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Preface

The 2024 edition of the European Conference on Machine Learning and Principles and
Practice ofKnowledgeDiscovery inDatabases (ECMLPKDD2024)was held inVilnius,
Lithuania, from September 9 to 13, 2024.

The annual ECML PKDD conference acts as a world-wide platform showcasing the
latest advancements in machine learning and knowledge discovery in databases. Held
jointly since 2001, ECMLPKDD has established itself as the leading EuropeanMachine
Learning and Data Mining conference. It offers researchers and practitioners an unpar-
alleled opportunity to exchange knowledge and ideas about the latest technical advance-
ments in these disciplines. Moreover, the conference appreciates the synergy between
foundational advances and groundbreaking data science and hence strongly welcomes
contributions about howMachine Learning and Data Mining is being employed to solve
real-world challenges.

The conference continues to evolve reflecting evolving technological developments
and societal needs. For example, in theResearchTrack this year there has been an increase
in submissions on generative AI, especially LLMs, and various aspects of responsible
AI.

We received 826 submissions for the Research Track and 224 for the Applied Data
Science Track. The Research track accepted 202 papers (out of 826, 24.5%) and the
Applied Data Science Track accepted 56 (out of 224, 24.5%). In addition, 31 papers
from the Journal Track (accepted out of 65 submissions) and 14 Demo Track papers
(accepted out of 30 submissions).

The papers presented over the three main conference days were organized into five
distinct tracks:

Research Track: This track featured research and methodology papers spanning all
branches within Machine Learning, Knowledge Discovery, and Data Mining.
Applied Data Science Track: Papers in this track focused on novel applications
of machine learning, data mining, and knowledge discovery to address real-world
challenges, aiming to bridge the gap between theory and practical implementation.
Journal Track: This track included papers that had been published in special issues of
the journals Machine Learning and Data Mining and Knowledge Discovery.
Demo Track: Short papers in this track introduced new prototypes or fully operational
systems that leveragedata science techniques, demonstrated throughworkingprototypes.
Nectar Track: Concise presentations of recent scientific advances published in related
conferences or journals. It aimed to disseminate important research findings to a broader
audience within the ECML PKDD community.

The conference featured five keynote talks on diverse topics, reflecting emerging
needs like benchmarking and resource-awareness, as well as theoretical understanding
and industrial needs.
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– Gintarė Karolina Džiugaitė (Google DeepMind): The Dynamics of Memorization and
Unlearning.

– Moritz Hardt (Max Planck Institute for Intelligent Systems): The Emerging Science
of Benchmarks.

– Mounia Lalmas-Roelleke (Spotify): Enhancing User Experience with AI-Powered
Search and Recommendations at Spotify.

– Patrick Lucey (Stats Perform): How to Utilize (and Generate) Player Tracking Data
in Sport.

– KatharinaMorik (TUDortmundUniversity):Resource-Aware Machine Learning — a
User-Oriented Approach.

The ECML PKDD 2024 Organizing Committee supported Diversity and Inclusion
by awarding some grants that enable early career researchers to attend the conference,
present their research activities, and become part of the ECML PKDD community. We
provided a total of 3 scholarships ofe1000 to individuals that come from the developing
countries and/or communitieswhich are underrepresented in science and technology.The
scholarships could be used for travel and accommodation. In addition 3 grants covering
all of the registration fees were awarded to individuals who belong to underrepresented
communities, based on gender and role/position, to attend the conference and present
their research activities. The Diversity and Inclusion action also included the Women
Networking event andDiversity and InclusionPanel discussion. TheWomenNetworking
event aimed to create a safe and inclusive space for networking and reflecting on the
experience of women in science. The event included a structured brainstorm/reflection
on the role and experience of women in science and technology, which will be published
in the conference newsletter. The Diversity and Inclusion Panel aimed to reach a wider
audience and encourage the discussion on the need for diversity in tech, and challenges
and solutions in achieving it.

We want to thank the authors, workshop and tutorial organizers, and participants
whose scientific contributions make this such an exciting event. Moreover, putting
together an outstanding conference program would also not be possible without the
dedication and (substantial) time investments of the area chairs, program committee,
and organizing committee. The event would not run smoothly without the many vol-
unteers and sessions chairs. Finally, we want to extend a special thanks to all the local
organizers – they dealt with all the little details that are needed to make the conference
a memorable event.

Wewant to extend our heartfelt gratitude to ourwonderful sponsors for their generous
financial support. We also want to thank Springer for their continuous support and
Microsoft for allowing us to use their CMT software for conference management and
providing help throughout. We very much appreciate the advice and guidance provided
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by the ECML PKDD Steering Committee over the past two years. Finally, we thank the
organizing institution, the Artificial Intelligence Association of Lithuania.

September 2024 Albert Bifet
Tomas Krilavičius

Eirini Ntoutsi
Indrė Žliobaitė

Jesse Davis
Meelis Kull

Ioanna Miliou
Slawomir Nowaczyk
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Dalia Breskuvienė Vilnius University, Lithuania
Daniele Apiletti Politecnico di Torino, Italy

Diversity and Inclusion Chair
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Krzysztof Rudaś Institute of Computer Science, Polish Academy of

Sciences, Poland
Allou Same Université Gustave Eiffel, France
Oswaldo Solarte-Pabon Universidad del Valle, Spain
Amal Saadallah TU Dortmund, Germany
Matthia Sabatelli University of Groningen, the Netherlands
Chafik Samir CNRS-UCA, France
Ramses Sanchez University of Bonn, Germany
Ioannis Sarridis Information Technologies Institute/Centre for

Research & Technology - Hellas, Greece
Milos Savic University of Novi Sad, Serbia
Nripsuta Saxena University of Southern California, USA
Alexander Schiendorfer Technische Hochschule Ingolstadt, Germany
Christian Schlauch Humboldt-Universität zu Berlin, Germany
Rainer Schlosser Hasso Plattner Institute, Germany
Johannes Schneider University of Liechtenstein, Liechtenstein
Rianne Schouten Technische Universiteit Eindhoven,

the Netherlands
Andreas Schwung Fachhochschule Südwestfalen, Germany
Patrick Schäfer Humboldt-Universität zu Berlin, Germany
Kristen Scott KU Leuven, Belgium
Marian Scuturici LIRIS, France
Raquel Sebastião ESTGV-IPV & IEETA-UA
Nina Seemann University of the Bundeswehr, Germany
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Raivydas Šimėnas Vilnius University, Lithuania
Kuldeep Singh Cerence GmbH, Germany
Andrzej Skowron University of Warsaw, Poland
Carlos Soares University of Porto, Portugal
Dennis Soemers Maastricht University, the Netherlands
Andy Song RMIT University, Australia
Liyan Song Harbin Institute of Technology, China
Zixing Song Chinese University of Hong Kong, China
Sucheta Soundarajan Syracuse University, USA
Fabian Spaeh Boston University, USA
Myra Spiliopoulou Otto-von-Guericke-University Magdeburg,

Germany
Dimitri Staufer TU Berlin, Germany
Kostas Stefanidis Tampere University, Finland
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The Dynamics of Memorization and Unlearning

Gintarė Karolina Džiugaitė

Google DeepMind

Abstract. Deep learning models exhibit a complex interplay between
memorization and generalization. This talk will begin by exploring the
ubiquitous nature ofmemorization, drawingonpriorworkon “data diets”,
example difficulty, pruning, and other empirical evidence. But is memo-
rization essential for generalization?Our recent theoretical work suggests
that eliminating it entirely may not be feasible. Instead, I will discuss
strategies to mitigate unwanted memorization by focusing on better data
curation and efficient unlearning mechanisms. Additionally, I will exam-
ine the potential of pruning techniques to selectively remove memorized
examples and explore their impact on factual recall versus in-context
learning.

Biography: Gintarė is a senior research scientist at Google DeepMind, based in Toronto,
an adjunct professor in the McGill University School of Computer Science, and an
associate industry member of Mila, the Quebec AI Institute. Prior to joining Google,
Gintarė led the Trustworthy AI program at Element AI/ServiceNow, and obtained her
Ph.D. in machine learning from the University of Cambridge, under the supervision of
Zoubin Ghahramani. Gintarė was recognized as a Rising Star in Machine Learning by
the University of Maryland program in 2019. Her research combines theoretical and
empirical approaches to understanding deep learning, with a focus on generalization,
memorization, unlearning, and network compression.



The Emerging Science of Benchmarks

Moritz Hardt

Max Planck Institute for Intelligent Systems

Abstract. Benchmarks have played a central role in the progress of
machine learning research since the 1980s. Although there’s much
researchers have done with them, we still know little about how and why
benchmarks work. In this talk, I will trace the rudiments of an emerging
science of benchmarks through selected empirical and theoretical obser-
vations. Looking back at the ImageNet era, I’ll discuss what we learned
about the validity of model rankings and the role of label errors. Looking
ahead, I’ll talk about new challenges to benchmarking and evaluation in
the era of large language models. The results we’ll encounter challenge
conventional wisdom and underscore the benefits of developing a science
of benchmarks.

Biography: Hardt is a director at the Max Planck Institute for Intelligent Systems,
Tübingen. Previously, he was Associate Professor for Electrical Engineering and Com-
puter Sciences at the University of California, Berkeley. His research contributes to
the scientific foundations of machine learning and algorithmic decision making with a
focus on social questions. He co-authored Fairness and Machine Learning: Limitations
and Opportunities (MIT Press) and Patterns, Predictions, and Actions: Foundations of
Machine Learning (Princeton University Press).



Enhancing User Experience with AI-Powered Search
and Recommendations at Spotify

Mounia Lalmas-Roelleke

Spotify

Abstract. This talk will explore the pivotal role of search and recom-
mendation systems in enhancing the Spotify user experience. These sys-
tems serve as the gateway to Spotify’s vast audio catalog, helping users
navigate millions of music tracks, podcasts, and audiobooks. Effective
search functionality allows users to quickly find specific content, whether
it is a favorite song, a trending podcast, or an informative audiobook,
while also satisfying broader search needs. Meanwhile, recommenda-
tion systems suggest new and relevant content that users might not have
thought to search for, while ensuring their current needs for familiar con-
tent are met. This encourages exploration and discovery of new artists,
genres, and shows, enriching the overall listening experience and keeping
users engaged with the platform. Achieving this dual objective of preci-
sion and discovery requires sophisticated technology. It involves a deep
understanding of representation learning, where both content and user
preferences are accurately modeled. Advanced AI techniques, including
machine learning and generative AI, play a crucial role in this process.
These technologies enable the creation of highly personalized recom-
mendations by understanding complex user behaviors and preferences.
Generative AI, for instance, allows us to create personalized playlists,
thereby enhancing the user experience with innovative features. This pre-
sentation is based on the collective research and publications of numerous
contributors at Spotify.

Biography: Mounia is a Senior Director of Research at Spotify and the Head of Tech
Research in Personalization, where she leads an interdisciplinary team of research sci-
entists. She also holds an honorary professorship at University College London and
serves as a Distinguished Research Fellow at the University of Amsterdam. Previously,
Mounia was a Director of Research at Yahoo, overseeing a team focused on adver-
tising quality and collaborating on user engagement projects related to news, search,
and user-generated content. Before her tenure at Yahoo, Mounia held a Microsoft
Research/RAEng Research Chair at the School of Computing Science, University of
Glasgow, and before that was a Professor of Information Retrieval at the Department
of Computer Science at Queen Mary, University of London. She is a prominent figure
in the research community, regularly serving as a senior program committee member at
major conferences such as WSDM, KDD, WWW, and SIGIR. She was also a program
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co-chair for SIGIR 2015,WWW2018,WSDM2020, andCIKM2023.Mounia is widely
recognized for her contributions as a speaker and author, with over 250 published papers
and appearances on platforms like ACM ByteCast and the AI Business Podcasts series.
She was nominated for the VentureBeat Women in AI Awards for Research in both 2022
and 2023.



How to Utilize (and Generate) Player Tracking Data
in Sport

Patrick Lucey

Stats Perform

Abstract. Even though player tracking data in sports has been around
for 25 years, it still poses as one of the most interesting and challeng-
ing datasets in machine learning due to its fine-grained, multi-agent,
team-based, and adversarial nature. Despite these challenges, it is also
extremely valuable as it is (relatively) low-dimensional, interpretable,
and interactive, allowing us to measure performance and answer ques-
tions we couldn’t objectively address before. In this talk, I will first give
a brief history of tracking data in sports, then highlight the challenges
associated with utilizing it. I will then show that by obtaining a permuta-
tion invariant representation, we can not only measure aspects of sports
that couldn’t be done before, but also interact with and simulate plays
akin to a video game via our “visual search” and “ghosting” technol-
ogy. Finally, I will show how we can use both tracking and event data
to create a multimodal foundation model, which enables us to generate
player tracking data at scale and achieve our goal of “digitizing every
game of professional sport.” Throughout the talk, I will utilize examples
from top-tier basketball, soccer, and tennis.

Biography: Patrick Lucey is currently the Chief Scientist at sports data giant Stats Per-
form, leading the AI team with the goal of maximizing the value of the company’s
extensive sports data. He has studied and worked in the fields of machine learning and
computer vision for the past 20 years, holding research positions at Disney Research and
the Robotics Institute at Carnegie Mellon University, as well as spending time at IBM’s
T.J. Watson Research Center while pursuing his Ph.D. Patrick originally hails fromAus-
tralia, where he received his BEng(EE) from the University of Southern Queensland and
his doctorate from Queensland University of Technology, which focused on multimodal
speech modeling. He has authored more than 100 peer-reviewed papers and has been
a co-author on papers in the MIT Sloan Sports Analytics Conference Best Research
Paper Track for 11 of the last 13 years, winning best paper in 2016 and runner-up in
2017 and 2018. Additionally, he has won best paper awards at INTERSPEECH and
WACV international conferences. His main research interests are in artificial intelli-
gence and interactive machine learning in sporting domains, as well as AI education.
He has recently piloted a course on “AI in Sport,” which aims to give students intuition
behind AI methods using the interactive and visual nature of sports data.

Website: www.patricklucey.com

https://patricklucey.com/index.html


Resource-Aware Machine Learning—A User-Oriented
Approach

Katharina Morik

TU Dortmund University

Abstract. Machine Learning (ML) has become integrated into several
processes, ranging from medicine, manufacturing, logistics, smart cities,
sales, recommendations and advertisements to entertainment and many
more business and private processes. The applications together consume
a considerable amount of energy and emit CO2.ML research investigates
how tomakemodels smaller and faster through pruning and quantization.
Also the use of more energy-efficient hardware is an encouraging field.
Research on ML under resource constraints is an active field propos-
ing novel algorithms and scenarios. The aim is that for each application
a variety of implementations is offered from which customers and the
different types of users may choose the most thrifty one. This, in turn,
would push tech providers to focus on the production of economical
systems. However, if the customers, users, stakeholders do not know
which of the models offers the best tradeoff between performance and
energy-efficiency, they cannot select the most frugal one. Hence, testing
implementations of learning and inference needs to be developed. They
should be easy to use, produce visualizations that are mass-tailored for
specific user groups. Automatized testing is difficult due to the diversity
of models, computing architectures, training and evaluation data, and the
fast rate of changes. The talk will illustrate work on resource-aware ML
and advocate to paymore attention to the role of users in the development
of scenarios, models, and tests.

Biography: Katharina Morik received her doctorate from the University of Hamburg in
1981 and her habilitation from the TU Berlin in 1988. In 1991, she established the chair
of Artificial Intelligence at the TU Dortmund. She retired in 2023. She is a pioneer of
bringing machine learning and computing architectures together so that machine learn-
ing models may be executed or even trained on resource restricted devices. In 2011,
she acquired the Collaborative Research Center CRC 876 “Providing Information by
Resource-Constrained Data Analysis” consisting of 12 projects and a graduate school.
After the longest possible funding period of 12 years, the CRC ended with the publi-
cation of 3 books on Resource-Constrained Machine Learning (De Gruyter). She has
participated in numerous European research projects and has been the coordinator of
one. Shewas a foundingmember and ProgramChair of the conference series IEEE Inter-
national Conference on DataMining (ICDM) and is a member of the steering committee
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of ECML PKDD. She is a co-founder of the Lamarr Institute for Machine Learning and
Artificial Intelligence. Prof. Morik is a member of the Academy of Technical Sciences
and of the North Rhine-Westphalian Academy of Sciences and Arts. She was made a
Fellow of the German Society of Computer Science GI e.V. in 2019.



Contents – Part I

Research Track

Adaptive Sparsity Level During Training for Efficient Time Series
Forecasting with Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Zahra Atashgahi, Mykola Pechenizkiy, Raymond Veldhuis,
and Decebal Constantin Mocanu

RumorMixer: Exploring Echo Chamber Effect and Platform Heterogeneity
for Rumor Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Haowei Xu, Chao Gao, Xianghua Li, and Zhen Wang

Diversified Ensemble of Independent Sub-networks for Robust
Self-supervised Representation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Amihossein Vahidi, Lisa Wimmer, Hüseyin Anil Gündüz, Bernd Bischl,
Eyke Hüllermeier, and Mina Rezaei

Modular Debiasing of Latent User Representations in Prototype-Based
Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Alessandro B. Melchiorre, Shahed Masoudian, Deepak Kumar,
and Markus Schedl

A Mathematics Framework of Artificial Shifted Population Risk and Its
Further Understanding Related to Consistency Regularization . . . . . . . . . . . . . . . . 73

Xiliang Yang, Shenyang Deng, Shicong Liu, Yuanchi Suo,
NG Wing.W.Y, and Jianjun Zhang

Attention-Driven Dropout: A Simple Method to Improve Self-supervised
Contrastive Sentence Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Fabian Stermann, Ilias Chalkidis, Amihossein Vahidi, Bernd Bischl,
and Mina Rezaei

AEMLO: AutoEncoder-Guided Multi-label Oversampling . . . . . . . . . . . . . . . . . . . 107
Ao Zhou, Bin Liu, Jin Wang, Kaiwei Sun, and Kelin Liu

MANTRA: Temporal Betweenness Centrality Approximation Through
Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Antonio Cruciani



lvi Contents – Part I

Dimensionality-Induced Information Loss of Outliers in Deep Neural
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Kazuki Uematsu, Kosuke Haruki, Taiji Suzuki, Mitsuhiro Kimura,
Takahiro Takimoto, and Hideyuki Nakagawa

Towards Open-World Cross-Domain Sequential Recommendation:
A Model-Agnostic Contrastive Denoising Approach . . . . . . . . . . . . . . . . . . . . . . . . 161

Wujiang Xu, Xuying Ning, Wenfang Lin, Mingming Ha, Qiongxu Ma,
Qianqiao Liang, Xuewen Tao, Linxun Chen, Bing Han, and Minnan Luo

MixerFlow: MLP-Mixer Meets Normalising Flows . . . . . . . . . . . . . . . . . . . . . . . . . 180
Eshant English, Matthias Kirchler, and Christoph Lippert

Handling Delayed Feedback in Distributed Online Optimization:
A Projection-Free Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Tuan-Anh Nguyen, Nguyen Kim Thang, and Denis Trystram

Secure Dataset Condensation for Privacy-Preserving and Efficient Vertical
Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Dashan Gao, Canhui Wu, Xiaojin Zhang, Xin Yao, and Qiang Yang

Neighborhood Component Feature Selection for Multiple Instance
Learning Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Giacomo Turri and Luca Romeo

MESS: Coarse-Grained Modular Two-Way Dialogue Entity Linking
Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Pengnian Qi, Zhiyuan Zha, and Biao Qin

Session Target Pair: User Intent Perceiving Networks for Session-Based
Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Tingting Dai, Qiao Liu, Yang Xie, Yue Zeng, Rui Hou, and Yanglei Gan

Hierarchical Fine-Grained Visual Classification Leveraging Consistent
Hierarchical Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Yuting Liu, Liu Yang, and Yu Wang

Backdoor Attacks with Input-Unique Triggers in NLP . . . . . . . . . . . . . . . . . . . . . . 296
Xukun Zhou, Jiwei Li, Tianwei Zhang, Lingjuan Lyu, Muqiao Yang,
and Jun He

Label Privacy Source Coding in Vertical Federated Learning . . . . . . . . . . . . . . . . . 313
Dashan Gao, Sheng Wan, Hanlin Gu, Lixin Fan, Xin Yao, and Qiang Yang



Contents – Part I lvii

Error Types in Transformer-Based Paraphrasing Models: A Taxonomy,
Paraphrase Annotation Model and Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Auday Berro, Boualem Benatallah, Yacine Gaci, and Khalid Benabdeslem

FedHCDR: Federated Cross-Domain Recommendation with Hypergraph
Signal Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

Hongyu Zhang, Dongyi Zheng, Lin Zhong, Xu Yang, Jiyuan Feng,
Yunqing Feng, and Qing Liao

Data-Agnostic Pivotal Instances Selection for Decision-Making Models . . . . . . . 367
Alessio Cascione, Mattia Setzu, and Riccardo Guidotti

Disentangled Counterfactual Graph Augmentation Framework for Fair
Graph Learning with Information Bottleneck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

Lijing Zheng, Jihong Wang, Huan Liu, and Minnan Luo

A New Framework for Evaluating the Validity and the Performance
of Binary Decisions on Manifold-Valued Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Anis Fradi and Chafik Samir

The Future is Different: Predicting Reddits Popularity with Variational
Dynamic Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

Kostadin Cvejoski, Ramsés J. Sánchez, and César Ojeda

CircuitVQA: A Visual Question Answering Dataset for Electrical Circuit
Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

Rahul Mehta, Bhavyajeet Singh, Vasudeva Varma, and Manish Gupta

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461



Research Track



Adaptive Sparsity Level During Training
for Efficient Time Series Forecasting

with Transformers

Zahra Atashgahi1(B), Mykola Pechenizkiy2, Raymond Veldhuis1,
and Decebal Constantin Mocanu2,3

1 Faculty of Electrical Engineering, Mathematics and Computer Science, University
of Twente,Enschede, Netherlands

{z.atashgahi,r.n.j.veldhuis}@utwente.nl
2 Department of Mathematics and Computer Science, Eindhoven University of

Technology, Eindhoven, Netherlands
m.pechenizkiy@tue.nl, decebal.mocanu@uni.lu

3 Department of Computer Science, University of Luxembourg,
Esch-sur-Alzette, Luxembourg

Abstract. Efficient time series forecasting has become critical for real-
world applications, particularly with deep neural networks (DNNs). Effi-
ciency in DNNs can be achieved through sparse connectivity and reduc-
ing the model size. However, finding the sparsity level automatically
during training remains challenging due to the heterogeneity in the loss-
sparsity tradeoffs across the datasets. In this paper, we propose “Pruning
with Adaptive Sparsity Level” (PALS), to automatically seek a decent
balance between loss and sparsity, all without the need for a predefined
sparsity level. PALS draws inspiration from sparse training and during-
training methods. It introduces the novel “expand” mechanism in train-
ing sparse neural networks, allowing the model to dynamically shrink,
expand, or remain stable to find a proper sparsity level. In this paper,
we focus on achieving efficiency in transformers known for their excellent
time series forecasting performance but high computational cost. Nev-
ertheless, PALS can be applied directly to any DNN. To this aim, we
demonstrate its effectiveness also on the DLinear model. Experimental
results on six benchmark datasets and five state-of-the-art (SOTA) trans-
former variants show that PALS substantially reduces model size while
maintaining comparable performance to the dense model. More interest-
ingly, PALS even outperforms the dense model, in 12 and 14 cases out
of 30 cases in terms of MSE and MAE loss, respectively, while reduc-
ing 65% parameter count and 63% FLOPs on average. Our code and
supplementary material are available on Github (https://github.com/
zahraatashgahi/PALS).

1 Introduction

The capabilities of transformers [51] for learning long-range dependencies [8,48,
54] make them an ideal model for time series processing [53]. Several transformer
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14941, pp. 3–20, 2024.
https://doi.org/10.1007/978-3-031-70341-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70341-6_1&domain=pdf
https://github.com/zahraatashgahi/PALS
https://github.com/zahraatashgahi/PALS
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variants have been proposed for the task of time series forecasting, which is
crucial for real-world applications, e.g., weather forecasting, energy management,
and financial analysis, and have proven to significantly increase the prediction
capacity in long time series forecasting (LTSF) [34]. In addition, attention-based
models are inherently an approach for increasing the interpretability for time
series analysis in critical applications [27]. Moreover, recent transformer time
series forecasting models (e.g., [34,57,64]) perform generally well in other time
series analysis tasks, including, classification, anomaly detection, and imputation
[56].

Despite the outstanding performance of transformers, these models are com-
putationally expensive due to their large model sizes as shown in [47] for natural
language processing. With the ever-increasing collection of large time series and
the need to forecast millions of them, the requirement to develop computa-
tionally efficient forecasting models is becoming significantly critical [17,44,49].
For industry-scale time series data, which are often high-dimensional and long-
length, deploying transformers requires automatically discovering memory- and
computationally-efficient architectures that are scalable and practical for real-
world applications [53]. While there have been some efforts to reduce the com-
putational complexity of transformers in time series forecasting [63,64], these
models have in order of millions of parameters, that can be too large for resource-
limited applications, e.g., mobile phones. The over-parameterization of these
networks causes high training and inference costs, and their deployment in low-
resource environments (e.g., lack of GPUs) would be infeasible. To address these
issues, we raise the research question: How can we reduce the computational
and memory overheads of training and deploying transformers for time series
forecasting without compromising the model performance?

