impact on
the consistency of the agent’s performance than others. This is most prominent
in the case of Swimmer, where omitting a feature generally leads to a very
consistent performance. If the agent is blinded w.r.t. feature θtip instead, it
can play either very successful or very unsuccessful episodes. This is shown in
Fig. 7 where the distributions of returns are represented by violin plots and point
clouds. Omitting feature θtip leads to a strongly bimodal distribution. This can
be explained with a peculiarity of the Swimmer environment: For coordinated
movement, the rear rotor has to make a movement to the opposite side of the
front tip. In absence of the front tip angle θtip, the agent still observes the front
tip’s angular velocity ωtip, which assumes the value 0 at either side, but the agent
has to guess which side it is. If it guesses correctly, it receives a good return,
otherwise the movement comes to a complete standstill.4

3 The renderings of the five best and five worst episodes can be accessed on the Github
repository https://github.com/RaphaelEngelhardt/xai shap4rl.

4 Example videos of the best and the worst Swimmer episodes are accessible on the
repository as supplementary material.

https://github.com/RaphaelEngelhardt/xai_shap4rl


178 R. C. Engelhardt et al.

Fig. 5. Relation between SHAP-based feature importance (abscissa) of an observable
and cumulative reward of an agent blinded w.r.t. said observable (ordinate). Error
bars show ±1σ of the 100 evaluation episodes. The dash-dotted green horizontal line
denotes the average performance of the agent when all observables are fully accessible,
the green shaded area shows ±1σ over the 100 evaluation episodes. Analogously, the
dashed red line and area mark the lower baseline, i.e. the return of an agent that
acts randomly at each timestep. The dashed blue line is a linear fit to the data with
correlation coefficient r and coefficient of determination R2. (Color figure online)
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Fig. 6. Version of Fig. 5 (Hopper), but with extended results: The orange triangles
show the achievable returns when retraining partially-blinded agents from scratch.

Fig. 7. Version of Fig. 5 (Swimmer) with added distributions of returns. While the
distributions are generally centered, leading to small standard deviations, omission
of θtip leads to a bimodal distribution.

6 Interpretation of SHAP Time Dependency in RL

An advantage of using SHAP as XAI method in RL is that SHAP assigns a
contribution of each feature to each action dimension at each timestep of an
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episode. This provides a rich dataset which can be used to gain insights. As
an example, Fig. 8 shows the time dependencies of the SHAP values for each
feature and action dimension (the two rotors in case of Swimmer). This has
some similarity to the RL-SHAP diagram introduced in [18].

Fig. 8. Time series of roughly two oscillations of Swimmer. Shown is the evolution of
actions (first row) and SHAP values of the eight observables (rows 2–9) for the two
rotors (columns).
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We see for example that vytip has a large contribution to rotor 0, but not to
rotor 1. Likewise, θ2rot. has a large contribution to rotor 1, but a much smaller
contribution to rotor 0. It might be tempting to relate steep falls or rises in
the SHAP value (e.g. for vytip around timesteps 10 and 25, respectively) to
drastic changes in importance, that is, vytip initially appears to have a major
positive effect on rotor 0 up to timestep 10 and thereafter a major negative
effect. However, with this example, we would like to point out that such an
interpretation is wrong. A SHAP value has always to be seen in connection
with the ML prediction that it models, in our case the variable action 0 shown
in the first row and column of Fig. 8. If this target value exhibits a jump, the
overall SHAP values will also show the same jump. As a consequence, a high-
contributing SHAP value needs to have a similar jump. The right interpretation
is: Whatever the target value of action 0 is, feature vytip has a large contribution
to it of the same sign.

7 Conclusion and Outlook

This work analyzes the reliability of SHAP values as a XAI method for complex
RL environments with multidimensional actions. A positive aspect of SHAP is
its applicability as XAI method also in the case of multidimensional actions,
whereas interpretable DTs are hard or impossible to build in such cases.

We have examined the SHAP accuracy as a function of background data size
and found it to be surprisingly robust even if only a small size is used in order to
reduce computational costs. We found KMeans clustering to be the preferable
background data selection method.

Furthermore, we have generalized the SHAP-based feature importance to RL
of multidimensional actions. While the SHAP value measures the contribution of
a feature to a specific action, the feature importance expresses the importance of
the feature in general, regardless of the action dimension. Given this generalized
feature importance, we have investigated how well this importance is correlated
to the agent’s performance (the return). We showed that often there is a clear
correlation, while also exceptions exist, most notably in the case of Hopper, where
every left-out feature leads to drastic performance breakdowns, irrespective of
whether it had high or low feature importance.

Currently, we can only point out these two distinctive cases; finding the rea-
son for these distinct behaviors is left for future research. A possible reason might
be SHAP’s inability to handle interactions between features. Inspecting the cases
with surprising breakdown, we can speculate that this happens more likely for
unstable environments with a higher sudden-failure probability (Hopper, can fall
down, irreversible) than for more stable environments (Swimmer, cannot fall).

We believe that these findings make an important contribution to the reli-
ability of SHAP-based explainability in RL. The results presented in this work
also contain useful insights for XAI practitioners in RL. In the future, we plan to
investigate the reasons why SHAP-based importance sometimes does not corre-
late with agent performance. Furthermore, we plan to examine alternative value
functions for SHAP, e.g. episode returns as outlined in Sect. 1.2.
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Abstract. Explainable AI (XAI) aims to address the human need for
safe and reliable AI systems. However, numerous surveys emphasize the
absence of a sound mathematical formalization of key XAI notions—
remarkably including the term “explanation”, which still lacks a precise
definition. To bridge this gap, this paper introduces a unifying mathemat-
ical framework allowing the rigorous definition of key XAI notions and
processes, using the well-funded formalism of Category theory. In partic-
ular, we show that the introduced framework allows us to: (i) model exist-
ing learning schemes and architectures in both XAI and AI in general, (ii)
formally define the term “explanation”, (iii) establish a theoretical basis
for XAI taxonomies, and (iv) analyze commonly overlooked aspects of
explaining methods. As a consequence, the proposed categorical frame-
work represents a significant step towards a sound theoretical foundation
of explainable AI by providing an unambiguous language to describe and
model concepts, algorithms, and systems, thus also promoting research
in XAI and collaboration between researchers from diverse fields, such as
computer science, cognitive science, and abstract mathematics.

Keywords: Explainable AI · Category Theory · XAI Foundations and
Taxonomies

1 Introduction

Explainable AI (XAI) research aims to address the human need for accurate and
trustworthy AI through the design of interpretable AI models and algorithms
able to explain uninterpretable AI models [4]. Some of these methods are so
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effective that their impact now deeply affects other research disciplines such as
medicine [39], physics [10,71], and even pure mathematics [14].

A considerable number of works attempted to describe key methods and
notions in this fast-growing literature [2,4,13,19,34,37,61,82]. However, none of
these works are grounded on a solid and unifying theory of explainability, but
they rather rely on qualitative descriptions, preventing them from drawing truly
universal conclusions. Current surveys acknowledge this problem and grumble
that key fundamental notions of explainable AI still lack a formal definition, and
that the field as a whole is missing a unifying and sound formalism [2,61]: The
notion of “explanation” represents a pivotal example as it still lacks a proper
mathematical formalization. The followings represent an example of some of the
best definitions currently available in literature:

“An explanation is an answer to a ‘why?’ question.” [56];
“An explanation is additional meta information, generated by an external algo-
rithm or by the machine learning model itself, to describe the feature impor-
tance or relevance of an input instance towards a particular output classifica-
tion.” [13];
“An explanation is the process of describing one or more facts, such that it
facilitates the understand6ing of aspects related to said facts (by a human con-
sumer).” [61].

As the interest for XAI methods rises inside and outside academic environ-
ments, the need for a sound formalization and encompassing taxonomy of the
field grows quickly, as a prerequisite for welcoming a wider audience and foster-
ing theoretically grounded research. Moreover, the formalization of XAI concepts
poses a distinctive challenge, given the diverse contributions from various disci-
plines such as computer science, psychology, philosophy, and mathematics. While
this multidisciplinary approach enhances the richness of the field by incorporat-
ing diverse perspectives, it also presents a unique challenge. The disparate back-
grounds of researchers introduce a broad spectrum of languages and logical frame-
works, potentially becoming a barrier to mutual understanding. In light of these
complexities, XAI requires a theoretical framework that serves two crucial func-
tions: the formalization of concepts and the unification of the field through a lan-
guage that accommodates the diverse contributions spanning different disciplines.

Key Innovation. To address this, we propose a theoretical framework allowing
a unified, comprehensive and rigorous formalization of foundational XAI notions
and processes (Sect. 3). To the best of the authors’ knowledge, this is the first
work investigating this research direction in the XAI field. To this end, we for-
malize XAI notions using the language of Category theory. This choice is justi-
fied by two principal reasons: firstly, Category theory serves as an abstract lan-
guage designed to encompass and harmonize diverse formal logic-mathematical
systems, enabling the incorporation of all existing XAI contributions under a
unified formalism; secondly, Category theory constitutes a robust mathematical
framework with a focus on processes, facilitating the description of the inher-
ent properties of XAI models by design. For these reasons, Category theory is
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widely used in theoretical computer science [1,72,77,78,83], and, more recently,
in AI [3,11,60,74,76].

Contributions. In particular, we show that our categorical framework enables
us to: model existing learning schemes and architectures (Sect. 4.1), formally
define the term “explanation” (Sect. 4.2), establish a theoretical basis for XAI
taxonomies (Sect. 4.3), and analyze commonly overlooked aspects of explaining
methods (Sect. 4.4).

2 Explainable AI Theory: Requirements

In order to build a sound and exhaustive theoretical framework for explain-
able AI, we identified a set of fundamental notions, including objects and pro-
cesses, to be modelled and a proper language to formalize them. To represent
XAI algorithms and their dynamics, we rely on Category Theory [21], as it
provides a mathematical framework specifically designed to analyze processes
and their dynamics (Sect. 2.1). In addition, to properly define notions—such as
“explanation”—we rely on Institution Theory [32], as it provides an abstract
framework to express formal languages’ syntax and semantics (Sect. 2.2).

2.1 Category Theory: A Framework for (X)AI Processes

(X)AI processes all share three basic properties: (i) they map (multiple) inputs to
(multiple) outputs via a composition of parametric operations (see monoidal cat-
egories), (ii) they update the parameters of such operations based on some error
function (see feedback categories), and (iii) they keep updating such parameters
over time until convergence (see cartesian streams). In the following paragraphs
we recall some basic notions of category theory which will allow us a proper
formalization of these (X)AI properties.

A Primer on Categories: Objects and Morphisms. Intuitively, a category is sim-
ply a collection of objects and morphisms satisfying specific composition rules.

Definition 1 ([21]). A category C consists of a class of objects Co and, for
every X,Y ∈ Co, a set of morphisms hom(X,Y ) with input type X and output
type Y . A morphism f ∈ hom(X,Y ) is written f : X → Y , and for all morphisms
f : X → Y and g : Y → Z there is a composite morphism f ; g : X → Z, with
composition being associative. Moreover, for each X ∈ Co there is an identity
morphism 1X ∈ hom(X,X) that makes composition unital, i.e. f ; 1Y = f =
1X ; f .

Example 1. Set, whose objects are sets and morphisms are functions, and Vec,
whose objects are vector spaces and morphisms are linear maps, are well-known
examples of categories.

Different categories can be connected using special operators called functors i.e.,
mappings of objects and morphisms from one category to another (preserving
compositions and identity morphisms). For instance, there is a functor F from
Vec to Set that simply ignores the vector space structure.
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Monoidal Categories: Compose Multi-input/output Processes. In this work we
are mainly interested in monoidal categories as they offer a sound formalism for
processes with multiple inputs and outputs [8,27]. Monoidal categories [53] are
categories with additional structure, namely a monoidal product × and a unit
element U , enabling the composition of morphisms in parallel (cf. A.1). Notably,
monoidal categories allow for a graphical representation of processes using string
diagrams [40]. String diagrams enable a more intuitive reasoning over equational
theories, and we will use them throughout the paper to provide illustrative, yet
formal, definitions of XAI processes. The Coherence Theorem for monoidal cat-
egories [53] guarantees that string diagrams are a sound and complete syntax
for monoidal categories. Thus all coherence equations for monoidal categories
correspond to continuous deformations of string diagrams. For instance, given
f : X → Y and g : Y → Z, the morphisms f ; g : X → Z and 1X are repre-

sented as the equation f ; 1Y = f = 1X ; f

as , the morphism h with multiple inputs
X1,X2,X3 and outputs Y1, Y2 (left), and the parallel composition of two mor-
phisms f1 : X1 → Y1 and f2 : X2 → Y2 (right) can be represented as follows:

Feedback Categories: Update Processes’ State. A common technique in machine
learning involves the update of the parameters of a function, based on the feed-
back of a loss function. To model this process, we can use feedback monoidal
categories.

Definition 2 ([16,43]). A feedback monoidal category is a symmetric (cf. A.2)
monoidal category C endowed with an operator �S : hom(X × S, Y × S) →
hom(X,Y ) for all X,Y, S in Co, which satisfies a set of axioms1.

Given a morphism f : X × S → Y × S, the string diagram of the feedback
operation �S , such that �S (f) : X → Y , can be represented as

Cartesian Streams: Dynamic Update of Processes Over Time. In learning pro-
cesses, optimizing the loss function often involves a sequence of feedback itera-
tions. Following [76], we use Cartesian streams (cf. A.3) to model this kind of pro-
cesses. Cartesian streams form a feedback monoidal category that is also Carte-
sian, i.e. that is equipped, for every object X, with morphisms νX : X → X ×X
and εX : X → U that make it possible to copy and discard objects (cf. A.2).
This makes them the ideal category to formalize (possibly infinite) streams of
objects and morphisms.

1 The full list of the axioms is reported in A.3.



Categorical Foundation of Explainable AI: A Unifying Theory 189

Definition 3 ([76,85]). Let C be a Cartesian category. We call StreamC the cat-
egory of Cartesian streams over C, whose objects X = (X0,X1, . . . ) are countable
lists of objects in C, and given X,Y ∈ Streamo

C, the set of morphisms hom(X,Y)
is the set of all f : X → Y, where f = (f0, f1, . . .) is a family of morphisms in C,
with fn : X0 × · · · × Xn → Yn, for n ∈ N.

In Cartesian streams, a morphism fn represents a process that receives a new
input Xn and produces an output Yn at time step n. We can compute the outputs
until time n by combining f0, . . . , fn to get f̃n : X0 × · · · × Xn → Y0 × · · · × Yn

as follows:

– f̃0 := f0
– f̃n+1 := (1Xn+1 × νX0×···×Xn

) ; (fn+1 × f̃n)

We denote by XN the object X ∈ Streamo
C such that X = (X,X, . . .), for some

X ∈ Co. Notably, Cartesian streams form a feedback monoidal category [15] and
thus are capable to model dynamic processes with feedback—such as learning
processes, as we will show in Examples 3 and 4.

2.2 Institution Theory: A Framework for Explanations

In order to provide a formal definition of what is commonly dubbed as an “expla-
nation”, we need a mathematical framework which has enough expressive power
to subsume the broad meaning of this term. For this reason, we rely on insti-
tution theory [32], which will allow us to characterize the notion of “explana-
tion” in a unified scheme in Sect. 4.2. Institution theory offers an ideal platform
for formalizing explanations—whether expressed through symbolic languages or
semantic-based models—as it enables a thorough analysis of both the structure
(syntax) and meaning (semantics) of explanations across diverse languages [80],
thus facilitating a deeper understanding of their nature.

More rigorously, an institution I consists of (i) a category SignI whose objects
are signatures (i.e. vocabularies of symbols), (ii) a functor Sen : SignI �→ Set
which provides sets of well-formed expressions (Σ-sentences) for each signature
Σ ∈ Signo

I , and (iii) a functor Mod : (SignI)op �→ Set2 that assigns a semantic
interpretation (i.e. a world) to the symbols in each signature [31].

Example 2 First-Order Logic (FOL), where the category of signatures is given
by sets of relations as objects and arity-preserving functions as morphisms, is
a typical example of institution. Sentences and models are defined by standard
FOL formulas and structures.
2 Given a category C, (C)op denotes its opposite category, which is formed by reversing

its morphisms [53], but keeping the same objects Co.
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3 Categorical Framework of Explainable AI

We use feedback monoidal categories and institutions to formalize fundamental
(X)AI notions. To this end, we first introduce the definition of “abstract learning
process” (Sect. 3.1) as a morphisms’ composition in free feedback monoidal cate-
gories, and then we describe a functor instantiating this concept in the concrete
feedback monoidal category of StreamSet (Sect. 3.2). Intuitively, a free category
serves as a template for a class of categories (e.g., feedback monoidals). To gen-
erate a free category, we just need to specify a set of objects and morphisms as
generators. Then we can realize “concrete” instances of a free category F through
a functor from F to another category C that preserves the axioms of F (cf. A.4).

3.1 Abstract Learning Processes

We formalize the abstract concept of an (explaining) learning process drawing
inspiration from [11,76,90]. At a high level, learning can be characterized as an
iterative process with feedback. This process involves a function (known as model
or explainer in a XAI method) which updates its internal states (e.g., a set of
parameters) guided by some feedback from the environment (often managed by
an optimizer). Hence, to properly define a learning process at abstract level, we
rely on the following components:

– the objects X,Y, Y ∗, P , and E representing input, output, supervision,
parameter, and explanation types;

– the model/explainer morphism η : X×P → Y ×E which produces predictions
in Y and explanations in E;

– the optimizer morphism ∇Y : Y ∗ × Y × P → P producing updated param-
eters in P given supervisions in Y ∗, model/explainer predictions in Y and
parameters in P .

Definition 4. XLearn is the free feedback Cartesian category generated by the
objects X,Y, Y ∗, P,E and by the morphisms η : X × P → Y × E and ∇Y :
Y ∗ × Y × P → P .

As a result, an abstract learning process can be defined by the composition
of morphisms in XLearn.

Definition 5. An abstract learning process is the morphism α in XLearn given
by the following morphisms’ composition:

α = �P ((1Y ∗×X × νP ); (1Y ∗ × η × 1P ); (1Y ∗×Y × εE × 1P );∇Y )
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3.2 Concrete Learning and Explaining Processes

The free category XLearn allows us to highlight the key features of learning
processes from an abstract perspective. However, we can instantiate explaining
learning processes in “concrete” forms using a feedback functor from the free
category XLearn to the category of Cartesian streams over Set, i.e. StreamSet.
This functor can establish a mapping from our abstract construction to any
concrete setting, involving diverse explainers (e.g., decision trees, logistic regres-
sion), input data types (e.g., images, text), supervisions, outputs, parameters, or
explanations. Achieving this mapping requires the definition of a specific functor
we call translator.

Definition 6. An agent translator is a feedback Cartesian functor3 T :
XLearn → StreamSet.

Among translators, we distinguish two significant classes: those that instan-
tiate learning processes and those that instantiate explaining learning processes
(Definitions 7 and 8 respectively). Intuitively, a concrete learning process is an
instance of an abstract learning process whose model does not provide any expla-
nation while in a concrete explaining learning process it does output an (non-
empty) explanation.

Definition 7. Given an agent translator T with T (E) = {∗}N, where {∗} is a
singleton set. A learning process (LP) is the image T (α), being α the abstract
learning process.

The set {∗}N denotes the neutral element of the monoidal product in StreamSet

and conveys the absence of explanations. In this case, T (η) will be simply called
model, and we will remove the explicit dependence on {∗} in the output space
as T (Y ) × {∗}N ∼= T (Y ). To instantiate explaining learning processes instead,
we introduce two distinct types of translators: the semantic and the syntactic
translator. This choice is motivated by the fundamental elements of institution
theory, namely sentences and models: Sentences correspond to well-formed syn-
tactic expressions, while models capture the semantic interpretations of these
sentences [32]. We refer to concrete instances of both syntactic and semantic
explaining learning processes as “explaining learning processes” (XLP).

Definition 8. Let T be an agent translator, I an institution and α the abstract
learning process. The image T (α) is said a syntactic explaining learning pro-
cess if T (E) = Sen(Σ)N and a semantic explaining learning process if T (E) =
Mod(Σ)N, for some signature Σ of I.

The high degree of generality in this formalization enables the definition of
any real-world learning setting and learning architecture (to the author knowl-
edge). Indeed, using Cartesian streams as the co-domain of translators, we can

3 Feedback functors are mappings between feedback categories that preserve the struc-
ture and axioms of feedback categories.
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effectively model a wide range of learning use cases, including (but not limited
to) those involving iterative feedback. To simplify the notation, in the following
sections we use the shortcuts: X = T (X), Y = T (Y ), Y∗ = T (Y ∗), P = P,
E = T (E), η̂ = T (η), ∇̂Y = T (∇Y ), and Y = Y∗ when not specified otherwise.

4 Impact on XAI and Key Findings

4.1 Finding #1: Our Framework Models Existing Learning Schemes
and Architectures

As a proof of concept, in the following examples we show how the proposed
categorical framework makes it possible to capture the structure of some popular
learning algorithms such as supervised learning of neural networks.

Example 3. Classic supervised learning of a multi-layer perceptron (MLP, [69])
defined on n-dimensional feature vectors and m classes, can be obtained as
an instance of an abstract learning process by means of the translator func-
tor defined as follows (see Fig. 1): X = (Rn)N, Y = Y∗ = ([0, 1]m)N, η̂i being the
same MLP for all i, P the space of the MLP parameters, e.g. P = (Rp)N, ∇̂Yi

being e.g. the Adam optimizer [46], and E = {∗}N.

Fig. 1. On the left the string diagram representation of the abstract learning process.
The translator funtor maps each object and morphism into StreamSet. On the right side
of the arrow we see an unfolding of the resulting concrete learning process.

In Example 3 we model the MLP by fixing the components of the morphism
η̂ to have constant values η̂i = MLP (and independent of the first i−1 inputs), so
as the components of the input, output, and parameters are statically the same.
This is also the case in the majority of the standard instances of concrete learning
processes. However, the definition is a way more general and can be used to
instantiate a broader class of learning processes and architectures including e.g.
recurrent neural networks [36,38] and transformers [86]. In these scenarios, the
neural functions may become actually dependent on previous inputs, capturing
the input stream. Additionally, we can also model learning settings where the
model’s architecture changes over time, as in neural architecture search [22].
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Example 4. A classical Neural Architecture Search algorithm [22] is an instance
of an abstract learning process whose translator functor is defined as follows: X =
(Rn)N, Y = Y∗ = ([0, 1]m)N, η̂i = MLPi being a different neural architecture for
every step, P the space of the MLPs parameters, e.g. P = (Rp)N, ∇̂Yi

being the
Adam optimizer, and E = {∗}N.

To the best of our knowledge, the proposed formalism is general enough
to potentially encompass any known learning process providing or not provid-
ing explanations. Indeed, the objects X,Y, Y ∗, E can be instantiated through
a suitable translator functor to have the desired characteristics, e.g. T (Y )
could include the explanations space, making the explanations optimizable, or
T (Y ∗) = {∗}N, to instantiate an unsupervised learning setting. As a proof of
concept of the flexibility of our framework, we conclude this section with few
more examples on how other common learning schemes can be easily instanti-
ated (see Figs. 2 and 3).

Fig. 2. From left to right the instantiation of a classic supervised and unsupervised
learning scheme, respectively. We keep the instance of the LPs fold for simplicity.

Fig. 3. Instantiation of a federated learning scheme. We keep the instance of the LP
fold for simplicity.

4.2 Finding #2: Our Framework Enables a Formal Definition
of “explanation”

The proposed theoretical framework allows us to provide the first formal defi-
nition of the term “explanation”, which is the fundamental notion at the base
of explainable AI. Moreover, we opt for a definition that highlights a natural
distinction between different forms of explanations, by relying on institution
theory, which allows a straightforward characterization of syntactic and seman-
tic explanations. While both forms of explanations are prevalent in the current
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XAI literature, their distinction is often overlooked, thus limiting a deep under-
standing of the true nature and intrinsic limitations of a given explanation.

Definition 9. Given an institution I, an object Σ of SignI , and a concrete
explainer η̂ = T (η) : X ×P → Y ×E, an explanation E = T (E) in a language Σ
is a set of Σ-sentences ( syntactic explanation) or a model of a set of Σ-sentences
( semantic explanation).

We immediately follow up our definition with a concrete example to make it
more tangible.

Example 5. Let IPL be the institution of Propositional Logic and Σ a signature
of IPL with propositional variables {xflies, xanimal, xplane, xbird, . . .} ⊆ Σ and
with the standard connectives of Boolean Logic, i.e. ¬,∧,∨,→. For instance, η̂
could be an explainer aiming at predicting an output in Y = {xplane, xbird} given
an input in X = {xflies, xanimal}. Then a syntactic explanation could consist of
a Σ-sentence like ε = xflies ∧ ¬xanimal → xplane, a semantic explanation could
be any truth-assignment to the variables in ε.

As a remark, we notice that Definition 9 generalizes and formalizes com-
mon (informal) definitions used in the literature, like the examples we cited in
the Introduction from [13,56,61]. Our definition of explanation incorporates all
these notions, as Σ-sentences and their models can provide any form of state-
ment related to the explaining learning process and its inputs/outputs. This
encompasses additional meta information and feature relevance [13], description
of facts related to a learning process [61], or insights into why a specific output
is obtained from a given input [56]. Furthermore, [80] and [32] proved how the
semantics of “truth” is invariant under change of signature. This means that we
can safely use signature morphisms to switch from one “notation” to another,
inducing consistent syntactic changes in a Σ-sentence without conditioning the
“meaning” or the “conclusion” of the sentence [32]. As a result, signature mor-
phisms can translate a certain explanation between different signatures, hence
paving the way to study “communication” as well as “understanding” between
XLPs.

4.3 Finding #3: Our Framework Provides a Theoretical Foundation
for XAI Taxonomies

Using our categorical constructions, we can develop a theory-grounded taxon-
omy of XAI methods that goes beyond current ones and catalogues existing
approaches in a systematic and rigorous manner. We recognize the importance
of such a foundation due to the ongoing debates and challenges faced by current
taxonomies in comprehensively encompassing all existing XAI methods. Indeed,
existing approches in the XAI literature have only provided subjective viewpoints
on the field, distinguishing methods according to controversial criteria such as:
the scope/methodology/usage of explanations [13]; the how/what/why of expla-
nations [61]; the relationship between explainers and systems being explained,
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e.g., intrinsic/post-hoc, model-specific/agnostic, local/global [58]; or the specific
data types, such as images [48], graphs [50], natural language [12], and tabu-
lar data [17]. However, these taxonomies lack a solid and grounded motivation
and rely primarily on subjective preferences. As a result, they are unable to
draw universal conclusions and provide a general understanding of the field. On
the contrary, our taxonomy aims to fill this gap by providing a comprehensive
classification of XAI methods grounded in a formal mathematical theory. As an
example, we use the proposed categorical framework to explicitly describe the
following macro-categories of XAI methods [13,58,61]. In case the explaining
learning scheme involves more than one concrete process, we make use of two
translator functors T and T ′, and we refer to the objects of the latter using
prime, e.g. T ′(Y ) = Y ′. We keep Y = Y∗ for simplicity.

Post-hoc and Intrinsic. XAI surveys currently distinguish between intrinsic and
post-hoc explainers. Informally, the key difference is that intrinsic XAI methods
evolve model parameters and explanations at the same time, whereas post-hoc
methods extract explanations from pre-trained models [13,58].

Post-hoc Explainer. Given a trained LP model μ̂ : X × P → Y, a post-
hoc explainer is an XLP explainer such that η̂ : X ′ × P ′ → Y ′ × E ′, with
X ′ = Y × X × P:

Intrinsic Explainer. An intrinsic explainer is an XLP explainer η̂ whose input
objects are parameters P ′ and a set of entries of a database X ′:

Common intrinsic explainers are logic/rule-based [5–7,26,54,71,91], lin-
ear [18,35,59,70,81,87], and prototype-based [24,44] approaches; while well-
known post-hoc explainers include saliency maps [73,75], surrogate mod-
els [52,64,66], and concept-based approaches [23,29,30,45].

Model-Agnostic and Model-Specific. Intuitively, model-agnostic explainers
extract explanations independently from the architecture and/or parameters of
the model being explained, whereas model-specific explainers depend on the
architecture and/or parameters of the model.

Model-Agnostic Explainer. Given an LP model μ̂ : X × P → Y, a model-
agnostic explainer is an XLP explainer η̂ : X ′ × P ′ → Y ′ × E ′, such that X ′ =
Y × X .
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Model-Specific Explainer. A model-specific explainer simply differentiates
from a model-agnostic, as the XLP explainer η̂ : X ′ × P ′ → Y ′ × E ′ has X ′ =
Y × X × P.

Typical examples of model-agnostic explainers include surrogate models [52,
64,66] and some concept-based approaches [29,30,45]. Among renowned model-
specific explainers instead we can include all model-intrinsic explainers [58] and
some post-hoc explainers such as saliency maps [73,75] as they can only explain
gradient-based systems.

Forward and Backward. Another relevant difference among XAI methods for
gradient-based models is whether the explainer relies on the upcoming param-
eters [62,92,93] or the gradient of the loss on the parameters in the learning
optimizer [73,75].

Forward-Based explainer. Given a gradient-based LP model μ̂ : X ×P → Y,
a forward-based explainer is an XLP explainer η̂ : X ′ × P ′ → Y ′ × E ′ with
X ′ = X ′′ × P.

Backward-Based Explainer. Given a gradient-based LP model μ̂ : X × P →
Y and an optimizer ∇̂Y : Y ×Y ×P → P, a backward-based explainer is an XLP
explainer η̂ : X ′ × P ′ → Y ′ × E ′ where, X ′ = X ′′ × h(P), being h(P) = ∂L(Y,Y)

∂P
the gradient of the loss function L on P.

A Case Study: Concept Bottleneck Models. Concept bottleneck models (CBM)
[47] are recent XAI architectures which first predict a set of human understand-
able objects called “concepts” and then use these concepts to solve downstream
classification tasks. Our framework allows to formally define these advanced XAI
structures as follows: A CBM is an XLP such that η̂ is composed of a concept
predictor μ̂ : X × P → Y and a task predictor η̂′ : Y × P → Y × E , Y is the
set of classes and P = P ′ × P ′′ is the product of the parameter space of the two
models.

Overall these examples give a taste of the flexibility and expressive power
of our categorical framework demonstrating how it can successfully encompass
existing XAI approaches and taxonomies.
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4.4 Finding #4: Our Framework Emphasizes Commonly
Overlooked Aspects of Explanations

Current XAI taxonomies often neglect the distinction between syntactic and
semantic approaches. On the contrary, our Definition 8 provides a natural dis-
tinction between these two forms of XLPs, thus introducing a novel perspective
to analyze XAI methods. On the one hand, syntactic approaches work on the
structure of symbolic languages and operate on Σ-sentences. Notable examples
of syntactic approaches are proof systems such as natural deduction [63] and
sequent calculi [79] which are designed to operate on formal languages such as
first-order logic. On the other hand, semantic approaches provide explanations
related to the meaning or interpretation of sentences as a model of a language.
Most XAI techniques actually fall into this class of methods as semantic explana-
tions establish a direct connection with specific problem domains [42,52,64,75].
We discuss the relation between a syntactic and a semantic technique with a cou-
ple of concrete examples, by emphasizing the connections between XAI methods
that often slip unnoticed.

Example 6. The Gradient-weighted Class Activation Mapping (Grad-CAM),
[75] is a classic example of a semantic (backward) XLP, whose institution can be
defined as a fragment of FOL with all the signatures’ objects consisting of a sin-
gle predicate and a finite set of constants. Intuitively, in a classification task the
constants represent the pixels of an image and the relation represents the saliency
degree of each pixel for the class prediction. Sentences and models are defined as
in FOL by using the provided signature. A general syntactic explanation in this
institution can be easily expressed by taking a signature Σ = {S, p1, p2, . . .} with
S the unary saliency predicate and pi the constant for the i-th pixel. Assuming
to collect the most “salient” pixels in the set SalPix, the syntactic explanation
may be expressed by:

∧
p∈SalPix S(p). Figure 4–left instead represents a semantic

explanation where Grad-CAM interprets predicates and constants in the syn-
tactic formula assigning them a meaning (i.e., concrete values).

Fig. 4. (left) Saliency map. (rigth) Feature importance.
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Example 7. Another classic example of semantic XLPs are feature importance
methods [89], such as LIME, [65]. As saliency maps, LIME relies on an institu-
tion whose signatures consist on a set of constants fi (each for every considered
feature) and a single predicate R to express their relevance. Syntactic explana-
tions have the form

∧
f∈ImpFeat R(f) where the set ImpFeat collects the most

“relevant” features for a task. Figure 4–right shows an example of a semantic
explanation of LIME, where the length of each bar represents the relevance of
the corresponding feature.

Comparing the Expressive Power of Explanations. The Grad-CAM and LIME
examples offer the ideal setting to show how our framework can formally assess
the expressive power of different forms of explanations, drawing connections
between apparently different XLPs. Indeed, provided that both Grad-CAM and
LIME signatures contain the same number of pixels/features, these two forms of
explanations syntactically possess the same expressive power (while differing in
their semantic models and generating algorithms for the explanations). Conse-
quently, we can convert any saliency map into an equivalent feature importance
representation and vice versa (using an arity-preserving function), without com-
promising their meaning/truth value [80]. This is generally true whenever it is
possible to define an arity-preserving mapping between different signatures in
the same institution. This observation underscores an often overlooked aspect
in XAI literature: evaluating the expressive power of explanations requires com-
paring their signatures and syntax, more than the way these explanations are
visualized. User studies that compare different forms of visualization essentially
assess the visualization’s expressive power, which relates to human understand-
ing, rather than the expressive power of an explanation itself.

Limitations of Semantic Explanations. The connection between a semantic
explanation and a specific context (e.g., an image) may stimulate human imagi-
nation, but it often limits the scope and robustness of the explanation, hindering
human understanding in the long run [29,68]. On the contrary, symbolic lan-
guages such as first-order logic or natural language are preferable for conveying
meaningful messages as explanations as suggested by [41,55]. For this reason, a
promising but often overlooked research direction consists in accurately lifting
semantic explanations into a symbolic language in order to provide a syntactic
explanation [6,7,9,33,49,66]. By recognizing the importance of this distinction,
our formalization can provide a suitable basis to gain deeper insights into the
limitations of different forms of explanations.

5 Discussion

Significance and Relations with Other XAI Foundational Works. The explain-
able AI research field is growing at a considerable rate [57] and it now has a con-
crete impact on other research disciplines [10,14,39] as well as on the deployment
of AI technologies [20,51,88]. This rising interest in explainable AI increases the
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need for a sound foundation and taxonomy of the field [2,61]. Indeed, existing
reviews and taxonomies significantly contribute in: (i) describing and cluster-
ing the key methods and trends in the XAI literature [58], (ii) proposing the
first qualitative definitions for the core XAI terminology [13], (iii) relating XAI
methodologies, aims, and terminology with other scientific disciplines [28,56],
and (iv) identifying the key knowledge gaps and research opportunities [13].
However, most of these works acknowledge the need for a more sound mathe-
matical foundation and formalism to support the field. Our framewok arises to
fill this gap. In particular our methodology formalizes key XAI notions for the
first time, using the category of Cartesian streams and the category of signa-
tures. Our work also draws from [76] who propose Cartesian streams to model
gradient-based learning, and [11] who model gradient-based learning using the
category of lenses [67]. The categorical formalisms of lenses and streams are
closely related [15]. Intuitively, lenses can be used to encode one-stage processes,
while streams can encode processes with time indexed by natural numbers, i.e.
providing a more suitable description of the dynamic process of learning. How-
ever, our work opens to more general AI systems which are not necessarily
gradient-based by generalizing the category of lenses with Cartesian streams.

Limitations. In this work we face the challenging task of formalizing (previ-
ously informal) notions such as “explanation”, while acknowledging the ongoing
debate over their meaning, not only within the AI community but also in phi-
losophy, epistemology, and psychology. Our formalization offers a robust theory-
grounded foundation for explainable AI, but it does require readers to engage
with abstract categorical structures. However, embracing this initial challenge
brings a substantial payoff by enabling us to achieve a comprehensive and unified
theory of the field, encompassing all the pertinent instantiations of XAI notions,
structures, explanations, and paradigms.

Conclusion. This work presents the first formal theory of explainable AI. In
particular, we formalized key notions and processes that were still lacking a rig-
orous definition. We then show that our categorical framework enables us to: (i)
model existing learning schemes and architectures, (ii) formally define the term
“explanation”, (iii) establish a theoretical basis for XAI taxonomies, and (iv)
emphasize commonly overlooked aspects of XAI methods, like the comparison
between syntactic and semantics explanations. Through this work, we provide
a first answer to the pressing need for a sound foundation and formalism in
XAI as advocated by the current literature [2,61]. While our taxonomy pro-
vides guidance to navigate the field, our formalism strengthens the reputation
of explainable AI encouraging a safe and ethical deployment of AI technologies.
We think that this work may contribute in paving the way for new research
directions in XAI, including the exploration of previously overlooked theoretical
side of explainable AI, and the mathematical definition of other foundational
XAI notions, like “understandability” and “trustworthiness”.
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A Elements of Category Theory

A.1 Monoidal Categories

The process interpretation of monoidal categories [8,27] sees morphisms in
monoidal categories as modelling processes with multiple inputs and multiple
outputs. Monoidal categories also provide an intuitive syntax for them through
string diagrams [40]. The coherence theorem for monoidal categories [53] ensures
that string diagrams are a sound and complete syntax for them and thus all
coherence equations for monoidal categories correspond to continuous deforma-
tions of string diagrams. One of the main advantages of string diagrams is that
they make reasoning with equational theories more intuitive.

Definition 1 ([21]). A category C is given by a class of objects Co and, for
every two objects X,Y ∈ Co, a set of morphisms hom(X,Y ) with input type
X and output type Y . A morphism f ∈ hom(X,Y ) is written f : X → Y . For
all morphisms f : X → Y and morphisms g : Y → Z there is a composite mor-
phisms f ; g : X → Z. For each object X ∈ Co there is an identity morphism
1X ∈ hom(X,X), which represents the process that “does nothing” to the input
and just returns it as it is. Composition needs to be associative, i.e. there is no
ambiguity in writing f ; g ; h, and unital, i.e. f ; 1Y = f = 1X ; f .

Monoidal categories [53] are categories endowed with extra structure, a
monoidal product and a monoidal unit, that allows morphisms to be composed
in parallel. The monoidal product is a functor × : C × C → C that associates
to two processes, f1 : X1 → Y1 and f2 : X2 → Y2, their parallel composition
f1×f2 : X1×X2 → Y1×Y2. The monoidal unit is an object U ∈ Co, which repre-
sents the “absence of inputs or outputs” and needs to satisfy X×U ∼= X ∼= U×X,
for each X ∈ Co. For this reason, this object is often not drawn in string dia-
grams and a morphism s : U → Y , or t : X → U , is represented as a box with
no inputs, or no outputs.

A.2 Cartesian and Symmetric Monoidal Categories

A symmetric monoidal structure on a category is required to satisfy some coher-
ence conditions [53], which ensure that string diagrams are a sound and com-
plete syntax for symmetric monoidal categories [40]. Like functors are mappings
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between categories that preserve their structure, symmetric monoidal functors
are mappings between symmetric monoidal categories that preserve the structure
and axioms of symmetric monoidal categories.

Some symmetric monoidal categories have additional structure that allows
resources to be copied and discarded [25]. These are called Cartesian categories.

A.3 Feedback Monoidal Categories

Feedback monoidal functors are mappings between feedback monoidal categories
that preserve the structure and axioms of feedback monoidal categories.

Feedback monoidal categories are the syntax for processes with feedback
loops. When the monoidal structure of a feedback monoidal category is cartesian,
we call it feedback cartesian category. Their semantics can be given by monoidal
streams [15]. In cartesian categories, these have an explicit description. We refer
to them as cartesian streams, but they have appeared in the literature multiple
times under the name of “stateful morphism sequences” [76] and “causal stream
functions” [84].

A.4 Free Categories

We generate “abstract” categories using the notion of free category [53]. Intu-
itively, a free category serves as a template for a class of categories (e.g., feedback
monoidals). To generate a free category, we just need to specify a set of objects
and morphisms generators. Then we can realize “concrete” instances of a free
category F using a functor from F to another category C that preserves the
axioms of F. If such a functor exists then C is of the same type of F (e.g., the
image of a free feedback monoidal category via a feedback functor is a feedback
monoidal category).

A.5 Institutions

An institution I is constituted by:

(i) a category SignI whose objects are signatures (i.e. vocabularies of symbols);
(ii) a functor Sen : SignI �→ Set providing sets of well-formed expressions (Σ-

sentences) for each signature Σ ∈ Signo
I ;

(iii) a functor Mod : Signop
I �→ Set providing semantic interpretations, i.e.

worlds.

Furthermore, Satisfaction is then a parametrized relation |=Σ between Mod(Σ)
and Sen(Σ), such that for all signature morphism ρ : Σ �→ Σ′, Σ′-model M ′,
and any Σ-sentence e,

M ′ |=Σ ρ(e) iff ρ(M ′) |=Σ e

where ρ(e) abbreviates Sen(ρ)(e) and ρ(M ′) stands for Mod(ρ)(e).
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Abstract. Calibration is a frequently invoked concept when useful label
probability estimates are required on top of classification accuracy. A cal-
ibrated model is a function whose values correctly reflect underlying label
probabilities. Calibration in itself however does not imply classification
accuracy, nor human interpretable estimates, nor is it straightforward
to verify calibration from finite data. There is a plethora of evaluation
metrics (and loss functions) that each assess a specific aspect of a cali-
bration model. In this work, we initiate an axiomatic study of the notion
of calibration. We catalogue desirable properties of calibrated models as
well as corresponding evaluation metrics and analyze their feasibility and
correspondences. We complement this analysis with an empirical evalu-
ation, comparing common calibration methods to employing a simple,
interpretable decision tree.

Keywords: Calibration · Axiomatic analysis · Evaluation measures

1 Introduction

In many applications it is important that a classification model not only has high
accuracy but that a user is also provided with a reliable estimate of confidence
in the predicted label. Calibration is a concept that is often invoked to provide
such confidence estimates to a user. As such, calibration is a notion that is
inherently aimed at human interpretation. In binary classification, a perfectly
calibrated model f provides the guarantee that if it predicts f(x) “ p on some
instance x, then among the set of all instances on which f assigns this value p
the probability of label 1 is indeed p (and the probability of label 0 thus 1 ´ p).

While calibration is generally considered useful, we would argue that in many
cases, even if achieved, it is doomed to fail at its original goal of providing insight
to a human user: for most suitably complex classification models, a human user
that observes f(x) “ p has no notion of the set of all instances on which f also
outputs p. The promise given by calibration is thus meaningless.

In this work we investigate which (additional) properties would actually yield
human understandable calibration scores. We take an axiomatic (or property
based) approach and start by outlining formal desiderata for a calibrated model.
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L. Longo et al. (Eds.): xAI 2024, CCIS 2155, pp. 207–231, 2024.
https://doi.org/10.1007/978-3-031-63800-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63800-8_11&domain=pdf
http://orcid.org/0000-0003-1179-7134
https://doi.org/10.1007/978-3-031-63800-8_11


208 A. Torabian and R. Urner

The first and obvious property is high classification accuracy, which is not implied
by calibration. Second, a property that is often implicitly aimed at in the con-
text of calibration is that the predictor actually approximates the regression
function η(x) “ P[y “ 1|x] of the data-generating process [25]. This is however
also not implied by calibration. We then propose three properties that relate to
interpretability: 1) that the pre-images (or level sets) f´1(r) of the model are
identifiable to a user, 2) that the range of values that the model outputs is not
too large, and 3) that the model is monotonic with respect to the underlying
regression function. Section 3 starts with a detailed discussion and motivation for
these suggested desiderata. In that section we also formally analyze the interplay
between these (initially strictly phrased) properties.

Since a learned model can usually not be expected to satisfy properties such
as optimal accuracy or calibration perfectly, in Sect. 4 we then move to outlining
relaxations of our desiderata in form of measures of distance from the properties.
The discussion and analysis in that section focuses on measures at the popula-
tion level of a data-generating process. We analyze how simple operations on a
predictor, which may improve its calibration, affect these measures.

In the last Sect. 5, we deal with empirical, finite data based versions of these
measures. We again start by outlining and discussing these empirical measures,
most of which are from the literature on calibration. Our experiments on a variety
of real world datasets then evaluate them on a simple, inherently interpretable
model for calibration, namely a decision tree, and compare its performance to
three other, not necessarily interpretable standard calibration methods. The goal
of this section is to take a model for which we can control our interpretability cri-
teria (the pre-images f´1(r) are here the leafs of the tree and thus interpretable,
and the number of these can be set by a user), and assess how this interpretable
model compares to other methods in terms of other performance measures.

In summary, we systematically outline and analyze the interplay between
desirable properties, evaluation measures and sometimes implicit objectives on
three levels: on an idealized level as axioms (or deterministic properties), on
the distributional level as probabilistic metrics, and on the empirical level as
measures to be estimated from finite data. While the first level is aimed at
capturing the aleatoric uncertainty in the data generation, and the second defines
measures of how well a predictor reflects this uncertainty, the last level integrates
the epistemic uncertainty, namely how to estimate these qualities from samples.
Our work sheds light on the role of interpretability in the context of calibration,
which we find essential for calibration to be meaningful and thus useful to users.

Overview on Related Work. Calibration is a well established notion with
studies on this concept dating back decades [6,9,15]. Summarizing this rich body
of literature is beyond the scope of this manuscript, but recent surveys provide an
overview on the concept of calibration, common methods aimed at achieving it
and popular evaluation metrics [24,26]. With the advent of increasingly powerful
yet opaque machine learning models, the concept of calibration has enjoyed
renewed interest and research activity in recent years [1,2,8,12].
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Methods to obtain calibration broadly fall into two categories: post-
processing an existing model or directly training in a way that promotes cal-
ibration in the learned model. Platt Scaling (PS) [20] and Isotonic Regression
(IS) [27] (which we include in our experiments) are two well established methods
in the former category. Another class of commonly used post-processing meth-
ods, for which formal guarantees also exist, is re-calibration based on binning
[11,16,19,25]. To directly promote calibration, training by optimizing a proper
loss is often recommended. Proper losses are minimized by the data-generating
distribution’s regression function. Very recent work has analyzed when this actu-
ally leads to calibrated models [2].

A major challenge with understanding how to obtain calibrated models is the
lack of clear, commonly accepted criteria for “how uncalibrated” a model is. There
are a variety of studies that aim to address this inherent ambiguity both from a
practical point of view, by systematically developing and comparing evaluation
methods [8,21,24] and from a theoretical perspective by formally establishing
failure modes and success guarantees [1].

While some recent studies point out contributions of calibration for model
interpretability [23], we are not aware of a systematic analysis of the interpretabil-
ity of calibration itself, which is the focus of this work.

2 Formal Setup

Binary Classification. We consider the standard setup of statistical learning: We
let X denote a feature space and Y “ {0, 1} the label space. The data generation
is modelled as a distribution D over X ˆ Y . We use DX to denote the marginal
of D over X. We use supp(·) to denote the support of a distribution. With
slight abuse of notation, for a distribution D over X ˆ Y , we will often write
supp(D) to also refer to the support supp(DX) of the marginal DX . Further, we
let ηD : X → [0, 1] denote the regression function of the distribution D:

ηD(x) “ P(x′,y)„D[y “ 1|x′ “ x]

A predictor is a function f : X → R that assigns every instance a real valued
score. Given a data generating distribution D, we let rangeD(f) denote the effec-
tive range of the predictor, namely the smallest set R such that with probability
1 over drawing x „ DX , we have f(x) P R. For discrete distributions, we can
alternatively define rangeD(f) :“ {f(x)|x P supp(DX)}. For simplicity, we will
usually use statements such as “for all x P supp(DX)” instead of “with proba-
bility 1 over DX ”, and “there exist x P supp(DX)” instead of “with probability
greater than 0 over DX ”. These concepts are equivalent for discrete distributions
(and under some continuity assumptions on functions in the non-discrete case).
The above substitutions can be made for more general cases.

We define the cells generated by predictor f as the subsets of X on which f
is constant, i.e., the pre-images under f of the values in rangeD(f); a predictor
f thus partitions X into cells.
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A classifier is a function h : X → Y that assigns every feature vector a class
label. For binary classification, it is common to threshold some predictor for this.
Given f : X → R, we define the classifier induced by f with threshold θ as

fθ(x) “ 1 [f(x) ě θ]

where 1 [·] denotes the indicator function. We use F “ R
X to denote the set

of all (measurable) predictors. Predictors f are evaluated by means of a loss
function � : F ˆ X ˆ Y → R, where �(f, x, y) indicates the quality of prediction
f(x) given observed label y. The goal is to achieve low expected loss

LD(f) “ E(x,y)„D[�(f, x, y)].

The binary loss (or 0/1-loss) is the standard evaluation metric for classifiers
�0/1(h, x, y) “ 1 [h(x) ‰ y]. The Bayes classifier is a classifier with minimal
expected binary loss, denoted by opt0/1

D , the Bayes loss of D.

Calibration. In many applications, it is desirable to not only achieve low clas-
sification loss (that is high accuracy), but to have a predictor that accurately
reflects probabilities of the label events. The notion of calibration defines such a
property; namely, that the predicted value f(x) accurately reflects the probabil-
ity of seeing label 1 among all instances that are given value f(x) [6,9,15,24].

Definition 1. A predictor f : X → [0, 1] is calibrated if for all x P X we have:

f(x) “ E(x′,y′)„D[y′ | f(x′) “ f(x)]

Predictors are rarely expected to be perfectly calibrated as in the above defini-
tion. There are a variety of notions to measure “degrees of miscalibration” both
with respect to the underlying distribution and empirically as observed on a
dataset. We outline some of these in later parts of this work (see Sects. 4 and
5). We note here that, due to the conditioning on the level sets of the predictor
in the definition of calibration, there is no straightforward way of measuring
miscalibration, in particular not as an expectation over a pointwise defined loss
function which would depend only on a predictor f and an observation (x, y).

3 Desiderata for Calibration

We now list some formal requirements for predictors that are aimed to be cali-
brated. The goal here is to make often implicit motivations explicit and formal.
The first, obvious, requirement (first item in the list) is calibration itself as
defined in Definition 1. However, such a predictor should often have additional
qualities that are not subsumed by the notion of calibration. Of course it is still
desirable (if not imperative) that the predictor allows to be thresholded into a
classifier with high accuracy (second item in the list). Moreover, the hope behind
calibration is often that the predictor f will actually be a good representation
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of data-generating distribution’s regression function ηD (third item). Neither of
these latter two requirements is implied by calibration. We will formally elabo-
rate on this in Sect. 3.1 below.

Furthermore, we would argue that the concept of calibration is inherently
aimed at aiding human interpretation. The intent of providing a probability
estimate rather than simply outputting the most likely label is to provide a
human user with a better way to gauge the certainty with which the user should
expect to see a certain label. However for this estimate to be meaningful to a
human user, the user needs to have a notion of the pool of instances that also
received this particular estimate. That is, if a calibrated model outputs f(x) “
0.7, the human user needs a notion of the set f´1(0.7) “ {x P X|f(x) “ 0.7},
among which this user is now promised that 70% of instances will have label 1.
Note that in this case calibration does not imply that 70% of instances with this
exact (or similar) feature vector x will have label 1. Thus, the mere statement
f(x) “ 0.7 (even from a calibrated predictor) does not provide insight into
the data generating process. The fourth item in the list below captures these
considerations: the cells induced by a calibrated predictor should be interpretable
to a human user and there shouldn’t be too many of such cells.

The fifth and last item in the list of requirements below also aims at human
interpretability. If a user observes the predicted values on two input instances
f(x) and f(x′), say f(x) “ 0.57 and f(x′) “ 0.89, the most meaningful insight
might be that the first instance x is less likely to have label 1 than the second
instance x′, (based on observing that f(x) ă f(x′)). The exact values (0.57
and 0.89) may not be as easy to make sense of. However, this type of pairwise
comparison is valid only if the predictor is point-wise monotonic with respect to
the data-generating distribution’s regression function.

Formal Requirements. We let f : X → R denote a predictor and D be a distri-
bution over X ˆ Y . The list below summarizes our desiderata for f :

1. Calibration. f is perfectly calibrated (see Definition 1):

@r P rangeD(f) : E(x,y)„D[y | f(x) “ r] “ r.

2. Classification accuracy. Thresholding on f yields an optimal classifier:

Dθ P R : L0/1
D (fθ) “ opt0/1

D .

3. Approximating the regression function: f perfectly approximates ηD:

@x P supp(D) : f(x) “ ηD(x).

4. Interpretability: The cells induced by f , that is the pre-images f´1(r) :“
{x P X | f(x) “ r} for r P rangeD(f), are meaningful to a human
user. Moreover, there are relatively few induced cells. That is |{f´1(r) | r P
rangeD(f)}| “ |rangeD(f)| is small.
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5. Monotonicity: Predictor f generates probability estimates that are mono-
tonic with respect to the regression function ηD, that is:

@xi, xj P supp(D) : (ηD(xi) ´ ηD(xj)) · (f(xi) ´ f(xj)) ě 0

If equality holds only when ηD(xi) “ ηD(xj), we call f strictly monotonic
with respect to ηD.

We will start by analyzing these strictly phrased properties. In Sect. 4 below, we
will introduce and investigate probabilistic relaxations of these properties.

3.1 Interplay of Strict Properties

We start our analysis by investigating relationships, implications and compati-
bilities between the above desiderata. At first glance, it might appear as if cali-
bration is a stronger requirement than the existence of a threshold for optimally
accurate classification. However, it is not difficult to see, and generally known
[24], that calibration is actually a property that is independent of accuracy. A
predictor can be perfectly calibrated while effectively useless for classification.
And conversely a predictor can be highly accurate while not being calibrated
at all.

Observation 1 Calibration does not imply optimal classification accuracy and
optimal classification accuracy does not imply calibration.

Proof. Consider a one-dimensional feature space, X “ R, and a distribution
D that has marginal mass distributed uniformly on two points, DX(´1) “
DX(`1) “ 0.5, with a deterministic regression function ηD(x) “ 1 [x ě 0]. Now
the constant predictor f(x) “ 0.5 is perfectly calibrated, but any threshold θ P R

will result in worst possible classification loss L0/1
D (fθ) “ 0.5. On the other hand,

a predictor g with g(x) “ 0.5 ´ ε for x ă 0 and g(x) “ 0.5 ` ε for x ě 0 for any
ε ą 0 admits a threshold (namely θ “ 0.5) such that the resulting classifier gθ

has perfect classification loss L0/1
D (gθ) “ 0 while not being calibrated. ��

Of course, the regression function ηD is always a predictor (albeit usually
an unknown one) that is both perfectly calibrated and optimally accurate (by
definition, with threshold θ “ 0.5). However, we now show that in most cases
(except for distributions where the regression function is overly simple) it is not
the only predictor that enjoys these two qualities. This then means that these two
properties together (calibration and possibility of optimal classification accuracy)
do not imply that the regression function ηD is well approximated.

Theorem 2. There exist predictors f different from ηD (with positive probabil-
ity) satisfying both perfect calibration and optimal classification accuracy if and
only if one of the sets (rangeD(ηD)X [0, 0.5)) and (rangeD(ηD)X [0.5, 1]) has size
at least 2 (that is, if and only if a Bayes optimal predictor outputs both labels
and the effective range of ηD has size at least 3; or a Bayes optimal predictor
outputs only one label and the effective range of ηD has size at least 2).
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Proof. Let’s assume that at least one of the sets rangeD(ηD) X [0, 0.5) and
rangeD(ηD)X[0.5, 1] has size at least 2. Without loss of generality we can assume
that there exist η1, η2 P rangeD(ηD), with η1, η2 ă 0.5 and η1 ‰ η2. Let’s denote
regions where the regression function takes on these values by X1 “ η´1

D (η1) Ď X,
and X2 “ η´1

D (η2) Ď X. By definition of the effective range, these sets have pos-
itive probability under DX . Now consider the predictor

f(x) “
{
E(x′,y)„D[y | x′ P (X1 Y X2)] if x P (X1 Y X2)

ηD(x) if x R (X1 Y X2).

By construction, this predictor, thresholded at 0.5 has the same classification loss
as ηD (namely opt0/1

D ) while being different from ηD with positive probability.
Conversely, assume that there exists a predictor f that is perfectly calibrated

and achieves Bayes loss with some threshold θ P [0, 1], but is not identical to ηD

(meaning the functions differ with positive probability with respect to DX). Since
L0/1

D (fθ) “ opt0/1
D , the sets f´1([0, θ))Xsupp(D) and η´1

D ([0, 0.5))Xsupp(D) must
be identical and the sets f´1([θ, 1])X supp(D) and η´1

D ([0.5, 1])X supp(D) must
be identical. Now if ηD was constant on both of these sets, then the only way for
f to be calibrated would be to also take on that same constant values (and thus f
would be identical to ηD). Thus, if f differs from ηD in the support of DX while
being calibrated, then ηD is not constant on at least one of η´1

D ([0.5, 1])Xsupp(D)
or η´1

D ([0, 0.5))Xsupp(D), which implies that at least one of rangeD(ηD)X[0, 0.5)
and rangeD(ηD) X [0.5, 1] has size at least 2. ��
Corollary 1. Perfect calibration and optimal classification accuracy together do
not imply perfect approximation of ηD.

Rather than calibration, strict monotonicity is a property that is closely
related to both optimal classification accuracy and approximation of ηD.

Observation 3 Strict monotonicity implies optimal classification accuracy.

Proof. Consider a predictor f and assume that f satisfies strict monotonicity
with respect to ηD. Using the threshold 0.5 on the regression function ηD, we can
split the set supp(D) into two disjoint subsets X´ :“ {x P supp(D) : ηD(x) ă
0.5} and X` “ {x P supp(D) : ηD(x) ě 0.5}. Let fX´ :“ {f(x) : x P X´}
and fX` :“ {f(x) : x P X`} be the ranges of values that f takes on X´ and
X` respectively. For any xi from X´ and any xj from X`, f(xi) ă f(xj) since
ηD(xi) ă ηD(xj) and f is strictly monotonic. This shows that any member of
fX´ is smaller than any member of fX` . Therefore, inf(fX`) ě sup(fX´). Thus
θ “ (inf(fX`) ` sup(fX´))/2 is a threshold on f that achieves Bayes loss. ��
Theorem 4. A predictor f perfectly approximates the regression function ηD if
and only if it is perfectly calibrated and strictly monotonic with respect to ηD.

Proof. If f perfectly approximates ηD (that is, the are identical with probability
1 over DX), then f is obviously strictly monotonic and perfectly calibrated.
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Now we will argue that a predictor that is strictly monotonic with respect
to ηD and calibrated, also perfectly approximates ηD. Equivalently, we show
that if f is strictly monotonic, but does not perfectly approximate ηD, then
f is not calibrated. So let’s assume f is strictly monotonic but not perfectly
approximating ηD. Then there exists an x′ P supp(D) with f(x′) ‰ ηD(x′). Let
S :“ {x P supp(D) : f(x) “ f(x′)}. Since f is strictly monotonic, we have
ηD(x) “ ηD(x′) for all x P S. Therefore,

E
(x,y)„D

[y | f(x) “ f(x′)] “ E
(x,y)„D

[y | x P S] “ ηD(x′).

Since ηD(x′) ‰ f(x′), E(x,y)„D[y | f(x) “ f(x′)] ‰ f(x′), thus f is not calibrated.
��
Corollary 2. Neither calibration nor strict monotonicity alone implies perfect
approximation of ηD.

In Fig. 1 below, we illustrate the relationship between the properties.

Fig. 1. Interplay of calibration desiderata. The intersection of strictly monotonic and
perfectly calibrated predictors only contains the regression function ηD (and functions
that agree with ηD with probability 1 over DX).

4 Relaxed Desiderata for Calibration

A predictor f that is learned from finite samples is unlikely to fulfill the desider-
ata precisely. Thus, we now outline relaxed, probabilistic versions of our five
desirable properties, or measures of how much the properties are violated. We
here focus on population level measures (rather than possible estimates from
finite samples, some of which we discuss in Sect. 5). It is important to note that
the interpretability of the pre-images of a predictor is not a property that is
quantifiable by means of a mathematical definition. Therefore, we focus in this
section on quantifying the size of the effective range as an aspect of interpretabil-
ity, and propose a novel, distribution based measure for this.
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1. Calibration: Degree of calibration is measured by the Lp-norm expected
calibration error [11]:

CEp,D(f) “ (
E

(x,y)„D
[|f(x) ´ E

(x′,y′)„D
[y′ | f(x′) “ f(x)]|p] )1/p

2. Classification accuracy: The quality of classification is measured by the
standard expected classification loss for a thresholded predictor fθ:

L0/1
D (fθ) “ E(x,y)„D1 [fθ(x) ‰ y]

3. Approximating the regression function: To assess whether the predic-
tor f is effectively approximating the regression function, we use the Mean
Squared Error (MSE) [5,25] :

MSED(f) “ E(x,y)„D[(y ´ f(x))2]

Note that MSE is the expectation over a proper loss, namely the quadratic
loss �2(f, x, y) “ (f(x) ´ y)2, and is thus minimized (over all predictors) by
the regression function ηD [2]. It can thus be viewed as a distance from ηD.