Seeking sparsity through sparse connectivity is a widely-used technique to
address the over-parameterization of deep learning models [16]. Early approaches
for deriving a sparse sub-network prune a trained dense model [15], known as
post-training pruning. While these methods can match the performance of the
dense network as shown by the Lottery Ticket Hypothesis (LTH) [11], they are
computationally expensive during training due to the training of the dense net-
work. During-training pruning aims to maintain training efficiency by gradually
pruning a dense network during training [28]. Sparse training [40] pushed the
limits further by starting with a sparse network from scratch and optimizing
the topology during training. However, as we study in Sect. 3, the main chal-
lenge when using any of these techniques for time series forecasting is to find the
proper sparsity level automatically.

In this paper, we aim to move beyond optimizing a single objective (e.g.
minimizing loss) and investigate sparsity in DNNs for time series prediction in
order to find a good trade-off between computational efficiency and performance
automatically. Our contributions are: (1) We analyze the effect of sparsity (using
unstructured pruning) in SOTA transformers for time series prediction [34,57,
63,64], and vanilla transformer [51]. We show they can be pruned up to 80% of
their connections in most cases, without significant loss in performance. (2) We
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Fig. 1. Schematic overview of the proposed method, PALS (Algorithm 1), Dynamic
Sparse Training (DST) [9,40], During-training pruning (Gradual Magnitude Pruning
(GMP) [65], and GraNet [28]). While DST and during-training pruning use a fixed
sparsity schedule to achieve a pre-determined sparsity level at the end of the training,
PALS updates the sparse connectivity of the network at each Δt iterations during
training, by deciding whether to “Shrink” (decrease density) or “Expand” (increase
density) the network or remain “Stable” (same density), to automatically find a proper
sparsity level.

propose an algorithm, called “Pruning with Adaptive Sparsity Level (PALS)
that finds a decent loss-sparsity trade-off by dynamically tuning the sparsity
level during training using the loss heuristics and deciding at each connectivity
update step weather to Shrink or Expand the network, or keep it Stable. PALS
(Fig. 1) creates a bridge between during-training pruning and dynamic sparse
training research areas by inheriting and enhancing some of their most successful
mechanisms, while - up to our best knowledge - introducing for the first time
into play also the Expand mechanism. Consequently, PALS does not require a
desired pre-defined sparsity level which is necessary for most pruning or sparse
training algorithms. (3) We evaluate the performance of PALS in terms of the
loss, the parameter count, and FLOPs on six widely-used benchmarks for time
series prediction and show that PALS can substantially sparsify the models and
reduce parameter count and FLOPs. Surprisingly, PALS can even outperform
the dense model on average, in 12 and 14 cases out of 30 cases in terms of
Mean Squared Error (MSE) and Mean Absolute Error (MAE) loss, respectively
(Table 2).

2 Background

2.1 Sparse Neural Networks

Sparse neural networks (SNNs) use sparse connectivity among layers to reduce
the computational complexity of DNNs while maintaining a close performance
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to the dense counterpart in terms of prediction accuracy. SNNs can be achieved
using dense-to-sparse or sparse-to-sparse approaches [39].

Dense-to-sparse methods prune a dense network; based on the pruning phase,
they are categorized into three classes: post-training [11,15], Before-training [23],
and during-training [28,35,65] pruning. Post-training pruning suffers from high
computational costs during training and before-training approaches usually fall
behind the performance of the dense counter-part network. In contrast, during-
training approaches, maintain close or even better performance to the dense
network while being efficient through the training process. A standard during-
training pruning is Gradual Magnitude Pruning (GMP) [65] which gradually
drops unimportant weights based on the magnitude during the training process.
GraNet [28] is another during-training algorithm that gradually shrinks (decreas-
ing density) a network to reach a pre-determined sparsity level. It prunes the
weights (as performed in GMP) while allowing for connection regeneration (as
seen in Dynamic Sparse Training (DST) which will be explained in the follow-
ing). As the number of grown weights is less than the pruned ones, the network
is shrunk and the density is decreased. For details regarding GraNet, refer to
Appendix B.

Sparse-to-sparse methods start with a random sparse network from scratch and
the number of parameters is usually fixed during training and can be determined
based on the available computational budget. The sparse topology can remain
fixed (static) [38] or dynamically optimized during training (a.k.a Dynamic
Sparse Training (DST)) [9,18,29,32,40,59]. At each topology update iteration,
a fraction of unimportant weights are dropped (usually based on magnitude),
and the same number of weights are grown. The growth criteria can be random,
as in Sparse Evolutionary Training (SET) [40], or gradient, as in Rigged Lottery
(RigL) [9].

Table 1. Comparison of related work.

Method Shrink Stable Expand Adaptive
Sparsity
Schedule

Automatic
tune of
sparsity
level

RigL ✗ ✓ ✗ ✗ ✗

GMP ✓ ✗ ✗ ✗ ✗

GraNet ✓ ✓ ✗ ✗ ✗

PALS
(ours)

✓ ✓ ✓ ✓ ✓

In this work, we take advan-
tage of the successful mecha-
nism of “Shrink ” from during-
training pruning (e.g., GraNet
[28]) and “Stable” from DST
(e.g., RigL [9]) and propose
for the first time the “Expand ”
mechanism, to design a method
to automatically optimize the
sparsity level during training
without requiring to determine
it beforehand. Each of these mechanisms is explained in Sect. 4. In Table 1, we
present a summarized comparison with the closest related work in the literature.
Figure 1 presents a comprehensive embedding of our proposed method in the lit-
erature. Unlike these methods, which update the network using fixed schedules
to reach a pre-determined sparsity level, PALS proposes an adaptive approach.
It automatically determines whether to shrink or expand the network or remain
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stable, in order to tune the sparsity level and find a good trade-off between loss
and sparsity.

Only a few works investigated SNNs for time series analysis [46]. [58] inves-
tigates sparsity in convolutional neural networks (CNNs) for the time series
classification and shows their proposed method has superior prediction accuracy
while reducing computational costs. [20] exploit sparse recurrent neural networks
(RNNs) for outlier detection. [30] and [12] explore sparsity in RNNs for sequence
learning.

Sparsity in Transformers. Several works have sought sparsity in transformers
[13,42]. These approaches can be categorized into structured (blocked) [37] or
unstructured (fine-grained) pruning [5]. As discussed in [16], structured sparsity
for transformers is able to only discover models with very low sparsity levels;
therefore, we focus on unstructured pruning. [26] analyses pruning transformers
for language modeling tasks and shows that large transformers are robust to
compression. [4] dynamically extract and train sparse sub-networks from Vision
Transformers (ViT) [8] while maintaining a fixed small parameter budget, and
they could even improve the accuracy of the ViT in some cases. [7] investigates
DST for BERT language modeling tasks and shows Pareto improvement over the
dense model in terms of FLOPs. However, these works mostly focus on vision
and NLP tasks. To the best of our knowledge, no work has investigated sparse
connectivity in transformers for time series analysis that faces domain-specific
challenges as we will elaborate in Sect. 3. Please note that there is a line of
research focusing on sparse attention [50] aiming to develop an efficient self-
attention mechanism that is orthogonal to our focus in this work (sparsity and
pruning) [16].

2.2 Time Series Forecasting

Initial studies for time series forecasting exploit classical tools such as ARIMA
[2]. While traditional methods mostly rely on domain expertise or assume tem-
poral dependencies follow specific patterns, machine learning techniques learn
the temporal dependencies in a data-driven manner [25,27,52]. In recent years,
various deep learning models, including RNNs [43,45], multi-layer perceptrons
(MLP) [60,61], CNNs [22], and Temporal convolution networks [10] are utilized
to perform time series forecasting [3,19,41].

Transformers have been extensively used to perform time series forecasting
due to their strong ability for sequence modeling. A class of models aims at
improving the self-attention mechanism and addresses the computational com-
plexity of vanilla transformers such as LogTrans [24], Informer [63], Reformer
[21]. Another category of methods seeks to modify the model to capture the
inherent properties of the time series: Autoformer [57] introduces a seasonal
trend decomposition with an auto-correlation block as the attention module.
NSTransformer [34] proposes to add two modules including series stationariza-
tion and de-stationary attention in the transformer architecture. FEDformer [64]
proposes to combine transformers with a seasonal-trend decomposition method
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to capture global and detailed behaviour of the time series. The research into
designing transformers for time series forecasting is ongoing, and many other
transformer variants have been proposed, such as Crossformer [62], ETSformer
[55], Pyraformer [33].

2.3 Problem Formulation and Notations

Let xt ∈ R
m denote the observation of a multivariate time series X with m

variables at time step t. Given a look-back window Xt−L:t = [xt−L, ...,xt−1] of
size L, time series forecasting task aims to predict time series over a horizon H
as ˜Xt:t+H = [x̃t, ..., x̃t+H−1] where x̃t is the prediction at time step t. To achieve
this, we need to train a function f(Xt−L:t, θ) (e.g. a transformer network) that
can predict future values over horizon H.

In this paper, we aim to reduce the model size by pruning the unimpor-
tant parameters from θ such that we find the sparse model f(Xt−L:t, θs) where
||θs||0 � ||θ||0. D = ||θs||0

||θ||0 is called the density level of the model f and S = 1−D

is called as the sparsity level. The aim is to minimize the reconstruction loss
between the prediction L(f(Xt−L:t, θs),Xt:t+H) while finding a proper sparsity
level S automatically. We use Mean Squared Error (MSE) as the loss function
such that:

L(˜Xt:t+H ,Xt:t+H) =
1
H

ΣH−1
i=0 (x̃t+i − xt+i)2. (1)

3 Analyzing Sparsity Effect in Transformers for Time
Series Forecasting

In this section, we explore sparsity in several time series forecasting transform-
ers. In short, we apply GraNet [28] to prune each model and measure their
performance over various sparsity levels.

Experimental Settings. We perform this experiment on six benchmark datasets,
presented in Table 4. We adapt GraNet [28], a during-training pruning algorithm
developed for CNNs, to sparsify transformer models for time series forecast-
ing. GraNet gradually shrinks a network (here, we start from a dense network)
during the training to reach a pre-determined sparsity level, while allowing for
connection regeneration inspired by DST. GraNet is described in Appendix B.
For more details regarding the experimental settings, please refer to Sect. 5.1.
For each sparsity level (%) in {25, 50, 65, 80, 90, 95}, we measure the prediction
performance of each transformer model in terms of MSE loss. The results for
prediction length = 96 (except 24 for the Illness dataset) are presented in Fig. 2.
The results for other prediction lengths are presented in Fig. 3 in Appendix B.

Sparsity Effect. We present the results for pruning various transformers in Fig. 2;
most models can be pruned up to 80% or higher sparsity levels without signif-
icantly affecting performance. Moreover, a counter-intuitive observation is that
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Fig. 2. Sparsity effect on the performance of various transformer models for time series
forecasting on benchmark datasets in terms of MSE loss (prediction length = 96, except
24 for the Illness dataset). Each model is sparsified using GraNet [28] to sparsity levels
(%) ∈ {25, 50, 65, 80, 90, 95} and PALS. Sparsity = 0 indicates the original dense
model.

in some cases, sparsity does not necessarily lead to worse performance than the
dense counterpart, and it can even improve the performance. For example, while
on the Electricity, Illness, and Traffic datasets, the behavior is as usually expected
(higher sparsity leads to lower performance), on the three other datasets, higher
sparsity might even lead to better performance (lower loss) than the dense model.
In addition, the sparsity effect is different among various models, particularly
on the latter group of datasets, including the ETTm2, Exchange, and Weather
datasets. We discuss the potential reasons for different behavior among datasets
in Appendix H. Last but not least, by looking at Fig. 3 in Appendix B, the
prediction length can also be a contributing factor to the sparsity-loss trade-off.

Challenge. Based on the above observations, we can conclude that the spar-
sity effect is not homogeneous across various time series datasets, forecasting
models, and prediction lengths for time series forecasting. Our findings in these
experiments are not aligned with the statements in [16] for CNNs (vision) and
Transformers (NLP), where for a given task and technique, increasing the spar-
sity level results in decreasing the prediction performance. However, we observe
in Figs. 2 and 3 that increasing the sparsity level does not necessarily lead to
decreased performance and it might even significantly improve the performance
(e.g. for the vanilla transformer on the Weather dataset). Therefore, it is chal-
lenging to decide how much we can push the sparsity level and what is the decent
sparsity level without having prior knowledge of the data, model, and experi-
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Algorithm 1. PALS
1: Input: Time series X ∈ R

T×m, number of training iterations tmax, Sequence length
L, Prediction length H, model dimension dmodel, pruning rate ζ, mask update
frequency Δt, Initial density Dinit, pruning rate factor γ > 1 and loss freedom
factor λ > 1, sparsity bound Smin and Smax.

2: Initialization: Initialize the transformer model with density level Dinit, S = 1 −
Dinit, Lbest = inf.

3: Training:
4: for t ∈ {1, . . . ,#tmax} do
5: I. Standard feed-forward and back-propagation. The network is trained

on batcht of samples.
6: II. Update sparsity mask
7: if (t mod Δt) = 0 then
8: Compute Validation Loss Lt

valid

9: if (S < Smin) or (Lt
valid <= λ ∗ Lbest and S < Smax) then

10: update_mask ( ζprune = γ ∗ ζ, ζgrow = ζ)
11: else if Lt

valid > λ ∗ Lbest and S > Sbest then
12: update_mask ( ζprune = ζ, ζgrow = γ ∗ ζ)
13: else
14: update_mask ( ζprune = ζ, ζgrow = ζ)
15: end if
16: if Lt

valid < Lbest then
17: Lbest = Lt

valid, Sbest = S
18: end if
19: Set S to the sparsity level of the network.
20: end if
21: end for

mental settings. While GraNet is the closest in spirit to our proposed method,
it cannot automatically tune the sparsity level since it needs the initial and the
final sparsity level as its hyperparameters. In this paper, we aim to address this
challenge by proposing an algorithm that can automatically tune the sparsity
level during training.

4 Proposed Methodology: PALS

This section presents our proposed method for automatically finding a proper
sparsity level of a DNN, called “Pruning with Adaptive Sparsity Level (PALS)
(Algorithm 1). While our main focus in this paper is to sparsify transformer
models, PALS is not specifically designed for transformers and can be applied
directly to other artificial neural network architectures (See Appendix F for
experiments on training with PALS the DLinear [60]) model.

Motivation and Broad Outline. As we discussed in Sect. 3, the main challenge
when seeking sparsity for time series forecasting is to find a good sparsity level
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automatically. Therefore, PALS aims to tune the sparsity level during training
without requiring prior information about models or datasets. PALS is in essence
inspired by the DST framework [40] and gradual magnitude pruning (GMP)
[28,65]. While DST and GMP use fixed sparsification policies (fixed sparsity
level (Stable in Fig. 1) and constantly prune the network until the desired sparsity
level is reached (Shrink in Fig. 1), respectively) and require the final sparsity level
before training, PALS exploits heuristic information from the network at each
iteration to automatically determine whether to increase, decrease, or keep the
sparsity level at each connectivity update step. While existing growing methods
[14,36] grow a network or a layer of it to dense connectivity, to the best of our
knowledge, this is the first work that allows the network to expand by increasing
the density during training without requiring dense connectivity, and allows for
automatic shrink or expand. If the training starts from a dense neural network
(Dinit = 1) PALS can be seen as a dense-to-sparse method, while if Dinit < 1
then PALS is a sparse-to-sparse method.

Training. The training of PALS (Algorithm 1) starts with initializing a network
with density level Dinit = 1 − Sinit. Then, the training procedure of PALS
consists of two steps:

1. Standard feed-forward and back-propagation. Network’s parame-
ters are updated each training iteration t using a batch of samples.

2. Update Sparse Connectivity. The novelty of the method lies in updat-
ing the sparse connectivity. At every Δt iteration, the connectivity is updated
in two steps. (2-1) The validation loss at step t is calculated as Lt

valid. (2-2) The
sparsity mask is updated (update_mask in Algorithm 1) by first pruning ζprune

of weights with the lowest magnitude:

˜Wl = Update(Wl, top(|Wl|, 1 − ζprune)), (2)

where Wl is the lth weight matrix of the network, Update(A, idx) keeps only
the indices idx of the matrix A, top(A, ζ) returns the indices of a fraction ζ of
the largest elements of A. Then, we grow ζgrow of the weights with the highest
gradients:

Wl = ˜Wl + top(|G
l,i/∈˜W l

|, ζgrow) (3)

where G
l,i/∈˜W l

is the gradient of zero weights in layer l. These new connections
are initialized with zero values. This process is repeated for each layer in the
model. Based on the values of ζprune and ζgrow, PALS determines whether to
decrease (shrink), increase (expand), or keep (stable) the network:

St > St−1 (Shrink). If the loss does not go beyond λ ∗ Lbest, we decrease the
overall number of parameters such that ζprune = γ ∗ ζ, ζgrow = ζ. The loss
freedom coefficient, λ > 1, is a hyperparameter of the network that determines
how much the loss value can deviate from the best validation loss achieved
so far Lbest during training. The lower λ is, the more strict PALS becomes
at allowing the network to go to the shrink phase, finally resulting in a lower
sparsity network. γ > 1 is the pruning factor coefficient, which determines how
much to prune or grow more in the shrink and expand phases, respectively. We
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analyze the sensitivity of PALS to λ and γ in Sect. 6.2. In addition, we define a
boundary for sparsity determined by Smin and Smax which can be determined
by the user based on the available resources. If the sparsity level does not meet
the minimum sparsity level Smin, we prune the network more than we grow. If
the network sparsity goes beyond Smax, we do not increase sparsity.

St < St−1 (Expand). If S > Sbest (Sbest is the sparsity level corresponding to
Lbest) and the loss goes higher than λ ∗ Lbest, it means that the earlier pruning
step(s) were not beneficial to decreasing the loss (improving forecasting quality
in the time series forecasting) and the network requires a higher capacity to
recover a good performance. Therefore, we expand the network and grow more
connections than the pruned ones at this step: ζprune = ζ, ζgrow = γ ∗ ζ.

St = St−1 (Stable). If none of the above cases happened, we only update
a fraction ζ of the network’s parameters without changing the sparsity level:
ζprune = ζ, ζgrow = ζ.

For a better understanding of how the sparsity level evolves during the train-
ing process of PALS, please refer to Appendix G.4.

5 Experiments and Results

5.1 Experimental Settings

Datasets. The experiments are performed on six widely-used benchmark datasets
for time series forecasting. The datasets are summarized in Table 4 and described
in Appendix A. These datasets have different characteristics including station-
ary and non-stationary with/without obvious periodicity. Each database in each
experiment is divided into three sets: train, validation, and test set. The data
from the test set is only used for the final evaluation of all methods. The valida-
tion data is used to choose the best model during training and early stopping for
all models including dense and sparse. Therefore, all methods use the loss signal
from validation data to tune their model and select the model with the lowest
validation loss, and they have all seen an equal amount of data during training.

Models. We consider five SOTA transformer models for time series forecast-
ing, including Non-Stationary Transformer (NSTransformer) [34], FEDformer
[64], Autoformer [57], Informer [63], and vanilla transformer [51]. Please refer to
Sect. 2.2 for more details.

Evaluation Metrics. We evaluate the methods in two aspects: 1) Quality of the
prediction in terms of MSE and MAE, and 2) Computational complexity in
terms of parameter count and FLOPs (Floating-point operations). We report
the theoretical FLOPs to be independent of the used hardware, as it is done
in the unstructured pruning literature [9,28]. A lower value for these metrics
indicates higher prediction quality and lower computational complexity, respec-
tively. We measure the performance of each model for various prediction lengths
H ∈ {96, 192, 336, 720} (except H ∈ {24, 36, 48, 60} for the Illness dataset).
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Implementation. Experiments are implemented in PyTorch. The start of imple-
mentation is the NSTransformer1 and GraNet2. We repeat each experiment for
three random seeds and report the average of the runs. In the experiments, Dinit

was set to 1, thus PALS can be seen as a during-training pruning method. We
have run the experiments on Intel Xeon Platinum 8360Y CPU and one NVIDIA
A100 GPU. We will discuss the hyperparameters’ settings in Appendix A.

5.2 Results

Multivariate Time Series Prediction. The results in terms of MSE and
parameter count for the considered datasets and models are presented in Table 5
in Appendix C. In most cases considered, PALS decreases the model size by
more than 50% without a significant increase in loss. More interestingly, in most
cases on the ETTm2, Exchange, and Weather datasets PALS even achieves lower
MSE than the dense counterpart.

To summarize the results of Table 5 (Appendix C) and have a general
overview of the performance of PALS on each model and dataset, we present
the average MSE and MAE, and parameters count in addition to the difference
between the dense and the sparse model using PALS (in percentage) in Table 2.
Additionally, we include the inference FLOPs count (total FLOPs for all test
samples). PALS even outperforms the dense model in 12 and 14 cases out of 30
cases in terms of MSE and MAE loss, respectively, while reducing 65% param-
eter count and 63% FLOPs on average. We summarize the training FLOPs in
Appendix G.1.

Based on the experiments conducted in Sect. 3 and the description of datasets
provided in Appendix A.1, we observed significant variations in the sparsity-
loss trade-off across different datasets and models. The beauty of our proposed
method consists in the fact that it does not have to consider any of these differ-
ences. We did not make any finetuning for PALS to account for these differences,
and it does everything automatically. Of course, finetuning PALS per dataset
and model specificity would improve its final performance, but it would reduce
the generality of our proposed work and we prefer not to do it.

Univariate Time Series Prediction. The results of univariate prediction
(using a single variable) on the ETTm2 and Exchange datasets are presented in
Table 6 and summarized in Table 7 in Appendix D. In short, PALS outperforms
the dense counterpart model on average, in 7 and 8 cases out of 12 cases in terms
of MSE and MAE loss, respectively.

6 Discussion

In this section, we study the performance of PALS in comparison with other
pruning and DST algorithms (H) and the hyperparameter sensitivity of PALS
1 https://github.com/thuml/Nonstationary_Transformers.
2 https://github.com/VITA-Group/GraNet.

https://github.com/thuml/Nonstationary_Transformers
https://github.com/VITA-Group/GraNet
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(Sect. 6.2). Additionally in the Appendix, we analyze the performance of PALS
in terms of model size (H), prediction quality by visualizing the predictions (I),
pruning DLinear [60] (F), and computational efficiency from various aspects (G).

6.1 Performance Comparison with Pruning and Sparse Training
Algorithms

We compare PALS with a standard during-training pruning approach (GMP
[65]), GraNet [28], and a well-known DST method (RigL [9]). These are the
closest methods in the literature in terms of including gradual pruning and
gradient-based weight regrowth.

While PALS derives a proper sparsity level automatically, other pruning
approaches require the sparsity level as an input of the algorithm. Therefore,
to compare PALS with existing pruning algorithms, the sparsity level should
be optimized for them. We apply GraNet, RigL, and GMP to NSTransformer
for prediction lengths of H ∈ {96, 192, 336, 720} (except for the Illness dataset
for which H ∈ {24, 36, 48, 60}). For each of these methods (GraNet, RigL, and
GMP), the sparsity level is optimized among values of {25, 50, 65, 80, 90, 95}.
This means that for one run of PALS, we run the other methods 6 times. The
model with the lowest validation loss is used to report the test loss. Table 3 sum-
marizes the average loss (l), sparsity level (S), and training epochs (e) (due to
early stopping the algorithms might not require the full training) over different
prediction lengths.

Table 3. Comparison with other during-training pruning methods (GMP, GraNet)
and a DST method (RigL) when sparsifying NSTransformer. The results are average
over four prediction lengths.

Dataset PALS GraNet* RigL* GMP*
l S e l S e l S e l S e

Electricity 0.21 80.5% 8.83 0.20 31.2% 9.75 0.20 31.2% 9.12 0.20 47.5% 9.62
ETTm2 0.38 76.7% 4.58 0.60 95.0% 9.00 0.49 77.5% 4.33 0.60 56.2% 9.12
Exchange 0.49 48.5% 5.83 0.47 95.0% 9.42 0.44 90.0% 4.25 0.45 95.0% 9.50
Illness 2.33 30.0% 7.97 2.32 25.0% 9.58 2.37 25.0% 9.58 2.22 31.2% 9.92
Traffic 0.67 70.1% 8.83 0.64 41.2% 9.50 0.64 25.0% 8.17 0.64 50.0% 9.79
Weather 0.26 90.3% 7.00 0.28 95.0% 9.08 0.27 41.2% 4.08 0.29 95.0% 9.08
Average 0.72 66.0% 7.17 0.75 63.73% 9.38 0.74 48.3% 6.60 0.73 62.4% 9.47
*Optimized sparsity level (%) in {25, 65, 50, 80, 90, 95}. GraNet,
RigL, and GMP, each require 6 runs to optimize the sparsity level
while PALS needs only one run.

The closest competitor of PALS is GraNet. In Table 3, for the Electricity
dataset, PALS achieves a sparsity level of 80.5% with a loss of 0.21, while GraNet
achieves a sparsity level of only 31.2% with a slightly lower loss of 0.20. Similarly,
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for the ETTm2 dataset, PALS achieves a sparsity level of 76.7% with a loss of
0.38, while GraNet achieves a higher sparsity level of 95.0% but with a much
higher loss of 0.60. On the other datasets, they perform relatively close to each
other.

By looking at the results of all methods in Table 3, PALS has the highest
average sparsity value (66.0%) compared to GraNet (63.73%), RigL (48.3%),
and GMP (62.4%). While RigL requires fewer training epochs (∼ 6.6 epochs)
compared to PALS (∼ 7.2 epochs), it finds lower sparsity networks and has a
higher average loss (RigL: 0.74 compared to PALS: 0.72). GraNet and GMP
use fixed pruning schedules, and as a result, they need almost full training time
(∼ 9.5 epochs). The only extra computational requirement of PALS compared
to GraNet is an additional step that involves determining the number of weights
to prune and grow. This is negligible when considering the overall computation
necessary for training the models. On the other hand, as PALS does not require
the full training epochs in contrast to GraNet, it needs much lower computational
costs. We additionally compared the convergence speed of PALS with the dense
model in Appendix G.3.

In short, PALS has the lowest average loss and highest sparsity values com-
pared to other algorithms, suggesting that PALS could build efficient and accu-
rate sparse neural networks for time series forecasting.

6.2 Hyperparameter Sensitivity

In this section, we discuss the sensitivity of PALS to its hyperparameters includ-
ing pruning rate factor γ and loss freedom factor λ. We have changed their values
in {1.05, 1.1, 1.2} and measured the performance of PALS (with NSTransformer)
in terms of MSE and parameter count on six benchmark datasets. The results
are presented in Table 8 in Appendix E.

As shown in Table 8, PALS is not very sensitive to its hyperparameters and
the results in each row are close in terms of loss in most cases considered. How-
ever, by increasing γ and λ PALS tends to find a sparser model. A small λ
results in paying more attention to the loss value, while a large value gives more
freedom to PALS to explore a sparse sub-network that might sometimes result
in a higher loss value. A small γ limits the amount of additional grow/prune in
the expand/shrink phase, while a large γ gives more flexibility to the algorithm
for exploring various sparsity levels. In short, a small value for each of these
hyperparameters makes PALS more strict and allows for small changes in sparse
connectivity, while a large value increases the exploration rate which potentially
results in higher sparsity and/or reduced loss.

7 Conclusions

In this paper, we aim to decrease the computational and memory costs of train-
ing and deploying DNNs for time series forecasting rather than proposing a
new forecasting model and beating the state-of-the-art. Particularly, we focus
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on transformers while showing the generality of PALS on an MLP-based model
(Appendix F). We first showed that pruning networks for time series forecasting
can be challenging in terms of determining the proper sparsity level for vari-
ous datasets, prediction lengths, and models. Therefore, we proposed PALS, a
novel method to obtain sparse neural networks, that exploits loss heuristics to
automatically find the best trade-off between loss and sparsity in one round of
training. PALS leverages the effective strategies of “Shrink” from during-training
pruning and “Stable” from DST. Additionally, we introduce a novel strategy
called the “Expand” mechanism. The latter allows PALS to automatically opti-
mize the sparsity level during training, eliminating the need for prior determi-
nation. Remarkably, PALS could outperform dense training in 12/14 cases out
of 30 cases (5 transformer models, 6 datasets) in terms of MSE/MAE loss, while
reducing 65% parameters count and 63% FLOPs on average. Limitations and
future work. Due to the lack of proper hardware to support sparse matrices
for on-GPU processing, PALS cannot currently take advantage of its theoretical
training and inference speed-up and memory reduction in a real-world implemen-
tation. Building a truly sparse transformer demands a substantial investment of
both effort and a profound understanding of hardware, an area that is beyond
the current scope of our research and human resources (Please refer to Appendix
G.5 for more details). With the ever-increasing body of work on sparse neural
networks, we hope that in the near future, the community paves the way to opti-
mally train sparse neural networks on GPU. An open direction to this research
can be to start with a highly sparse neural network (as opposed to starting from
a dense network used in PALS) and gradually expand the network to be even
more efficient during training.
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Abstract. Rumors have exerted detrimental effects on individuals and
societies in recent years. Despite the deployment of sophisticated Graph
Neural Networks (GNNs) to analyze the structure of propagation graphs
in rumor detection, contemporary approaches often neglect two pivotal
elements. Firstly, the structure of rumor propagation in social networks
is characterized by a community-based feature, influenced by the “echo
chamber effect”. By integrating these structures, models can empha-
size critical information, mitigate the impact of irrelevant data, and
enhance graph representation learning. Secondly, the existing models
for rumor detection struggle to adjust GNN backbones to accommo-
date the diverse complexities introduced by social media’s platform het-
erogeneity. The manual design of these models is both time-consuming
and labor-intensive. To overcome these challenges, this paper presents
RumorMixer, a novel automated framework for rumor detection. This
methodology begins by developing a Super-Sharer-Aware (SSA) cham-
ber partitioning algorithm, crucial for identifying echo chambers within
propagation graphs. Through accurate partitioning, RumorMixer effec-
tively concentrates on the essential structures of rumor propagation and
utilizes the GNN-Mixer model to create high-quality representations of
these chambers. To address platform heterogeneity, RumorMixer inte-
grates five distinct components: PE, Aggregation, Merge, Pooling, and
Mixing-to establish an extensive search space. Subsequently, differen-
tiable architecture search technology is employed to automatically tailor
platform-specific architectures. The efficacy is validated through exten-
sive experiments on real datasets from both Weibo and Twitter3(Our
code is accessible at https://github.com/cgao-comp/RumorMixer.).

Keywords: Rumor detection · Graph neural network · Neural
architecture search

1 Introduction

In the current digital era, social media has emerged as one of the primary chan-
nels for information propagation [25]. Its rapid and extensive spreading capacity
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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has exerted a profound impact on society. However, these platforms also serve
as fertile ground for the proliferation of rumor, posing serious threats to public
health [10], political elections [19], and social stability [22].

Recent research indicates that the structure of news propagation within social
networks plays a pivotal role in the identification of rumor [7,21]. Methods uti-
lizing Graph Neural Networks (GNN) have been developed to analyze the prop-
agation patterns within these networks, offering significant insights for rumor
detection [5]. Although these studies confirm the effectiveness of propagation
networks in enhancing the accuracy of rumor detection, they overlook the char-
acteristics of the rumor itself.

– Echo Chamber Effect. The echo chamber effect describes the phenomenon
where information circulates within groups of individuals on social media
and cyberspace who have similar thoughts or close stances [6]. This leads
to the rapid spread of rumors within communities formed based on com-
mon interests, viewpoints, or beliefs. The structure of rumor dissemination in
social networks thus exhibits characteristics based on community. In this pro-
cess, super-sharers play a pivotal role. They further reinforce the echo cham-
ber effect by sharing information extensively, facilitating the rapid spread of
rumors within the respective groups [1].

– Platform Heterogeneity. Social media platforms, with their unique con-
tent, interaction styles, and user behaviors, produce data with varied struc-
tures and dynamics, impacting rumor detection model effectiveness [16]. Mod-
els tailored for one platform may falter on another due to these differences.
Moreover, existing rumor detection approaches struggle to adapt GNN archi-
tectures to the diverse complexities arising from platform variability, making
model construction a tedious and labor-intensive process.

To more effectively investigate the aforementioned characteristics, we intro-
duce RumorMixer, an innovative framework for rumor detection that consists of
two primary strategies. Firstly, it utilizes a super-sharer-aware (SSA) algorithm
to identify echo chambers within social networks. Secondly, it employs GNN-
Mixers, as detailed in [13], to precisely represent these chambers. A notable
aspect of RumorMixer is the implementation of a differentiable Neural Architec-
ture Search (NAS) to enhance the framework, thereby significantly improving
rumor detection capabilities on Weibo and Twitter platforms. We underscore
our contributions to the domain through these advancements:

– Echo Chamber Extraction and Representation Learning. We intro-
duce the Super-Sharer-Aware (SSA) algorithm for effectively identifying and
isolating echo chambers in rumor propagation graphs on social media. The
SSA algorithm employs a centrality-based method for selecting seed nodes,
which are pivotal in the formation of echo chambers centered around influ-
encers. This method integrates a flood-fill strategy with a breadth-first search
to achieve coherent grouping of chambers, while utilizing dynamic program-
ming to refine chamber assignments by considering the strength of connections
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and unique attributes. Then, we leverage a GNN-Mixer model for generating
refined representations of rumor propagation graphs.

– Neural Architecture Search for Platform Heterogeneity. In response
to the challenges posed by platform heterogeneity, RumorMixer incorporates
five distinct components–PE, Aggregation, Merge, Pooling, and Mixing–to
facilitate a comprehensive search space. Then the differentiable architecture
search technology is leveraged to tailor platform-specific architectures auto-
matically.

– This study conducts extensive experiments on real-world datasets. Rigorous
evaluation demonstrates the practical applicability and adaptability of the
proposed RumorMixer in diverse social media platforms.

The paper is structured as follows: Sect. 2 reviews related work, Sect. 3 intro-
duces our framework, and Sect. 4 presents the experiments and ablation studies.
Conclusions and future directions are discussed in Sect. 5.

2 Related Works

This study explores rumor detection methodologies through propagation graph
analysis. Propagation-based approaches enhance rumor identification by inte-
grating auxiliary data from social media, such as user comments, profiles, posting
behaviors, and stances towards rumors [17,30]. Recent research highlights the
critical role of news propagation structures on social media in improving detec-
tion effectiveness. Further investigations have shown that merging propagation
structures with temporal data yields better detection results [5,23], while others
have improved performance using attention mechanisms [27,30]. Nonetheless,
prevailing techniques often neglect the echo chamber effect-the amplification of
rumors within insular communities by prolific sharers-which hampers a compre-
hensive understanding of rumor dynamics [1,6]. Moreover, the challenge posed
by platform heterogeneity, which refers to variations in user interactions, content
formats, and behaviors across different social media platforms, calls for bespoke
detection models [16]. The inability of existing models to adjust to these vari-
ations and complexities makes manual model design both time-consuming and
resource-intensive. In essence, devising a method that thoroughly examines the
inherent aspects of rumor propagation, specifically the echo chamber effect and
platform heterogeneity, is a pressing yet unaddressed concern in the discipline.

3 Methodology

3.1 Overview

The foundational structure of the RumorMixer is depicted in Fig. 1. This section
aims to elucidate the decisions undertaken in the implementation of each archi-
tectural component.
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Fig. 1. The RumorMixer framework introduces: (I) Echo chamber extraction:,
where graph partitioning and the Super-sharer-aware algorithm are used to identify
echo chambers within propagation graphs; (II) Rumor detection which combines
chamber representations into a final graphical form, using global average pooling and
a linear classification layer for prediction; (III) Automated architecture design,
leveraging platform-specific GNN-Mixer architectures with a focus on differentiable
NAS for chamber representation. The weight vectors for PE (αe), aggregation (αn),
skip-connections (αs), merge (αl), pooling (αp) and mixing (αm) within the supernet.

Problem Formulation. Define N = {n1, n2, . . . , nk} as the dataset for rumor
detection, where ni denotes the i-th event in a collection of k events. Each event,
ni, is structured as a tree ni = {r, x1, x2, x3, . . . , xs−1}, with r serving as the
root node and xi embodying the text representation of pertinent user comments.
Here, s signifies the count of context nodes. Each event is assigned a label yi
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from two categories: {F,R} (i.e., Fake and Real). This classification framework
aims to facilitate the development of an model for automated rumor detection,
leveraging the specified dataset.

3.2 Echo Chamber Extraction and Representation Learning

In the realm of social media, the spread of rumors is significantly influenced by
“super-sharers”: key accounts with extensive reach, notably in political contexts
and during health crises like the COVID-19 pandemic. Research has highlighted
platforms such as Twitter and Weibo, where these influential users amplify
rumors within "echo chambers," spaces of homogenous opinions enhancing mis-
information spread [25]. Leveraging graph partitioning techniques to analyze
these echo chambers, our work introduces the Mixer model [13,24]. This model,
drawing on foundational studies, is designed to capture the unique features of
echo chambers, facilitating a deeper understanding of rumor dynamics.

Super-Sharer-Aware (SSA) Chamber Partitioning. In the field of social
media analysis, this study presents a Super-Sharer-Aware (SSA) algorithm for
chamber partitioning, detailed in Algorithm 1, designed to detect and segregate
echo chambers within a rumor propagation graph. The algorithm initiates by
selecting seed nodes based on their centrality, positioning them at the network’s
core to foster the formation of echo chambers around pivotal nodes and main
social hubs. It then utilizes a flood-fill technique, originating from these seed
nodes, to methodically encompass the entire connected region, thereby grouping
all pertinent nodes within the same echo chamber. This method, underpinned by
a queue-supported breadth-first search, ensures the seamless expansion of each
chamber, maintaining its coherence and preventing fragmentation. Furthermore,
the algorithm adopts dynamic programming techniques for node assignment to
echo chambers, taking into account the connection strength between a node and
the chamber members, and the potential impact on chamber separation and size
balance. Nodes are dynamically allocated to the most suitable echo chamber
based on a scoring mechanism (outlined in Table 1). Additionally, to preserve all
original graph edges and accommodate chamber overlap, the model allows for a
one-hop neighborhood overlap among chambers.

Chamber Representation Learning. To thoroughly analyze and effectively
manage the non-Euclidean data structures prevalent in echo chambers, this study
employs GNNs equipped with a message-passing mechanism as the encoding
method for chambers. The architecture of these GNNs is meticulously crafted
to transform a chamber token, denoted as Gc, into a fixed-size representation,
xGc

, through a 3-step process.
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Table 1. Scoring calculation methods. Coh signifies the Cohesion Score, aggregat-
ing the connections between the target node v and nodes within the candidate echo
chamber (CN). Sep reflects the Separation Score, tallying connections between v and
nodes outside the candidate chamber but within other chambers (EN). Bal denotes
the Balance Score, predicated on the size of the candidate chamber (|CN |), ensur-
ing a balanced distribution of nodes across chambers. T represents the Total Score,
incorporating Coh, Sep, and Bal to determine the most suitable chamber for node v.

Score Type Calculation Method

Cohesion (Coh) Coh =
∑

u∈CN [G.has_edge(u, v)]

Separation (Sep) Sep =
∑

u∈EN [G.has_edge(u, v)]

Balance (Bal) Bal = 1
|CN|+1

Total (T ) T = Coh − Sep + Bal

Algorithm 1. Super-Sharer-Aware Chamber Partitioning
1: Input: Graph G = (V, E), Number of echo chambers K
2: Output: Mapping L of nodes to echo chambers
3: Select K seed nodes based on centrality � Initiate chambers with central nodes
4: Initialize K queues, one for each echo chamber � Prepare for breadth-first

expansion
5: Mark all nodes as unvisited
6: while there are unvisited nodes do
7: for each queue do
8: Dequeue a node u � Expand from the most recently added node
9: for each unvisited neighbor v of u do

10: Evaluate best chamber k∗ for v
11: Enqueue v in Q[k∗], mark v as visited
12: Assign v to chamber k∗

13: end for
14: end for
15: end while
16: return L � Return the mapping of nodes to their chambers

Step 1. Message-Passing Layer with GNNs. This study implements a
series of L message-passing layers for user node representation updates within
each chamber Gc = (Vc, Ec) through the application of GNNs. The updating
process is mathematically represented as:

hl
v,c = σ

(
Wl · AGG

({
hl−1

v,c ,∀u ∈ Ñ(v)
}))

, (1)

where hl
v,c ∈ R

dl denotes the hidden features of node v, learned at the l-th
layer (l = 1, · · · , L), with c indicating the chamber index and dl the dimension-
ality. Here, Wl refers to the layer-specific trainable weight matrix applicable
to all nodes in the graph, while σ represents a nonlinear activation function,
such as sigmoid or ReLU. The aggregation function AGG(·), a critical compo-
nent, varies among different GNN architectures. The study further incorporates a
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READOUT function to consolidate node features into a cohesive representation
of each chamber, calculated as:

zp,c = READOUT
({

hL
v,c,∀v ∈ Vc

}) ∈ R
d, (2)

where the READOUT function encompasses any form of pooling operation. To
enhance this methodology and tailor it to specific computational requirements,
the research employs a NAS strategy to identify the most effective aggregation
and pooling mechanisms, as detailed in Sect. 3.3.

Step 2. Positional Information. Euclidean datasets inherently possess a
structured arrangement; however, this inherent ordering is absent in general
graphs, leading to diminished model expressivity due to the lack of positional
information. To address this issue, explicit positional encodings (PE) are intro-
duced for the nodes within the framework. The input features of nodes, as
described in Eq. 3, are enhanced by incorporating pv,c ∈ R

K , utilizing a learnable
matrix W 0 ∈ R

d×K :
h0

v,c = xv,c ⊕ W 0pv,c ∈ R
d, (3)

where xv,c denotes the original node features, h0
v,c signifies the initial node

embedding, and ⊕ symbolizes concatenation.

Step 3. Mixer Layer. Consider a scenario where Zp ∈ R
C×d represents the

collection of chamber embeddings {zp,1, . . . , zp,C}. The formulation of the mixer
layer is articulated as follows:

Ẑm = Zp + (W2σ (W1 LayerNorm (Zp))) ∈ R
C×d,

Zm = Ẑm +
(
W4σ

(
W3 LayerNorm (Ẑm)T

))T

∈ R
C×d,

(4)

where Ẑp signifies the intermediate embedding, with Zm = {zm,1, . . . , zm,C}
delineating the output embedding from the mixer layer. The function σ is repre-
sentative of the GELU nonlinearity, while LayerNorm(·) is indicative of layer
normalization. The matrices W1 ∈ R

ds×C ,W2 ∈ R
C×ds ,W3 ∈ R

dc×d, and
W4 ∈ R

d×dc are defined with ds and dc representing adjustable hidden dimen-
sions within token-mixing and channel-mixing MLPs respectively. The architec-
ture allows for the substitution of the MLP in the Mixer layer with a Graph
Multi-Head Attention (gMHA) mechanism, converting the system into a Graph
Transformer as delineated:

Ẑm = Zp + gMHA( LayerNorm (Zp)) ∈ R
C×d,

Zm = Ẑm +MLP( LayerNorm (Ẑm)) ∈ R
C×d,

(5)

where gMHA(·) aims to elucidate token interdependencies reflective of the speci-
fied chamber configuration. In Eq. 5, gHMA may initially embody a full-attention
framework, albeit alternative methodologies outlined in Table 2 are viable to
explicate the gHMA operation. NAS strategy is employed to identify the most
efficacious mechanism as discussed in Sect. 3.3.
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Step 4. Global Average Pooling and Rumor Detection. Subsequently, the
ultimate propagation graph representation Z is derived through global average
pooling across all chambers:

Z =
∑

c mc · Zm∑
c mc

∈ R
d, (6)

with mc being a binary indicator that assigns 1 to non-empty chambers and 0 to
empty ones, addressing the variability in propagation graph sizes that may result
in empty chambers. The process culminates in the application of a straightfor-
ward full-connected MLP for rumor detection:

y = MLP(Z) ∈ R
n, (7)

3.3 Neural Architecture Search for Platform Heterogeneity

In different social media platforms, the characteristics of rumor dissemination
display heterogeneity. This is primarily due to the significant impact of each plat-
form’s design and structure on the speed and scope of rumor spread. Addition-
ally, user behavior varies across platforms because each one possesses a unique
user base and community culture. Therefore, designing a unified model for all
platforms may be lack in consideration. To address this issue, we introduce the
concept of NAS to design platform-specific architecture.

The Search Space Design. Through the analysis in Sect. 3.2, we can ascertain
that the message-passing layer (Sect. 3.2) and mixer layer (Sect. 3.2) are search-
able. The search space, delineated in Table 2, encompasses a diverse array of
candidate operations distributed among five modules: PE, Aggregation, Merge,
Pooling, and Mixing.

PE module incorporates four distinct methods of positional encoding: ran-
dom walk [9], laplacian eigenvector [31], SVD-based [15], and centrality encoding
[8] to exploit the potential of the graph encoding strategies, encapsulated by the
symbol αe. Aggregation module employs an integration of five distinct graph
neural networks (GNNs) for the purpose of node representation. These networks
include the Graph Convolutional Network (GCN) [18], Graph Attention Net-
works (GAT) [26], Sample and AGgregatE (SAGE) [12], and Graph Isomor-
phism Network (GIN) [29], alongside a Multilayer Perceptron (MLP) operation
that operates independently of the graph’s topology. The combined functionali-
ties of these components are symbolized as αn. Merge module incorporates a
range of five merging mechanisms designed to synthesize graph-based represen-
tations, namely Long Short-Term Memory (LSTM), concatenation, maximum,
mean, and summation operations. It also integrates IDENTITY and ZERO func-
tions to enable optional skip-connections across layers, denoted by αl and αs,
respectively. Pooling module utilizes three global pooling strategies to produce
discrete, snapshot-level representations of graphs, encapsulated by the symbol
αp. This module’s output provides a comprehensive representation of the graph’s
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Table 2. The operations for the search space of RumorMixer.

Module Operation Candidate

PE αe RandomWalk, Laplacian, SVD, Centrality
Aggregation αn GCN, GAT, SAGE, GIN
Merge αl M_LSTM, M_CONCAT, M_MAX, M_MEAN, M_SUM

αs IDENTITY, ZERO
Pooling αp GLOBAL_MEAN, GLOBAL_MAX, GLOBAL_SUM

Mixing αm MLP, FULL_ATT (softmax
(

QKT
√
d

)
V ),

GRAPH_ATT (softmax
(
AP � QKT

√
d

)
V ),

KERNEL_ATT (softmax
(
RW

(
AP

) � QKT
√
d

)
V )

ADDITIVE_ATT (softmax
(

QKT
√
d

)
V + LL

(
AP

)
)

HADAMARD_ATT (
(
AP � softmax

(
QKT

√
d

))
V )

entire structure. Mixing module makes use of MLP mixer and gMHA mixer
techniques, considering various attention mechanisms including full attention,
graph attention, kernel attention, additive attention, and Hadamard attention
[13]. The aggregate of these operations is represented as αm.

Differentiable Architecture Search. Drawing on the principles established
in differentiable architecture search [20], RumorMixer incorporates a Gumbel-
Softmax distribution to facilitate the generalized selection of operations, extend-
ing the work of [4]. This approach is mathematically represented as follows:

ōij(h0
v,c) =

∑
o∈α

exp
{
(αijo + g(o))/τ

}
∑

o′∈α exp {(αijo′ + g(o′))/τ}o(h0
v,c), (8)

where the mixing weights for operations between any two nodes (i, j) are denoted
by αij ∈ R

|α|. The operations set, α, encompasses six predefined categories: αe,
αn, αl, αs, αp, and αm. The parameter τ serves to adjust the soft-maximization
process of the distribution. The function go denotes the noise component, which
is sampled from the Gumbel distribution. The variable h0

v,c, as defined in Eq. 3,
denotes the initial hidden features inputted into a message-passing layer, encap-
sulating {h(l−1)

u,c ,∀u ∈ Ñ(v)}. The composite operations designated as ōe, ōn,
ōs, ōl, ōp, and ōm are formulated based on αe, αn, αl, αs, αp, and αm, follow-
ing the guidelines set forth in Eq. 8. To simplify notation, the superscript in oij

is excluded when its implication is evident from the context. The method for
computing the representation of a specific node v with positional encoding in a
chamber is depicted in Fig. 1(III) and formalized as follows:

hl
v,c = σ

(
Wl

n · ōn

({
ōe(hl−1

u,c ),∀u ∈ Ñ(v)
}))

. (9)
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where Wl
n represents the weight matrix, which is consistently utilized across all

potential architectures within the search space for user node aggregation. In the
terminal layer associated with user node v, user embeddings are generated as
follows:

Hl+1
v,c =

[
ōs

(
h1

v,c

)
, · · · , ōs

(
hl

v,c

)]
,

zv,c = ōl

(
Hl+1

v,c

)
,

(10)

where the symbol [·] denotes the concatenation of embeddings from l intermedi-
ate layers. The embeddings corresponding to all N nodes within a given chamber
c are aggregated via a pooling module, resulting in the generation of the graph-
level representation zp,c for chamber c. Then, the chamber embedding is fed into
a mixer layer to obtain the mixer embedding zm,c:

zp,c = ōp ({zv,c,∀v ∈ Vc}) ,

zm,c = ōm (zp,c) ,
(11)

RumorMixer addresses a bi-level optimization challenge, as articulated in the
following mathematical formulation:

min
α∈A

Lval (w∗(α),α) ,

s.t. w∗(α) = argmin
w

Ltra(w,α).
(12)

where Ltra and Lval denote the training and validation losses, respectively.
The variable α = {αe,αn,αs,αl,αp,αm} signifies the parameters defining a
network’s architecture, and w∗(α) indicates the optimal weights derived through
training. For the purpose of rumor detection, the cross-entropy loss function is
employed.

4 Experiments

A comprehensive experimental evaluation is conducted on three real-world
datasets to examine efficacy. Specifically, this section aims to address the fol-
lowing research questions:

– RQ1: Effectiveness. How does our proposed method perform compared
with other state-of-the-art (SOTA) human-designed models and existing NAS
approaches for rumor detection?

– RQ2: Modularity. How do the different components contribute to the model
performance?

– RQ3: Sensitivity. How do the model architecture (number of GNN layers)
and dataset pattern (number of chambers) affect the final detection perfor-
mance?

– RQ4: Robustness. Can RumorMixer achieve early rumor detection, partic-
ularly if it can surpass baseline performances utilizing fewer snapshots?
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4.1 Experimental Setting

Datasets. The evaluation of the proposed method has been conducted on two
publicly available benchmark datasets: Twitter16 [3] and Weibo [21]. Detailed
statistics of these datasets are presented in Table 3.