4. Interpretability: To relax the strict measure of counting cells induced by
f (ie. |rangeD(f)| being small), we introduce the Probabilistic Count (PC),
as a novel measure that quantifies the size of a predictor’s range, taking into
account the data-generating distribution. For distribution D over X ˆ Y , we
define the probabilistic count of predictor f : X Ñ R with respect to D as:

PCD(f) “ 1
Px,x′„DX

[f(x) “ f(x′)]
.

We show that PCD(f) is always at most |rangeD(f)|. Appendix Sect. A con-
tains this result (Theorem 10) and further illustrations of this measure.

5. Monotonicity: Kendall’s τ (tau) coefficient is a measure of the monotonicity
of finite samples [22]. For any set of samples (x1, y1), ..., (xn, yn), any pair of
samples (xi, yi) and (xj , yj), where i ă j, are discordant if (xi´xj).(yi´yj) ă
0. Kendall’s Tau coefficient is defined as:

τ “ 1 ´ 2 ˆ number of discordant pairs
(
n
2

)

Kendall’s τ coefficient is in the range ´1 ď τ ď 1. τ “ 1 represents per-
fect agreement between the ranking of two variables, and τ “ ´1 represents
perfect disagreement, i.e. one ranking is the reverse of the other. This coef-
ficient can be used to measure monotonicity, but it doesn’t consider the ties
to measure strict monotonicity. We now introduce a probabilistic version of
this coefficient to measure the monotonicity of two random variables, namely
ηD(x) and f(x). We define the probabilistic Kendall’s Tau coefficient for pre-
dictor f : X Ñ R with respect to the distribution D over X ˆ Y as:

KTD(f) “ 1 ´ 2 ˆ Px,x′„DX
[(ηD(x) ´ ηD(x′)) · (f(x) ´ f(x′)) ă 0

∣
∣ x ‰ x′]
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In the remainder of this section we explore the effects of two intuitive operations
that contribute to model interpretability: cell merging (with score averaging)
and readjusting scores by label averaging in a cell. Through the analysis of these
operations and their effects on the measures from the list above, we aim to clarify
when a model can be simplified in a way that may increase its interpretability,
without compromising other properties that are desirable for calibrated models.
Table 1 summarizes the results of this section. The arrows indicate whether a
measure can increase, decrease and remain the same through the operation.

Table 1. Implications of cell merging and score averaging on the measures. The arrows
and equality signs represent the possible outcomes for each measure.

CEp,D L0/1
D MSED PCD KTD

Cell merging along
with averaging scores

↓“
(Thm. 6)

Ö“
(Obs. 7)

Ö“
(Obs. 7)

↓“a

(Thm. 5)
Ö“
(Obs. 7)

Average label assigning ↓“
(Thm. 8)

↓“
(Thm. 8)

↓“
(Thm. 8)

↓“
(Thm.8)

Ö“
(Obs. 9)

a The conclusion for PCD holds for any new score for the cell according to Theorem 5.

4.1 Analysis of Cell Merging

One aspect of interpretability of a predictor is the size of its effective range.
When two cells are combined in that a joint value is assigned to all points from
the two cells, the size of the effective range decreases. This can thus be viewed
as a simple operation which will make the predictor more amenable to human
interpretation.

Definition 2 (Cell merge with score averaging). Let D be a distribution
over X ˆ Y , f : X Ñ R be a predictor and let r1, r2 P rangeD(f) be two values
in the effective range of f . We say that predictor g : X Ñ R is obtained by
(r1, r2)-cell merge of f if g satisfies:

g(x) :“
{

r if f(x) “ r1 or f(x) “ r2

f(x) otherwise,

for some r P R. We say that g is obtained by (r1, r2)-cell merge of f with score
averaging if r “ r1·Px„DX

[f(x)“r1]`r2·Px„DX
[f(x)“r2]

Px„DX
[f(x)“r1]`Px„DX

[f(x)“r2]
.

We start by showing that cell merging always decreases the probabilistic count
(whether the score is averaged or an arbitrary new score is chosen).

Theorem 5. Let D be a distribution over X ˆ Y , f, g : X Ñ R be predictors
and r1, r2 P rangeD(f). If g is obtained by (r1, r2)-cell merge of f , then

PCD(g) ď PCD(f).
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Proof. To prove PCD(g) ď PCD(f), it suffices to show that

1
PCD(g)

´ 1
PCD(f)

“ Px,x′„DX
[g(x) “ g(x′)] ´ Px,x′„DX

[f(x) “ f(x′)]

“ Ex,x′„DX
[1 [g(x) “ g(x′)] ´ 1 [f(x) “ f(x′)]] ě 0

For any x, x′ P supp(D), 1 [g(x) “ g(x′)] and 1 [f(x) “ f(x′)] have the same
value (either both are 1 or 0), except when both x and x′ belong to cells
where f assigns values r1, r2 or r, since these are the only different cells
between f and g. For all x and x′ in these cells, g(x) “ g(x′) “ r, thus
1 [g(x) “ g(x′)] “ 1. Therefore we have 1 [g(x) “ g(x′)] ´ 1 [f(x) “ f(x′)] ě 0
for all x, x′ P supp(D). ��
We next investigate the effect of cell merging on the Lp norm calibration error
CEp,D. We show CEp,D can only decrease if cells are merged with score averaging.

Theorem 6. Let D be a distribution over X ˆ Y , f, g : X Ñ R be predictors
and r1, r2 P rangeD(f). If g is obtained by (r1, r2)-cell merge of f with score
averaging, then we have

CEp,D(g) ď CEp,D(f).

Proof. First note that for any predictor h : X → R and all x P X, we have

|h(x) ´ E(x′,y′)„D[y′ | h(x′) “ h(x)]| “ |h(x) ´ Ex′„DX
[ηD(x′) | h(x′) “ h(x)]|

“ |Ex′„DX
[h(x) ´ ηD(x′) | h(x′) “ h(x)]|

“ |Ex′„DX
[h(x′) ´ ηD(x′) | h(x′) “ h(x)]|

where the last inequality holds since the expectation is conditioned on any x′

such that h(x′) “ h(x). Thus we get

CEp,D(h) “ (
Ex„DX

[|Ex′„DX
[h(x′) ´ ηD(x′) | h(x′) “ h(x)]|p] )1/p (1)

for any predictor h. Now note that if r1 “ r2 then f “ g, and CEp,D(f) “
CEp,D(g). Otherwise, according to Eq. 1 above applied to f and g:

CEp,D(f)p ´ CEp,D(g)p “ Ex„DX
[|Ex′„DX

[f(x′) ´ ηD(x′) | f(x′) “ f(x)]|p]
´ Ex„DX

[|Ex′„DX
[g(x′) ´ ηD(x′) | g(x′) “ g(x)]|p]

“ Ex„DX
[|Ex′„DX

[f(x′) ´ ηD(x′) | f(x′) “ f(x)]|p
´ |Ex′„DX

[g(x′) ´ ηD(x′) | g(x′) “ g(x)]|p]
The cells that f and g have different expectations in the previous term are the
ones with f(x) equals to r1 or r2 or r. All members in these three cells are in
the same cell in the range of g with g(x) “ r. So,

CEp,D(f)p ´ CEp,D(g)p “ |Ex′„DX
[f(x′) ´ ηD(x′) | f(x′) “ r1]|p.Px„DX [f(x) “ r1]

` |Ex′„DX
[f(x′) ´ ηD(x′) | f(x′) “ r2]|p.Px„DX [f(x) “ r2]

` |Ex′„DX
[f(x′) ´ ηD(x′) | f(x′) “ r]|p.Px„DX [f(x) “ r]

´ |Ex′„DX
[g(x′) ´ ηD(x′) | g(x′) “ r]|p.Px„DX [g(x) “ r]
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For the rest of the proof, we use the following notations:

e1 :“ Ex′„DX
[f(x′) ´ ηD(x′) | f(x′) “ r1]

e2 :“ Ex′„DX
[f(x′) ´ ηD(x′) | f(x′) “ r2]

e3 :“ Ex′„DX
[f(x′) ´ ηD(x′) | f(x′) “ r]

e′ :“ Ex′„DX
[g(x′) ´ ηD(x′) | g(x′) “ r]

w1 :“ Px„DX
[f(x) “ r1]

w2 :“ Px„DX
[f(x) “ r2]

w3 :“ Px„DX
[f(x) “ r]

w′ :“ Px„DX
[g(x) “ r] “ w1 ` w2 ` w3

The latter equality holds since g(x) “ r if and only if f(x) P {r1, r2, r}. Now:

CEp,D(f)p ´ CEp,D(g)p “ |e1|p.w1 ` |e2|p.w2 ` |e3|p.w3 ´ |e′|p.(w1 ` w2 ` w3)
(2)

Now we use the law of total expectation to rewrite e′ as e1, e2, and e3:

e′ “ [
Ex′„DX

[g(x′) ´ ηD(x′) | g(x′) “ r, f(x′) “ r1].w1

` Ex′„DX
[g(x′) ´ ηD(x′) | g(x′) “ r, f(x′) “ r2].w2

` Ex′„DX
[g(x′) ´ ηD(x′) | g(x′) “ r, f(x′) “ r].w3

]
/(w1 ` w2 ` w3)

“ [
(r ´ Ex′„DX

[ηD(x′) | f(x′) “ r1]).w1

` (r ´ Ex′„DX
[ηD(x′) | f(x′) “ r2]).w2

` (r ´ Ex′„DX
[ηD(x′) | f(x′) “ r]).w3

]
/(w1 ` w2 ` w3)

“ [
(r ` e1 ´ r1).w1 ` (r ` e2 ´ r2).w2 ` (e3).w3

]
/(w1 ` w2 ` w3)

“ [
e1.w1 ` e2.w2 ` e3.w3

]
/(w1 ` w2 ` w3)

⇒ |e′|p “ ∣
∣e1.w1 ` e2.w2 ` e3.w3

w1 ` w2 ` w3

∣
∣p

ď [ |e1|.w1 ` |e2|.w2 ` |e3|.w3

w1 ` w2 ` w3

]p “ [|e1|.w′
1 ` |e2|.w′

2 ` |e3|.w′
3

]p
,

in which w′
i “ wi/(w1 ` w2 ` w3). So, w′

1 ` w′
2 ` w′

3 “ 1. Function | . |p is a
convex function for any p P N. Therefore, according to Jensen’s inequality [14]:

[|e1|.w′
1 ` |e2|.w′

2 ` |e3|.w′
3

]p ď |e1|p.w′
1 ` |e2|p.w′

2 ` |e3|p.w′
3

⇒ |e′|p ď |e1|p.w1 ` |e2|p.w2 ` |e3|p.w3

w1 ` w2 ` w3

⇒ CEp,D(f)p ě CEp,D(g)p (using Equation 2)
⇒ CEp,D(f) ě CEp,D(g).

��
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The following two observations demonstrate the impact of merging cells on
classification loss, mean squared error and the probabilistic Kendall’s Tau.

Observation 7 If g is obtained by (r1, r2)-cell merge of f with score averaging
(under the conditions of Definition 2), then L0/1

D (g) may be smaller, larger or
equal to L0/1

D (f), and the same holds for MSED(g) and KTD(g) in comparison
with MSED(f) and KTD(f) respectively.

Proof. Binary Loss: Let f be a predictor and let a and b be two cells generated by
f with f(x) “ 0.4 for all x P a and f(x) “ 0.8 for all x P b. Let D be a distribution
whose marginal assigns the same probability to these cells DX(a) “ DX(b) “ 0.1.
Further, let’s assume that there are two additional, heavier cells c and d, with
DX(c) “ DX(d) “ 0.4, and f(x) “ 0.45 while ηD(x) “ 0 for all x P c and
f(x) “ 0.55 while ηD(x) “ 1 for all x P d. Thus, independently of the regression
function’s values in the lighter cells a and b, the best classification threshold for
f will be any θ P (0.45, 0.55), say θ “ 0.5.

Let g be obtained from f by a (0.4, 0.8)-cell merge. Then g(x) “ 0.6 for all
x P a Y b. Since g(x) “ f(x) for all x P c Y d (the heavier cells), g will also be
optimally thresholded with any θ P (0.45, 0.55), thus with optimal threshold, say
θ “ 0.5, for both g and f we get gθ(x) “ 1 ‰ 0 “ fθ(x) for all x P a. With slight
abuse of notation, we let η(a) “ P(x,y)„D[y “ 1 | x P a] denote the probability
of label 1 generated conditioned on cell a. If η(a) ă 0.5, then L0/1

D (g) ą L0/1
D (f),

if η(a) ą 0.5, then L0/1
D (g) ă L0/1

D (f) and if η(a) “ 0.5, then L0/1
D (g) “ L0/1

D (f).
Kendall’s Tau Coefficient: Let’s consider the same scenario as above, but now

with the four cells a, b, c and d having equal probability weight, say DX(a) “
DX(b) “ DX(c) “ DX(d) “ 0.25. As above, we denote the conditional label
probabilities in these cells by ηD(a), ηD(b), ηD(c), and ηD(d) respectively. If
ηD(a) ă ηD(c) ă ηD(d) ă ηD(b), then the scores assigned by f are monotonic
with respect to ηD, while the scores of g are not. We thus get 1 “ KTD(f) ą
KTD(g). In case ηD(c) ă ηD(b) ă ηD(a) ă ηD(d), the scores of g are monotonic,
but the scores of f are not. Thus 1 “ KTD(g) ą KTD(f). Finally, if ηD is a
constant function, then the cell merge does not change the Kendall’s Tau.

Mean Squared Error: To show that the same phenomena can occur for the
MSE, let’s consider a scenario where the predictor f assigns value 0 to all points
in a cell a and value 1 to all points in a cell b, and let’s assume DX(a) “
DX(b). Upon merging them, their combined score becomes 0.5. When η(a) “ 0
and η(b) “ 1, the MSE, conditioned on these cells, increases from 0 to 0.25.
Conversely, η(a) “ 1 and η(b) “ 0, the mean squared error decreases from 1 to
0.25. If η(a) “ 0.25 and η(b) “ 0.75, then the mean squared error remains the
same at 0.25. ��

4.2 Analysis of Average Label Assignment

We now analyze another operation, where the score for every cell of predictor f
is replaced with the true label average in that cell. We say f̄D : X Ñ [0, 1] with

f̄D(x) :“ E(x′,y′)„D[y′ | f(x) “ f(x′)].
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is obtained by average label assignment with respect to distribution D from f . This
true average label with respect to the data-generating distribution is typically
not available to user, however might be (approximately) estimated from samples.

Theorem 8. For distribution D over X ˆ Y and any predictor f : X Ñ R the
predictor f̄D(x) obtained by average label assignment with respect to distribution
D from f satisfies the following for θ “ 0.5:

CEp,D(f̄D) “ 0, MSED(f̄D) ď MSED(f),

L0/1
D ((f̄D)θ) ď L0/1

D (fθ), PCD(f̄D) ď PCD(f).

Proof. First note that CEp,D(f̄D) “ 0 is immediate from the definition. Now
let rangeD(f) “ {sf

1 , sf
2 , ..., sf

n} and let {bf
1 , bf

2 , ..., bf
n} be the corresponding cells

generated by f . So, for any predictor f : X Ñ R,

MSED(f) “ E(x,y)„D[(y ´ f(x))2]

“
∑

iP[1,n]

E(x,y)„D[(y ´ f(x))2 | x P bfi ] · Px„DX
[x P bfi ]

“
∑

iP[1,n]

E(x,y)„D[(y ´ sfi )
2 | x P bfi ] · Px„DX

[x P bfi ]

“
∑

iP[1,n]

(E(x,y)„D[y2 | x P bfi ] ´ 2sfi E(x,y)„D[y | x P bfi ] ` (sfi )
2) · Px„DX

[x P bfi ]

Using ȳf
i as E(x,y)„D[y | x P bf

i ] for any i P [1, n] and the identity E[X2] “
Var(X) ` (E[X])2, we rewrite the expression as:

MSED(f) “
∑

iP[1,n]

(Var(x,y)„D[y | x P bfi ] ` (ȳf
i )

2 ´ 2sfi ȳf
i ` (sfi )

2) · Px„DX [x P bfi ]

“
∑

iP[1,n]

(Var(x,y)„D[y | x P bfi ] ` (ȳf
i ´ sfi )

2) · Px„DX [x P bfi ]

The values of f and f̄D are different, while the cells of f are a refinement of
those of f̄D, i.e., any two elements from supp(D) from the same cell of f are
also in the same cell of f̄D. So, @i P [1, n], bf̄D

i “ bf
i , ȳf̄D

i “ ȳf
i , and Var(x,y)„D[y |

x P bf̄D

i ] “ Var(x,y)„D[y | x P bf
i ]. Also, according to the definition of f̄D,

@i P [1, n], sf̄D

i “ ȳf̄D

i . So we complete the proof for the MSE by:

MSED(f) ´ MSED(f̄D) “
∑

iP[1,n]

((ȳf
i ´ sf

i )
2 ´ (ȳf̄D

i ´ sf̄D

i )2) · Px„DX
[x P bf

i ]

“
∑

iP[1,n]

(ȳf
i ´ sf

i )
2 · Px„DX

[x P bf
i ] ě 0
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Now we rewrite the classification loss of predictor f using the n cells:

L0/1
D (fθ) “ E(x,y)„D1 [fθ(x) ‰ y]

“
∑

iP[1,n]

E(x,y)„D[1 [fθ(x) ‰ y] | x P bf
i ] · Px„DX

[x P bf
i ]

“
∑

iP[1,n]

E(x,y)„D[1 [1 [f(x) ě θ] ‰ y] | x P bf
i ] · Px„DX

[x P bf
i ].

Let’s consider the expectation part of this expression for one arbitrary cell:

E(x,y)„D[1 [1 [f(x) ě θ] ‰ y] | x P bf
i ]

“ Ex„DX

[
1 [f(x) ă θ] · ηD(x) ` 1 [f(x) ě θ] · (1 ´ ηD(x)) | x P bf

i

]
(3)

The classification on cell changes if and only if the label assigned to that cell
(with θ “ 0.5) changes. The label on the whole cell is constant. Without
loss of generality suppose cell bf

i is labelled 0 under f and labelled 1 under
f̄D. Consequently, sf

i ă 0.5 and E(x,y)„D[y | x P bf
i ] ě 0.5, which means

Ex„DX
[ηD(x) | x P bf

i ] ě 0.5. Now we rewrite Eq. 3 for both predictors f and
f̄D:

E(x,y)„D[1 [1 [f(x) ě θ] ‰ y] | x P bf
i ] “ Ex„DX

[ηD(x) | x P bf
i ]

E(x,y)„D[1
[
1

[
f̄D(x) ě θ

] ‰ y
] | x P bf

i ] “ Ex„DX
[1 ´ ηD(x) | x P bf

i ]

Since Ex„DX
[ηD(x) | x P bf

i ] ě 0.5:

Ex„DX [1 ´ ηD(x) | x P bfi ] ď Ex„DX [ηD(x) | x P bfi ] “⇒
E(x,y)„D[1 [1 [f(x) ě θ] ‰ y] | x P bfi ] ě E(x,y)„D[1

[
1

[
f̄D(x) ě θ

] ‰ y
] | x P bfi ].

Thus the classification loss on any arbitrary cell for predictor f is greater than
or equal to the loss for f̄D(x), completing our proof that L0/1

D ((f̄)θ) ď L0/1
D (fθ).

When the initial scores are replaced with the average of true labels, it is
possible for two cells of f to have equal new scores. In such cases, these cells are
merged, and by Theorem 5, it follows that PCD(f̄D) ď PCD(f). ��
Next we present an analogous result for monotonicity.

Observation 9 Let f̄D(x) be the predictor obtained by average label assignment
with respect to some distribution D from some predictor f . Then the probabilis-
tic Kendall’s Tau coefficient of f̄D(x) may be smaller, larger or equal to the
Kendall’s Tau coefficient of f with respect to D.

Proof. Let’s consider a predictor f that generates only two distinct values ra

and rb, say ra ă rb and let a and b be the corresponding cells. As before, we
denote the expected label in these cells by ηD(a) and ηD(b).



222 A. Torabian and R. Urner

We first consider the case that both cells a and b contains four distinct domain
points, and the values of ηD on the four points in cell a are three times 0.1, and
once 1, and 0.2 for all four points in b. Thus ηD(a) “ 0.325 and ηD(b) “ 0.2, and

KTD(f) “ 1 ´ 2 · 8
56

“ 5
7
, KTD(f̄D) “ 1 ´ 2 · 24

56
“ 1

7
.

Thus, in this case, substituting the scores with the average true labels has weak-
ened the monotonicity of the predictor.

Now consider the same scenario with the only difference being that the values
of ηD for the points in region a are now 0.1, twice 0.3, and 1. In this case the
monotonicity, as measured by the probabilistic Kendall’s Tau, has improved:

KTD(f) “ 1 ´ 2 · 24
56

“ 1
7
, KTD(f̄D) “ 1 ´ 2 · 8

56
“ 5

7
.

Lastly, if the regression function is a constant function, then KTD(f) “
KTD(f̄D). ��

5 Experimental Evaluation of Decision Tree Based
Models

In our experimental evaluation we compare standard methods for calibration to
a simple model that is inherently interpretable, namely a Decision Tree (DT).
Note that for a decision tree, the induced cells are inherently interpretable, and
it is also straight-forward to control the number of cells, thus this methods
straightforwardly satisfies our basic requirements for interpretability. Our goal
is then to determine how this simple interpretable method compares to non-
interpretable standard methods, in terms of our remaining desiderata, namely
calibration, classification accuracy, approximation of the regression function and
monotonicity. We include two standard methods for calibration through post-
processing, namely Platt Scaling (PS) [20] and Isotonic Regression [27] in our
comparison. A support vector machine (SVM) is first trained as the base model
for Platt Scaling and Isotonic Regression. Additionally we compare to another
tree based calibration model, Probability Calibration Tree (PCT) [17].

Evaluation Metrics Employed. Since some of our desiderata, namely calibra-
tion, approximation of the regression function and monotonicity directly depend
on the unknown values of the regression function ηD, there is no immediate way
to assess these from finite data. We employ commonly used metrics that we list
below, as well as a novel metric that we introduce. For classification accuracy
we evaluate the empirical binary loss [4]; for calibration we evaluate the (empir-
ical) Expected calibration error (ECE) [18]; for approximation of the regression
function we evaluate the Root Mean Square Error (RMSE) [13], and for mono-
tonicity we evaluate the Area under the ROC curve (AUC) [3]. Another metric
for calibration that we evaluate is the Area under the Validity Curve (AUCV )
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[11]. And in addition to these metrics from the literature, we introduce a novel
calibration metric that we term Probability Deviation Error (PDE).

For the definitions of these metrics below, we let xi P X and yi P {0, 1}
denote the features and label of a single sample. D(n) denotes the collection of
n samples:

D(n) :“ ((x1, y1), (x2, y2), ..., (xn, yn))

Classification (0/1)-Loss. In our experiments, we utilize the threshold θ “ 0.5
for

L0/1
n (fθ) “ 1

n

n∑

i“1

{
(yi)2 if f(xi) ď θ

(1 ´ yi)2 otherwise.

Root Mean Square Error (RMSE) [13]

LRMSE
n (f) “

(
1
n

n∑

i“1

(f(xi) ´ yi)2
)1/2

Area Under the ROC Curve (AUC) [3] Given a predictor f , using different
thresholds θ P [0, 1], we obtain classifiers fθ with increasing True Positive and
False Positive Rates (TPR and FPR) over the sample points. These pairs of rates
yield curve (where TPR is viewed as a function of FPR), and AUC is defined as
the area under this curve. This is standard metric to evaluate the monotonicity
of a predictor with respect to the regression function. If the model generates
wrong scores (in terms of pointwise probability estimates), but in the correct
order (that f is monotonic with respect to ηD), then AUC is still high.

Expected Calibration Error (ECE). This criterion compares the average pre-
dicted scores and the average of true labels with respect to a given set of bins
b1, b2, ..., bB , where the bins form a partition of the space or dataset [8,12,18].
We let wi denote the fraction of data points contained in bin bi. ECE is then
defined as follows:

ECEp :“ ( B∑

i“1

wi · PCE(bi)p
)1/p

.

where PCE is the Partition Calibration Error, which is the difference between
the average values generated by f and the average of labels in a bin:

PCE(bi) :“
|∑n

j“1(f(xj) ´ yj)1 [xj P bi] |
∑n

j“1 1 [xj P bi]
“

∣
∣
∣
∣
∣
∣

1
|bi|

∑

xjPbi

f(xj) ´ 1
|bi|

∑

xjPbi

yj

∣
∣
∣
∣
∣
∣

When no binning is provided, uniform mass binning is employed, that is the pro-
duced scores are sorted and allocated into a fixed number B of equally weighted
bins. The resulting criterion is denoted by ECEB,p :“ (

1
B

∑B
i“1 PCE(bi)p

)1/p
.

While ECE is widely used to evaluate calibration models [1,8,10,19], it can be
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a problematic measure when the bins used do not correspond to the actual cells
of the predictor f . ECE then effectively evaluates a different predictor, namely
the predictor that results from f when the scores are averaged in each given bin.
We discuss how this can result in distorted conclusion in Appendix Sect. B.

Probability Deviation Error (PDE). To address the issues of ECE (see appendix
Sect. B), we propose a new metric which we term Probability Deviation Error
(PDE). The PDE compares the point-wise scores with the average label in each
bin, thereby fixing the problem associated with the ECE. On predefined bins
b1, b2, ..., bB with weights w1, w2, ..., wB , the Lp norm PDE is defined as follows:

PDEp :“ ( B∑

i“1

wi · PPD(bi)p
)1/p

.

where PPD, or Partition Probability Deviation is the average difference between
point-wise scores generated by f in a bin and the label average in the bin:

PPD(bi) :“
∑n

j“1 |f(xj) ´ ŷi|1 [xj P bi]
∑n

j“1 1 [xj P bi]
“ 1

|bi|
∑

xjPbi

|f(xj) ´ ŷi|

where ŷi “ 1
|bi|

∑
xkPbi

yk is the average label in bin bi. If no partition into bins is
given, as for ECE, uniform mass binning with B bins is used by default. In this
case, we denote the criterion as PDEB,p :“ (

1
B

∑B
i“1 PPD(bi)p

)1/p. We illustrate
that this metric better reflects quality of calibration than ECE, by empirically
comparing these two measures on synthetically generated data (see Appendix
Sect. C).

Area Under the Validity Curve (AUCV ) This metric has recently been proposed
to evaluate calibration [11]. We first define the validity function V : RX ˆ[0, 1] →
[0, 1] that assigns to each threshold ε P [0, 1] the probability mass of the area
where predictor f is ε-valid as measured by the L1 norm calibration error:

V (f, ε) “ P(x,y)„D[|f(x) ´ E(x′,y′)„D[y′ | f(x′) “ f(x)]| ď ε]

This function generates a curve, the validity curve, whose integral over [0, 1]
is the metric AUCV (f) [11]. Its relation to the L1 norm calibration error for
f : X → [0, 1] has been shown to satisfy CE1(f) “ 1 ´ AUCV (f) [11].

With finite data D(n), the validity function V is estimated as follows [11]:

V̂ (f, ε) “ 1
n

n∑

i“1

1
[
|f(xi) ´ Ê(x,y)„D(n) [y|f(x) “ f(xi)]| ď ε

]

where Ê(x,y)„D(n) [y | f(x) “ p]| :“
∑n

i“1 yi1[f(xi)“p]
∑n

i“1 1[f(xi)“p] . This latter empirical expec-
tation counts the number of samples with the same score. But on a finite dataset
no two (or very few) points may have the same score. The measure thus requires
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an appropriate binning method. Prior work [11] involved averaging scores over
the uniform mass bins as in ECE, effectively evaluating a different predictor.

We used a different method to estimate the validity function with finite num-
ber of samples, based on the K-nearest neighbors (KNN). K-nearest neighbor
based AUCV estimation is the area under the following estimated validity curve:

V̂KNN(f, ε) “ 1
n

n∑

i“1

1
[
|f(xi) ´ ÊKNN(x,y)„D(n) [y|f(x) “ f(xi)]| ď ε

]
,

where the empirical expectation estimation is

ÊKNN(x,y)„D(n) [y | f(x) “ p]| :“
∑n

i“1 yi1 [f(xi) P k-nn(p)]
k

with k-nn(p) being the set of k samples with the closest f -scores to p.
Our method takes into account the scores that predictor f assigns to each

datapoint, instead of relying on the average scores over different bins. We thus
avoid evaluating a modified version of the model. We denote the KNN based
AUCV estimation by AUCV,KNN and employed this in our experiments.

Datasets. We used 36 datasets for binary and multi-class classification tasks.
All 36 datasets are from UCI [7] and their properties are summarized in Table 2.

Table 2. Real world datasets used in our experiments.

Dataset Instances Attributes Classes
audiology 226 69 24
bank-marketing 41188 19 2
bankruptcy 10503 64 2
car-evaluation 1728 6 4
cervical-cancer 858 32 2
colposcopy 287 62 2
credit-rating 690 15 2
cylinder-bands 512 39 2
german-credit 1000 20 2
hand-postures 78095 39 2
htru2 17898 8 2
iris 150 4 3
kr-vs-kp 3196 36 2
mfeat-factors 2000 216 10
mfeat-fourier 2000 76 10
mfeat-karhunen 2000 64 10
mfeat-morph 2000 6 10
mfeat-pixel 2000 240 10

Dataset Instances Attributes Classes
mice-protein 1080 80 8
new-thyroid 215 5 3
news-popularity 39644 59 2
nursery 12960 8 5
optdigits 5620 64 10
page-blocks 5473 10 5
pendigits 10992 16 10
phishing 1353 10 3
pima-diabetes 768 8 2
segment 2310 20 7
shuttle 58000 9 7
sick 3772 29 2
spambase 4601 57 2
taiwan-credit 30000 23 2
tic-tac-toe 958 9 2
vote 435 16 2
vowel 990 14 10
yeast 1484 8 10
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Results. We evaluate the listed metrics of the four calibration methods on all
real 36 world datasets. For each dataset and method, we average over 10 repeti-
tions, and each time randomly partitioning the samples into training, calibration,
and test sets (40.5%, 49.5% and 10% respectively). An SVM with Gaussian kernel
is the base model for PS and IR post-processing calibration methods. Training
of the tree-based calibration models (PCT and DT) involved a cost-complexity
post-pruning step. The optimal cost-complexity parameter is found via 5-fold
cross-validation on the calibration set. Afterwards, the whole calibration set is
used to train the calibration model and the model is pruned using the found
optimal factor. To evaluate the models with L1-norm-ECE, we use uniform-
mass binning with 32 bins. For L1-norm-PDE, we used the leaves of the tree
for models PCT and DT. For DT this corresponds to the cells generated by the
predictor. There are no meaningful cells for PS and IR, thus no PDE is reported.

Table 3. The calibration methods are compared using the above metrics. We report
the number of times each method is the top performer. The numbers in each column do
not add up to the number of datasets as multiple models may have won simultaneously.
The pre-fixed bins for metric PDE are the leaves generated by PCT and DT. We use
k “ 10 for AUCV,KNN.

Method RMSE 0/1-loss AUC ECEB“32,p“1 PDEp“1 AUCV,KNN

PS 21 22 27 7 – 5
IR 25 24 28 14 – 9
PCT 31 31 32 26 19 15
DT 24 24 19 21 36 7

Table 3 summarizes the results over the 36 datasets. For each of the four meth-
ods and six metrics, we report how often the method obtained the best score.
We count cases of ties towards all winning methods (which is why the columns
in that table don’t always sum up to 36). Note that the simple decision tree
(DT) is the only predictor evaluated here that can be considered interpretable.
The other three methods produce infinitely many different scores (their effective
range is infinite), and a user can not reasonably be expected to have a notion of
the shapes of the resulting cells. The summary shows that in our experiments
the simple decision tree is a predictor that performs similarly well as PS and IR
on all metrics and performs best among all four methods in terms of PDE. The
PCT method outperforms DT on most metrics. However we would argue that
the overall performance of DT is a worth-while trade-off for interpretability.

6 Concluding Discussion

The goal of this work is to provide a systematic framework for understand-
ing different aspects of calibration and to highlight the importance of tak-
ing interpretability into account when promoting calibration. Calibration is a
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notion that is inherently aimed at providing users with better understanding
of label certainty. Our axiomatic framing and analysis highlight which aspects
of a calibrated predictor can improve human comprehension of the provided
scores (namely interpretable cells, not too large number of cells and monotonic-
ity with respect to the regression function of the data-generating process), and
show how some aspects fulfill other important purposes (accuracy, and point-
wise approximation of the regression function). The three levels of analysis
(axioms/properties, distributional measures of distance from these and empirical
measures) further clarify the higher level concepts that frequently cited empirical
measures are aimed at.

Providing confidence scores to end users without a way of clearly communi-
cating the meaning and range of validity of these scores might pose more risks
in terms of effects of downstream decisions than not providing any confidence
scores at all (for example when a high confidence score instills a false sense of
certainty). We hope that our work contributes to and will inspire more investi-
gations into interpretability for calibrated scores.
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A Exploring the Probabilistic Count (PC)

In this section, we exhibit characteristics of our newly introduced measure, the
probabilistic count (PC). We first establish a connection between PC and the
true size of the effective range. Subsequently, we provide some illustrative exam-
ples.

Theorem 10. For distribution D over X ˆ Y and predictor f : X Ñ R, we
have PCD(f) ď |rangeD(f)|. Equality PCD(f) “ |rangeD(f)| holds if and only
if all cells of f have the same probability.

Proof. Assume rangeD(f) “ n “ {r1, r2, . . . , rn}, and pi :“ Px„DX
[f(x) “ ri].

1
PCD(f)

“ Px,x′„DX
[f(x) “ f(x′)]

“
n∑

i“1

[
Px,x′„DX

[f(x) “ f(x′)|f(x) “ ri] · Px,x′„DX
[f(x) “ ri]

]

“
n∑

i“1

[
Px′„DX

[f(x′) “ ri] · Px„DX
[f(x) “ ri]

] “
n∑

i“1

p2i .

We define two vectors with size n as u “ (p1, ..., pn) and v “ (1, ..., 1). Using
Cauchy-Schwarz inequality |〈u, v〉|2 ď |〈u, u〉| · |〈v, v〉| and the equality holds
if and only if u and v are parallel. With this we get |〈u, v〉|2 “ (

∑n
i“1 pi)2 ď
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(
∑n

i“1 p2i ) · n which implies
∑n

i“1 p2i ě 1
n . So, PCD(f) ď n. The equality holds

if and only if (p1, ..., pn) and (1, ..., 1) are parallel which means that all pis are
equal. ��
The probabilistic count depends on the number of cells and their probability
weights. We here present a series of examples of this metric. In each example,
the cells created in the range of f from supp(D) are visualized in a bar. The
length of each partition represents its probability in the distribution D.

PC is not monotonic with the actual number of cells. The function in Fig. 3
generates 9 cells while its PC is 4.28. If we compare this predictor with a function
that generates 5 balanced cells, which leads to PC equals to 5, we can show that
the predictor in Fig. 3 has less PC while it has more cells (Figs. 2, 4, 5 and 6).

B Critiquing the Expected Calibration Error

The empirical expected calibration error (ECE) is a metric that is frequently
employed to measure calibration [1,10,19]. It averages scores within each bin,
rather than evaluating the individual scores, which we show makes it less accu-
rate. When a bin contains both overconfident and underconfident scores, they
average out, making the performance seem better than it is, as illustrated in
Example 1.

Fig. 2. Probabilistic count example on n cells with the same weight; in this case
PCD(f) “ n is the number of cells.

Fig. 3. Probabilistic count example on 9 cells including 5 small cells; the cells with
small weights do not have much effect on the probabilistic count; while we have 9 cells,
PCD(f) is close to 4; this shows that PC emphasizes the number of significant cells.
PCD(f) “ 1

1
4
2·3` 19

80
2` 1

80
2·5 ≈ 4.08.

Fig. 4. Probabilistic count example on three cells with different weights; PCD(f) “
1

1
4
2·2` 1

2
2 ≈ 2.66.
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Fig. 5. Probabilistic count example on 12 cells including 10 cells distributed on a third;
for three equally weighted cells, the probabilistic count is 3; we have split the third
partition into ten small cells with the same weights. PCD(f) “ 1

1
3
2·2` 1

30
2·10 ≈ 4.28.

Example 1. Consider a predictor f evaluated with a partition that contains a
bin b with f(xi) “ 0.35 for half the samples, and f(xi) “ 0.65 for the other
half. Assume that on this bin the regression function satisfies ηD(x) “ 0.5 for
all x, and that there re sufficiently many sample from the bin that the empirical
average is close to 0.5. Now when evaluating the ECE on this bin, the result
would be |0.35`0.65

2 ´ 0.5| “ 0, indicating flawless performance of f in terms
of calibration, which is not correct. In contrast, the probability deviation error
(PDE) takes individual scores into account. For the same bin, the PDE evaluates
to |0.35´0.5|`|0.65´0.5|

2 “ 0.15, which corresponds to the correct calibration error.

Fig. 6. Probabilistic count example on 21 cells including 20 cells distributed on two
thirds; we have split each of the second and the third cells into ten small cells with the
same weights; PCD(f) “ 1

1
3
2` 1

30
2·20 “ 7.5.

C Empirically Motivating the Probability Deviation
Error

To motivate our proposed measure PDE beyond the Example 1 above, we empir-
ically compare PDE with ECE on a large synthetic dataset. We compare their
bias, where the bias of a calibration metric μ for predictor f : X → [0, 1] over n
samples D(n) with respect to the distribution D is defined as ([12]):

Bias(D,D(n), μ) :“ 1
m

m∑

i“1

μ(D(n)(f) ´ 1
n

n∑

i“1

(|f(xi) ´ ηD(xi)|),

where m is the number of experiments, each over datasets of size n. We used
m “ 10. Since the regression function is essential to assess bias, we synthetically
generated 27, 500 samples, generating labels according to a predefined regression
function. Thus, we have access to ηD(xi) for our generated points. We used
different sizes of test sets (generated with the same procedure), and Uniform-
mass binning for ECE and PDE with a different number of bins ranging from 2
to 64. Our analysis indicate that PDE has mostly lower bias than ECE, provided
there are enough samples per bin, see Fig. 7 below.
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Fig. 7. Evaluating the bias of ECE and PDE, with the latter exhibiting larger bias in
most cases, especially with larger numbers of test samples.
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Abstract. Gesture recognition systems offering contactless human-machine
interaction have diverse applications, from smart homes to healthcare. However,
they often face challenges from unexpected changes in user behavior and a lack
of explainability, especially concerning fields like medical diagnosis or security
systems. To address these issues, we introduce a novel approach that exploits
advances in Explainable Artificial Intelligence (AI) and Experience Replay tech-
niques for human-centric AI in radar-based gesture sensing. Our contributions
include model calibration via Transfer Learning using Experience Replay and
feedback on anomalous gestures through feature analysis with Explainable AI.
Experimental results show improved accuracy, low forgetting rate, and enhanced
user engagement, suggesting the potential for fostering trust in AI technology. The
model calibration leads to an average accuracy improvement of 5.4% with respect
to the uncalibrated model. Furthermore, leveraging the Explainable AI feed-
back to enhance gesture execution yields a 38.1% average accuracy improvement
compared to unguided user behavior.

Keywords: Explainable AI · User-Centric AI · Gesture Recognition

1 Introduction

In today’s fast-paced technological landscape, gesture recognition systems have become
a hygienic, contactless solution for enabling human-machine interaction. By offering
a seamless interface between individuals and technology, these systems find valuable
utilization in diverse domains, such as smart homes, medical applications, and secu-
rity systems [1–3]. However, the performance of such systems often faces a significant
challenge – the noticeable disparity between the data used to train the models and the
real-world scenarios in which they are deployed [4]. This discrepancy results in a dis-
tributional shift that can lead to reduced accuracy and unexpected misclassifications in
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the field, consequently undermining the usability and reliability of these gesture recog-
nition systems. To address these limitations, this paper presents an innovative approach
combining Explainable Artificial Intelligence (XAI) with Experience Replay (ER) for a
user-centric AI approach, which we call XentricAI.

This synergetic approach aims to overcome the current limitations of gesture recog-
nition systems by creating a more user-centric framework robust towards distributional
shifts.

Within the framework of this study, we introduce several contributions to the field of
gesture recognition andAI-driven user interaction,which together constitute the building
blocks of XentricAI:

• User-Centric Model Recalibration - An approach involving end-users adapting AI
models to their unique gesture execution patterns. This improves real-world accuracy
and enhances user engagement.

• Anomalous Gesture Feedback through Feature Analysis - Integration of the XAI
method SHAP [5] gives users insights into the factors influencingAImodel decisions.
This allows users to adapt their gestures for improved recognition, enhancing the
transparency and effectiveness of user-AI interaction.

The proposed XentricAI algorithm represents a user-centered solution to the chal-
lenges of gesture recognition systems, ultimately paving the way for more robust and
user-friendly AI-driven interactions.

2 Background and Related Work

This section sets the context by addressing AI model explainability challenges and
the significance of transparency in user interactions. It also analyzes existing model
calibration methods, forming the basis for the approaches presented in the following
sections.

2.1 User-Centric XAI Techniques

Current neural network architectures often lack explainability and operate as complex
“black boxes”, complicating understanding for both experts and users [6, 7].

Understanding and transparency are crucial because they foster trust in users and, as a
result, make them useMachine Learning (ML) models. For ML experts, comprehending
the model’s decision-making process aids in diagnosing and rectifying issues. However,
for domain experts and regular users, it is even more vital when, e.g., relying on a
recommendation from a model for a critical decision, such as medical diagnosis or
financial planning [8, 9]. Users impacted by AI model predictions need transparent
reasoning about the models’ decision-making to ensure fair decisions [10].

However, achieving this transparency is a challenge, especially in gesture-sensing,
where providing feedback to the user still needs to be explored. Existing XAI methods
often need more empirical validation through user studies [7, 11].

Nevertheless, some user-centeredXAI approaches have been proposed in other fields
by providing algorithm visualizations, user interfaces, and toolkits. For instance, an
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interactive visual analytics system, enabling data scientists to understand feature impacts
on predictions and investigate individual data points’ reasons for prediction outcomes,
was proposed in [12]. In another work, graph neural network predictions were explained
to domain experts in drug repurposing using visual explanations at each design layer
[13]. By designing an explainable diagnostic tool for intensive care, a research group
evaluated their theory-driven conceptual framework linking different XAI explanation
facilities to user reasoning goals [14].

While promising for enhancing explainablity, it is important to recognize the sus-
ceptibility of XAI, particularly in the context of vision and vision-language tasks, to
potential adversarial attacks and vulnerabilities that may undermine their reliability and
robustness [15, 16].

A key difference to [12–14], where they concentrate on providing black-box explana-
tions to domain orML experts, is that our work proposes a user-centric-basedAI solution
in which the regular user is actively involved. Additionally, XentricAI can explain model
misclassifications to users via XAI techniques, encouraging more effective inputs and
sensible interaction. Physical features enhance decision transparency, empowering users
to adapt gestures for improved model detection accuracy.

2.2 Gesture Sensing Model Calibration Using Experience Replay

Calibrating a ML model to a user is essential in user-centric AI, aligning technical
capabilities with practical usability, enhancing user experience, and addressing the per-
formance gap between training and real-world scenarios. This process tailors the model
to the user while preserving their privacy. Transfer Learning (TL) addresses this by
repurposing pre-trained models for new tasks [17].

One research group presents a gesture recognition algorithm of electromyographic
data betweenfivegestures using an ensemble of classicalMLmodels [18].Model calibra-
tion is executed by retraining the model with user data. However, the model performance
on the initial train dataset is overlooked. A ML model might suffer from catastrophic
forgetting, which refers to the performance drop or forgetting rate in previously learned
knowledge when applying it to new unseen data [19] or, in the case of this study, a new
user.

Our approach combines user retraining with ER, where a small subset of data
instances from the initial train dataset is sampled and added to the new, unseen training
data for optimal adaptation while minimizing the forgetting rate [20]. The forgetting
rate refers to the rate at which the model forgets or replaces old experiences (meaning
the performance on the data it initially was trained on) with new ones as it learns from
different tasks or domains after retraining. Unlike prior work assuming similar user
gesture execution patterns [21, 22], our method accommodates varied execution styles,
including speed and proximity to the radar. As a result, this broader perspective better
calibrates models under significant distributional changes.

Our paper introduces contributions that merge XAI and TL for a human-centric AI
approach while also pioneering ER for model calibration in radar-based gesture sensing,
accommodating significant distributional shifts.
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3 XAI for User-Centric and Customized Gesture Sensing

This section presents XentricAI, combining XAI techniques with customized gesture
sensing.

To this end, we build upon a previously proposed gesture sensing algorithm and
intuitive radar features [23]. After revisiting these elements, we elaborate on the two
components of XentricAI.We explain the ER-basedmodel calibration and then conclude
by utilizing XAI methods to explain anomalous gestures.

3.1 Gesture Sensing Algorithm and Feature Design

Here, we explain the neural network architecture, the feature design, and the radar
preprocessing. As these ideas mainly stem from previous research, they are not classified
as novel contributions.

Radar Preprocessing and Intuitive Feature Design. Incorporating intuitive physical
meanings into AI systems is a step toward making the decision-making of black-box
models more transparent, relatable, and accessible. Since this work is centered on user-
centric AI, instead of relying on heavy 2D radar processing, we adopt the lightweight
radar processing algorithm introduced in [23]. There, the hand movements are distin-
guishedvia a time series of radio-frequency scattering characteristics, i.e., radial distance
(Range), radial velocity (Doppler), horizontal angle (Azimuth), vertical angle (Eleva-
tion), and signal magnitude (Peak). The radar preprocessing algorithm first identifies the
hand as the closest target to the radar and then extracts the mentioned features. This is
done by transforming the raw radar data via fast-time processing into range profiles and
then applying a peak search on this data. Once the hand’s range bin is identified, slow-
time processing is conducted along the hand’s range bin. The resulting Doppler profile is
then averaged across all antennas, and the highest signal within the respective Doppler
bin is extracted, providing information about the radial velocity. Simultaneously, the
amplitude of the signal is indicative of its magnitude. Finally, the processing includes
the estimation of horizontal and vertical angles related to the detected Doppler bin, thus
providing insight into the hand’s position and movement in both the horizontal and ver-
tical dimensions. These features are used as inputs for the gesture sensing network. For
more details regarding the preprocessing, we refer to [23].

Gesture Sensing Network Architecture. In this study, a tiny Recurrent Neural Net-
work (RNN) architecture detects and classifies gestures. This network consists of aGated
Recurrent Unit (GRU) layer with 16 units to learn from time-series data and a dense
layer with six neurons and Softmax activation to distinguish between five gestures and
the Background class. The five gestures were Swipe Left, Swipe Right, Swipe Up, Swipe
Down, and Push, as can be seen in Fig. 1. The inputs for the network are data sequences
of the five extracted features. One data sequence comprises 22 frames, while the label
of the last frame is used as the label of the entire sequence. Two consecutive sequences
are shifted by one frame. TL is applied to the model without freezing any layers.
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SwipeRight SwipeUp SwipeDownPush SwipeLeft

Fig. 1. Schematic illustration of the recorded gesture executions.

3.2 Model Calibration Using Experience Replay

For model calibration, we engage the user in recording a set of gestures, capturing their
gesture execution patterns (highlighted as User3 to User7 in Fig. 2). The user dataset is
divided into two independent, temporally non-overlapping parts. As illustrated in Fig. 2
B), one part of the user dataset is used for model calibration without ER and is named
retraining data without ER. To perform model calibration with ER, 20% randomly
selected recordings from the initial training dataset (based on the data from User1 and
User2 as shown in panel A)) are added to the retraining data without ER. This novel
dataset is named retraining data with ER (s. panel C)). The model is then retrained with
this combined dataset, enabling adaptation to the user’s unique gesture patterns while
eliminating the risk of catastrophic forgetting.

Two assessment datasets are created to assess the calibrated model and determine
the forgetting rate of the calibrated model with and without ER. For the first assessment
dataset, a segment of the dataset from User1 and User2 is deliberately withheld from
the training process. This segment is preserved exclusively for evaluating the extent of
forgetting and is named calibration assessment data (s. panelA)). The second assessment
dataset is called calibration assessment user data (s. panel C)). It is based on the second
part of the user dataset, consisting of recordings independent from the model retraining
dataset.

3.3 Anomalous Gesture Detection and Characterization

To further enhance the user-centric design of AI systems, we also want to make the
model’s decision-making process more transparent after adapting the model to the user
behavior. We want to achieve this by providing the user with an explanation of what
caused deviations in the event of anomalous gestures while keeping the user in the
loop. This explanation mechanism leverages the physically interpretable meaning of the
features and an XAI method, namely SHAP.

In the subsequent section, anomalous gestures are defined, followed by a compre-
hensive description of the mechanism employed in XentricAI to explain such anomalies,
which is further illustrated in Algorithm 1 in the appendix.
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Fig. 2. Illustration of the different datasets and their functions. A) Most of the data of two users
is used for model training and is split into training and validation data. A small fraction of User1
and User2 data is used for model calibration evaluation. It is named calibration assessment data.
B) The data of the remaining five users is used to calibrate the model without ER (retraining data
without ER) as well to assess the calibrated model (calibration assessment user data). C) For
model calibration with ER, 20% randomly selected recordings from the training data are added
to the retraining data. The resulting dataset is called retraining data with ER.

Anomalous Gesture Detection. Firstly, there are cases of undetected gestures where
the system fails to generate any prediction for a particular gesture instance. Secondly,
mixed-class predictions are encountered when a single gesture is associated with predic-
tions corresponding to multiple, different gesture classes. Lastly, our analysis includes
instances of sparse predictions in which a gesture classification is marked by intermit-
tently occurring predictions at the level of individual frames. This phenomenon suggests
an unevenness or irregularity in the model’s classification process, with specific frames
being assigned predictions while others still need to be addressed. These anomalous ges-
ture patterns collectively reveal complexities in the model’s performance and provide
valuable insights into areas where refinement is required. By identifying and under-
standing these anomalies, we take significant steps toward enhancing the reliability and
interpretability of the model’s gesture recognition outcomes.

AnomalousGestureCharacterization. By employing theXAImethod SHAP, anoma-
lous gestures are characterized, granting the user insights into the model’s mispredic-
tions. SHAP is a widely utilized model-agnostic method for explaining the output of
ML models [5]. It uses the concept of Shapley values from cooperative game theory
to determine the contribution of each feature to the model prediction [24]. These val-
ues fairly distribute feature contributions by averaging marginal effects in all possible
feature coalitions. The algorithm calculates the average marginal contribution of each
feature value across all possible coalitions, which are combinations of present or absent
features. To do this, it first generates predictions for different coalitions with and without
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the analyzed feature, then takes the difference between those predictions to calculate the
marginal contribution of the feature. This process is repeated for all features, and the
resulting values are the SHAP Values (SVs), which are estimates of the Shapley values,
representing each feature’s importance on the model’s prediction. This is defined as:

g
(
z′

) = φ0 +
∑M

j=1
φjz

′
j (1)

with g being the explanation model, z′ ∈ {0, 1}M is the coalition vector, φj ∈ R is the
SV for a feature j, and M the maximum coalition size.

The SHAP algorithm provides explanations on a local as well as a global level which
is achieved by averaging over all absolute local explanations:

Ij = 1

n

∑n

i=1

∣∣
∣φi

j

∣∣
∣ (2)

with Ij being the global explanation for feature j and n being the number of samples in
the dataset.

Our methodology consists of two principal phases, depicted in a schematic manner
in Fig. 2:

1. Initialization Phase: This phase sets the foundation for gesture characterization.
For each gesture class, the global SVs of n nominal gestures are calculated. Using a
thresholding mechanism, the range of acceptable SVs, referred to as SHAP Refer-
ence Values (SRVs), for each feature is deduced. Specifically, the upper and lower
thresholds are determined by considering the minimum and maximum SVs across
the nominal gestures. To capture the relationships between feature importances, we
gauge whether the ordering of feature importance changes between nominal and
anomalous gestures. This involves calculating a median threshold using the median
of the upper and lower thresholds. The slope between consecutive features of this
median threshold aids in analyzing the alteration in feature importance ordering.
This initialization phase is performed once and prepares the model for subsequent
utilization in characterizing future anomalous gestures.

2. Explanation Phase: In this phase, each anomalous gesture is characterized. Local
and global SVs are computed for the anomalous gesture. The system asks for user
input regarding the intended gesture class. Using the user input, the anomalous SVs
and the SRVs are leveraged to provide feedback to the user, aiding in understanding
and refining the execution of the gesture.

SVs at each time stepwere calculated by training theGradientExplainer fromSHAP,
which extends the IntegratedGradients method [25].
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Fig. 3. Flowchart for gesture characterization and feedback generation based on user input.

4 Experiments

In this section, we first review the implementation settings. Afterward, we show the
model calibration results. Then, we evaluate to what extent the feedback to the user
improved their gesture execution and, combined with the model calibration, led to
improved accuracy.

4.1 Implementation Settings

In the implementation, we used TensorFlow v2.9.1™. We used the 6 Core Intel® Core
i7-9850H CPU as a processing unit. The experiments were conducted over five users
and averaged over three experiments per user.
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Measurement Setup and Dataset Collection. For this work, Infineon Technologies’
XENSIV™BGT60LTR13C 60 GHz FMCW radar has been used. The radar system was
configured with an operational frequency range spanning from 58.5GHz to 62.5GHz,
resulting in a range resolution of 37.5mm. The radar system’s capabilities extended to
a maximum resolvable range of 1.2m. For signal transmission, the radar employed a
burst configuration comprising 32 chirps per burst with a frame rate of 33Hz.

For the data set collection, seven persons performed five different gestures in five
locations in a field view of ±45◦ with a distance to the radar of ≤1m.

Within one gesture recording with a length of approximately 3 s or 100 frames, one
gesture was performed with an average duration of 0.3 s or ten frames. All non-gesture
frames within one recording were labeled as Background. A more detailed description
of the label refinement algorithm can be found in [23]. The users were asked to fully
extend their arms for a nominal gesture execution.

The dataset of thefive individual users includedgestureswith fast and slowexecution,
i.e., approximately 0.1 s and 3 s, and a partially extended arm leading to amore significant
distance towards the radar.

Model Architecture, Training and Evaluation. As previously mentioned, the gesture
sensing model consists of two layers. The first layer has 16 nodes and a ReLU activation
function, while the output layer has five nodes (corresponding to the number of classes)
and a softmax activation function.

During training, the model uses the Adam optimizer, a learning rate of 0.001, the
sparse categorical cross-entropy loss function, and a batch size of 32 for 100 epochs.
The data of two individuals were used for model training and validation (s. Fig. 2 A)).
This model is referred to as default model. The remaining five persons were seen as
individual users on whose data the model needs to be recalibrated. The user dataset was
split into two individual, temporally non-overlapping and independent parts: One part
was used for model calibration whereas the second part was used for model calibration
assessment, as previously highlighted in Sect. 3.2 and Fig. 2 B)-C).

For model performancemeasures we utilized the accuracymetric, particularly suited
for datasets with balanced classes.

XAI Training. As a first step, we train the explanation model using SHAP’s Gradient-
Explainer. For this, the previously trained gesture sensing model as well as the training
data are utilized. The trained explanation model is then used to estimate the SVs of each
feature at each time step. Using n nominal gestures, the SRVs are determined to enable
the anomalous gesture characterization.
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4.2 Experimental Results

Model Calibration Using ER. Table 1 shows the model calibration results with and
without ER compared to the uncalibrated default model and the forgetting rate.

Calibrating the model with user data resulted in performance improvement of 1.2%
without ER and 5.4% in case of ER, signifying the model’s successful adaptation to
user-specific gesture behavior and posture. Furthermore, incorporating retraining with
ER effectively maintains a low forgetting rate of 0.7% on previous tasks, compared to
a higher forgetting rate of 10.1% without ER, thus preserving the model’s capacity for
generalization.

Table 1. Model calibration results.

Default Model Model w/o ER Model with ER

User Data Accuracy [%] 83.5 84.7 88.9

� Accuracy [%] – +1.2 +5.4

Unseen Train Data Accuracy 92.9 82.8 92.2

Forgetting Rate [%] – 10.1 0.7

Anomalous Gesture Characterization. This part provides exemplary results of an
anomalous gesture characterization using the proposed explainablemechanism. In Fig. 4
the results of the SHAP feedback algorithm are shownwhile executing the gesture Swipe
Left at a normal pace, panels A) and B), vs. at a fast pace, panels C) and D).

It should be noted that while model calibration aims to robustify the model towards
speed and range variations of the user, some gestures still exhibit anomalies. As shown
in Fig. 4, the fast Swipe Left gesture goes undetected, and we intend to address this issue
by offering feedback and, hence, providing transparency.

Panels A) and C) show an exemplary stacked plot of each feature’s absolute local
SVs at every timestep. The period during which the gesture was performed is visu-
ally represented as a black box named “Ground Truth”. The model prediction is then
highlighted in a color corresponding to the gesture class. Panel A) displays an accurate
gesture detection, while in contrast, panel C) shows that the gesture remained undetected.
Panels B) and D) show the retrieved minimum, maximum, and median thresholds using
the proposed thresholding mechanism and the user input about the actual gesture class.

In nominal gestures, the feature Range has the highest influence, followed by
Doppler, as seen in panel B). Whether Swipe Left/Right or Swipe Up/Down was exe-
cuted, either Azimuth follows in the ranking or Elevation. It should be noted that Peak
had little to no influence, which indicates that it does not contribute towards the model
output.
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Using the median threshold, it becomes clear that an important rule needs to be
followed: The relationship between Range and Doppler should have a downward slope.
We can observe that this is not the case for the anomalous gesture.Additionally, the global
SVs for both the Range and Doppler features significantly deviate from the acceptable
range, indicating the possible cause of the misprediction. Consequently, feedback can
now be provided to the user: The speed of the hand movement affected how well the
gesture was recognized, causing an unusual and substantial impact on themodel’s results
and, hence, requiring corrective adjustment.

It should be noted that deviations of the global SVs from the nominal thresholds
were observed for all gesture classes and users in the case of an anomaly. No significant
difference in the results between the different gesture types was observed. The gesture
execution location also did not affect the outcome of XentricAI. Feedback was provided
based on the type of deviation.

C) D)

A) B)
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Global SHAP Values of
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Fig. 4. Characterization of a normal vs. an anomalous gesture (normal vs. fast-paced SwipeLeft
gesture execution) using the SHAP feedback algorithm.
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Table 2 shows the model performance improvement after the users received gesture
adjustment suggestions. Our results indicate the efficacy of our innovative user-centric
AI techniques, which not only increase model performance through calibration but also
maintain a negligible forgetting rate. Additionally, the SHAP engine’s feedback helps
the user understand the underlying reasons for model misbehavior and improves ges-
ture execution. This approach brings many advantages, encompassing improved model
accuracy, heightened user engagement, and a more intuitive user-AI interaction.

Importantly, our methodology exhibits flexibility and can be readily extended
to encompass different features, neural network architectures, and sensing modali-
ties, offering an adaptable framework for enhancing user-centric AI across various
applications.

Table 2. Enhanced Model Performance with SHAP feedback.

Before Feedback After Feedback Improvement

Accuracy [%] 48.9 87.0 38.1

5 Conclusion

This work introduced XentricAI, a novel approach that merges XAI and TL using ER
for a more human-centric AI paradigm in radar-based gesture sensing. By combining
user-specific calibration and XAI, we enhance model accuracy and provide users with
insights into model decisions, improving their gesture execution. Our model calibra-
tion approach leads to an average accuracy increase of 5.4% with a low forgetting rate
of 0.7%. Providing gesture adjustment suggestions based on XAI, an average enhanced
model accuracy performance of 38.1%was achieved. Our contributions address the chal-
lenges of model adaptation to user behavior and provide intuitive explanations for model
behavior deviations. This approach has the potential to bridge the gap between model
performance and user satisfaction in real-world applications of gesture recognition.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.

Appendix



244 S. Seifi et al.

Algorithm 1. SHAP Gesture Characterization.