Table 3. The statistics of the rumor detection datasets.

Statistic Twitter16 Weibo

# of root posts 818 4,664
# of users 173,487 2,746,818
# of posts 204,820 3,805,656
# of true rumors 205 2,351
# of false rumors 205 2,313
# of unverified rumors 203 \
# of non-rumors 205 \

Baselines. We first evaluate whether our method can more accurately detect
rumor compared with the following methods.

– G1: Human-designed architectures. The present analyses juxtapose
RumorMixer with several seminal manually designed models in the domain of
rumor detection. These include: StA-HiTPLAN [17], P-BiGAT [30], BiGCN
[2], DGNF [23], DYNGCN [5], and DGTR [27].

– G2: NAS approaches. The scope of this investigation also encompasses
various NAS techniques, such as: Random search, Bayesian-based search [28]
and GraphNAS (a RL-based NAS approach for GNN) [11].

Implementation Details. Our evaluation of rumor detection performance
relies on two established metrics: Accuracy (Acc.) and F1 score (F1), with out-
comes derived from 5-fold cross-validation presented as mean values along with
standard deviations. Evaluating NAS baselines and RumorMixer involves gener-
ating architecture candidates, followed by hyperparameter fine-tuning (learning
rate, dropout) as per previous methodology [14]. A consistent use of a 3-layer
architecture and a Gumbel-Softmax temperature of 0.2 is maintained.

4.2 Performance Comparison (RQ1)

The comparative performance results are presented in Table 4, followed by an
in-depth analysis. No singular human-designed model (G1) demonstrates supe-
riority in rumor detection across various datasets. For instance, DYNGCN out-
performs others on the Weibo platform, whereas DGTR shows enhanced perfor-
mance on Twitter datasets. This observation underscores the necessity for archi-
tectures that are tailored to the specific requirements of each dataset. In the case
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of G2, in contrast to GraphNAS which primarily concentrates on aggregation
layers, RumorMixer implements a differential search algorithm. This enables the
identification of more efficient architectures for addressing rumor detection tasks.

Table 4. Rumor detection results on Weibo and Twitter16 datasets. The state-of-the-
art (SOTA) human-designed baseline is marked with an underline, and the best result
for each dataset is highlighted in boldface.

Model Weibo Twitter16
Acc. F1 Acc. F1

G1 StA-HiTPLAN [17] 87.1 ± 0.8 86.7 ± 1.2 79.3 ± 1.1 81.7 ± 1.3
P-BiGAT [30] 90.8 ± 1.4 91.6 ± 1.0 80.5 ± 0.6 80.2 ± 1.5
BiGCN [2] 89.9 ± 0.5 89.6 ± 1.3 81.9 ± 1.0 81.1 ± 0.4
DGNF [23] 93.3 ± 1.1 93.2 ± 0.6 82.3 ± 0.7 82.4 ± 1.3
DYNGCN [5] 94.7 ± 0.3 94.6 ± 0.4 82.6 ± 1.2 82.6 ± 0.8
DGTR [27] 93.6 ± 0.9 93.2 ± 0.4 90.9 ± 1.0 90.7 ± 0.7

G2 Random 86.2 ± 0.3 85.5 ± 0.1 86.4 ± 0.4 86.9 ± 0.7
Bayesian [28] 89.5 ± 0.6 89.8 ± 1.2 88.1 ± 1.5 88.1 ± 0.4
GraphNAS [11] 90.3 ± 1.3 89.7 ± 0.2 87.2 ± 0.9 87.1 ± 1.4
RumorMixer(Ours) 97.9 ± 0.5 97.6 ± 0.7 96.4 ± 0.9 96.9 ± 1.2

4.3 Ablation Study (RQ2)

In our ablation studies, we evaluated various choices made during the implemen-
tation of each component of the architecture. The variants are designed as:

– w/o Adjust removes the stage of 1-hop neighborhood adjusting.
– w/o CE removes the stage of chamber extraction.
– w/o SSA replaces our designed super-sharer-aware (SSA) partitioning with

random partitioning.
– w/o PE ignores positional encodings in message-passing layers.

Effect of Chamber Extraction. An experiment has been carried out to assess
the impact of omitting the Chamber extraction phase, wherein the GNN-Mixer
treated each node independently as a chamber. Findings, documented in Table 5,
underscore the indispensability of the chamber extraction process. This proce-
dure, incorporating graph partitioning and 1-hop adjusting, is instrumental in
capturing crucial local information pertaining to the graph’s structure.

Effect of Super-Sharer-Aware (SSA) Partitioning. The study also exam-
ines the advantages conferred by SSA partitioning over and random graph par-
titioning. In the latter two approaches, nodes are arbitrarily distributed across
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Table 5. Ablation Study for RumorMixer.

Models Weibo Twitter16
Acc. F1 Acc. F1

RumorMixer 97.9 ± 0.5 97.6 ± 0.7 96.4 ± 0.9 96.9 ± 1.2
w/o Adjust 95.4 ± 0.1 95.4 ± 0.1 94.8 ± 0.2 94.3 ± 0.1
w/o CE 91.6 ± 0.4 91.1 ± 0.2 92.3 ± 0.3 91.8 ± 0.1
w/o SSA 89.3 ± 0.1 88.2 ± 0.3 90.7 ± 0.7 90.7 ± 0.1
w/o PE 96.8 ± 0.2 97.2 ± 0.2 95.7 ± 0.2 96.3 ± 0.1

a predetermined number of Chambers. Results, presented in Table 5, reveal that
our algorithm outperforms random partitioning, particularly in larger graphs,
supporting the hypothesis that Chambers ought to encapsulate nodes and edges
with analogous semantic or informational attributes. Interestingly, even random
partitioning achieves commendable outcomes, indicating that the model’s effi-
cacy is not exclusively reliant on chamber quality.

Effect of Positional Encoding. Experimental results indicate that the utility
of Positional Encoding (PE) remains uncertain, as detailed in Table 5. While PE
enhances the expressive capabilities of GNNs, its impact on generalization perfor-
mance does not follow a similar trajectory. This implies an enhancement in model
specificity, albeit without a corresponding improvement in generalization. There-
fore, despite the theoretical support and burgeoning literature underscoring the
benefits of PE for refining GNN predictions, further mathematical advancements
are imperative for delineating more effective strategies and ensuring consistent
enhancements in results.

Effect of Search Space. This study explores the impact of four key modules on
search space effectiveness, employing the RumorMixer algorithm in diverse con-
figurations, detailed in Table 6. By isolating each factor, the research assesses
its unique contribution to algorithm performance. Limitations in the search
space, particularly in NAS, can hinder optimal model functionality by curtail-
ing exploration of advanced optimization techniques. Furthermore, the role of
GNNs in identifying rumor spread is underscored by their information aggre-
gation methods. Utilizing a message-passing framework, GNNs are crucial for
analyzing rumor spread within networks.
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Table 6. Various search spaces have been utilized to evaluate the performance of
RumorMixer. The first column depicts the specific module, evaluated using a single
OP within the streamlined search space.

Models Weibo Twitter16
Acc. F1 Acc. F1

Fixed Aggregation (GCN) 92.2 ± 0.8 91.7 ± 0.2 91.8 ± 0.5 91.8 ± 0.5
Fixed Merge (M_CONCAT) 95.2 ± 0.1 94.1 ± 0.4 95.5 ± 0.3 95.5 ± 0.3
Fixed Pooling (GLOBAL_SUM) 95.1 ± 0.1 95.6 ± 0.9 95.3 ± 0.3 95.3 ± 0.2
Fixed Mixing (FULL_ATT) 93.3 ± 0.6 94.7 ± 0.7 94.2 ± 0.4 94.2 ± 0.5

Comparison with Different Community Detection Algorithms. We ana-
lyzed the similarities between echo chamber extraction and community detec-
tion, focusing on the SSA algorithm’s efficiency in handling these tasks. Our
comparison with other community detection algorithms, using the F1 scores
from the Weibo dataset, underscored the SSA algorithm’s superior performance.
This advantage arises from its strategy of initiating community detection from
high-degree nodes (super-sharers), enabling rapid identification of key rumor
spreaders. The SSA algorithm’s ability to pinpoint these nodes, often highly
active users, highlights its effectiveness in detecting rumors within social net-
works (Table 7).

Table 7. Complexities and performance of different community detection algorithms
in Weibo dataset. |V| and |E| represent the total number of nodes and edges in a rumor
propagation graph, respectively.

Algorithm Time Space F1

SSA (ours proposed in Sect. 3.2) O(|V| + |E|) O(|V|) 97.6 ± 0.7
Modularity Optimization O((|V| + |E|) log |V|)O(|V| + |E|) 94.3 ± 0.4
Hierarchical Clustering O(|V|2 log |V|) O(|V|2) 93.5 ± 0.6
FastGreedy O(|V| log2 |V|) O(|V| + |E|) 93.8 ± 0.3
Louvain O(|V| log |V|) O(|V| + |E|) 93.2 ± 0.1

4.4 Parameter Analysis (RQ3)

Number of Chambers. Analysis of Fig. 2(a). reveals that performance esca-
lates with an increase in the number of echo chambers (denoted as #Chamber),
reaching a plateau with minor variations once #Chamber equals 4. Consequently,
the default setting for the number of chambers is established at 3 (C = 3).
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(a) Sensitivity to number of chambers. (b) Sensitivity to number of layers.

Fig. 2. The test F1 score w.r.t. different number of chambers and layers in twitter and
weibo dataset.

Number of GNN Layers. In Sect. 4.2, we justify the choice of a three-layer
Graph Neural Network (GNN) architecture (K = 3) based on its proven effi-
ciency. Our study investigates shallow GNNs with K limited to 5. Experiments
across K = 1 to 5 reveal performance trends (Fig. 2(b)), supporting our selection
of L = 3 for our experimental framework (Sect. 4.2).

4.5 Early Rumor Detection (RQ4)

The goal of early detection is to pinpoint rumors right at the onset of their
spread, crucial for measuring detection methods’ effectiveness. This requires set-
ting a timeline for detection benchmarks. Accuracy evaluations for any detec-
tion approach, including the proposed ones and existing baselines, depend on
examining posts made before these benchmarks. Our analysis (Fig. 3) contrasts
RumorMixer’s effectiveness against models like DYNGCN, DGTR, and Graph-
NAS using the Weibo and Twitter datasets, as shown in the referenced figure.
Results indicate RumorMixer’s superior accuracy early on and throughout sub-
sequent checkpoints, highlighting the advantage of incorporating structural echo
chamber features for more efficient rumor detection both initially and over time.

(a) Weibo dataset. (b) Twitter16 dataset.

Fig. 3. The test F1 score of rumor early detection on twitter and weibo dataset.
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5 Conclusion

In this study, we introduce RumorMixer, a cutting-edge framework developed
to detect rumors across social media platforms. Our methodology employs an
advanced graph partitioning algorithm that highlights the significant role of
super-sharers in creating echo chambers, instrumental in spreading false infor-
mation. Moreover, the integration of Neural Architecture Search (NAS) with our
Graph Neural Network Mixer (GNN-Mixer) models improves their adaptability
and efficiency in identifying rumors, automatically adjusting to the unique fea-
tures of various social media platforms. Additionally, it must be acknowledged
that methods focusing solely on user interactions in network-based approaches
are not the only avenues for rumor detection. A comprehensive fake news detec-
tion system may need to consider content, structure, and dynamics, which also
represents one of the potential directions for future expansion of this work.
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Abstract. Ensembling a neural network is a widely recognized app-
roach to enhance model performance, estimate uncertainty, and improve
robustness in deep supervised learning. However, deep ensembles often
come with high computational costs and memory demands. In addi-
tion, the efficiency of a deep ensemble is related to diversity among the
ensemble members, which is challenging for large, over-parameterized
deep neural networks. Moreover, ensemble learning has not yet seen such
widespread adoption for unsupervised learning and it remains a challeng-
ing endeavor for self-supervised or unsupervised representation learn-
ing. Motivated by these challenges, we present a novel self-supervised
training regime that leverages an ensemble of independent sub-networks,
complemented by a new loss function designed to encourage diversity.
Our method efficiently builds a sub-model ensemble with high diversity,
leading to well-calibrated estimates of model uncertainty, all achieved
with minimal computational overhead compared to traditional deep self-
supervised ensembles. To evaluate the effectiveness of our approach,
we conducted extensive experiments across various tasks, including in-
distribution generalization, out-of-distribution detection, dataset corrup-
tion, and semi-supervised settings. The results demonstrate that our
method significantly improves prediction reliability. Our approach not
only achieves excellent accuracy but also enhances calibration, improv-
ing on important baseline performance across a wide range of self-
supervised architectures in computer vision, natural language processing,
and genomics data.

1 Introduction

Ensemble learning has become a potent strategy for enhancing model perfor-
mance in deep learning [19,28]. This method involves combining the outputs of
multiple independently trained neural networks, all using the same architecture
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and same training dataset but differing in the randomized configurations of their
initialization and/or training. Despite its remarkable effectiveness, training deep
ensemble models poses several challenges: i) The high performance achieved by
deep ensembles comes with a significant increase in computational costs. Run-
ning multiple neural networks independently demands more resources and time.
ii) Maintaining diversity among ensemble members – a property often critical
to success – becomes increasingly difficult for large, over-parameterized deep
neural networks [37] in which the main source of diversity stems from random
weight initialization. iii) Most of the existing literature focuses on deep ensem-
bles for supervised models. Adapting these approaches to unsupervised and self-
supervised models requires careful consideration and evaluation to ensure com-
parable performance.

In recent years, self-supervised learning methods have achieved cutting-edge
performance across a wide range of tasks in natural language processing (NLP;
[2,9]), computer vision [5,40], multimodal learning [36], and bioinformatics [18].
In contrast to supervised techniques, these models learn representations of the
data without relying on costly human annotation. Despite remarkable progress
in recent years, self-supervised models do not allow practitioners to inspect the
model’s confidence. This problem is non-trivial given the degree to which critical
applications rely on self-supervised methods. As recently discussed by LeCun1,
representing predictive uncertainty is particularly difficult in self-supervised
contrastive learning for computer vision. Therefore, quantifying the predictive
uncertainty of self-supervised models is critical to more reliable downstream
tasks. Here, we follow the definition of reliability as described by Plex [44], in
which the ability of a model to work consistently across many tasks is assessed.
In particular, [44] introduces three general desiderata of reliable machine learn-
ing systems: a model should generalize robustly to new tasks, as well as new
datasets, and represent the associated uncertainty in a faithful manner.

In this paper, we introduce a novel, robust, and scalable framework for ensem-
bling self-supervised learning while preserving performance with a negligible
increase in computational cost and encouraging diversity among the ensemble
of sub-networks.

Our contributions can be summarized as follows:

– We propose a novel, scalable ensemble component of self-supervised learning
that is robust, efficient and enhances performance in various downstream
tasks.

– We develop a complementary loss function to enforce diversity among the
independent sub-networks.

– We perform extensive empirical analyses to highlight the benefits of our app-
roach. We demonstrate that this inexpensive modification achieves very com-
petitive (in most cases, better) predictive performance: 1) on in-distribution
(IND) and out-of-distribution (OOD) tasks; 2) in semi-supervised settings; 3)
learns a better predictive performance-uncertainty trade-off than compared

1 https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-
intelligence/.
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baselines. (i.e., exhibits high predictive performance and low uncertainty on
IND datasets as well as high predictive performance and high uncertainty on
OOD datasets).
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Fig. 1. Illustration of our proposed method. Given a batch X of input samples, two
different views x̃ and x̃′ are produced for each sample, which is then encoded into
representations by the encoder network fθ ′ . The representations are projected to the
ensemble of independent sub-networks gm, where each sub-network produces embed-
ding vectors z and z′. The mean value of these embeddings is passed to the self-
supervised loss, while their standard deviation is used for the diversity loss. Finally,
the total loss is computed by a combination of the two loss components.

2 Related Work

Self-supervised Learning. For most large-scale modeling problems, learning
under full supervision is severely inhibited by the scarcity of annotated samples.
Self-supervised learning techniques, which solve pretext tasks [9] to generate
labels from (typically abundant) unlabeled data, have proven to be a power-
ful remedy to this bottleneck. The learned feature maps can serve as a starting
point for downstream supervised tasks, such as classification, object detection, or
sentiment analysis, with a substantially reduced need for labeled examples [25].
Alternatively, the downstream application may directly use the extracted repre-
sentation for problems such as anomaly OOD detection. While there have been
attempts to make pretraining more robust by preventing embedding collapse [40]
or boosting performance in OOD detection [39,45], the aspect of uncertainty-
awareness has been studied to a lesser extent in the self-supervised context.
Motivated by this, we present a simple way to make self-supervised learning
robust during pretext-task learning.
Ensemble Learning. Deep ensembles [28] comprise a set of M neural net-
works that independently train on the same data using random initialization.
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Deep ensembles often outperform other approaches in terms of calibration and
predictive accuracy [38], but their naive application incurs high computational
complexity, as training, memory, and inference cost multiply with the number of
base learners. BatchEnsemble [46] introduces multiple low-rank matrices, with
little training and storage demand, whose Hadamard products with a shared
global weight matrix mimic an ensemble of models. Masksensemble [13] builds
upon Monte Carlo dropout [15] and proposes a learnable (rather than random)
selection of masks used to drop specific network neurons. MIMO [20] uses ensem-
bles of sub-networks diverging only at the beginning and end of the parent
architecture – thus sharing the vast majority of weights – to obtain multiple
predictions with a single forward pass.
Diversity in Ensembles: Diversity is a crucial component for successful ensem-
bles. [37] classify existing approaches for encouraging diversity among ensemble
members into three groups: i) methods that force diversity in gradients with
adaptive diversity in prediction [35], or using joint gradient phase and magni-
tude regularization (GPMR) between ensemble members [7], ii) methods focus-
ing on diversity in logits, improving diversity with regularization and estimating
the uncertainty of out-of-domain samples [30], iii) methods promoting diver-
sity in features that increase diversity with adversarial loss [4] for conditional
redundancy [37], information bottleneck [42], or f1-divergences [4]. Our method
belongs to this last category, where our loss function encourages the diversity of
feature maps.

3 Method

We propose a simple principle to 1) make self-supervised pretraining robust with
an ensemble of diverse sub-networks, 2) improve predictive performance during
pretraining of self-supervised deep learning, 3) while keeping an efficient training
pipeline.

As depicted in Fig. 1, our proposed method can be readily applied to recent
trends in self-supervised learning [3,5,10,17,18,26] and is based on a joint
embedding architecture. In the following sections, we first describe our proposed
ensemble model, followed by the diversity loss, and then a discussion on diversity,
and computational cost.

3.1 Robust Self-supervised Learning via Independent Sub-networks

Setting. Given a randomly sampled mini-batch of data X = {xk}N
k=1 ⊂ X ⊆ R

p,
the transformer function derives two augmented views x̃ = τ(x), x̃′ = τ ′(x)
for each sample in X. The augmented views are obtained by sampling τ, τ ′

from a distribution over suitable data augmentations, such as masking parts
of sequences [1,10], partially masking image patches [21], or applying image
augmentation techniques [5].

The two augmented views x̃ and x̃′ are then fed to an encoder network fθ

with trainable parameters θ ⊆ R
d. The encoder (e.g., ResNet-50 [22], ViT [12])



42 A. Vahidi et al.

maps the distorted samples to a set of corresponding features. We call the
output of the encoder the representation. Afterward, the representation fea-
tures are transformed by M independent sub-networks {gφm

}M
m=1 with train-

able parameters φm to improve the feature learning of the encoder network. The
ensemble constructs from the representation M different q-dimensional embed-
ding vectors {zm}M

m=1, {z′
m}M

m=1, respectively, for x̃ and x̃′. We modify the
conventional self-supervised loss and replace the usual zm by the mean value
z̄ = (z1 + . . .+ zM )/M , and similarly z′

m by z̄′. Averaging over the embeddings
generated by the M sub-networks increases robustness, which in turn may help
to improve predictive performance in downstream tasks.

Self-supervised Loss. In the case of contrastive learning [5], the self-supervised
loss �ssl with temperature t > 0 and cosine similarity sim(·, ·) is computed as:

�ssl (x̃k, x̃′
k) = − log

exp(sim(z̄k, z̄′
k)/t)

∑2N
i=1 I[k �=i] exp(sim(z̄k, z̄i)/t)

. (1)

Diversity Loss. Since diversity is a key component of successful model ensem-
bles [14], we design a new loss function for encouraging diversity during the
training of the sub-networks. We define the diversity regularization term �div as
a hinge loss over the difference of the standard deviation across the embedding
vectors {zk,m}M

m=1, {z′
k,m}M

m=1 to a minimum diversity of α > 0. The standard
deviation is the square root of the element-wise variance {σ2

k,o}q
o=1:

σ2
k,o = 1

M−1

∑M
m=1(zk,m,o − z̄k,o)2 + ε ,

where we add a small scalar ε > 0 to prevent numerical instabilities. The diversity
regularization function is then given by:

�div (x̃k, x̃′
k) =

∑q
o=1 max (0, α − σk,o) (2)

+max(0, α − σ′
k,o) ,

where σ and σ′ indicate standard deviation for the input sample and augmented
views, respectively.

Total Loss. The objective of the diversity loss is to encourage disagreement
among sub-networks by enforcing the element-wise standard deviations to be
close to α > 0 and to thus prevent the embeddings from collapsing to the same
vector. Figure 2a underlines the importance of the diversity loss on the total
sum of standard deviations between different sub-networks, which increases by
adding this loss. The total loss is calculated by combining the self-supervised
loss (Eq. 1) and the diversity loss (Eq. 2), where the degree of regularization is
controlled by a tunable hyperparameter λ ≥ 0:

� (x̃k, x̃′
k) = �ssl (x̃k, x̃′

k) + λ · �div (x̃k, x̃′
k) . (3)
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Finally, the total loss is aggregated over all the pairs in minibatch X:

Ltotal = 1
N

∑N
k=1 � (x̃k, x̃′

k). (4)

Gradients. Consider the output of the encoder fθ (x) = b and the output of the
m-th linear sub-network zm = gφm

(b) = wm · b. The weight wm is updated by
two components during backpropagation, the first of which depends on the self-
supervised loss and is the same for the entire ensemble, while the second term
depends on the diversity loss and is different for each sub-network. Given Eq. 2,
we simplify the equation by vector-wise multiplication since the sub-networks
are linear; furthermore, we omit the numerical stability term since it does not
have an effect on the derivative. The element-wise standard deviation can be
computed as follows:

σk,o =
(

1
M−1

∑M
m=1(zk,m,o − z̄k,o)2

) 1
2

. (5)

Consider Eq. 2 for aggregating the element-wise standard deviations for one
observation (x) and assume σk < α; otherwise, the diversity loss is zero. The
derivative of the loss with respect to zk,m̂,o, m̂ ∈ 1, . . . ,M , is then given as
follows:

∂ (�div)
∂zk,m̂,o

=
−A

M − 1
· (zk,m̂,o − z̄k,o), (6)

where A := 1
M−1

∑M
m=1(zk,m,o − z̄k,o)2). The proof is provided in the appendix

(see Theoretical Supplement).
In the optimization step of stochastic gradient descent (SGD), the weight of

sub-network m̂ is updated by:

η · ∇wm̂,o
�div = −C · (zk,m̂,o − z̄k,o), (7)

where η > 0 is the learning rate, and C is constant with respect to wm̂,o, which
depends on the learning rate, number of sub-networks, A, and b. The proof is
provided in Appendix (see Theoretical Supplement).

Equation 7 shows the updating step in backpropagation. Hyperparameter α
prevents zk,m̂,o from collapsing to a single point. Hence, wm̂,o is updated in
the opposite direction of z̄k,o, so the diversity loss prevents weights in the sub-
networks from converging to the same values.

3.2 Empirical Analysis of Diversity

Diversity of ensemble members is an important feature for powerful model
ensembles and reflects the degree of independence among its members [34,49].
We follow [14] to quantify the diversities among the ensemble of sub-networks.
Specifically, we report the diversities in terms of disagreement score between
the members’ predictive distributions and a baseline. Diversity disagreement
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Fig. 2. (a) Total standard deviation: sum of all standard deviations between inde-
pendent sub-networks during training. Training with diversity loss (Eq. 2) increases
the standard deviation and improves the diversity between independent sub-networks.
(b) Diversity analysis: prediction diversity disagreement vs. achieved accuracy on
CIFAR-10. Our method is on par with the deep self-supervised ensemble in terms of
both accuracy and diversity disagreement. Models in the top right corner are better.

is defined as distance disagreement divided by 1− accuracy, where the dis-
tance disagreement between two classification models hi and hj is calculated as
1
N

∑N
k=1

[
hi(xk) �= hj(xk)

]
, with N denoting the number of samples. Figure 2b

compares the diversity disagreement between our method with 10-sub-networks,
a deep ensemble with 10 members, and the single-network baseline. The results
clearly indicate that our proposed method achieves comparable results with deep
self-supervised ensembles in terms of both accuracy and diversity disagreement.

3.3 Computational Cost and Efficiency Analysis

We analyze the efficiency of our proposed method in Table 1. SSL-Ensemble
increases memory and computational requirements compared to the baseline by
200% and 900% for 3 and 10 members, respectively. The increase in the number
of parameters is 32% and 143%, and the increase in computational requirement
is ∼ 0 − 6% for our method.

Table 1. Computational cost in 4 DGX-A100 40G GPUs (PyTorch) on CIFAR 10.