Input: Dataset with C gesture classes D = {D1,...,DC} where Di = {X1,...,XM} with
M data samples Xi

1: Initialization Phase {
2: Initialize empty dictionaries: shap reference values
3: for each gesture in Di do
4: for each Xi in Di do
5: Initialize empty lists: nominal_feature_shap
6: for each nominal_gesture in Xi do
7: Calculate global_shap_value for each feature
8: Append to nominal_feature_shap
9: end for
10: end for
11: Compute lower_threshold = min(nominal_feature_shap)         
12: Compute upper_threshold = max(nominal_feature_shap)
13: Store thresholds shap_reference_values[feature] = {lower_threshold,                          

upper_threshold}
14: end for 
15: }
16:

17: Explanation Phase {
18: for each anomalous_gesture do
19: Calculate global_shap_value for each feature
20: Ask user for input about real gesture class
21: if any(global_shap_value ≥ lower_threshold or ≤ upper_threshold ) for each 

feature then
22: global_shap_value is Nominal
23: else
24: global_shap_value is Anominal
25: end if
26: anomalous_slopes = [diff(anomalous_shap_value)]
27: if any(anomalous_slopes > slopes) for each feature then
28: Feature importance increased from nominal to anomalous gestures 
29: else if any(anomalous_slopes < slopes)for each feature then
30: Feature importance decreased from nominal to anomalous gestures
31: end if
32: end for

}
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Abstract. In recent years, neural networks have demonstrated their
remarkable ability to discern intricate patterns and relationships from
raw data. However, understanding the inner workings of these black box
models remains challenging, yet crucial for high-stake decisions. Among
the prominent approaches for explaining these black boxes are feature
attribution methods, which assign relevance or contribution scores to
each input variable for a model prediction. Despite the plethora of pro-
posed techniques, ranging from gradient-based to backpropagation-based
methods, a significant debate persists about which method to use. Vari-
ous evaluation metrics have been proposed to assess the trustworthiness
or robustness of their results. However, current research highlights dis-
agreement among state-of-the-art methods in their explanations. Our
work addresses this confusion by investigating the explanations’ fun-
damental and distributional behavior. Additionally, through a compre-
hensive simulation study, we illustrate the impact of common scaling
and encoding techniques on the explanation quality, assess their efficacy
across different effect sizes, and demonstrate the origin of inconsistency
in rank-based evaluation metrics.

Keywords: XAI · Feature Attribution · Neural Networks ·
Disagreement Problem · Tabular Data · Simulation Study

1 Introduction

Over the past decade, one specific class of machine learning models has been
rapidly integrated into our daily lives: neural networks. Thanks to increasing
computational power and resources, it has become possible to control these
exceptionally flexible and highly parameter-rich models. Their remarkable suc-
cess spans from image recognition to financial forecasts and disease detection
[12,35]. Nevertheless, this black box and its prediction-making process are chal-
lenging or even impossible for humans to fully understand.
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Building upon this question of explaining a model’s prediction, the term
explainable artificial intelligence (XAI) has emerged, and a fast-growing research
area has been established. Many methods have been proposed to explain black
box models, ranging from intrinsic and self-explaining neural networks [4,6] to
concept-recognizing [11,29] and perturbation-based approaches [27,43]. How-
ever, the most well-known and commonly used group for post-hoc explanations
consists of feature attribution methods. For a trained model, they assign rele-
vance or contribution scores to the input variables, thus indicating the features
or components on which the model bases its prediction. They have become known
primarily for their type of visualization as heatmaps or saliency maps for image
data. Nevertheless, most methods can also be applied to other data types, such
as tabular data, due to the feature-individual attributions.

Driven by an increasingly diverse collection of methods [9,47–50,52,54], fea-
ture attribution research has recently shifted away from method development
and toward the question of which method is the ‘best’. However, this question
can be answered differently depending on which aspect is being asked. In this
sense, numerous partly heuristic evaluation metrics have been proposed mea-
suring, e.g., an explanation’s trustworthiness/fidelity [4,5,17,44,58], robustness
[34,58], complexity [13,42], or monotonicity [8]. Additionally, feature attribution
methods have been compared in benchmarks using these metrics, mostly con-
cluding that the choice is either model or dataset-dependent [2,3,36,57]. Bhatt
et al. [13] even propose a meta-metric based on aggregating various metrics.

Most of these evaluation metrics are based on a (simulated) information elim-
ination of highly attributed features and the resulting observable change in the
model’s prediction [5,44], and do not consider the explanation’s distributional
behavior. Apart from prediction-grounded evaluations, the magnitude of rele-
vances is also used for pairwise comparisons of the method’s local explanations.
In this context, Krishna et al. [34] postulated the so-called disagreement prob-
lem, as many state-of-the-art methods differ significantly in their assignment
of important features. The authors defined rank-based metrics on the basis of
Neely et al. [41], e.g., the rank agreement or rank correlation, and showed the
disagreement using real-world datasets. We reproduce their comparison on the
COMPAS dataset [10] and also observe this disagreement (see Fig. 1 middle
and right). However, we claim this disagreement is not mainly caused by differ-
ent explanation qualities but rather by how the effects are measured for many
state-of-the-art methods. Moreover, we demonstrate that the magnitude of the
relevance is strongly affected by an implicitly or explicitly chosen baseline value
causing the method to answer different questions. For example, we can see the
high correlation of the feature-wise distributions for non-plain gradient-based
methods in the left heatmap in Fig. 1.

Our work aims to fundamentally understand the most prominent methods
for feature attribution in neural networks while uncovering their limitations and
resulting misinterpretations caused by visualizations and the choice of the base-
line value. For example, a relevant feature can become less or even irrelevant for
another baseline. To achieve this, we categorize these methods into four groups
based on their underlying explanation target and analyze their distributional
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Fig. 1. Pairwise comparison of state-of-the-art feature attribution methods (see Sect. 2
for the method descriptions) on the COMPAS dataset using (left) the mean feature-
correlation, (middle) mean instance-wise Kendall rank correlation, and mean rank
agreement of the two most important features (details can be found in Appendix A.1).

behavior. We demonstrate situations where certain methods fail to deliver ade-
quate attributions through simulation studies employing a known data genera-
tion process for tabular data. Simultaneously, we show that the method’s feature-
wise explanations are often strongly correlated even while failing. Furthermore,
we investigate the impacts of various common data preprocessing techniques for
continuous and categorical features on the explanation methods. Using the sim-
ulations, we clarify whether a feature attribution method can correctly attribute
relevance to the prediction on a local level and whether rank-based aggregated
relevance can be used as a global feature importance measure.

2 Background and Related Work

Preliminaries. To contextualize the topic of our work within the multitude of
interpretation methods for machine learning models, we rely on the taxonomic
classifications proposed by Doshi-Valez and Kim [20] and, specifically for neural
networks, the framework provided by Zhang et al. [61]. Accordingly, feature attri-
bution methods are considered (semi-)local post-hoc techniques, as they require
a trained model (i.e., all parameters and internal structures remain unchanged)
and explain the prediction of a single instance, e.g., an image or a patient. The
term feature attribution originates from the fact that these methods assign rel-
evance or contribution scores on a prediction to each feature. This means that
for a model f and an instance x ∈ R

p, a feature attribution method results in
a vector r = (r1, . . . , rp)T ∈ R

p of feature-wise relevances. Ideally, they should
provide a decomposition of the prediction (or a proportional objective) into indi-
vidual feature-wise effects, also referred to in the literature as local accuracy [37],
completeness [40], or summation-to-delta property [47], i.e., with r0 ∈ R

f(x) = r0 +
p∑

i=1

ri. (1)
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Even if not all methods fulfill this property exactly, a reasonable feature attribu-
tion method should comply with this fundamental principle or strive to approx-
imate it. In the case of a linear model – which, in principle, is a neural net-
work with only one dense layer and linear activation – the relevances for an
ideal method should be proportional to the product of the regression coefficients
and the feature values, i.e., βi xi. In this notation, Shapley values provide pro-
portional explanations, as they estimate the local effect against the constant
marginal effect βi xi − βiE[Xi].

Methods. This paper focuses on feature attribution methods specifically
designed for neural networks, i.e., model-specific methods, which allow an appli-
cation to image and tabular data. The pioneering work in this field is the gra-
dient method (Grad) introduced by Simonyan et al. [49], which computes the
feature-wise partial derivatives from the output to the respective input features.
Originally applied to image data, the sum or maximum of absolute values across
the color channels are calculated and became famous as saliency maps (Saliency).
Subsequently, further methods emerged specifically for convolutional neural net-
works and ReLU networks [45,51,59]. These variations primarily differ in their
computation of gradients within activations or their incorporation of the gradi-
ents to bias terms [52]. However, Smilkov et al. [50] critique the visually noisy
nature of saliency maps, leading to the development of SmoothGrad (SG). This
approach estimates the average gradient of Gaussian-disturbed inputs, result-
ing in a sharper appearance of the saliency map. Alternatively, Adebyo et al. [1]
proposed computing the variance instead of the average. Notably, these methods
predominantly rely on the plain gradients, which, from a mathematical perspec-
tive, do not provide a direct decomposition but rather highlight the features’
output sensitivity.

The first approach toward approximating the decomposition of the predic-
tion f(x) was introduced through the backpropagation-based method layer-wise
relevance propagation (LRP) by Bach et al. [9]. LRP starts its process from the
output prediction, systematically redistributing relevances layer by layer to the
lower layers using predefined rules until reaching the input layer. Shrikumar et
al. [47] further advanced this concept with their deep learning important features
(DeepLIFT) method, incorporating a reference value x̃ (also called the baseline
value) to achieve a decomposition of f(x)− f(x̃). Integrated gradient (IntGrad)
[54], sharing the same objective of decomposition as DeepLIFT, integrates the
gradients along a path from x to the reference value x̃. More recent techniques
such as DeepSHAP and expected gradient (ExpGrad) [15,37] – also known as
GradSHAP – employ multiple reference values for an explanation, bridging to
Shapley values [46] by aiming for the decomposition the prediction regarding the
expected prediction f(x) − E[f(X)].

Evaluation Metrics. Evaluation metrics for feature attribution methods in
current XAI research are subject to a broad debate. Doshi-Velez and Kim
[20] categorize these metrics into human-grounded and function-grounded.
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The former group assesses the explanation quality based on human judgments,
measuring the overall comprehensibility of non-experts. On the other hand,
function-grounded metrics consist of mathematically defined criteria that can
be measured without human interactions. Within this group of evaluation met-
rics, a prominent subgroup focuses on verifying faithfulness [4,58]. These metrics
measure the extent to which highly relevant features based on the explanation
method also crucially influence the model’s predictive power. They usually mea-
sure the loss change [40] or other correlations between the prediction drop and
the explanations [5,58] when the most or least relevant features are removed.
Usually, the most or least relevant features are determined based on the expla-
nations’ magnitude ignoring the sign, which is consistent with the rankings of the
absolute values. In this context, ’removing a feature’ mostly means simulating its
absence, e.g., by setting it to zero or another baseline, conditional sampling [22],
or retraining the entire model without this feature [26]. Although all these eval-
uation metrics justify the explanation method’s ability to detect highly decisive
features, researchers have found that they are inconsistent and seem to measure
different aspects [23,56]. This inconsistency has recently become known as the
disagreement problem [34,41].

In addition to axiomatic approaches, which verify whether methods adhere
to properties [28,54], e.g., local accuracy from Eq. 1, our work deals with ground-
truth evaluations. These evaluation methods assess the explanation’s quality on
synthetic datasets or injected ground-truth elements, i.e., semi-natural datasets.
However, current literature primarily focuses on so-called pointing games in
image data [60], such as synthetic datasets like CLEVER-XAI [7] or overlaid
images of prediction-relevant and irrelevant parts [30,55,57,62].

There are comparatively fewer ground-truth analyses of model-specific fea-
ture attribution methods for tabular data. In Chen et al. [16], four data-gen-
erating processes with continuous Gaussian features are created, where not all
features contribute to the prediction. They then compare the median rank of
informative features regarding different feature attribution methods. Similarly,
in Agarwal et al. [3], known methods are compared on synthetic and real-world
data on a rank level with ground-truth values. However, there are also analy-
ses of model-agnostic feature attribution methods that are more similar to our
approach. For example, Guidotti et al. [24] create random data-generating pro-
cesses (DGP) from simple transformations or feature distributions and assess
the similarity of methods with the analytical gradients. However, we argue that
gradients are not suitable ground-truth values for methods targeting an output
decomposition. Further, Liu et al. [36] use additive models from simple fea-
ture transformations as DGPs but use Shapley values as ground truth instead.
Carmichael et al. [14] propose a framework for comparing the explanations of
model-agnostic feature attribution methods with the actual effects of additive
structured DGPs.



252 N. Koenen and M. N. Wright

3 Understanding the Explanation’s Distribution

To adequately compare feature attribution methods, it is essential to understand
their underlying principles before applying them in experiments or benchmark
studies. A crucial distinction among these methods lies in how they quantify the
effects or influence of features, which can significantly impact visual representa-
tions, such as heatmaps or bar plots, and feature rankings, potentially leading
to misinterpretations. To illustrate the nuances and a statistical perspective of
the state-of-the-art techniques, we consider the following data-generating process
(DGP) describing a regression problem:

Y = X1 + X2 + X2
3 + X4 + ε (2)

where X1 ∼ N (0, 1), X2 ∼ N (2, 1), X3 ∼ U(−1, 2), X4 ∼ Bern(0.4), includ-
ing Gaussian noise ε ∼ N (0, 1). In this setting, we generally expect a feature
attribution method to generate normally distributed relevances for X1 and X2.
Similarly, for X3, we expect mostly low with progressively fewer larger values,
and for X4, a strongly bimodal distribution. In the following, we group the most
well-known feature attribution methods according to their similarities and ana-
lyze their distributional and individual behavior using a neural network with
ReLU activation trained on n = 2, 000 instances.

Prediction-Sensitive Methods (Group 1). The first group consists of meth-
ods relying on plain gradients, such as the gradient (Grad) [49] method and
its variant SmoothGrad (SG) [50]. Due to their mathematical definition, both
methods calculate the output sensitivity of the features, causing them to be
unsuitable as local attribution methods for individual effects. For instance, in
Fig. 2a, it can be seen that both methods in our regression example consistently
assign a relevance of closely one for the linear effects of X1, X2, and X4, and
almost uniformly distributed relevances for the quadratic effect of X3. Although
SmoothGrad visibly reduces the variance of the Grad method, both methods
fail to provide appropriate values for the local effects on the prediction, instead
indicating the model’s sensitivity to changes in the variables. Despite not being
further examined in this paper, other plain gradient-based methods like VarGrad
[1], FullGrad [52], and GuidedBackprop [51] fall in this group.

Fixed-Reference Methods (Group 2). In the second group, we encompass
methods that strive to approximate a decomposition of the prediction f(x) into
feature-wise effects. These techniques mainly rely on a first-order Taylor approx-
imation, where the reference point x̃ is implicitly fixed. Consequently, the qual-
ity of the approximation can significantly depend on the proximity between x
and x̃. The most straightforward variant, Gradient×Input (GxI) [48], directly
extends the Grad method by calculating the Hadamard product of the gradi-
ent and the corresponding input features. In a similar way as SG extends the
Grad method, GxI can also be extended to SmoothGrad×Input (SGxI), which
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(a) Group 1 (b) Group 2

Fig. 2. Resulting attribution values of (a) prediction-sensitive and (b) fixed-reference
methods of 1, 000 test instances based on the DGP in Eq. 2. The distribution is shown
as a violin plot at the top and a bar plot of the same single instance at the bottom.

inherits its smoothing effects. In contrast, the backpropagation-based method
layer-wise relevance propagation (LRP) [9] represents a sequence of first-order
Taylor approximations applied in each individual layer [40]. This involves a layer-
wise redistribution of relevances from the upper to lower layers of the model until
the input features are reached. Various rules have been proposed for this rele-
vance redistribution, which can also be selected based on the layer type [33]. In
addition to the initial LRP-0 rule, there is the LRP-ε rule, which incorporates a
relevance-absorbing stabilizer ε > 0, and the LRP-αβ rule, which assigns differ-
ent weights to positive and negative relevances using α, β ∈ R with 1 = α + β.
Setting the α parameter to one (i.e., retaining only positive relevances) and
considering solely positive input values makes LRP-αβ equivalent to the deep
Taylor decomposition (DTD) method [40]. For a mathematical description and
a more comprehensive overview, we refer to the work by Montavon et al. [39].
Despite their differing calculation approaches, GxI and LRP-0 implicitly use a
reference value of 0 for the Taylor approximations. Moreover, Ancona et al. [5]
demonstrated that LRP-0 and GxI produce identical results for ReLU networks.
Furthermore, the LRP-αβ method and DTD can be interpreted as employing a
root point as the reference value, i.e., f(x̃) = 0 [40]. Returning to our regres-
sion problem, we observe that GxI precisely yields the expected distribution of
effects (see Fig. 2b) regarding a zero baseline. Since we exclusively utilized ReLU
activations for the model, this method is equivalent to LRP-0. Conversely, with
the LRP-αβ method, one can observe varying weights’ influence on positive and
negative relevances. When propagating purely positive relevances, all negative
relevance values represented in the GxI are truncated to zero. On the other hand,
one can see the stretching of positive relevance and compression of negative rele-
vance with a positive-favored propagation in LRP-αβ. At this point, it becomes
apparent how different the whole explanation’s distribution and the visualiza-
tions for individual instances can be, as exemplified by features X1 and X3 in
Fig. 2a compared to Fig. 2b.
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Reference-Based Methods (Group 3). The main distinction between the
previously discussed methods and our third group is how the local effects are
measured. Whereas the former assesses effects with respect to zero or another
implicitly defined baseline, the latter group attributes the relative effect of fea-
tures x in relation to an arbitrarily chosen reference value x̃ acting as a hyperpa-
rameter. For instance, feature X2 theoretically returns an effect of 2 on average in
the GxI method assuming a perfect model fit, which is a valid explanation based
on our data-generating process in Eq. 2. However, the third group attributes
the relative effect of x with respect to the baseline value x̃, e.g., the average
feature value. They aim to decompose the output differences f(x) − f(x̃) and
consequently answer the question of how significant the feature’s contribution is
compared to the contribution of the reference value. The most prominent meth-
ods following this underlying characteristic are integrated gradient (IntGrad)
[54] and deep learning important features (DeepLIFT) [47]. The former inte-
grates the gradients along a path from x to the reference value x̃. While this
integral is discretized and approximated in applications, an exact decomposition
of the difference is asymptotically guaranteed for models that are differentiable
almost everywhere. The DeepLIFT method achieves this decompositional target
by incorporating the respective layer’s intermediate reference value in the layer-
wise backpropagation scheme, akin to LRP-0. Additionally, the authors propose
two rules for propagating through activation functions: the rescale (-RE) and
reveal-cancel (-RC) rules. Ancona et al. [5] also demonstrated that DeepLIFT-RE
using a zero-baseline is equivalent to the computationally efficient GxI method
in neural networks using only ReLU activations and with zero bias vectors. Fur-
thermore, empirical evidence from the authors and other researchers indicates
a remarkably similar behavior of IntGrad and DeepLIFT-RE in practice [5,47].
In our regression example, we similarly observe this phenomenon and, hence,
present only the results of the IntGrad method for the reference value of zeros
(left) and of the feature-wise empirical means (right) in Fig. 3a. With a zero
baseline, the similarity to the GxI method in Fig. 2b is clearly visible. However,
when the reference value is set to the mean feature values, changes in features
X2, X3, and X4 become apparent due to the negative shift. Particularly evident
in the second variable is the influence of the reference value, addressing different
questions in our regression setting. With x̃ = 0, the contribution of the variable
to the prediction is determined, whereas with x̃ set to the average feature value,
the effect is attributed relative to the effect of x̃ (see Fig. 3 bottom variable
X2). This shows, in particular, that features with a high assigned magnitude
can generally be less relevant or even irrelevant for another baseline.

Shapley-based Methods (Group 4). The final group consists of methods
based on the game-theoretic Shapley values [46] adapted for feature attribution
in machine learning. They aim to quantify the contribution of each feature to the
change in the model prediction concerning the average prediction. Shapley values
are computationally expensive to calculate due to the consideration of all pos-
sible feature combinations, particularly with high-dimensional data. Therefore,



Toward Understanding the Disagreement Problem 255

(a) Group 3 (b) Group 4

Fig. 3. Resulting attribution values of (a) reference-based and (b) Shapley-based meth-
ods of 1, 000 test instances based on the DGP in Eq. 2. The distribution is shown as a
violin plot at the top and a bar plot of the same single instance at the bottom.

DeepSHAP and expected gradient (ExpGrad) [15,37], also known as GradSHAP,
have been developed for neural networks to approximate these values efficiently.
These methods build upon previously explained techniques like DeepLIFT and
IntGrad, providing a feature-wise decomposition of predictions compared to the
average model prediction. Thus, they represent the feature effect compared to
the estimated marginal effect of the feature, i.e., they incorporate the whole
feature distribution. These methods are computed by averaging the DeepLIFT
or IntGrad results across various reference values. The reference values should
originate from the same distribution as the training data, thereby addressing
the out-of-distribution problem associated with dataset-independent choices in
the plain methods. For example, the mean feature values don’t necessarily follow
the data distribution. However, this approach entails higher computational costs
due to the evaluation of the representative sample of baseline values. Especially
for ExpGrad, which involves both aggregating over samples and approximating
integrals, Erion et al. [21] proposed a purely sample-based estimation approach.
In Fig. 3b of our running example, only minor differences between the two meth-
ods are apparent. However, compared to all other methods, it is clearly evident
that the explanation distributions are centered around zero, thus consistently
attributing the effect relative to the marginal effect.

4 Do Feature Attribution Methods Attribute?

In the preceding section, we demonstrated the varying behavior of the state-of-
the-art feature attribution methods, particularly in scenarios where quadratic
effects are present in the data-generating process (DGP) or where the feature
distribution is not mean-centered. However, we observed that, at least in sim-
ple cases, the explanations’ distributions are often proportional. This implies
that, while the mean and scale of the distribution may differ due to different
baselines, the relative distances of explanations should remain consistent across
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methods. To assess this fundamental behavior of the methods for different types
and strengths of effects, we employ an additive data-generating process in the
following simulations with only numerical or categorical inputs separately:

Y = β0 + g(X1)β1 + . . . + g(Xp)βp + ε. (3)

In this DGP, the function g : R → R determines the type of effect (e.g., g(x) = x
for linear or g(x) = x2 for quadratic effects), and the coefficients β1, . . . , βp ∈ R

control the feature-individual (global) strength of the effect. Additionally, we
add a standard normal distributed error term ε ∼ N (0, 1). Numerical data is
sampled from a normal distribution with uniformly sampled mean and vari-
ance and then transformed with a linear, piece-wise linear, and non-continuous
function g. We use equidistant effects from −1 to 1 for the levels of categor-
ical variables. After the data generation, neural networks are trained on this
data, and the corresponding feature attribution methods are applied to the test
data. See Appendix A.2 for more simulation details. The efficacy of a method is
evaluated by computing the Pearson correlation between the feature-wise effects
g(x(1)

j )βj , . . . , g(x
(n)
j )βj and the corresponding generated explanations across the

test dataset of 1, 000 samples. Consequently, we measure the explanation’s distri-
butional fidelity to the shape of the ground-truth effects, still allowing potential
linear transformations within the distributions.

4.1 Impact of Data Preprocessing

For image data, it is already known that not all feature attribution methods are
invariant to constant shifts in the input data [31]. In particular, for reference-
based methods, the question of a suitable baseline has arisen in recent years
[25]. However, how the data is preprocessed is closely linked to this question. As
seen in Sect. 3, for mean-centered variables, many methods coincide, or shifted
variables can be transformed back with the appropriate baselines. Furthermore,
to our knowledge, no one has yet analyzed the influence of different encoding
techniques for categorical variables on the quality of explanation.

In our simulation setup for continuous variables, we consider three common
scaling methods: none, z-score, and max-abs scaling. Without scaling, the vari-
ables are passed unprocessed to the neural network. In contrast, with the z-score
method, the empirical mean is subtracted and then divided by the empirical
standard deviation for each variable, resulting in zero-centered and unit-variance
data. The min-max preprocessing is particularly well-known for image data, as
pixel values are naturally bounded. Nevertheless, this scaling technique is also
used for other continuous input data, restricting the data to values between −1
and 1 by scaling with the feature-wise maximum absolute values. In particular,
all these scaling methods are invariant to the correlation metric as they describe
linear transformations. The scaling parameters are calculated based on the train-
ing data and then also used for the test data. For categorical variables, we employ
the following encoding techniques: label, one-hot, dummy, and binary encoding.
With label encoding, the levels are naively mapped to integer numbers, inducing
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a particular non-existent order of values. One-hot encoding creates a zero-or-
one column for each of the C categories, while dummy encoding transforms a
category into C − 1 columns to avoid redundancy. On the other hand, binary
encoding represents each category as a binary number, and then each digit is
transformed into a column. This results in a relatively low number of columns,
especially for a high number of levels, i.e., only � log(C)

log(2) + 1� instead of C. For
our DGP from Eq. 3, we use p = 12 variables with identical effect sizes for the
two cases of all continuous and all categorical variables, allowing correlations to
be unbiasedly aggregated across all variables. For the categorical variables, we
consider both a small number of levels (4) and a high number of levels (12).
Each setting is repeated 200 times, and then the mean correlation across the
repetitions and features is calculated and summarized in Fig. 4. In addition, we
calculate the standard deviation, which is shown next to the aggregated corre-
lation as a size-varying dot.

Fig. 4. Results of the preprocess simulations for state-of-the-art feature attribution
methods (y-axis) showing the averaged correlation with the ground-truth effects across
200 repetitions and p = 12 features with equal effect strengths. The individual columns
represent different types of effects, and the x-axis shows various preprocessing functions.
The size-varying dot describes the standard deviation of the aggregation.

Generally, the results from Fig. 4 need to be interpreted column-wise since
each column describes either a different DGP or a different model perfor-
mance caused by another preprocessing function. However, the models performed
notably similarly for continuous variables in the individual effect groups and
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within a small error range for the categorical variables (see Table 1 and 2 in
the Appendix). As expected, the prediction-sensitive methods (Grad, SG, and
Saliency) are unable to correctly assign proportional local effects for any of the
considered effect types or even result in misinterpretations due to negative corre-
lations for categorical variables (see rows of Group 1 methods in Fig. 4). In addi-
tion, the larger dot describing the standard deviation across the simulation’s
repetitions and features shows an inconsistent attribution and, thus, a strong
model dependency. Similarly, the uneven weighting of positive and negative rel-
evances in LRP-αβ proves to be counterproductive or even resembles guessing for
non-linear effects or dummy-encoded variables. The remaining Group 2 meth-
ods (LRP-0/GxI, LRP-ε, and SGxI) show only slight deviations from Group
3 and 4 methods concerning linear effects and categorical variables. However,
their performance significantly worsens and destabilizes when confronted with
non-linear effects. For the zero-baseline methods, no scaling and max-abs scaling
increasingly degrade the quality and stability with the complexity of the effect
types. This phenomenon is also the case for label-encoded categorical variables.
This could be mainly due to the fact that zero is no longer a distribution-neutral
baseline value for max-abs scaling or label encoding and thus reduces the qual-
ity of the Taylor approximation. However, this can be adjusted by using the
feature-wise mean value as reference (see lower rows for Group 3 methods in
Fig. 4). Otherwise, there is hardly any difference between the methods in Group
3 with empirical means as reference values, and Shapley-based methods (Group
4), which consistently show high correlations with the ground truth. Neverthe-
less, the overall results show that, with the exception of the prediction-sensitive
methods and LRP-αβ, the methods mostly agree using the zero-centered scaling
and common encoding techniques.

4.2 Faithfulness of Effects

Which method to choose is strongly debated in the literature, with disagree-
ment regarding which method provides adequate explanations and which does
not. Commonly, the most influential features are removed, and the impact on
prediction is evaluated. However, as seen in Sect. 3, the strength measured as the
absolute magnitude of a variable varies and is baseline-dependent. Nevertheless,
by adjusting β1, . . . , βp, we want to investigate how the methods behave with
different effect sizes. Since weak effects are also more difficult for the model to
capture due to a small signal-to-noise ratio, we expect that a good method also
detects them less accurately. Similarly to the setting in Sect. 4.1, we simulate
p = 12 normally distributed, binary, and categorical variables to evaluate the
performance of feature attribution methods concerning different effect sizes. In
this scenario of the DGP from Eq. 3, grouped variables are considered, where
β1, . . . , β4 = 0.1 for weak, β5, . . . , β8 = 0.4 for medium, and β9, . . . , β12 = 1 for
strong effects. Furthermore, we employ z-score scaling for continuous variables,
label encoding for binary, and one-hot encoding for categorical variables with
four levels. The results of this simulation, conducted over 200 trained neural
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networks and n = 2, 000, are illustrated in Fig. 5. For a comparison with a state-
of-the-art model-agnostic method, we also execute the well-established SHAP
method [37] on the test data, which approximates Shapley values.

Fig. 5. Results of the faithfulness simulations for state-of-the-art feature attribution
methods (y-axis) showing the correlation with the ground-truth effects across 200 rep-
etitions and p = 12 features with grouped (weak, medium, strong) effect strengths as
box plots. The individual columns represent different types of effects, and the x-axis
shows the correlation.

The results for the prediction-sensitive methods are similar to those for the
preprocessing simulation: the continuous variables tend to have a strongly vary-
ing correlation around zero for all effect strengths and types, which represents
a guessing of the local contributions to the prediction. The strong negative cor-
relation for binary variables is probably due to unusual inter- or extrapolations
of the model around the values 0 and 1. For the Group 2 methods, LRP-αβ
moderately captures the ground-truth attributions for linear data but increas-
ingly fails to provide reliable explanations for more complex relationships. The
method GxI (and thus LRP-0) appears to provide relevances quite similar to
ground truth for (partially) linear effects. However, it only yields moderate cor-
relations for non-linear effects and struggles to recognize the association with
strong effect sizes. This inconsistency likely stems from the method’s reliance on
the first-order Taylor approximation, causing it to falter in non-linear relation-
ships. Interestingly, the GxI and SGxI methods inherit the negative correlation
from the gradients for binary variables with weak effects, but this is corrected
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for one-hot encoded variables. This could presumably be because the Taylor
approximation collapses when zero is used as both the reference and explained
value. As for reference-based and Shapley-based methods, it becomes evident
that these methods accurately identify the actual effects across all considered
settings. However, Shapley-based methods tend to attribute weak or moderate
effects better than all other methods. Furthermore, DeepLIFT-RC and its exten-
sion DeepSHAP-RC demonstrate an outstandingly strong correlation with the
ground-truth effects, especially for binary and categorical variables. The com-
parison with the Shapley values from the model-agnostic method SHAP further
indicates that the Group 3 and 4 methods align with this popular XAI method
and provide a fast and accurate approximation of Shapley values for neural net-
works.

4.3 Beyond Feature Attribution Toward Importance

The previous simulations have shown to what extent feature attribution meth-
ods are able to attribute the exact proportions of a variable’s contribution to
the prediction, i.e., how adequate the explanation’s distribution aligns with the
ground-truth effects. As shown in Sect. 3, it can now occur that a feature reflect-
ing the mean value correctly, receives a relevance score close to zero if the effect
is measured to a zero baseline, even though it is a very important feature from
a global perspective. This is comparable to a Gaussian-distributed variable in a
linear model with a high regression coefficient: although the global importance
of this variable is very high, the attributed relevance for feature values close to
zero can vanish. From a local perspective, this means that instance-wise feature
rankings based on the magnitude of relevance are not suitable for answering
whether one feature is more important than another. Instead, the feature attri-
bution methods do what they are developed for and give the local effect to the
prediction relative to a method-dependent baseline. However, all methods should
follow the property of consistency and assign little to no relevance to unimpor-
tant features, while tending to assign higher relevances to crucial features across
the dataset. Thus, ranked relevances are more appropriate to answer whether or
not a feature is important.

To evaluate the effectiveness of the methods in identifying important and
unimportant features, we simulate p = 20 normally distributed and categorical
variables with 4 levels using the DGP from Eq. 2, where only the even feature
indices affect the regression outcome. For each instance from the test data, the
ranking of absolute explanations is converted into the binary decision of whether
the feature belongs to the top 10 most important ones. Since the ground-truth
importance values are 1 for even and 0 for odd indices, we compute the F1-
score for each instance and then average the scores over the 1, 000 test instances.
Additionally, we vary the sample size n of the training data to assess the question
of detecting important/unimportant features at different model qualities.

Although this group of methods performed poorly in the previous simula-
tions, Fig. 6 demonstrates the strength of prediction-sensitive methods. They



Toward Understanding the Disagreement Problem 261

Fig. 6. The figure shows the F1-score on the y-axis depending on the sample size for
various feature attribution methods (colors) and effect types (columns) averaged over
500 repetitions.

are capable of nearly perfect discrimination between important and unimpor-
tant features across all model qualities for linear effects and categorical variables.
Except for SG for categorical variables, which probably smooths the gradients
too much due to the high variance in perturbations. Even with limited training
data, Grad and especially SG perform exceptionally well for non-linear effects.
Aside from Group 1 methods, it is apparent that Shapley-based methods, par-
ticularly DeepSHAP-RC, are the most reliable in distinguishing important and
unimportant features. They even outperform Grad and SG when dealing with
non-linear effects and large sample sizes. Despite the Group 3 methods with the
feature-mean reference performing nearly identically to the Group 4 methods
in the previous simulations (see Sect. 4.2), the single-reference methods show
significant weaknesses in discriminating important and unimportant features.
This is either due to disrupted rankings resulting from shifted relevances (as
observed in Sect. 3) or because Shapley-based methods attribute low relevances
to unimportant features more accurately due to the incorporation of multiple
baselines. Furthermore, it is again evident that the methods GxI and LRP-0
encounter significant issues with non-linear effects and generally perform worse.
Moreover, the Shapley-based model-specific feature attribution methods are able
to outperform the established model-agnostic method SHAP.

5 Discussion

We have demonstrated through simulations how differently state-of-the-art fea-
ture attribution methods measure local effects on a prediction and how visual-
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izations could be manipulated in favor of chosen features using baseline values
(see Sect. 3), which can distort the quality of rank-based measures for deter-
mining important features. This confirms previous research that has already
demonstrated this influence on heatmaps for reference-based methods in appli-
cations [19,38,53]. Closely connected to the choice of baseline values, we – to
the best of our knowledge – for the first time analyzed the impact of com-
mon data preprocessing steps on the quality of attribution for continuous and
categorical variables. We found that, except for prediction-sensitive methods,
standard normalization techniques such as z-score scaling for continuous and
one-hot encoding for categorical variables provide the most accurate attribu-
tions of local effects. However, fixed-reference methods such as LRP-0, GxI, and
LRP-αβ struggle noticeably with non-linear effects. Nevertheless, our simula-
tions have shown that an appropriate baseline can adjust for non-zero-centered
scaling techniques in reference-based methods.

Furthermore, in Sect. 4.2, we observed that the distributions of explanations
provided by reference-based and Shapley-based methods exhibit remarkable
similarities for standard preprocessing techniques. These explanations correlate
strongly with ground-truth effects as the effect size increases, with Shapley-based
methods generally tending to be more accurate. These simulations demonstrate
that reference-based, Shapley-based, and fixed-reference-based methods (except
for linear transformations) yield proportional explanations’ distributions, con-
tradicting the disagreement problem [34,41]. Hence, the disagreement is mainly
caused by different baselines. However, our findings underscore that feature attri-
bution methods, notably influenced by the choice of baseline, pursue distinct
objectives in attribution, consequently resulting in varying local magnitudes of
relevances. This fact became particularly evident in Sect. 4.3, where the meth-
ods exhibited noticeable differences in discriminating between important and
unimportant features based on ranked magnitudes of the explanations. While
prediction-sensitive methods may falter in correctly attributing relevances, they
performed well in determining whether or not a feature is important. Neverthe-
less, Shapley-based methods, especially DeepLIFT-RC, appear to consistently
excel in addressing this binary classification problem, as also observed by other
researchers [62].

While our simulations are based on simple synthetic data without correlated
features and interaction effects and we only trained dense neural networks, they
represent the first independent comparison of feature attribution methods on
tabular data considering the attributions’ correlation. Additionally, dense layers
serve as a fundamental building block for many modern deep neural networks,
such as convolutional neural networks or attention modules, providing insights
into their behavior. Furthermore, the restriction to regression problems is neg-
ligible, as most feature attribution methods ignore the activation of the final
layer, which computes class probabilities, and instead apply the method to the
preactivation values [9,47,49]. Investigating the methods for interaction effects
remains an attractive direction for future work, building upon the theoretical
groundwork already explored by Deng et al. [18].
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6 Conclusion

Our study provides a fundamental understanding of state-of-the-art feature attri-
bution methods for neural networks through simulation studies. Initially, we
demonstrated the variability in the explanation’s distribution and individual
explanations across different methods. Particularly, we highlighted how crucial
the implicitly or explicitly set reference value can influence the magnitude of a
feature’s relevance and, thus, the ranking regarding the importance of a feature
on a local level. Furthermore, we illustrated how preprocessing techniques of
training data can affect and destabilize the quality of attribution and can only
be corrected in reference-based or Shapley-based methods through appropriate
baseline values.

Nevertheless, we have shown that most state-of-the-art methods, when utiliz-
ing z-score scaling for continuous variables and one-hot encoding for categorical
variables, deliver relevances that closely correlate with the ground-truth values as
the effect strength increases. However, this comparison does not consider linear
transformations of the distributions, leading to the methods’ disagreement when
transitioning to rank-aggregated values. Additionally, we have demonstrated that
plain gradient methods, such as the gradient (Grad) and SmoothGrad (SG), are
not suitable as attribution methods for effect decompositions while being highly
capable of distinguishing important and unimportant features on a global scale.
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A Appendix

All figures and simulation results presented in this work are reproducible using
the code hosted on our GitHub repository, available at https://github.com/bips-
hb/Toward_Understanding_Disagreement_Problem.

A.1 COMPAS Dataset

For this example, we load the COMPAS dataset from the R package
mlr3fairness1 and train it with respect to the variable two_year_recid. We
use a neural network model with four layers: 256, 128, and 64 neurons in the hid-
den layers, along with ReLU activations. Additionally, a dropout layer is added
after each hidden layer for regularization. Continuous variables are preprocessed
using z-scores, and categorical variables are one-hot encoded. Using an 80/20
train-test split, we achieve an F1-score of 74.36%. The training procedure is the
same as in the simulations described below.

1 https://mlr3fairness.mlr-org.com/reference/compas.html.

https://github.com/bips-hb/Toward_Understanding_Disagreement_Problem
https://github.com/bips-hb/Toward_Understanding_Disagreement_Problem
https://mlr3fairness.mlr-org.com/reference/compas.html
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A.2 Simulation Details

Data Generation. An additive model with independent variables is used for
all simulations, following the data-generating process from Eq. 3. The continuous
variable Xi is sampled from a normal distribution N (μi, σi), where μi and σi are
uniformly distributed within the range [−2, 2] for the mean and [0.9, 1.1] for the
variance. This approach allows us to simulate variations in the mean and scale
of the Gaussian distributions. For a categorical variable Xi with c ∈ N levels
A1, . . . , Ac with equal level probabilities, equidistant effects ranging from −1 to
1 are assigned, i.e., g(Xi = Ak) = −1 + 2(k−1)

c−1 . This zero-centered distribution
of effects across categories ensures that only the coefficient βi controls the effect
strength so that the level-specific effects do not disturb it.

Fig. 7. Transformations g used for non-linear
relationships of the variables and the regres-
sion outcome.

In order to simulate different
types of effects for continuous vari-
ables also covering the mean shifts,
we consider the linear function
g(x) = x and the transforma-
tions g : R → R described
in Fig. 7. Unless otherwise stated,
4, 000 training instances are gener-
ated for continuous and 2, 000 for
categorical/binary variables, with
one-third of each generated as eval-
uation data for the neural net-
work training. The smaller num-
ber of samples for the categorical
and binary variables is due to their
simpler and discrete relationships
with the regression outcome. Addi-
tionally, we use 1, 000 instances as
test data for the feature attribution
methods.

Neural Network Training. The neural networks consist of three dense lay-
ers with 256, 128, and 64 neurons for continuous variables and, due to simpler
relationships, 128, 64, and 32 neurons for categorical variables. ReLU is always
used as the activation function, and a dropout layer with a dropout rate of 0.4
is added after the activation in the hidden layers. Each network is trained for
a maximum of 300 epochs using the Adam optimizer, where the initial learning
rate of 0.01 is multiplied by 0.2 every 50 epochs, and the training terminates
after 50 unimproved epochs on the evaluation data.

Hyperparameters of Feature Attribution Methods. We apply the feature
attribution methods using the R package innsight [32] on the generated test
data and the trained model. No hyperparameters are needed for the methods,
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Grad, Saliency, and GxI; only the corresponding rules and baselines are required
for LRP, DeepLIFT, and DeepSHAP. For SmoothGrad, we take 50 samples
with a noise level of 0.2. Similarly, we use 50 samples for IntGrad, ExpGrad,
and SHAP methods. Since methods for encoding categorical variables, except
for label encoding, generate new artificial variables, we subsequently summed
them up, ensuring that each categorical feature is assigned only one relevance.

A.3 Model Performance

Since methods for encoding categorical variables, except for label encoding, gen-
erate new artificial variables, we subsequently summed them up, ensuring that
each categorical feature is assigned only one relevance value (see Table 1 and 2).

Table 1. Results of the neural network performance on test data consisting of con-
tinuous variables measured by the average R2 value (± standard deviation) over 200
repetitions. As a reference, the performance of a linear model is also included to show
that the neural network learned the non-linear relationships.

Scaling Effect type
Linear Piece-wise linear Non-continuous

Section 4.1 No scaling 0.92± 0.01 0.74± 0.02 0.57± 0.03

Z-Score 0.91± 0.01 0.75± 0.02 0.60± 0.03

Max-Abs 0.92± 0.01 0.75± 0.02 0.57± 0.04

(Linear model) 0.92± 0.00 0.47± 0.06 0.23± 0.04

Section 4.2 Z-Score 0.81± 0.01 0.60± 0.03 0.60± 0.03

(Linear model) 0.82± 0.01 0.38± 0.08 0.20± 0.06

Table 2. Results of the neural network performance on test data consisting of cate-
gorical variables measured by the average R2 value (± standard deviation) over 200
repetitions.

# Levels Encoding
Label One-hot Dummy Binary

Section 4.1 4 0.57± 0.02 0.60± 0.02 0.55± 0.02 0.56± 0.02

12 0.37± 0.05 0.48± 0.03 0.37± 0.03 0.42± 0.03

Section 4.2 Binary 0.81± 0.01 − − −
4 − 0.7± 0.02 − −
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yield resilient uncertainty bounds for predictions from black-box models
regardless of any presupposed data dissemination. It has emerged as a
simple practice to establish intervals of uncertainty, especially in critical
scenarios. By incorporating a user-defined probability threshold, confor-
mal inference ensures that the resulting sets-such as the predicted range
in regression tasks or the prediction set in classification scenarios-reliably
encompass the actual value. For instance, by defining a threshold prob-
ability, we can compute price or quality tiers ranges for pre-owned cars,
assuring that the actual values will fall within these intervals. While
these models offer transparency in terms of uncertainty quantification,
they often come up short in explainability when it comes to grasping
comprehension of factors driving changes in conformal metrics such as
set size, coverage, and thus formation of prediction set-type outputs. Our
paper introduces a comprehensive global explainability framework based
on conformal inference, addressing the void of accommodating predic-
tion set-type outputs in various classifiers. This understanding not only
enhances transparency but furthermore ensures verifiability in compre-
hending the factors driving changes in conformal metrics and the forma-
tion of prediction sets which are assured to have actual value with the
help of counterfactual instances of calibration-sets. Moreover, Confor-
maSight’s capability to capture and rank significant features, boosting
classifier coverage, enables it to effectively identify the minimal dataset
required for optimal model performance. We also showcase the flexibil-
ity of employing user-defined thresholds and re-calibration techniques to
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sets with significantly diverse distributions, obtained by perturbing the
original test sets.
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1 Introduction

In the realm of machine learning (ML), classification tasks play a pivotal role
across various domains, from medical diagnosis and fraud detection to image
recognition and sequence models. As artificial intelligence (AI) models become
more complex and impact significant decisions in critical scenarios, the abil-
ity to interpret model decisions and estimate the uncertainty associated with
predictions becomes crucial. At this point, Explainable Artificial Intelligence
(XAI) emerges to introduce understanding to AI models, which hide the under-
lying working mechanism and are exceedingly complex [1]. Throughout this
paper, we will use the terms “explainability” and “interpretability” interchange-
ably. For global explainability, which aims to provide insights into the overall
model behavior, popular methods of explanation include PDP (Partial Depen-
dence Plots) [2], ALE (Accumulated Local Effects) [3], and Permutation Feature
Importance [4–6]. On the other hand, SHAP (Shapley Additive Explanations)
[7] and LIME (Locally Interpretable Model Agnostic Explanations) [8] have been
widely applied for local explainability, focusing on the decision-making process
underlying local instances.

However, it is also impossible to overestimate the significance of uncertainty
estimation which involves assessing the range of potential outcomes and the con-
fidence in a model’s outcomes and uncertainty quantification that measures to
quantify the uncertainty in AI models, especially in applications where making
the wrong choice could have catastrophic consequences. For instance, consid-
ering autonomous vehicles, they must navigate through uncertain traffic envi-
ronments with noisy perceptions and approximated models, where erroneous
decisions could potentially endanger human lives [9].

Furthermore, model and data uncertainty are indicated as main causes of
uncertainty estimation. The former, uncertainty of model, arises due to noise
present in the data, often stemming from insufficient data collection methods.
On the other hand, the latter, data uncertainty, results from distributional imbal-
ances in the training set [10,11]. However, model complexity is another significant
contributor when evaluating uncertainty of model [12]. The use of quantification
of uncertainty methods are essential for mitigating the effects of uncertainty in
the optimization and decision-making processes [13]. As a solution, quantifica-
tion of uncertainty methods emerged to communicate with the users in which
extent the output should be trusted. Henceforward, conformal prediction has
proven to be a potent instrument for the rigorous quantification of uncertainty
in vital applications in various research fields [14–17]. The main source of uncer-
tainty reflected by conformal inference models is epistemic (model’s doubt about
its own predictions). It provides model-agnostic, statistically assured uncertainty
estimate with flexible sets, revealing outliers and offering explainability insights.
Suppose you’ve developed a machine learning model to predict the selling price
of pre-owned cars based on features like model, mileage, year, and condition.
While your model provides a single predicted value for each car, you want to
enhance the usefulness of your predictions by providing an interval within which
the parameters lie actual selling price is likely to fall, with a specified level
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of confidence (e.g., 90%). Imagine a pre-owned car is listed for sale, and your
model predicts its price to be $15,000. You know the distribution of errors (non-
conformity scores) for the 90% level of confidence corresponds to a range of
±$2,000 around the predicted prices. Therefore, you could report the prediction
as: Predicted Price Range: $13,000 to $17,000 with 90% confidence.

While current techniques for estimating uncertainty exist, there remains a
gap in effectively integrating these with explainable artificial intelligence meth-
ods [18]. Additionally, existing model-agnostic explainability approaches primar-
ily target models with single prediction outputs, neglecting methods that provide
statistically assured, flexible prediction sets as we experience in conformal infer-
ence models. Conformal inference distinguishes itself through its resilience to
deviations from normality, as it has the capacity to accommodate diverse data
characteristics without necessitating specific assumptions about error distribu-
tions as defined in literature [19].

In this paper, standing on the uncertainty assessment and XAI convergence,
we frame the work of creating an explainability methodology which can be
adapted to conformal inference models with user-specified error rate and flexible
prediction-set outcomes. Proposed framework produces discrete feature impor-
tance table as an output, so that the non-experts can understand which factors
lead to dramatic changes in conformal metrics such as coverage and set-size of
prediction sets. In continuation of our previous example, which factor-whether
it be mileage, age, brand, model, or condition-of a pre-owned car leads to sig-
nificant variations in the price range or quality tiers, ensuring that the actual
pre-owned price or quality tier aligns with the actual value?

We can characterize our primary contributions as follows:

1. ConformaSight, a framework that can explain any classifier in a robust way
considering conformal prediction offerings based on coverage, i.e., how often
the prediction set includes the true explanation, and the size of the prediction
set. Specifically, we are providing flexibility of producing multiple explana-
tions using pre-defined thresholds to include ground truth on the convergence
of uncertainty quantification and XAI.

2. Another contribution is to provide detailed insights into the factors influ-
encing coverage for each class in a classification task, thereby enabling tar-
geted adjustments to enhance the prediction accuracy and coverage of specific
classes.

3. Comprehensive evaluation of effectiveness, faithfulness, and resilience on
different models and datasets. We also provide comparison on small and
large real-world tabular data enabling non-experts to do reasoning with
uncertainty-aware explainability methodology in high-risk setting environ-
ments.

We structure the paper as follows: Sects. 2 and 3 offer preliminaries and liter-
ature studies to prepare reader background, while Sect. 4 delves into the theoret-
ical intricacies of proposed concept. Given the length of the theory, experiments
and evaluations are presented separately in Sect. 5. Finally, Sect. 6 encompasses
results, discussion, and plans for future research.
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2 Preliminaries

2.1 Explainability

Explainable AI (XAI) emerged from the necessity for transparency and under-
standing due to the widespread adoption of machine learning models across
various domains. Its goal is to develop interpretable models that maintain high
performance while enabling human comprehension and trust [20]. However, to
tackle the challenge of providing explanations, it’s crucial to formalize the con-
cept of explainability. We define explainability as the AI model’s capacity to
elucidate its decision-making process in a manner comprehensible to humans.
This entails transparently revealing the factors and considerations influencing
the model’s outputs, fostering understanding, trust, and accountability [21]. In
addressing what needs explanation - the explanandum - a combination of differ-
ent XAI mechanisms is necessary to ensure a minimal understanding from the
recipient of the explanation - the explainee - regarding the internal logic of a
black-box AI [22].

In XAI methods, two main categories exist: Intrinsic Methods and Post-
hoc Methods. Intrinsic Methods are integrated directly into the architecture or
training process of AI models, ensuring interpretability by design. Examples
include Decision Trees, Rule-based Systems, and Linear Models, which operate
on explicit rules or clear calculations. Post-hoc Methods, on the other hand, offer
interpretability after training opaque or complex AI models. Local Explainabil-
ity focuses on explaining individual predictions, aiding in understanding specific
outcomes, with methods like SHAP and LIME [7,8]. Global Explainability pro-
vides insights into overall model behavior across datasets or domains, revealing
broader patterns and decision-making processes, as seen in algorithms like PDP
[2] and ALE [3].

2.2 Uncertainty Estimation and Quantification

Estimating uncertainty in machine learning refers to the process of quantifying
the confidence or reliability of the predictions made by a model. It involves
assessing the degree of uncertainty associated with each prediction, recognising
that models do not always produce deterministic results, but rather predictions
accompanied by a certain level of uncertainty. This uncertainty can stem from
various factors, including limited or noisy training data, model complexity, or
inherent stochasticity in the underlying processes being modeled [23].

When estimating the uncertainty of a forecast, - predictive uncertainty -,
the most common way of estimating it is based on the separate modelling of
model-induced uncertainty (epistemic or model uncertainty) and data-induced
uncertainty (random or data uncertainty). While the former can be addressed
by improving the model, the latter cannot be reduced [24].

From data collection to the development of a neural network (NN), numer-
ous phases introduce potential sources of uncertainty and error. These include
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variability in real-world situations, measurement errors, architectural flaws in
the NN, training errors, and uncertainties stemming from unknown data [24].

Referring to input data domain, as in [24], predictive uncertainty comes in
three types: in-domain, domain-shift, and out-of-domain. In-domain uncertainty
relates to data distribution inputs and can be reduced by enhancing training data
quality. Domain-shift uncertainty occurs when inputs differ from the training
distribution, posing challenges for neural networks to explain. Out-of-domain
uncertainty arises from inputs beyond the known data distribution, where neural
networks struggle to explain samples beyond their trained knowledge.

2.3 Conformal Prediction

Here, we follow the steps outlined by the tutorial elaborated in [25]. Conformal
inference or prediction offers a refreshingly convenient and easy way to create
sound confidence ranges for any arbitrary model outcomes. Unlike traditional
methods that assume a specific dispersion in data, conformal inference does not
assume any specific dispersion in data, making it applicable to a wide range of
data types and modeling scenarios.

At the core of conformal inference is the notion of validity and efficiency.
Validity ensures that the prediction bounds or sets constructed by the method
have a certain coverage probability, while efficiency aims to minimize the size
of these intervals or sets. The user-specified assurance threshold (α) in confor-
mal inference sets the desired confidence level, while the coverage rate (coverage)
quantifies the proportion of actual instances encompassed by estimation sets. It’s
essential to distinguish between these two concepts to avoid confusion regard-
ing the interpretation of prediction intervals. The in-depth review of conformal
inference is as follows.

To commence, we initiate with a trained predictive model, denoted as f̂ (for
instance a neural network classifier). Subsequently, we embark on generating
prediction sets, comprising potential labels, for this classifier by employing a
limited quantity of supplementary calibration data-referred to as the calibration
step on occasion.

In more scholarly terms, let us consider a scenario where serve input each
corresponding to one of M classes. Initially, we possess a classifier that yields
estimated probabilities (represented as scores of softmax in this example but
it doesn’t have to be) for each class: f̂(x) ∈ [0, 1]M . Subsequently, we allo-
cate a reasonably smaller subset of newly acquired independent and identi-
cally distributed pairs of data, not observed in the training stage, denoted as
(X1, Y1), . . . , (Xn, Yn), for utilization as calibration set (X(cal), y(cal)). Lever-
aging f̂ and calibration subset, our objective is to formulate a prediction set
of feasible labels C(X(test)) = {1, . . . ,M} that holds validity in the subsequent
context:

1 − α ≤ P (Y (test) ∈ C(X(test))) ≤ 1 − α +
1

n + 1
, (1)
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where (X(test), Y (test)) be a new test point drawn from the same distribution,
and let ε ∈ [0, 1] represent a user-chosen error rate as it has been officially stated
in [26]. The calibration process for input x and output y can be summed up as
follows in general.

1. Establish an indicator of uncertainty by leveraging the model you trained (a
classifier in this case).

2. Introduce the score method s(x, y) ∈ R, where greater scores signify greater
disagreement among x and y.

3. Determine q̂ by using the following procedure

�(n + 1) · (1 − α)�
n

(2)

quantile of the calculated score values of calibration s1 = s(X1, Y1), . . . , sn =
s(Xn, Yn).

4. Employ this quantile to delineate prediction compilation for new instances:

C(X(test)) =
{

y : s(X(test), y) ≤ q̂
}

. (3)

As we indicated before, for every score method and data distribution, these
sets meet the validity property in (1).

There are numerous conformal prediction variants available as of today. These
variations consist of the concepts of risk control [27,28] and also the covariate
shift [29]. Moreover, distribution shift, or when the test set diverges from the
distribution in the calibration data, is another important area of study. For
instance, [30] introduces a conformal procedure robust to shifts of known f-
divergence in the score approach. A weighted variant of conformal inference
that offers methods for handling non-exchangeable data was developed by [31].
Furthermore, by perpetually re-estimating the conformal quantile, [32] creates
estimation ranges in a data stream with an altering distribution over time.

3 Related Work

Based on our literature review, this section provides studies that shed light on
the links between uncertainty estimation and XAI. For instance, [33] underlines
the importance of explanations, particularly in scenarios of uncertain models.
Meanwhile, [34] explores the utilization of conformal inference methodologies for
enhancing interpretability and reliability in AI models, albeit without explicit
mention of uncertainty. Furthermore, [35] delves into oracle coaching with con-
formal inference, aiming to create highly accurate and interpretable models tai-
lored to specific test sets. Additionally, [36] proposes non-conformity measures
designed to approximate explanations efficiently, demonstrating superiority over
traditional methods. Meanwhile, [37] proposes a statistical framework leverag-
ing conformal inference for node-level explanations, highlighting their impact on
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neighboring nodes. Moreover, [38] provides insights into constructing uncertainty
sets for optimal explanations, exploring the implications of explanations derived
from the true data-generating distribution. In the domain of self-explaining net-
works, [39] establishes a framework that emphasizes uncertainty without relying
on distributional presumptions, particularly in generating efficient and effec-
tive prediction sets. Also, [18] investigated a relationship to XAI and created a
framework specifically for neural networks that has been provided with XAI-like
uncertainty estimates. The research results showed, however, that estimates of
uncertainty in the model are susceptible to variations in the data dissemination.
Similarly, [40] presented a novel framework that enables the conversion of any
random neural network explanation technique into a Bayesian neural network
explanation method. Finally, [41] suggests using “Monte Carlo Dropout” and
trust scores to tackle uncertainty in counterfactual explanations.

ConformaSight, in contrast, is a model-agnostic and global explainer that
provides robust explanations for variations in data distribution, and can eluci-
date not only neural networks but also any type of classifier capable of generating
probabilities thanks to conformal inference basement.

4 Methodology

This section introduces the basic principles, essential elements, practical infor-
mation, and validity requirements of the ConformaSight framework. Following
this, we provide a practical example scenario demonstrating how to split your
data, set arguments, and call the explainer method.

4.1 ConformaSight Structure and Mechanism

Presented herein is ConformaSight, our proposed framework rooted in conformal
prediction methodology. It is designed to furnish robust and insightful explana-
tions independent of the data distribution, produce explanations for set-type out-
puts by the conformal predictors. Unlike traditional methods where explanations
focus solely on feature importance, explanations in conformal prediction-based
models consider how the calibration process influences the prediction outcomes.

For instance, if a particular feature in the calibration set has a strong influ-
ence on the coverage of prediction intervals, it indicates that this feature plays a
crucial role in determining the model’s confidence in its predictions. Therefore,
explaining the model’s predictions involves not only highlighting the importance
of features but also elucidating how the calibration process impacts the pre-
diction outcomes. This challenge is encapsulated by several different research
questions outlined as below.

Adapting Explainability to Conformal Prediction: How can we enhance
the interpretability of conformal prediction results by investigating the factors
influencing the formation of prediction sets? In the realm of classification tasks,
understanding the factors influencing prediction set formation within confor-
mal prediction frameworks is crucial for enhancing model interpretability and
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trust [42]. A meticulous examination of metrics such as weighted coverage and
weighted set size provides profound insights into the uncertainty representation
of the model [25]. Weighted coverage elucidates the proportion of instances cor-
rectly classified and enclosed within prediction sets, offering a measure of the
model’s reliability in delineating uncertain regions with respect to class distribu-
tion [43]. Meanwhile, weighted set size furnishes critical information regarding
the granularity of uncertainty representation, indicating the average number of
instances grouped within prediction sets while considering class imbalance [25].
By scrutinizing these metrics, researchers can unravel the nuanced relationship
between model predictions and input features.

Prediction sets Pi are obtained from the conformal prediction algorithm,
while y represents the true class labels of the instances. To quantify the perfor-
mance of these prediction sets, we define two key conformal metrics: weighted
coverage and weighted set size.

Definition 1. Weighted coverage: We define it as the proportion of correctly
classified instances within prediction sets for each class, and it is calculated as
the average proportion of correctly classified instances weighted by the class sizes:

∑n
i=1(Coverage(Pi, y) × ci)∑n

i=1 ci
(4)

where n is the total number of classes, Coverage(Pi, y) is the coverage for pre-
diction set Pi given true labels y, and ci is the count of instances in class i.

Definition 2. Weighted set size: We define it as the average number of
instances in prediction sets for each class, and it is computed as the average set
size weighted by the class sizes:

∑n
i=1(Set Size(Pi) × ci)∑n

i=1 ci
(5)

where Set Size(Pi) is the average set size for prediction set Pi .

Defining Imbalance-Free Baseline Conformal Metrics: How can we obtain
baseline weighted coverage and set size metrics while addressing class imbalance
in the dataset? To ensure the reliability of baseline conformal metrics, it is imper-
ative to adopt conformal classification techniques that maintain equal coverage
across classes. By setting thresholds independently for each class, we can guar-
antee coverage across all classes, thus enhancing the robustness of the baseline
metrics. Specifically, for each class, thresholds can be determined to encompass
certain percent (that can be decided by user) of instances within that class [44].
This approach not only addresses class imbalance but also ensures the safety and
accuracy of the baseline conformal metrics. The presented Algorithm 1 aims to
establish thresholds for each class independently in a conformal classification
model, ensuring equitable coverage across all classes. Given the error rate α,
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calibration dataset X(cal) with corresponding labels y(cal), and a conformal clas-
sification model f̂ , the algorithm computes thresholds such that certain percent-
age of instances within each class fall below the threshold. This is achieved by
predicting probabilities for each class label in X(cal) using the classifier, com-
puting the s-scores (complement of probabilities), and determining the q̂, the
1 − α quantile of s-scores for each class, adjusted for class size. Specifically, q̂ is
computed as in Eq. (2), where n represents the size of each class.