Method Members Parameters(M) Memory/GPU Time/800-ep.

Baseline (SSL) 1 28 9 G 3.6 (h)
SSL-Ensemble 3 3×28 3×9 G 3× 3.6 (h)
SSL-Ensemble 10 10×28 10×9 G 10×3.6 (h)
Our method 3 37 9.2 G 3.6 (h)
Our method 10 68.1 10 G 3.8 (h)
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4 Experimental Setup

We perform several experiments with a variety of self-supervised methods to
examine our hypothesis for robustness during both pretext-task learning and
downstream tasks (fine-tuning).
Deep Self-supervised Network Architecture. Our proposed approach
builds on two recent popular self-supervised models in computer vision: i) Sim-
CLR [5] is a contrastive learning framework that learns representations by max-
imizing agreement on two different augmentations of the same image, employing
a contrastive loss in the latent embedding space of a convolutional network archi-
tecture (e.g., ResNet-50 [22]), and ii) DINO [3] is a self-distillation framework
in which a student vision transformer (ViT; [11]) learns to predict global features
from local image patches supervised by the cross-entropy loss from a momentum
teacher ViT’s embeddings. Furthermore, we study the impact of our approach
in NLP and modify SCD [26], which applies the bidirectional training of trans-
formers to language modeling. Here, the objective is self-supervised contrastive
divergence loss. Lastly, we examine our approach on Self-GenomeNet [18],
a contrastive self-supervised learning algorithm for learning representations of
genome sequences. More detailed descriptions of the employed configurations are
provided in Appendix (see Implementation Details)
Deep Independent Sub-networks. We implement M independent sub-
networks on top of the encoder, for which many possible architectures are con-
ceivable. For our experiments on computer vision datasets, we consider an ensem-
ble of sub-network architecture where each network includes a multi-layer per-
ceptron (MLP) with two layers of 2048 and 128 neurons, respectively, with ReLU
as a non-linearity and followed by batch normalization [24]. Each sub-network
has its own independent set of weights and learning parameters. For the NLP
dataset, the projector MLP contains three layers of 4096 neurons each, also using
ReLU activation’s as well as batch normalization. For the genomics dataset, our
ensemble of sub-networks includes one fully connected layer with an embedding
size of 256.
Optimization. For all experiments on image datasets based on DINO and
SimCLR, we follow the suggested hyperparameters and configurations by the
paper [3,5]. Implementation details for pretraining with DINO on the 1000-
classes ImagetNet dataset without labels are as follows: coefficients ε, α, and
λ are respectively set to 0.0001, 0.15, and 2 in Eq. 2, 2, and 3. We provide
more details in ablation studies (Sect. 6) on the number of sub-networks and the
coefficients λ and α used in the loss function. The encoder network fθ is either a
ResNet-50 [22] with 2048 output units when the baseline is SimCLR [5] or ViT-
s [12] with 384 output units when the baseline is DINO [3]. The best prediction
and calibration performance is achieved when the number of sub-networks is 5.
We followed the training protocol and settings suggested by [3].
Datasets. We use the following datasets in our experiments: CIFAR-
10/100 [27] are subsets of the tiny images dataset. Both datasets include 50,000
images for training and 10,000 validation images of size 32× 32 with 10 and 100
classes, respectively. SVH [32] is a digit classification benchmark dataset that
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contains 600,000 32 × 32 RGB images of printed digits (from 0 to 9) cropped
from pictures of house number plates. ImageNet [8], contains 1,000 classes, with
1.28 million training images and 50,000 validation images. For the NLP task, we
train on a dataset of 1 million randomly sampled sentences from Wikipedia
articles [23] and evaluate our models on 7 different semantic textual simi-
larity datasets from the SentEval benchmark suite [6]: MR (movie reviews),
CR (product reviews), SUBJ (subjectivity status), MPQA (opinion-polarity),
SST-2 (sentiment analysis), TREC (question-type classification), and MRPC
(paraphrase detection). The T6SS effector protein dataset is a public real-world
bacteria dataset (SecReT6, [29]) with actual label scarcity. The sequence length
of the genome sample is 1000nt in all experiments.
Tasks. We examine and benchmark a model’s performance on different
tasks considering evaluation protocols by self-supervised learning [5] and
Plex’s benchmarking tasks [44]. Specifically, we evaluate our model on the
basis of uncertainty-aware IND generalization, OOD detection, semi-
supervised learning, corrupted dataset evaluation (see Sect. 5), and
transfer learning to other datasets and tasks (see Appendix: Transfer
to Other Tasks and Datasets)
Evaluation Metrics. We report prediction/calibration performance with the
following metrics, where upward arrows indicate that higher values are desirable,
et vice versa. Top-1 accuracy ↑: share of test observations for which the correct
class is predicted. AUROC ↑: area under the ROC curve arising from different
combinations of false-positive and false-negative rates (here: with positive and
negative classes referring to being in and out of distribution, respectively) for a
gradually increasing classification threshold. Negative log-likelihood (NLL)
↓: negative log-likelihood of test observations under the estimated parameters.
Expected calibration error (ECE); [31] ↓: mean absolute difference between
accuracy and confidence (highest posterior probability among predicted classes)
across equally-spaced confidence bins, weighted by relative number of samples
per bin. Thresholded adaptive calibration error (TACE); [33]) ↓: modi-
fied ECE with bins of equal sample size, rather than equal interval width, and
omitting predictions with posterior probabilities falling below a certain threshold
(here: 0.01) that often dominate the calibration in tasks with many classes.
Compared Methods. We compare our method to the following contenders.
Baseline: self-supervised architectures (i.e., SimCLR, DINO, SCD, or Self-
GenomeNet, depending on the task). SSL-Ensemble: deep ensemble com-
prising a multiple of the aforementioned baseline networks. Monte Carlo
(MC) dropout: [15] baseline networks with dropout regularization applied
during pretraining of baseline encoder. BatchEnsemble: baseline encoder with
BatchEnsemble applied during pretraining.

5 Results and Discussion

In-Distribution Generalization. IND generalization (or prediction calibra-
tion) quantifies how well model confidence aligns with model accuracy. We
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perform several experiments on small and large image datasets as well as the
genomics sequence dataset to evaluate and compare the predictive performance
of our proposed model in IND generalization. Here, the base encoder fθ is frozen
after unsupervised pretraining, and the model is trained on a supervised linear
classifier. The linear classifier is a fully connected layer followed by softmax,
which is placed on top of fθ after removing the ensemble of sub-networks. High
predictive scores and low uncertainty scores are desired. Figure 3 illustrates the
predictive probability of correctness for our model on CIFAR-10, CIFAR-100,
ImageNet, and T6SS datasets in terms of Top-1 accuracy, ECE, and NLL, respec-
tively. Based on Fig. 3, our method achieves better calibration (ECE and NLL)
than the deep ensemble of self-supervised models. The discrepancy in perfor-
mance between our model and the deep ensemble can be explained by various
factors, including differences in uncertainty modeling, complexity, and robust-
ness. While the deep ensemble excels in top-1 accuracy, our model’s superior
ECE and NLL scores indicate better-calibrated and more reliable predictions,
which are essential for safety-critical applications and decision-making under
uncertainty.
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Fig. 3. IND generalization in terms of (a) Top-1 Accuracy (b) ECE (c) NLL aver-
aged over in-distribution on test samples of CIFAR-10/100, ImageNet, T6SS datasets.
Here, we compare our method with the ensemble of deep self-supervised networks
(SSL-Ens), as well as the baseline.

Out-of-Distribution Detection. OOD detection shows how well a model can
recognize test samples from the classes that are unseen during training [16]. We
perform several experiments to compare the model generalization from IND to
OOD datasets and to predict the uncertainty of the models on OOD datasets.
Evaluation is performed directly after unsupervised pretraining without a fine-
tuning step. Table 2 shows the AUROC on different OOD sets for our model,
baseline, and deep self-supervised ensemble. Our approach improves overall com-
pared to other methods.
Semi-supervised Evaluation. We explore and compare the performance of
our proposed method in the low-data regime. Again, the encoder fθ is frozen
after self-supervised pretraining, and the model is trained on a supervised lin-
ear classifier using 1% and 10% of the dataset. The linear classifier is a fully
connected layer followed by softmax. Table 3 shows the result in terms of top-
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Table 2. OOD detection. Results reported using AUROC show our method enhances
the baseline up to 6%.

IND OOD Baseline SSL-Ensemble Our method

CIFAR-100 SVHN 84.22 84.95 88.00
Uniform 91.65 90.53 97.57
Gaussian 90.00 89.42 94.10
CIFAR-10 74.71 74.80 75.18

CIFAR-10 SVHN 95.03 96.68 97.07
Uniform 96.73 91.64 99.05
Gaussian 96.39 93.24 99.24
CIFAR-100 91.79 91.59 91.87

Table 3. Semi-supervised evaluation: Top-1 accuracy (ACC), ECE, and NLL for
semi-supervised CIFAR-10/100 classification using 1% and 10% training examples.

Method CIFAR-10 (1%) CIFAR-10 (10%) CIFAR-100 (1%)CIFAR-100 (10%)

ACC ECE NLL ACC ECE NLL ACC ECE NLL ACC ECE NLL
Baseline 89.1 0.075 0.364 91.1 0.039 0.274 56.2 0.097 2.01 59.5 0.086 1.79
SSL-Ensemble 90.1 0.056 0.334 92.2 0.050 0.257 59.7 0.081 1.86 62.6 0.053 1.48
Our method 90.4 0.018 0.296 92.6 0.016 0.249 59.3 0.060 1.71 62.4 0.042 1.56

1 accuracy, ECE, and NLL. The results indicate that our method outperforms
other methods in the low-data regime – in terms of calibration.
Corrupted Dataset Evaluation. Another important component of model
robustness is its ability to make accurate predictions when the test data distri-
bution changes. Here, we evaluate model robustness under covariate shift. We
employ a configuration similar to the one found in [44]. Figure 4 summarizes
the improved performance across metrics of interest. The results confirm that
our method outperforms the baseline and achieves comparable predictive perfor-
mance as a deep self-supervised ensemble – both in terms of calibration (TACE)
and AUROC.
Transfer to Other Tasks and Datasets. We further assess the generaliza-
tion capacity of the learned representation on learning a new task in NLP. We
train our model without any labels on a dataset of sentences from Wikipedia [23]
and fine-tune the pretrained representation on seven different semantic textual
similarity datasets from the SentEval benchmark suite [6]: MR (movie reviews),
CR (product reviews), SUBJ (subjectivity status), MPQA (opinion-polarity),
SST-2 (sentiment analysis), TREC (question-type classification), and MRPC
(paraphrase detection). Then, we evaluate the test set of each dataset. Figure 5
provides a comparison of the transfer learning performance of our self-supervised
approach for different tasks. Our results in Fig. 5 indicate that our approach
performs comparably to or better than the baseline method. We test the per-
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Fig. 4. Performance under dataset corruption (CIFAR-10/100 with five levels of
increasing perturbation), evaluation in terms of AUROC and TACE for several types
of corruption (vertical spread).

formance of the trained model on ImageNet [8] on CIFAR-10 [27] dataset where
the model is trained for 100 epochs (Table 4).
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Fig. 5. Transfer to other dataset and tasks: Comparision of Sentence embedding
performance on semantic textual similarity tasks.

Table 4. Transfer to other dataset: Expected calibration error averaged over
uncertainty-aware evaluation on CIFAR-10 datasets.

Method ACC (%) (↑) ECE (↓) NLL (↓) TACE (↓)

Baseline 73.5 0.038 0.78 0.20
Our method 73.9 0.030 0.75 0.18
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Fig. 6. We compare the feature diversity for different subnetworks and ensemble mem-
bers. The top images are for different sub-networks, and the bottom images are for
different ensemble members. We used Grad-CAM [41] for visualization.

6 Ablation Study

In order to build intuition around the behavior and the observed performance
of the proposed method, we further investigate the following aspects of our app-
roach in multiple ablation studies exploring: (1) the number M of sub-networks,
(2) the role of each component of the proposed loss, and (3) analysis of diversity
with visualization of the gradients of subnetworks. We also present more results
on (4) the impact of our approach during pretraining vs. at the finetuning step,
(5) the size of sub-networks, and (6) the impact of model parameters.
Number of Sub-networks. We train M individual deep neural networks on
top of the representation layer. The networks receive the same inputs but are
parameterized with different weights and biases. Here, we provide more details
regarding our experiments on IND generalization by considering varying M .
Figure 7a compares the performance in terms of top-1 accuracy, ECE, and NLL
for CIFAR-10 and CIFAR-100. Based on the quantitative results depicted in
Fig. 7a, the predictive performance improves in both datasets when increasing
the number of sub-networks (M) until a certain point. For example, in the case
of CIFAR-10, when M = 3, our performance is 91.9%; increasing M to 10 levels
top-1 accuracy up to 92.6%, while the ECE and NLL decrease from 0.026 and
0.249 to 0.023 and 0.222, respectively. These findings underline that training our
sub-networks with a suitable number of heads can lead to a better representa-
tion of the data and better calibration. Recently [43,47] provided a theoretical
statement as well as experimental results that projection heads help with faster
convergence.
Analysis of Loss. The total loss (Eq. 3) is calculated by the combination of
self-supervised loss (Eq. 1) and diversity loss (Eq. 2), where the mean value of
the embeddings across the ensemble of sub-networks is fed to the self-supervised
loss, and the corresponding standard deviation is used for the diversity loss.
First, we note that the use of our diversity regularizer indeed improves calibra-
tion and provides better uncertainty prediction. The results in Fig. 3 show the
impact of our loss function in relation to the baseline. Figure 3 compares the
predictive probability of the correctness of DINO (baseline) and our model on
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Fig. 7. Ablation study on number of M sub-networks (a), hyperparameters of our
proposed loss (b) λ and (c) α.

ImageNet. Second, we explore different hyperparameter configurations to find
the optimal values for α and λ in Fig. 7b, 7c. Note that, in practice, α and λ
must be optimized jointly. The best top-1 accuracy in our case is achieved when
α and λ are set to 0.08 and 1.5, respectively, on the CIFAR-10 dataset.
Analysis of Diversity. In addition to quantitative results for diversity analy-
sis provided in Fig. 2b, we visualize the activation map for the last convolution
layer in the encoder for each ensemble member and each subnetwork to moti-
vate the effect of subnetworks on the encoder. As illustrated in Fig. 6, different
subnetworks have more feature diversity compared to the deep ensemble as we
expected.
Efficient Ensemble of Sub-networks at Pretraining vs. Finetuning We
performed additional experiments to study the efficiency of proposed loss and
independent sub-networks (InSub) i) during pretraining, ii) during finetuning,
and iii) during both pretraining and finetuning. As shown in Table 5, pretraining
with an ensemble of sub-networks is beneficial, and additional fine-tuning with
multiple heads can further improve performance.
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Table 5. Pretraining vs. Finetuning: Expected calibration error averaged over
uncertainty-aware evaluation on CIFAR-10 datasets. InSub refers to training with our
proposed Independent Subnetworks

Method ACC (%) (↑) ECE (↓) NLL (↓) TACE (↓)

Baseline 92.5 0.039 0.238 0.133
Pretrain-InSub 92.6 0.032 0.226 0.131
Finetune-InSub 92.6 0.021 0.222 0.103
Pretrain-InSub + Finetune-InSub 92.8 0.023 0.227 0.115

Table 6. Sub-Network Size: Expected calibration error averaged over uncertainty-
aware evaluation on CIFAR-10 datasets.

Method ACC (%) (↑) ECE (↓) NLL (↓)

Our method with 5 sub-network (100%) 92.9 0.019 0.221
With 25 percent of sub-network size 92.3 0.026 0.231
With 50 percent of sub-network size 92.6 0.021 0.226
With 75 percent of sub-network size 92.6 0.019 0.221

Table 7. Large variant encoder: Expected calibration error averaged over
uncertainty-aware evaluation on CIFAR-10 datasets.

Method ACC (%) (↑) ECE (↓) NLL (↓) Number of parameters (M)

Our method with ResNet50 as a encoder with 5 sub-networks 92.9 0.019 0.221 45.79
Baseline with ResNet101 as a encoder 93.2 0.027 0.202 46.95

Analysis of Size of Sub-networks. We perform several experiments to study
the different sizes of sub-network. As shown in Table 6, the dimension of pro-
jection heads does not change the top-1 accuracy. Recent self-supervised models
such as SimCLR [5], BarlowTwins [48] also reach the same results with different
projection head sizes.
Impact of Model Parameters. Our project aims to improve the predictive
uncertainty of the baseline without losing predictive performance by mimick-
ing the ensembles of self-supervised models with much lower computational
costs. According to the results shown in Table 7, a bigger encoder can poten-
tially improve the predictive performance, but it does not necessarily improve
the predictive uncertainty of the results. We used ResNet101 as a baseline with
more parameters in the encoder. To have a fair comparison, we compare it with
our model with five heads. Our model performs better in ECE and NLL and has
comparable accuracy. Also, we used ResNet34 as a baseline with fewer parame-
ters in the encoder with twenty heads and compared it with baseline ResNet50
with one head. According to results obtained in Table 8, our model performs
better in terms of ECE and NLL and has on-par accuracy.
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Table 8. Different encoder (medium size): Expected calibration error averaged
over uncertainty-aware evaluation on CIFAR-10 datasets.

Method ACC (%) (↑) ECE (↓) NLL (↓) Number of parameters (M)

Our method with ResNet34 as a encoder with 20 sub-networks 92.5 0.016 0.23 27.84
Baseline with ResNet50 as a encoder 92.8 0.039 0.233 27.89

7 Conclusion

In this paper, we presented a novel diversified ensemble of self-supervised frame-
work. We achieved high predictive performance and good calibration using a
simple yet effective idea – an ensemble of independent sub-networks. We intro-
duced a new loss function to encourage diversity among different sub-networks.
Our method is able to produce well-calibrated estimates of model uncertainty at
low computational overhead over a single model while performing on par with
deep self-supervised ensembles. It is straightforward to add our method to many
existing self-supervised learning frameworks during pretraining. Our extensive
experimental results show that our proposed method outperforms, or is on par
with, an ensemble of self-supervised baseline methods in many different experi-
mental settings.
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Abstract. Recommender Systems (RSs) may inadvertently perpetu-
ate biases based on protected attributes like gender, religion, or eth-
nicity. Left unaddressed, these biases can lead to unfair system behav-
ior and privacy concerns. Interpretable RS models provide a promising
avenue for understanding and mitigating such biases. In this work, we
propose a novel approach to debias interpretable RS models by intro-
ducing user-specific scaling weights to the interpretable user represen-
tations of prototype-based RSs. This reduces the influence of the pro-
tected attributes on the RS’s prediction while preserving recommenda-
tion utility. By decoupling the scaling weights from the original represen-
tations, users can control the degree of invariance of recommendations
to their protected characteristics. Moreover, by defining distinct sets of
weights for each attribute, the user can further specify which attributes
the recommendations should be agnostic to. We apply our method to
ProtoMF, a state-of-the-art prototype-based RS model that models
users by their similarities to prototypes. We employ two debiasing strate-
gies to learn the scaling weights and conduct experiments on ML-1M
and LFM2B-DB datasets aiming at making the user representations
agnostic to age and gender. The results show that our approach effec-
tively reduces the influence of the protected attributes on the represen-
tations on both datasets, showcasing flexibility in bias mitigation, while
only marginally affecting recommendation quality. Finally, we assess the
effects of the debiasing weights and provide qualitative evidence, partic-
ularly focusing on movie recommendations, of genre patterns identified
by ProtoMF that correlate with specific genders.
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1 Introduction

Recommender Systems (RSs) typically operate as black boxes trained on large
collections of user-item interactions to generate recommendations. Through
this training process, they capture underlying interaction patterns, revealing
which users prefer which content, to better model the users’ interests. Alas, the
observed user behavior might correlate with particular protected user attributes
such as gender, age, ethnicity, or religion, even when these are not explicit in
the data [12]. When exposed to such data, the RS can encode these correlations
in the user representations, potentially leading to biased predictions [17,33,46],
unfair system behavior across protected groups [11,20], and the strengthening of
per-group “filter bubbles" [13,29]. Furthermore, they can also raise privacy con-
cerns regarding the disclosure of sensitive information from the representations
[4,36].

Interpretable RS models can be leveraged to understand how these biases
manifest in the data [3,19] and how they are assimilated by the RS [15,38].
In recent years, several RS models that offer interpretable user representa-
tions have emerged. Specifically, each dimension of these representations usu-
ally corresponds to an interpretable aspect, such as the user’s sentiment towards
items’ attributes [45], user or item features [16,37], or similarity to prototypical
users/items [1,34]. These transparent models can assist in defining potential cor-
rective measures. For instance, if a particular dimension strongly correlates with
a user’s protected attribute, we can choose to weaken it and use the updated
representations to generate debiased recommendations. Alternatively, we may
also amplify another dimension associated with a different value of the pro-
tected attribute, thereby increasing the ambiguity surrounding the true user’s
attribute. However, determining which dimensions are indicative of the attribute
in the first place can still pose challenges.

One solution, explored in recent literature, is to adapt the user represen-
tations, predominantly through in-processing techniques [9,11]. These methods
involve (re-)training a RS model to provide relevant recommendations while also
optimizing a debiasing objective that attempts to make the predictions invari-
ant to the user’s protected attributes, albeit with a trade-off in performance
[4,17,29,46]. However, depending on the user’s preferences, the context, or bias-
utility trade-off considerations, end-users might in practice still prefer to receive
some recommendations from the original (potentially biased) model. Especially
when different users have different attitudes towards their biased representations
(e. g., users conforming to stereotypical norms may prefer biased predictions),
or when the same user prioritizes having their recommendations unbiased with
respect to certain attributes but not others [29]. Accommodating all these sce-
narios with current approaches can be burdensome, as it requires training a
separate RS for every protected attribute and according to each user’s request.

In contrast, we propose learning separate user-specific scaling weights that
can be applied to the interpretable user representations of a pre-trained RS
model. These modular weights automatically adjust the representations to
reduce their biases associated with a protected attribute, e. g., gender or age,
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while still preserving relevant recommendations. This concept aligns with recent
efforts in the NLP community focused on modular bias mitigation, enabling end-
users to choose whether their results should be biased or unbiased on-demand
[25,26,32]. Our method allows to flexibly cover different users’ needs. By keeping
the weights separate from the original representations, users can decide during
inference whether their recommendations should be influenced by their protected
attributes, applying the scaling weights as needed. Additionally, by training dis-
tinct sets of weights for each attribute of interest, users can further specify with
respect to which of them the recommendations should be agnostic.

We apply our approach to the recently proposed ProtoMF model [34], a
prototype-based RS designed to capture specific item-consumption characteris-
tics of the data through the concept of user/item prototypes [23,27]. We select
this model for its ability to provide relevant and explainable recommendations;
nevertheless, our method can be applied to any interpretable RS that provides
interpretable user representations. Within ProtoMF, each user is mapped to
a representation where each dimension indicates the similarity between the user
and a specific user prototype. The application of the scaling weights, hence, tunes
these similarities, thereby influencing the impact of the prototype’s pattern on
the resulting recommendations. Consequently, analyzing which dimensions are
attenuated (< 1) or amplified (> 1) by the debiasing strategy aids us in inter-
preting which consumption patterns might be correlated (and in which way) to
a specific protected attribute.

We evaluate our method on two popular datasets of movie ratings (ML-
1M [24]) and music listening records (LFM2B-DB [35]). For both datasets, we
learn user representations that are less affected by the user’s gender and age,
which aligns with the concepts of representational fairness [40] or demographic
parity [2]. Intuitively, if the representations are invariant to these attributes,
predictions based on these representations will also be invariant, resulting in
less biased recommendations [2]. For instance, the RS will avoid recommending
only Romance movies to female users. Our approach is agnostic to the debi-
asing objective, allowing the scaling weights to be trained with any gradient
descent-based signal that ensures representation invariance to a specific user’s
attribute. In this study, we investigate two debiasing objectives: Maximum Mean
Discrepancy [22] and Adversarial Debiasing [21,43]. To assess the effectiveness of
our approach to mitigate bias, we follow the standard evaluation framework for
debiasing [14,26,29,32] and report the performance of an external probe network
trained to predict the protected attribute from the user representations. Com-
pared to the original user representations, our results show that our proposed
method effectively impairs the probe’s ability to recover sensitive information,
resulting in a substantial reduction in bias while only marginally affecting rec-
ommendation performance. Finally, we investigate the effect of the debiasing
weights and showcase for ML-1M the genre patterns captured by ProtoMF
that are correlated with gender. Our code and settings are publicly available at
https://github.com/hcai-mms/modprotodebias.

https://github.com/hcai-mms/modprotodebias
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2 Related Work

Our research is influenced by recent works in NLP. Thus, we review pertinent
literature in this field before delving into related research on debiasing RSs.

Bias Mitigation in Natural Language Processing. Extensive research has
addressed societal biases within Language Models (LMs), particularly focus-
ing on attribute erasure [33]. This involves reducing the influence of protected
attributes within LM’s embeddings to mitigate empirical biases [33,40] or achieve
representational fairness [14]. Recent studies explore modular bias mitigation,
enabling end-users to select between biased or bias-mitigated models for individ-
ual queries. In particular, Hauzenberger et al. [25] learn a set of sparse additive
weights that mitigate societal bias when added to the original model. Kumar
et al. [26] leverage adapters [39] to isolate the sensitive information in separate
blocks of the LM. Masoudian et al. [32] introduce controllable gates to scale
LM’s representations to switch between biased/unbiased predictions. Inspired
by these studies, our work introduces separate per-user scaling weights to adjust
user representations for unbiased recommendations.

Bias Mitigation in Recommender Systems. Being multi-sided platforms, RSs’
outcomes may be prone to biases associated with the users [8,42] and items [5,
44]. While there are several strategies to mitigate these biases and increase the
RSs’ fairness, recent literature especially focuses on in-processing techniques
[11,12]. Zhu et al. [47] tackle the issue of item under-recommendation from
imbalanced train data and propose a regularization objective based on fairness.
Similarly from the user side, Li et al. [28] propose a novel RS model to learn
user/item representations that avoid unfairly penalizing non-mainstream users.
Several studies focus on removing spurious correlations between users’ protected
attributes and recommendations by leveraging adversarial learning, albeit at
some performance trade-off. For instance, Bose and Hamilton [6] and Wu et
al. [42], learn user/item representations in graph-based RSs that are invariant to
the user’s protected attribute. Ganhör et al. [17] adapt Mult-VAE [30] to gener-
ate recommendations agnostic to users’ gender. Li et al. [29] simultaneously train
a set of filters, one for each attribute, as well as the underlying RS, to satisfy dif-
ferent users’ fairness demands. Some authors also leveraged interpretable models
to assess fairness issues in RSs. Ge et al. [19] employ counterfactual learning to
learn the minimal change to the input features of a feature-aware RS to address
item exposure unfairness in the recommendations. Fu et al. [15] present a fairness
re-ranking approach to decrease performance disparity between active/inactive
users in explainable recommendations over knowledge graphs. Our work comple-
ments the above studies by addressing the influence of users’ protected attributes
on the recommendations of a pre-trained RS, leveraging modular scaling weights
on the interpretable user representations concerning user prototypes.
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3 Methodology

Let U = {ui}Ni=1 and T = {tj}Mj=1 denote the set of N users and M items,
respectively. We assume that we only have access to the implicit interaction
data I = {(ui, tj)}, where (ui, tj) indicates that user ui has interacted with item
tj . Additionally, each user ui is associated with one or more protected attributes
g ∈ G. We omit the user and item indexes for brevity. Let rec(·, ·) be an inter-
pretable RS model that, beyond scoring each user-item pair rec(u, t) ∈ R, also
maps each user u to an intermediate interpretable representation u ∈ R

d. This
representation may align with various aspects, such as user’s sentiment towards
items’ attributes [45], user or item features [16,37], or similarity to prototypi-
cal users and items derived from the dataset [1,34]. In this work, we focus on
the latter and particularly the recently proposed ProtoMF model [34] as it
showcased high accuracy in the recommendation task. Nevertheless, our method
can be applied to any RS offering interpretable user representations. Within
ProtoMF, each dimension {i}di=1 in u indicates the similarity of user u to a
specific user prototype pi, representing item-consumption characteristics of the
data, with similarity values in the range (0, 2). As shown next, the interpretable
representation u may encode the protected user attribute g, despite the infor-
mation not being explicitly provided to the RS. As a consequence, the RS can
pick up this information and bias its predictions, as also shown in [17,29,46].

To address this issue, we define a vector of scaling weights ωu ∈ R
d for

each user, which can be plugged in at will. Starting from the u representation
obtained from the pre-trained RS model, we derive a new user representation ũ
as follows:

ũ = u � ωu

where � is the Hadamard product. We leave the original user representation
u (as well the other model parameters) unchanged while we only optimize ω
so that the new representation ũ remains relevant for the recommendation task
while becoming invariant to the protected attribute g. The optimization involves
minimizing a recommendation loss Lrec as well as a debiasing objective Ldebias:

ω∗ = argmin
ω

Lrec(I,ω) + λLdebias(I,ω, g)

where the hyperparameter λ adjusts the strength of the debiasing loss. As rec-
ommendation loss Lrec, we adopt the same loss function as the base RS model. In
the case of ProtoMF [34], this corresponds to the cross-entropy loss reported
below for reference:

Lrec = −
∑

(u,t)∈I
ln p(t|u), p(t|u) = erec(u,t)∑

j erec(u,tj)
(1)

The debiasing objective Ldebias operates on the representations ũ and the cor-
responding protected attribute label g to realize invariance. Our approach is
agnostic to the debiasing objective, allowing the scaling weights to be trained



Modular Debiasing of Latent User Representations 61

with any gradient descent-based signal that ensures representation invariance.
In our work, we employ two prominent debiasing strategies: Maximum Mean
Discrepancy (MMD) [22,25] and Adversarial Debiasing (Adv.) [14,43].

Maximum Mean Discrepancy (MMD) [22] aims to minimize the distribution
shift between the representations of a specific protected attribute g. Effectively,
given the set of users U split into two subsets UA

g and UB
g according to the values

of a binary1 protected attribute g, MMD minimizes the mean distance between
the user representations ũ of the two subgroups:

Ldebias =

∥∥∥∥∥∥
1

|UA
g |

∑

i∈UA
g

φ(ũi) − 1
|UB

g |
∑

j∈UB
g

φ(ũj)

∥∥∥∥∥∥

2

2

(2)

where φ is a feature map kernel defined as a sum of multiple Gaussian kernels.

Adversarial Debiasing (Adv.) [21,43] is a common approach in learning input
representations that are informative for the task while remaining invariant to
specific traits of the data [14,17]. In our context, each user is passed through an
adversarial head h(·) that aims to infer the protected attribute g from ũ by lever-
aging the cross-entropy loss Ldebias(ũ, g) = LCE(ũ, g). During training, we aim
to learn scaling weights ω that maintain relevant user recommendations while
hindering the adversary’s predictive ability. This objective is commonly solved
as a minimization task by inserting a gradient reversal layer grl(·) between the
adversary and the rest of the model [18,43]. Essentially, during back-propagation,
the grl(·) negates and potentially scales the gradients flowing from the adversary
to the weights, pushing the ω in the opposite direction desired by the adversary.
This allows us to formulate the debiasing objective as:

Ldebias = LCE(grl(ũ), g) (3)

Finally, given the learned scaling weights ω, we derive the adjusted user rep-
resentations ũ, which are used by the RS model to provide item recommenda-
tions that are both relevant and agnostic to the user’s protected attribute. Our
proposed approach offers a flexible and informative method for debiasing. By
keeping the weights separate from the original representations, users can decide
during inference whether their recommendations should be influenced by their
protected attributes, applying the scaling weights as needed. Using distinct sets
of weights for each attribute of interest, users can further specify with respect to
which of them the recommendations should be agnostic. Moreover, by analyzing
which interpretable dimensions are attenuated (ω < 1) or amplified (ω > 1), we
can assess which consumption patterns might be correlated (and in which way)
to a specific protected attribute.

1 We consider majority vs. all others subsets for non-binary attributes.
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Table 1. Statistics of the datasets used in our experiments.

ML-1M Users Interactions Items LFM2B-DB Users Interactions Items

All 6,034 574,376

3,125

All 16,258 2,339,540

99,824

Gender
M 4,326 429,039

Gender
M 12,734 1,981,006

F 1,708 145,337 F 3,524 358,534

Age

< 18 222 15,583

Age

≤ 18 1,811 232,942
18-24 1,100 100,655
25-34 2,095 222,242

19-32 12,613 1,797,291
35-44 1,192 116,507
45-49 550 49,400

33-39 1,126 184,176
50-55 496 44,979
> 56 379 25,010 > 40 708 125,131

4 Experiment Setup

Datasets. We use two standardized datasets containing user-item interactions
along with partial user’s demographic: (1) MovieLens-1M2 (ML-1M) [24]
contains the ratings of users on movies as well as user’s gender, age group,
and occupation. As common [30,34], we treat high movie ratings (> 3.5 on
a 1–5 scale) as positive interactions while discarding the rest, and perform 5-
core filtering. (2) LFM2B-DemoBias (LFM2B-DB) [35] is a sub-set of the
LFM2B3 dataset, which provides a collection of music listening records of users
for whom partial demographic information (i. e., gender, age, country) is avail-
able. We follow the same data processing methodology as in Melchiorre et al. [35].
Specifically, we keep user-item interactions with a minimum play count of two
and binarize the interactions. Additionally, to accommodate computational con-
straints, we randomly sample 100, 000 tracks from the large catalog and apply
5-core filtering. Furthermore, we split users into age groups based on their devi-
ation from the mean age (μ = 24.87, σ = 7.30) by multiples of σ.

Table 1 offers a detailed summary of the dataset statistics, including the
breakdown by user attribute. With both datasets, we focus on the gender and
age of the user as protected attributes in our experiments.4

Data Splits. To train both the underlying RS model and the scaling weights,
we employ the leave-k-out strategy [10] for every user. Specifically, for each
user, we sort their item interactions according to the timestamps (keeping the
earliest interaction if multiple ones with the same item exist). The last 10%
2 https://grouplens.org/datasets/movielens/1m/.
3 http://www.cp.jku.at/datasets/LFM-2b/.
4 Both datasets provide gender in binary form, neglecting nuanced gender definitions.

https://grouplens.org/datasets/movielens/1m/
http://www.cp.jku.at/datasets/LFM-2b/
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interactions of the users are used as test, while the penultimate 10% as validation
set. The remaining interactions constitute the training set. During training, for
each positive user-item interaction, we randomly sample 10 negative items not
interacted with by the user. We scale both the adversary’s and, later, the probe’s
loss, ensuring that data points from all user groups contribute equally. This
balancing not only aids debiasing [35] but also prevents both classifiers from
solely predicting the majority class [14].

ProtoMF Pre-training. We follow a similar training procedure as the original
UI-ProtoMF paper does [34], referred here simply as ProtoMF. We train
the model for 50 and 100 epochs on ML-1M and LFM2B-DB, respectively,
with the AdamW optimizer [31]. We perform early-stopping if the accuracy on
the validation set does not improve for 5 consecutive epochs. After preliminary
experiments, we set the number of user prototypes based on the dataset (42
for ML-1M and 64 for LFM2B-DB) and fix the batch size to 256. We then
carry out a comprehensive search for optimal embedding sizes and loss-related
hyperparameters. Details on the range of hyperparameters explored, as well as
those selected for the final models, are provided in the appendix. Once we identify
the model that achieves the highest accuracy on the validation set, we freeze its
parameters and only update the scaling weights during debiasing.

Evaluation. To assess the effectiveness of our approach to bias mitigation, we
follow the standard evaluation framework [14]. Specifically, after freezing the
model’s parameters (including the ω), we train a probe network to predict the
protected attributes from the user representations. We measure the accuracy
(Acc) and balanced accuracy (BAcc) when predicting the users’ gender and age.
Particularly, we focus on the BAcc metric [7] as it is well-suited for imbalanced
datasets. BAcc reports the average recall per user group, where a value of 1

#Groups
represents a fully debiased representation which amounts to .50 for gender on
both datasets and 1

7 = .14 and 1
4 = .25 for age on ML-1M and LFM2B-

DB, respectively. To evaluate recommendation performance, we use Normalize
Discount Cumulative Gain (NDCG), specifically NDCG@10. We report perfor-
mance and bias mitigation results as average computed on the test set for three
seeds.

Debiasing and Probing. For the MMD method, we use a batch size of 128 and
set the learning rates to 5e−5 for gender and 5e−4 for age on both datasets.
In the Sect. 5, we explore different values of λ. Regarding adversarial debiasing,
instead, we employ a two-layer neural network with 512 neurons as an adversary
network. We investigate the impact of using multiple adversarial networks, i. e.,
adversarial heads, by averaging their debiasing losses [14]. We use a batch size
of 512 for ML-1M and 1024 for LFM2B-DB, with a learning rate of 5e−5,
adjusting λ based on the dataset and attribute.5 Our probe is a two-layer neural
network with 128 neurons in the hidden layer. We set the learning rate and
weight decay based on the probe’s performance on each dataset and attribute.
5 λ = 1 on LFM2B-DB, λ = 5 and λ = 10 on ML-1M for gender and age respectively.
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After debiasing, we train a new probe using the debiased user representations
while keeping the scaling weights (and the base model) unchanged. Finally, we
initialize the ω by sampling from the normal distribution N (1, .012) and train
them, as well as the probe, for 25 epochs using the AdamW optimizer [31].

5 Results and Analysis

Table 2. Debiasing and performance results on both datasets and attributes. We high-
light the least biased and best-performing values among Adv. and MMD. Subscripts
indicate the standard deviation.

Dataset AttributeDebiasing
Bias ↓

NDCG ↑
BAcc Acc

ML-1M

Gender
None .789003 .788001 .06250000

MMD .542003 .497025 .06180000

Adv. .542008 .608047 .06200000

Age
None .465002 .424003 .06250000

MMD .232001 .207004 .05940002

Adv. .232026 .193011 .06180001

LFM2B-DB

Gender
None .723002 .718004 .07540000

MMD .536004 .397078 .07450001

Adv. .600011 .636065 .07550001

Age
None .581005 .504008 .07540000

MMD .299003 .238055 .06260001

Adv. .390011 .277018 .07550001

General Results. Table 2 reports the results of the debiasing methods and recom-
mendation utility across datasets and attributes. We highlight in bold the best
RS performance (highest NDCG) and best debiasing performance (lowest BAcc
of the probing network). Results are computed on the test set as the average of
3 random seeds, with subscripts indicating the standard deviation.

When no debiasing is applied (None rows in Table 2), we observe that the
users’ protected attributes can be predicted with relatively high accuracy by the
probe. The BAcc for gender reaches .79 and .72 on ML-1M and LFM2B-DB
datasets respectively, compared to a baseline value of .50 of a random predictor.
Similar observations can be made for age; on ML-1M the probe’s BAcc is .47
against the baseline of .14 and on LFM2B-DB is .58 vs. .25 in a bias-free
settings. These results indicate that the user representations u learned by the RS
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Table 3. Debiasing and performance results on both datasets and attributes using the
MMD method across several λ values.

DatasetAttr. Metric
λ

0 2 5 10 15 20

M
L
-1
M

G
en

de
r Bias ↓BAcc .789.003 .633.010 .574.010 .548.002 .548.003 .542.003

Acc .788.001 .631.011 .557.027 .552.012 .514.030 .497.025

NDCG ↑ .0625.0000 .0624.0000 .0623.0000 .0621.0001 .0619.0001 .0618.0000

A
ge Bias ↓BAcc .465002 .463.006 .398.004 .320.007 .258.005 .232.001

Acc .424003 .356.003 .305.004 .252.005 .215.006 .207.004

NDCG ↑ .06250000 .0626.0002 .0619.0002 .0609.0002 .0600.0001 .0594.0002

L
F
M

2B
-D

B

G
en

de
r Bias ↓BAcc .723.002 .607.001 .567.008 .551.005 .538.003 .536.004

Acc .718.004 .588.003 .469.065 .428.074 .357.014 .397.078

NDCG ↑ .0754.0000 .0756.0000 .0755.0001 .0752.0000 .0749.0001 .0745.0001

A
ge Bias ↓BAcc .581005 .639.013 .548.006 .406.008 .327.008 .299.003

Acc .504008 .517.021 .406.010 .232.007 .182.006 .238.055

NDCG ↑ .07540000 .0755.0002 .0752.0002 .0697.0003 .0638.0001 .0626.0001

do retain information about the user’s protected attributes and can potentially
bias the recommendations.

When applying the scaling weights, either learned by MMD or Adv., we
observe a substantial decrease in both Acc and BAcc of the probe. This reduc-
tion spans across both attributes and datasets, indicating the effectiveness of
our proposed method in weakening the attribute information in the new user
representations. We observe that the efficacy and the impact of the ω depends
on the dataset under scrutiny. On the ML-1M datasets, MMD and Adv. reach
similar BAcc values for age and gender, both resulting in a moderate decrease in
NDCG. However, Adv. shows higher capability in preserving the recommenda-
tion performance compared to MMD. On the LFM2B-DB dataset, the scaling
weights learned by MMD display lower bias, although at a larger trade-off in
recommendation performance. The Adv. method, on the other hand, appears to
fully preserve the initial NDCG while leading to a smaller decrease in BAcc com-
pared to MMD. Considering these results, we derive that (1) the debiased user
representations, obtained by either MMD or Adv., exhibit significant decreases in
the bias metrics, although the predictions are not yet fully random (e. g., Gender
BAcc > .50), and (2) there exists a trade-off between bias reduction and recom-
mendation accuracy whose strength depends on the dataset. We investigate the
latter aspect below.
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(a) Gender (b) Age

Fig. 1. BAcc and NDCG on LFM2B-DB using MMD, over varying λ values. In Fig. 1a,
BAcc refers to gender, in Fig. 1b to age.

Bias vs. Performance Analysis. Considering the MMD method, we report in
Table 3 the bias metrics and recommendation accuracy across different values of
λ ranging from 0 (no debiasing is applied) to 20 for ML-1M and LFM2B-DB on
both attributes. We plot the changes of BAcc and NDCG over the λ’s for age and
gender on LFM2B-DB in Fig. 1. We observe that high λ values lead to a stronger
debiasing of the user representations, i. e., lower BAcc, however at the cost of a
moderate reduction of NDCG. We also notice that, on both datasets, making the
representations agnostic to age leads to a harsher reduction of recommendation
accuracy compared to debiasing for gender. Lastly, we observe for λ = 2 on the
age attribute in LFM2B-DB, associated with a milder debiasing, the BAcc even
increases, suggesting that without proper debiasing, more bias information can
be encoded in the user representations through the ω by the recommendation
loss.

Regarding the Adv. method, preliminary experiments with the Adv. method
showed that using a single adversary head while increasing λ led to unsta-
ble debiasing behavior, causing the adversary to fail and more bias to be
encoded in the scaling weights. To address this, we followed previous research
on adversarial debiasing [14,26,32] and opted to use multiple adversary heads
while fixing λ based on the dataset and attribute (see Sect. 4). Table 4 displays
bias/recommendation performance across different numbers of adversarial heads.
Similarly to the MMD method, we observe lowest bias with a stronger debiasing
approach, namely 20 heads. By increasing the # of heads, we see a progressive
reduction in NDCG on ML-1M for both age and gender, while the recommen-
dation performance on LFM2B-DB remains relatively constant.

In summary, we find that (1) MMD progressively reduces both bias and rec-
ommendation performance on both datasets and attributes when increasing λ,
and (2) Adv. showcases a similar gradual change on ML-1M while recommen-
dation accuracy remains relatively stable on LFM2B-DB when increasing the
number of adversarial heads.
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Table 4. Debiasing and performance results on both datasets and attributes using the
Adv. method across different number of adversarial heads.

Dataset Attribute Metric
# of Adv. Heads

0 3 5 10

ML1M

Gender
Bias ↓BAcc .789.003 .642.029 .573.014 .542.008

Acc .788.001 .653.029 .609.009 .608.047

NDCG ↑ .0625.0000 .0621.0001 .0621.0001 .0620.0000

Age
Bias ↓BAcc .465002 .310.022 .265.007 .232.026

Acc .424003 .267.024 .218.012 .193.011

NDCG ↑ .06250000 .0620.0002 .0618.0001 .0618.0001

LFM2B-DB

Gender
Bias ↓BAcc .723.002 .677.011 .608.040 .600.011

Acc .718.004 .705.016 .598.088 .636.065

NDCG ↑ .0754.0000 .0755.0001 .0755.0000 .0755.0001

Age
Bias ↓BAcc .581005 .505.020 .455.012 .390.011

Acc .504008 .414.016 .375.050 .277.018

NDCG ↑ .07540000 .0754.0000 .0754.0000 .0755.0001

Weights Analysis. We now examine how the scaling weights affect the original
user representations. As our method reduces the influence of sensitive informa-
tion in ũ, we expect that the representations of users with different values of the
protected attribute become more similar. We verify this by computing the aver-
age user representation for each user group and ranking the prototypes, i. e., the
interpretable dimensions, from most to least similar. Given the ranking of two
user groups, we compute Spearman’s rank correlation [41] where values closer
to +1 indicate both groups rank the prototypes similarly while values approach-
ing −1 imply an inverse ranking. Figure 2 shows the results for the two gender
groups on both datasets. Plots for age are provided in the appendix. Initially, we
observe different prototype rankings between males and females, especially on
the ML-1M dataset (ρ = −.40). However, as we increase the debiasing strength,
the representations of males/females progressively become more aligned, as seen
from the correlations plateauing between .70 and .80 across datasets and debi-
asing strategies. We derive that the scaling weights, while ensuring relevant rec-
ommendations for users and mitigating the bias of the protected attribute, lead
to an alignment between the representations across user groups.

Taking a closer look at the scaling weights, we plot the average user-to-
prototype similarities u and average ω for Female (Fig. 3a) and Male (Fig. 3b)
user groups on the ML-1M datasets sorted by most to least similar prototype.
We notice a pattern wherein, on average, the scaling values of ω shrink (ω < 1)
the similarities to the prototypes most similar to the user group while they
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(a) MMD (b) Adv.

Fig. 2. Spearman’s correlation between avg. male/female prototype rankings on both
datasets and both debiasing methods.

(a) Female (b) Male

Fig. 3. Average user-to-prototypes similarities and average ω values for female users
(left) and male users (right), sorted by most to least similar prototypes.

amplify (ω > 1) the similarities to the least similar prototypes. By examining
the interpretations of the most and least similar prototypes for each user group,
shown in Fig. 4a, we infer that the debiased representations for female users show
reduced activation towards genre patterns of Romance, Drama, and Comedy
and increased activation towards Action and Sci-Fi. Conversely, the debiased
representations for the male group display the opposite trend.

Finally, we look at a qualitative example showcasing the application of our
learned scaling weights. In Fig. 4b, we report the relevant recommendations for
an arbitrary female user from ML-1M before and after debiasing. We highlight
items dropped from the recommendations in red text and newly recommended
items in blue. Additionally, we use green to highlight the cell containing the
ground truth items. Upon inspection, we observe that the debiased representa-
tion indeed affects the recommendations, particularly altering the items at the
bottom of the list. We also note a reduction in the number of Romance movies
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Prototype 5 (High Sim.) Prototype 22 (Low Sim.)

Affair to Remember, An
Romance

Aliens
Action,Sci-Fi,Thriller,War

Gone with the Wind
Drama,Romance,War

Terminator, The
Action,Sci-Fi,Thriller

Arsenic and Old Lace
Comedy,Mystery,Thriller

Star Trek: Wrath of Khan
Action,Adventure,Sci-Fi

Love in the Afternoon
Comedy,Romance

Night Flier
Horror

Swept from the Sea
Romance

Blade Runner
Film-Noir,Sci-Fi

Prototype 32 (High Sim.) Prototype 34 (Low Sim.)

Star Wars: Episode IV
Action,Adventure,Fantasy,Sci-Fi

Penny Serenade
Drama,Romance

Star Wars: Episode V
Action,Adv,Drama,Sci-Fi,War

Auntie Mame
Comedy,Romance

Star Wars: Episode VI
Action,Adv.,Romance,Sci-Fi,War

Charade
Comedy,Romance,Myst.Thriller

Back to the Future
Comedy,Sci-Fi

Love in the Afternoon
Comedy,Romance

Star Trek: Wrath of Khan
Action,Adventure,Sci-Fi

Crimes of the Hearth
Comedy,Drama

Before After
Wizard of Oz, The

Adv.,Child.,Drama,Musical
Wizard of Oz, The

Adv.,Child.,Drama,Musical
Big

Comedy,Fantasy
Big

Comedy,Fantasy
Breakfast Club, The

Comedy,Drama
Breakfast Club, The

Comedy,Drama
Vertigo

Mystery,Thriller
Vertigo

Mystery,Thriller
Raising Arizona

Comedy
Terminator 2

Action,Sci-Fi,Thriller
Ever After

 Drama,Romance
Raising Arizona

Comedy
Clueless

Comedy,Romance
Alien

Action,Horror,Sci-Fi,Thriller
Misery
Horror

Usual Suspects, The
 Crime,Thriller

Star Trek: First Contact
Action,Adv.,Sci-Fi

Blade Runner
Film-Noir,Sci-Fi

Lion King, The
Animation,Child., Musical

Twelves Monkeys
 Drama,Sci-Fi

Fig. 4. Examples of qualitative results.

and an increase in Sci-Fi movies before and after debiasing. This diversification
also results in better recommendations for the user.

6 Conclusion and Future Directions

This work addresses the pervasive issues of societal bias in RSs from the user
perspective. We propose a novel approach that leverages interpretable RS models
and introduces per-user scaling weights to mitigate biases in the user represen-
tations while preserving recommendation quality. By applying our method to
the prototype-based ProtoMF model [34], we demonstrate its effectiveness in
reducing bias associated with protected attributes such as gender and age. Our
evaluation on ML-1M and LFM2B-DB showcases the flexibility and efficacy of
our approach in bias mitigation. Through qualitative analysis, we reveal corre-
lations between consumption patterns and protected attributes, enhancing our
understanding of bias in RSs. Moving forward, we envision exploring per-user
weights that debias the user representation with respect to a conjunction of dif-
ferent protected attributes [29] simultaneously while also analyzing its effect on
recommendation performance. Additionally, investigating end-users’ perceptions
of biases in recommendations appears as a promising avenue for future work.
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1 Introduction

Data augmentation creates a training dataset using synthetic data from the prior
knowledge. It improves the generalization of machine learning models, particu-
larly in the case of deep neural networks. For decades, its reliable performance
has been verified in various of computer vision tasks such as image classification
[9,13,21] and object detection [17,19]. To the best of our knowledge, there are
currently two major explanations for the role of this technique. The first one
views data augmentation as simply increasing the sample size, and explains it
with statistical tools such as VC dimension theory [23]. The other one [11,25]
views data augmentation as a regularization method, which train the model on
a more complex population, which is called shifted population by injecting noise
with prior knowledge to the original population, thereby enabling the model to
retain semantic information unchanged.