Algorithm 1: Get Individual Thresholds For Each Class

Input: Classifierf̂ , Error Rate α, List of All Classes classes list,
Calibration Set (X(cal), y(cal))

Output: Thresholds thresholds
thresholds =[ ];
foreach class in classes list do

// Extract probabilities for each instance of X(cal) which has label
y(cal) ∈ class.

y cal probs = get probs(f̂ , X(cal), y(cal), class);

// Perform the following next two steps as a reference to Eq. (2).
s scores, q̂ = get qhat(y cal probs, α);
threshold = percentile(s scores, q̂);

append threshold to thresholds;
end
return thresholds;

Algorithm 2: Get Prediction Sets For The Test Set

Input: Classifier f̂ , Test set X(test), Thresholds thresholds, Number of
Classes n classes

Output: Prediction sets prediction sets
prediction sets =[ ];
// Extract probabilities for the entire X(test).
predicted probas = f̂ .predict proba(X(test));

// Extract all probabilities from 1 to get s-scores.
si scores = 1 − predicted probas;

// Apply class-conditional thresholding.
for i = 0 to n classes do

prediction sets[i] = si scores[:, i] ≤ thresholds[i];
end
return prediction sets;

The algorithms delineated in Algorithm 1 and 2 epitomize a pivotal stride in
the realm of class-conditional conformal prediction [25], a methodology poised
to tackle the challenges inherent in imbalanced datasets within the context of
multiclass classification tasks. By ingesting pivotal inputs including the trained
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classifier, test dataset, thresholds, and the number of classes, this algorithm sys-
tematically refines classifier predictions. It achieves this feat by meticulously craft-
ing prediction sets customized to each class. This granular approach becomes
indispensable in scenarios characterized by imbalanced class distributions or vary-
ing classification priorities, where conventional methods falter. Through the iter-
ative application of class-specific thresholds to predicted probabilities, the algo-
rithm adeptly adapts to the nuanced landscape of each class, mitigating the
adverse effects of data imbalance. Finally, a full algorithm to produce weighted
coverage Wcoverage (4), weighted set size Wset size (5) can be found in Algorithm
3. We use the same algorithm to set baseline conformal metrics.

Providing Distribution Shift in the Calibration Set: By leveraging the
conformal prediction framework to provide distrubution shift in calibration set,
how can we systematically provide variations? Through the lens of the confor-
mal prediction framework, addressing the question of how to systematically pro-
vide variations in calibration set-size to discern significant features through the
change in weighted coverage and set-size emerges as a crucial endeavor in enhanc-
ing model interpretability and reliability. Advancing beyond a single calibration,
the approach entails repeated generation of prediction sets with perturbed cali-
bration sets, echoing insights into data drift and concept evolution. Analysis of
variations across these sets illuminates nuanced shifts in model behavior, offering
a pathway to discern significant features driving prediction set formation.

Algorithm 3: ConformaSight Calibration and Metrics Production

Input: Calibration Set (X(cal), y(cal)), Test Set (X(test), y(test)), Error
Rate α ∈ [0, 1], Class Labels l, Classifier f̂

Output: Weighted Coverage Wcoverage, Weighted Set-Size Wset size

Calibration and Metric Production:

// Perform the following step as we described in Algorithm 1.
thresholds =
get individual thresholds for each class(f̂ , α, l,X(cal), y(cal));

// Perform the following step as we described in Algorithm 2.
C(X(test)) =
get individually thresholded prediction sets(f̂ , X(test), thresholds, l);

Acoverage = get coverages per class(C(X(test)), y(test));
Atotal instances = get total instances per class(y(test));
Aset sizes = get set size per class(C(X(test)));
Wcoverage = get weighted coverage(Acoverage, Atotal instances);
Wset sizes = get weighted set size(Aset sizes, Atotal instances);

return Wcoverage, Wset size;

Now we outline the key perturbation methods utilized to introduce variations
in the calibration datasets. Specifically, we employ counterfactual perturbations
to systematically alter the numerical attributes of the data and permutation-
based perturbations for categorical attributes with a certain number of severity
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that can be supplied by user. We present counterfactual perturbations using both
Gaussian Noise [45] and Uniform Noise [46]. It is crucial to investigate the impact
of different types of noise on the experimental outcomes. While Gaussian noise
preserves the distribution shift of the original data, uniform noise introduces
variability that can alter the distribution shift [47]. By systematically applying
noise separately to individual columns (we perturb one column at a time, keep
others fixed and measure conformal metrics: Wcoverage, Wset size) and repeating
the experiment, we can discern how these variations influence the conformal
metrics.

This analysis provides valuable insights into the robustness and generaliz-
ability of our findings under different perturbation scenarios. We provide math-
ematical and statistical definitions for each perturbation method that we utilize
in this paper as follows.

Definition 3. Permutation-based Perturbations: Let X be a categorical
column with n unique categories. The permutation-based perturbation function
permute(X, k) produces a perturbed column X ′, where the values of X ′ are ran-
domly permuted k times. Mathematically, this can be expressed as:

X ′ = permute(X, k) (6)

Definition 4. Gaussian Noise Perturbations: Let N be a numerical col-
umn with standard deviation σ. Given a severity parameter s, the counterfactual
perturbation function adds noise to N according to:

N ′ = N + Noise, where Noise ∼ N (0, s × σ). (7)

Definition 5. Uniform Noise Perturbations: Let N be a numerical column.
Given a severity parameter s, the uniform noise perturbation function adds noise
sampled from a uniform distribution to N according to:

N ′ = N + Noise, where Noise ∼ Uniform(−s × R, s × R), (8)

where R represents the range of values in N . The uniform noise perturbation
introduces variability across the dataset, allowing for the exploration of different
distributional shifts.

Observing Relative Change in Conformal Metrics: How can we measure
the relative deviation in weighted coverage and set size from the baseline recipro-
cals obtained through initial set calibration? To evaluate the collective deviation
in weighted coverage and set size across systematically perturbed calibration
sets compared to the original calibration sets, we adopted two distinct functions.
Initially, we quantified the weighted coverage and set size across all perturbed
datasets, providing an aggregate perspective. Subsequently, to delve deeper into
the perturbation effects and gain further insights, we introduced another func-
tion to compile averages in relative changes per class in by weighted coverage and
set size. This finer-grained analysis enables us to discern the nuanced impacts
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of perturbations on individual classes, contributing to a more comprehensive
understanding of model behavior under varying conditions [48].

Let C0 denote the baseline weighted coverage obtained through initial set
calibration, and S0 represent the baseline weighted set size. The Algorithm 4
computes the relative change in coverage and set size for each perturbed dataset
compared to the baseline for each perturbed dataset. Finally, a full algorithm
which outlines the steps one-by-one to execute explanations with ConformaSight
can be found in Algorithm 5.

Algorithm 4: Calculate Relative Changes - Algorithm for calculating rel-
ative changes in weighted coverage and set size
Input: Baseline weighted coverage C0, weighted set size S0, and

perturbed datasets
Output: List of Relative changes in coverage ΔCi and set size ΔSi for

each perturbed dataset i [ΔCi,ΔSi]
foreach perturbed dataset i in perturbed datasets do

// Perform the following step as we described in Algorithm 3.
Calculate weighted coverage Ci (4) and set size Si (5);
Compute relative changes:

ΔCi =
∣∣∣∣
Ci − C0

C0

∣∣∣∣ × 100

ΔSi =
∣∣∣∣
Si − S0

S0

∣∣∣∣ × 100

end
return [ΔCi,ΔSi];

Threats to Validity: What are the conditions that may pose threats to validity
of conformal prediction models? When assessing validity of conformal prediction
procedures, two key aspects come into play: correctness and adaptivity. Correct-
ness checks verify implementation accuracy, particularly focusing on coverage
satisfaction, which demands a detailed examination of finite-sample variability.
Meanwhile, adaptivity extends beyond average set size, requiring the procedure
to produce small sets for straightforward inputs and larger ones for more complex
ones, accurately mirroring model uncertainty.

4.2 ConformaSight in Practice: A Sample Scenario

In this section, we demonstrate a practical example which gives notions of algo-
rithm usability overall and interpretation of output. We create a sample scenario
with Breast Cancer [50] dataset to produce model agnostic and post-hoc explan-
tions with ConformaSight, it is necessary to split dataset as follows.

The user should reserve a good amount of data also for calibration (X Cal,
y cal) unlike traditional train/test split. There is no rule to set exact number
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of calibration data instances, one should adjust it depending on the coverage
metric. However, setting it N=1000 is sufficient for diverse purposes [25]. Subse-
quently, we train a basic XGB Classifier with default settings [53] to do binary
classification. However, you can train any deterministic or probabilistic classifier
at this point because the method works in model-agnostic nature.

Algorithm 5: ConformaSight Full Algorithm

Input: Classifier f̂ , Calibration Set (X(cal), y(cal)), Test Set
(X(test), y(test)), Perturbation Range [min severity,max severity],
Error Rate α ∈ [0, 1], Class Labels l

Output: Feature Importance Table w

Baseline Calibration:
// Perform the following step as we defined in Algorithm 3.
[W 1

cov,W
1
set, C

1] ← Calibrate(X(cal), y(cal),X(test), y(test), α, l, f̂);

Perturbation Generation:
perturbed datasets ← GeneratePerturbations(XCal, noise, [min,max], n);

Relative Changes:
// Perform the following step as we defined in Algorithm 4.
[ΔC,ΔS] ←
CalculateRelativeChanges([W 1

cov,W
1
set, C

1], perturbed datasets);

Call The ConformaSight Explainer:
// User specifies explainer metric and noise arguments
metric = type of metric ∈ {“coverage”, “set-size”, “pred-set”}
noise = noise type ∈ {“Gaussian”, “Uniform”}
feature importance table =
plot conformal explainer(f̂ , X(cal), y(cal),X(test), y(test), α, l,metric, noise)

return w;

We developed a straightforward method called plot conformal explainer,
which accepts several parameters. These parameters include α, as defined in
Eq. 1, X Cal, y cal, X test, and y test, as illustrated in Listing 1.1. Additionally,
the method takes the noise type parameter, which can be either “gaussian” or
“uniform”, and the type of metric parameter, which can take on values such
as “coverage”, “set size”, or “pred set”.

Listing 1.1. Splitting the data into training, testing, and calibration sets

1 # Features and labels extraction

2 y = df["target"]

3 X = df.drop(["target"], axis=1)

4 # Train, test, and calibration split

5 X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.5, random_state=42, stratify=y)
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6 X_Cal, X_test, y_cal, y_test = train_test_split(X_test, y_test,

test_size=0.5, random_state=42)

Moreover, as demonstrated in Listing 1.2, if the type of metric is speci-
fied as “coverage”, the method calculates relative changes based on the coverage
metric, as shown in Fig. 1. Alternatively, if type of metric is set to “set size”,
the relative change calculations are performed according to the “set size” metric.
Lastly, when type of metric is specified as “pred set”, the method generates
class-specific changes in coverage, providing coverage calculations tailored to
each class type. Further, with other functions one can set the range of counter-
factual perturbations. Due to this flexibility, it provides wide range of experi-
mentation options even to non-experts.

Listing 1.2. Calling the Plot Conformal Explainer Method

1 type_of_metric = "coverage" # Choose conformal metric

2 noise_type = "gaussian" # Choose noise type

3 alpha = 0.05 # Set the error rate

4 plot_conformal_explainer(classifier_base, X_Cal, y_cal, X_test,

y_test, alpha, class_labels, type_of_metric, noise_type)

Fig. 1. Sample Output of Plot Conformal Explainer Method with Breast
Cancer Dataset The values represent the mean relative change in coverage and non-
zero values are filtered in the sample demonstration.

Moreover, for class-wise feature importance investigation, by setting the
type of metric as “pred set” we can get the output as illustrated in Table 1
with the exact values of change in relative class-wise coverage.
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Table 1. Mean Class-Wise Relative Change in Coverage MCRC (Mean Class-
Wise Relative Change) in Coverage: The first five rows for each class are filtered.

Group: Benign Group: Malignant

Feature MCRC Feature MCRC

worst area 6.01 worst concavity 5.46

worst perimeter 1.85 worst texture 4.16

worst texture 1.23 worst radius 2.08

mean texture 1.23 mean concave points 1.82

mean concave points 0.92 worst symmetry 1.56

For instance, looking at the “worst area” feature, which demonstrates a
MCRC in coverage of 6.01 for the Benign group, we can observe that this feature
significantly affects the correct classifications in the benign class more than in
the malignant class. This suggests that larger tumor areas might be more indica-
tive of benign tumors, influencing classification outcomes accordingly. Similarly,
examining the “worst concavity” feature with a MCRC of 5.46 for the Malig-
nant group, we find that this feature has a substantial impact on the correct
classifications of malignant tumors compared to benign tumors.

4.3 Computational Complexity of the ConformaSight

The computational complexity of the provided algorithm for perturbation gener-
ation can be described as O((ncat+nnum)×s), where ncat represents the number
of categorical columns, nnum represents the number of numerical columns, and s
denotes the maximum severity level. The computational complexity of Confor-
mal Prediction varies depending on factors such as dataset size, model complex-
ity. Generally, it involves training the models (with complexities varying from
O(n2 · d) to O(n3 · d) for SVM [49]), calibrating conformity scores (ranging from
O(n2) to O(n log n)), and predicting new instances (n: data points, d: dimen-
sions of each data point). Finally, the complexity for calculating relative changes
in weighted coverage and set size for N perturbed datasets, each containing
M instances, is O(N · M). The scripts and sample notebooks can be found at
https://github.com/rabia174/ConformaSight.

5 Experiments and Evaluations

In this section, we begin by outlining the experimental settings, which encom-
pass the datasets utilized in our evaluations, the configurations of the models
and explainers employed, and the evaluation metrics employed for assessment.
Subsequently, we delve into a comprehensive analysis of the qualitative and quan-
titative results derived from our evaluations. Experiments are implemented with
a Python 3.8 Kernel on an Intel vPRO i5 processor equipped device.

https://github.com/rabia174/ConformaSight.
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5.1 Experimental Settings

Datasets. We assess the generazability of our approach using three distinct pub-
licly available datasets with varying sizes and dimensions. Consistent with our
framework, we concentrate on classification problems characterized by multivari-
ate datasets comprising both categorical and numerical columns. Table 2 presents
a general overview of the datasets that have been used in our assessments, respec-
tively, Breast Cancer [50], Glass Identification [51], and Cover Type [52].

Table 2. Summary of Datasets used to make assessments

Dataset Type Instances Features Target Column Class

Breast Cancer Real-world 569 30 Malignant or Benign 2

Glass Identification Real-world 214 9 Type of glass 6

Cover Type Real-world 581012 54 Forest Cover Type 7

The Breast Cancer dataset includes data on breast cancer patients’ charac-
teristics, with 569 instances and 30 features, classified into 2 classes indicating
tumor malignancy. The Glass Identification dataset provides information on glass
samples’ attributes, with 214 instances and 9 features, categorized into 6 classes
based on the type of glass. The Cover Type dataset contains forest cover type
data derived from cartographic variables, with 581,012 instances and 54 features,
categorized into 7 classes.

Models. We opted four distinct models that can be found in Table 3. By using
diverse models, we aim to harness complementary advantages in modeling diverse
patterns and quantifying uncertainty, thereby enhancing the comprehensibility
of our analysis.

Table 3. Summary of Models and Parameters/Settings

Model Type Library/Framework Parameters/Settings

XGBoost DMLC XGBoost [53] Max depth: 3

Learning rate: 0.1

Number of estimators: 100

Objective: multi-softmax

Booster: gbtree

Neural Network TensorFlow [54] Dense layers: (128, 64, 32)

Activation: (relu, relu, softmax)

Optimizer: Adam

Loss: Sparse Cat. Cross-entropy

Epochs: 10

Batch size: 32

SVM [49] scikit-learn [55] Kernel: Linear

C: 1.0

Gamma: scale

Logistic Regression [56] scikit-learn [55] Penalty: l2

C: 1.0

Solver: lbfgs
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Explainers. To demonstrate performance of our proposed approach Confor-
maSight, we compare its outputs with those generated by established explana-
tion methods aimed at elucidating the general behavior of the model. Firstly, we
employ a model like XGB interpretable by nature. We reference XGB’s “Gain”
feature importance metric over “Cover” and “Weight” as it closely aligns with
our approach [53]. Additionally, we utilize Permutation-Based feature impor-
tance, a widely adopted method that assesses the importance of input features
by shuffling their values and measuring the impact on model performance [57].
Furthermore, we incorporate mean SHAP values computed by averaging local
SHAP explanations, which offer insights into the contribution of each feature to
individual predictions while maintaining a global perspective [58,59]. By employ-
ing these explanation methods with their default settings, we aim to provide
a comprehensive assessment of ConformaSight’s performance and elucidate its
interpretability.

Evaluation Setup. In our evaluation, we employed three approaches: Effective-
ness, Faithfulness, and Resilience. For this purpose, we initially trained a base
model using all available features from the dataset to assess and quantify fea-
ture importance with diverse explainers. Subsequently, we compiled a feature-set
comprising a subset of features and retrain the base models. This subset, referred
to as the Fgolden set was curated by selecting the top N most significant features
identified through the explanation methods discussed in the previous section,
along with our proposed method, ConformaSight. In case of models with XGB
and LR which are intrinsically interpretable, the top N most significant features
referred to as Fgold to avoid confusion when evaluating Faithfulness. Finally,
when evaluating Resilience the explanations extracted from the test set with-
out noise (original) referred to as Forg exp and the explanations extracted from
noisy test set referred to as Fnoisy exp. During all evaluations, we set Confor-
maSight perturbation severities ranging from 0.1 to 0.95 with a step size of 0.05
for numerical columns and from 1 to 10 with a step size of 1 for categorical
columns.

Effectiveness: To measure effectiveness, we trained all models in Table 3 using
the possible minimal golden-set obtained from each explainer and ConformaSight
(comprising the same number of data instances but with less number of features,
resulting in a significant reduction in dimensions). We then produced the follow-
ing Weighted F1-Score on the same test set used for prediction:

Weighted F1-Score =
2 ×

( ∑N
i=1 TPi∑N

i=1(TPi+FPi)

)
×

( ∑N
i=1 TPi∑N

i=1(TPi+FNi)

)
( ∑N

i=1 TPi∑N
i=1(TPi+FPi)

)
+

( ∑N
i=1 TPi∑N

i=1(TPi+FNi)

) (9)

where True Positive (TP) represents correctly predicted positive instances, False
Negative (FN) indicates incorrectly predicted negative instances, False Positive
(FP) denotes incorrectly predicted positive instances, and True Negative (TN)
signifies correctly predicted negative instances.
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Resilience: We assess ConformaSight’s resilience by introducing Uniform noise
that changes the distribution shift in the same test set which we produce
explanations (we make sure that the distribution is significantly changed with
Kolmogorov-Smirnov (KS) test [60,61]). Subsequently, we measure the extent
to which the explanations of the noisy test set (Fnoisy exp) include those of the
original test set (Forg exp), as demonstrated in Eq. 10.

Extent of Common Features =
|Forg exp ∩ Fnoisy exp|

|Forg exp| (10)

Faithfulness: We measure the faithfulness of explanations with classifiers that
can be interpretable easily by design, such as XGBoost (XGB) and Logistic
Regression (LR). After training these classifiers using the entire feature set, we
extract a subset of features (top N) identified as most significant. This sub-
set serves as our baseline gold standard (Fgold), reflecting the features deemed
important by an inherently explainable model. Subsequently, we generate expla-
nations, extract top N from each (Fexp) and measure the extent to which these
explanations accurately capture the features in the gold standard set as demon-
strated in Eq. 11. This metric assess the overall faithfulness of our approach to
diverse models.

Fraction of common features =
|Fgold ∩ Fexp|

N
(11)

6 Results and Discussion

In this section, we present our results belonging to evaluations of Confor-
maSight’s feature importance outputs, focusing on effectiveness, faithfulness,
and resilience perspectives.

Evaluating Effectiveness. The performance of various predefined models in
Table 3 on the Breast Cancer and Glass Identification golden-sets is presented
in Table 4. ConformaSight metrics often outperform other global explainability
techniques across both datasets, irrespective of the model used.

The experiments reported in Table 4 highlight the superiority of Confor-
maSight metrics compared to other feature selection techniques, across various
models, in accurately classifying both the Breast Cancer and Glass Identification
datasets.

Moreover, to demonstrate the effectiveness of our model also on models like
neural networks (NN) and large-scale datasets, we conducted experiments on
another real-world dataset, Cover Type. The results, summarized in Table 5,
showcase the weighted F1-Score rates obtained for the Cover Type dataset using
different models. Notably, ConformaSight often outperformed other techniques
also in a large-scale and real-world dataset. Conformal prediction tends to per-
form better with larger datasets with wider classes due to its ability to provide
calibrated confidence estimates for predictions.
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Table 4. Comparison of Average F1-Score of Small-Scale Real-World
Datasets. The table displays average F1-Score values from diverse models for Breast
Cancer and Glass Identification datasets. ConformaSight metrics utilize Gaussian noise
perturbation. From all explainers, we picked the top 7 features for the Breast Cancer
and top 6 for Glass Identification, aiming for optimal performance with the possible
minimal set of features. All model details can be found in Table 3.

Breast Cancer Glass Identif.
XGB SVM LR XGB SVM LR

Random 0.88 0.88 0.88 0.68 0.56 0.58
Permutation 0.92 0.91 0.92 0.70 0.61 0.62
SHAP 0.92 0.92 0.92 0.63 0.59 0.62
XGB (Gain) 0.90 – – 0.71 – –
ConformaSight Coverage-Based 0.95 0.94 0.93 0.78 0.64 0.64

ConformaSight Set Size-Based 0.94 0.93 0.93 0.73 0.64 0.62

Table 5. Comparison of Average F1-Scores of Large-Scale Real-World
Dataset. The table displays average F1-Score values from diverse models for Cover
Type dataset. ConformaSight metrics utilize Gaussian noise perturbation. For all
explainers, we picked the top 10 features. All model details can be found in Table 3.

Cover Type
XGB NN SVM LR

Random 0.39 0.53 0.37 0.29
Permutation 0.85 0.70 0.70 0.65
SHAP 0.85 0.70 0.70 0.69
XGB (Gain) 0.69 – – –
ConformaSight Coverage-Based 0.87 0.84 0.75 0.72

ConformaSight Set Size-Based 0.87 0.81 0.73 0.70

Evaluating Resilience. We present in Table 6 the measure to which extent
noisy test set (distribution shift is verified with Kolmogorov-Smirnov as p < 0.05)
explanations cover original test set explanations. Specifically, the percentage of
common features between the explanations derived from the original and noisy
test sets remains consistently high, ranging from 84.6% to 100%.

Overall, the fraction of common features between the original and noisy
test sets was found to be suggesting a great substantial overlap in the fea-
tures analyzed across both datasets. Furthermore, the observed resilience high-
lights the potential utility of the models in practical applications where data
may be subject to inherent variability or noise. The ability of producing con-
sistent and resilient explanations in dramatically noisy test sets underscores
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ConformaSight’s adaptability to highly uncertain environments, thus suggest-
ing promising prospects for their application in real-world scenarios.

Table 6. Resilience Assessment Table Calibration set perturbation were set to
Gaussian. Glass Identification is excluded in this experiment due to low dimensions.
All features in the explanation set were taken into consideration.

Type Breast Cancer Cover Type
XGB SVM LR XGB SVM LR

Coverage-Based 84.6% 85.7% 100% 94.1% 96.7% 100%

Set Size-Based 91.6% 93.3% 100% 94.4% 100% 100%

Evaluating Faithfulness. In assessing faithfulness, we evaluate the extent to
which explanation methods accurately represent a model’s decision-making pro-
cess. Our findings, illustrated in Fig. 2, reveal that ConformaSight’s Coverage-
Based and Set Size-Based explanations demonstrate robust faithfulness, with
fractions ranging from approximately 73% to 86% across all datasets and
machine learning models we utilized. This underscores the reliability of Con-
formaSight’s explanation techniques in providing accurate insights into model
predictions, thereby fostering transparency and trust in AI systems.

Fig. 2. Fraction of Gold Standard Features Recovered By Each Explainer.
G (Gaussian Noise), U (Uniform Noise), Perm. (Permutation), Cov. (Coverage-Based),
Set S. (Set Size-Based). For both datasets top 15 features from all explainations (Fexp)
including intrinsic explanations(Fgold) were picked.

7 Conclusion, Limitations and Future Work

In this paper, we propose a novel method for generating explanations in confor-
mal prediction classifiers by incorporating model uncertainty estimates into the
explanation generation process. Our approach addresses class-imbalance and dis-
tribution shift issues by creating counterfactual instances through realistic noise
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introduction to calibration sets, followed by model re-calibration. We measure
mean relative changes in coverage and set-size metrics within the conformal
prediction context through systematic perturbation on each feature in the cali-
bration set. Our method allows users to specify noise generation intervals, types,
and coverage rates, offering flexibility in producing diverse explanations while
ensuring ground truth containment within prediction sets. Explanations can be
generated in three ways: mean relative change in coverage, mean relative change
in set-size, and mean class-wise relative change in coverage.

Evaluations on three real-world datasets using diverse models (XGBoost,
SVM, LR, NN) assess effectiveness, faithfulness and resilience of our explana-
tions. ConformaSight often outperforms mean SHAP, Permutation, and even
intrinsic explanations with minimal feature sets on the same classifier. This
strength of ConformaSight lies in its ability to effectively identify the minimal
dataset required to maximize model performance. Leveraging its capability to
capture and rank features that enhance coverage in classifiers, ConformaSight
identifies and prioritizes features that contribute most significantly to model
performance, thereby optimizing classifier performance with minimal input data.
This highlights the superior effectiveness of ConformaSight in providing compre-
hensive and accurate explanations compared to traditional and intrinsic explana-
tion methods. Notably, our experiments have demonstrated that ConformaSight
consistently produces resilient explanation sets, even when confronted with sig-
nificantly perturbed versions of the same test sets. This highlights the robustness
of ConformaSight in providing stable and reliable explanations across varying
conditions thanks to the nature of conformal-prediction.

However, conformal prediction-based models face challenges in computa-
tional expense, scalability with large datasets or complex models, and conserva-
tive predictions leading to wider intervals. Model choice and feature representa-
tion quality also affect effectiveness, robustness, and generalization.

For future improvements, we propose offering variations of conformal proce-
dures for generating explanations, exploring adaptive prediction sets and group-
balanced conformal prediction techniques. Enabling users to provide custom
uncertainty estimates and noise generation functions would enhance flexibility
and robustness. Extending our approach to regression and time-series data, as
well as producing explanations for data characteristics like bias and outliers, are
additional areas for enhancement.

Disclosure of Interests. The authors declare no relevant competing interests asso-

ciated with the content of this article.
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Abstract. Anomaly detection (AD), also referred to as outlier detec-
tion, is a statistical process aimed at identifying observations within a
dataset that significantly deviate from the expected pattern of the major-
ity of the data. Such a process finds wide application in various fields,
such as finance and healthcare. While the primary objective of AD is
to yield high detection accuracy, the requirements of explainability and
privacy are also paramount. The first ensures the transparency of the
AD process, while the second guarantees that no sensitive information
is leaked to untrusted parties. In this work, we exploit the trade-off of
applying Explainable AI (XAI) through SHapley Additive exPlanations
(SHAP) and differential privacy (DP). We perform AD with different
models and on various datasets, and we thoroughly evaluate the cost
of privacy in terms of decreased accuracy and explainability. Our results
show that the enforcement of privacy through DP has a significant impact
on detection accuracy and explainability, which depends on both the
dataset and the considered AD model.

Keywords: Explainable AI · Differential Privacy · Anomaly Detection

1 Introduction

Within the realm of data-driven decision-making, anomalies, which are data
points exhibiting statistically significant deviations from expected patterns, have
multifaceted impact. Anomalies are indicative of errors or inconsistencies within
the data, but they also hold the potential to reveal novel or critical situations.
Deviations are subsequently flagged for further investigation as they can be
highly informative, often signaling underlying issues or emerging trends. For
instance, in the context of cyber-security, an anomaly might indicate a secu-
rity breach or an attempted attack. In healthcare, it could highlight rare ill-
nesses. The timely identification of anomalies is crucial for maintaining security,
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efficiency, and safety in various fields, such as cyber-security, healthcare, net-
work monitoring, and transportation [2,25]. Therefore, developing highly effec-
tive Anomaly Detection (AD) systems is of paramount importance, as they rep-
resent a critical tool to address the challenge of detecting these anomalies [10].
By leveraging diverse statistical and machine learning (ML) techniques, AD
establishes a statistical baseline for normal behavior within a dataset.

Recently, a main requirement of AD systems emerged, in addition to that of
high predictive performance, which is the need of providing stakeholders with
relevant information on why and how a specific data point is considered an
anomaly, such as to enhance the transparency of AD systems, with the final aim
of fostering trust in these systems [5,19,47]. In addition to that, privacy guaran-
tees are also essential for AD in scenarios as data owners may delegate the AD
task to a third party in possession of the technical expertise needed for effective
AD. This third-party data access introduces privacy concerns, especially when
dealing with sensitive data such as healthcare information that includes confi-
dential patient medical histories [14,35,52]. In this context, we are confronted
with the challenge of ensuring both transparency and privacy in AD systems.
To ensure the privacy of data and the transparency of decisions, differential pri-
vacy (DP) [16] and explainable artificial intelligence (XAI) have been the main
methods attracting the attention of the research community, respectively.

A conflict however arises between ensuring transparency (through XAI) and
privacy (through DP) due to their opposing goals. XAI aims to provide insights
into model behavior for transparency, while privacy-preserving solutions obscure
data to prevent data leakage. Specifically, XAI techniques are proposed to demys-
tify the inner workings of complex ML models and AD through different types of
explanations such as, e.g., feature importance, which scores the contribution and
impact of each feature on the model’s output, permitting data owners to identify
which features in the data were most influential in identifying an anomaly. DP,
on the contrary, works by injecting calibrated noise into the data before it is
released, introducing a quantifiable privacy guarantee, and allowing control of
the level of information revealed about individual data points.

The intersection of XAI with privacy-preserving techniques presents com-
plex and nuanced challenges. As privacy concerns arise, the implementation of
privacy-preserving mechanisms often involves obfuscating sensitive information,
which may not only impact the performance and utility of AD models but also
their explainability. Therefore, there exists a critical need to precisely quantify
how privacy-preserving techniques such as DP affect the explainability of any
ML or AD systems [28]. In this paper, to investigate the complex relationship
among DP, AD, and XAI. As a XAI framework, we rely on SHapley Additive
exPlanations (SHAP) [30]. We focus on SHAP since it is widely applied for fea-
ture importance in tabular data. To investigate this interplay in the context of
AD, we formulate two research questions (RQs) and address them as follows:

1. RQ.1 To what extent does increasing DP noise affect the fidelity and stability
of SHAP values in AD? We explore XAI in DP-AD, specifically, we inves-
tigate SHAP with a focus on understanding how the SHAP values of AD
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models are affected by varying levels of DP noise on AD. By extensively ana-
lyzing quantitatively and qualitatively the output of SHAP, we shed light on
the potential trade-offs between privacy protection and model explainability.

2. RQ2. To what extent does the application of DP impact the performance and
explainability of AD algorithms designed for specific anomaly types (local vs.
global)? Leveraging the inherent specialization of AD algorithms towards dis-
tinct anomaly types (local vs. global), this research delves into the potential
for DP and its impact on their performance and explainability under varying
privacy constraints.

The paper is organized as follows. Section 2 discusses related work. Section 3
presents background on AD and DP. Section 4 details the problem and objec-
tives. Section 5 presents the experimental setup and evaluation settings. Section 6
showcases the obtained results, and analyzes their implications, offering valuable
insights for practitioners navigating the trade-off between privacy and explain-
ability in AD models. Section 7 concludes the paper.

2 Related Work

In this section, we first discuss studies that have applied either privacy-preserving
or explainability techniques to AD and then studies that have investigated the
impact of privacy on the model’s explainability. The related works highlight the
growing tension between privacy and explainability. While research has explored
privacy-preserving techniques and explainable models in many contexts, their
intersection with AD remains largely unaddressed. This is particularly crucial
because AD often deals with sensitive data and requires different considerations
compared to traditional classification and regression tasks. In this paper, we ana-
lyze this intersection to reveal insights into the trade-offs involved, guiding the
development of future robust, explainable, and privacy-preserving AD methods
that empower informed decision-making.

2.1 Privacy-Preserving Anomaly Detection

AD methods play a crucial role in diverse sectors such as finance, healthcare,
transportation, and smart grids [3,14,22,25]. Most existing methods rely pri-
marily on unsupervised ML techniques (e.g., [7,10,27,38,56]), with some super-
vised approaches as well (e.g., [24]). Numerous AD algorithms have been pro-
posed in the literature, and each of them comes with strengths and weak-
nesses and is suitable for specific contexts and data types. For example, Iso-
lation Forest (iForest) and Local Outlier Factor (LOF) are well suited for tab-
ular data, Deep Learning-based AD with auto-encoders is suitable for images
and time series data [10,11,29]. Several recent studies on AD have proposed
employing privacy-preserving techniques to address the critical challenge of bal-
ancing effective AD with individual data protection. These techniques miti-
gate public concern over data sharing, reduce the risk of re-identification from
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anonymized data, facilitate compliance with data privacy regulations like the
General Data Protection Regulation (GDPR), and foster collaboration between
organizations, leading to more comprehensive and effective AD across various
sectors [14,32]. To achieve AD while safeguarding data privacy, several meth-
ods have been employed such as DP [6,15,18], homomorphic encryption and
training on encrypted data [4,36,48], Secure Multi-Party Computation [54], and
even novel, custom-designed approaches [31], such as generating synthetic data
[35], or approaches for specific cases such as body movement and power systems
[6,26].

Specifically, among the various techniques, several studies have explored the
integration of AD algorithms and DP, e.g., [15,42]. Notably, Du et al. [15] show
how DP can improve the utility of AD and novelty detection, with a focus
on detecting poisoning samples in backdoor attacks. Jiang et. al [25] propose
a privacy-preserving social network model that utilizes restricted local DP to
sanitize user information collection. Moreover, Chukkapalli et al. in [12] propose
an approach for privacy-preserving AD in smart farming by adding noise to
individual farm data. Giraldo et. al [18] examine how AD can be combined with
DP to provide robust privacy and security for individuals. In addition to Degue
et al. [14] DP is employed with AD in correlated data to analyze the trade-off
between privacy level and detection accuracy of multivariate Gaussian signals.

Other studies have utilized homomorphic encryption and performed training
of AD models with encrypted data [4,20,54]. For instance, Alabdulatif et al. [4]
focus on cloud-based models and propose an AD model that preserves data pri-
vacy with reliance on ciphertext, while, Mehnaz et al. [36] present a framework
for efficient AD on real-time-series encrypted data. Guo et al. [20] propose an
AD scheme for encrypted video bitstreams with format-compliant encryption.
Zhang et al. [54] propose a semi-centralized privacy-preserving secure multiparty
computation protocol for the PCA-based AD. Other approaches have been pro-
posed based on synthesizing data and generating samples, such as [35]. Mayer
et al. [35] analyze many approaches for creating synthetic data and the utility
of the created datasets for AD in supervised, semi-supervised, and unsupervised
settings. Prioritizing privacy has been the main focus of these recent AD stud-
ies. However, explainability in AD is also emerging as a crucial area of research,
which we explore in the following subsection.

2.2 Explainable Anomaly Detection

Yuan et al. [53] discuss crucial challenges of AD such as trustworthiness, explain-
ability, and robustness. In this context, several studies explore methods for
extracting valuable insights for anomalies explanations [5] and as detailed in
[44]. For instance, Panjei et al. [44] categorize various types of explanations
and analyze existing techniques for interpreting anomalies, paving the way for
more meaningful AD analysis. Roshan et al. [46] demonstrate the use of XAI
to explain the results of the autoencoder AD model, and in [47] leverages the
Kernel SHAP method to explain network anomalies. Moreover, Ravi et al. [45]
explore the feasibility and compare the performance of several state-of-the-art
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XAI frameworks on Convolutional Autoencoders for building AD systems in
the visual domain. Finally, Tritscher et al. [49] highlight the growing interest
in categorizing and analyzing these explainable methods based on their access
to training data and the specific AD model. These works have demonstrably
investigated interpretability and leveraged XAI techniques for AD, but without
considering privacy concerns.

2.3 Impact of Privacy on Explainability

Recent years have seen a surge in studies investigating the interplay of privacy
with XAI [8,17,40] as both interpretability and privacy represent a requirement
for deploying ML models and datasets. Some studies investigate the inherent
trade-off between these concepts, while others propose novel methods to gener-
ate privacy-preserving explanations [23,37,50]. Bozorgpanah et al. [8] investigate
the impact of various privacy-preserving techniques such as masking, and DP
noise addition on the effectiveness of regression-based explainability methods
utilizing Shapley values and show different behaviors in Shapley for different
models by computing correlation metrics. Also, the authors in [40] show the
impact of DP on the interpretability of Deep Neural Networks particularly in
medical imaging application classification, and show significant visual differences
in explanation with DP. Another study [13] investigates the use of example-based
explainability models for retinal image analysis. The authors propose leveraging
Generative Adversarial Networks (GANs) to generate synthetic examples that
provide explanations for model predictions while preserving the privacy of the
original retinal images. Nori et al. [41], a method for adding DP to Explainable
Boosting Machines enables the training of interpretable classification and regres-
sion models with state-of-the-art accuracy while preserving privacy. Harder et
al. [21] addresses the challenge of balancing interpretability and privacy in ML
models by proposing a novel approach using simple models with locally linear
maps to approximate complex models. This method achieves high classification
accuracy while providing differentially private explanations for the classifica-
tions. Montenegro et al. [37] propose privacy-preserving GANs for privatizing
case-based explanations in classification tasks. This GAN incorporates a coun-
terfactual module, enabling the generation of both factual and counterfactual
explanations while safeguarding privacy. Moreover, Jetchev et al. [23] introduces
a novel, privacy-preserving algorithm for calculating Shapley values on decision
tree ensembles within a secure multi-party computation framework, ensuring
data privacy. Veugen et al. [50] propose the generation of privacy-friendly expla-
nations by leveraging local foil trees.

3 Background

This section introduces the concept of AD and the theoretical background rela-
tive to the AD algorithms considered in this work, namely LOF and iForest.
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3.1 Anomaly Detection Algorithms

The term anomalies refers to data points that deviate significantly from the
expected patterns or behaviors observed within a dataset. This deviation can
indicate various underlying factors, ranging from irregularities to errors in data
collection or processing. AD refers to the process of identifying these anoma-
lies [10]. In many applications, practitioners are particularly interested in finding
data points that deviate from their immediate neighbors locally (local anomalies)
or globally, referring to data points that deviate significantly from the overall
distribution of the data set rather than just its immediate neighbors (global
anomalies). To address both local and global anomalies, our study incorporates
LOF [9] (for local AD), and iForest [29] (for global AD), which are two unsu-
pervised models that proved scalable and efficient [39].

Isolation Forest. The core principle behind iForest [29] lies in constructing
decision trees using randomly sampled data to isolate outliers. Given the intrinsic
sparsity of anomalies relative to normal data points, their isolation pathways
within the iForest exhibit demonstrably shorter lengths, therefore, anomalies are
isolated faster within the constructed trees. In other words, the fewer branches
that need to be traversed in the tree to isolate a data point (indicating a shorter
path), the higher the likelihood that it is an anomaly.

To build a tree, it starts by randomly selecting a feature and a random split
value between its minimum and maximum. It then partitions the data into two
sets based on the chosen split value. This process is recursively repeated, building
out the decision tree structure. A pre-defined maximum tree depth can be set
to ensure consistency and avoid excessively deep trees. After that, an anomaly
score is computed as the average path length of a data point across all the trees
in the forest. Lower scores indicate a higher likelihood of being an anomaly, since
deeper paths, indicating more effort to isolate, suggest higher normality, while
shallower paths, signifying easier isolation, point toward potential anomalies.
Since iForest focuses on random partitioning, faster isolation of anomalies, and
independence from local density distribution, it is a strong choice for detecting
global anomalies that deviate significantly from the overall data distribution.

Local Outlier Factor. LOF [9] algorithm identifies anomalies by comparing
the local density of a data point with the density of its k-nearest neighbors. Local
density comparison assesses how much an individual point deviates from its sur-
rounding environment. LOF first identifies the k-nearest neighbors for each data
point. Then, it computes a local reachability density (LRD) that estimates how
dense the area surrounding a particular data point is compared to its neighbors.
Then, LOF calculates a score for each data point by comparing its LRD to the
average LRD of its k-nearest neighbors. Points with a significantly lower LRD
than their neighbors are considered potential outliers, and higher LOF scores
indicate higher local density and normality. In contrast, lower scores suggest
potential anomalies, deviating significantly from their surrounding data points.
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LOF focuses on identifying local anomalies and excels at this task by consider-
ing local density measures. This approach makes LOF ideal for identifying local
anomalies that deviate from the norm within their specific local area.

3.2 Differential Privacy

DP offers a mathematical framework to ensure individual privacy in data analy-
sis. It achieves this by injecting calibrated noise into various stages of the process,
including the input data itself [16], the output of ML models, or even the model
weights or internal parameters [1]. DP allows for extracting valuable statistical
insights from datasets while demonstrably protecting the privacy of any single
record within them. In essence, DP ensures that the overall statistical proper-
ties of the dataset remain preserved irrespective of the presence or absence of
any specific individual data point in the training set. A mechanism is defined
as any mathematical computation that applies to and interacts with the data.
Therefore, if the likelihood of any given result is nearly equal for two datasets
that differ by just one record, then the mechanism guarantees DP. The degree of
privacy is governed by a parameter known as ε, which dictates how closely the
outputs of a DP mechanism resemble each other when applied to two neighbor-
ing databases (i.e., datasets that are identical except for the presence or absence
of a single individual’s data). A smaller ε offers stronger privacy protection. In
Def. 1, we detail the DP inequality.

Definition 1 (Differential Privacy). A randomized algorithm M with
domain N

2 is (ε, δ)-differentially private if for all S ⊆ Range(M) and for all
x, y ∈ N

2 such that ‖x − y‖1 ≤ 1:

Pr[M(x) = S] ≤ eε · Pr[M(y) ∈ S] + δ,

For any subset S and neighboring datasets x, y, the probabilities of M on x are
less than eε times the probabilities on y, plus δ. This indicates that a randomized
algorithm M is (ε, δ)-differentially private. One common method for achieving
DP is by adding Laplace noise to query responses [55]. Let f be a function
representing the AD algorithm, and ε be the privacy parameter. The Laplace
mechanism adds noise according to the formula:

f̂(D) = f(D) + Lap
(

Δf

ε

)
(1)

where f̂(D) is the DP query result on dataset D, f(D) is the true query result,
Δf is the sensitivity of the function f , and Lap(λ) represents Laplace noise with
scale parameter λ. An alternative approach is to add Gaussian noise to query
responses, which adds Gaussian noise instead of Laplacian noise.
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4 Problem Formulation and Approach

We aim to investigate the effectiveness of AD techniques, specifically iForest and
LOF, in identifying two types of anomalies within a dataset: local and global out-
liers (RQ2 ). This investigation is conducted within a privacy-preserving setup,
where we employ DP techniques. Crucially, we also aim to analyze how the SHAP
explanations of the AD models change as a result of employing DP. Estimating
these explainability changes will allow us to assess the impact of the privacy-
preserving mechanisms on the reasoning behind the identified anomalies. To
achieve our goals, we will employ Privacy-Preserving AD with DP on the train-
ing data level. This means that we will introduce calibrated noise directly to
the training data itself before applying the AD algorithms. Following the noise
injection into the data, we employ SHAP to analyze how feature contributes to
anomaly scores change under different ε-DP guarantees (RQ1 ). Figure 1 sum-
marizes the steps followed for the conducted analysis. Let D be a dataset D: X
∈ R

d ∈ R. The AD algorithm is trained on D in an unsupervised manner to
estimate the anomaly score yi for each datapoint xi ∈ X . To ensure a robust
level of privacy protection measured by ε-differential privacy (ε-DP), we aim for
small values of ε to minimize the influence of individual records on the overall
performance. We introduce noise into the data using either a Laplacian or Gaus-
sian distribution, with varying ε values (0.01, 0.1, 1, and 5). Subsequently, we
retrain the AD models on the data augmented with noise. This process enables
us to assess the impact of DP on both the performance and explainability of
the models. Specifically, we compare the AD performance of models trained on
noisy and original data using diverse metrics, focusing on understanding how DP
affects the features driving AD with SHAP. Moreover, we explore the trade-off
between privacy and explainability by employing SHAP.

Fig. 1. Overall scheme of the experimental setup
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5 Experimental Setting

This section describes the settings of our experiments, including the datasets,
the procedures to train and evaluate the AD models, and the metrics used to
quantify the change in explainability.

5.1 Datasets Description

We consider three datasets that are widely used for AD:

1. Mammography [51]: The mammography dataset corresponds to radiological
scans to diagnose breast cancer. It consists of 6 features and 11183 records,
of which 10923 are non-anomalous and 260 are anomalous.

2. Thyroid dataset [43]: The thyroid dataset corresponds to thyroid diseases.
It comprises 21 features and contains 7,200 records, of which 6,666 are non-
anomalous and 534 are anomalous.

3. Campaign (bank) dataset [43] includes banking information about individu-
als. It has 62 features and contains 41188 records, of which 36548 are non-
anomalous and 4640 are anomalous.

5.2 Anomaly Detection Model Training

We perform hyperparameter tuning of the AD models using a Grid search
with cross-validation (for a separate subset of the data). The hyperparameters
that undergo an optimal selection aremax features, n estimators for iForest, and
n neighbors for LOF. It is important to emphasize that all the datasets are
labeled. However, as iForest and LOF are unsupervised AD algorithms, we use
the labels only for evaluating their performance, as illustrated in Fig. 1.

5.3 Evaluation Metrics

AD Performance Metrics. We evaluate the performance of the AD model in
terms of predictive performance and output consistency. As for the former, we
use precision, because it focuses on the ratio of true anomalies identified among
all flagged data points, and Area under the ROC curve (AUC) because it is
suitable for imbalanced datasets as metrics. Precision measures the proportion
of true positives among all predicted positives, while AUC evaluates the model’s
ability to distinguish between positive and negative classes. As for the latter, we
compute the fidelity score, which measures the degree of agreement between the
predictions of two different models on the same set of inputs (i.e., how closely
the outputs of one model mirror those of another). In our case, the fidelity
score quantifies the agreement between the AD model’s outputs before and after
applying DP (as shown in Fig. 1).
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Quantitative Analysis of SHAP Difference Metrics. To quantify the
SHAP value changes in scenarios with and without DP, we use three recently-
proposed metrics, ShapGAP-Euclidean and ShapGAP-Cosine distances [34], and
ShapLength [33]. While initially proposed for comparing SHAP values between
black-box models and their corresponding surrogate white-box models, we lever-
age these metrics for a different purpose. Specifically, we compute the ShapGAP
and ShapLength between SHAP values of data points before and after adding
DP noise, with the final aim of quantifying the impact to assess how DP alters
the explainability of AD models. More details about these metrics are provided
in the following:

1. ShapGAP-Euclidean Distance [34] (Eq. 2): ShapGAP-Euclidean pro-
vides a magnitude-based measure of the difference between the SHAP values
generated for the same data point from two models S (without and with DP)
across n data points xi of a dataset D. It is useful for understanding the
overall magnitude of changes.

ShapGAPL2(D) =
1
n

n∑
i

||Swithout DP(xi) − Swith DP(xi)||2 (2)

2. ShapGAP-Cosine Distance [34] (Eq. 3): ShapGAP-Cosine computes the
magnitude and directional relationship of the difference between two SHAP
values of the same point from two models S (without and with DP) across n
data points xi of a dataset D. The ShapGAP-Cosine can range between 0 and
2, where higher values indicate higher dissimilarity. It is useful for capturing
how similar the directions are, even if the magnitudes differ.

ShapGAPCos(D) =
1
n

n∑
i

(1 − Swithout DP(xi) · Swith DP(xi)
||Swithout DP(xi)||2||Swith DP(xi)||2 ) (3)

3. ShapLength [33]: ShapLength is a model-agnostic and computationally effi-
cient metric for assessing how human-understandable a model is. It builds
upon the p%-complete explanation property, which finds the smallest set of
features whose SHAP values sum exceed a defined threshold. Shap Length
represents the number of features included in this p%-complete explanation.
A higher ShapLength indicates a model that relies on a larger number of
features or complex interactions, making it harder to explain and interpret.

6 Experimental Results

In this section, we quantitatively evaluate the impact of DP on the effectiveness
(Subsect. 6.1) and explainability of the AD models. Explainability is assessed
through quantitative and qualitative evaluations, in Subsects. 6.2 and 6.4,
respectively.
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Table 1. AUC and precision of iForest across the mammography, thyroid, and bank
datasets, without DP and with varying DP-ε values, considering the two noise-adding
mechanisms: Gaussian and Laplace.

Dataset Metric Without Privacy Laplace Gaussian

ε ε

5 1 0.1 0.01 5 1 0.1 0.01

mammography AUC 74 73 72 66 53 76 72 69 54

Precision 90 91 90 88 84 92 90 89 85

thyroid AUC 89 54 56 51 50 54 53 53 48

Precision 90 58 60 56 55 58 58 58 53

bank AUC 64 58 57 52 52 57 56 51 49

Precision 68 64 63 58 58 63 62 58 55

Table 2. AUC and precision of LOF across the mammography, thyroid, and bank
datasets, without DP and with varying DP-ε values, considering the two noise adding
mechanism: Gaussian and Laplace.

Dataset Metric Without Privacy Laplace Gaussian

Epsilon Epsilon

5 1 0.1 0.01 5 1 0.1 0.01

Mammography AUC 74 74 74 74 66 74 74 73 70

Precision 91 91 91 91 88 91 91 91 89

Thyroid AUC 56 56 56 53 51 56 57 53 51

Precision 60 60 60 58 56 60 61 58 56

Bank AUC 59 59 59 59 59 59 59 59 59

Precision 65 65 65 64 65 65 64 64 64

6.1 Impact of Differential Privacy on Anomaly Detection Models

We start by analyzing the impact of employing DP on the performance of
iForest and LOF. Table 1 reports the AUC and precision of iForest across the
three considered datasets (mammography, thyroid, and bank), and across the
two noise-adding mechanisms (Gaussian and Laplace) for varying values of ε.
When DP is not employed, iForest achieves an AUC of 74%, 89%, and 64% for
mammography, thyroid, and bank datasets, respectively. A precision of 90% for
both the mammography and thyroid datasets, and 68% for the bank dataset.
As DP is introduced, iForest generally exhibits decreased performance compared
to the non-DP models. AUC and precision decrease already for high values of
ε (i.e., less privacy). As expected, the difference is higher for smaller values of
ε (i.e., more privacy). By decreasing ε in the Laplace case, the AUC decreases
from 73% to 53% for the mammography dataset, from 54% to 50% for the thy-
roid dataset, and from 58% to 52% for the bank dataset, and a similar decrease
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happens when decreasing ε with Gaussian noise. This is except for one case, that
is for the mammography dataset for ε = 5 with Gaussian.

Table 2 reports the AUC and precision achieved by LOF across three consid-
ered datasets. Results show that in the case without applying DP, LOF achieves
an AUC of 74%, 56%, and 59% for mammography, thyroid, and bank datasets,
respectively, and a precision of 91%, 60%, and 65%. As DP is introduced, unlike
with iForest, we observe a similar value for both the AUC and the precision
across all datasets and all values of ε except for ε = 0.01.

This suggests that while iForest initially outperformed LOF without DP,
LOF proved to be more robust and resilient to DP, maintaining its effectiveness
under such constraints better than iForest, potentially due to its focus on k-
nearest neighbors and local data density. This investigation suggests a trade-off
between local and global outlier detection capabilities under DP. We explore this
trade-off further with respect to SHAP explanations.

6.2 Impact of Differential Privacy on SHAP Explanations

Figures 2 and 3 report the results of ShapGap-Cosine and ShapGap-Euclidean
distances along with the fidelity accuracy and ShapLength metrics of iForest and
LOF, across the three datasets and for the various values of ε considered. Each
row of the plot focuses on a specific metric on the x-axis. The y-axis consistently
displays both ShapGap-Cosine and ShapGap-Euclidean distances across 5 runs
for each ε experiment. Each point on the plots corresponds to the average of the
corresponding ShapGap distance across all data points of each dataset for one
single run. In an ideal scenario, the AD models with and without DP should
agree to 100%, producing identical outputs for all data points.

iForest: Figure 2, presents the results for iForest across the three datasets.
Results show that ShapGAP-Euclidean and ShapGap-Cosine distances across
all datasets increase as the privacy guarantee increases (i.e., ε decreases). This
difference means that the vectors of the features in the explanations extracted
using SHAP before and after the application of DP change in both magnitude
(captured by the Euclidean) and direction (captured by the Cosine). These find-
ings reveal that as the ε decreases, the magnitude of SHAP values tends to devi-
ate more from those obtained in the absence of privacy constraints, for instance,
a ShapGap-Cosine value close to 1 indicates high dissimilarity in the magnitude
and direction of the SHAP value vectors before and after applying DP with ε
of 0.01. Conversely, ShapGap-Euclidean has no upper bound, with higher values
signifying greater dissimilarity. Specifically, the ShapGap-Euclidean metric for
the mammography dataset ranges between 0 and 10, while for the thyroid and
bank dataset, it ranges between 0 and 100. In contrast, the ShapGap-Cosine met-
ric (Fig. 2 a,b,c bottom and up right) scored between 0 to 1 for both datasets
depending on ε. The results also show a consistent trend between the value
of ε and the fidelity accuracy (Fig. 2 a,b,c up right), as ShapGap-Cosine with
smaller ε values correspond to lower fidelity accuracy, progressively decreasing
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(a) Mammography dataset (b) Thyroid dataset

(c) Bank dataset

Fig. 2. Fidelity Accuracy of iForest and average ShapGap-Euclidean distance,
ShapGap-Cosine distance and ShapLength computed across the explanations extracted
using SHAP for the various iForest models and the various values of epsilon, across (a)
Mammography, (b) Thyroid and (c) Bank datasets. The vertical dashed line represents
the without DP metric presented at the x-axis.

from 100% relative to the ideal scenario when DP is not applied. This trend is
evident for both distances (Fig. 2 a,b,c up) and across all the datasets.

Another notable trend is the negative correlation between fidelity scores and
distance values (i.e., higher distances imply lower fidelity scores, and vice versa).
In other words, when the model’s reasoning aligns more closely with the origi-
nal non-DP model (higher fidelity scores), the distances between SHAP values
are minimized, indicating a stronger agreement in the influence of features on
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predictions. This trend is observable for both ShapGap-Euclidean and cosine
distances, showing that both the magnitude and direction of the SHAP value
vectors are closely linked to the model’s reasoning and fidelity. This result sug-
gests a correlation between the difference in explanations and the model’s ability
to faithfully represent the original predictions, as indicated by the fidelity scores.

We now discuss the complexity captured by the value of ShapLength. The
findings vary based on the privacy budget (ε) value for DP and depending on
the dataset. For the mammography dataset (Fig. 2a bottom), observations at ε
values of 1 and 5 indicate stability and consistency in ShapLength, maintaining
an average value of 4.95, identical to that of the model without DP. This implies
that the implementation of DP, while ensuring a moderate level of privacy pro-
tection, does not impact the ShapLength, preserving the explainability complexity
of the model as in the non-DP setting. However, at lower ε values, specifically
0.1 and 1, there is a noticeable reduction in ShapLength to 4.5, indicating a
slight deviation in model complexity compared to the model without DP. This
indicates that DP with stricter privacy has reduced the model’s complexity. For
the thyroid dataset (Fig. 2b bottom), we observe a different outcome: the Shap-
Length is highly affected by the application of DP, as with the decrease of ε,
the ShapLength is increasing. When observing it with the SHAP Gap distances,
smaller ShapLength aligns with larger Euclidean and Cosine distances. The bank
dataset (Fig. 2c bottom) exhibits a similar outcome in ShapLength compared to
the mammography, as we observe a decrease in SHAP Length with smaller ε
values even with ε = 5 where ShapLength has also decreased.

Our investigation reveals a privacy-explainability trade-off in applying DP to
iForest models with SHAP explanations. Stricter privacy leads to increased diver-
gence in SHAP values (magnitude and direction), decreased fidelity to the orig-
inal model, and simpler models with less detailed explanations (reduced Shap-
Length) and are dependent. Conversely, relaxed privacy settings show better-
preserved interpretability with explanations closer to the non-DP model and
stable model complexity. This negative correlation between explanation diver-
gence and fidelity scores suggests a link between interpretability and the model’s
ability to faithfully represent the original model’s predictions and explanations.

LOF: Figure 3 shows the ShapGap metrics for the performance of the LOF
model, highlighting the association between model fidelity and privacy levels
achieved through DP (Fig. 3 a,b,c up). Across the mammography, thyroid, and
bank datasets, model fidelity remains impressively high, ranging from 90% to
100% for ε values of 0.1, 1, and 5, nearly mirroring the fidelity seen in the AD
model without DP. However, a notable fidelity reduction occurs at ε = 0.01,
with drops by approximately 5%, 40%, and 10% for the mammography, thy-
roid, and bank datasets, respectively. Despite this high fidelity, we observe shifts
and increases in Euclidean distances (Fig. 3 a,b,c up left), indicating alterations
in the scale of the underlying data that fidelity scores do not capture. Con-
versely, the ShapGap-Cosine distances (Fig. 3 a,b,c up right), remain largely
stable across 0.1, 1, and 5, ε values, suggesting that the directionality of the
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(a) Mammography dataset (b) Thyroid dataset

(c) Bank dataset

Fig. 3. Fidelity Accuracy of LOF and average ShapGap-Euclidean distance, ShapGap-
Cosine distance, and ShapLength computed across the explanations extracted using
SHAP for the various iForest models and the various values of ε, across (a) Mam-
mography, (b) Thyroid and (c) Bank datasets. The vertical dashed line represents the
without DP metric presented at the x-axis.

SHAP value vectors stays consistent despite the application of DP except for
ε of 0.01. Specifically, for the mammography dataset, it increases to around
0.3. For the thyroid, and bank dataset, the ShapGap-Cosine also increases but
stays within a very low cosine measure of around 0.07 and 0.012 respectively,
indicating a low magnitude and direction of change within SHAP values. This
phenomenon suggests that while the overall magnitude of model explanations is
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influenced by DP, the vector direction reflecting feature contributions towards
predictions remains minimally unaffected with DP for LOF.

Analyzing model complexity through the ShapLength (Fig. 3 a,b,c bottom),
we find that in both the mammography and bank datasets, ShapLength remains
relatively unchanged for ε values of 0.1, 1, and 5, suggesting minimal variations
in model complexity. However, at a ε of 0.01, we notice a decline in ShapLength,
which decreases from 4.925 to 4.725 in the mammography dataset and from 58.8
to 58.4 in the bank dataset. This indicates that the complexity of the model
decreases slightly under more strict privacy conditions. In contrast, the thyroid
dataset demonstrates a different pattern: ShapLength stays closely aligned with
the small variance in complexity without DP, except at a ε of 0.01, where we
note a relatively small increase in the variance of complexity as the privacy level
increases across the different runs (from 14.935 to 14.96).

The observed inconsistencies across datasets in fidelity and ShapGap-
Euclidean and Cosine distances likely stem from the inherent randomness intro-
duced by DP and the chosen AD algorithms. While DP guarantees privacy, its
added noise can alter various data characteristics, therefore the noise level and
privacy level should be carefully chosen in a way that the overall distribution
of the data is not largely affected. Therefore, this means that fidelity scores
can remain elevated despite variations in Euclidean distance within higher ε.
This also suggests that the data distribution undergoes modifications caused by
the DP noise, but these modifications are limited such that the overall statisti-
cal properties remain largely preserved, thus maintaining high fidelity and low
ShapGap-Cosine.

As anticipated, these findings indicate that iForest is more sensitive to data
points that significantly deviate from the overall distribution of the data, while
LOF more easily detects deviations within specific data regions. Since DP focuses
on preserving overall data statistics, it can alter the distribution of the data,
impacting how anomalies appear in the global picture. This, in turn, affects the
SHAP values in iForest, as features contributing to isolation might be masked by
the DP noise. LOF focuses on Local outliers and analyzes how different a data
point is from a local perspective. DP’s impact on local neighborhoods might be
less significant compared to its effect on the entire data distribution. Addition-
ally, LOF’s SHAP values might focus on features relevant to the local anomaly
score, which might be less sensitive to global distribution changes caused by DP.

6.3 ShapGap Distribution Analysis

To further explore the distribution of SHAP divergence across data points, we
report the findings using box plots for ShapGap-Euclidean and Cosine. In Fig. 4,
we visualize the distribution of ShapGap-Cosine for iForest for all data points
across the three datasets. We observe that for ε values of 1 and 5 across the
three datasets, the ShapGap-Cosine has a lower spread in comparison to smaller
ε of 0.1 and 0.01. This low spread indicates that most of the data points have
a small cosine distance between 0 and 0.25, which means closer to the non-DP
scenario. However, for smaller ε values (0.1 and 0.01), we see a wider spread
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of the ShapGap-Cosine distribution. The values range between 0 and 2 for ε =
0.01 with the mammography dataset, between 0.25 and 1.75 for thyroid, and
between 0.6 and 1.4 for bank. This wider distribution suggests a significant
portion of data points exhibiting high ShapGap, deviating from the behavior
observed without DP. Regarding Euclidean distances, Fig. 5 we visualize the
distribution of ShapGap-Euclidean for iForest across all data points for each
dataset. We observe that for ε values of 0.1, 1, and 5 across the three datasets,
the ShapGap Euclidean distance has a small distribution compared to ε of 0.01.
This indicates that the data points with small Euclidean distances (ranging
between 0 and 20 for mammography, from 0 to 25 for thyroid, and from 0 to 50
for the bank), are closer to the non-DP scenario. However, for smaller ε values
(0.01), we note a larger distribution of ShapGap Euclidean measures reaching
up to 500 in the bank dataset, which is extremely large. Figure 6 shows the
distribution of ShapGap Cosine across all data points with LOF. For ε values of
0.1, 1, and 5, the distribution of ShapGap Cosine distance is relatively small (less
than 0.2 for all the datasets), indicating that the SHAP values with and without

(a) Mammography dataset (b) Thyroid dataset (c) Bank dataset

Fig. 4. Distribution of iForest ShapGap-Cosine distances across a) Mammography, b)
Thyroid, and c) Bank Datasets for the various ε values

(a) Mammography dataset (b) Thyroid dataset (c) Bank dataset

Fig. 5. Distribution of iForest ShapGap-Euclidean distances across a) Mammography,
b) Thyroid, and c) Bank Datasets for the various ε values
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(a) Mammography dataset (b) Thyroid dataset (c) Bank dataset

Fig. 6. Distribution of LOF ShapGap-Cosine distances across a) Mammography, b)
Thyroid, and c) Bank Datasets for the various ε values

(a) Mammography dataset (b) Thyroid dataset (c) Bank dataset

Fig. 7. Distribution of LOF ShapGap-Euclidean distances across a) Mammography, b)
Thyroid, and c) Bank Datasets for the various ε values

DP are similar for most of the data points, suggesting minimal impact on the
data due to DP at these privacy levels. For ε equal to 0.01, the distribution of
ShapGap Cosine distance is larger (ranging from 0 to 1.75), indicating greater
differences between SHAP values with and without DP. Regarding Euclidean
distances, Fig. 7 visualizes the distribution of ShapGap Euclidean for LOF across
all data points. We observe that for ε of 0.1, 1, and 5, for the 3 datasets, the
ShapGap Euclidean concentrates around at most between 0 and 1, and there is no
diverged distribution. While only for the very small ε we observe the distribution
of ShapGap Euclidean diverges covering a range between 0 and 6 as maximum,
which is still relatively very small compared to the magnitude change scale of
iForest. These findings suggest that moderate privacy levels have minimal impact
on SHAP with LOF. However, iForest appears to be more sensitive to the DP
noise, evidenced by the large distribution of ShapGap distances and reflected by
the distance distribution across the data points.
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6.4 Impact of Differential Privacy on SHAP Summary Plots

After having quantitatively analyzed the impact of DP on SHAP values, we
now examine the visual interpretation and analysis of SHAP summary plots
to illustrate how DP noise influences the interpretability of SHAP explanations
visually. Figure 8 and Fig. 9 present the summary plots relative to the mammog-
raphy dataset for the iForest and LOF models respectively1.

(a) without DP (b) ε=5

(c) ε=0.01

Fig. 8. Summary plot for iForest for the mammography dataset with various ε

Figure 8 shows that the feature Contrast emerges as the most crit-
ical feature for the model’s prediction, while a low order moment and
Root mean square noise remain the two least important regardless of the level
of privacy ε introduced. This fact indicates that, for some features, the level of
importance remains consistent even after applying DP, regardless of the value of
ε. Instead, concerning other features, such as Gradient Strength, Area of object,
and average gray level, their importance according to SHAP varies with ε. For
example, for a low level of privacy protection (e.g., ε = 5), the consistency con-
cerning the scenario without DP is maintained considering both feature impor-
tance and feature contribution, as observable by the similar color distributions
1 The summary plots display SHAP values for each feature and data point, indicating

their impact on classifying normal or abnormal. On the x-axis, SHAP values show
a feature’s influence on predictions, with positive or negative values indicating a
tendency towards an abnormal or normal prediction, respectively. The y-axis ranks
features by importance, and point colors signify feature values-red for high and blue
for low.



DP for AD: Analyzing the Trade-Off Between Privacy and Explainability 313

in the various scenarios. If, instead, stronger privacy guarantees are set in place
(e.g., ε = 0.01), both the order and contribution of the three features significantly
change. Indeed, the clear distinction between blue and red fades, indicating that
the significant level of noise obscures the clarity of SHAP values, rendering the
interpretation of output trends more difficult2 Figure 9 shows the summary plots
obtained for the LOF model. We observe that the contrast feature is consistently
the most influential, irrespective of the value ε-DP. Specifically, we note that
higher values of the contrast feature continue to be highlighted in blue and have
a positive impact on the output, indicating their significance, while lower values
are consistently highlighted in red and have negative SHAP values. Instead, for
ε = 0.01, the SHAP values are no longer distinguishable by color, signifying a less
clear impact of feature values on the output of the model. Concerning the other
features, there is a variation in their order of influence between the various ε,
yet the underlying rationale behind their values remains consistent across most
ε values. However, for a stricter privacy budget of ε = 0.01, there is a notable
departure from this consistency, as the distinction between blue and red becomes
less clear, thus reducing considerably the interpretability of the model through
this plot. These findings align with the ShapGap and ShapLength measures,
demonstrating that iForest exhibits a greater sensitivity to DP perturbations
compared to LOF in terms of SHAP interpretability. This is evidenced by the

(a) without DP (b) ε=5

(c) ε=0.01

Fig. 9. Summary plot for LOF for the mammography dataset with various ε (Color
figure online)

2 As similar trends in the SHAP summary plots are observed in the two other datasets,
we omit to show them and the relative discussion. To illustrate the visual changes,
we show summary plots for only two ε values (0.01 and 5).
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more pronounced shift observed in the SHAP summary plots for iForest with
decreasing privacy budgets. While both models experience a decline in inter-
pretability for stricter privacy constraints, LOF retains a relatively clearer dis-
tinction between influential and non-influential features even at lower ε values,
specifically at ε equal to 0.01, where iForest’s interpretability obscures signif-
icantly. Another finding is that while applying DP safeguards individual data
privacy through noise injection, this mechanism hindered the interpretability of
SHAP summary plots. DP’s impact manifests in different ways such as distorted
features importance and misleading interpretations. Firstly, the introduced ran-
domness leads to fluctuations in SHAP feature attributions, making it difficult
to accurately detect their true impact on model predictions. Secondly, the noise
obscured data patterns, diminishing the overall precision of the AD and SHAP
values and affecting the extraction of meaningful insights.

7 Conclusion

In this paper, we investigate the impact of differential privacy (DP) on the
performance and explainability of anomaly detection (AD) models. We compare
the performance of Isolation Forest (iForest) and Local Outlier Factor (LOF)
under various DP noise conditions and across multiple datasets. The results show
that while iForest initially outperforms LOF without DP, LOF exhibits greater
robustness to DP. Furthermore, we analyze the impact of DP on explainability
by comparing them across different distance metrics, both with and without DP
applied. For explainability, we use SHapley Additive exPlanations (SHAP). We
observe a correlation between the DP parameter (ε) and the magnitude and
direction of changes in SHAP values across the metrics. Notably, the impact of
DP on SHAP values manifested diversely across datasets and with the different
AD techniques. This implies that distinctive data characteristics might affect the
sensitivity of SHAP values to DP noise. These findings underscore the trade-off
between privacy and explainability when employing DP alongside SHAP values
in AD. For future work, we aim to explore techniques to mitigate the effect of
DP on SHAP values while upholding adequate privacy guarantees. Additionally,
we aim to evaluate the effects of DP on other explainability techniques utilized
with deep learning-based AD methodologies.
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Abstract. Generative AI tools powered by Large LanguageModels (LLMs) have
attracted significant attention from the banking, finance, legal, and technology
sectors due to their ability to generate and articulate coherent human-like text
and images. Legal firms have raised ethical concerns regarding LLM’s ability to
emulate legal reasoning, accountability of erroneous outcomes, and security and
privacy of confidential legal data. To address these challenges, this research paper
proposes a blockchain-based monitoring framework that ensures the responsi-
ble and secure application of Generative AI in drafting legal decisions by utiliz-
ing the anonymized output from an existing eXplainable Artificial Intelligence
(XAI) algorithm within a law firm, which assists in legal decision-making. The
lawyers are expected to comprehend explainable algorithmic decisions expressed
in terms of probabilities and feature importance instead of textual explanations.
The immutability and decentralization of blockchain technology form the basis of
a transparent and tamper-proof record-keeping system. It ensures consistent and
tamper-resistant responses by generative AI, which has been used by lawyers in
the past. A case study on data security and tort liability claims on banking data
breaches is presented to demonstrate the practical application.

Keywords: Generative AI · Explainable AI · Blockchain · Banking · Law

1 Introduction

Legal decision-support systems driven by artificial intelligence (AI) algorithms to assist
human lawyers in legal reasoning can be attributed to advances in eXplainable AI (XAI)
techniques and accessibility of high-quality data [1]. The launch of Generative AI tools
based on Large Language Models (LLMs), such as OpenAI’s Generative Pre-trained
Transformer (GPT) and Google AI’s Google Bard, have attracted significant attention
from the banking, finance, legal, and technology sectors due to its ability to generate and
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articulate coherent human-like text and images [2]. Experimental studies have demon-
strated that the automated legal reasoning of LLMs is getting closer to human legal practi-
tioners. For Instance,GPT-3.5 achieved aC+grade in actual law school examinations [3],
and GPT-4 successfully passed the Uniform Bar Exam [4]. The experiment on the Uni-
form Bar Exam was conducted on multiple choice questions and open-ended questions
in a tightly controlled environment under a restricted set of prompts and parameters.

Law preserves justice and societal equilibrium. Therefore, algorithms cannot be held
accountable for making incorrect high-stakes legal decisions. In-house banking lawyers
(stakeholders) and law firms are actively seeking potential use cases for these tools by
gaining an in-depth understanding of the decision-making capabilities, data utilization,
and security protocols of AI tools [5]. Generative AI usage has three main ethical con-
cerns: (a) the challenge to replicate nuanced legal reasoning, (b) the accountability of
erroneous outcomes, and (c) themishandling or unauthorized access to confidential infor-
mation. In response to these ethical and security concerns, firms across multiple domains
in Europe, the USA, and Canada have restricted their employees’ use of generative AI
tools to prevent potential data breaches.

This research integrates blockchain technology to monitor and govern the usability
of Generative AI tools and XAI decision-making models by human legal professionals.
It aims to make the following contributions:

(a) Application of Generative AI in Legal Drafting: It presents the ethical and safe
application of Generative AI tools to support the drafting of legal decisions derived
fromapre-existingXAI algorithm.GenerativeAI is not used for the direct processing
of legal facts and pieces of evidence. Instead, it processes the raw but anonymized
output (or detailed decision analysis) from an XAI model for efficient drafting of
various correspondence for anticipated pre-litigation decisions.

(b) Blockchain for Responsible AI: It proposes the responsible use of AI tools by trans-
forming the anonymized input prompt and the AI-generated text into a hash value, a
unique digital fingerprint of the data. The hash values are then permanently recorded
on a blockchain network for a tamper-evident ledger for future auditing purposes.

(c) Case Study on Data Security and Tort Claims: A case study on tort liability claims
on banking data breaches is presented where the XAI Evidential Reasoning (ER)
algorithm was used to give legal decisions, usability in terms of quality text gen-
erated by four LLM models was tested. Two blockchain networks, Ethereum and
Hyperledger Fabric, were tested to audit the AI-generated content.

2 Legal Decisions by AI

The literature on the XAI framework for legal knowledge representation based on
Abstract Dialectical Frameworks (ADF), Hybrid Rule-Base Expert Systems, and
Explainable Deep Learning is summarized in Table 1. ADF is a framework that rep-
resents arguments or legal propositions and their relationships. It uses logical conditions
to determine the status of each node. ADFs are flexible and can be adapted to model
a range of legal arguments. However, as altercations grow in complexity, the compu-
tational resources needed can increase significantly. Hybrid Rule-Base Expert Systems
combine a set of rules with case-based reasoning to simulate the decision-making abil-
ities of human experts. Each technique provides unique perspectives on constructing



Blockchain for Ethical and Transparent Generative AI Utilization 321

legal arguments, transparent decision-making for tort liability claims, summarization of
legal texts, and representation of statutory laws through rules in expert systems. It is
crucial to note that widely recognized AI interpretation techniques such as LIME (Local
Interpretable Model-Agnostic Explanations) [6], Shapley additive explanations (SHAP)
[7], LRP (Layer-wise Relevance Propagation) [8], and Taylor decomposition [9] are
inapplicable in legal context because AI-driven legal decision-making is not conducted
through opaque, ‘black-box’ models.

Table 1. XAI for Legal Knowledge Representation

Approach Author and Year Main Contribution

Abstract Dialectical
Frameworks (ADF)

J. Collenette, et al., 2023 [10] Comparative study on the
primary approach of legal
reasoning based on HYPO
[11], CATO [12], and IBP [13]
with ADF [14]. ADF is a
directed graph that represents
and reasons with complex legal
argumentation structures

Hybrid Rule-Base: Legal
Knowledge and Data-Driven

S. Sachan,
et al., 2021 [15]

A hybrid rule-based method
based on human expert
knowledge and data-driven
training for transparent
decisions on tort liability
claims

Explainable Deep Learning M. Norkute, et al., 2021 [16] Legal text summarization by
highlighting the text based on
attention score by an
explainable deep-learning
model

Rule-Base M. Sergot, et al., 1986 [17]
U. Schild, 1990 [18]

Both papers have utilized a
rule-based approach to fit
statutory law representation but
are less apt lower legal layers,
with the assumption that users
will provide case law
knowledge

Legal and technical challenges ofGenerativeAI tools,AI algorithms, andBlockchain
technology are demonstrated in Fig. 1. A singular technology is not good enough to boost
responsible AI. For instance, blockchain provides immutable data storage, but it conflicts
with the data protection mandate on the “Right to be Forgotten” because once personal
information is recorded on the blockchain, it cannot be erased [19]. Therefore, multiple
technology integration is required to overcome each other shortcomings, as proposed in
this research.
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Adopting AI and blockchain technologies in the legal sector requires a compre-
hensive architectural framework with ethical considerations such as compliance with
data protection law, confidentiality and integrity, quality assurance, and security. The
proposed approach complies with stringent data protection laws such as the General
Data Protection Regulation (GDPR) and the California Privacy Rights Act (CPRA) to
respect privacy rights, the “Right to be Forgotten” [20], and the “Right to Explanation
[21].” It provides a dual-layered solution, hashing sensitive data for blockchain storage
(on-chain) and offloading larger files to secure cloud services (off-chain).

The regular audits and checks ensure that the automated content generated by AI
tools utilized by humans (lawyers) aligns with legal principles and precedents. It verifies
the authority and responsibility of humans to promote accountability. Robustness and
security are crucial for trustworthy AI and blockchain systems. The proposed multi-
technology approach can withstand the tampering of prompts containing anonymized
legal decisions derived from XAI and AI-generated text by malicious actors through
the use of blockchain’s immutable record-keeping. Commitment to ethical standards
promotes transparency and control over personal data and accountability of human users,
which is particularly important in sensitive fields such as legal services, finance, and
banking.

Fig. 1. Legal and Technical Challenges
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3 Blockchain for Accountability in AI

The decentralized solution by blockchain technology eliminates the need for trust in a
central authority by utilizing an immutable and distributed ledger consisting of times-
tamped transaction blocks [22]. These blocks are linked through the hash of information
stored in the previous block to ensure the integrity of transactions. Any attempt to mod-
ify a transaction in one block would require the alteration of subsequent blocks, which
is computationally expensive for malicious actors. Therefore, the data recorded on the
blockchain remains unaltered and secure, which provides a robust solution to preserve
accountability and trustworthiness in AI decision-support systems [23].

Literature on AI-powered auditing systems has acknowledged the potential of com-
bining Blockchain and AI technologies for developing advanced auditing systems [24].
However, there is a need for more research on the productive integration of blockchain as
a security layer in AI-based systems. A study proposes the utilization of the InterPlane-
tary File System (IPFS) as a potential solution for accountability of explainable artificial
intelligence (XAI) decisions [25]. It points out the inherent storage limitations associated
with the Ethereum blockchain and suggests IPFS’s decentralized storage capabilities to
manage large datasets effectively. However, the proposed solution lacks experimental
results on robustness by performance metrics such as throughput and latency. Another
research utilized a combination of IPFS files, blockchain, and cloud storage to link
Generative AI and XAI metadata, such as XAI decisions and AI system parameters,
to safeguard the system against malicious attacks and manage the usability of AI tools
by humans [26]. It stores the Merkle tree (hash tree of SHA256) of previous blocks,
which increases computational overhead for auditing. A framework proposed decen-
tralized consensuses of several XAI predictors by a smart contract to estimate a final
decision [27]. Furthermore, a blockchain-integrated approach with Explainable Deep
Neural Networks (x-DNN) has suggested the security and interoperatability of sensi-
tive data for medical indemnity insurance [28]. Blockchain has also been employed to
amalgamate the expertise of multiple experts for reliable lending decisions to promote
financial inclusivity for the underserved community [29].

4 Methodology

4.1 Explainable Legal Decisions by ER

ER algorithm can combine multiple pieces of independent and highly conflicting evi-
dence by considering the weights and reliability of each piece of evidence to add a more
comprehensive explanation for decisions [30, 31]. It is inherently explainable and does
not rely onmodel-agnosticmethods such as SHAP, LIME, LRP, or Taylor decomposition
to elucidate the reasoning behind decisions made by non-linear models.

The weight of evidence points to the importance of evidence, and reliability points to
the quality of the information supporting the evidence. It is an extension of theDempster-
Shafer theory, which extends the probability theory or a generalization of the Bayesian
inference [32].
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Let, a dataset has N number of cases, there are q attributes to evaluate the legal
liability, each with v referential values (q ∈ {1, . . . ,Q}, v ∈ {1, . . . ,Vq}). The tar-
get attribute (θ ) has a possible decision defined in the frame of discernment � =
{θ1, . . . , θz, . . . , θZ , z ∈ {1, . . . ,Z}}. These decisions are mutually exclusive and collec-
tively exhaustive. A piece of evidence for a legal case is denoted by e; the vth evidence
in qth attribute as ev,q. The decision by ER is provided over the power set of �:

P(�) = {∅, {θ1}, . . . , {θZ }, . . . , {θ1, . . . , θZ−1},�} (1)

Uncertainty is quantified by the number of samples supporting a class, represents the
belief for an outcome. Evidence ev,q in attribute q is profiled over a belief distribution:

ev,q = {(
eθ,v,q, m̂θ,v,q

)
,∀θ ∈ P(�)

}
(2)

With the belief distribution summing up to 1:
∑

θ∈P(�)
m̂θ,v,q = 1 (3)

The normalized probability mass of set of evidence in all attributes for a given legal
claim is:

m̂θ,v,q =

⎧
⎪⎪⎨

⎪⎪⎩

0 θ = ∅
mθ,v,q

(1+wθ,v,q−rθ,v,q)
θ ⊆ �, θ �= ∅

(1−rθ,v,q)
(1+wθ,v,q−rθ,v,q)

θ = P(�)

(4)

Here, mθ,v,q is the basic probability mass of evidence ev,q for a decision θ , m̂θ,v,q is the
probability mass normalized by weight (wθ,v,q) and reliability

(
rθ,v,q

)
of evidence.

The weight and reliability of evidence could be a subjective judgment of lawyers.
Lawyers first assess the initial beliefs for singleton evidence and joint pieces of evidence
to incorporate their judgments into the system. The process of human-AI collabora-
tion for convergence to an ultimate-true decision by mitigating noisy decisions can be
achieved by Evidential-Reasoning eXplainer (ER-X), which is based on maximum-
likelihood evidential reasoning [33]. The set of evidence is initially mapped with the
training data. However, in real applications, the comprehensive data coverage for the
entire discourse universe is not always available for training purposes. The parameters
of evidence supported by data are refined by data-driven optimization. The objective
function to optimize weight and reliability is:

Minimize : f (wθ,v,q
) = 1

2N

∑N
i=1

∑
θ∈P(�)

(
mo − m̂

(
wθ,v,q, rθ,v,q

))2

constraints : 0 ≤ wθ,v,q ≤ 1, 0 ≤ rθ,v,q ≤ 1
(5)

The legal decision (output) from the ER algorithm is not just a result but a carefully
crafted presentation designed with the user in mind. It visually demonstrates the algo-
rithm’s final decision, along with the belief, weight, and reliability of multiple pieces of
evidence representing the circumstances of a legal case. The user interface design and
color scheme are thoughtfully chosen to support all kinds of users. For instance, utiliz-
ing colorblind-friendly palettes. Frontend developers conduct rigorous usability tests to
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fine-tune the features of an interface to make it intuitive and user-friendly for everyone
within the organization.

The legal case decisions rendered by the ER algorithm are securely stored in the
cloud as text-based JSON files. Each case’s explanation is anonymized to strip out
client information and specific features of the AI model to mitigate the risk of sensitive
information disclosure through prompts designed for the Generative AI, as shown in
Fig. 2.

Fig. 2. Format of the Explanation Generated by the ER Algorithm for Use as a Prompt in Legal
Document Drafting and Response Formulation

4.2 Blockchain to Monitor the Usage-Generative AI

The anonymized JSON format of the explanation is concatenated with a fixed prompt to
generate a response. Python scripts are used to interact with the LLM models provided
by the OpenAI and Google Bard APIs. It automates the submission of prompts in a loop
for a large batch of legal cases. For confidentiality and integrity, the work computers
of lawyers are strictly restricted from direct access or copy-pasting the information into
Generative AI platforms.

The immutability of a blockchain ledger enhances trust within a legal firm, as it
ensures that any text generated by an LLM of Generative AI tool can be reliably refer-
enced in the future. The auditing mechanism by blockchain tracks the usage or exclusion
of AI-generated text by the lawyer while drafting correspondence. The lawyers leverage
AI-generated content to get drafting assistance; they are ultimately responsible for the
final draft based on their professional judgment and understanding. Figure 3 demon-
strates how human lawyers can collaborate with AI and blockchain technology in a
developer-controlled environment.



326 S. Sachan et al.

Fig. 3. Human Lawyers in a Developer Controlled Environment to Interact with AI and
Blockchain

In the proposed system, only the hash values of the AI-generated response for an
xth individual is stored in the blockchain, along with the case ID (IDx) and date. A hash
functions as a fingerprint of the information and cannot be reverted to the original data,
ensuring non-disclosure of the original information. The SHA256 algorithm is employed
for hashing, offering a robust and reliable method for preserving the integrity of the text
[34]. SHA256 create a hash value of 264 − 1 bits. A malicious actor to tamper with data
in the blockchain requires 2128 input to create a collision pair with 50% probability; it
requires 175,000 CPU-years to find a collision pair [34].

The blockchain-based monitoring mechanism is illustrated in Fig. 4. The raw text-
based explanation files are stored off-chain (outside the blockchain) in a secured cloud
environment, and a smart contract pushes the hash values of generated files inside the
blockchain (on-chain storage). The off-chain data and on-chain data are denoted by Dx

α

andDx
β , respectively. The prompt and response for an xth individual is denoted by Px and

Rx, respectively. The hash value of Rx generated by the SHA256 algorithm is denoted
by Hx

R.
The non-tampering or consistency of a Generative-AI response used by a lawyer in

the past is verified by an auditor or developers by utilizing the GET () function within a
smart contract (or chain code). The GET () initiates a query to the blockchain to locate
a specific dataset known as a triple

(
IDx,Hx

R, date
)
, demonstrated in Fig. 5. A full node

was managed by Infura blockchain service provider, which allows the storage of hash
addresses. The non-existence of this triple indicates tamperingwith the original off-chain
Generative AI response, as this data does not match the on-chain data.

5 Case Study on Bank Data Breach

5.1 Banking Data Breach Claims

A banking data breach can lead to financial loss, identity theft, and emotional distress.
This case study is conducted in a law firm. The law firm acted as an intermediary, serving
as a legal advisor and partner to both the bank involved in the data breach and its asso-
ciated insurance company. According to the UK’s Information Commissioner’s Office
(ICO) guidelines, organizations must report any breaches within 72 h of discovery to be
eligible for compensation. The ICO shares banking data breaches with regulators, law
enforcement, and cybercrime agencies such as the Financial Conduct Authority (FCA)
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Fig. 4. Blockchain-Based Mechanism to Monitor Generative AI
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Fig. 5. GET Request in API to Find a Given Case Data in Blockchain. The statement on the top
is a GET Request, and below is the Response Body (Data).

and theNational Cyber Security Centre (NCSC) to investigate and identify possible bank
liabilities, which further helps insurers pay compensation to the claimant. In this study,
the bank liable for the data breach is the defendant, and the client could be an individual,
business client, or external partner such as FinTech.

The banking data leakage is a common law ‘tort’ (a civil wrong that causes someone
to suffer loss or harm). Tort has three fundamental components. First, “Duty of Care,”
also known as the “Quincecare duty,” points to a bank’s obligation to safeguard the
confidential financial information of their customers and clients. Second, a “Breach of
Data Protection Law” occurs when a bank fails to adhere strictly to data protection
regulations such as the General Data Protection Regulation (GDPR) or the Revised
Payment Services Directive (PSD2) due to negligence such as cyber theft or bank’s
employee misconduct. Third, “Causation” is established when a data breach by a bank
infringes an individual’s rights and freedoms or causes financial loss and emotional
distress.

The ER algorithm was trained using a dataset containing 2712 bank data breach
cases. The dataset had 8.31%, 21.17%, and 70.52% negligent, contributory-negligent,
and non-negligent cases. Figure 6 illustrates the AUC score (model accuracy) for duty
of care, breach of duty, causation, and the final liability decision. ER is an explainable
AI algorithm.

Figure 7 demonstrates the weight of evidence from all variables points towards
a strong case for bank liability due to failure of the bank’s duty of care towards a
given customer, data breach from inadequately secured devices, and the establishment
of causation due to legal action against the customer by an external organization and
financial loss. The end-users, such as legal practitioners, can utilize the reasoning behind
the decisions derived from the XAI model to make informed decisions and uphold their
professional accountability.



Blockchain for Ethical and Transparent Generative AI Utilization 329

Fig. 6. ROC Curve demonstrating AUC Score for Bank Liability Decision by ER

Fig. 7. Explainable Decision for a True Positive Liability Case

5.2 Usability Test of LLM Models by Generative AI APIs

Multiple versions of LLM models, such as GPT-3.5 (text-davinci-003 and text-davinci-
002), gpt -4 (GPT-4), and Google Bard, were accessed through their APIs via a Python
script to generate text for the decision rendered in a JSON format for each xth defendant.
The prompt structure for each input transmitted through the loop by the Python script
was a string datatype.

Fig. 8. Usability Testing of Generative AI Tools
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An experimental analysis was conducted to assess the usability of text generated
by three OpenAI GPT models and Google Bard, specifically in the context of bank-
ing cyber-attack cases. A panel of 25 legal professionals evaluated the applicability of
content generated by LLM models in crafting legal narratives on bank negligence in
protecting financial data resulting in customer harm. Each lawyer was provided with
a single response from each LLM algorithm; they were restricted from using multiple
versions obtained from multiple prompts.

Turnitin software was utilized to measure the percentage of text similarity between
the draft written by lawyers and OpenAI’s and Google algorithms. Figure 8 indicates a
strong preference for the GPT-4 model among legal professionals; 60.5% of its output
was utilized to draft legal documents. Google Bard’s contributions were found to be
15.3% less utilized than GPT-4. The legal experts preferred to use only 33.3% and 19.5%
of the content generated by the text-davinci-003 and text-davinci-002, respectively.

5.3 Blockchain Auditing Performance

The performance of blockchain networks in auditing the past usage of AI-generated
content by human lawyers is assessed by throughput and latency. Throughput is the
number of valid transactions committed by the blockchain per time unit (usually time in
seconds). It is also called the transaction per second (TPS) rate [35, 36]. Latency is the
time taken for data transfer.

Fig. 9. Latency and Throughput in Blockchain Networks to Record Audit Data

AI-generated content utilized by professionals such as banking lawyers must be
recorded quickly in the blockchain network for future auditing and monitoring. There-
fore, an optimal blockchain network should feature high throughput and low latency.
Figure 9 demonstrates the experimental results for the performance of blockchain imple-
mentations on Ethereum (Public Network) and Hyperledger Fabric (Private Network)
based on variations in the number of transactions from 1 to 10,000. The 10,000 trans-
actions were executed by repeatedly dispatching the hash data of 2,712 legal cases
for performance evaluation. The result indicates that Hyperledger Fabric outperforms
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Ethereum; it exhibits higher throughput and reduced latency. Each case file archived on
the blockchain averaged 0.10Megabytes in size. Post-storage, the average time required
to audit on Hyperledger Fabric was 90 Secs, and Ethereum was 120 Secs.

6 Discussion, Limitations, and Future Research

The pilot study was successfully conducted with the assistance of a banking and finance
lawyer. Lawyers participating in the study provided positive feedback on the effective-
ness of using LLMs to mitigate concerns about data leakage and potential accountability
issues among their peers. Tech firms such as Microsoft Azure provide OpenAI services.
They augment prompts with data retrieved from client data sources without exposing
it to the OpenAI database. However, the firms still encounter the challenge of confi-
dential information leakage to LLMs. Additionally, the current systems do not provide
immutable records of AI-generated content utilized by lawyers, which is crucial for
tracking accountability in legal practices.

In this study, each lawyer received a single response from each LLM algorithm and
was prohibited from utilizing multiple versions obtained from multiple prompts. The
protocol ensured that lawyers could not directly copy and paste into the Generative AI
tools, as their respective firms monitored and controlled their computer usage. Instead,
they submitted their requests through an API gateway that anonymized the prompts
before forwarding them to a Generative AI API, such as GPT-4. However, in a real
application, a lawyer might demand multiple versions of different prompt statements.

A significant limitation of this approach is its reliance on a fixed prompt; the study
did not explore prompt engineering to optimize the input for generating high-quality
prompt engineering practices that could eliminate the need for generations of multiple
versions and the subsequent storage of multiple version hashes in the blockchain.

On the positive side, this framework is not intended to make legal decisions by LLM
but rather to assist in generating decision texts for legal reasoning derived from an XAI
algorithm such as ER. This approach minimizes the risk of legal facts hallucinations and
reduces the oversight by human lawyers if they utilize the content generated from LLM
algorithms. However, further investigation is needed to assess whether lawyers might
overlook errors in the AI-generated text when preparing legal documents.

7 Conclusion

This research presents the technique for the responsible and secure application of Gener-
ative AI tools by legal practitioners in supporting the drafting of legal decisions derived
from anXAI algorithm by leveraging the immutability feature of blockchain technology.
The proposed framework has high confidentiality and integrity, as it uses anonymized
inputs for AI prompt requests to avoid data leakage and stores hash values of legal
documents and AI-generated texts in blockchain for auditability. A blockchain-based
auditing process ensures the consistency and non-tampering of Generative AI responses
used by lawyers in the past. The immutability and decentralization of the blockchain
ledger provide a secure and transparent record-keeping system.
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This research concludes the findings froma case study conductedwithin a lawfirmon
tort liability cases against banks for data breaches. It shows the application and results of
explainable legal decisions by the ER algorithm and the subsequent use of its raw textual
decisions for drafting legal documents. Comparative analysis of LLM models indicated
that GPT-4 produces high-quality legal drafting content. The auditing performance of
two blockchain networks, Ethereum and Hyperledger Fabrics, shows that Hyperledger
Fabric has better throughput and latency.
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Abstract. As mobile devices have become universal and are now inte-
gral to every facet of our everyday lives, the alarming rise in mobile
malware poses a significant threat to the security of sensitive and pri-
vate information stored or transferred to/from our mobile devices (e.g.,
smartphones, and tablets). This paper introduces an innovative method
for mobile malware detection using a multimodal deep learning approach
on two different modalities of datasets: grayscale images of android mal-
ware and tabular data. We leverage Explainable AI (XAI) to enhance the
interpretation of classification results for both unimodal and multimodal
approaches. Furthermore, we create an explainable malware classifier
using Knowledge Graph to compare its performance with multimodal
learning. The classifiers provide improved explainability with minimal to
no compromise in accuracy when classifying malware samples.

Keywords: Mobile Malware · Multimodal Learning · Knowledge
Graph

1 Introduction

The surge in mobile malware presents a growing concern for consumer devices.
With its extensive user base, the Android operating system, being one of the
most widely embraced mobile platforms, becomes a focal point for malicious
actors aiming to exploit vulnerabilities. Android’s popularity, while advanta-
geous, introduces vulnerabilities due to its open nature. The system’s permission
for users to download applications from third-party sources serves as a breeding
ground for malware. This accessibility, though providing flexibility, elevates the
risk of inadvertent exposure to harmful software and creates a thriving envi-
ronment for various mobile malware types such as viruses, worms, mobile bots,
phishing attacks, ransomware, and spyware. This vulnerability exposes users
to a spectrum of threats, including the theft of sensitive data, deceptive fraud
schemes, and compromise of device functionality. Phishing attacks, in particular,
deceive users into divulging confidential information, while ransomware can lock
users out of their devices, demanding payment for restoration. The range and
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severity of these threats underscore the need for a proactive approach to secure
mobile devices.

As mobile devices increasingly integrate into our personal and professional
lives, safeguarding against these evolving threats becomes paramount. Height-
ened awareness, education on potential risks, and adherence to secure practices,
especially in the realm of third-party app installations, are essential for ensuring
the security of Android devices.

Studies on Android malware detection using machine learning approaches can
be broadly categorized into two methodologies: static analysis and dynamic anal-
ysis. In static analysis, researchers extract detailed information from the Android
Package Kit (APK) installation file. This includes insights into the app’s mani-
fest, permissions, API calls, intents, and more. On the contrary, dynamic analy-
sis focuses on monitoring an application’s behavior during execution, examining
aspects such as shared memory usage, system calls, and process activity within
a controlled environment or sandbox. A number of deep learning and ensemble
learning-based techniques for Android malware detection have been proposed
in earlier research [2,15]. Malware data can be represented using a variety of
modalities, including text, code, images, and tabular data. This multifaceted
nature of malware data needs an approach that can handle and process various
modalities, efficiently. Numerous studies have used multimodal learning tech-
niques on multiple data modalities. For example, [6] employs multimodal deep
learning for problem report classification while working with text, graphics, and
code. Similarly, multimodal deep learning and ensemble learning are employed
by [15]. This paper focuses on the data collected from CIC-AndMal-2020 [5,13]
of dynamic analysis and image data on Android samples [4]. We propose a mul-
timodal machine learning model that combines image (i.e., grayscale image) and
tabular numerical data (i.e., features acquired from app memory, APIs, and other
sources) for Android malware detection. The combination of modalities enables
us to capture both the functional components of an app and its grayscale visual
representation. Our proposed method achieves 98.54% prediction accuracy for
mobile malware detection.

The contributions of this study can be summarized as follows:

– We integrate malware data from multiple sources, including tabular data
from CIC-AndMal-2020 [5,13] and grayscale image data from [4], to develop
multimodal deep learning model that can perform with good accuracy.

– We evaluate the effectiveness of our multimodal model by comparing it with
the unimodal image model and unimodal tabular data model. We also com-
pare the multimodal model with and without including Principal Compo-
nent Analysis (PCA). Furthermore, we use Knowledge graph embeddings in
the tabular dataset to compare the performance of the multimodal model.
We also compare the concatenation-based multimodal fusion to elementwise-
multiplication-based multimodal fusion. Additionally, we also compare the
multimodal model trained on knowledge graph embeddings on the tabular
dataset.
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– Through explainable AI, we demystify the classification process, empowering
users, and security researchers to understand the underlying threats. We used
multiple explainable artificial intelligence techniques to explain our proposed
model.

The remainder of the paper is organized as follows. Section 2 introduces the
related works. Section 3 proposes our approach. Section 4 describes the experi-
mental results and discussion of our results. Section 5 concludes the paper.

2 Related Works

The authors in [4] proposed a novel approach for Android malware detection
and family identification by utilizing image-based representations of mobile
applications as input for an explainable deep learning model. Their method
demonstrated high effectiveness with an average accuracy ranging from 0.96 to
0.97 across 8,446 Android samples, encompassing six malware families and one
trusted sample family, while also providing interpretability for model predictions.
There’s also an extensive review of machine learning-based malware detection
techniques for Android platforms [8]. It focuses on the advantages and disadvan-
tages of certain methods, such as static, dynamic, and hybrid analysis. Static
analysis of an application’s permissions, code, and API calls has been used by
researchers to identify malware. Support vector machines (SVM) are used in the
work of [9] to handle sensitive data, classify Android applications according to
their functions, and analyze relevant subjects and data flows. There has been a
study [7] that used machine learning on statically generated app attributes in
a different study and obtained promising detection accuracy. This strategy is
effective and simple to use.

Several studies have been conducted using multimodal learning with deep
learning to detect malware. Researchers [2] present a taxonomy that divides
deep malware detection and classification methods that are resistant to zero-
day exploits into four groups: adversarial resistant, few-shot, unsupervised, and
semi-supervised. In a separate work [16] presents SusTriage, a technique for
triaging bug reports that combines ensemble learning and multi-modal deep
learning to achieve excellent prediction performance while also preserving the
long-term viability of open source communities. One research [6] introduces a
novel multimodal model for issue report classification, leveraging text, images,
and code information. Experimental results demonstrate a substantial improve-
ment (5.07% to 14.12% higher F1-score) compared to traditional text-based
models. This approach highlights the efficacy of utilizing heterogeneous data for
enhanced issue classification. The significance of multimodal deep learning to
enhance information processing by combining several modalities-image, video,
text, audio, body motions, face expressions, and physiological signals-was also
investigated [15]. Using an OCR-generated noisy text as input, researchers [1]
integrated word and image embeddings using a multimodal neural network. Their
proposed method greatly increased the Tobacco3482 and RVL-CDIP datasets’



Multi-modal Machine Learning Model 337

classification accuracy. The work of [4] offered a useful approach in a different
study for creating interpretable models related to mobile malware detection. This
paper [12] worked with prior knowledge represented as Cybersecurity Knowledge
Graphs (CKGs), to guide the exploration of a Representation Learning algo-
rithm to detect malware. Our work highlights the significance of interpretable
deep learning and machine learning models in malware detection by combining
data from many sources to classify mobile malware. Explainability allows us to
better understand the characteristics and actions of malware across a variety of
modalities, which improves our ability to identify its ever-evolving avenues.

Fig. 1. Sample Android Malware Image

3 Proposed Methodology

3.1 Overview

Our proposed approach uses multimodal deep learning on image and tabular
data. Additionally, we implement explainable AI techniques to help understand
decisions depicted by the most contributing features. Figure 2 depicts a high level
overview our proposed approach of multimodal mobile malware classification.
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We evaluate the unimodal tabular data on eight distinct machine-
learning algorithms namely, K-Nearest Neighbors (KNN), Decision Trees,
Logistic Regression, Naive Bayes, Random Forest, XGBoost, Support Vector
Machine(SVM) with a linear kernel, and SVM with a Radial Basis Function
(RBF) kernel. Each algorithm contributes to the exploration and comprehensive
understanding of the dataset’s characteristics. Similarly, we evaluate the image
data on a Feed-forward Neural Network architecture. For multimodal fusion of
both modalities of data, we use separate neural networks on the image and tab-
ular data and then use the output layer of both neural network channels to do
multimodal concatenation of the features. Afterward, we evaluated the concate-
nated features on a neural network model with fully-connected layers. We also
do a multimodal feature fusion using element-wise multiplication of features to
compare the performance of the concatenation-based feature fusion of the mutlti-
modal approach. Furthermore, we also use Knowledge graph node embeddings on
the tabular dataset and feed it into the multimodal model to calculate different
performance metrics. For the interpretability of the unimodal tabular model, we
use a heatmap to investigate feature correlation and importance. We also imple-
mented GradCAM [14] to understand how the unimodal image model classifies
grayscale malware images. Explanations from multiple perspectives ultimately
help in a better understanding of the decision.

Fig. 2. Proposed Methodology

3.2 Dataset

For our study, we used two different types of datasets CCCS-CIC-AndMal-2020
[5,13] and Android Image dataset collected from the works of this paper [4].

The CCCS-CIC-AndMal-2020 dataset, publicly released in 2020, is a col-
laborative effort of the Canadian Centre for Cyber Security and the Canadian
Institute for Cybersecurity. This extensive dataset comprises a total of 400,000
Android applications, with half being regular benign apps and the remaining
half categorized as malicious apps. For the dynamic analysis, the dataset encom-
passes 141 features, categorized into Memory (23 features), API (105 features),
battery (2 features), network (4 features), logcat (6 features), and process (1 fea-
ture). This dataset comprises over 50,000 samples, having 14 distinct malware
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categories, including Riskware, Adware, No_Category, Zero_Day, Trojan, Ran-
somware, Trojan_Spy, Trojan_SMS, Trojan_Dropper, Potentially Unwanted
Apps (PUA), Backdoor, Scareware, FileInfector, and Trojan_Banker. To main-
tain consistency with the Android image dataset, which focuses on three specific
classes (Airpush, Dowgin, and Fusob), we selected the Adware and Ransomware
categories from the CIC dataset. Unfortunately, the CIC dataset’s Ransomware
category lacked Fusob samples, contrary to our expectations. There are a total
of 2,927 samples which are split as: 2017 samples in the Airpush class and 910
samples in the Dowgin class. We excluded the ‘Hash’ and ‘Category’ columns
from the datasets due to their lack of relevance to the model. To ensure com-
patibility with the Image dataset [4], we explicitly use features taken from the
Airpush and Dowgin families in the tabular dataset. Furthermore, we eliminated
the use of Fusob samples from the image dataset. We collected approximately
1,200 samples of grayscale android malware images. From this dataset, 749 sam-
ples of Airpush, and 489 samples of Dowgin. Figure 1 is a visualization of a
random sample’s grayscale image.

Fig. 3. Variance distribution with the number of principal components.

3.3 Dataset Preprocessing and Feature Extraction

In the data preprocessing phase, two distinct datasets were utilized - the CIC-
AndMal-2020 dataset [5,13]and the Android Image Dataset [4].

From the CIC-AndMal-2020 dataset, only specific classes, namely Airpush
and Dowgin, were selected, resulting in a collection of 2,927 samples. There were
2017 samples in the Airpush class and 910 samples in the Dowgin class.
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Using similar feature values in machine learning algorithms leads to faster
and more effective training compared to a data set with dissimilar values in data
points. Dissimilar points or feature values might lead to slower understanding
and lower accuracy. We used Scikit-Learn’s Standard Scaler to standardize the
data. To prepare data for feature extraction, we dropped two redundant columns.
Note that there are no missing values in this dataset. Finally, we apply a One-
HotEncoder on our label as a standard data pre-processing task. This encoding
process assigns a unique numeric label to each distinct family category, facilitat-
ing the integration of categorical data into machine learning models. Recursive
Feature Elimination (RFE) [3] along with GridSearch was performed with four
classifiers-Random Forest (RF), Decision Tree (DT), Logistic Regression (LR),
and Adaboost. GridSearch was applied during this process. The outcome of
RFE was a list of 41 common features out of 141 features. To further reduce
dimensionality, Principal Component Analysis (PCA) [10] was employed with
a grid search, resulting in the selection of 35 components. The goal of PCA
is to transform data from a high-dimensional space to a low-dimensional one
while preserving its essential features. Dealing with high-dimensional data can be
challenging due to computational complexities and sparsity caused by the curse
of dimensionality. Smaller datasets are easier to analyze and visualize, making
it simpler for machine learning algorithms to process information quickly. Our
analysis revealed that utilizing 35 principal components could effectively capture
over 99% of the dataset’s variance. For a visual representation, refer to Fig. 3
illustrating the distribution of variance concerning the number of principal com-
ponents.

Furthermore, for the Android Image Dataset, we collected approximately
1,200 samples of grayscale android malware images. See Fig. 1 for visualization
of the image dataset. The images are of two categories: Airpush, and Dowgin
which have similarities with the same malware categories as the CIC-AndMal-
2020 dataset. Since the image samples were of different sizes, we resized the entire
dataset. After that, we normalized the images and then put the images through
a CNN-based channel. The images are then inputs of size (258× 258). The model
also maintains three convolution layers with a kernel size of (5, 5) followed by the
ReLU operation. The model also applies a max-pooling operation twice with a
kernel size of (5, 5). After the final max-pooling operation, the results go through
a fully connected layer. Finally, it extracts the image features in a feature size
of (1 × 1 × 256).

3.4 Models

Unimodal Model

– Tabular Data
We use 2,927 samples of tabular data from CIC-AndMal-2020 [5,13]. Of
which, 2017 samples are in the Airpush class and 910 samples in the Dowgin
class. Here we apply multiple machine learning classifiers. Following feature
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extraction, we use Decision Tree (DT), Random Forest (RF), Logistic Regres-
sion (LR), Support Vector Machine (SVM) with Linear Kernel, Support Vec-
tor Machine with RBF kernel, K-Nearest Neighbors (KNN), and XGBoost
classifiers. Our decision to include these algorithms was motivated by their
prevalence in the literature and their established effectiveness across various
domains. The results are presented in Table 3 in terms of accuracy, recall,
precision, and f1 score.

– Image Data
There are about 1,200 samples of grayscale android malware images we used
from the Android Image Dataset [4]. We then apply a Convolution Neural
Network (CNN) model on the preprocessed image data [4]. This choice stems
from the inherent suitability of CNNs for handling image data due to their
ability to capture spatial hierarchies and local patterns effectively. Moreover,
CNNs have demonstrated remarkable performance in numerous image-related
tasks, making them a natural choice for our analysis. The employed CNN
consists of three convolutional layers with a kernel size of (5, 5) followed by the
ReLU activation function. The model also applies a max-pooling operation
twice with a kernel size of (5, 5). After the final max-pooling layer, the output
is passed to a fully connected layer. Finally, it extracts the image features
in a feature size consistent with the feature size of the tabular data. We
also use a sigmoid activation function for the output layer. As a result, we
achieve 91.35% prediction accuracy. Table 1 displays the final results in terms
of accuracy, recall, precision, and f1 score.

Fig. 4. Multiple bucketized column nodes connected to data points with respective
relationships
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Multimodal Model. For preprocessing, we sort both the image and tabular
data based on the labels to ensure consistency. Due to the presence of a larger
amount of image data compared to the tabular data, we take a random subset
of the training and test data so we have an equal amount for our model. The
tabular data is processed through RFE as discussed earlier and the images are
resized to a standard size of 128× 128. The multimodal model has two neural
network branches. The tabular input branch is made up of a fully connected
layer with 32 neurons and a ReLU activation function. The image input branch
has a convolutional layer with 16 filters with a kernel size of (3× 3) and a ReLU
activation function. The output of this layer is then flattened. The output of
these layers is then concatenated using the concatenate function from Keras.
This concatenated data is a unified representation that captures both the image
and tabular information. After concatenation, the data is passed through a fully
connected layer with 64 neurons and a ReLU activation function. The output
layer is a fully connected layer with a single neuron and a sigmoid activation
function. The model is compiled with the Adam optimizer, binary cross entropy
loss, and accuracy as the metric. It is then trained for 20 epochs with a batch
size of 32. Furthermore, instead of using the concatenate function, we run the
multimodal model on a simple elementwise multiplication as an entry-level multi-
modal approach, which has a similar model architecture and is run for 10 epochs
with a batch size of 32.

Fig. 5. Memory HeapAlloc column’s bucketized nodes connected to numerous data
points

Our approach leverages knowledge graph node embeddings applied to the
tabular dataset to enhance the dataset’s interpretability. We categorized several
columns into five distinct bins each. We then created new columns where the
original values were replaced with their corresponding bin names. For example,
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if the original column was named ‘abc’, the bins were labeled as ‘abc-1’ through
‘abc-5’. Subsequently, we established a graph-based representation of the data.
Each data point in the dataset was assigned a node, and additional nodes were
created to represent each bin as shown in Figs. 4 and 5. We connected the data
point nodes to the bin nodes based on the original dataset’s bin assignments.
Using the graph2vec [11] algorithm, we generated embeddings for each data
point node, capturing the local structural information within the graph. These
embeddings were combined with the original feature set, enriching the model’s
representation. Finally, we trained the multimodal classifier on the augmented
feature set, allowing the model to leverage both the original features and the
graph-derived representations to improve predictive performance.

Fig. 6. Heatmap of feature correlation of CIC-AndMal-2020 (first 18 features out of
141)

4 Results and Discussion

We evaluate our multimodal deep learning model by comparing it with the uni-
modal model for images and the unimodal model for tabular datasets. For the
unimodal image model, we applied CNN architecture and achieved 91.35% accu-
racy lower than our multimodal model, where it achieved 98.71% accuracy. We
are able to get diverse perspectives and explainable predictions from the use
of multiple modalities and explainability techniques (Heatmap and GradCAM).
We expect that our combined model can be translated to malware detection
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Table 1. Comparative Analysis between methods

Modality Accuracy Precision Recall F-1 Score

Unimodal model for Image Data 91.35% 90.38% 87.63% 88.98%
Multimodal model (Concatenation)
w/ PCA

98.71% 98.33% 97.67% 98.1%

Multimodal model (Concatenation)
without PCA

97.66% 96.33% 96.07% 50.19%

Multimodal model (Fusion) 96.2% 95.28% 94.58% 66.78%
Multimodal model with KG node
embeddings (Concatenation)

95.39% 95.54% 88.16% 92.16%

techniques from both tabular and image datasets. Our model is able to detect
android malware of “Airpush”and “Dowgin” class of mobile malware.

During data pre-processing of CIC-AndMal-2020 tabular data, we use a
heatmap to check the feature correlation. The heatmap is visualized in Fig. 6.
From the heatmap, we conclude that the features had varied correlations with
each other, some high and some low. The heatmap gave us a quick idea about
the feature importance although represents only linear correlations. Additionally,
we perform Recursive Feature Elimination (RFE). RFE is essential in selecting
more informative features and achieving high accuracy. After performing RFE,
we used PCA. Upon employing Principal Component Analysis (PCA) to reduce
dimensionality, we observed a notable enhancement in the performance of our
multimodal model, achieving an accuracy of 98.71%. Conversely, when running
the multimodal model without PCA, the accuracy experienced a discernible drop
to 97.66%. Alternatively, running the machine learning models with PCA we see
a drop in accuracies, precision, recall, and F-1 score among the machine learning
classifiers. Among the models trained without PCA, RF and XGBoost classifiers
performed the best with 96% and 95% prediction accuracies, respectively. SVM
with linear and RBF kernel achieve 94% and 96% accuracies while KNN and
LR both achieve 94% prediction accuracy. DT classifier achieves 92% prediction
accuracy while Naive Bayes achieves only 80% prediction accuracy. Despite the
notable improvements observed in the performance of the multimodal model with
PCA, it’s imperative to note the impact on individual modalities, particularly
the tabular dataset. Notably, when employing PCA, the Random Forest (RF)
and XGBoost classifiers exhibited accuracies of 92% and 94%, respectively, which
were marginally lower compared to their counterparts without PCA. Table 3 pro-
vides a comprehensive overview of the machine learning models’ metrics trained
on the tabular dataset with PCA, while Table 2 delineates the results without
PCA. The classifiers’ overall accuracy aligns with their precision, recall, and F1
scores, providing a comprehensive evaluation of their classification capabilities.
Evidently, there’s a discernible drop in accuracies across all machine learning
models in the absence of PCA. However, despite the reduction in performance
for tabular data alone, our decision to utilize PCA stems from its overall enhance-
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Table 2. Classification Matrix for Machine Learning classifiers on CIC-AndMal-2020
tabular dataset without PCA. Here Class 0 is Airpush and Class 1 is Dowgin

Classifier Class Precision Recall F1 Score Accuracy

XGBoost Class 0 99% 99% 99% 98%
Class 1 98% 97% 97%

Decision Tree Class 0 97% 97% 97% 95%
Class 1 93% 92% 92%

Logistic Regression Class 0 95% 96% 94% 94%
Class 1 90% 89% 90%

KNN Class 0 95% 99% 97% 96%
Class 1 97% 87% 92%

SVM with RBF Kernel Class 0 95% 97% 96% 95%
Class 1 92% 92% 92%

SVM with Linear Kernel Class 0 96% 96% 96% 94%
Class 1 90% 90% 90%

Random Forest Class 0 98% 99% 99% 98%
Class 1 97% 96% 97%

ment of the multimodal model’s performance. By incorporating PCA, we achieve
an overarching improvement in multimodal accuracy, albeit at the expense of
some efficacy in tabular data processing. This strategic trade-off underscores the
pivotal role of dimensionality reduction techniques in optimizing multimodal
fusion and bolstering overall predictive capabilities.

Applying GradCAM [14] on our image model enables us to observe how our
model is learning its classification process. Figure 7 shows a convolutional layer of
an image labeled “Airpush” as the heatmap and GradCAM image. This helps us
to deduce that our model is learning in an interpretable manner as it highlights
all the necessary characteristics of the Airpush grayscale image. Thus, CNNs
have proved to be highly effective for our image dataset. The high accuracy
of the CNN model on image data reflects its capability to learn hierarchical
features from grayscale malware images, providing a strong foundation for the
multimodal fusion process.

In comparing concatenation-based multimodal fusion with elementwise multi-
modal fusion, our analysis reveals a clear performance advantage for the concate-
nation based approach. Specifically, the concatenation based multimodal fusion
model demonstrates superior accuracy, outperforming its element-wise counter-
part with an accuracy of 96.3%. Although the element-wise multimodal fusion
model achieves accuracy levels close to those of the concatenation-based model,
exhibiting comparable precision and recall values, it notably suffers from a lower
F1 score. This discrepancy suggests that while the element-wise approach may
effectively identify true positives and negatives, it encounters challenges in accu-
rately identifying positive instances, leading to a reduced F1 score. In contrast,
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Fig. 7. GradCAM [14] on convolutional layer of Image data model. Left: Heatmap.
Right: GradCAM image

Fig. 8. Visualization of the metrics of different modalities

the concatenation-based multimodal fusion model leverages the comprehensive
information integration enabled by concatenation, resulting in a more robust
performance across all evaluation metrics with an accuracy of 98.71%, preci-
sion, recall, and F-1 score of 98.33%, 97.67%, and 98.1% respectively. Thus, our
findings highlight the effectiveness of concatenation-based multimodal fusion for
enhancing classification accuracy and overall model efficacy.
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Table 3. Classification Matrix for Machine Learning classifiers on CIC-AndMal-2020
tabular dataset with PCA. Here Class 0 is Airpush and Class 1 is Dowgin

Classifier Class Precision Recall F1 Score Accuracy

XGBoost Class 0 98% 98% 97% 94%
Class 1 98% 97% 97%

Decision Tree Class 0 91% 92% 92% 88%
Class 1 81% 79% 80%

Logistic Regression Class 0 95% 96% 95% 94%
Class 1 90% 89% 90%

KNN Class 0 93% 97% 95% 93%
Class 1 91% 84% 88%

SVM with RBF Kernel Class 0 95% 97% 96% 95%
Class 1 92% 92% 92%

SVM with Linear Kernel Class 0 95% 95% 95% 94%
Class 1 89% 89% 89%

Random Forest Class 0 91% 98% 95% 92%
Class 1 95% 79% 86%

While the incorporation of knowledge graph node embeddings in the mul-
timodal model does enhance its performance compared to unimodal models,
it falls short of achieving the superior performance demonstrated by the pro-
posed approach. This discrepancy can be attributed to the inherent nature of
the dataset, which primarily consists of numerical features. In such datasets, dis-
cerning meaningful relationships between node embeddings derived from knowl-
edge graphs proves challenging. Consequently, despite the enrichment provided
by knowledge graph embeddings, the multimodal model’s performance remains
moderate.

5 Conclusion

Our multimodal deep learning approach emerges as a promising avenue for
mobile malware classification, harnessing the synergistic capabilities of both
image and tabular data. By using neural networks, machine learning classi-
fiers, explainability techniques, knowledge graph embeddings, and meticulous
data pre-processing, the deployed models demonstrate acceptable performance,
interpretability, and robustness in detecting mobile malware. By embracing a
multifaceted approach, researchers can pave the way for the development of
more effective and resilient models, thereby fortifying mobile security measures
and safeguarding users against evolving cyber threats.

However, there are avenues for further exploration. Given the inherent nature
of our dataset, primarily comprising numerical features, future research could
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extend beyond this scope by considering alternative datasets. Exploring datasets
with diverse characteristics, such as textual or temporal data, could provide valu-
able insights into the generalizability and adaptability of our approach across dif-
ferent domains. Additionally, conducting comparative studies on varied datasets
can offer deeper insights into the performance and scalability of our model, facil-
itating its broader applicability in real-world scenarios.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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Abstract. There is a growing demand for explainable, transparent, and
data-driven models within the domain of fraud detection. Decisions made
by the fraud detection model need to be explainable in the event of a
customer dispute. Additionally, the decision-making process in the model
must be transparent to win the trust of regulators, analysts, and busi-
ness stakeholders. At the same time, fraud detection solutions can benefit
from data due to the noisy and dynamic nature of fraud detection and
the availability of large historical data sets. Finally, fraud detection is
notorious for its class imbalance: there are typically several orders of
magnitude more legitimate transactions than fraudulent ones. In this
paper, we present Deep Symbolic Classification (DSC), an extension of
the Deep Symbolic Regression framework to classification problems. DSC
casts classification as a search problem in the space of all analytic func-
tions composed of a vocabulary of variables, constants, and operations
and optimizes for an arbitrary evaluation metric directly. The search is
guided by a deep neural network trained with reinforcement learning.
Because the functions are mathematical expressions that are in closed-
form and concise, the model is inherently explainable both at the level of
a single classification decision and at the model’s decision process level.
Furthermore, the class imbalance problem is successfully addressed by
optimizing for metrics that are robust to class imbalance such as the
F1 score. This eliminates the need for problematic oversampling and
undersampling techniques that plague traditional approaches. Finally,
the model allows to explicitly balance between the prediction accuracy
and the explainability. An evaluation on the PaySim data set demon-
strates competitive predictive performance with state-of-the-art models,
while surpassing them in terms of explainability. This establishes DSC
as a promising model for fraud detection systems.
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1 Introduction

Deep learning has shown remarkable results in many application domains, includ-
ing fraud detection [1,13,24]. However, a major drawback of these models is their
lack of transparency. Their black-box nature makes it difficult to justify a single
decision, let alone explain their overall decision-making processes. Understand-
ing these is necessary because (i) frauds need not only be detected, but the
opportunity for fraud needs to be mitigated with, e.g., more stringent security
measures, and (ii) the nature of fraud detection changes daily: new types of fraud
are developed, whereas existing types fall out of favor or become impossible due
to novel security measures. Furthermore, according to the European Union’s
2018 General Data Protection Regulation [9], financial institutions are required
to justify their decisions to legal authorities and customers. These requirements
highlight the need for inherently transparent and explainable models.

Explainable AI has been gaining attention in recent years, with one area of
research being Symbolic Regression (SR). SR aims to find analytical (concise,
closed-form) expressions that describe functional dependencies in a data set.
Since an expression can be understood simply by inspection, SR can be used
to create a model that is transparent and explainable. Recently, [23] proposed
Deep Symbolic Regression (DSR), an approach to SR based on deep reinforce-
ment learning. In DSR, a recurrent neural network (RNN) is trained with deep
reinforcement learning on a task-specific reward function to generate expres-
sions with high predictive power and low complexity. DSR effectively leverages
gradient-based deep learning to capture complex relationships in large data sets
that are nevertheless easily described with an analytical function.

In this paper, we propose extensions to the DSR framework for the super-
vised fraud detection problem. The resulting Deep Symbolic Classification (DSC)
approach extends DSR with: the addition of a sigmoid layer to the output of
the expressions to turn regression into binary classification, the incorporation
of a threshold-based decision mechanism, and a reward function based on an
accuracy metric for class-imbalanced problems.

Our approach results in a novel framework for fraud detection, characterized
by the following strengths:

(1) robust predictive performance from large-scale, high-dimensional data with
the use of deep reinforcement learning,

(2) analytical expressions that can be transformed into a concise set of rules and
with explanations at both the decision- and the model levels,

(3) intrinsically robust to highly imbalanced data without the need for prob-
lematic techniques like over- or undersampling,

(4) explicitly trading off predictive power and explainability,
(5) ability to capture non-monotonic, and non-linear relationships without an

excessive number of polynomial terms or complex neural network architec-
tures.