However, the model is ultimately trained with the augmented samples,
thereby improving the model’s performance on the original population. There-
fore, it is important to further explore the relationship between the expected risk
of these two populations. To address this issue, we develop a rigorous mathemat-
ical framework of the shifted population p∗(x′) and data augmentation. Based
on this framework, we prove that the expected risk of the shifted population is
the summation of the original population and a gap term that can be viewed as
a consistency regularization term. This decomposition sheds light on the unifica-
tion of the two aforementioned explanations. Moreover, inspired by the work of
[10], the generalization of the model greatly depends on the consistency between
the empirical risk of the original population and the shifted one, and the gap
term may violate such consistency. To address this issue, we add a trade-off
coefficient to the gap term to highlight the importance of the learning of major
features, which is controlled by the expected risk of p(x). This approach greatly
benefits the performance of the model.

At present, some work like [3] has provided a decent mathematical framework
for data augmentation, but it is too limited to describe some of the existing data
augmentations, and it completely ignores the gap term. However, this neglect
could be harmful, for it is indicated by our analysis and experiment that reducing
its impact in early stages of training has been proven to be helpful for the model’s
generalization. Please see Appendix D.1 for a more detailed discussion.

We conducted experiments to evaluate the proposed training strategy on pop-
ular image classification benchmarks, namely CIFAR-10/100 [12], Food-101 [2],
and ImageNet (ILSVRC2012) [2]. Our evaluation involved using representative
deep networks such as ResNet-18, ResNet-50, and WideResNet-28-10. In addi-
tion to assessing the performance in the standard scenario, we also tested the
algorithm in the out-of-distribution (OOD) scenario with dataset PACS [14]) and
the long-tail imbalanced classification (LT) scenario with dataset LT-CIFAR10
[5]. Across all our experiments, our strategy consistently achieved lower error
rates and demonstrated more stable convergence compared to the standard data
augmentation strategy.
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This paper’s contributions can be summarized as follows:

1. We provide a rigorous mathematical definition for the shifted distribution
p∗(x′) of the augmented samples, which further reveals that the commonly
used augmented samples actually comes from the a conditional distribution
p(x′|x). We also give a mathematical description of sampling from this dis-
tribution and find that the samples used during training from this marginal
distribution are not completely independent, which is surprising.

2. Based on the proposed mathematical framework, we discover that the risk on
the shifted population p∗(x′) can be decomposed into a risk on the original
population p(x) and a gap term, serving as a consistency regularization term.

3. We provide a theoretical understanding of such decomposition and an expla-
nation of why our training strategy is beneficial for the improvement of gen-
eralization.

2 Related Work

Data Augmentation Frame Work. Data augmentation methods play a crucial
role in improving the performance of machine learning models in practical appli-
cations. These methods encompass a range of techniques, including traditional
fixed augmentation methods like Cutout [6], Mixup [29], and Cutmix [26]. Addi-
tionally, there are adaptive augmentation methods such as AutoAugment [4],
Fast AutoAugment [16], DADA [15], and CMDA [22], which dynamically design
augmentations based on the dataset. Despite the availability of these diverse
augmentation methods, there is a dearth of theoretical frameworks for analyz-
ing the population shift phenomenon induced by data augmentation and the
associated shifted population risk.

A recent work [3] provides a theoretical framework that defines the aug-
mentation operator as a group action. However, their framework has certain
limitations, as evidenced by several common augmentation operators that are
incompatible with the group action framework, as detailed in the Appendix D.1.
Our proposed framework can be applied to a wider range of data augmentation
operators compared to theirs.

Population Shift. Population shift is a common concern in machine learning
robustness and generalization problems. It refers to a problem in which the
population of data changes during some processes, such as a distribution being
transformed to other distributions within the same distribution family, and the
change of the parameters of a distribution. A common example for population
shift in machine learning is the different semantic styles between the training
and testing sets, such as PACS [14], Rotated MNIST, Color MNIST [1], VLCS,
and Office-Home [24]. However, not all types of population shifts are natural.
Style shifts such as PACS are naturally generated distributions, while population
shifts such as Rotated MNIST and Color MNIST are artificially generated. It is
obvious that all data augmentations will produce an artificial population shift.
This work aims to provide a theoretical framework for artificial population shifts
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and analyze the relationship between the shifted population risk and the
original population risk.

3 Method

3.1 Revisiting Data Augmentation with Empirical Risk

We conduct research in the case of classification and denote the data space and
label space as X and Y and a joint distribution p is defined on X × Y, with
marginal distribution p(x) and conditional distribution p(x|y). We call a sample
x drawn from p(x) a “clean sample”. We aim to train a model f : X → Y by
minimizing the following risk with a loss function L(·, ·):

Rf (p) =
∫

L(f(x), y)dp(x, y), (1)

As (1) is usually intractable, the empirical risk minimization principle is
used, aiming at optimizing an unbiased estimator of (1) over a training dataset
D = {(xi, yi)}N

i=1:

R̂f (p) =
1
N

N∑
i=1

L(f(xi), yi), (2)

Following [25], we introduce the following assumption to build a bridge between
empirical risk and expected risk:

Claim. Let C(f) be some complexity metric of f , N be the number of data
(don’t have to be independent), B(N) be the “independence” of the input data.
For ∀δ > 0, we assume that the following holds with probability 1 − δ:

Rf (p) − R̂f (p) ≤ φ(C(f), B(N), δ). (3)

where φ(·) is a function of these three terms, and it monotonically increases with
respect to the second variable.

We refer the readers to [18] for more detail about the convergence in the
non iid case. It is worth noting that data augmentation produces an augmented
sample x′, which is a distinct random variable from the clean sample x, with a
different distribution p∗(x′) but the same probability space triplet. This leads
to a new population p̃(x′, y) and an expected risk defined on it. Specifically, the
empirical risk function is defined as follows:

R̂f (p∗) =
1
N

N∑
i=1

L(f(x′
i), yi). (4)

It is important to note that minimizing (4) does not necessarily result in the
minimization of (1) or even (2). Meanwhile, data augmentation is also recog-
nized as a regularization technique that can reduce generalization error without
necessarily reducing training error [7,28]. Our proposed decomposition as well
as the framework should be helpful when one tries to overcome these struggles.
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3.2 The Augmented Neighborhood

Data augmentation is typically applied directly to a clean sample x to generate
an augmented sample x′. The augmentation is usually designed to preserve the
semantic consistency between x and x′, hence it is often referred to be “mild”.
However, the data augmentation is usually controlled by a set of parameter when
it is applied to a fixed clean sample x. When the parameters are iterated, a large
set of augmented samples are produced, among which there are samples are over
augmented and should not be considered “mild”. As a result, a series of rigorous
mathematical definitions are required, so one may draw a line between “ordinary”
data augmentation and a “mild” one.

The Augmentation and Limitation. We begin this section with the defini-
tion of data augmentation:

Definition 1. Let X be the data space, endow X with Borel σ− algebra F , let
the data augmentation Ai(·, ·) be a map from X × Θ(Ai) to X satisfying:

1. For every fixed x in X , the map θ �→ Ai(θ, x), is differentiable and injective.
We denote the inverse of this map as h−1

Ai,x
.

2. For every fixed θ in Θ(Ai), the map Ai(θ, ·) is an F− measurable map.

3. ∀x ∈ X ∃ ei ∈ Θ(Ai) s.t. A(ei, x) = x and such ei is unique.

where Θ(Ai) is the parameter space of Ai(·, ·).
The differentiability of some popular data augmentations has been proven

in [22]. The injectivity of the data augmentation is always guaranteed given
proper parameterization and a carefully chosen parameter space. The measur-
able assumption is required to ensure that A(θ, x) is still measurable, which is
necessary for the adjoint random variable x′. However, the tractability of h−1

Ai,x

is not always guaranteed, but the good news is that it is not always required in
practice. More detailed discussion is provided in Sect. 3.2, where we discuss how
to sample from the conditional distribution p(x′|x).

Denote the set of data augmentation as A = {A1, . . . Am}, among which Ai

corresponds to a certain type of data augmentation such as rotation, Gaussian
blur and so on. Denote dim(Θ(Ai)) = di, where Θ(Ai) denotes the parameter
space of Ai. For example, the parameter space of rotation is usually chosen as
(0, 2π) and the dimension is 1. The distribution of the parameter defined on
Θ(Ai) is denoted as pi(θ). Now for a given clean sample x0, we consider all of
its augmented sample, which is the image of the mapping Ai(x0, ·), defined on
Θ(Ai):

Definition 2. For any given clean sample x0 ∈ X and data augmentation Ai

with parameter space Θ(Ai), the augmentation neighborhood of x0 induced
by Ai is defined as:

Ai(x) :=
⋃

θ∈Θ(Ai)

Ai(θ, x). (5)
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Now we should add some restrictions to this set so make it “mild”.
At first we introduce the conception C, a map from input space X to the

label space L = {c1, . . . , cl} where l denotes the number of class, such that
for every clean sample pair (x, y) ∼ p(x, y), C(x) = y ∈ L , conception is the
desired ground truth map. C induces a partition of the sample space, by giving
l mutually disjoint sets such that Γi = {x|C(x) = ci}, what we call level set. We
denote the level set of the class of a sample x0 with Γx0 , and we use this level
set to describe the semantic consistency. The conception C represents the prior
knowledge of people when they perform data augmentation. The definition is
given as followed:

Definition 3. For any given clean sample x0 ∈ X , and augmentation Ai with
parameter space Θ(Ai), the consistency augmentation neighborhood (CAN
for short) of x0 induced by Ai is defined as:

OAi
x0

:= Ai(x0) ∩ Γx0 . (6)

Now we will introduce how to sample from the CAN.
Sampling from CAN of x0. An augmented sample is generated given a clean
sample, together with the aforementioned mild argument, we claim that the
sampling procedure should be described with a conditional distribution p(x′|x),
whose supporting set is CAN of x0. The fact that ∀x′ ∈ OAi

x0
, there exists only

one θθθ := h−1
Ai,x0

(x′) ∈ Θ(Ai) such that x′ = Ai(θθθ, x) which is ensured by our
definition. Furthermore, with the measurability of Ai(·, x), x′ is a random vari-
able. Therefore, for any given data augmentation Ai, the conditional distribution
p(x′|x) induced by Ai is defined as:

Definition 4. For any given clean sample x ∼ p(x), the conditional distribution
p(x′|x) of the adjoint variable x′ with supp(p(x′|x)) = OAi

x is given as

p(x′|x) ∝ pi(h−1
Ai,x

(x′))
∣∣∣∣ ∂

∂θθθ
Ai(θθθ, x)

∣∣∣∣
θθθ=h−1

Ai,x(x
′)
1

x′∈OAi
x

. (7)

Sampling from Ai(x) is equivalent to sampling from pi(θθθ) defined on Θ(Ai),
for h−1

Ai,x
(Ai(x)) = Θ(Ai), given the injectivity of A(·, x). Furthermore, to sample

from Ai(x) ∩ Γx, we need to sample from the truncated distribution:

pi(θθθ)1θθθ∈h−1
Ai

(OAi
x )

. (8)

Rejection sampling is one effective way to generate augmented samples, but
it may be infeasible in high-dimensional cases due to its computational cost.
Although various methods, such as nested sampling, adaptive multilevel split-
ting, or sequential Monte-Carlo sampling, could be viable alternatives, we leave
the exploration of these methods for future work. Additionally, the rejection step
can be seen as a way to inject humane prior knowledge to samples, which aligns
with the intuition on the process of data augmentation. In our experiment, we
assume that it would be enough to sample from the subset of h−1

Ai
(OAi

x ), we use
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human prior knowledge in rejection sampling to roughly determine a subset of it.
We begin by selecting the candidate of edges of these subsets, then apply A(θ, x)
for parameters of these edges, and reject or accept these edges by observing the
output samples. However, this method is inefficient and risky, rejection sampling
is infamous for its inefficiency and the initial selection of edges could be prob-
lematic since they may be too small compared to the ground truth. We plan to
develop better methods based on our framework in future work.

The conditional distribution p(x′|x) is now well-defined, with its marginal
distribution given by p∗(x′) =

∫
p(x′|x)p(x)dx. However, it is important to note

that p(x′|x) is unlikely to be tractable. The description above is useful in under-
standing that an augmented sample is a random variable induced from the of
data augmentation, given the measurability of A(x, ·).

Finally, it’s worth mentioning that generating M samples for each of the
N clean samples does not result in M × N completely independent augmented
samples. But (4) still yields an unbiased estimator of the shifted population risk,
due to the following equation:

Ep(x′|y) [L(y, f(x′))] = Ep(x|y)
[
Ep(x′|x,y) [L (y, f(x′))| x]]

,

= Ep(x|y)
[
Ep(x′|x) [L (y, f(x′))| x]]

,

R̂f (p∗) =
1
N

N∑
i=1

1
M

M∑
j=1

L(yi, f(x′
ij
)),

Taking expectation on the both side of the third equation yields the desired
result. One should notice that augmented sample x′ is independent of y once its
original clean sample x is given, which explains the second equality.

The above definition in the case of a finite set of data augmentations and the
composition order is given in Appendix A.

By establishing these definitions and concepts in this section, we are provided
with a comprehensive understanding of the topic at hand. Which provides a solid
foundation for the decomposition of the expected risk in the coming section.

3.3 The Artificial Shifted Population Risk

After defining the augmented neighborhood and giving sampling method by
defining the adjoint variable x′ and its conditional distribution p(x′|x), we then
evaluate the risk on the shifted population p(x′, y). One should realize that the
collection of all the samples generated from p(x) is a subset of the samples
generated from p∗(x′).

For simplicity, we only consider the risk function in the case of cross-entropy
and softmax on the shifted population p(x′, y), and our method should be able
to extend to the other cases similarly:

Rf (p∗) = Ep∗(x′) [H(p(y|x′), qφ(y|x′))] ,
= Ep(y)p(x′|y)[− ln qφ(y|x′)]
= Ep(y)p(x′,x|y)[− ln qφ(y|x′)],

(9)
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among which φ denotes the parameter of the neural network and q represents a
probabilistic surrogate model. The decomposition of this shifted population risk
is examined with the following theorem:

Theorem 1. With the shifted population risk in the form of (9), we have the
following decomposition:

Ep∗(x′) [H(p(y|x′), qφ(y|x′))]

= Ep(x) [H(p(y|x), qφ(y|x))] + Ep(x)p(y|x)p(x′|x)

[
ln

qφ(y|x)
qφ(y|x′)

]
,

(10)

The proof of the Theorem 1 can be found in Appendix B.1. This demonstrates
that in the case of cross-entropy and softmax, the shifted population risk is
actually the sum of the original population expected risk and a gap term
that can be viewed as a consistency regularization term. Next, we provide
a theorem that explains the second term.

3.4 Understanding the Decomposition of Shifted Population Risk

From the last section, we have:

Ep(x)p(y|x)p(x′|x)

[
ln

qφ(y|x)
qφ(y|x′)

]
= Ep(x)p(x′|x)

[
ln

qφ(yx|x)
qφ(yx|x′)

]
, (11)

where yx is the ground true label of clean sample x. Since qφ(y|x) is modeled
with softmax, we have:

qφ(yi|x) = exp(wT
i hθ(x))∑l

j=1 exp(w
T
j hθ(x))

, (12)

where hθ(x) = (h1(x), h2(x), . . . , hd(x), . . . , hD(x))T (the subscript θ of the
component is omitted for convenience) is the feature vector of x, and W =
(w1, . . . ,wl) is the weight of the output layer, now φ = {θ,W}. For every
feature hd(x), its density is:

qφ(yi|hd(x)) =
exp(wi,dhd(x))∑l

j=1 exp(wj,dhd(x))
, (13)

Inspired by [10], we partition the features into major features and minor features
by information gains. For major features, the density function qφ(y|hd) concen-
trates on some point mass. For minor features, the possibility density qφ(y|hd)
is relatively uniform.

Then for every given x, we have:

Ep(x′|x)

[
ln

qφ(yx|x)
qφ(yx|x′)

]
= Ep(x′|x)

[
ln

(∑l
j=1 exp

(
(wj − wx)T hθ(x′)

)
∑l

j=1 exp ((wj − wx)T hθ(x))

)]
, (14)
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For convenience, we denote

exp
(
(wj − wx)T hθ(x)

)
= ρθ,x,j ,

l∑
j=1

ρθ,x,j = ρθ,x,
(15)

we then examine the relationship of feature and the second term with the fol-
lowing theorem:

Theorem 2. Assuming that for every θ, sample pair (x, x′) and indicies j, there
exist β1,j , α1,j > 0 such that

α1,j < ρθ,x,j , ρθ,x′,j < β1,j , (16)

Then for any given x, we have:

Ep(x′|x)

[∣∣∣∣ln qφ(yx|x)
qφ(yx|x′)

∣∣∣∣
]
= Ep(x′|x)

⎡
⎣

∣∣∣∣∣∣
l∑

j=1

O
(
(wj − wx)T (hθ(x) − hθ(x′))

)
∣∣∣∣∣∣

⎤
⎦ ,

(17)

The proof of the Theorem 2 can be found in the Appendix B.2. With Theorem
2, we show how the second term affects the weights. Since the data augmentation
must cause a large variance in some features particularly in early training phases,
which means that

∃ η1 > 0, |hd(x) − hd(x′)| > η1, (18)

for some features including minor and major features. This forces that ∀j ∈
{1, . . . , l}, wj,d → wx,d, resulting in a uniform distribution of qφ(y|hd(x)), and
such regularization of wj,d is not appropriate for major features. Now let us see
how the first term affects the weights

Ep(x) [H(p(y|x), qφ(y|x))] = Ep(x)

[
l∑

i=1

exp
(
(wj − wx)T hθ(x)

)]
, (19)

And for any minor feature, its variation should not change the result, hence we
have wj,d ≈ wi,d, 1 ≤ i, j ≤ l. In contrast, the weights of major features should
be different:

∃ η2 > 0, |wj,d − wx,d| > η2 (20)

now we realize that, with the effect of data augmentation, the first term and
the second term have different impacts on the weight of some major features
and the same impact on minor features. Since our model mainly relies on major
features to provide prediction, such an effect causes an unstable convergence. To
highlight the positive effect provided by the first term at the beginning, a simple
trick is to add a coefficient λ (λ < 1) to the second term.
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Now we discuss how λ may help refine the generalization of the model. We
denote the model trained using augmented samples as faug:

Rfaug
(p∗) = Ep(y)p(x′|y) [L(y, f(x′))] ,

Rfaug
(p) = Ep(y)p(x|y) [L(y, f(x))] ,

(21)

Note that we train our model using R̂faug
(p∗) and evaluate the generalization of

our model using Rfaug
(p). Based on the assumption Sect. 3.1, with augmented

sample and clean sample pairs instead of clean samples alone, we have:

Rfaug(p
∗) � R̂faug(p

∗) + φ(C(f), B(N × M), δ), (22)

Theorem 1 can then be reformulated with our new formulation:

Rfaug(p
∗) = Rfaug(p) + GAP,

R̂faug(p
∗) = R̂faug(p) + ĜAPM×N ,

(23)

where GAP is the second term in the right hand side of Theorem 1 and ĜAPM×N

is its empirical estimator using M × N non iid pairs of (x, x′). Hence, (22) is
reformulated by:

Rfaug(p) � R̂faug(p) + φ(C(f), B(N × M), δ)+

ĜAPM×N − GAP.
(24)

Now we show that the noise ĜAPM×N − GAP → 0:

GAP = Ep(x)p(y|x)p(x′|x)

[
ln

qφ(y|x)
qφ(y|x′)

]
,

we denote B(y, g(x, x′)) = ln qφ(y|x)
qφ(y|x′) , then we assume that given any clean sample

pair (xi, yi):
Varp(x′|xi) [B(yi, g(xi, x

′))] ≤ B,

then for the estimator:

Ep(x,y)p(x′|x) [B(y, g(x, x′))]

= Ep(x,y)

[
Ep(x′|x) [B (y, g(x, x′))| x, y

]]
,

ĜAPM×N =
1
N

N∑
i=1

1
M

M∑
j=1

B(yi, g(xi, x
′
ij
)),

where x′
ij

denotes augmented samples from p(x′|xi) consider its variance:

Var
(
ĜAPM×N

)
=

1
N2M

N∑
i=1

Varp(x′|xi) [B(yi, g(xi, x
′))] ,
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with the assumption:

Var
(
ĜAPM×N

)
≤ B

NM
,

then the variance is of order O(1/NM), which indicates the faster convergence
speed.

We determine that the generalization of model depends on R̂faug(p) instead of
what we directly optimize: R̂faug(p

∗). Hence we would like to keep the consistency
between R̂faug(p) and R̂faug(p

∗), i.e., the decreasing of R̂faug(p
∗) guarantees that

of R̂faug(p) to ensure the improvement of generalization when training the model.
As it is analyzed before, ĜAPM×N may lead to different weights of some major
features compared with R̂faug(p) in early training stages, which will destroy such
consistency. This indicates the importance of our proposed coefficient λ.

4 Experiment

We demonstrate the standard training strategy in Algorithm 1 and our proposed
training strategy in Algorithm 2 in Appendix C. We also conduct an experiment
on the selection of the hyperparameter λ of Algorithm 2 in Appendix E.

4.1 Experiment Implementation

Standard Scenario Experiment: Validation Models and Datasets We have con-
ducted experiments on CIFAR10/100 [12], Food101 [2], and ImageNet (ILSVRC-
2012) [20] with various models to evaluate our training strategy. For each of
them, a validation set is split from the training set to find networks with the
best performances. More dataset splitting details are shown in Appendix F.1. In
this paper, ResNet [9] and WideResNet [27] are trained with different strategies.
For datasets CIFAR10/100 and Food101, ResNet-18, ResNet-50, WideResNet-
28-10 and WideResNet-40-2 are chosen as our baseline models. For ImageNet,
ResNet-50 and ResNet-101 are used for evaluation. All images in baseline (stan-
dard method) and our method are processed with same augmentation (horizontal
flips, random crops and random rotation). λ was selected to 0.5 for it achieve
the best performance among all the experiments with our strategy. For a fair
comparison, we set the basic batch size (bbs) and performed standard method
experiments with both 1x bbs and 2x bbs (our method actually takes twice the
amount of data sample) to ablate the estimation error effect caused by the batch
size. More details about data augmentation and network training are shown in
Appendix F.2 and Appendix F.3.

To ensure that our strategy is applicable to other settings, we conduct exper-
iments in the following two cases:

OOD Scenario Experiment: Validation Models and Datasets Experiments on
PACS [14] are conducted using ResNet-18 and ResNet-50 [9]. In these experi-
ments, we employed the leave-one-domain-out strategy for OOD validation. For
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Fig. 1. Top-1 accuracy (%) with error bar (mean±std) on CIFAR10/100, Food101 and
ImageNet on the test set. The Y-axis is the Top-1 accuracy and the X-axis is the type
of network.

image augmentation, we followed the same approach as Domainbed [8], both in
the ERM algorithm and our proposed method. Further information regarding
data augmentation and network training can be found in Appendix F.2 and
Appendix F.3.

Long-Tailed Scenario Experiment: Validation Models and Datasets We consider
long-tail (LT) imbalance and conducted experiments on LT CIFAR-10 [5] using
ResNet-18. We keep the validation set and test set unchanged and reduce the
number of training set per class according to the function n = niμ

i, where ni

is the original number of the i − th class of the training set (following [5]). μ
is between 0 and 1, which is determined by the number of training samples in
the largest class divided by the smallest. This ratio is called imbalance ratio and
it is set from 10 to 100 in our settings. Further information regarding training
hyperparameters can be found in Appendix F.2 and Appendix F.3.

4.2 Experimental Results

Settings and instructions For standard scenario experiment, we select the model
with the highest validation accuracy during training and report the test accuracy
in Fig. 1. The results with error bars are presented at Appendix F.4, where we
have conducted three independent experiments and calculated the mean values as
the results on CIFAR10/100 and Food101 and only one independent experiment
on ImageNet (ILSVRC2012) because of computational constraints.

As for the OOD scenario experiments, we have conducted three indepen-
dent experiments and select the model with the best top-1 accuracy on the test
domain. The results with error bar can be seen in Fig. 2 and Appendix F.4
Table 5.

For long-tailed scenario experiment, we use the Area Under the Curve (AUC),
Average Precision (AP) and top-1 accuracy as evaluation metrics. We select the
model with the best AUC on the validation set during training and report the
results on the test set in Fig. 3 and Appendix F.4 Table 6.

Experiment Analysis. From our experimental results (Fig. 1, Fig. 2, Fig. 3), we
can see that the model trained with our proposed consistency regularization
strategy of data augmentation converges to a better local optimum.
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Fig. 2. Top-1 accuracy (%) with error bar (mean±std) over the four test domain of
PACS and their average. The X-axis is test-domain and the Y-axis is the Top-1 accu-
racy.

Fig. 3. AUC, Top-1 accuracy (%), AP with error bar (mean±std) of Resnet-18 on the
long-tailed scenario experiment (LT-CIFAR10). The X-axis of the figures is the value
of the imbalance ratio.