We train and evaluate DSC on the PaySim data set [19] which is highly imbal-
anced with only ∼ 0.13% being the fraud cases. We compare our approach to de
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facto industry standards, including XGBoost [10] and show comparable predic-
tive performance. Additionally, we evaluate the explainability of the expression
obtained along two axes. Firstly, we assess whether the expression aligns with
domain knowledge with an expert from the field, and find that the expression
can be understood successfully. Secondly, we investigate the trade-off between
explainability and predictive performance by constructing a Pareto front of per-
formance and complexity of obtained expressions. We find that more complex
expressions do not necessarily yield better predictice performance. Finally, in
an investigation of the relation between expression complexity and overfitting,
we find that the approach does not suffer from overfitting for simple and more
complex expressions.

2 Related Work

We discuss various related works on explainable models, including (deep) sym-
bolic regression, and other fraud detection methods based on supervised learning.
These can be complemented by unsupervised ones e.g., the one-class SVM [30]
which we do not detail further since our work is on supervised setting.

2.1 Explainable Models

Explainable AI has gained increasing attention in recent years, particularly in
fields with high societal stakes such as finance and medicine [16]. While mod-
els focusing solely on predictive performance keep surpassing the state of the
art, their black-box nature prevents adoption. This is especially seen in applica-
tion domains where accountability is a prerequisite and decision-making based
on black-box models can have harmful consequences [31,33]. To address this
issue, the field of explainable AI has emerged [18,20,26,32]. This field focuses
on approaches that involve approximating a secondary model to explain the
predictions made by the original black-box model. However, these approaches
may be insufficiently reliable, robust, or hard to interpret themselves, which has
motivated the study of inherently explainable methods [2,8,15,25].

Furthermore, the implementation of the European Union’s General Data
Protection Regulation (GDPR) in 2018 has given citizens the ‘right to expla-
nation’ of automated decision-making models that can significantly affect them
[9]. Banks often make these decisions as part of their fraud prevention efforts.
One example is the use of FDSs to block suspicious payment transactions in
order to reduce losses and ensure the satisfaction of law-abiding customers.
According to [22], bank institutions must justify their actions to customers,
anti-money laundering authorities, and legal organizations. Since fraud detection
algorithms have legal, operational, strategic and ethical constraints, banks must
balance explainability with predictive performance [22]. Our approach allows for
explicitly selecting a solution that is Pareto-optimal w.r.t. explainability and
performance.
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2.2 Symbolic Regression

The field of study known as Symbolic Regression (SR) aims to obtain analytical
expressions that describe functional dependencies of a data set [7]. Formally,
given a set of characteristics X and target values y, with Xi ∈ R

n and yi ∈ R,
SR aims to find a function f : Rn → R that best describes the data set, where
f is a closed-form analytical expression such that f(X) = y + ε. Essentially, the
SR problem is a discrete combinatorial search for the optimal function f∗ that
minimizes the distance metric D(f(X),y):

f∗ = argmin
f

D(f(X),y). (1)

The function f is an analytical expression that can be interpreted by inspection.
As a result, SR is frequently used to produce models that are transparent and
explainable [16].

Conventionally, SR has emerged within the field of Genetic Program-
ming (GP) [16]. First introduced by [14], the combinatorial search problem is
addressed with an algorithm inspired by the Darwinian principle of natural selec-
tion and genetic recombination. This process begins with the evaluation of a pop-
ulation of candidate solutions. Each candidate consists of a syntax tree where
the leaf nodes represent features, and the internal nodes represent operators. A
syntax tree represents an analytical expression and is evaluated on the training
data set. In this evaluation, a predictive performance metric such as accuracy
corresponds to the notion of fitness in Darwinian terminology. The fittest can-
didates are selected for reproduction, where their subtrees are recombined, with
the goal of creating even more fit candidates. Additionally, each node has a prob-
ability of randomly mutating, i.e. changing the node’s operator. The process can
be seen as a version of combinatioral discrete search for an accurate expression
by training on a sufficient yet tractable number of generations.

Quite recently, [27] showed that GP-based SR often outperforms the top
machine learning methods in classification tasks, highlighting its potential for
achieving high performance. However, there are also concerns regarding the use
of GP for SR, one of which is its sensitivity to hyperparameter configurations,
which can result in suboptimal performance. Additionally, GP has been found
to be computationally demanding and may not scale to large high-dimensional
data sets with complex relationships [23].

2.3 Deep Symbolic Regression

To address the limitations of SR with GP, a recent work by [23] has proposed
a gradient-based approach to SR based on RNN and reinforcement learning,
known as Deep Symbolic Regression. During training, an RNN produces analyt-
ical expressions that are then evaluated on how well they describe the data set,
a measure called “fitness”. This fitness is linked to a reward that is used to train
the RNN through a risk-seeking policy gradient algorithm. The RNN adjusts the
probabilities of sampling an expression according to its corresponding reward.
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This results in expressions that describe the data set relatively well. The authors
demonstrate that DSR outperforms the included baselines on a set of benchmark
problems, including Eureqa, which is considered the gold standard for symbolic
regression [23].

Building on the foundation laid by DSR, [21] have proposed a hybrid app-
roach that combines GP and gradient-based methods. In this enhanced frame-
work, the RNN initially generates a set of expressions (or candidate solutions).
Subsequently, GP is employed as an inner optimization loop to facilitate selec-
tion, recombination, and mutation on these candidates. This enables the explo-
ration of a more diverse solution space and enables the algorithm to escape local
optima more effectively. After this GP step, the fitness of the resulting expres-
sions is reassessed, and the RNN is then used again to generate a fresh batch of
candidate solutions. This process continues iteratively, with the GP component
serving as the inner optimization loop, while the neural-guided gradient-based
approach operates as the outer loop.

The hybrid approach in this study combines the strengths of both meth-
ods to enhance their respective performance. First, the integration of the RNN
trained with reinforcement learning allows for improved restarts in the GP pro-
cess, overcoming the limitations of random restarts that are normally associated
with GP. Second, the inclusion of GP enables a more diverse exploration of the
solution space, reducing the risk of being trapped in local optima. The authors
demonstrate the superior performance of the hybrid DSR approach compared to
vanilla DSR in various benchmark problems [21].

In this study, we present a novel framework called Deep Symbolic Classifi-
cation, which is a modified version of hybrid DSR, tailored specifically for the
binary classification task of fraud detection. Our proposed approach incorporates
a sigmoid layer into the prediction mechanism, enabling it to produce a proba-
bilistic output suitable for classification. Additionally, we utilize the F1 score as
the reward function to address the prevalent issue of high class imbalance often
encountered in fraud detection scenarios.

2.4 Uninterpretable Fraud Detection

In 2022, [10] proposed an XGBoost-based framework that was empirically shown
to achieve state of the art (SOTA) performance on the PaySim data set.
XGBoost, short for Extreme Gradient Boosting, is a decision tree ensemble
method that combines multiple ML models to produce superior performance
relative to that of a singular model [5]. It is based on the principle of sequen-
tially adding weaker models to correct for the errors made by previous models,
utilizing gradient descent to optimize the model’s performance. However, one of
its primary limitations is its lack of explainability, which makes it unsuitable as
an FDS in practical scenarios.
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In the same study, several supervised models with varying accuracy and levels
of explainability were used as baselines for comparative analysis. These include
(in decreasing order of explainability [22]) k-Nearest Neighbors (k-NN), Random
Forest (RF) and Support Vector Machines (SVM). Their findings indicated that
k-NN and SVM are ineffective for fraud detection due to their inability to address
the class imbalance. Conversely, RF performed exceptionally well on the data
set, yet it is still considered a black-box model because of the high number of
deep decision trees generated within it and due to the lack of controlling the rule
complexity. Although some strategies have been proposed to offer the required
explainability for understanding the RF model [3], it is advisable to employ
models that are inherently explainable and rely on compact closed-form rules
instead, as previously detailed in Sect. 2.1.

In this work, we conduct a comparative analysis between DSC and the
aforementioned models, assessing their respective predictive performances. This
enables us to illustrate how DSC measures up against models with varying
degrees of explainability, as well as its performance against the state of the
art on the test set. Note that the pre-processing of our data set differs from the
procedure adopted in the work of [10]. Therefore, we reimplement these models
according to the hyperparameters specified in the original paper to maintain
consistency in our analysis.

3 Method

3.1 Model Implementation

Fig. 1. Train loop for deep symbolic classification. An RNN generates an expression by
sampling tokens from a predefined library of tokens. The resulting expression is used
to seed the population of a genetic programming process for further optimizing the
expression. After optimization, classifications are generated using a sigmoid σ and a
threshold t. The classifications are scored with a reward function, e.g. F1 score, which
is used to train the RNN in a risk-based gradient estimate.

We implement hybrid DSR as described in [21], and adjust it to make it suit-
able for classification problems. In this subsection, we provide a comprehensive
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Fig. 2. An example of the sampling process of (Hybrid) Deep Symbolic Regression
(taken from [23]). (A) Elements are sampled from a categorical distribution emit-
ted by the RNN on the library L of elements, which is given in (B). The parent
and sibling nodes of the next element are used as the next input to the RNN. The
sampling process ends when all branches reach the leaf nodes. The resulting list
[÷, sin, ×, constant, x, log, y] is the preorder traversal of the syntax tree that repre-
sents the equation sin(cx)/ log(y). (C) The syntax tree that can be reconstructed from
the preorder traversal list from (A).

description of our methodology for generating analytical expressions using a
RNN, converting these expressions into classification models, and training the
RNN using reinforcement learning techniques.1 Fig. 1 details the steps described
below.

Generating Expressions. Following [21], here we explain how expressions are
generated with (deep) symbolic regression, reformulating previous works to suit
the purposes of our work. Each expression is represented by a binary syntax tree,
following the approach proposed by [14]. Each node in this tree is labeled with a
token from a library of tokens. The library contains tokens that represent input
features, constants, and mathematical operators. All leaf nodes of the syntax tree
are labeled with tokens representing features or constants, and internal nodes
represent mathematical operators. These operators can be unary (logarithm,
sign, square root, etc.) or binary (summation, difference, multiplication, etc.).
Within the algorithm, a syntax tree is represented as a list corresponding to
a pre-order traversal of the tree, see Fig. 2 (taken from [23]). Since the arity
of each mathematical operator is known upfront, a list of tokens represents a
single, unique tree. The list representation brings the benefit of compatibility
with existing neural network architectures that accept sequential input, including
RNNs, LTSM-based models, and transformers [17].

The lists are generated from left to right, where each element is sampled from
a probability distribution over all available features and mathematical operators.

1 Source code available at https://github.com/samanthav24/DSC Fraud Detection.

https://github.com/samanthav24/DSC_Fraud_Detection
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The probability distribution for sampling element i is conditioned on the previ-
ously sampled elements i−1, i−2, .., 0. This conditional dependence is generated
by an RNN, the outputs of which are passed through a softmax layer to obtain
probabilities for each of the operators and features. Rather than using the current
list as input, the RNN is only given the parent and sibling nodes of the previ-
ously sampled element as input. This is because the list does not capture the
hierarchical structure of its syntax tree, as it was formed by preorder traversal.

In order to generate plausible expressions that make sense in the context of
describing the data set, the syntax tree is subject to certain constraints: (1)the
length of the sampled expression is bound by predefined minimum and maximum
values; (2) it is enforced that each pair of leaf nodes that descend from the same
parent node, should represent at least one feature: this prevents forming expres-
sions of constants; (3) the tree has some constraints to ensure expressions that
make sense mathematically: unary operators cannot have children that are the
inverse of the operator, and trigonometric operators cannot have children that
are trigonometric operators themselves. The process of generating expressions
with RNN is visualized in Fig. 2.

Inner Optimization Loop. Entering the inner GP loop of our process, the
expressions τRNN generated by the RNN serve as the initial population τ

(0)
GP for

the GP algorithm. With each iteration i, a new population of expressions τ
(i+1)
GP

is systematically constructed through processes of selection, recombination, and
mutation. This iterative procedure continues until the specified number of gener-
ations, S, is reached. The highest-performing expressions of the final population
τ
(S)
GP , are selected and subsequently used for gradient update.

This hybrid methodology introduced by [21] effectively combines the advan-
tages of an inner GP-based optimization loop with those of an outer gradient-
based optimization loop. The internal loop is similar to the standard GP with
random restarts, with the distinctive addition of the RNN that offers progres-
sively better starting populations (τRNN = τ

(0)
GP ) for each successive iteration

of the outer loop. In the context of the outer loop, the GP element ensures a
more diverse range of expression populations. This diversity helps avoid being
confined to local optima, thus facilitating a more efficient learning process.

Evaluating Expression. Each expression f is passed through a sigmoid func-
tion σ to produce probabilities that are suitable for use in this binary classifi-
cation problem. This allows the expression to be used to predict the likelihood
that a transaction is fraudulent (1) or legitimate (0). The class prediction ŷ
of a transaction with corresponding features x is determined according to the
following:

ŷ =

{
1 if σ(f(x)) ≥ t

0 if σ(f(x)) < t
(2)

where t is a given threshold. A reward is assigned to the expression, which
corresponds to its performance on the data set. It is conventional in classification
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problems to minimize the cross-entropy loss CE to increase the performance of
the model. Therefore, we define a reward function rCE , which is the normalized
inverse cross-entropy loss with respect to the ground truth classes y. Specifically,

rCE =
1

1 + CE(y, ŷ)
(3)

where we add 1 to the denominator to normalize the reward. However, a major
problem in the domain of fraud detection is the significant class imbalance,
which often leads to low precision (i.e., too many legitimate transactions are
incorrectly classified as fraudulent). To address this, a different reward function
rF1 is defined. This function is based on the binary F1 score, which directly
optimizes the model’s performance with respect to precision and recall:

rF1 =
2pr

p + r
(4)

where p and r are respectively the precision and recall score of the expression
on the data set. We conduct a comparison between the reward functions rCE

and rF1 based on the performance scores of the expressions generated using
these functions, for different threshold values t ∈ [0.5, 0.9]. In standard logistic
regression, the threshold value is typically set to 0.5. However, due to the issue of
low precision arising from the class imbalance, we increase the threshold values
to improve precision.

The RNN adjusts the probability distribution for sampling elements with this
reward function (a more detailed description of this process is given in Sect. 3.1).
In the context of reinforcement learning, the constituent elements of the envi-
ronment, actions, episode, policy, and reward are represented by the parent and
sibling nodes, the sampling of elements, the generation of an expression, the
probability distribution, and the reward function, respectively. The algorithm
terminates after a given number of iterations.

RNN Training. Since the reward function is based on the predictive power
of the generated equation, rather than the parameters θ of the RNN, it is not
differentiable with respect to θ. Therefore, reinforcement learning is used to train
the RNN to generate better expressions. Here, actions correspond to sampled
tokens, observations correspond to the current state of the expression tree (i.e.,
parent and sibling input), and sequences that form expressions correspond to
episodes.

A naive approach to optimize the policy p(τ |θ) (which is represented by the
distribution of samples τ) would be to use the standard policy gradient objec-
tive that aims to maximize the expected value of the reward. It is important to
note that by maximizing an expectation, the focus is on optimizing the aver-
age performance of the generated expressions. However, in the context of fraud
detection, the ultimate objective is to achieve the best possible performance of
a single expression that is found during training, as it will be used as the final
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model. Therefore, the standard policy gradient objective may not be suitable for
this purpose.

Instead, a risk seeking policy gradient objective Jrisk(θ; ε), is used to max-
imize the performance of the highest fraction of samples ε, at the expense of
sacrificing the performance of the other generated expressions. The risk-seeking
policy gradient objective [23] is defined as

Jrisk(θ; ε) ≡ Eτ∼p(τ |θ)[R(τ)|R(τ) ≥ Rε(θ)] (5)

which aims to increase the reward Rε of the top ε fraction of samples from the
distribution, while disregarding the samples that fall below this threshold. The
gradient of Jrisk(θ; ε) is then given by

∇Jrisk(θ; ε) = Eτ∼p(τ |θ)
[
(R(τ) − Rε(θ)) · ∇θ logp(τ |θ)|R(τ) ≥ Rε(θ)

]
(6)

To compute this, we can use the standard REINFORCE Monte Carlo estimate
[35] with two adjustments. First, instead of using the expected return of all
samples as a baseline, we substituted it with Rε. Second, we only include the
top ε fraction of samples from each batch in the gradient computation. The
resulting Monte Carlo estimate can be expressed as

∇Jrisk(θ; ε) ≈ 1
εN

N∑
i=1

[
R(τ (i)) − R̃ε(θ)

] · 1R(τ(i))≥R̃ε(θ)
∇θ logp(τ (i)|θ) (7)

where R̃ε is the empirical (1 − ε)-quantile of the batch of rewards, and 1s takes
the value 1 if the statement s is true, and 0 otherwise. In this implementation,
the value of ε is set to 0.05, which is consistent with the approach taken in [23].

3.2 Data

The PaySim Data Set. We use the popular PaySim data set [19]. PaySim
is a data set of simulated transactions based on proprietary real transactions
[19]. Obtaining a real data set of payment transactions can be difficult due
to privacy concerns. To address this issue, PaySim was developed to provide
researchers with a simulated data set that exhibits statistical properties similar
to a real payment transaction data set, while preserving the confidentiality of
the underlying customer data. The data set contains ∼ 6.3 million transactions
over a period of a month and with a fraudulent transaction rate of ∼ 0.13%.
Columns represent various attributes associated with transactions:

– step - unit of time; one step corresponds to one hour of time,
– type - a categorical feature with values: cash-in, cash-out, debit, payment, or

transfer,
– amount - amount of the transaction in local currency,
– nameOrig - name of the customer,
– oldbalanceOrg - customer’s balance before the transaction,
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– newbalanceOrig - customer’s balance after the transaction,
– nameDest - name of the recipient,
– oldbalanceDest - recipient’s balance before the transaction,
– newbalanceDest - recipient’s balance after the transaction,
– isFlaggedFraud - an indicator of whether the transaction has been flagged as

fraudulent in the simulation,
– isFraud - an indicator of the transaction being legitimate or fraudulent,

where the column isFraud represents the target variable, while the remaining
columns are used as features in the DSC model.

Generating Additional Features. Some of these features require the inclu-
sion of pre-processing in an analytical expression targeted in this work. The type
variable was represented with one-hot encoding. All other categorical features
(nameOrig and nameDest) were discarded to ensure the explainability of the
model. Because information about individual customers and recipients can be
essential for identifying fraud [4,34], aggregation features were added to model
the behavior of account holders. These features include the mean and maximum
transaction amounts of the last 3 and 7 transactions of the recipient account.
Further analysis of the dataset shows that only 0.15% of the accounts partici-
pated in more than one transaction, compared to 83% of the recipient accounts.
Therefore, the aggregation of the previous 3 and 7 transaction amounts is limited
to the recipient account.

The PaySim data set contains many transactions with nonzero transac-
tion amounts and before and after balances of zero. These transactions model
accounts at counterparty banks, whose balances are not known and were imputed
with zero. To mitigate this, the data set is enhanced with two features, exter-
nalOrig and externalDest, which indicate whether both balances before and after
the transaction are zero, respectively, and thus are considered to belong to an
external account. Furthermore, zero balances are imputed so that oldbalanceOrig
is set equal to amount if the customer’s account is external and newbalanceDest
is set equal to amount if the recipient’s account is external. This method ensures
that the balances are proportional to the transaction amount. The indicator fea-
tures externalOrig and externalDest identify such instances and differentiate
between true zeros and zeros due to missing values. Furthermore, the inclusion
of externalOrig and externalDest ensures that a possible relationship between
fraudulent transactions and the involvement of external banks is properly con-
sidered.

The imputation of balances also mitigates a form of data leakage. A known
limitation of the PaySim data set is that a model that predicts fraud if the trans-
action amount is equal to oldbalanceOrig achieves exceptionally high accuracy.
This has raised concerns that the data set might have been generated according
to this rule. However, the authors refute this possibility and assert that trans-
actions recognized as fraud (as determined by the bank of the original data set
from which these transactions are simulated) are likely to be cancelled2, resulting
2 See https://www.kaggle.com/datasets/ealaxi/paysim1/discussion/ 99799.

https://www.kaggle.com/datasets/ealaxi/paysim1/discussion/
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in oldbalanceOrig being set to zero. Therefore, the aforementioned imputation
of oldbalanceOrig helps circumvent this issue of data leakage.

A second form of data leakage was also mitigated in our preprocessing.
According to the description of the data set, the isFlaggedFraud feature should
be True if the transaction amount exceeds 200,000. However, when analyzing the
data, it becomes apparent that this condition is not met and the actual meaning
of this variable remains unclear. Nevertheless, it is worth noting that almost all
(99.87%) of the transactions where isFlaggedFraud is True, are indeed fraud-
ulent. Due to the ambiguity surrounding the interpretation of isFlaggedFraud,
this feature is ultimately discarded.

Final Preprocessing Steps. Some of the baseline models we use for compara-
tive analysis require balanced training data. To accommodate this requirement,
an additional balanced training set is generated by randomly undersampling the
training data. Details on preprocessing and all features used can be found in
Appendix B.

3.3 Evaluation

We conduct a comparative analysis to assess the predictive performance of
DSC in relation to the SOTA XGBoost-based method and the baseline models
and hyperparameters proposed by [10]. In order to assess the trade-off between
expression complexity and predictive performance, we create the set of generated
expressions where no other generated expression is superior in both complexity
and performance [28]. Such a set is typically known as the Pareto front. We
define the complexity C of an expression f of length T with sampled tokens τi

as

C(f) =
T∑

i=0

c(τi) (8)

where c(τi) is the complexity of a token τi. The complexity of different types of
tokens is taken from [23] and reproduced in Table 1.

The optimal expression can then be determined via the elbow method, i.e. by
selecting the point at which adding more complexity to the expression does not
result in a sufficient increase in the F1 score. This prevents overfitting and ensures
that the expressions are not overly complex, thereby preserving explainability
in its interpretation and aligning with fruitfullness, exactness and similarity in
the framework by Sovrano and Vitali [29].

4 Results and Discussion

Table 2 lists the performance in the test set averaged over 5 runs: the base-
line classification models with and without Random Undersampling (RUS) (see
Sect. 2) is compared to the best DSC configuration, i.e. with rF1 and a threshold
value of 0.8 and the best expression obtained by DSC (Eq. 11).
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Table 1. Complexity of tokens

token τ complexity c

+, −, ×, feature, constant 1

÷, square 2

sin, cos 3

exp, log, square-root 4

Table 2. Average F1 scores on the test set. Std between parentheses if ¿ 0.00, column-
wise best in bold.

method accuracy precision recall F1 score

RF + RUS 0.93 0.02 0.93 0.03

XGBoost + RUS 0.95 0.02 0.94 0.05

k-NN + RUS 0.94 0.02 0.83 0.03

SVM + RUS 0.95 0.02 0.70 0.03

RF 0.99 0.99 0.67 0.81

XGBoost 0.99 0.98 0.70 0.82

DSC (average) 0.99 0.95 (.01) 0.67 0.78

DSC (best expression) 0.99 0.95 0.67 0.78

Table 2 indicates that undersampling (RUS) does not improve results. While
models trained with RUS demonstrate high recall rates, their precision values
are notably low, leading to low F1 scores. This observation suggests that an
excessive amount of information is lost and that models overfit to the small
number of examples in the train set when using undersampling. We note that
k-NN and SVM demonstrate effective training only when applying RUS to the
train set. Otherwise, the training time for these models took more than 50 h and
was aborted, highlighting the complexities and resource requirements associated
with highly imbalanced data sets.

In terms of F1 score, DSC demonstrates comparable performance to RF and
the SOTA XGBoost model without RUS. The relatively small drop in perfor-
mance compared to these baselines stems from a drop in precision and not accu-
racy. The precision for DSC can be considered acceptable and signifies that a
relatively low number of legitimate transactions is incorrectly classified as fraud-
ulent. The DSC model provides inherent explainability at only a limited drop
in predictive performance, making it an attractive choice for the fraud detection
problem.
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4.1 Derivation of the Decision Rule

The expression that resulted in the highest performance was:

f =
√

externalDest + type cash-out ·(amount−maxDest7+type transfer), (9)

where we have three Boolean features that either have value 0 or 1: externalDest,
type cash-out and type transfer. The other features amount and maxDest7 are
numerical and positive. The decision rule is defined as:

ŷ = 1(fraud), if σ(f) > 0.7,

as this expression was found by training DSC on a threshold t = 0.7. Rewriting
the sigmoid σ(f) = (1 + e−f )−1 gives us:

ŷ = 1(fraud), if f > 0.85.

So for each transaction, f is calculated with the feature values of that transac-
tion, and if f > 0.85, we classify that transaction as fraudulent. It should be
noted that

amount − maxDest7 ≤ 0, (10)

since maxDest7 is the maximum of the last 7 transaction amounts (including
the current amount) associated with a particular recipient.

Furthermore, we know that if type transfer = 0, then type cash-out = 1, and
vice versa, since the feature type was one-hot encoded. There are essentially two
scenarios:

1. type transfer = 0 and type cash-out = 1. For explainability, let us divide
expression 9 in two parts, such that f = A · B, where

A =
√

externalDest + type cash-out
B = (amount − maxDest7 + type transfer).

Given the inequality 10, we know that B must be smaller than or equal to 0.
Since externalDest is a Boolean, which makes A positive, it follows that f ≤ 0.
Therefore, in the scenario where the transaction is of type cashout, the model
will never classify the transaction as fraudulent.

2. type transfer = 1 and type cash-out = 0. For a transaction to be clas-
sified as fraudulent within this scenario, it is imperative that the value of exter-
nalDest is equal to 1. Otherwise, A would evaluate to 0, resulting in the overall
value of f being 0 due to multiplication with 0.

Now, let us assume that externalDest = 1, this would reduce Eq. 9 to: f =
amount − maxDest7 + 1. Given that a transaction is considered fraudulent only
if f is greater than 0.85, it follows that amount − maxDest7 must be greater
than -0.15.
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We can now summarize our findings according to the following rules:

classify a transaction as fraudulent, if

– type = transfer, and
– externalDest = True, and
– amount - maxDest 7 > −0.15

classify a transaction as legitimate, otherwise

4.2 Explainability

The best average performance was obtained with rF1 and threshold t = 0.8 based
on grid-based hyperparameter optimization, see 3. However, the best individual
run was trained at t = 0.7. This expression has comparable predictive perfor-
mance and lower complexity. Figure 3 shows the F1 scores of the Pareto front of
the best run. We refer to the expression f with complexity level x, by fC=x. The
figure indicates that the best expression, based on the F1 score, is either fC=9

or fC=13. When analyzing the overfitting, one might be inclined to favor fC=9

over fC=13 as the performance is similar at lower complexity. However, when
evaluating the expressions on the test set, it becomes apparent that fC=9 yields
a score of 0.76, while fC=13 yields a score of 0.78. Given that fC=13 produces a
higher F1 score on the test set, this suggests that there is no overfitting for this
expression.

The key consideration now is whether the observed increase in perfor-
mance justifies the corresponding increase in complexity, potentially affecting
the explainability of the model. The expression that demonstrated the highest
performance is given by:

fC=13 =
√

externalDest + type cash-out
· (amount − maxDest7 + type transfer), (11)

where maxDest7 denotes the maximum amount among the last 7 transactions
(including the current amount), associated with a particular recipient. This
expression can be readily transformed into a straightforward decision rule suit-
able for deployment as a detection model, see Sect. 4.1.

Compared to the best expression fC=13 with fC=9, the key difference is
the absence of the square root operator and the substitution of maxDest7 with
maxDest3. However, the decision rule derived from the best expression eliminates
the square-root operator, making both expressions equally explainable. The only
remaining disparity lies in the utilization of either the maxDest7 or maxDest3
feature. Therefore, we consider fC=13 as the optimal expression.

The absence of weighted features and the lack of periodic relationships in this
expression are somewhat unexpected. One plausible explanation for this finding
is that the PaySim data set covers a single month, while fraudulent behavior in
general exhibits seasonality over a longer period of time [6,11]. Hence, the com-
plex periodicity of real-world fraud may not be present in the data set. Further-
more, we observe that the features type cash-out and type transfer are present
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in the optimal expression. Exploratory Data Analysis confirms that all fraud-
ulent transactions in the data set indeed fall under these two types. However,
when examining the subsequent decision model derived from the expression, it
becomes apparent that the model does not detect fraudulent transactions of the
type“cash-out”. Although the model acknowledges the significance of this type,
it is likely that further training is necessary to effectively capture this specific
relationship.

4.3 Expert Interpretation

We participated in a discussion with a senior expert in fraud detection employed
at a large international bank based in the Netherlands. Our discussion focused on
whether our findings align with expert knowledge and the potential applicability
of our approach within the bank the expert is currently employed, considering
both its performance and explainability. The expression’s simplicity and ease of
interpretation make it more manageable than the complex set of rules and large-
scale random forests that are typically in place. Moreover, the selected features
and their relations within the expression are logically coherent. For example, the
inclusion of the feature “type=transfer” aligns with criminal behavior. Transfers
are popular for executing fraud, in contrast to other types of transactions such
as payments. Similarly, the feature “externalDest = True” is informative. Specif-
ically, in the event that a transaction is classified as fraudulent by an FDS, the
bank may need to retrieve funds. The process of retrieving funds becomes more
challenging if the transaction involves an external bank, compared to internal
transfers. Fraudsters are well aware of this distinction and can exploit vulnera-
bilities in the system by diverting money to external institutions.

Furthermore, the requirement that the transaction amount must exceed the
highest value among the previous six transactions, or differ by no more than
0.15, exemplifies an adaptation by criminals to evade detection. This adaptive
behavior arises from the fact that earlier detection models successfully captured
and flagged transactions that adhered to this particular behavior.3 In response,
fraudsters devised a new method known as “smurfing”, in which multiple trans-
actions with small amounts are used to avoid detection by the system4.

Finally, in a hypothetical scenario where DSC demonstrates comparable per-
formance on the expert’s bank’s internal data set, it would be regarded as a
valuable addition to the FDS. The hypothetically adequate performance of DSC
and its simplicity justify its consideration for use as a component in an FDS.
One could also imagine that DSC could play a role in devising mitigations for
new types of fraud.

3 It is important to acknowledge that the insights are derived from the PaySim data
set do not necessarily reflect current fraudulent behavior.

4 https://www.abnamro.com/nl/nieuws/meer-over-financiele-criminaliteit.

https://www.abnamro.com/nl/nieuws/meer-over-financiele-criminaliteit
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Table 3. Mean (std) scores of DSC with different reward functions and thresholds over
5 runs, column-wise best in bold.

reward t accuracy precision recall F1 score

rCE 0.5 0.99 (.00) 0.98 (.01) 0.52 (.05) 0.68 (.04)

0.6 0.99 (.00) 0.98 (.00) 0.50 (.00) 0.66 (.00)

0.7 0.99 (.00) 0.98 (.01) 0.53 (.07) 0.69 (.05)

0.8 0.99 (.00) 0.98 (.01) 0.55 (.07) 0.70 (.05)

0.9 0.99 (.00) 0.95 (.03) 0.59 (.08) 0.72 (.05)

rF1 0.5 0.99 (.00) 0.98 (.00) 0.50 (.00) 0.66 (.00)

0.6 0.99 (.00) 0.98 (.00) 0.50 (.00) 0.66 (.00)

0.7 0.99 (.00) 0.97 (.01) 0.56 (.05) 0.71 (.03)

0.8 0.99 (.00) 0.95 (.01) 0.67 (.00) 0.78 (.00)

0.9 0.99 (.00) 0.94 (.03) 0.66 (.01) 0.78 (.01)

4.4 Impact of Hyperparameters

Table 3 lists the predictive performance of DSC with different reward functions
rCE and rF1, for various thresholds, averaged over 5 runs. It is important to
note that the models were trained on the imbalanced data set and used the
same threshold for both training and testing.

When using rCE as the reward function, there appears to be a slight increase
in the F1 score for higher thresholds. This increase is mostly explained by higher
recall. However, in general, the recall score is relatively low: only a limited num-
ber of fraudulent transactions are detected. In contrast, the positive relation-
ship between the threshold and the F1 score becomes more pronounced for rF1.
Although precision slightly decreases, reward increases significantly, leading to
an increase in the F1 score. This trend continues until a threshold of t = 0.8.
Using a threshold of 0.8 yields a recall rate of 0.67, i.e. two thirds of the fraud-
ulent transactions are detected.

The difference in performance when using rCE or rF1 can be explained as
follows: the fraudulent minority class carries less weight in the calculation of the
normalized inverse cross-entropy loss, resulting in minimal improvements. On
the other hand, by directly optimizing the F1 score, the model ensures that the
minority class is not neglected, as both precision and recall have equal impor-
tance in the calculation of the reward.

The training and testing phases use the same threshold and one might there-
fore assume that the threshold should not have a significant impact as feature
weights can be adjusted accordingly. However, the optimization of constants
includes an inner optimization loop. This loop forms a computational bottle-
neck. This is mitigated by faster convergence in the case of higher decision
thresholds. We believe that longer run times may have resulted in comparable
scores for lower decision thresholds. A higher threshold thus serves as a practi-
cal approach to reducing computational resources without sacrificing predictive
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Fig. 3. Pareto front of predictive performance and complexity by the best DSC run
(t = 0.7, rF1).

performance or model simplicity. Furthermore, we note that recall increases with
higher thresholds, while the precision remains stable or even decreases for rF1. A
high decision threshold is a common strategy to favor precision when traditional
machine learning models are used on imbalanced data. However, in this particu-
lar case, the class imbalance is substantial, with only 0.13% of the transactions
being fraudulent. As a result, the model may exhibit overconfidence in the legit-
imate class, causing the sigmoid function to output probabilities that are lower
than they should be. High decision thresholds force the model to predict a larger
proportion of fraudulent transactions and increase the recall rate.

4.5 Limitations

Despite the promise shown by our approach, several limitations require further
discussion. First, our data pre-processing and prevention of data leakage intro-
duced noise into the aggregated features. This approach may not accurately
reflect genuine behavioral patterns, and thus a larger data set could potentially
improve performance. However, the computational expense of DSC raises prac-
tical considerations. Second, the representativeness of our data is a concern. The
PaySim data set, simulated from real mobile money transaction may not be rep-
resentative of transaction patterns globally. This, however, is a common issue
in fraud detection research as the availability of realistic data is limited due to
considerations on privacy, competitivenes and systemic risk. Additionally, while
our model should adapt well to evolving tactics of fraudsters we did not evaluate
our approach for this due to data set limitations. Moreover, we worked with only
a single fraud expert. Carrying out the same study with multiple fraud experts
can help to address and provide more perspectives. Third, in our pre-processing
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of balance data, we favoured mitigating leakage and the integrity of the trans-
action amounts at the cost of accuracy with respect to balance amount. Fourth,
due to the substantial runtime of experiments, we did not perform full cross-
validation. We did perform multiple runs with varying random seeds to ensure
robustness of results, however. Future studies should consider cross-validation
to potentially enhance the robustness of the results even further. Fifth, DSC
demonstrated a higher variance in performance relative to benchmark models
such as RF and XGBoost. As our proposed framework incorporates probabilis-
tic components, some runs may escape local optima more quickly than others.
This suggests that our approach can benefit from existing approaches to escaping
local optima that have already been adopted by established techniques, includ-
ing those included in the benchmark. Due to the relatively high computational
expense of experimentation, we leave these improvements as future work. Finally,
since we are dealing with binary classification problem, we used binary F1 score;
however, for multi-class classification problems, other metrics can be considered
e.g., weighted F1 or Matthews Correlation Coefficient.

5 Conclusion

In this work, we introduced Deep Symbolic Classification, a novel framework
for explainable fraud detection in financial transactions. Our approach involves
training a deep symbolic regression algorithm to generate analytical expressions
with a classification-based reward function. We incorporate a sigmoid layer and
a tunable decision threshold to turn regression into classification. By using the
F1 score as the reward function instead and by setting a decision threshold of
0.8, we have effectively mitigated the challenges associated with high class imbal-
ance, a key issue in the fraud detection domain. By taking the class imbalance
problem head on, DSC eliminates the need for problematic techniques such as
oversampling or undersampling. The models generated by DSC are transparent
and allow for straightforward inspection of features. In particular, our analysis
has revealed that certain key features align with expert knowledge about fraud-
ulent transactions. We observed that transaction type, intra-bank transactions,
and the amount of the transaction relative to the last six transactions of the
recipient were significant factors in determining fraudulent activities.

Our framework facilitates the creation of models with varying complexity and
predictive performance and the creation of a Pareto front. Analysts and other
stakeholders can select the model that best aligns with their desired trade-off
between explainability and predictive performance from this set of optimal solu-
tions. In our case study, we found an optimal solution that could be transformed
into a concise decision rule based on only three Boolean variables.

Elaborating further on the aspect of predictive performance, DSC exhibits
slightly lower performance compared to SOTA models on the PaySim data set.
However, DSC achieves precision and recall scores of 0.95 and 0.67, respectively,
indicating a minimal occurrence of misclassified legitimate transactions and a
notable ability to detect approximately two thirds of fraudulent transactions.
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It is important to note that the SOTA models lack explainability and exhibit
only marginally better performance, thus positioning DSC as a promising model
for fraud detection. However, additional research needs to be done on different
data sets and different operators to provide a definitive conclusion regarding its
practical implementation in industry.

Regarding future directions, several areas can be explored. Firstly, incorpo-
rating relational operators (e.g., ≥, <, 
=) or aggregational operators (e.g., mean,
standard deviation, percentiles) in the library of tokens can help eliminate the
need for manual feature engineering.

Additionally, exploring alternatives to the sigmoid function for mapping
expression values to probability spaces could be fruitful. Multilayer Discrimi-
nant Classification presents an interesting option, wherein two expressions are
created, one for each class, and the argmax of their weighted values determine
the classification [27]. The weights of the features in both expressions directly
optimize the likelihood of each class.

Moreover, the recurrent expression generation process of DSC, trained via
reinforcement learning, lacks parallelization, resulting in relatively high compu-
tation times. A potential solution is to investigate transformer-based symbolic
regression, as introduced by [12], to address this limitation.
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A Baseline Model Configuration

The training set was randomly undersampled to achieve a balanced training set.
Both the balanced training set and the original training set were used to train
the baseline models. Subsequently, these models were tested on an unbalanced
test set. The parameters of the baseline models are displayed in Table 4.

B Preprocessing the PaySim Dataset

The following steps were taken into account to preprocess the data set:

– Certain transactions in the data set exhibited non-zero amounts, but had
corresponding old and new balances of zero. To address this scenario, we
introduced the features externalOrig and externalDest for the customer and
recipient accounts, respectively (please refer to Table 5 for further details).
Following this, we performed imputation of the balances according to the
following relationships:

newbalanceDest = oldbalanceDest + amount
oldbalanceOrig = newbalanceOrig + amount
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Table 4. Parameters of the baseline models

Model Library Parameters

k-NN scikit-learn k = 2

SVM scikit-learn complexity parameter C = 1, kernel function = polynomial,
gamma = 0.01

RF scikit-learn number of trees = 200

XGBoost XGBoost booster = gbtree, eta = 0.3, gamma = 0, maximum depth of
a tree = 3, sampling method = uniform,
lambda = 1, alpha = 0

– Additional features were obtained through aggregation techniques in the data
set. Descriptions of these features are given in Table 5.

– The features nameOrig, nameDest and isFlaggedFraud were discarded.
– The feature type was one-hot encoded.
– The data was randomly split into a training, validation, and test set which

encompassed 75%, 10% and 15% of the data, respectively.
– A standard scaler was fitted on the numerical columns of the training set.

Subsequently, the numerical columns of the training, validation, and the test
set were scaled using this fitted standard scaler.

– For some of the baseline models, an additional balanced training set was gen-
erated by randomly undersampling the training data. Specifically, all fraudu-
lent transactions were retained and an equal number of legitimate transactions
was randomly selected to match the count of fraudulent instances.

We here briefly describe and motivate some modeling decisions made in the
experiments. In all experiments we aim to incorporate aggregation features that
encompass all previous transactions of both the customer and the recipient,
providing insight into their overall behavior patterns. The PaySim data set rep-
resents 30 d of transactions, which results in a major fraction of the account
holders to participate in a low number of transactions. As a consequence, aggre-
gation features may not accurately describe the individual’s overall behavior. To
address this issue, we assume that subsequent transactions are independent from
the current transaction: they primarily reflect the individual’s general behav-
ior and exhibit similar distributions as those observed in previous (yet unseen)
months. Therefore, we include future transactions as well in certain aggregation
features. Thus, for each transaction, we add characteristics that show the mean
and maximum transaction amount over the entire data set of both the customer
and recipient. This approach has a risk of data leakage, as earlier transactions
may contain information from subsequent time steps through the balance fea-
tures. However, we argue that future transaction information primarily reflects
general user behavior and therefore does not constitute a form of data leakage.
To reflect that these features model overall customer behavior and reduce the
risk of data leakage even further, we add a Gaussian noise to aggregation features
that contain future information.
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Table 5. Descriptions of the additional features that were added to the data set

Feature Description

externalOrig Boolean variable that indicates whether the customer account is
likely associated with an external institution,
an account is considered external if both oldbalanceOrig and
oldbalanceOrig equal zero

externalDest Boolean variable that indicates whether the recipient account is
likely associated with an external institution,
an account is considered external if both oldbalanceDest and
oldbalanceDest equal zero

meanOrig mean value of all transaction amounts (excluding the current
amount) associated with a particular customer,
with added Gaussian noise with μ = 0 and σ = 0.01∗ (q −m) where
q denotes the 0.75 quantile of the
customer’s transaction amounts and m represents the minimum
transaction amount

meanDest mean value of all transaction amounts (excluding the current
amount) associated with a particular recipient,
with added Gaussian noise with μ = 0 and σ = 0.01∗ (q −m) where
q denotes the 0.75 quantile of the
recipient’s transaction amounts and m represents the minimum
transaction amount

maxOrig maximum value of all transaction amounts (excluding the current
amount) associated with a particular customer,
with added Gaussian noise with μ = 0 and σ = 0.01∗ (q −m) where
q denotes the 0.75 quantile of the
customer’s transaction amounts and m represents the minimum
transaction amount

maxDest maximum value of all transaction amounts (excluding the current
amount) associated with a particular recipient,
with added Gaussian noise with μ = 0 and σ = 0.01∗ (q −m) where
q denotes the 0.75 quantile of the
recipient’s transaction amounts and m represents the minimum
transaction amount

meanDest3 mean of the last 3 transaction amounts (including the current
amount) associated with a particular recipient

meanDest7 mean of the last 7 transaction amounts (including the current
amount) associated with a particular recipient

maxDest3 maximum of the last 3 transaction amounts (including the current
amount) associated with a particular recipient

maxDest7 maximum of the last 7 transaction amounts (including the current
amount) associated with a particular recipient

numTransOrig total number of transactions associated with a particular customer

numTransDest total number of transactions associated with a particular recipient
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Abstract. In this work, we present the problem of algorithmic recourse
for the setting of binary allocation problems. In this setting, the optimal
allocation does not depend only on the prediction model and the individ-
ual’s features, but also on the current available resources, utility function
used by the decision maker and other individuals currently applying for
the resource. We provide a method for generating counterfactual expla-
nations under separable utilities that are monotonically increasing with
prediction scores. Here, we assume that we can translate probabilities of
“success” together with some other parameters into utility, such that the
problem can be phrased as a knapsack problem and solved by known allo-
cation policies: optimal 0–1 knapsack and greedy. We use the two policies
respectively in the use cases of loans and college admissions. Moreover,
we address the problem of recourse invalidation due to changes in allo-
cation variables, under an unchanged prediction model, by presenting
a method for robust recourse under variables’ distributions. Finally, we
empirically compare our method with perturbation-robust recourse and
show that our method can provide higher validity at a lower cost.

Keywords: Counterfactual explanations · Algorithmic recourse ·
Allocation problems

1 Introduction

Automated decision-making systems are currently employed in many high-risk
applications such as granting loans [49] or admitting students to higher-education
programs [45]. As these applications have a great impact on people’s lives and
future trajectories, it is important to provide individuals with explanations
regarding such decisions and algorithmic recourse—actions the individual can
take in order to obtain the desired outcome. A widely used approach is counter-
factual explanations (CE). With this approach, an explanation model outputs
a feature vector that would have obtained the desired outcome, and requires
minimal changes to the original feature vector of the individual. For example,
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an individual who has been denied a loan might be told that they must increase
their salary by 1000$ in order to qualify for a loan. As such, CE and algorithmic
recourse are of the same format: the description of individual features that would
yield the desired outcome. While CEs interpret this as an explanation of what the
current individual is lacking, in the view of recourse the action recommendation
is to obtain the described features.

The CE and recourse literature is mainly focused on binary classification
settings. In these problems, a model M predicts the probability of success (e.g.,
of repaying the loan or graduating) for each individual and then a function
f : [0, 1] → {0, 1} outputs a decision by setting a threshold over those scores [14,
41]. All individuals with success probability above this threshold are assigned
with the desired label (’loan granted’ or ’admitted’) and the full classifier is
h = f ◦ M . We extend this line of work to allocation problems where budget
constraints do not necessarily allow for a threshold policy. Here individuals with
lower (prediction) value might be accepted because of their lower cost.

In allocation problems, a decision maker (DM) is allocating limited resources
among a population in order to maximise some objective (such as profit to
the bank), sometimes under additional constraints. The decision is determined
according to the available resources, current population (or applicant pool) and
the DM’s utility function. Applications such as college admissions and loan grant-
ing, which are usually considered as classification problems [18,32], are in fact
dependant on resource constraints (and consequentially the whole population)
and are thus better phrased as allocation problems. For example, for the lending
use case, we can consider a bank making a decision every time step based on a
batch of loan applications. The bank can offer a loan to a limited number of indi-
viduals depending on the bank’s budget, these individuals are selected among
the current set of loan applicants and the bank may have a utility function
which takes into account different factors, for instance the current interest rate.
Hence, it is insufficient to provide counterfactual explanations with respect to
a prediction model (e.g., of the probability of repaying the loan), which usually
only considers prediction accuracy. Instead, counterfactual explanations should
be made with respect to the entire decision making process, i.e., the allocation
problem and its variables.

All three allocation problem variables – resources, population and utility
– may change over time. Following the lending example, possible changes of
variables could include:

– Resources. The bank may have a different budget in the next time step, which
would make it easier or harder to be granted a loan.

– Applicants. We do not expect to see the exact same population applying again
for a loan.

– Utility. According to the current market, a bank may change their utility
function to be more or less risk averse.

As the goal of acting upon a given recourse is to yield the desired outcome in
the future, it is crucial that the recourse remains valid over time. That is, the
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individual receives the desired outcome at a later time step following the imple-
mentation of the recommended recourse. Following the above lending example,
a recourse that is based on the current resources, applicants and utility may not
be valid at the next time-step.

Previous works that address recourse invalidity, due to changes of the predic-
tion model or retraining following a distribution shift, consider robustness with
respect to worst-case perturbations. As a natural result, many works also demon-
strate the cost-robustness trade-off, meaning that the cost of a recourse increases
with its robustness guarantees. In a work by Pawelczyk et al. [41] the users are
granted control over this trade-off by setting a desired validity rate. However,
these robust methods do not account for the probability of these perturbations
or the likelihood of the current parameters. When taking the distribution of the
problem variables into account and providing recourse that is valid with high
probability, the cost of the recourse might in fact decrease. A user could be
simply “unlucky” in a specific allocation, but could be assigned with a favorable
decision given the same features with high probability, depending on the distri-
bution over problem variables. This information is crucial for the user, which
might otherwise invest significant efforts to implement an unnecessarily difficult
recourse. To this end, we model changes in allocation variables by sampling them
from a known distribution and propose a distribution-aware method for robust
recourse.

In this paper, we focus on binary allocation problems with monotonic sep-
arable utilities (Sect. 3). We then present two use cases for such problems with
different allocation policies: loans and college admissions with optimal 0–1 knap-
sack and greedy policies respectively (Sect. 4). For these problems, we provide a
pipeline for generating CE under a black-box prediction model and an allocation
policy (Sect. 5). Here we assume to have access to a CE-generator for classifiers
and encapsulate this part in the pipeline. Next, we provide an algorithm for
approximating a robust recourse given a distribution over the allocation vari-
ables and perform empirical analysis using budget distributions (Sect. 6).

Our contributions are as follows:

1. We propose allocation problems as a novel setting for considering robust
algorithmic recourse.

2. In this setting, under a combination of a classification model and an alloca-
tion policy, we show through examples that the counterfactual explanations
for allocations can be more reliable for static allocations compared to coun-
terfactual explanations for the associated classification tasks.

3. For algorithmic recourse in repeated allocations, we empirically show that a
distribution-aware robust recourse could reduce the cost in some cases while
still providing high chances of achieving the desired outcome.

2 Related Work

Recourse for Allocations. A recent survey about algorithmic recourse [24] men-
tions that recourse should be extended to matching problems and allocation
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problems. Yet, to the best of our knowledge, the problem of robust algorithmic
recourse for allocation problems has not been addressed in the literature so far.
The literature closest to this problem is from the field of scheduling and rout-
ing problems, where several contributions deal with explainability by answering
“why-not” and “what-if” questions [9,15,29,31]. Yet, most works address the
end-user of the explanation as the scheduler (or employer), and do not consider
the individual’s point of view (employee who was assigned to tasks). One line of
work considers the perspective of the individual and generates CE using inverse
optimization [28]. However, this work does not address the problem of algo-
rithmic recourse and possible changes to the problem variables and constraints.
Recently, a new work discussing the impact of recourse on the distribution of
future population also included a resource constraint and addressed the com-
petition between individuals currently applying for the resource [17]. Here, the
recourse definition is limited to a threshold allocation policy, the paper does not
regard the DM’s utility, and the need for robustness is not addressed.

Recourse Invalidation. The problem of algorithmic recourse invalidation and
the need for robustness has already been recognised in recent years [35]. The
majority of papers consider invalidation due to model retraining with different
training data, usually following a distribution shift [5,6,14,20,27,37,38,42,46].
We propose that even with the same data distribution, the differences in sampled
populations from one allocation to another may lead to recourse invalidation.
Moreover, we also address possible invalidation due to change of resources or
utility function. The latter was identified as an open problem in a recent survey
of causal machine learning [23]. Other studied causes of invalidation are change of
prediction model [40] and feature perturbation, which could be due to inaccurate
implementation of the recourse [11,41,47] or privacy perturbation [36]. We do not
address these kinds of invalidation and assume that the recourse is implemented
in full.

Robust Recourse. Many works try to improve recourse robustness by considering
the worst-case adversarial perturbation (e.g. of the data distribution) within a set
of plausible changes, usually measured by distance up to a specific value [6,11,37,
38,46,47]. While these methods indeed improve the robustness of the recourse,
they also present a trade-off between robustness and cost (e.g., distance of the
counterfactual from the original feature vector) [40,42,46]. For deep networks,
even if no explicit trade-off exists, the robust recourse is still presented as more
costly [5]. Nonetheless, these methods do not take into account the probability
of such worst cases or question whether the current variables should be used
as a point of reference for increasing robustness. We present a robust recourse
under the variables’ distribution, which could result in lower costs for the users,
compared with the worst-case recourse with respect to current variables. When
considering the distribution, we can also provide the user with more control over
the robustness-cost trade-off. This was proposed in a recent paper [41] assuming
a specific noise distribution over recourse implementation. A similar method was
also suggested for generating counterfactual explanations under uncertainty of
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the causal relations in the data [25]. We facilitate the same kind of control for
allocation problems.

Other Approaches. Ferrario and Loi [16] suggest a different approach for handling
recourse invalidation. They propose a method for retraining the prediction model
such that counterfactual explanations generated in the past would still hold.
A similar problem to recourse robustness is the uncertainty of counterfactual
examples with respect to the data distribution [3,10,43]. We do not address this
problem, and assume that the black-box explanation model provides a reasonable
counterfactual explanation with respect to the data distribution.1

3 Binary Allocation Problems

A binary allocation problem is a triple 〈r,X,U〉 where r represents the available
quantity of the resource (such as budget), X is the given population of size n with
xi ∈ R

l being the feature vector of individual i ∈ {1, . . . , n} which includes wi,
the resource amount requested by applicant i, and U is the utility function that
the DM is trying to maximise. An allocation policy π outputs a valid allocation
or assignment, represented by a binary vector Y = {0, 1}n, where yi = 1 means
that individual i is assigned with wi of the resource, and yi = 0 means that
they are assigned with none of the resource. A valid allocation is an allocation
for which the allocated quantity of the resource does not exceed the available
quantity, i.e.,

∑
i yiwi ≤ r. In the following sections, we consider the CE, valid

recourse and robust recourse to be with respect to the preferred assignment
ŷi = 1.

Separable Utility and Prediction Model. In this paper, we focus on settings in
which the DM’s utility for allocation Y is separable over the population, meaning
that it can be decomposed into a sum of individual utilities vi for each person i
to which a resource is allocated, i.e., U(Y ) =

∑
i:yi=1 vi. The individual utility

v is the output of an individual utility function u : Rl → R which takes the
individual’s feature vector as input, i.e. u(xi) = vi. Moreover, we restrict the
function u to be of a specific form – a composition of two functions u = Sθ ◦ M .
The function M : Rl → [0, 1] is a prediction model, which maps a feature vector
to a single value. This can, for example, represent the success probability of
repaying a loan. The function Sθ : [0, 1] → R is a monotonically increasing
function parameterised by θ. The parameter θ could, for instance, represent the
current interest rate. The individual utility can be interpreted as the predicted
gain if we allocate the requested resource to the individual.

1 We note that a problem which might be considered as related is the of use counter-
factuals to explain classification uncertainty [30]. This is a different objective and in
our work we do not account for prediction uncertainty.
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4 Use Cases

We present two possible allocation policies for commonly used applications for
high-risk decisions: lending and college admissions. Using these examples, we
motivate the need for CE for binary allocation problems.

4.1 Lending

The lending use case is often seen as an example of a high-risk application of
automated decision making systems [33]. In this problem, individuals apply for
a loan by providing information such as requested credit, purpose of the loan,
current salary and demographic information. Based on these features, the pre-
diction model employed by the DM (in this case, the bank or lending institute)
predicts the individual’s probability of repaying the loan. Previous papers con-
sider this as a classification problem, and the allocation policy to be simply
setting a constant threshold over these probabilities. We formulate this prob-
lem as an allocation problem and describe our concrete modelling choices in the
following. This formalism is particularly relevant for student loans in the US,
where the Federal Student Aid Programs operate under a limited budget and all
applications for the next academic year are submitted up to a set deadline [2].2

Utility Function. Following the student loan use-case, we assume that the DM’s
gain from each successful applicant is twofold: 1) the DM has a (monetary)
profit—a constant fraction G1 ∈ [0, 1] out of the requested credit,3 and 2) G2 ∈
R, a value that represents the social value of granting a loan, e.g., by enabling
an educational opportunity to an individual who could not have afforded this
otherwise, and allowing them to increase future financial prospects. In case the
individual was not able to repay the loan, the DM loses a fraction C ∈ [0, 1] of
the loan. For simplicity, we assume that C is constant and has the same value
for all applicants. Thus, the expected utility when granting a loan to individual
i is

u(xi) = M(xi)(wiG1 + G2) − (1 − M(xi))Cwi. (1)

Allocation Policy. The DM is trying to maximise utility under budget con-
straints, where each applicant has individual utility and desired credit. This
problem can be translated to the well known 0–1 knapsack problem [4]. Here,
the weight capacity of the knapsack is the budget r, we have n items (individ-
uals), each item i has value vi = u(xi) and a weight wi. Items with negative
utility can be removed since including them cannot increase the allocation util-
ity. Considering weights and values to be non-negative, the problem is given

2 Other examples of such allocation problems, with a limited budget and applicants
requesting different quantities in batches, include funding agencies and grant appli-
cations.

3 In practice, the utility function also depends on the time for which the loan is
requested, but we ignore this component for simplicity.
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by max
∑n

i=1 viyi s.t.
∑n

i=1 wiyi ≤ r, i.e., filling the “knapsack” with the most
value while respecting its capacity. This constrained optimisation problem is
NP-complete, yet solvable in pseudo-polynomial time using dynamic program-
ming. Note that we assume discretisation: the credit has a minimal step size (e.g.
100$). We therefore assume that the DM’s allocation policy for this application
is determined by the optimal solution.

Table 1. Motivating example: lending use case. Table of applicants with their predicted
probability of repaying a loan according to model M and their features, the individual
utility for the DM according to Eq. 1 and the credit each applicant is requesting (in
thousands of dollars).

Applicant M(xi) u(xi) Credit (wi)

1 0.8 0.8 4
2 0.7 0.625 3
3 0.6 0.5 2
4 0.5 0.425 1

Motivating Example. Consider the applicants described in Table 1 under the
utility function u(xi) = M(xi)(wi(G1 + C) + G2) − Cwi (Eq. 1 rearranged)
using the parameters G1 = 0.05, G2 = 1, C = 0.2 and budget of 6 (thousand
dollars). The optimal allocation is Y = (0, 1, 1, 1), meaning approving the loan
for applicants 2, 3 and 4 with utility of 1.55 for the DM. Note that applicant
1 was not selected, even though their probability of repaying the loan is higher
than that of the other applicants, as well as their individual utility for the DM.
Thus, it would be difficult to explain the decision when only considering the
prediction model, without the allocation mechanism, remaining population and
budget constraint.

4.2 College Admission (Greedy)

College admission is a highly researched problem [22], and it concerns educational
opportunities. As such, it is regarded as a high-risk application for which indi-
viduals are entitled to an explanation (according to the European AI Act [33]).

In the case of college admission, individuals apply by providing educational
and demographic background information. Based on these features, the predic-
tion model employed by the DM (i.e., the university) predicts the individual’s
probability of graduation. For college admissions, the weight or requested quan-
tity is identical for all candidates (one admission slot ∀i, wi = 1). Thus, the use
of a threshold policy would be optimal, assuming that the utility of the alloca-
tion is the sum of individual utilities. Nonetheless, while previous papers set the
threshold over the graduation probabilities, for allocation problems the thresh-
old would be over the individual utilities, and applicants are greedily added as
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long as the utility increases and the assignment does not exceed the budget [8].
This means that individuals with non-positive utility will not be included in
the admitted set regardless of the budget constraint. Hence, the decision also
depends on the resource and the utility function, which might lead to different
results from those we get using only a predictor.

Utility Function. Let us assume that for every admitted student, the university
pays a constant cost C ≥ 0. In addition, for every admitted student who success-
fully graduates, the university receives a constant reward or gain G ≥ 0. Thus,
the expected (individual) utility for an admitted student i is

u(xi) = M(xi)(G − C) + (1 − M(xi))(−C) = M(xi)G − C. (2)

Again, we denote u(xi) as vi.

Table 2. Motivating example: college admission. Table of applicants with their pre-
dicted probability of graduating according to model M and their features, and the
individual utility for the DM.

Applicant M(xi) u(xi)

1 0.8 0.2
2 0.7 0.1
3 0.6 0.0
4 0.5 −0.1

Motivating Example. Let us consider the utility function from Eq. 2 with G = 1
and C = 0.6 as shown in Table 2. For the case of r = 2 (two free study slots),
the optimal allocation would be to select the top two applicants: 1 and 2 (Y =
(1, 1, 0, 0)). In this case, in order to be selected, applicant 3 should increase their
utility such that it is higher than that of applicant 2. For the case of r = 3,
the optimal allocation would also be Y = (1, 1, 0, 0), since selecting applicant
3 would not increase the utility. Thus, in order to be selected, it is sufficient
for applicant 3 to increase their utility by ε > 0. This could be a significant
difference of investment cost for the applicant, which could not be captured by
considering the prediction model alone.

5 Counterfactual Explanations

We start off by giving a formal definition of counterfactual explanations that
is based on the definition of counterfactual explanation for classification prob-
lems [19]. We then describe how to generate these in our specific setting.
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Definition 1 (Counterfactual Explanation for Binary Allocations).
Given an allocation policy π that outputs the decision Y for population X, util-
ity function U and given resource r, a counterfactual explanation for individual
xi ∈ X consists of an alternative vector of features x′ for which the allocation
Y ′ = π(r,X ∪{x′}\{xi}, U) is different from Y such that y′

i = 1. We define such
a counterfactual explanation to be minimal if its cost to the individual d(xi, x

′)
is minimal under some metric d : Rl × R

l → R.

Note that here, there could be another individual j �= i for which y′
j �= yj ,

meaning that the CE might change the assignment for other individuals and not
only the individual requesting the CE.

Assume we are given a prediction model M , an allocation policy π, an indi-
vidual utility function u = Sθ ◦ M such that Sθ is a monotonically increasing
function, a population X, resources r and a metric d in the feature space. We
propose to generate a CE according to the pipeline below.

1) Computing the Minimal Utility-CE. Given an allocation policy, we first pro-
duce a minimal utility-CE v′, i.e., the minimal utility that would have led to a
preferred assignment. For the two allocation policies we focus on:

– Optimal 0–1 knapsack policy. Intuitively, the individual utility should
increase by the difference between the current maximal allocation utility and
the maximal allocation utility under the constraint of including individual i.
We denote the optimal allocation for applicant set [n] and available resources
r as Y ∗([n], r). We claim that the minimal utility-CE for individual i is v′

i =
U(Y ∗([n], r))− U(Y ∗([n] \ i, r − wi)), where U is the utility of the allocation.
A proof for this result and additional notes can be found in the appendix.
We can thus use a dynamic programming algorithm4 for 0–1 knapsack, see
e.g., [34], to compute the minimal utility-CE. In practice, to avoid ties we set
v′

i = U(Y ∗([n], r)) − U(Y ∗([n] \ i, r − wi)) + ε for some ε > 0.
– Greedy policy. Following the example in Table 2, the utility-CE for indi-

vidual i is either 1) larger than the utility of the selected applicant with the
smallest utility, in case the budget was fully utilised or 2) larger than 0 in
case there are still available vacancies. Formally, we propose for any ε > 0:

v′
i =

{
(minj:yj=1 vj) + ε, if

∑
j yj = r

ε, otherwise

2) Computing a Prediction-CE. The minimal utility-CE is translated to a
prediction-CE m′, i.e., the minimal success probability that would have led to a
preferred assignment. Because Sθ is monotonically increasing, it is also invertible.
Then the prediction-CE is m′ = S−1

θ (v′).

4 Simply put, a table V of size n × r is being filled. Each cell V [i, j] holds the value of
the maximal utility that can be obtained given items 1, . . . , i and maximal weight j.
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3) Computing a Minimal (Feature-Based) CE. Using the prediction-CE, a min-
imal CE x′ is generated by solving the following optimisation problem:

x′ = argmin
z

d(z, x) s.t. M(z) ≥ m′. (3)

For example, we can construct the function hm′ with hm′(x) = 1 if M(x) ≥
m′ and hm′(x) = 0 otherwise. Then, one of the many existing explanation models
for classifiers [19,39] (e.g., [48]) can be used on hm′ with metric d, which provides
x′, a minimal CE with respect to the feature-based cost function d. Note that
we consider wi to be fixed.

At the end of this process, x′ is minimal with respect to d and M(x′) ≥
m′. Hence, x′ is a minimal CE for the allocation problem under the following
assumptions: 1) the utility function is monotonic in the prediction scores, and
2) the allocation policy is monotonic in the utility, i.e., increasing the utility for
an individual assigned with the resource could never change the allocation such
that the individual is not assigned with the resource. Both policies (optimal 0–1
knapsack and greedy) satisfy these monotonicity assumptions.

To mitigate the effect of specific classification explanation choices in step
3), we can define the CE in terms of success probability or prediction score
(prediction-CE). In the remainder of the paper, we assume the cost function is
defined with respect to the predicted probability of success: dM (M(xi),m′) =
|M(xi) − m′|.

Using our proposed method, we can see that for the example in Table 1 the
optimal allocation under the constraint of including applicant 1 is Y ′ = (1, 0, 1, 0)
with utility of 1.3. Hence, applicant 1 should increase their individual utility to
be at least 1.55 − 0.5 = 1.05 which translates to increasing their probability of
repaying the loan from 0.8 to 0.925.

6 Robust Recourse for Binary Allocations

Counterfactual explanations are used to explain the current decision, but for
repeated settings, we wish to provide recommendations for the future, i.e.
recourse. We assume that the available resources, population and utility function
may change from one time step to the next, which may lead to invalidation of the
recourse. We first define (robust) recourse for binary allocations under variable
distributions, then describe how to generate approximate robust recourse and
lastly evaluate this in our experiments.

Definition 2 (Valid Recourse for Repeated Binary Allocations). At
time t1, given the allocation instance 〈rt1 ,Xt1 , Ut1〉, a recourse for individual
xi ∈ Xt1 consists of an alternative vector of features x′. This recourse is valid at
time t2 > t1 if for the new allocation instance 〈rt2 ,Xt2 ∈ R

n−1,l, Ut2〉, the alloca-
tion policy outputs the allocation Y t2 = π(rt2 ,Xt2 ∪ {x′}, Ut2) such that yt2

i = 1.
A recourse is said to be minimal (w.r.t. d) if its cost d(xi, x

′) is minimal under
the cost metric d : Rl × R

l → R.
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We assume that at each time step the available resources, applicants and
utility function are sampled i.i.d. according to a joint distribution D. Using this
distribution, we follow the approach of Pawelczyk et al. [41] and allow the user to
control the robustness-cost trade-off by providing a validity probability ρ ∈ [0, 1].

Definition 3 (ρ-Robust Recourse for Binary Allocations). Let x′ be a
recourse generated at time t1 for individual i given an allocation problem. Given
distribution D over resources, applicants and utility function, x′ is ρ-robust if
the expected validity at time t2 > t1 is at least ρ, i.e.,

Ert2 ,Xt2 ,Ut2∼D[1x′ valid for 〈rt2 ,Xt2 ,Ut2 〉] ≥ ρ

where 1[·] is an indicator function. Among all ρ-robust recourses, a recourse with
minimal cost d(xi, x

′) is denoted as a minimal ρ-robust recourse.

Note that we assume here that the allocation policy is constant, yet this could
also be relaxed and added to the sampled variables.

Interestingly, under our definition, a robust recourse may be of cost 0, depend-
ing on the distribution and the initial allocation variables. For example, the
recourse might have been generated under an extremely unlikely combination of
variables, so that the individual was simply “unlucky”.

6.1 Approximated Robust Recourse

Algorithm 1. Approximated ρ-Robust Recourse
Require: sample size n > 0, prediction model M , feature-based explanation function

E, allocation problem 〈r, X, u〉, allocation policy π, distribution D over resources,
applicants and utility parameters {(rj , Xj , θj)}j∈[n], individual i, desired validation
level ρ ∈ [0, 1].
for j from 1 to n do

Get sampled variables (rj , Xj , θj) ∼ D
Get utility-CE v′

j with respect to 〈rj , Xj , uj = Sθj ◦ M〉 and policy π

Get prediction-CE m′
j = S−1

θj
(v′

j)

end for
Sort all prediction-CE: sorted ← sort([m′

j ]
n
j=1)

Get ρ-robust prediction-CE mρ ← sorted[�ρn	]
return feature-based CE x′ = E(M, i, mρ)

We approximate the ρ-robust recourse for binary allocations, a monotonic
separable utility and a monotonic policy using a Monte-Carlo approximation
(see Algorithm1). Given a prediction model M , an allocation policy π, distribu-
tion D over resource r, applicants X and utility function parameter θ, for each
allocation problem 〈r,X, u = Sθ ◦ M〉 such that (r,X, θ) ∼ D, we can generate
a minimal prediction-CE for individual i as shown in Sect. 5. Given the minimal



Robust Recourse in Binary Allocations 385

prediction-CE for n sampled problems, we can find mρ, the prediction-CE that
is valid for at least ρ of the sampled allocation problems. Such mρ exists as the
allocation is monotonic with respect to the prediction score: for every allocation
problem which requires individual i to have a prediction score of m in order to
receive the resource, any larger prediction score q > m would also guarantee
the resource being allocated to i. As we can estimate the distribution’s quantiles
using Monte Carlo approximation [12], this mρ approximates the validity over
the entire distribution.5 This ρ-robust prediction-CE can then be translated to
features, as was proposed in step 3 in Sect. 5. The produced feature vector x′ is
then the minimiser of

min
z

d(z, xi) s.t.
1
n

n∑

j=1

1M(z)>m′
j

≥ ρ. (4)

Here, m′
j is the j-th prediction-CE. Note that it is sufficient to sort the thresh-

olds, as is done in Algorithm1. Hence, x′ is the feature vector with the lowest
cost w.r.t. d which provides individual i with the resource in approximately ρ of
the allocations. We note that by using the intermediate step of prediction-CE,
we reduce the problem to a one-dimensional monotonic recourse. Without this
step, for each sampled allocation problem we would generate a different feature-
based CE x′. We do not assume the prediction model M to be monotonic in
the features, i.e., a specific value of feature j in x′ does not guarantee that all
feature vectors with a higher value for feature j would have a greater or equal
prediction score.

6.2 Experiments

We empirically evaluate the performance of our robust recourse method in terms
of cost and validity. We focus on the case of a changing budget, assuming that
the utility of the DM is fixed and the recourse is generated with respect to the
current population. In our experiments we produce prediction-CE or prediction-
recourse, and measure the recourse cost with respect to the difference in pre-
diction score. As there is no other method for generating a CE for allocation
problems, we cannot compare our results with previous methods. Thus, the goal
of the empirical results is twofold:

1. Evaluate the cost and validity of the robust-recourse compared to the static
CE.

2. Compare our approach of distribution-aware robust-recourse to the previously
proposed approach of perturbation-based robust recourse.

5 The accuracy of the approximation depends on the sample size which we consider to
be fixed. However, our method could be extended to include a parameter to control
the required sample size.
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Datasets and Preprocessing

Loans. We use the German credit dataset [13] which is one of the most com-
mon benchmarks used for CE and algorithmic recourse (e.g. [5,6,14,20]). The
dataset consists of 1, 000 samples with 20 features such as age, marital status,
education, savings and requested credit. A binary label indicates whether the
candidate repaid the loan. We scale numeric features to [0, 1] and encode cat-
egorical features as 1-hot vectors. In addition, the requested credit is divided
by 100 and rounded. The data is split to train and test sets with the ratio of
70–30. Then, a random forest classifier with 200 trees is trained on the train set
(achieves accuracy of 0.78 on the test set). We construct 20 allocation problems
by uniformly sampling 20 individuals from the test set, set the utility function
parameters to G1 = 0.06, G2 = 4, C = 0.5 using the utility function in Eq. 1,
and sample a budget from the budget distribution. The utility parameters are
set such that the number of individuals with a positive utility is close to the
number of individuals who were granted a loan based on the train set.

College Admissions. We sample applicant features and their success probability
for 10, 000 applicants according to the simulator described in [26], using data
from the Norwegian Database for Statistics on Higher Education [1]. We con-
struct 20 allocation problem by uniformly sampling 500 individuals from the
simulated data, set the utility function parameters to G = 2, C = 1 using the
utility function in Eq. 2, and sample a budget from the budget distribution. The
utility parameters are set such that an individual with success probability higher
than 0.5 will have a positive utility.

Budget Distributions. For both datasets, we sample 50 batches of applicants (20
applicants for German credit and 500 for college admissions) and consider the
sum of given credit or admitted students as the current budget or capacity. We
then fit a normal distribution to it, and consider this as the budget distribution.

Method and Baselines. We test our ρ-robust recourse method, described in
Algorithm1, with ρ ∈ {0.7, 0.9}, with 200 budget samples, which we denote as
the validation set. We compare our results to the static prediction-CE for alloca-
tions. In addition, we implement another recourse method we denote as p-noisy.
This method is designed to be of a similar nature to perturbation robustness.
According to this method, given an allocation problem with a specific budget r,
and an individual i, we generate a validation set by sampling 200 values from a
truncated normal distribution νj ∼ N(0, σ2)[a,b], j ∈ [200]. Then, we generate the
minimal prediction-CE for all budgets {r+νj}j∈[200]. The p-noisy robust recourse
is the maximal among them. The parameter p controls the range [a, b] such that
p of the values lie according to distribution N(0, σ2) in the range [a, b]. We set σ
to be the standard deviation of the underlying variable (budget) distribution. In
our experiments we use p ∈ {0.7, 0.9}. Moreover, we define an optimistic baseline
which is a ρ-robust recourse generated based on the test budget samples. For



Robust Recourse in Binary Allocations 387

this baseline we set ρ = 1, so that the generated recourse is valid for the entire
test set.

Our assumption is that the test set would be more similar to the validation
set used by the ρ-robust method (sampled from the same distribution), rather
than the single sample of the original variable used by the static CE, or the
validation set used by the noisy recourse method. Therefore, we expect to see
that our method can achieve better results in terms of cost and validity compared
to the baselines.

Results. For each allocation problem, we find the optimal allocation and pro-
vide recourse for all individuals not included in the allocation. The results are
described in Table 3. The recourse validity of each individual is measured as the
average validity over a test set of 200 samples from the budget distribution.
The validity of the method is then the average validity across all individuals.
The recourse cost for each method is the average prediction score difference. We
normalise all costs by the cost of the optimistic baseline.

Table 3. Robust recourse under resource distribution.

Method Loans Admissions
Cost Validity Cost Validity

Static CE 0.42 0.823 0.756 0.679
0.7-robust 0.407 0.84 0.753 0.771
0.9-robust 0.51 0.917 0.796 0.922
0.7-noisy 0.571 0.888 0.812 0.845
0.9-noisy 0.649 0.977 0.84 0.952
Optimistic 1 1 1 1

From the results in Table 3, we can observe that as expected, higher ρ or
noise values achieve higher validity at a higher cost. We can also observe that
the 0.7-robust method Parto-dominates the static-CE for both applications, as
it achieves higher validity at a lower cost. This shows that the budgets of some of
the allocation problems did not represent the test set and produced a higher-cost
prediction-CE. Similarly, the 0.9-robust method Pareto-dominates the 0.7-noisy
method in both applications. We can also observe that the ρ-robust methods
are never Pareto-dominated by any other. This shows the advantage of our
distribution-based robust-method.

When considering a single individual, by increasing the validity we also
increase the cost of the recourse. This is due to our monotonicity assumption
for the utility function and the allocation policy. However, when considering the
average over the population and the test set, we can see it is possible for our
method to achieve higher validity at a lower cost. This could be explained by
the fact that the validation set is more likely to represent the test set. When the
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original variable is more permissive, allowing resource allocation to more individ-
uals, our method can provide a recourse that would be valid for more restricting
samples of the distribution. Thus increasing the average validity and the average
cost. When the original variable hinders resource allocation, our method would
be able to find “unlucky” individuals that do not require a costly recourse (or
recourse at all) to be allocated with the resource for many variable values. Thus,
the average cost would be reduced and the validity would remain high.

Another observation we can make from the experimental results, is the dif-
ference between the validity on the test set and the requested validity. This gap
can be explained by the fact that the validity is estimated based on the vali-
dation set and the final validity is computed based on the test set. Since the
two sets are not identical, the recourse for which the estimated validity was ρ
(the requested validity) may provide lower or higher validity on the test set.
In addition, it is possible that the minimal recourse for the requested validity
level already provides a higher validity. For example, let us assume a user is
requesting 0.5 validity and the validation set produces the following minimal
CE: (0.1, 0.2, 0.01, 0.2, 0.2, 0.25). If we wish to provide 0.5 validity, we must have
a recourse of 0.2, but that recourse already provides us with a higher validity of
0.83. This could explain the fact that all methods provide test-set validity that
is higher than the requested validity.

7 Generalisation and Open Problems

In this paper we only make the first step in solving this new setting of recourse
for allocation problems. We address allocation problems with binary decisions
and separable utilities. More complex problems within the scope of allocation
problems could be addressed in the future. We propose here more general def-
initions for CE and recourse for a wider class of allocation problems and point
out interesting aspects of these problems.

7.1 Definitions

We start by providing a general definition of an allocation problem.

Definition 4 (Allocation Problem). An allocation problem is a triple
〈R,X,U〉 where R = {rj}k

j=1 represents the available resources, with rj being
the number of units available of resource j, X is the given population of size n
with xi ∈ R

l being the feature vector of individual i, and U is the utility func-
tion that the DM is trying to maximise.6 An allocation policy π outputs a valid
allocation or assignment, represented by a matrix A ∈ R

n,k such that ai,j is the
number of units of resource j allocated to individual i. A valid allocation is an

6 The allocation problem could also be defined as 〈R, X, U, C〉 where C represents
additional constraints. The feature vector xi could also include preferences over the
resources [pref(i)]ki=1 ∈ R

k.
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allocation that satisfies ∀j ∈ [k],
∑n

i=1 ai,j ≤ rj, meaning that the sum of allo-
cated resources is at most the set of available resources. The DM is then trying
to find a policy which maximizes the utility function U : Rn,k −→ R.

Next, we provide a definitions of counterfactual explanations and valid
recourse for general allocation problems.

Definition 5 (Counterfactual Explanation for Allocations). Given an
allocation policy π that outputs the decision A for population X, utility function
U and given resources R, a counterfactual explanation for individual xi ∈ X
with respect to a preferred allocation or assignment for individual i: âi ∈ R

k

consists of an alternative vector of features x′ for which the allocation A′ =
π(R,X ∪ {x′} \ {xi}, U) is different from A such that a′

i = âi. We define such
a counterfactual explanation to be minimal if its cost d(xi, x

′) is minimal under
some metric d : Rl × R

l → R.

Definition 6 (Valid Recourse for Sequential Allocations). At time t1,
given the allocation variables Rt1 ,Xt1 , Ut1 , a recourse for individual xi ∈ Xt1

with respect to a preferred allocation âi ∈ R
k consists of an alternative vector of

features x′. This recourse is valid at time t2 > t1 if given the new set of allocation
variables at t2: Rt2 ,Xt2 ∈ R

n−1,l, Ut2 , the allocation policy outputs the allocation
At2 = π(Rt2 ,Xt2 ∪{x′}, Ut2) such that at2

i = âi. A recourse is said to be minimal
if its cost d(xi, x

′) is minimal under some metric d : Rl × R
l → R.

Note that if the preferred resources are not in Rt2 , a valid recourse for t2 does
not exist.

7.2 Open Problems

Recourse for Non-binary Decisions. The problem of recourse for non-binary
allocations is closely related to the problem of CE and recourse for regression [21,
44] (for a single resource) and multi-class predictions [7] (for multiple resources).
Although some contributions have been made in that respect, these are still open
problems. In our definitions, we wish to provide CE and recourse with respect to
the individual’s preferred outcome. When the allocation problem is not binary,
it requires additional information regarding the individual’s preferences, and
possibly a cost function that takes these preferences as input.

Non-separable Utility. In this paper, we only address separable utility functions.
Yet, as decisions are being made over batches and not over individuals, the use
of non-separable utilities might be needed in some cases. For example, the prob-
abilities of people repaying their loan might not be independent. They might,
e.g., be influenced by sectoral or global crises. Thus, a decision maker might
assign a higher utility to allocations with a sectoral balance, which cannot be
represented by separable utilities. In these cases, it is even more important to
consider the rest of the population when providing CE and recourse.
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Recourse Feedback and Multi-agent Recourse. A mostly unexplored interesting
facet of recourse for allocation problems is the fact that an implementation of a
recourse by one individual might impact the allocation outcome for other indi-
viduals. This question was addressed via an empirical simulation study [17], in
which the authors measure the effect of different parameters on recourse validity
or “recourse reliability”. Yet, the provided recourse did not take into account the
feedback effect of the recourse implementation.

8 Discussion

In this paper, we present the first attempt to define robust recourse for alloca-
tion problems. Under this setting, we show two examples of allocation policies for
which methods for generating CE given a classifier would fail to explain the deci-
sion. For repeated allocations, we provide a distribution-aware method for gener-
ating robust recourse, as opposed to other methods which consider perturbations
of the current problem variables. This approach allows for a recourse which might
provide the user with high enough validity at the price of a lower cost. Moreover,
our approach grants the user more control over the cost-robustness trade-off by
choosing the requested validity probability.

Assumptions and Limitations. Our proposed method assumes full knowledge
of the utility function structure and the allocation policy. These are reasonable
assumptions when considering that the DM is the one providing the recourse.
Moreover, we make no assumptions regarding the prediction model and address
it as a black-box. In addition, we assume a specific structure of the individual
utility function: composition of a parametric function Sθ and a prediction model
M , where S is monotonically increasing. As illustrated in Sect. 4, this structure
is reasonable in some applications. However, it fails to capture other interesting
applications in which the utility is affected directly by features. For example,
for allocating research grants, the utility of a project may depend on the spe-
cific topic or planned collaborations, not only on the success probability of the
proposed project. Our pipeline for generating CE and robust recourse does not
provide a solution for these cases and an extension is left for future work.

We assume the allocation variables are sampled i.i.d. from a static distri-
bution. When the true variable distribution is unknown, we can maintain a
belief over the distribution and sample from the posterior to compute the robust
recourse. Furthermore, this process can be adapted to consider changes in the
underlying distribution over time. We also assume a constant population size,
but that could be easily changed.

Our methods and definitions assume that the user’s requested resource
remains unchanged. Yet, it could be reasonable for an individual to change their
requested resource, for example in exchange for increasing their probability of
receiving it. A CE which includes change of preferences is left for future work.
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Future Work. Further research is required to explore the generalisation of our
results to settings in which the assumptions mentioned above are relaxed. In
addition, more complex problems within the scope of allocation problems, such
as matching problems, could be addressed in the future, as well as the open
problems mentioned in Sect. 7.

Societal Impact. Lastly, we note that the use of recourse is intended to provide
users with more control over aspects in their lives controlled by automated deci-
sions. Ideally, we would like the DMs to be held responsible for their provided
recourse, such that the implementation of a recourse would guarantee access to
the resource in the future. We choose to provide a probabilistic recourse in order
to grant users more control over the robustness-cost trade-off. Yet, when the
recourse takes a probabilistic nature, DMs might distance themselves from the
responsibility for the robustness of the recourse.

Acknowledgments. This work was supported by the Research Council of Norway
under project number 302203.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Appendix

In Sect. 5 we claim the following:

Lemma 1. The minimal utility-CE v′
i for individual i under an optimal 0–1

knapsack policy is

v′
i = U(Y ∗([n], r)) − U(Y ∗([n] \ i, r − wi)).

Proof. We prove this claim by contradiction. Suppose not, and let us assume
that there exists v̄i < v′

i such that for v̄i, individual i is included in the optimal
set. We assume that wi ≤ r (otherwise individual i could never be included
in the allocation). As the order of the individuals does not change the optimal
allocation, let us assume w.l.o.g. that individual i is the last individual inserted
into table V (i = n). Thus, when filling the cell V [n, r] we choose whether to
include individual n or not: V [n, r] = max(V [n − 1,W ], V [n − 1, r − w[n]] + v̄n).
By assuming that the individual is included, we get that

V [n − 1, r] ≤ V [n − 1, r − wn] + v̄n

⇔ U(Y ∗([n], r)) ≤ U(Y ∗([n − 1], r − wn)) + v̄n

⇔ U(Y ∗([n], r)) − U(Y ∗([n − 1], r − wn)) ≤ v̄n

⇔ U(Y ∗([n], r)) − U(Y ∗([n] \ i, r − wi)) ≤ v̄n

⇔ v′
n ≤ v̄n
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Which contradicts our assumption of v̄i < v′
i. Note that U(Y ∗([n], r)) = V [n −

1, r] as the individual was not originally included in the allocation. In practice,
we add ε > 0 to the utility-CE in order to avoid ties.

Notes:

1. Another approach for generating CE for the 0–1 knapsack problem was previ-
ously proposed [28]. Yet, our approach allows efficient calculation of multiple
CE for different budgets by filling the table V (both with and without indi-
vidual i) for a maximal budget rmax, which then provides all solutions for all
r ∈ [rmax].

2. In some cases, the required utility-CE would entail a prediction-CE that
is grater than 1, which is impossible. Thus, in those cases, the applicant
would learn that given the current allocation variables, there is nothing they
could have changed in order to have received the requested loan. Nevertheless,
we only consider the option to change user features excluding the requested
credit, assuming the requested credit cannot be changed.
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Abstract. The streams of research on adversarial examples and coun-
terfactual explanations have largely been growing independently. This
has led to several recent works trying to elucidate their similarities and
differences. Most prominently, it has been argued that adversarial exam-
ples, as opposed to counterfactual explanations, have a unique charac-
teristic in that they lead to a misclassification compared to the ground
truth. However, the computational goals and methodologies employed in
existing counterfactual explanation and adversarial example generation
methods often lack alignment with this requirement. Using formal defini-
tions of adversarial examples and counterfactual explanations, we intro-
duce non-adversarial algorithmic recourse and outline why in high-stakes
situations, it is imperative to obtain counterfactual explanations that
do not exhibit adversarial characteristics. We subsequently investigate
how different components in the objective functions, e.g., the machine
learning model or cost function used to measure distance, determine
whether the outcome can be considered an adversarial example or not.
Our experiments on common datasets highlight that these design choices
are often more critical in deciding whether recourse is non-adversarial
than whether recourse or attack algorithms are used. Furthermore, we
show that choosing a robust and accurate machine learning model results
in less adversarial recourse desired in practice.

Keywords: Counterfactuals · Adversarials · Algorithmic Recourse

1 Introduction

A continuous stream of predominantly independent research in the fields of
adversarial examples [26,58] and counterfactual explanations [47,61,63,65] has
sparked an ongoing scholarly discourse on their similarities and differences
[23,46]. While adversarial examples originate from the security literature, charac-
terizing instances capable of deceiving machine-learned classifiers into erroneous
decisions, algorithmic recourse has its roots in the trustworthy machine-learning
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Fig. 1. Overview of the realistic decision-making scenario considered in this
work. We consider the relevant case where an institution, e.g., a bank, deploys a
machine learning model to support decision-making overseen by human experts that
make final, case-based decisions based on the model’s score (left). In such a setting,
constructing recourse only based on the scoring model f may lead to unreliable recourse
because the experts’ final y decision is based on further restrictions, thereby represent-
ing a shifted decision boundary (right).

literature. Algorithmic recourse is primarily concerned with providing action-
able recommendations for changes that would lead to a different, more favor-
able outcome for the end user (e.g., changing a loan decision from rejection to
acceptance). Despite the apparent differences in goals and associated semantics
between adversarial examples and recourse, scholars have observed a strikingly
similar algorithmic foundation underpinning these two domains [23,46].

The current debate surrounding the potential distinctions between these two
concepts remains somewhat ambiguous. To provide greater context and signifi-
cance to this discourse, we establish a tangible connection to a real-world appli-
cation where the differentiation between counterfactual and adversarial examples
becomes intuitive and indispensable. To this end, we slightly modify the estab-
lished recourse problem in the context of loan assignments [62]. Unlike previous
work, which assumes that a machine learning system solely determines loan
assignments, we argue that this perspective oversimplifies the real world. Arti-
cle 22 of the European Union’s General Data Protection Regulation (GDPR)
[25], which asserts the right of the data subject “not to be subject to a decision
based solely on automated processing which produces legal effects concerning him
or her”, thereby suggesting that automated models alone cannot make legally
binding decisions. Consequently, we consider a more practical scenario where
algorithmic decisions are subject to scrutiny by a human expert panel. This
expert panel holds the authority to issue a final, case-specific decision and can
override the model’s recommendation. This refined setup is illustrated in Fig. 1.

Complementarily, the GDPR grants individuals who receive an adverse deci-
sion the right to receive “meaningful information about the logic involved” which,
in a broader context, can be interpreted as the right to “recourse” [64]. When
the model exclusively determines decisions, it is evident that recourse can be
directly computed from the model itself. However, in the more realistic scenario
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considered in this work, where human experts play a role in the final decisions,
the model’s output does not fully encapsulate the ultimate decision. This raises
the question of appropriate recourse design in such a scenario and how to recon-
cile these two GDPR principles – the right to receive meaningful recourse and
the prohibition of fully automated decision-making.

Under the premise that the model has been mainly distilled from past deci-
sions of the experts, we consider the experts as an imperfect oracle providing
ground truth labels,1 whereas the model returns an imperfect approximation of
these labels. While the humans decide on a per-case basis, it is hard to directly
ask them for specific thresholds, as the interplay of the features quickly makes
the task intractable. Therefore, we are interested in computing counterfactual
explanations that do not only change the model’s prediction but also flip the
true labels. This perspective aligns with the argument made by Freiesleben [23]
that a distinctive feature of adversarial examples, as opposed to counterfactual
explanations, is their tendency to be misclassified regarding their true labels.
Since counterfactual explanations should also change the true label in this case,
this gives rise to the term “non-adversarial algorithmic recourse”, i.e., counter-
factual explanations that come with both a change in the model’s prediction and
a changed ground-truth label.

Unlike prior work taking a merely definitional view, this work additionally
contributes to implementing non-adversarial algorithmic recourse in practical
scenarios. In summary, we propose the following contributions:

– Introduction of a novel recourse problem: We introduce a novel recourse
problem that addresses real-world decision systems wherein human experts
play a pivotal role in making case-based decisions, while also considering input
from a machine learning model.

– Proposing non-adversarial recourse as a solution to the realistic
recourse problem: We consider prior work’s [23] distinction of adversarial
examples and counterfactual explanations and suggest a novel formal defi-
nition of non-adversarial algorithmic recourse, proving a conceptual bridge
between the academic discourse on distinguishing adversarial examples from
counterfactual explanations and practical decision-making.

– Promoting non-adversarial recourse theoretically: After a theoretical
analysis of the problem, we derive optimal cost functions that encourage non-
adversarial recourse. Our analysis underscores how feature attributions can be
leveraged to identify task-relevant features contributing to less “adversarial”
recourse.

– Empirical Insights: We are the first to consider several other key com-
ponents practitioners can manipulate to foster non-adversarial algorithmic
recourse. These include improving the robustness and accuracy of the machine
learning model and the recourse algorithms. In contrast to parts of the lit-
erature which argue that cost functions are central, we empirically find that
changes in the model are often more significant than the cost function.

1 The oracle is imperfect as some labels are generated from “defaults”, i.e., false pos-
itives of expert decisions.
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2 Related Work

Human-Assisted Decisions. In crucial situations, societies rely on human
experts for decisions. However, delays and quality issues due to a shortage of
experts and a high volume of decisions, e.g., long waits for medical diagnoses,
have sparked a debate on when automated or human decision-making should
be deployed. A stream of prior works [10,51,59] argue that ML models should
make decisions in high-stake domains where they have matched or surpassed the
average of human performance. Nevertheless, their decisions can still be worse
than those of human experts [53] in some cases. In this direction, works such as
[13,14,43] propose to optimize ML models to operate under different automation
levels: i.e., take decisions on a fraction of the given instances and leave the rest
to human experts. In line with other works [21], we argue that the human factor
in the loop in a human-AI partnership cannot be neglected when considering the
application of AI on real-world problems [1,27]. This position is also cemented
in common data protection laws such as the EU’s GDPR [25], which grants indi-
viduals a right to object fully automated decision-making. For GDPR-compliant
decision-making, human oversight can thus be considered essential. Unlike pre-
vious works, we explicitly model a human expert panel in the decision-making
setup as depicted in Fig. 1, which makes the generation of reliable recourse much
more challenging.

Counterfactual Explanations. There is an established literature on the com-
putation of counterfactual explanations [2,8,34,37,41,50,54,61,65] in variegated
domains. According to Guidotti et al. [28], given a classifier f that outputs a
decision f(x) = y for an instance x, a counterfactual explanation of x′ is an
instance x′ such that f(x′) �= y, and the difference between x and x′ is min-
imal. Current research streams include the robustness of counterfactual expla-
nations [18,48,60] and the compatibility with other GPDR principles [49]. We
briefly review this research field in the following but point the reader to recent
surveys [28,52,63] for a comprehensive overview. Mothilal et al. [41] solve an
optimization problem with various constraints, among which user-specified ones
for (im)mutable features, to ensure feasibility and diversity when producing a
set of counterfactuals for a given input. Carreira-Perpiñán and Hada [8] propose
CEODT specifically designed for classification trees, including Oblique Decision
Trees (ODTs) [29]. Because the counterfactual optimization problem for ODTs is
non-convex, nonlinear, and non-differentiable, CEODT computes an exact solu-
tion via the optimization problem within the region represented by each leaf and
finally picks the leaf with the best solution. Lastly, Ustun et al. [61] were among
the first authors to address the problem of actionability in counterfactual expla-
nations (i.e., recourse). Their method constrains the generated counterfactuals
such that manipulations do not change immutable features. Overall, we note
that previous literature relies on the common assumption that an automated
model acts as a sole decision-maker, which might not be realistic in practical
scenarios.
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Adversarial Examples. Following Szegedy et al. [58], adversarial examples are
instances that contain subtle perturbations – usually via adding small amounts
of noise – to instances in the training set. These “new” instances, when fed to
an underlying ML model, produce an erroneous output with high confidence. It
is possible to build an adversarial example x′ which is indistinguishable2 from x
but is classified incorrectly, i.e., f(x′) �= y. Successfully generating such exam-
ples gives rise to adversarial attacks [5,26,39], which can have potentially lethal
consequences (e.g., in biosecurity and biotechnology [45], autonomous driving
[20,66], and power grid blackouts [24]). Several methods have been proposed
in the literature to generate adversarial examples assuming varying degrees of
knowledge/access of the model, training data, and methods for injecting per-
turbations. Goodfellow et al. [26], Kurakin et al. [35], and Moosavi et al., [40]
propose methods with gradient and data access to find the minimum �∞-norm
(and �2-norm respectively) perturbations. With only assuming query access to
the target classifier, the authors in [11,44,57] design adversarial examples to
tightly control sparsity. We refer the reader to a well-established survey for a
comprehensive overview of adversarial examples [3].

Linking Counterfactuals and Adversarial Examples. Strikingly, counter-
factual explanations and adversarial examples have conceptual connections and
a similar formulation [6,23,65] (see also Sect. 3). Freiesleben [22] highlights con-
ceptual differences in aims, formulation, and use-cases between both sub-fields
and suggests that the distinctive formal feature of adversarial examples lies in
their misclassification concerning the ground truth. Concurrently, there have
been proposals to align recourse with a ground truth. König et al. [34] pro-
poses improvement-focused causal recourse, designed to change the true targets
instead of the predictions but relies on causal information. Laugel et al. [36]
proposes the notion of “justified recourse” that should be close to a correctly
classified instance. On the other hand, Browne et al. [6] focus on deep networks
and attribute conceptual differences to the interpretation of semantics in the
hidden layers of deep networks. Pawelczyk et al. [46] formalize the similarities
between popular counterfactual explanations and adversarial example generation
methods identifying conditions when they are equivalent. Trying to disentangle
and reconcile the various distinctions made in prior works, we provide formal
definitions in the next section. Besides König et al. [34], who rely on causal
information, there have been few attempts to implement recourse that follows
the ground truth. In this work, we provide valuable insights on how to implement
non-adversarial recourse in practical decision-making.

3 Preliminaries

We first formalize the general problem considered in this work, before we pro-
vide the relevant distinctions between adversarial examples and counterfactual
explanations.
2 We invite the reader to think about images in this context, as described in [26].

Additionally, some works analyze perturbations – e.g., adversarial patches – that
are perceptually distinguishable by humans but fool the classifier f [16,19,67].
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3.1 The General Problem

Both recourse and adversarial methods consider a fixed machine learning model
f : X → Y, where X ⊆ R

k. We usually consider the binary classification problem,
where the label is binary, i.e., Y = {0, 1} or a numerical score, Y = R.

We suppose there is another function y : X → Y that assigns the true labels
and represents the human experts in our introductory example. In practice, it
is impossible to perfectly learn this function with a model, for instance due to
insufficient data coverage or additional circumstances that can be taken into
considerations only by the human experts. However, it is possible to query y a
limited number of times, as it is possible to present the experts with an example
and ask for their decision. We model the expert predictions y in the scenario
outlined as

y(x) = g(x, f(x)), (1)

where g models the human expert committee that can recalibrate the score in
light of the features in their entirety. However, we suppose that we usually have
y(x) ≈ f(x), i.e., the original score is only lightly adapted through g. In practice,
models are fitted on a limited number of potential observations of the experts’
decisions.

As noted before [46], the classical optimization problem solved by both prac-
tical adversarial and counterfactual methods for a model f : X → Y a factual
input x ∈ X , and a target label yt ∈ Y is mathematically similar and can
usually be formalized as a special case of the following general optimization
problem [23]:

argmin
x′ ∈X

d1(x,x′) + λd2(f(x′), yt), (2)

where d1 : X × X → R is a distance metric defined on the input space, d2 :
Y × Y → R is a metric on the output space and λ ∈ R≥0 is a non-negative
trade-off parameter. Intutively, the solution to this problem returns instances,
that are close to the factual x and have a label that is close (or corresponds
exactly) to the target label yt.

3.2 Algorithms for Computing Counterfactual Explanations
and Adversarial Examples

We briefly review the most common strategies to compute counterfactuals and
adversarial examples in practice.

Score CounterFactual Explanations (SCFE). For a given classifier f(h(x)) that
relies on logit scores h(x) and a distance function d : X × X → R+, Wachter et
al. [65] formulate the problem of finding a counterfactual x′ for x as:

argminx′
(
h(x′) − s

)2 + λ d(x,x′), (3)

where s is the target score for x. The problem is solved for different values of
λ until f(x′) = s. More specifically, to arrive at a counterfactual probability of
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0.5, the target score for h(x) for a sigmoid function is s = 0. Using the inverse
logit transform h(x) = invlogit(f(x)), the first part of the objective can be
interpreted as a particular instantiation of d2 in Eq. (2) when Y is taken to be
the interval [0, 1].

Diverse Counterfactual Explanations (DiCE). As different users may have dif-
ferent preferences (i.e., it might be easier for them to change one feature or
another), DiCE [42] generates multiple counterfactuals. An additional loss term
is added to the objective in Eq. (3) to encourage diversity. As users will only
choose one counterfactual in practice, we usually consider a randomly selected
instance of the discovered recourse candidate for evaluation as in [49].

Actionable Recourse (AR). The actionable recourse (AR) method by Ustun et
al. [61] sets up the following optimization problem:

min cost(δ;x) (4)
s.t.f(x + δ) = +1, δ ∈ A(x), (5)

where +1 corresponds to the positive outcome and a is an action set A(x). This
problem corresponds to Eq. (2) when using a distance function d1 that returns
∞ once δ �= A(x) and the cost function otherwise. The distance d2 can be
interpreted as the Dirac-distance, that is ∞ once f(x + δ) �= 1. They solve the
problem using mixed integer linear programming (MIP) for linear models.

Like counterfactual explanations, most adversarial example methods also
solve a constrained optimization problem to find perturbations in the input
manifold that cause models to misclassify.

C&W Attack. For a given input x and classifier f , Carlini and Wagner [7]
formulate the problem of finding an adversarial example x′ = x+δ such that
f(x′) �= f(x) as:

argmin
x′ ∈X

c · �(x′) + d(x,x′) s.t. x′ ∈ [0, 1]d, (6)

where c > 0 is a suitably chosen hyperparameter, and �(·) is an objective function
on the adversarial x′ s.t. f(x′) = yt iff �(x′) ≤ 0 with yt being a target class.
The authors choose d(x,x′) to be the lp norm of δ, i.e., minimizing the p-norm
of δ is equivalent to minimizing d(x,x′).

DeepFool Attack. For a given instance x, DeepFool [40] perturbs it by adding
small perturbation δDF at each iteration. The minimal perturbation to change
the classification model’s prediction is the solution to the following objective:

δ∗
DF(x) ∈ argmin

δ s.t. x+δ∈X
||δ||2 s.t. sign(f(x + δ)) �= sign(f(x)) (7)
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PGD Attack. PGD [38] is a first-order optimization technique. In the context of
adversarial examples, it is usually used to maximize3, the objective for a specific
factual x. This is because the objective is typically chosen to be the cross-entropy
loss L:

argmax
δ s.t. x+δ∈C

L(f(x + δ), f(x)) (8)

where δ is the adversarial perturbation to be added to the factual x. PGD
maximizes the objective by taking steps along the gradient’s direction. After
each update, the current perturbation δt is projected onto a set of constraints
C. For instance, the adversarial examples are all constrained to a ball of size ε
around x. We argue that the projection of the adversarials x′ = x + δ into an
ε-ball could be interpreted as a d1 distance function in Eq. (2), that returns an
infinite cost value for actions outside the ε-ball. Meanwhile, the cross-entropy loss
subsumes the role of the d2-cost function. Therefore, Eq. (8) can be considered
as a special case of Eq. (2) transformed into a maximization problem.

We invite the reader to notice that the approaches presented above – whether
adversarial attacks or counterfactual explanation methods – solve the same
objective. In fact, they can be interpreted as heuristics to optimizing an instance
of the formulation in Eq. (2), although pertaining to different “semantics” as
argued in [55]. However, a precise distinction between counterfactual explana-
tions and adversarial attack algorithms cannot be derived from their implemen-
tations. To this end, we investigate precise definitions for both problems in the
next section.

4 Definitions

4.1 Formalizing Adversarials and Counterfactuals

We take the definition of an adversarial example by Freiesleben [23] as a starting
point. It intuitively describes the properties that such instances should have. In
other words, they should be close to the original instance, change the model’s
predictions and be misclassified. Most notably and in contrast to other works,
Freiesleben argues that the misclassification is a distinctive property of adver-
sarial examples. This distinctive property has also previously been mentioned in
other works on adversarial examples more or less directly [56], giving rise to the
following definition:

Definition 1 (Adversarial Example [23]). An instance x′ ∈ X is an adver-
sarial example for a factual x ∈ X and a classifier f : X → Y if the following
conditions hold:

(1) x′ is close to x, i.e., d1(x,x′) < ε;
(2) the classifier output is changed, i.e., f(x) �= f(x′);
(3) x′ is misclassified, i.e., y(x′) �= f(x′).

3 Thus, projected gradient ascent is often the more appropriate description for this
attack. However, we will follow common practice and refer to the algorithm as PGD.
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Fig. 2. Visualizing our definitions. The space of valid recourse for a factual x
changes crosses the classifier f ’s estimated decision-boundary (pink). The experts com-
bine it with their expertise and restrictions into a latent decision boundary (blue).
However, some recourse might not change the true label and is therefore considered
adversarial (dashed arrow). The challenge is to obtain recourse that convinces the
human experts. To this end, we are interested in finding the directions that lead to
non-adversarial recourse (solid arrow). (Color figure online)

We also consider the definition of recourse (or equivalently, counterfactual exam-
ples) by Freiesleben [23], which states that recourse x′ changes the classification
label and is the closest point to the factual that does so. We propose a slight
relaxation. In particular, we argue that even points that are not closest to the
factual are still valid (though possibly suboptimal) recourse.

Definition 2 (Recourse). An instance x′ ∈ X is recourse for a factual x ∈ X
with f(x) �= yt, a classifier f : X → Y, and a target label yt ∈ Y if the following
conditions hold:

(1) x′ is close to x, i.e., d1(x,x′) < ε;
(2) the classifier output is changed to the target, i.e., f(x′) = yt �= f(x).

These general definitions cover most definitions explicitly or implicitly used
in the literature (see [23] for details). We immediately see that our definition of
recourse abandons the final constraint in the definition of adversarial examples,
that x′ should be misclassified. For the two-class problem where yt is just the
opposite class of f(x), according to these definitions, (a) all adversarial examples
are recourse4, and (b) there is a distinct (though potentially empty) subset of
examples, that are recourse, but are not adversarials, as visualized in Fig. 2.

4.2 Non-adversarial Algorithmic Recourse

In this work, we place our attention on the examples present in this subset,
that are recourse but not adversarial examples. We thus refer to them as non-
adversarial recourse and introduce a novel definition for this class of instances:

4 For multi-class problems, all adversarials which are classified as yt are recourse.
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Definition 3 (Non-adversarial Recourse). An instance x′ ∈ X is non-
adversarial recourse for a factual x ∈ X with f(x) �= yt, target label y ∈ Y,
and a classifier f : X → Y if the following conditions hold:

(1) x′ is close to x, i.e., d1(x,x′) < ε;
(2) the classifier output is changed, i.e., f(x′) = yt �= f(x);
(3) x′ is not misclassified, f(x′) = y(x′).

We observe that in the considered realistic decision-making scenario, we
desire recourse that convinces the human experts, i.e., also changes the true
label y. These correspond exactly to the instances described in the definition of
non-adversarial recourse.

5 Theoretical Analysis

As outlined in Fig. 2, we are interested in finding changes, or at least directions
of change, that lead to non-adversarial recourse efficiently. As it is impossible to
precisely model the ground truth y in our setup (otherwise, there would be no
need for an additional human expert), this is challenging in practice. However,
we can use some guidance from the model, which approximates the ground truth,
to find non-adversarial recourse.

5.1 Summarizing Influential Factors for Less Adversarial Recourse

We first take a step back and consider the general formulation of the problem
given in Eq. (2). We observe that the problem formulation features three poten-
tial factors of influence (the model f , the distance functions d1 and d2) and
a hyperparameter (the choice of optimization algorithm) that can be changed
in practice to arrive at less adversarial recourse. If we follow the usual binary
classification setup where we chose λ > 0 and d2 to be the Dirac distance that
amounts to infinity if the target label is not met, i.e., d2(f(x′), yt) = δf(x′)=yt

,
there are three remaining factors of influence, that we tackle in this study with
different outcomes (discussed in more detail in Sect. 6):

Machine Learning Model. Considering the model f first, we note that there is
a simple theoretical solution to non-adversarial recourse: If the model would
exactly match the theoretical ground truth, i.e., f ≡ y, there would be no adver-
sarial recourse as every instance that leads to a different model prediction also
changes the ground truth. However, in the setup we consider, it is impossible
to perfectly learn y. Nevertheless, using the best possible model as close to the
ground truth as possible should be fruitful. Another way to improve the model’s
alignment with the ground truth – in case the truth is known to be smooth in
some measure – could be to potentially leverage regularization techniques such
as adversarial training [38] to rule out many adversarial instances in the first
place. We empirically find that more accurate and robust models lead
to less adversarial recourse.
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Input Space Distance Function. The distance function d1 has been attributed
a crucial role when computing recourse or adversarial examples. For instance,
Wachter et al. [65] have claimed that, unlike recourse, none of the standard
works on adversarial perturbations use appropriate distance functions. In this
work, we follow the perspective of [6,23], who argue that the distance metric
is not definitional but may still play an essential role in making recourse non-
adversarial. Besides standard cost functions like p-norms such as the l1, l2, and
l∞, we are interested in how feature weightings may potentially impact recourse.
We follow the intuition that some features are discriminative in the ground truth
problem, e.g., income determines creditworthiness. However, ML models may
rely on many more features, as the model designers cannot precisely specify
a priori which features will be relevant for the task. When non-discriminative
features are used in the task, they may open the door to adversarial changes as
they can be picked up by an ML model regardless of their irrelevance w.r.t. the
ground truth. In the next section, we will present an attempt to down-weigh the
influence of such features by individually assigning a cost to each of them. In
particular, we will consider distance functions of the form

d1,S(x,x′) := δ�Sδ,S = diag (s) , (9)

where S ∈ R
k×k is some diagonal matrix with diagonal s = [s1, . . . , sk]� ∈ R

k
>0

and δ := x′ − x. For simple models analytical solutions of algorithmic recourse
exist [46]. This allows to set up a nested optimization problem, where besides
optimizing the recourse for a specific cost function, we find the cost function
such that the resulting optimal recourse remains most non-adversarial. We will
introduce the specific objective in the next section. We will see that the problem
of finding optimal values for s can be solved analytically based on the gradients
for linear models. Surprisingly, we empirically find that the cost function
does not play a key role in obtaining non-adversarial recourse.

Optimization Routine. As the general problem is highly non-linear for complex
models, it is hard to discover an optimal solution. As a result, algorithms to
compute recourse or adversarial examples include different heuristic optimiza-
tion routines such as stochastic gradient descent (deployed in SCFE, DICE,
and C&W), gradient projection (deployed in PGD), or discretization (deployed
in AR). The optimization procedure may thus also play a non-negligible role
in determining whether the nature of the resulting recourse is adversarial and
whether approaches designed for recourse yield fewer adversarial examples than
their adversarial counterparts. In this regard, we find that adversarial
methods succeed to compute non-adversarial recourse, but also incur
higher costs.

5.2 Optimal Cost Functions Under Linear Models with Noisy
Labels

In this section, we will restrict ourselves to the input space distance function d1
and study its influence on the recourse from a theoretical standpoint.
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We first introduce a measure to quantify the extent to which recourse is
non-adversarial. To be able to do so, we consider the simplified setup where we
have a feature set F and a subset of discriminative features Fdisc ⊂ F that
contains relevant information affecting the ground truth. The remainder of the
features are noise variables. Such features exist for many tasks; however, they
may require a change of representation to be axis-aligned. For instance, in image
generation models such as StyleGAN [32], the first latent variables control high-
level concepts in the generation, whereas the later variables merely add noise
that is unimportant for the classification output. Successes with dimensionality
reduction techniques through autoencoding [30] also show that important infor-
mation occupies only a subspace of tabular data. As outlined in Fig. 3, following
the discriminative features is essential for obtaining non-adversarial recourse. We
can quantify the share of the recourse that lies in the discriminative directions
over the entire length of the recourse vector through the following measure.

Definition 4 (NADV measure). Let p ∈ N ∪ {∞}. The non-adversarialness
measure NADVp is defined as

NADVp(δ) =

∑
i∈Fdisc

|δi|
‖δ‖p

. (10)

We consider linear models in our initial analysis, as they are the standard in
many industries (e.g., in financial applications such as credit scoring [12]) and
are commonly studied in the literature on algorithmic recourse [49,60]. They
model a generative process of the form

y(x) = β�x + ε, (11)

where ε ∼ N (0, σ2) is Gaussian noise of variance σ2 and β ∈ R
k denotes the true

linear parameter vector. Such a model can be easily adapted to a classification
task by introducing a decision threshold, e.g., y(x) > 0 indicates a positive out-
come. As motivated in the introduction, the noise may represent uncertainty and
variance in the human labels. We are interested in weightings si that minimize
this measure, potentially leveraging the empirical coefficients β̂ obtained when
fitting a linear model to the noisy data.

Theorem 1 (Optimal feature weights for recourse in linear models).
Suppose the data-generating process in Eq. (11) and that for i /∈ Fdisc, we have
βi = 0, and for i ∈ Fdisc, |βi| > α ∈ R. We can maximize the expected NADVp

measure for p ∈ {1, 2,∞} when using the empirical coefficients β̂i of the fitted
model by setting the weights to

si ∼

⎧
⎪⎪⎨

⎪⎪⎩

{
1, if i= arg maxj pdisc(β̂j), else ∞

}
if p = 1

|β̂i|
pdisc(β̂i)

if p = 2

|β̂i| if p = ∞
,

where pdisc(β̂i) is a probability of the feature being discriminative dependent
on its empirical coefficient, which has a tractable sigmoidal form given in the
Appendix.
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Fig. 3. Role of discriminative features in providing non-adversarial recourse.
When features can be discriminative, (i.e., class-relevant) or non-discriminative
(i.e., noise features), exploiting the discriminative ones will eventually lead to non-
adversarial recourse, whereas solely relying on the non-discriminative ones will result
in an adversarial. Nevertheless, even when selecting the correct features, several retry
steps in the recourse direction may be required to cross the true decision boundary.
To align recourse with discriminative features, the gradients of the model may serve
as guidance, as we expect the discriminative dimensions to exhibit a higher gradient
magnitude.

We provide a proof of this result in AppendixA. This finding highlights that
in the case of discriminative and non-discriminative features in the data (even if
they are not known), different loss functions affect which share of the recourse
is awarded to the discriminative features. It also highlights the effect of the dif-
ferent norms. Optimizing the NADV1 measure assigns infinite costs to all but
the dimension that is most likely to be discriminative (with the highest abso-
lute coefficient). On the other hand, the NADV∞ measure is maximized if the
discriminative features exhibit the maximum change of all features, disregard-
ing changes in non-discriminative features. Therefore, the solution attempts to
change all dimensions equally through assigning more discriminative dimensions
a proportionally higher cost. This ensures that the less discriminative dimensions
are altered as well. We observe that p = 2 seems to constitute a suitable trade-off,
where dimensions with low probabilities of being discriminative (pdisc(β̂i) ≈ 0)
are penalized by high costs, but the changes will otherwise be distributed evenly
among the remaining dimensions.

6 Experimental Evaluation

6.1 Experimental Setup

Datasets and Preprocessing. To link to the scenario considered in the intro-
duction, we consider four tabular datasets concerned with high-stakes decision-
making scenarios where human oversight may be required.

The Law School Admission data set5 (“admission”) contains information
on students from law schools across the United States. Features are collected
5 https://github.com/mkusner/counterfactual-fairness.

https://github.com/mkusner/counterfactual-fairness
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Fig. 4. Both adversarial and recourse methods can succeed in producing
non-adversarial recourse for ANNs. As it might not always be possible to change
the ground truth immediately, we study the share of non-adversarial recourse instances
after taking a certain number of retries r (a higher share is better). We experiment
with three recourse methods (SCFE, DICE, AR) and three adversarial methods (C&W,
PGD, DeepFool). Our results indicate that DICE and PGD usually perform best
in identifying non-adversarial counterfactuals. The other adversarial methods, C&W
and DeepFool, often outperform the standard recourse method SCFE regarding non-
adversarial recourse. Note that recourse methods strictly optimize for the lowest costs
and are therefore less robust than adversarial methods, which incur higher costs.

prior to their entry to law school and include race, sex, entrance exam scores
(LSAT), grade-point average (GPA), and regional group. The predicted vari-
able is the z-score of the first-year average grade (ZFYA). The German Credit
dataset (“german”) is taken from the UCI machine learning repository6 and is
concerned with credit scoring. It contains the personal data of 1000 individuals
with a binary indicator named “credit risk” that serves as a prediction target.
The Home Equity Line of Credit (“HELOC”) data set7 is a large collection of
HELOC applications from anonymized homeowners collected by the financial
services provider FICO. The target variable RiskPerformance is “Bad” if the
applicant was at least 90 days past due within the two years after opening the
credit account. The COMPAS data set8 was initially collected by ProPublica and
contains features describing criminal defendants in Broward County, Florida. It
also contains their respective recidivism score provided by the COMPAS algo-
rithm and whether or not they reoffended within the following two years. For our

6 http://archive.ics.uci.edu/dataset/144/statlog+german+credit+data.
7 https://community.fico.com/s/explainable-machine-learning-challenge.
8 https://www.kaggle.com/s/danofer/compass.

http://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
https://community.fico.com/s/explainable-machine-learning-challenge
https://www.kaggle.com/s/danofer/compass
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analysis, we only kept features relevant for predicting recidivism within the next
two years and dropped irrelevant features such as name, date, sex, and race.

For all datasets, continuous features are standardized. Datasets with contin-
uous labels are used in a binary classification fashion where we only predict if
the z-score exceeds the population’s median.

Machine Learning Models. We use standard Artificial Neural Networks
(ANN) that reflect the implementation of the sklearn library but are imple-
mented in the PyTorch library to leverage automated differentiation capabili-
ties. We train the ANN model (two fully connected hidden layers of width 30)
using stochastic gradient descent with the ADAM optimizer. An overview over
implementation parameters is provided in the Appendix.

Adversarial Attacks and Recourse Algorithms. We implement three pow-
erful adversarial attacks and three recourse methods to study the problem from a
practical perspective. We stick to the methods introduced earlier, which include
SCFE [65], which uses a gradient-based objective to find recourses, DICE [42] with
an extra diversity constraint, and AR [61], which uses a Mixed-Integer-Program
on a discretized action set. Regarding the adversarial attacks, we use C&W [7] that
finds the minimum perturbation on the factual instance to make it change class,
PGD [38] that uses projected gradients to engender adversarials, and DeepFool
[40] that perturbs the input iteratively until the class changes. We adapt the
cost function of each optimization algorithm to reflect Eq. (2) and plug in the
different cost functions.

Ground Truth. Unfortunately, the number of instances with labels on real-
world data sets is limited, such that the ground truth function y is not explicitly
available. We, therefore, rely on a simulated ground truth, which uses a subset
of the training data that will not be used for model training or testing. We use
this data to construct a k nearest neighbor classifier (with k = 5) that uses
a subset of features to simulate an expert committee relying on discriminative
features and deciding by majority vote. We manually select features that can
be considered directly discriminative for the task, which are listed in Table 2.
For instance on the COMPAS dataset, we use features such as the number of
priors, and whether recividism has occurred in the last two year. By doing so,
we can guarantee that we have discriminative and non-discriminative features.
We then use this ground truth y to predict the remaining instances of the train
set. Subsequently, the actual ML model is trained on the remainder of the data
and their predictions, making up tuples of the form (x, y(x)).

Evaluation Measures. Many recourse (and adversarial) methods are imple-
mented to stop right after the model’s boundary is crossed. However, this might
not initially lead to the non-adversarial recourse desired in practice, even if the
correct discriminative features are manipulated (see Fig. 3 for an illustration).
We argue that in the practical use case, an individual would query the oracle
(e.g., submit their application to the bank again) after obtaining recourse. If the
recourse was ineffective in changing the loan decision, an individual could con-
tinue to move in the given direction (e.g., further increase their savings amount)
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Fig. 5. Cost functions can play a role in generating non-adversarial recourse.
(a) “admission” dataset with ANN model, DICE results shown. (b,c): Our NADV2

cost function helps in making recourse slightly less adversarial for several and thereby
reduces the number of retries required. However, analysing the standard deviations
does not confirm statistical significance.

until the loan is eventually awarded. We mimic this setup, by increasing the
magnitude of δ = x′ −x by 10% in each step, thus considering x′

r = x+(1.1r)δ
after r ≥ 0 retries. We additionally consider the canonical recourse costs in the
l1 and l2 norm.

6.2 Choice of Optimization Algorithm

We first put all six implemented methods to the test and check the adversarial-
ness of their outputs. The results are visualized in Fig. 4. We consider the initial
recourse and up to 5 more steps in the initial direction. We observe that DICE
and PGD usually perform best in identifying non-adversarial counterfactuals.
However, the other adversarial methods, C&W and DeepFool, also often out-
perform the classical recourse method SCFE regarding non-adversarial recourse.
This underlines that, for tabular data, the methods do not reliably produce
adversarials. Indeed, they could be considered as recourse methods as well. How-
ever, we observe that the adversarial techniques usually result in higher costs,
because returning an optimal solution is not their main concern (it just needs
to be “close” to the input). In contrast, many recourse methods are designed
to provide cost-optimal solutions. Non-adversarial recourse is associated with
higher cost, leading us to believe that classical recourse methods may be overly
cost sensitive for this purpose. We obtained similar results using L2-costs.

6.3 Choice of Cost Function

We now study the different cost functions derived in Sect. 5.2 to actual imple-
mentations of both recourse and adversarial methods on real data. In particular,
we compute the gradients of the model and use the cost weightings derived ear-
lier as well as the default l2-costs, squared gradient costs (β2

i , should assign low
cost to non-discriminative features) and inverse squared costs (1/β2

i ) as base-
lines. DeepFool and AR do not allow for the simple, straightforward inclusion
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of arbitrary cost functions, so we only consider the four remaining approaches
for this experiment and modify their cost-function. The results are shown in
Fig. 5. They show that cost weighting can steer the recourses towards the non-
adversarial features and align them better with the ground truth. However, in
Fig. 5a, the differences remain statistically insignificant. We observe that the
NADV2 optimal weighting scores best among all costs. Inversely weighting the
features (e.g., si = β̂2

i , which assigns low costs to features with almost zero
gradients and high costs to features with high gradients), preventing them from
being changed, results in the most adversarial recourse. Even though the gap is
small, the improvement seems stable across methods (see Fig. 5b, c) with one
exception (C&W on German Credit). In conclusion, while the cost function can
help to make recourse less adversarial, its effect seems to be rather subtle.

6.4 Choice of Machine Learning Model

In our analysis section, we outlined how the machine learning (ML) model may be
crucial in determining whether the outcomes can be considered adversarial. We
first study the role of the goodness of the model fit. To this end, we train a model
on a version of the dataset, where a random sample of 25% of the data points
have flipped labels, which could reflect a realistic use case with noisy human
annotations. To rule out other confounding effects to the convexity or smoothness
of the model’s decision boundary (models trained on noisy labels may have very
sharp and more non-convex decision boundaries), we study logistic regression
models in this experiment and report the results in Fig. 6 (a, b). Surprisingly, the
drop in accuracy is not very high (it remains in a range of 1.5% to 5%), which
we attribute to the datasets being already very noisy previously. Nevertheless,
we observe a clear tendency for recourses to be less adversarial for the more
accurate models. This trend is stable across datasets and methods.

Adversarial training was proposed by Madry et al. [38] to make models more
robust against adversarial attacks. Therefore, it might also offer a suitable way
of mitigating adversarial examples in the recourse setup. We study the effect of
this form of regularization in an l∞-ball of radius ε = 0.2 in Fig. 6 (c, d). We
observe that substantial improvements are possible on the Admission dataset.
They are not as pronounced for the remaining datasets but remain visible for
most methods. We observe comparable results for the remaining two datasets.
Our results highlight that maintaining robust and accurate models is one of the
most promising strategies towards non-adversarial recourse.

7 Discussion

Adversarial Methods Compute Recourse on Tabular Data. Intriguingly,
we observe that despite their purpose, many adversarial attacks succeed in com-
puting non-adversarial recourse on tabular data. While many of the methods
were arguably designed with other data modalities, e.g., images, in mind, our
finding raises the question of how transferable existing attacks are to variants of
the canonical attack scenario. This observation is one in a series of recent claims
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Fig. 6. (a, b): More accurate models lead to less adversarial recourse. We
plot the number of retries required to obtain a valid, non-adversarial recourse that
changes the ground truth. Logistic Regression Model shown. Results on the remaining
datasets can be found in the extended Appendix (https://arxiv.org/abs/2403.10330).
(c, d): Regularization through Adversarial Training may improve non-
adversarialness. We robustify models through adversarial training, which improves
the share of non-adversarial recourses.

suggesting that current adversarial attacks may not be realistic in the majority
of practical use cases [4] or require a fundamental paradigm shift away from
norms as cost functions towards realistic measures of detector evasion [15].

An Implicit Pursuit Towards Non-adversarial Recourse. The recourse
literature suggests several strategies for improving the quality of recourse. Kom-
miya et al. [33] discovered that feature attributions and feature modifications in
recourses only partially agree, raising the question of how they can potentially
be used as guidance. Recent takes on robustifying recourse by going further than
mandated by the actual decision boundary [48,60] can be interpreted as another
take to reduce the possibility of ending up with an adversarial. Therefore, we
conclude that these works seem to have implicitly followed the goal of obtain-
ing non-adversarial recourse and can be interpreted as orthogonal attempts to
reach this common goal. We hope that our precise definition of non-adversarial
recourse allows for these efforts to be bundled and unified in the future.

Non-adversarial Recourse via Distributional Constraints. Another
avenue we have not followed in this work considers the feasible set. The fea-
sible set X many works have claimed that recourse should be actionable, leading
to realistic instances [50,61]. A fairly general way to arrive at this goal is to con-
strain the recourse to be in-distribution [17,31,47], which can be seen as another
strategy towards non-adversarial recourse: For in-distribution examples, every
model that is a suitable approximation of the ground truth should result in an
above-chance-level agreement between the model and the ground truth. We leave
an investigation of this connection to future work.

8 Conclusion

In this work, we explored the nuanced differences between adversarial examples
and counterfactual explanations, focusing on real-world high-stakes decision-

https://arxiv.org/abs/2403.10330


Towards Non-adversarial Algorithmic Recourse 413

making processes. For such scenarios, we introduced the desirable concept of
non-adversarial recourse, emphasizing that useful counterfactual explanations
should not only change the model’s prediction but also align with the ground
truth in contrast to adversarial examples.

Our theoretical and experimental analyses on multiple real-world datasets
illuminate different ways the model parameters can shape the generation of
non-adversarial recourse. Our findings suggest that choosing a suitable model
that is highly accurate and robust has more impact on whether recourse can be
considered adversarial than the choice of the cost function. For tabular data,
adversarial methods also succeed in computing suitable recourse. In summary,
we provided valuable insights into generating counterfactuals of reduced adver-
sarialness. Hence, this work lays a foundation for developing resilient recourse
models and their deployment in realistic decision-making scenarios.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

A Derivation of Theorem V.I

This section presents the proof of Theorem 1 proof. First, we show how the
probability of a relevant feature can be easily estimated in linear models. Suppose
we have obtained a data matrix X ∈ R

n×k. Then, we can obtain the analytical
least-squares solution β̂ = (X�X)−1X�y. We can estimate the variance of β̂

to be Var[β̂] = σ2(X�X)−1. Simplifying through assuming the features in x to
be independent and of zero-mean, X�X is diagonal and we obtain

Var[β̂i] =
σ2

∑
j=1...n(xj)2i

. (12)

This allows to use of the estimated coefficients to estimate the probability of a
feature being relevant, pdisc through the following derivation:

pdisc(β̂i) = p(i ∈ Fdisc|β̂i) (13)

=
p(β̂i, i ∈ Fdisc)

p(β̂i, i ∈ Fdisc) + p(β̂i, i /∈ Fdisc)
(14)

=
p(β̂i|i ∈ Fdisc)

p(β̂i|i ∈ Fdisc) + p(β̂i|i /∈ Fdisc)
p(i /∈ Fdisc)
p(i ∈ Fdisc)︸ ︷︷ ︸

q

(15)

=
1

1 + p(β̂i|i∈Fdisc)

q·p(β̂i|i/∈Fdisc)

≥ 1

1 + exp
(
α2 − 2α|β̂i| − log q

) (16)

= sigmoid
(
2α|β̂i| − α2 + log q

)
. (17)
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The above calculation highlights that it is possible to use the coefficients β̂ in the
linear model as noisy estimates for assessing whether a feature is discriminative.

We combine this insight with the optimal recourse found using a specific cost
matrix S. To this end, we leverage the analytical solution to this problem [9,
Lemma 4, Appendix]:

δ(S) =
f(x) − yt

β̂�S−1β̂
︸ ︷︷ ︸

c

S−1β̂. (18)

We can then compute the expected value of the measure of non-adversarialness
for the recourse that will be found with the corresponding cost function:

Eβ̂ [NADVp(S)] = Eβ̂

[∑
i∈Fdisc

|δi|
‖δ‖p

]
= Eβ̂

⎡

⎣
∑

i∈Fdisc
| β̂i

si
|

‖S−1β̂‖p

⎤

⎦ (19)

=

∑
i pdisc,i(β̂)| β̂i

si
|

‖S−1β̂‖p

=
p�
disc(β̂)(S−1|β̂|)

‖S−1β̂‖p

(20)

=
p�
disc(β̂)(S−1|β̂|)

‖S−1|β̂|‖p

(21)

Taking the above expression, we can obtain optimal costs for different values of
p by solving

arg maxEβ̂ [NADVp(S)] . (22)

Continuing the calculation separately for the most common values p ∈ {1, 2,∞},
we obtain the following cost weights si that depend on the estimated β̂i:

p = 1 p = 2 p = ∞
implicit

S−1|β̂| = κeargmaxi pdisc(β̂i)
S−1|β̂| = κ pdisc(β̂ )

‖pdisc(β̂ )‖2
S−1|β̂| = κ1

explicit

si ∼
{

1, if i= arg maxj pdisc(β̂j), else ∞
}

si ∼ |β̂i|
pdisc(β̂i)

si ∼ |β̂i|
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B Experimental Details

We use the following experimental parameters (Table 1):

Table 1. Implementation parameters

Artificial Neural Network Logistic Regression

C
o
n
fi
g
. Units [Input dim., 30, 30, 2] [Input dim., 1]

Intermediate activations ReLU N/A

Last layer activations None Sigmoid

T
ra

in
in

g Learning rate 10−3 N/A

Regularization None l2 with pen = 1

Batch size 32 N/A

Epochs 103 5 × 103

Method Optimizer lr Iterations λ Additional Comments

SCFE Adam 10−1 100 0.1 step = 0

DiCE RMSProp 10−1 100 - Two counterfactuals, one is randomly sampled for evaluation

AR Default as in [61] - - - Squared loss in cost function

C&W Gradient-based as in [7] 10−2 1000 - Constant factor c = 1

DeepFool - - 50 2 × 10−2 Target label for attack directionality [40]

PGD - 10−1 10 10−1 α = 10−1, ε = 2

Table 2. Features that are used by the experts (GT) and total number of features
available to adversarial methods and recourse methods on each dataset.

Dataset GT Features Tot. features

Admission ugpa, first pf 4

German Credit status, credit-history,
employment-duration, housing,
number-credits

19

COMPAS age, two year recid, priors count 5

HELOC MSinceMostRecentTradeOpen,
NumTrades60Ever2DerogPubRec,
NumTrades90Ever2DerogPubRec,
NumTradesOpeninLast12M,
NumInqLast6M,
NumInqLast6Mexcl7days,
NumRevolvingTradesWBalance,
NumInstallTradesWBalance, Num-
Bank2NatlTradesWHighUtilization

22
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Abstract. As data-driven intelligent systems advance, the need for reli-
able and transparent decision-making mechanisms has become increas-
ingly important. Therefore, it is essential to integrate uncertainty quan-
tification and model explainability approaches to foster trustworthy busi-
ness and operational process analytics. This study explores how model
uncertainty can be effectively communicated in global and local post-hoc
explanation approaches. Furthermore, this study examines appropriate
visualization analytics approaches to facilitate such methodological inte-
gration. By combining these two research directions, decision-makers can
not only justify the plausibility of explanation-driven actionable insights
but also validate their reliability. Finally, the study includes expert inter-
views to assess the suitability of the proposed approach and designed
interface for a real-world predictive process monitoring problem in the
manufacturing domain.

1 Introduction

The widespread use of machine learning (ML) models in real-world, high-
stakes decision-making requires establishing reliability and understandability,
which promote trust among relevant stakeholders [22]. In this regard, numerous
explainable artificial intelligence (XAI) techniques have recently been proposed,
including post-hoc explanation approaches, to provide global and local expla-
nations of the model behavior [3]. These approaches aim to enhance the trans-
parency and interpretability of the models, enabling stakeholders to comprehend
their decision-making processes better.

Uncertainty quantification (UQ) is another emerging ML research field focus-
ing on estimating and communicating the uncertainty associated with models’
predictions. It can be regarded as a complementary form of transparency that
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can boost the explainability of solutions for decision tasks, which may not be suf-
ficient on their own [4]. Recent studies suggest that effectively communicated and
appropriately calibrated quantification of model uncertainty not only enhances
stakeholders’ trust in model predictions, thereby improving decision automation
or augmentation, but also fosters transparency and trust among domain experts
by providing insights into model confidence combined with suitable communica-
tion strategies [23,24].

Selecting and deploying appropriate methods to generate explanations or
quantify uncertainties is critical in ML model inspection. However, the efficiency
of this process might be hampered if the insights are not presented to stakehold-
ers clearly and concisely. Therefore, to accomplish optimal communication of
the model’s outcomes, it is essential to build interactive interfaces that are cus-
tomized to the mental models of the intended stakeholders while minimizing their
cognitive load. To this end, interactive information visualization has emerged as
a promising area of research for enhancing ML models’ interpretability, trust-
worthiness, and reliability by providing users with relevant visual representations
[8]. Upon closer examination of the relevant literature, it becomes evident that
a considerable amount of research has been conducted on either visual analytics
for uncertainty communication [16], or model interpretability [2], but in isolation
from each other. Despite the importance of both research directions in facilitat-
ing more informed decision-making, there appears to be a gap in integrated
approaches that combine information visualization for uncertainty communica-
tion with model interpretability for a more holistic understanding.

With the gap mentioned above in mind, we present a novel methodology that
aims to integrate model uncertainties into both local and global post-hoc expla-
nations. Our approach is deployed in a visual analytics interface that enables
to verify the appropriateness and usability of the generated explanations. To
ensure that the solution meets the needs of its intended users, a comprehensive
requirements analysis for the design process and evaluation has been conducted
within a consortium research project. To summarize our main contributions, we
have made the following contributions:

– This study delves into various methods of presenting model uncertainty in
individual predictions, focusing particularly on predictive process monitoring.
Our investigation spans visual, textual, and tabular formats for effectively
conveying uncertainty.

– We develop and rigorously define techniques for incorporating model uncer-
tainty into global post-hoc explanation frameworks. This includes enhance-
ments to Partial Dependence Plots (PDP) and the introduction of a localized
variant, Individual Conditional Expectation (ICE) plots, to better articulate
model behaviors.

– To facilitate the practical application of our methodologies, we create sophis-
ticated visualization analytics tools. These tools are evaluated extensively,
engaging domain experts to address a real-world predictive process monitor-
ing challenge, thereby demonstrating the utility and impact of our approach.
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2 Background and Related Work

In numerous practical application scenarios, black-box ML algorithms are essen-
tial to reach a level of accuracy that conventional, intrinsically interpretable
ML approaches cannot. Nevertheless, such opaque approaches frequently fail
to explain their working mechanism, making it difficult for analysts to verify
their veracity [3]. Providing explanations is an effective method for promoting
acceptance of the predictions provided by intelligent systems. As a result, XAI
has arisen as a fruitful area of research to enhance the collaboration between
AI-based systems and human users by making the underlying non-transparent
algorithms understandable [15]. The notion of explainability is intricate and mul-
tifaceted, requiring consideration of various factors within the decision-making
environment. These factors include the analytical context, user attributes, expla-
nation objectives, and a range of socio-cognitive and process-specific aspects.
Therefore, when designing intelligent methods and interfaces, it is crucial to
take into account these factors to ensure adequate explainability [19].

Different taxonomies are available for XAI techniques, one of the main cat-
egories being post-hoc explanation techniques. These techniques provide expla-
nations for AI model predictions and can be grouped into two categories:
local and global explanations. Local techniques (SHapley Additive exPlana-
tions (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), ICE)
explain individual predictions, while global methods (PDP, SHAP Summary
Plots, Permutation-based Feature Importance) explain the overall behavior of
an AI model [17]. Post-hoc explanation techniques are often preferred by domain
experts for justification and verification purposes due to their comprehensible
nature. However, recent studies have revealed that most of these post-hoc expla-
nation techniques exhibit inconsistency and instability and may fail to provide
adequate information regarding their reliability, highlighting the need for inte-
grating model uncertainty estimation [22]. Nonetheless, to date, only a limited
number of studies undertook the endeavor to model uncertainty in post-hoc
explanations, as we do in this study [5,20,22]. Moreover, there has been a sig-
nificant lack of attention towards developing user interfaces that incorporate
visualization analytics approaches in this intersection [6,7,9,18].

The ML lifecycle encompasses multiple stages, from data collection to model
training, each of which introduces inherent uncertainties. As a result, the predic-
tions generated by AI models are subject to various types of uncertainty, such
as errors in data collection, model complexity, and algorithmic limitations. Two
types of uncertainty that are commonly distinguished in the context of AI models
are aleatoric uncertainty, and epistemic uncertainty [13]. Aleatoric uncertainty
is related to inherent data variability or the observed phenomena’ underlying
stochastic nature. In contrast, epistemic uncertainty arises from incomplete or
insufficient knowledge about the modeled system or the model’s limitations.
While aleatoric uncertainty depicts uncertainty that cannot be reduced, usually
pertaining to the underlying data, epistemic uncertainty is reducible and either
due to incomplete data or a characteristic of the fitted model. Methods used
to quantify the uncertainty that capture both categories can be divided into
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two main categories: Bayesian approaches and Frequentist approaches [4]. An
overview of techniques from both families can be found in this study [13].

Integrating UQ in the context of explainability is a step towards a holistic,
trustworthy Artificial Intelligence (AI), especially regarding the user’s trust and
acceptance of a model’s decisions.

3 Research Methodology

This section describes the approach to constructing an uncertainty-aware XAI
solution with corresponding interfaces. The design science research (DSR) app-
roach is adopted to provide a systematic and rigorous process for conducting
applied research [21]. This methodology is particularly suitable for information
systems research and involves six steps: problem identification and motivation,
defining objectives of a solution, design and development, demonstration, eval-
uation, and communication.
Problem Identification and Motivation: To secure both contextual appli-
cability and methodological precision, our article draws upon inputs from the
application domain for contextual relevance and the existing scientific knowledge
base for methodological rigor. To ensure relevance, a consortium research method
is used to engage practitioners in identifying open issues and defining objectives.
Furthermore, an extensive literature analysis was conducted to secure the rigor,
and findings were refined through iterative discussions with practitioners.

The primary challenge identified in this study is to develop an approach
that can overcome the non-transparent nature of black-box ML techniques. This
challenge is particularly relevant in high-stakes decision-making problems. To
tackle this issue, the design of such systems should incorporate post-hoc expla-
nation techniques that enable the users to ratify the validity of model decisions.
Moreover, to ensure that solutions are not only explainable but also reliable and
trustworthy, it is essential to effectively communicate model uncertainty in the
explanations generated by the system
Objective of a Solution: The next step involves defining the objectives of the
solution. The goals have two dimensions. First, a methodological approach is
required for communicating model uncertainty and incorporating this informa-
tion into post-hoc explanations. This would increase the reliability and trust of
underlying algorithms. Second, interfaces with relevant visualization techniques
should be devised to effectively communicate the outcomes to the system users.
Design and Development: Our proposed artifact comprises a deep feedfor-
ward neural network for generating predictions, Monte Carlo (MC) dropout to
estimate model uncertainty, and ICE plots and PDP approach to generate local
and global explanations, respectively. The study’s novelty lies in incorporat-
ing uncertainty information into these visualization-based post-hoc explanation
approaches. With such integration, decision-makers can not only justify the plau-
sibility of explanation-driven actionable insights but also validate their reliability
by examining the model confidence.
Demonstration: The applicability of the proposed artifact has been exam-
ined for a predictive process monitoring problem. Predictive process monitoring
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is a branch of process mining that combines advanced computational intelli-
gence methods with process modeling approaches [10]. The objective is to enable
continuous business process improvement by extracting predictive, data-driven,
process-specific insights from the event logs generated by a process-aware infor-
mation system (PAIS) [1]. Event logs are an essential enabler for evidence-based
process analysis by providing necessary details about process execution.

More specifically, we address a real-world use case scenario in the manufac-
turing domain. The examined problem pertains to cycle time prediction, with a
focus on predicting the duration of individual manufacturing activities required
to fulfill orders. The data is obtained from the Manufacturing Execution Systems
(MES) of the consortium partner. Prior to implementing our proposed artifact,
we conducted a rigorous feature engineering process using process-specific data
that had been enriched with customer order data.
Evaluation: The evaluation phase involves conducting semi-structured inter-
views with two domain experts who provide critical and constructive feedback
on the system design, usability, and suggestions for improvements. The eval-
uation results provide valuable insights to refine the system and improve its
usability.
Communication: Finally, the communication phase involves sharing the find-
ings and approach details through scientific publications and industrial events
to a broad audience of researchers and practitioners from different backgrounds.

Through the use of DSR, we can ensure a methodologically sound and sys-
tematic process for conducting applied research that is relevant to the applica-
tion domain. Ultimately, the XAI solution developed using this approach, with a
focus on communicating uncertainty, is expected to enhance the trustworthiness
of AI systems.

4 Uncertainty Estimation in Post-hoc Explanations

In this section, we provide an overview of the mathematical foundations that
underpin our proposed novel uncertainty-aware XAI approach.

4.1 Uncertainty Quantification with Monte Carlo Dropout

The MC dropout technique is among the cutting-edge approaches for assessing
uncertainty within deep learning frameworks and is applied to neural networks
to primarily mitigate overfitting through the stochastic deactivation of neurons
[12]. Enabling dropout regularization during the deployment phase allows the
approach to be interpreted as a Bayesian approximation to the probabilistic deep
Gaussian process. By performing T ∈ N

+ stochastic forward-passes through the
network, the model’s predictive variance can be calculated and, in turn, serves
as a measure of uncertainty.

We realize MC dropout by performing T ≥ 50 stochastic forward passes
through our deep feedforward neural network. This approach allows the model’s
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predictions to be mapped to the corresponding variance. In particular, uncer-
tainty profiles can be created for the training data by first sorting the variances in
ascending order, then calculating the variance thresholds. For example, thresh-
olds for the 25th and 75th percentile can be calculated, resulting in three uncer-
tainty profiles. The utilization of percentile-based estimations provides an initial
foundation for the categorization of model confidence profiles. Ultimately, the
domain experts hold the responsibility of determining the final profiles, either
by refining the initial data-driven estimations or by defining their own ranges or
categories.

4.2 Enhancing Partial Dependence Plots with Uncertainty
Quantification

Incorporating Uncertainty Quantification (UQ) into Partial Dependence Plots
(PDPs) provides an enhanced perspective on the intricate relationship between
predictor variables and the target outcome within a model framework. As ini-
tially introduced by Friedman [11], PDP serves as a global explanation tool,
illustrating the dependency of the target variable’s predictions on variations
within predictor variables. This method involves generating a new dataset by
substituting the values of a set of predictors with those from a specific instance,
and then predicting outcomes with the model for this modified dataset. Aver-
aging these predictions across all observations of the feature and plotting these
averages against the feature values produce the PDP.

The methodology commences with a dataset D = {(xi, yi)}Ni=1, encompass-
ing pairs of predictor variables x = (x1, ..., xp) and a response variable y, with
N indicating the total number of observations. This dataset is segregated into
subsets designated for training (Dtrain), validation (Dval), and testing (Dtest),
utilized respectively for the purposes of model training, hyperparameter opti-
mization, and evaluation. The predictive function ̂F (x), trained on the Dtrain

subset, maps predictors to the response. To generate a PDP for selected predic-
tor variables xS and their complement xC , the partial dependence of the model’s
prediction on xS is articulated through an expectation over xC , integrating both
the joint and marginal probability densities of these variables.

The integration of UQ into PDP considers the unique observed values of
the predictors xS within the training data. For each value, a modified copy
of Dtrain is created where xS values are replaced by a particular value xS,k.
The average prediction for this altered dataset is computed alongside a variance
vector through multiple stochastic forward passes, reflecting the uncertainty in
predictions. This variance information is utilized to construct a visual represen-
tation of uncertainty, with the resulting PDP plots colored according to identified
uncertainty categories. These plots convey the mean effect of selected features
on model predictions and enrich the user’s insight by detailing the variance dis-
tribution and an uncertainty profile for each plot point, facilitating a deeper
exploration of prediction uncertainties.

This refined approach to PDP, augmenting Friedman’s original methodology
by weaving in UQ, aims to unveil a more comprehensive depiction of the relation-
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ship between selected features and the target variable. Additionally, it tackles
the challenge that Goldstein et al. [14] posed in capturing local feature-target
relationships, advocating for the application of UQ in Individual Conditional
Expectation (ICE) plots for an in-depth analysis of these interactions.

4.3 Enhancing Individual Conditional Expectation Plots
with Uncertainty Quantification

As introduced by Goldstein et al. [14], an Individual Conditional Expectation
(ICE) plot offers a detailed global explanation technique by examining the
impact of marginal changes in a single feature on the predictions made by a
fitted model. This method involves selecting a subset of predictor variables,
replicating a specific observation across an artificial dataset multiple times, and
systematically altering the values of the chosen predictors to cover their unique
observed range. The model then evaluates this dataset, generating a set of pre-
diction scores that correlate with the unique values of the selected predictors,
thus facilitating a visual representation of their relationship. If the focus is on
a single predictor, this relationship might typically be illustrated using a line
plot. Extending this approach to encompass all observations within the dataset
allows for the addition of multiple lines to the plot-one for each observation. The
average of these lines yields the Partial Dependence Plot (PDP) for the selected
features, situating the ICE plot as a method for local explanation when applied
to individual observations.

To further this approach by incorporating Uncertainty Quantification (UQ),
we propose a refined methodology tailored for local explanations that accentuates
the predictive uncertainty for a singular observation and predictor of interest.
Consider xS as the predictor under scrutiny, characterized by its unique observed
values {xS,1, ..., xS,j}. With j representing the count of unique values within the
training data, and (x(i)

S ,x(i)
C ), i ∈ {1, ..., N} signifying a selected observation

from the dataset, the process unfolds as follows: For each unique value xS,k, a
duplicate of the chosen observation is created with x

(i)
S updated to xS,k. This

allows for the calculation of the model’s prediction for the modified observation,
alongside the variance v

(i)
k across T stochastic forward passes, encapsulating the

predictive uncertainty. The association of v(i)k with a specific uncertainty profile
is denoted, facilitating the coloring of the plotted pairs {xS,k, ̂F (xS,k,x

(i)
C )} based

on their uncertainty categorization.
This methodology culminates in the generation of an ICE plot, uniquely

colored to reflect the uncertainty associated with each prediction. Additionally,
it introduces a novel visual representation through stacked histograms, which
categorize and color feature values and predictions according to their uncertainty
profile alignment, thereby offering an insightful and comprehensive examination
of the model’s predictive behavior under uncertainty.
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5 Interface Overview

The main focus of this section is to introduce the primary interface components
of the solution that are specifically designed to effectively communicate uncer-
tainties arising with each model decision, along with corresponding explanations.
Apart from a component for a general overview and instance selection (Fig. 1),
the three interface components that make up the solution are “Uncertainty Esti-
mation and Visualization,” “Uncertainty Communication in ICE Plots,” and
“Uncertainty Communication in PDP.”

The core ML components for this project are built using the “keras” library
in R. Other key libraries utilized for data preparation, interface creation, and
visualization include “data.table”, “dplyr”, “ggplot2”, “plotly”, “vip”, “shiny-
dashboard” etc.

5.1 Uncertainty Estimation and Visualization

The “Uncertainty Estimation and Visualization” component of our proposed
solution is designed to inform system users about model uncertainty using var-
ious presentation forms. More specifically, two distinct visualization techniques
were utilized, a density plot and a box plot, along with textual and tabular
descriptions that convey information on the specific model uncertainty for the
selected prediction.

To begin, the first visualization approach presents the distribution of pos-
sible model predictions generated using the chosen UQ approach (such as MC
dropout) through density plots (Fig. 2, A). This allows users to visually inspect
distribution details and understand the ranges where the model predictions are
predominantly located. Alternatively, we can use a box plot to visualize the
same information (Fig. 2, C), showing the interquartile range within its hinges,
a vertical line representing the median, and whiskers extending to the lowest
and highest data points within 1.5 times the interquartile range. Both visual-
ization approaches are supplemented with additional information. For instance,
prediction intervals are incorporated into the plots, showing the range within
which the predictions will fall with a 95% probability. A label below each plot
includes the confidence interval as a visual aid, depicted using arrows pointing
at the red vertical lines. The plots are colored based on the qualitative uncer-
tainty descriptions, with green, yellow, and red representing “low,” “medium,”
and “high” confidence profiles, respectively.

In addition to these visualization approaches, we provide a textual description
(Fig. 2, B) that includes information about the UQ method, an explanation of
prediction intervals in words, and the uncertainty profile that shows the model
confidence for the particular prediction. Finally, a table is presented to the user
(Fig. 2, D), showing the model prediction, standard deviation, and other relevant
information.
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5.2 Uncertainty Communication in Individual Conditional
Expectation Plots

This component of our proposed uncertainty-aware local explanation approach
provides an interface that visualizes prediction scores for new synthetic instances
and communicates their uncertainty information (Fig. 3, B for numerical and
Fig. 4, B for categorical variables). This is achieved through the use of color-
coded confidence intervals within the plot. In addition, the uncertainty for
each synthetic instance is communicated through the various presentation forms
described in the previous component.

5.3 Uncertainty Communication in Partial Dependence Plots

To improve the transparency and interpretability of the PDP, we introduce a
new component for the PDP interface that provides two types of uncertainty
information (Fig. 5, B). The first type of uncertainty information is presented
through a complementary density plot (Fig. 5, C), which displays the distri-
bution of predictions and the 95% confidence level bands around them. While
this information could be directly visualized in the main graph, we found that
doing so would make it harder for users to read and interpret the plot. The
main contribution of our approach is the visualization of model uncertainty for
each examined value of the feature of interest within PDP analysis. To achieve
this, we use a doughnut chart (Fig. 5, D) that displays the distribution of uncer-
tainty profiles, giving users an overview of the model’s global reliability for the
examined value.

6 Evaluation

6.1 Usage Scenario

The effectiveness of the designed interface, which includes visualization analytics
components, is showcased in this usage scenario. The interface assists process
experts (PE) in estimating the cycle time required for a given customer order.
The sequence of required production activities is already predetermined based
on the order specifications. However, the PE must still determine the duration
of each activity, which can be aided by our data-driven approach. As the timely
completion of high-priority orders is critical, the PE are responsible for ensuring
the validity of the data-driven guidance provided by the system.

General Overview: The system interaction commences with the PE being
directed to a dedicated “General Overview” page exclusively designed for the
predictive process monitoring use case. The PE can select the relevant case of
interest on this page by using a drop-down menu corresponding to a customer
order’s production activity sequence (Fig. 1, A). The page also highlights the
specifications of the customer order, such as product weight and dimensions,
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Fig. 1. General overview. A: The drop-down menu on the upper left-hand side allows
the user to select a production case; corresponding details are displayed on the right-
hand side. B: A table view allows further insight into each step of the production
case and information concerning activity duration prediction and uncertainty. Process
activities are selectable for further analysis. C: An animated process map and a Gantt-
Chart depict the planned sequencing and cycle time prediction. (Color figure online)

which are also used as inputs to the ML algorithm. Figure 1, B shows all pertinent
information regarding duration prediction for each production step, along with
uncertainty profile information. An animated process map and a Gantt-Chart
(Fig. 1, C) provide a visual representation of the activity sequence, with the latter
featuring the predicted duration for each process step. Each step in the Gantt-
Chart is color-coded according to one of three uncertainty categories: “high” is
indicated by the color red, “medium” by the color orange, and “low” by the
color green.

The production activities in this particular scenario include 3D-cutting
(“3D Microstep Circ”), work at a dishing press (“Dishing Press 1]]), beading
(“Bead S”), shape adjustments in the forge (“Forge”), another beading
(“Bead S”) and refinement of the edges (“Edge white L”). Our solution catego-
rizes activities 2, 3, 5, and 6 as having a “medium” uncertainty profile, whereas
activity 3 has a “low” uncertainty profile. The first activity, 3D-cutting, is an
exception and falls under the “high” uncertainty group. It is predicted to take
155 min with a standard deviation of 33 min, as shown in the Gantt-Chart. The
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PE decides to investigate this production activity since any disruption at this
early stage can potentially cause a cascading effect on the rest of the processes.

Fig. 2. Dashboard interface for uncertainty analysis on an instance-level. A: The den-
sity plot depicts the distribution of MC Dropout predictions. B: The same data from
A is visualized as a box plot. C: A textual description summarizes important findings
from A and B. D: A table displays additional information concerning the examined pro-
duction activity. The red color coding depicts the “high” level of uncertainty affiliated
with the activity duration prediction. (Color figure online)

Uncertainty Analysis on the Activity Level: The PE can analyze the
uncertainty of individual activities by clicking on the activity of interest, in this
case, 3D-cutting. This action displays the distribution of MC dropout predictions
as shown in Fig. 2. The model prediction of 154.9 min falls into the highlighted
confidence interval of 70.7 min to 199.6 min (Fig. 2, A), which covers 95% of
the values and indicates that the model prediction is not an outlier. However,
the upper hinge of the box plot (Fig. 2, C) and the upper limit of the confi-
dence interval suggest that a delay of nearly 45 min is not unlikely. A textual
description (Fig. 2, B) is also provided to ensure correct interpretation. Finally,
Fig. 2, D provides a tabular summary for quick access to duration predictions
and uncertainty information for the chosen activity.

Uncertainty-Informed ICE Plots: To understand the impact of both numer-
ical and categorical features on model predictions and generate a plan to avoid
undesired outcomes, the PE consults the uncertainty-aware ICE plot (Fig. 3, A).
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By analyzing variables related to the product specifications, such as the bend
radius (“Bend Radius S”), the PE realizes that the duration prediction of 3D-
cutting activity around the original value (125 cm) results in “high” uncertainty
predictions (Fig. 3, B). However, increasing the value of this feature reduces
the predicted activity duration and increases the model’s confidence in its pre-
dictions, resulting in “medium” uncertainty. This uncertainty-aware ICE plot
enables the PE to understand the relationship between the feature of interest
and model outcomes and comprehend the model confidence. However, the value
of this feature can not be altered for the planning process as it is a fixed, prede-
termined product specification.

The PE identifies a categorical variable, “Worker,” that can be manipulated
without affecting the order requirements (Fig. 4, A) and filters out unavailable
personnel. In this scenario, the PE notices that the prediction for the allocated
worker by the system (anonymized through the identifier “751”) falls into the
“high” uncertainty category (Fig. 4, B), while other workers would be available
with a “medium” uncertainty prediction. Within the area with the lowest pre-
diction scores, the PE chooses a group of three other available workers (“114”,
“736”, and “797”) whose predicted duration falls into the “medium” uncertainty
group to examine them further. The anticipated durations for these three work-
ers are ˜103, ˜118, and ˜123 minutes for “797”, “736,” and “114,” respectively.

The PE validates the accuracy of the model outputs by cross-referencing them
with their domain expertise. The improvement in predictions resulting from the
alteration of the selected worker is attributed to the greater experience of the
alternative workers in performing the production activity. Since the model’s
estimated prediction duration and uncertainty align with the PE’s expectations,
their confidence in its reliability increases.

Uncertainty-Informed PDP: The PE switches to the “Global Explanations”
tab to ensure that at least one of the selected replacement workers performs well
in general, given the high priority of the order. This tab provides the PE with
a permutation-based feature importance plot (Fig. 5, A) which helps in under-
standing the overall impact of certain variables. Additionally, an uncertainty-
aware PDP (Fig. 5, B) is also presented to the PE as a tool for further analysis.

The PE selects the categorical variable “Worker” and iteratively examines
each of the three available workers. By using the distribution of the MC dropout
predictions (Fig. 5, C), the PE concludes that worker “797” has an upper bound-
ary of the confidence interval that is approximately 30 min lower than the cur-
rently allocated worker, with a mean prediction score (82 min) that is 22 min
lower. Furthermore, the doughnut chart (Fig. 5, D) indicates that worker “797”
is associated with a greater amount of “low” (33.1%) and a smaller amount
of “high” (16.6%) uncertainty when compared to the current worker (21.2%
“low,” 22.7% “high” uncertainty). Consequently, the PE has sufficient grounds
to modify the production plan by substituting the current worker “751” with
worker “797” for the given process activity, reducing the predicted lead time and
decreasing model uncertainty.
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Fig. 3. Dashboard interface for uncertainty-aware ICE plots. A: The user selects
“numerical” as the variable type on the upper left-hand side, updating the drop-down
menu with variables of the chosen type right next to it. B: The proposed uncertainty-
aware ICE plot for numerical variables is displayed here.

6.2 Expert Interview

During the evaluation of the proposed uncertainty-aware explanation methods,
an interview was conducted with two process experts, including a factory man-
ager and a production manager. Both experts possess extensive knowledge of
the underlying data and have a deep understanding of the processes involved, as
well as expert knowledge regarding the interrelationships between the features
under examination and the target.

During the interview, the process experts selected an exemplary Case-ID and
explored the visualizations for the corresponding production process to establish
a starting point for further analysis. They quickly orientated themselves within
this tab and delved into the analysis of individual production steps. Within
the exemplary case, they chose a process step and explored the uncertainty
analysis in detail. Following that, uncertainty-aware ICE plots were presented
and discussed in a similar manner. The global explanations, which contain the
uncertainty-aware PDP, were examined next. These steps were repeated for the
other process steps within the exemplary case. Next, they performed the same
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Fig. 4. Dashboard interface for uncertainty-aware ICE plots. A: The user selects “cate-
gorical” as the variable type on the upper left-hand side, updating the drop-down menu
with variables of the chosen type right next to it. B: The proposed uncertainty-aware
ICE plot for categorical variables is displayed here, with the distribution of categorical
values being omitted since each value only occurs once during plot generation. The red
vertical line indicates the original variable value of the analyzed instance. (Color figure
online)

steps for other randomly chosen cases and were asked to provide feedback on how
they would interact with the dashboard if it were deployed for production plan-
ning. Finally, they discussed the dashboard in detail, and the expert feedback
was documented. The interview lasted for one hour, and each step described
above took approximately 15 min. The interviewed experts provided valuable
feedback on the usability and design of the visualization and explanation tech-
niques employed in the proposed uncertainty-aware explanation methods and
proposed suggestions for improvement.

Design and Usability: In terms of design, the experts expressed positive views
toward the proposed uncertainty-aware ICE plots and uncertainty-aware PDP
and were able to derive and validate the relationships depicted in these visualiza-
tions shortly after their introduction. Furthermore, the integrated color scheme
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for faster differentiation of uncertainty profiles was internalized quickly and uti-
lized by the experts as they explored real-world usage scenarios in the third
interview step.

Fig. 5. Dashboard interface for uncertainty-aware PDP. A: Permutation-based feature
importance is displayed as a supporting tool for orientation and global explainability.
B: The proposed uncertainty-aware PDP for categorical variables is displayed here.
Hovering over a point displays its mean prediction score and the corresponding dom-
inant uncertainty group. C: Clicking on a point in B updates this density plot, which
displays the distribution of predicted values. D: Clicking on a point in B updates this
doughnut chart, which displays the distribution of uncertainty group membership from
the corresponding predicted values.

The density plot was rated as the most accessible and effective visualization
method for the distribution of MC dropout predictions, followed by the box
plot as a complementary visualization. The additional textual explanations were
highlighted as a powerful tool for preventing false interpretations and improving
overall user acceptance. The experts found the relationship between the predic-
tion score and the distribution of MC dropout predictions easy to grasp after a
brief initial explanation.
Suggestions for Improvement: While the experts were generally satisfied
with the proposed explanation methods, they expressed a desire for the ability
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to compare similar cases. This would enable users to filter the underlying data
to construct uncertainty-aware ICE plots and uncertainty-aware PDP restricted
based on the filtered data. Incorporating this feature into the proposed dash-
board would enhance the user experience and improve the utility of the proposed
explanation methods for production planning.

7 Discussion and Conclusion

In this work, we presented an approach for integrating and communicating model
uncertainty in the context of XAI, focusing on visualization as a medium for con-
veying information. In particular, we introduced uncertainty-aware ICE plots as
a local and uncertainty-aware PDP as a global explanation method, enhanced
with various visual properties and functionalities for deeper uncertainty anal-
ysis. We presented the efficacy of this approach in a real-world manufacturing
scenario, demonstrating its utility in the hands of a process expert. Addition-
ally, an interview with experts evaluated the effectiveness and usability of the
presented methods when integrated into a prototypical dashboard. Below we
discuss findings, challenges, and future work.
Flexibility and Transferability: Our study employed a deep neural network
and utilized MC dropout to quantify uncertainties in the model’s predictions
accurately. The use of data-driven methodologies in these steps is not limited
to MC dropout and can be interchanged with other methods, such as Extreme
Gradient Boosting (XGBoost) for generating predictions or the bootstrap app-
roach for uncertainty quantification. The flexibility of our approach makes it
applicable to a wide range of classification or regression challenges that involve
tabular data, not just limited to predictive process monitoring scenarios.
Combining Local and Global Explanations: The integration of instance-
based and global explanations have been found to increase overall trust and
acceptance of AI models. By combining global and local explanations, users can
gain a high-level overview of the model and the ability to delve into the details
of specific instances. Compared to providing only global or local explanations,
this approach is considered more effective in promoting a better understanding
and trust in AI models. Our evaluation further underscores the importance of
using both explanations for exploring model uncertainty.
Scalability: The integration of uncertainty UQ and XAI techniques, such as MC
Dropout and ICE and PDP, presents significant computational challenges, par-
ticularly concerning scalability. For example, the complexity of generating ICE
and PDP plots for models with high-dimensional inputs can result in enormous
evaluations, which can be prohibitively expensive when MC Dropout generates
multiple predictions for each input. In addition, the computational cost of com-
bining these techniques can make it difficult to scale to larger datasets or more
complex models. To mitigate these challenges, several approaches have been
proposed. One potential solution is to parallelize computations across multiple
GPUs, which can lead to significant speedups. This approach is practical for
MC Dropout, where the numerous forward passes required for each input can be
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efficiently distributed across multiple processors. Additionally, binned values can
be used for XAI techniques instead of all unique values, which can significantly
reduce the number of evaluations required.
Future Work: A promising direction for future research involves enhancing
the dashboard by integrating uncertainty reliability measures, such as Predic-
tion Interval Coverage Probability (PICP) and Mean Prediction Interval Width
(MPIW). These measures are crucial in scenarios requiring high-stakes decision-
making, where formal guarantees on prediction intervals are indispensable. In our
forthcoming work, we aim to incorporate conformal prediction techniques into
the UQ component of our proposed approach. Furthermore, exploring various ad-
hoc UQ methods and post-hoc calibration techniques in the XAI context could
prove beneficial. Additionally, expanding the dashboard to encompass model
accuracy metrics like Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE) for different uncertainty profiles will provide users with a deeper
insight into model performance across various levels of uncertainty. Moreover,
there’s a pressing need for more systematic approaches to evaluate the com-
bination of XAI and UQ, both qualitatively and quantitatively. Investigating
the synergies between UQ and XAI methods could shed light on the fairness of
algorithmic decision-making in high-stakes contexts. Given the risks of bias and
discrimination inherent in AI-based decision systems, this area of research carries
profound social and ethical significance. We aim to deepen our understanding
of the performance and reliability of UQ and XAI methods by pursuing these
avenues. This knowledge will be crucial in developing more robust and equitable
decision-making systems.
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Abstract. We present an XAI tool for time series classification provid-
ing model-agnostic instance-based post-hoc explanations, by means of
prototypes and counterfactuals. Additionally, our tool allows for model
inspection on instances generated by the user, to navigate the bound-
ary between classes. This will allow the user to test and improve their
hypotheses when formulating a model of the black box classification. We
perform a human-grounded evaluation with forward simulation, to con-
tribute a quantitative end-user evaluation to the field of XAI for time
series.

Keywords: Time series · Human-grounded evaluation ·
Instance-based explanations

1 Introduction

Temporal data is encountered in many real-world applications ranging from
patient data in healthcare [15] to the field of cyber security [20]. Deep learn-
ing methods have been successful in time series classification [11,15,20], but
such methods are not easily interpretable, and often viewed as black boxes,
which limits their applications when user trust in the decision process is crucial.
To enable the analysis of these black-box models we revert to post-hoc inter-
pretability. Recent research has focused on adapting existing methods to time
series, both specific methods like SHAP-LIME [8], Saliency Methods [10] and
Counterfactuals [4], and also combinations of these [16].

However, compared to images and text, time series data are not intuitively
understandable to humans [18]. This makes interpretability of time series extra
demanding, both when it comes to understanding how users will react to the
provided explanations and also to the evaluation of its usefulness. Nevertheless,
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as humans learn and reason by forming mental representations of concepts based
on examples, and any machine learning model has been trained on data, then
data e.g. in the form of prototypes and counterfactuals is indeed the natural
common language between the user and this model. In addition, several studies
have highlighted the need to rethink new ways of interaction with an XAI algo-
rithm, to allow for a dialogue between explainer and explainee, and to enable
model inspection at will [1,13,17].

Hence, we advance an XAI time series tool that on the one hand provides
users with instances of both prototype and counterfactual time series, and on
the other hand lets the user generate their own instances for classification. This
enables active learning and allows the user to test and improve their hypotheses
when formulating a mental model of the black box classification.

We perform a quantitative user evaluation, thereby meeting a demand from
the XAI research community [4,21,22], to measure how prototypes, counterfac-
tuals and interactivity increases the understanding that the user has of the black
box classification. Using the taxonomy of interpretability evaluation [5] what we
do is a Human-Grounded Evaluation with Forward Simulation.

We use 3 datasets having a binary classification (e.g. 24-h power demand of a
household in Winter versus Summer) and for each dataset we train an ML model.
Note that it is generally more difficult to explain the classification of an AI model
than the classification of a real-world dataset. The reason for this is that the
dataset contains only real instances, whereas the AI model classifies any instance,
also artificial ones. In this work, for prototypes we use real instances from the
dataset, whereas we produce counterfactuals by combining real instances with
artificial ones, based on the NativeGuide method [4]. For tests we have chosen
to use real instances.

In the remainder of this paper, we first discuss related work, then we give
definitions, followed by a description of the tool and a discussion of the user
evaluation results.

2 Related Work

Research on XAI for time series classification has progressed similarly to XAI in
general, with earlier work focused on feature-importance rather than on instance-
based methods using prototypes and counterfactuals. A comprehensive survey
of XAI methods for time series can be found in [21]. Our own work deals with
model-agnostic instance-based post-hoc explanations, by means of prototypes
and counterfactuals. In [14], the author offers a survey of work on instance-based
explanations for XAI mainly in the image domain, defining and classifying the
various approaches in the literature. In this paper we evaluate the use of instance-
based explanations for time series by end-users. The work [7] studied how non-
experts handled post-hoc example-based explanations, however not in the time
series domain. They found that even though these do assist users with correct
judgement, people have significant difficulties dealing with misclassifications in
an unfamiliar domain. Thus we should maybe not expect very high accuracy
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from our own evaluations on end-users, as time series are notoriously hard for
humans to interpret [18].

Interactivity and model inspection have recently been seen as important in
XAI. The paper [2] argues that interactivity in XAI is a core value in the inter-
face between the model and the user, and that a user study is needed for a
qualitative evaluation. In [22], the authors develop an interactive XAI tool for
loan applications that allows users to experiment with hypothetical input values
and inspect their effect on model outcomes, and perform a user evaluation on
MTurk.

User evaluations of XAI systems come in various forms. A taxonomy
of interpretability evaluation, from the gold standard of Application-oriented
evaluations, to Human-grounded evaluations as we perform in this work, to
Functionally-grounded evaluations that do not require human experimentations
is developed in [6]. For time series it seems the latter approach is the more com-
mon. The authors in [16] apply several XAI methods previously used on image
and text domain to time series, and introduces verification techniques specific to
times series, in particular a perturbation analysis and a sequence evaluation, but
they do not include any user evaluation of their systems. Likewise, [9] presents
a Python package to provide a unified interface to interpretation of time series
classification, but no user evaluation.

The work of [4] provides a method for generating counterfactuals for time
series classifiers, called Native Guide, that applies Class Activation Mappings
[23] to select discriminative areas for modification. They end their paper by
arguing that ‘Given the ubiquitous nature of time series data and the frequent
requirement for explanation, it is clear that experiments with human users and
CBR solutions have much to offer in future work.’ The survey [21] says about
Native Guide that ‘...evaluating this promising approach involving end users
could be promising for future work’. Indeed this is a part of what we do in the
current paper as the counterfactuals we show users are exactly the ones generated
by Native Guide.

3 Definitions

Let us present formal definitions for Time Series Classification (TSC) and recall
basic notions.

Staying consistent with earlier notation [4,21] a time series T =
{t1, t2, . . . , tm} is an ordered set of m real-valued observations (or time steps). A
time series dataset D = {T1, T2, ..., Tn} ∈ Rn×m is a collection of such time series
where each time series has a class label c forming a vector of class labels. In this
paper we consider only binary classification tasks. Given such a dataset, Time
Series Classification is the task of training a mapping b from the space of possi-
ble inputs to a probability distribution over the class values. Thus, a black-box
classifier b(T ) takes a time series T as input and predicts a probability output
over the class values. Given a to-be-explained time series T , with predicted label
b(T ) = c from the black-box classifier, a counterfactual explanation aims to find



442 B. Håvardstun et al.

how T needs to (minimally) change to some T ′ for the system to classify it alter-
natively, as b(T ′) = c′ �= c. We refer to T ′ as a counterfactual explanation for
T , without having to specify the target class since we consider only binary clas-
sification tasks. The minimality criterion usually refers to a notion of distance
(proximity) between time series, but another criteria property can be sparsity
(that T and T ′ differ on few data points, or on few contiguous sequences of data
points) and plausibility (that the instance is not an outlier).

Fig. 1. Explanation types illustrated in a two-class decision space. The two prototypes
are representatives of each class, positioned in the middle of the data density contour
map. A path of interactive examples and their counterfactuals is shown to illustrate a
possible user’s journey.

Prototypes are time series exemplifying the main aspects responsible for a
classifier’s specific decision outcome. It can be a real instance (which is what we
opt for in our tool) sampled from the dataset that is important and meaningful
because it summarizes the shape of many other similar instances, or a synthetic
one, for example a cluster centroid or an instance generated by following some
ad-hoc processes. See Fig. 1.

4 Prototypes, Counterfactuals, and User-Model
Inspection

In this section we introduce our tool for XAI on time series classification provid-
ing model-agnostic instance-based post-hoc explanation, by means of prototypes
and counterfactuals. Additionally, one of our contributions is to allow for model
inspection on instances generated by the explainee. This interactive tool allows
the user to themselves navigate the boundary between classes. Starting from a
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prototype, while simultaneously seeing a counterfactual (see Fig. 1) the user can
change individual time points at will, and see the resulting classification. This
will allow the user to test and improve their hypotheses when formulating a
model of the black box classification.

In the rest of this section we describe our tool and start by giving an argument
for its motivation, coming from the industry side. We then give a description of
the algorithms for generating prototypes plus counterfactuals, and a discussion
of how to present these to the user on-screen. We end by reporting on the design
choices related to the interactive part, that allows the user to change individual
time points and do model inspection.

4.1 The Need for Trust

When presenting output from black box ML systems to non-trained users, the
need for explanations arises from at least two angles: The user must trust the
results, and the user must, to a sufficient degree understand the results. To use
a real-world example from energy companies [19], if a system based on charging
data tells a car owner that their car seems faulty, or tells a home owner that their
power consumption deviates from expectations - they would need to trust their
correctness, otherwise the message will be ignored. When trust is established, the
next step is usually to fix the situation. If the car owner understands the reason
for their car charging being classified as faulty, he/she can bring it to the vendor
or repair shop with concrete information that can be used to fix it. Similarly,
if the home owner understands why their consumption is classified as deviating
- they could perhaps fix a broken appliance - or adjust their consumption to
a more favourable price pattern. These are situations encountered at Eviny, a
Norwegian energy company collaborating on the present tool. The more compli-
cated the data and classifications are (for example consisting of several series of
data measuring power, temperature, etc. - and/or having temporal patterns like
slowly decreasing trends), the more challenging will the explanation be. Thus -
exploring different approaches and tools for explanations for non-trained users
is of great use when companies plan on applying machine learning on complex
data. Without trust the models will be ignored, and without an understanding
of what the actual problem is no appropriate action can be taken. Of course,
one can ask how much benefit non-trained users can gather from example-based
explanations in the realm of time series, and this is indeed one of the questions
guiding the user evaluations done in this work.

4.2 Generating and Presenting Prototypes and Counterfactuals

We have opted to use cluster centers as our prototypes. To ensure the prototypes
we selected have high plausibility, we use a k−medoids algorithm to find the
prototypes, see [12]. Specifically we used KMedoids from sklearn_extra.cluster
package. We used default configuration of KMedoids, with Euclidean distance
as the distance metric.
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There is a growing consensus that counterfactuals provide robust and infor-
mative explanations to a query time series whose classification is to be explained.
In the time series domain the visualization of counterfactuals is straightforward.
We have opted to use a novel method for generating counterfactuals for time
series called Native Guide, developed recently by Delaney et al. [4]. This method
extracts counterfactual time series, named Native Guides, starting from initial
training data. Starting from the query time series whose classification is to be
explained, the Native Guide method starts by finding a counterfactual time series
belonging to the dataset that is close to the query. This Native series are then
adapted in a Guided way to generate novel counterfactuals, following four iden-
tified key properties for good counterfactuals: proximity, sparsity, plausibility,
and diversity. The Native Guide counterfactual generation method uses Class
Activation Mappings to Guide the counterfactual generation from the Native
series. The use of CAM in itself puts some limitations on the AI model used, e.g.
having the last layer be global average pooling, so in that sense is not completely
model-agnostic. To ensure compatibility between the model doing the classifica-
tion and the Native Guide counterfactual generator, we therefore closely follow
the time series classification model implementation of Delaney et al. available
here.

When presenting time series to the user we have opted to use two colours
for the two classes, namely Blue and Pink. Since a counterfactual, say Blue, will
be used to explain the classification of a given query Pink time series, we have
chosen to present both at the same time to the user. Thus, we plot the query
with Pink lines, and then show only the deviation of the counterfactual by Blue
dotted lines. See Figs. 2, 3, 4 and 5 which show also that the user is allowed
to make interactive changes, as described in the next subsection. Note that the
y-values in the figures represents the normalized values for each dataset.

4.3 Allowing Interaction and Model Inspection

A central aspect of our tool is that it allows the user to alter individual data
points and do model inspection. In real-time the tool will update the model clas-
sification by changing the color of the time series if the classification changes,
showing the model confidence in this classification. It will also update to a new
counterfactual. This enables active learning and allows the user to test and
improve their hypotheses when formulating a mental model of the black box
classification. In Figs. 2, 3, 4 and 5, we see 4 screen shots of an actual session with
the tool: Fig. 2) User starts with a Pink prototype and a counterfactual. Figure 3)
Makes changes to left end of series so that confidence (top bar) of model clas-
sification drops, plus new counterfactual, but same color/class. Figure 4) Makes
further changes and now the model classification switches. Figure 5) Last changes
made by user and confidence of model classification increases. Note how the user
can explore their understanding of the classification by progressive changes to
the current time series. Compare also with Fig. 1.

https://github.com/e-delaney/Instance-Based_CFE_TSC
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Fig. 2. Start in Pink prototype. (Color figure online)

Fig. 3. Changes at left end, still Pink. (Color figure online)

5 End-User Evaluation with Forward Simulation

We have not before seen such an interactive tool for time series in the research
literature. As time series are notoriously difficult for human users, most of the
human evaluations of XAI methods done so far have been qualitative and involv-
ing domain experts. Our goal in this work has been to add the new dimension
of quantitative user evaluations involving end-users, i.e. non-experts, on XAI for
time series. In this section we present this user evaluation. We start by presenting
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Fig. 4. Further changes, now Blue. (Color figure online)

Fig. 5. Last changes, still Blue. (Color figure online)

the discussion leading up to the 3 time series datasets chosen for the evaluation.
We then discuss the 3 distinct survey groups that will be given different abilities
in the training stage. We end by giving the results of the evaluation, on each
pairing of dataset and survey group, and a discussion of their significance.

Our tool is designed for univariate datasets. Moreover, since our test users are
not domain experts and time series are notoriously non-intuitive to us humans we
had some desiderata when choosing datasets for our survey. Firstly, we wanted
univariate datasets with a binary classification, Secondly, we wanted datasets on



XAI for Time Series Classification 447

time series with not too many data points. Thirdly, we wanted datasets where
it is fairly easy for a non-expert to understand the domain. Datasets satisfying
these criteria will increase the prospective of providing constructive quantitative
feedback, and also they form the more common situation where an explanation
would potentially be provided for end-users. However, it is important to note
that apart from the above constraints we did not want simple datasets where the
binary classification is particularly easy or could be described (e.g. by ourselves)
in any straightforward way. We chose the following three datasets satisfying the
above criteria:

– From UCR [3]: Italy Power Demand. This dataset shows power demand in
Italian households over a 24-h time period, and classifies these into Winter
(October-March) and Summer (April-September).

– From UCR [3]: Chinatown. This dataset shows the number of pedestrians on
a particular street corner of Chinatown in Melbourne over a 24-h time period,
and classifies these into Weekend (Sat-Sun) and Weekdays (Mon-Fri).

– From Eviny: Car Charging. This dataset shows the power demand at a par-
ticular charging station for electric vehicles over a 24-h period, and classifies
these into Weekend (Sat-Sun) and Weekdays (Mon-Fri).

Table 1. Information of the datasets employed in the evaluation. We also include
information about the proportion of data employed for training and testing the data,
and the accuracy obtained by the learned model.

Dataset Number of instances Class distribution Train/Test Accuracy

ItalyPowerDemand 363 104/259 6%/94% 98%

ChinaTown 1096 547/549 5%/95% 96%

Car Charging 365 269/96 75%/25% 57%

Some details of the datasets employed in the experiments can be found in
Table 1. We also include the accuracy obtained by the trained models. In the
datasets we used the split between training and test defined and the repository
except from Car charging where we employed a random selection of 75% train
and 25% test.

As mentioned earlier, the three main components used in our interactive XAI
system for time series are prototypes (PT), counterfactuals (CF), and model
inspection (MI) with user-generated instances. Our survey groups will enter a
3-stage process, as follows:

– Intro: A short introduction is given to the relevant components, the dataset,
training stage, and testing stage.

– Training: Group dependent.
– Testing: 10 randomly selected time series from the dataset are shown, and for

each one the user must guess the AI model classification. See Figure below.
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Fig. 6. Test case for ItalyPowerDemand.

To cover the distribution of time series within each class, we wanted to show
users more than one prototype for each class. However, we did not want to
overload the user with information, hence we opted to have 6 prototypes in
total, three for each class. We will have three survey groups (PT, PT+CF,
PT+CF+MI) depending on what is made available to users in the Training
stage:

– PT: One at a time, the user is shown 3 prototypes from class A, then 3 from
class B, and finally shown a screen with all 6 prototypes.

– PT+CF: One at a time, the user is shown 3 prototypes from class A together
with a counterfactual from class B, then 3 converse pairs, and finally shown
a screen with all 6 pairs.

– PT+CF+MI: The user is shown same as PT+CF but model inspection is
permitted, with prototypes being interactive to allow iterative changes of any
chosen time points, and the ensuing classification and also new counterfactual
continually updated.

In Figs. 2, 3, 4 and 5 we see how a user in group PT+CF+MI is shown a
pair consisting of a prototype and a counterfactual and is allowed to modify
data points. A user in group PT+CF is shown a single such pair consisting
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of prototype and counterfactual but without the ability to make modifications,
while a user in group PT is shown only the prototype. In the last part of the
training stage the users are shown all 6 prototypes/counterfactuals on one screen,
to easily make a comparison, as in Fig. 7 for group PT+CF+MI.

Fig. 7. Blue and pink prototypes with counterfactuals, for ItalyPowerDemand. (Color
figure online)

5.1 Evaluation Results

Let us present the results of the user survey. In total, we had 65 voluntary
participants, who were either students in a university-level informatics course,
or researchers in informatics, thus with experience in using PCs, none of whom
received compensation. The participants were presented with the survey and
freely chose to participate. The participants were randomly divided into the 3
survey groups. After introduction and training they were asked to answer 10 test
questions from each of up to 3 datasets. Those who spent less than a minimum
amount of time (less than 1min for training and testing combined on a single
dataset) were discarded, as we considered that it would be impossible to even
read the provided information in that time.
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In Table 2 we see the accuracy and number of tests (i.e. number of partici-
pants times 10) for each of the three survey groups, on each of the three datasets.
Accuracy is the percentage of correct test answers. The rightmost column gives
the aggregated information for each survey group, and the bottom row the aggre-
gated information for each dataset. The value in the bottom right corner shows
that the overall accuracy was 66.7%, thus clearly better than a random guess,
and satisfactory given the complicated nature of these time series classifications.

Let us compare the performance between the three survey groups. Perhaps
surprisingly, on aggregate we see that survey group PT that was only shown the
prototypes, did slightly better than the other two, with accuracy of 70.2% versus
65.9% and 64%. This could indicate that non-expert users are not necessarily able
to use the extra information provided by counterfactuals and model inspection in
a meaningful way. It could also mean that a ‘rule-of-thumb’ that appears useful
based only on prototypes (or prototypes + counterfactuals) actually works well
on a high percentage, say 80%, of test instances. However, after close model
inspection a user in group PT+CF+MI may discover that this rule is not precise
(as it fails on several instances) leaving the user to discard this rule-of-thumb, and
subsequently actually performing worse on the tests. A final possible explanation
for why group PT+CF+MI did not achieve higher accuracy is the fact that the
average time spent by users in total on all 3 datasets was about the same, around
15min: group PT 954 s, group PT+CF 934 s, group PT+CF+MI 966 s. However,
it seems natural that a user doing model inspection to learn a better rule should
have spent more time than one who cannot do model inspection, making us
question how careful the users in group PT+CF+MI were. On the other hand,
there is not a clear trend when we compare accuracy versus time spent for users
in this group.

Let us turn to comparing between the 3 datasets. Interestingly, all 3 survey
groups had the highest accuracy on Chinatown and the lowest accuracy on Car-
Charging. We asked some users about rules they had been using for their own
mental classification, and the most mentioned rule was for Chinatown, something
like the following: ‘if there is a sharp dip at the beginning of the series then it
is Blue, and otherwise Pink’. Compare this rule to Figs. 2, 3, 4 and 5 from the
Chinatown dataset. See also Figs. 7 and 6 which for ItalyPowerDemand gives all
prototypes and counterfactuals, plus an example of a test, to get an impression
of how difficult the classification indeed is for this dataset. For the test shown in
Fig. 6 the average accuracy was 59.3%. Note the users could not navigate back
to see the prototypes when answering the tests.
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Table 2. Overview of accuracy and number of tests by survey group and dataset.

Survey ID Data ItalyPowerDemand Chinatown CarCharging All 3 datasets

PT accuracy 65.9%± 10 79.4%± 13 65.3%± 14 70,2%± 14
tests 170 170 170 510

PT+CF accuracy 61.9%± 17 81.3%± 13 54.4%± 21 65.9%± 20

tests 160 160 160 480
PT+CF+MI accuracy 60.2%± 16 76.2%± 22 55.7%± 13 64.0%± 20

tests 240 210 230 680
All groups accuracy 62.7%± 15 79.0%± 17 58.4%± 17 66.7%± 19

tests 570 540 560 1670

6 Conclusion

As companies and controllers must cope with the EU regulations in form of
GDPR and the AI Act, explainability that allows model inspection by end-users
may very well become the target for developers. In domains where we humans
have poor intuition, such as time series, this may pose several challenges. In
this work we have contributed a tool for XAI on time series classification that
allows such model inspection. The evaluation results show that users can then
successfully perform a difficult forward simulation test. However, to attain the
full benefits from model inspection for such a complicated domain, it seems
necessary to have highly motivated users that are willing to spend more time with
such a tool, in order to form better mental models of the black-box classification.
As future work, we propose to explore the use of simplified versions of time series
prototypes generated by Machine Teaching techniques to explain time series
classification models.
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