From Fig. 4a, we can see the validation set performance of our method even
exceeds the training set performance of the standard data augmentation training
method in almost the whole process of training. This demonstrates the improve-
ment of generalization after adding the coefficient.

As demonstrated in Fig. 4 and Fig. 5, our training strategy leads to a stable
convergence compared with the standard data augmentation training strategy.
The stable convergence is caused by the coefficient λ, as we discuss in Sect. 3.3.
The coefficient λ diminishes the negative effect of estimate variance, resulting in
a more stable convergence. The training process for all circumstances is presented
in Appendix F.5

5 Conclusion and Discussion

Rethinking of Shifted Population. In this paper, we develop a new set of defini-
tions for shifted population, augmented samples and its conditional distribution.
We leverage our proposed definition to establish the decomposition of the shifted
population risk, providing an explanation for how data augmentation enhances
the generalization ability of model.
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Better Training Strategy. Based on the proposed decomposition, we realize that
the key to improving generalization lies in keeping the consistency between
R̂faug(p

∗) and R̂faug(p), which is likely to be violated by the gap term specifically
in the early training stages. Adding a coefficient to the gap term refines this, and
it is proposed as a training strategy with augmentation. As demonstrated in our
experiment, our method outperforms the standard augmentation training strat-
egy. Meanwhile, our proposed strategy is highly related to the augmentation
schedule, an existing training strategy. Our work could provide comprehensive
understanding on how it works. What’s more, there is more than one solution
to the problem of the gap term, which is left for future work.

Limitation. Considering the fact that this paper mainly conducts analysis in
the case of classification tasks, some of the results proposed in this paper lack
versatility. However, the framework of the analysis is transferable, and based on
the definition of expected risk, similar results can be attained on other tasks.
Conditional distribution of adjoint variable p(x′|x) is intractable given the fact
that although the differentiability of most of the classic augmentations has been
verified in other works, there are data augmentations that have not, some of them
may even be not genuinely differentiable. Hence, other definitions of p(x′|x) that
bypass the necessity of differentiability can be explored in future work.
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Abstract. Self-contrastive learning has proven effective for vision and
natural language tasks. It aims to learn aligned data representations by
encoding similar and dissimilar sentence pairs without human annota-
tion. Therefore, data augmentation plays a crucial role in the learned
embedding quality. However, in natural language processing (NLP), cre-
ating augmented samples for unsupervised contrastive learning is chal-
lenging since random editing may modify the semantic meanings of sen-
tences and thus affect learning good representations. In this paper, we
introduce a simple, still effective approach dubbed ADD (Attention-
Driven Dropout) to generate better-augmented views of sentences to
be used in self-contrastive learning. Given a sentence and a Pre-trained
Transformer Language Model (PLM), such as RoBERTa, we use the
aggregated attention scores of the PLM to remove the less “informative”
tokens from the input. We consider two alternative algorithms based on
NaiveAggregation across layers/heads and AttentionRollout [1].
Our approach significantly improves the overall performance of various
self-supervised contrastive-based methods, including SimCSE [14], Dif-
fCSE [10], and InfoCSE [33] by facilitating the generation of high-
quality positive pairs required by these methods. Through empirical
evaluations on multiple Semantic Textual Similarity (STS) and Transfer
Learning tasks, we observe enhanced performance across the board.

1 Introduction

Self-supervised contrastive learning is amongst the most promising approaches
for learning representation without relying on human annotation. Recent
advancements in self-supervised learning [14,16,19,24] use the contrastive loss
to maximize the similarity of representation obtained from different distorted
versions of an input sample while pushing apart dissimilar pairs from an input
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sample. Therefore, defining data augmentation for generating positive and neg-
ative pairs is crucial in contrastive prediction tasks that yield effective rep-
resentations. However, in NLP, creating augmented samples for unsupervised
contrastive learning is challenging since random word editing operations (dele-
tion/masking or replacement) may modify the semantic meanings of sentences.

Existing methods create [37] the negative pairs from a random collection of
sentences, while the positive pairs are obtained by augmentation. Other con-
trastive approaches try to create positive pairs at the word level using synonym
replacement, random insertion, random Swap, deletion, and substitution [30,36].
While at the sentence level, these sentences are shuffled to create a new sample,
and if the given text sample contains multiple sentences with duplicate sentences,
these duplicate sentences are removed [14]. Numerous recent approaches provide
data augmentation by applying some changes in the model, such as injecting
random noise [17], drop out [14,18], or random span masking [19] aiming to sup-
ply an expressive semantic interpretation. Since positive pairs are created from
similar sentences, it may affect syntactic alignment across views [18].

In this paper, we introduce ADD (Attention-Driven Dropout), a straightfor-
ward and effective approach for data augmentation in unsupervised contrastive
learning. Specifically, we propose ADD to quantify the relevance of a word in
a sentence by considering the summation of the attention score. Consider a
sequence of input tokens and a pre-trained Transformer model such as BERT or
RoBERTa; we use the aggregated attention scores of the PLM to remove the less
“informative” tokens from the input. We assess two alternative algorithms based
on NaiveAggregation across layers/heads and AttentionRollout [1]. Our
method expands on the results of SimCSE [14] to aid further the generation
of quality positive pairs used by such methods. We present empirical results on
several Semantic Textual Similarity (STS) and Transfer Learning tasks, where
we find consistently improved overall performance.

The contributions of our proposed work are threefold:

– We propose Attention-Driven Dropout as a novel data augmentation tech-
nique that can be used in unsupervised contrastive learning.

– We introduce two approaches to quantify the word relevance in a sentence by
utilizing attention scores.

– We perform extensive experiments and demonstrate the efficacy of our
method in enhancing the performance of self-contrastive models. Our exten-
sive empirical analysis substantiates the effectiveness of our approach, high-
lighting its capability to improve the overall results.

2 Background and Related Work

Many tasks in NLP benefit from the amount of training data. Data augmenta-
tion techniques are used to generate additional, synthetic data using the training
data while improving model performance. Recently [8,25,35] review and com-
pare different augmentation techniques such as reordering, substitution, random
perturbation, word deletion and span deletion in contrastive learning.
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Self-supervised contrastive learning like SimCSE [14] takes a randomly sam-
pled mini-batch of sequences X = {xt}Mt=1, x ∈ X ⊆ R

p, the transformer
function derives two augmented views xi = τ(x),xj = τ ′(x) for each sample in
X. The two augmented samples xi and xj are then fed to an encoder network
fθ with trainable parameters θ ⊆ R

d. These features are then transformed with
a projection multi-layer perceptron (MLP) head, which results in hi and hj . The
contrastive estimation for a positive pair of examples (xi, xj) is defined as:

�(xi,xj) = −log
exp(sim(hi,hj)/τ)

∑2N
k=1 I[k �=i] exp(sim(hi,hk)/τ)

(1)

The core component of the Transformer and BERT models is the attention
mechanism. The attention mechanism works by learning a set of weights also
called attention scores, that indicate the importance of each input part. These
attention scores are then used to weigh the different parts of the input so that
the model focuses more on the important parts and less on the less important
parts.

There are several types of attention mechanisms, such as additive, multiplica-
tive, or scaled dot-product attention, etc. Multi-head self-attention is widely used
in recent Transformer models.

Given input sequence x ∈ Rl×d with the length of l and d dimension and
Wq,Wk,Wv ∈ Rd×d be the matrices for query, key, and value respectively. Then,
each x is associated with a query Q = xWq and a key-value pair (K,V ) (K =
xWk;V = xWv) and an attentive representation A = Softmax(α−1QKT ) of
x in the multi-head self-attention computed by H = AV . Here, α is a scaling
factor, and A = {a1, ..., ah} is the attention distribution.

3 Method

We propose a simple principle to create an augmentation of sentences, which
can be used as a positive pair in a self-contrastive learning scheme. Compared
to conventional self-contrastive approaches that duplicate the input sequence xi,
we apply our proposed ADD augmentation. As depicted in Fig. 1, our proposed
method gathers attention scores for the sequence from a pretrained language
model. It then aggregates these scores in order to obtain a single value for each
token, representing its relevance. The k smallest tokens are then removed from
the input sequence. After our procedure, the original and altered sequence is
passed into the self-contrastive network. The approach relies on attention scores
to quantify token relevance. As [27] suggests, each individual head can learn to
perform different tasks. This is why we take into account all layers and heads
of the model to get an estimate of the overall importance of each word in the
sentence.

Given a set of input sentences {xi}mi=1 as input to unsupervised contrastive
learning, we first duplicate xi to obtain our input pairs {(xi, x

+
i )}mi=1. Then, a

matrix of attention scores A with the shape of (L,m,H, S1, S2) for the input x+
i

is computed using a pre-trained Transformer model (i.e., BERT). Note that L
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and H are the numbers of layers and the number of attention heads for each
layer, respectively, while S1 = S2 = S, where S1 represents the dimension that
contains the attention scores of a token S1 = j to all of the other tokens in
dimension S2. To gather attention scores and quantify the importance of each
input token, we consider and evaluate two different approaches.

Fig. 1. Illustration of our proposed Attention-Driven Dropout integrated into self-
contrastive learning. ADD utilizes attention scores from a PLM to determine the rel-
evance of each token in the sequence. By aggregating these scores, we obtain a single
value for each token, enabling us to identify the least significant k tokens, which are
subsequently removed. The modified sequence, along with the original, is then inputted
into the self-contrastive network.

Naive Aggregation. We sum all of the attention scores across dimensions L,H
and S1, which yields a matrix AN of shape (m,S2) = (m,S). where

ai =
L∑

l=1

H∑

h=1

S1∑

s=1

Alihs

denote the summed attention vector of input sample m.

3.1 Attention Rollout Aggregation

[1] introduce a novel post-hoc method for approximating the attention to input
tokens. We incorporate this method in our approach to quantify the overall
relevance of each token.

To compute the attention rollout matrix Ã for a given layer l to layer l−, we
recursively multiply the attention score matrices from all previous layers.

Ã(l) =

{
A(l)Ã(l−) if l > l−

A(l) if l = l−
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To combine the matrices Ãl into a final summed attention matrix AR ∈
R

m×S , we sum the attention rollout matrices across all L layers, to get a vector
ai for each sample m.

ai =
L∑

l=1

S1∑

s=1

Ãlis

Considering k as a number of tokens to be removed from each input sentence
x+
i .

3.2 Static Dropout Rate

We define k as a hyperparameter while using the static dropout rate mode.

Table 1. Comparison of Attention-Driven Dropout (naive aggregation) and random
word deletion with example input sentences. Note that the overall meaning of the
sentence is preserved with Attention-Driven Dropout while deleting a random word
can break the structure.

Input sentence Attention-Driven Dropout Random word deletion

We should go to the small Italian
restaurant again!

We should go to the small Italian
restaurant again!

We should go to the small Italian
restaurant again!

Two big dogs are running fast in the
park.

Two big dogs are running fast in the
park.

Two big dogs are running fast in the
park.

Mary helped John to style his new
apartment.

Mary helped John to style his new
apartment.

Mary helped John to style his new
apartment.

A brown bear is eating a small fish. A brown bear is eating a small fish. A brown bear is eating a small fish.

3.3 Dynamic Dropout Rate

Alternatively, with the dynamic dropout rate, we calculate k based on the num-
ber of tokens that are present in the given sequence, excluding padding tokens.
Let the number of non-padding tokens be denoted as ts, then k is given by:

k = �ts/t�
With this formulation, we are able to remove more redundant information in

long sequences, while with the static approach, we are limited to a fixed amount
of tokens for any sequence length.

Now let imin(x, k) denote a function that returns a set of indices of the k
minimum values of given input vector x. We select the indices of minimum values
of each vector ai by calculating gi = imin(ai, k) ∈ R

k. Let x+
ij denote the j-th

element of the i-th input sentence.
We iterate over each sample i. If the sample x+

i does not contain at least t
tokens (excluding padding), we do not remove any words and continue with the



94 F. Stermann et al.

next sample x+
i+1. Otherwise, we set the values of our input pair instance x+

ij = p
where j ∈ gi and p is the padding token, to get our new token sequence x∗

i .
Finally, we reorder x∗

i in a way where all padding tokens in the vector are
aligned on the right-hand side, e.g., (x∗

i1, x
∗
i2, ..., x

∗
ts , p, p).

The original input sentences and their altered pairs {(xi, x
∗
i )}mi=1 are then

fed into the SimCSE network, where during training, we minimize a contrastive
loss objective. We present examples with the alternative augmentation methods
in Table 1.

4 Experiment

We conduct empirical experiments to compare our proposed methods with vari-
ous baselines and alternative approaches. Our source code is anonymously avail-
able.1

4.1 Datasets and Tasks

We evaluate the performance on seven different semantic textual similarity (STS)
task sets, as well as seven transfer learning tasks, similar to [14,23]. We use the
SentEval toolkit from [11] to conduct the evaluation.

Semantic Textual Similarity (STS). The STS task set consists of seven tasks:
STS-12-16 [2–6], STS-Benchmark (STS-B) [9] and SICK-Relatedness (SICK-R)
[7]. Here we follow the approach and suggestion of the SimCSE authors and use
Spearman’s correlation as well as the aggregation on all train, development, and
test datasets for each task to be able to generate comparable results and unify
the evaluation setting. Results on this task set can be found in 2.

Transfer Learning. Additionally, we evaluate the models on various transfer
tasks. These consist of MR [22], CR [15], SUBJ [21], MPQA [26,31], TREC [28]
and MRPC [13]. Evaluating these tasks requires training a logistic regression
classifier on top of (frozen) sentence embeddings. The final results can be seen
in Table 3.

4.2 Training Procedure

Our data augmentation is used to alter input sequences as a first step, which are
then fed into the SimCSE network. We report on pre-trained transformer models
as the backbone, BERT [12] and RoBERTa [20]. For the sentence embedding, we
are using the [CLS] representation. We use the same dataset as [14], 106 sampled
sentences from English Wikipedia. During training, Attention-Driven Dropout
is used to alter the input pairs. During the evaluation, we do not change the
input sequences.

1 https://github.com/fstermann/attention-driven-dropout.

https://github.com/fstermann/attention-driven-dropout
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All models are trained for 1 epoch, except DiffCES and InfoCSE which are
trained for 2 epochs and evaluated on the STS-Benchmark (STS-B) every 125
training steps. We keep the best-performing models based on development per-
formance.

We conduct a grid search across learning rates {3e–5, 1e–5} as well as batch
sizes {64, 128, 256, 512} for both backbone architectures. Results of this search
are compared in Sect. 5.1. The parameters yielding the best performance with
respect to the STS-Benchmark task as well as the average transfer tasks respec-
tively are presented in Table 6. Our results are shown in Table 2 and Table 3 were
produced with these configurations.

5 Result and Discussion

The semantic textual similarity evaluation results can be found in Table 2.
Our approach performs on par with the other state-of-the-art methods. Using
BERTbase as the pretrained language model, we can achieve the overall high-
est average (77.25) across the STS tasks with the naive attention aggregation
method, improving the raw SimCSE-BERTbase by one percentage point. Specif-
ically, we can achieve better results in 5 out of 7 tasks.

Using RoBERTabase, our approach can increase previous results by 0.93%
(77.45), yielding best results in 6 out of 7 tasks with the naive aggregation.

Table 2. STS task performance for sentence embeddings (Spearman’s correlation, “all”
setting). The best performance for the corresponding task is marked in bold, the second
best is in italics. ♥: results from [14]; other results are evaluated by us.

Model STS12STS13STS14STS15STS16STS-BSICK-R Avg.

SimCSE-BERTbase
♥ 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25

+ ADDnaive 71.00 82.24 75.10 82.73 79.03 78.51 72.12 77.25

+ ADDrollout 65.20 77.98 71.26 80.62 77.27 76.26 69.68 74.04

SimCSE-RoBERTabase
♥ 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57

+ ADDnaive 67.45 83.43 74.67 82.48 81.69 82.00 70.43 77.45

+ ADDrollout 65.34 80.97 71.29 81.08 80.34 79.83 69.54 75.48

Transfer task results are presented in Table 3. We present evaluation results
for both the naive and rollout aggregation methods, without and with the addi-
tional masked language modeling (MLM) [12] objective used during training. We
find that overall, adding this objective increases results on the transfer tasks.

With BERTbase, we can achieve the best performance for the rollout atten-
tion aggregation combined with the MLM objective (87.01). We can either com-
pare with or outperform the results of raw SimCSE without Attention-Driven
Dropout.
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Table 3. Transfer task performance for sentence embeddings, measures represent accu-
racy. The best performance for the corresponding task is marked in bold, the second
best is in italics. ♥: results from [14]; other results are evaluated by us. MLM: MLM
is added as an auxiliary task with λ = 0.1.

Model MR CR SUBJ MPQA SST TRECMRPC Avg.

SimCSE-BERTbase
♥ 81.18 86.46 94.45 88.88 85.50 89.80 74.43 85.81

+ MLM ♥ 82.92 87.23 95.71 88.73 86.81 87.01 78.07 86.64

+ ADDnaive 81.82 86.89 94.83 89.43 85.28 89.40 75.25 86.13

+ MLM 82.18 87.74 95.66 88.16 86.55 91.00 75.07 86.62

+ ADDrollout 81.41 85.72 94.79 89.32 84.84 88.60 75.07 85.68

+ MLM 82.40 87.97 95.62 89.38 86.93 91.20 75.59 87.01

SimCSE-RoBERTabase
♥ 81.04 87.74 93.28 86.94 86.60 84.60 73.68 84.84

+ MLM♥ 83.37 87.76 95.05 87.16 89.02 90.80 75.13 86.90

+ ADDnaive 82.30 88.05 93.70 87.50 88.25 84.60 74.84 85.61

+ MLM 83.86 89.06 94.65 88.27 89.51 90.60 76.75 87.53

+ ADDrollout 82.08 88.40 93.13 87.54 87.97 87.00 75.88 86.00

+ MLM 84.6889.91 94.97 88.37 90.61 92.20 78.43 88.45

For SimCSE-RoBERTabase as the underlying architecture, adding our
method can increase performance across almost all tasks, showing an average
transfer task accuracy of 88.45, increasing previous best results by 1.55% points.

We further conducted experiments with different baseline models other than
SimCSE, namely InfoCSE [33] and DiffCSE [10]. The results are depicted in
tables 8 and 9 in the appendix. Since these baselines are trained for 2 instead of
1 epoch, we compare them independently from the SimCSE baseline.

As depicted in Tables 2 and 3, performance across the different aggregation
methods and underlying base models may vary. The main difference in aggrega-
tion is that rollout aggregation takes much more account of the attention scores
of earlier layers than those of later layers. The semantic features to which differ-
ent layers pay attention can therefore influence which words are removed from
the sequences. Of course, depending on which tokens are removed from the input
sequences, the underlying model will contain different contextual information.
While rollout may perform worse in STS, it is possible that by focusing on dif-
ferent parts of the sentence, its captured knowledge can be better exploited in
transfer tasks compared to naive aggregation.

5.1 Ablation Study

For further comparison, we investigate the performance of our method with previ-
ous data augmentation techniques used in unsupervised self-contrastive learning,
as well as quantifiable measures of the representational embedding space. Addi-
tionally, we evaluate results on different hyperparameter settings for k and t.

Comparison with Other Data Augmentations. Previous data augmenta-
tion techniques [25,35] and even our underlying contrastive network SimCSE [14]
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Fig. 2. Comparison of hyperparameter configurations. k: the amount of tokens to drop
out; t: minimum amount of sequence-tokens for dropout.

heavily rely on randomness to augment input sequences. While this approach
can yield better results than previous state-of-the-art methodologies, using it
in combination with our novel attention-based procedure can improve the out-
come with minimal training. In Table 4 we compare our method with previously
reported non-contrastive augmentations. Adding a random word deletion with
static (k = 1, t = 10) or dynamic dropout (t = 10) rate configuration cannot
outperform our best performing BERTbase based model.

In comparison to other recent data augmentation models stemming from
SimCSE, our method exhibits comparable performance (PeerCL: 83.8, [32];
ESimCSE: 84.8 [34]). It should be noted that direct comparisons between these
methods can be challenging due to inherent differences in their augmentation
approaches. While we augment positive pairs similarly to ESimCSE, ESimCSE
also modifies negative pairs. On the other hand, PeerCL combines multiple data
augmentations simultaneously, whereas our method relies on a single augmen-
tation technique. Integrating our method with PeerCL, for instance, could be a
potential avenue for future investigation.

Static vs. Dynamic. To find the optimal configuration hyperparameters k and
t and be able to compare their influence, we conducted a grid search across
reasonable values {1, 2, 3} for k and {8, 10, 12} for t, with BERTbase as well
as RoBERTabase and their ‘default’ batch size and learning rate taken from the
SimCSE paper. Here, we also compare the static and dynamic approaches, which
are described in Sect. 3. We compare results on the STS-B task (development
set) and find the overall best performance (83.36) for the naive aggregation, a
dynamic dropout setting with t = 12, and the RoBERTa PLM. If we aggregate
attention scores with the rollout method, best results (82.20) can be achieved
for the same dynamic setting and k = 1, t = 12. The BERT-based architecture
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Table 4. Comparison of different data augmentation techniques on the STS-B devel-
opment set (Spearman). random static: random word deletion, with k = 1, t = 10;
random dynamic: random word deletion with t = 10, number of words depends on
sequence length. ♥: results from [14].

Data augmentation STS-B

Attention-Driven Dropout 83.1

Random static 81.4

Random dynamic 81.9

None (unsup. SimCSE)♥ 82.5

Crop♥ 10% 20% 30%

77.8 71.4 63.6

Word deletion♥ 10% 20% 30%

75.9 72.2 68.2

Delete one word♥ 75.9

w/o dropout♥ 74.2

Synonym replacement♥ 77.4

MLM 15%♥ 62.2

yields the best results for the naive aggregation (83.09) with k = 1, t = 10. A
STS-B performance of 81.45 can be achieved with a dynamic setting and t = 8.
All results are presented in Table 5.

Figure 2 compares the performance of the different settings. Overall, the naive
aggregation method compares better to the advanced rollout aggregation. Com-
paring different t settings for RoBERTa, we clearly see an increasing performance
trend with increasing t. This goes along with our initial intuition that we cannot
drop too many tokens if our input sequence is too short in order to preserve
the meaning of the sentence. If the value for t is too small, performance drops
drastically, especially the more tokens k are dropped from the sequence.

The main difference most likely stems from the different tokenization in
BERT (WordPiece) and RoBERTa (BPE) has an impact on the results. The
two tokenization methods are similar but can produce tokenized sequences of
different lengths. Thus, the hyperparameters t (minimum sequence length) and
k (number of tokens to drop) can be dependent on the chosen tokenization.

Aggregation Visualization. In order to compare both aggregation approaches
and get an intuition of how the aggregated attention scores are composed, we
provide a visual representation of the normalized scores in the form of heatmaps
in Fig. 3. Darker colors represent a smaller aggregated attention score. Looking
at the first example sentence, we can see that the naive aggregation approach
yields the lowest score for ‘italian’, and the second lowest for ‘small.’ Compared
to the results of the rollout approach, aggregating by just summing up the atten-
tion scores gives a good estimate of the informativeness of the respective token.
Breaking down the last example sentence, removing the token with the smallest
aggregated score one at a time until we are left with 4 tokens would carry out
like this.
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A brown bear is eating a small fish.
A brown bear is eating a fish.
A bear is eating a fish.
A bear is eating fish.
A bear is eating.

Fig. 3. Heatmaps of the (normalized) aggregated attention scores, comparing the two
aggregation approaches. Normalized aggregated attention scores for each word in the
sentence are presented for the naive and rollout methods.

We can see that we end up with a syntactically correct sentence at every step,
each containing less information than the previous sentence. This is an example
showing that our naive aggregation approach can produce not only one but many
augmentations of a sentence.

Alignment and Uniformity. [29] describe a way of measuring the represen-
tation of the embedding space. They propose two metrics: alignment, which
represents the closeness of features from positive pairs, and uniformity of the
feature distribution on the hypersphere.

The ADD-BERTbase model can achieve the best alignment (0.19) out of the
unsupervised methods, suggesting that our approach indeed can yield a bet-
ter representation of positive pairs, moving them closer together in the embed-
ding space. In terms of uniformity (–2.43), ADD performs slightly worse than
unsupervised SimCSE without Attention-Driven Dropout. A comparison of our
results with other approaches can be found in Fig. 4.

By deleting words from half of the sentences, some contextual information is
lost, which on the one hand is responsible for the improved alignment measure,
since we introduce more noise with the data augmentation. On the other hand,
this leads to slightly less information on the preserved data in half of the cases,
which is most likely responsible for the decrease in uniformity.

Hyperparameters. Best results for our base comparison for different hyperpa-
rameter settings of k and t are shown in Table 5.

All hyperparameters, including batch size and learning rate on which perfor-
mance is reported in Sect. 5 are shown in Table 6.
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Fig. 4. Comparison of �alignment and �uniformity of BERTbase based models (lower is
better). Point colors represent their average STS performance (Spearman); + represents
supervised methods; results except ours from [14].

Table 5. Comparison of hyperparameter configurations. k: the amount of tokens to
drop out; t: minimum amount of sequence-tokens for dropout.

BERT RoBERTa

k t naive rollout naive rollout

static 1 8 80.43 80.72 83.13 80.35

1 1083.09 78.89 83.20 81.27

1 12 81.95 80.76 83.27 82.20

2 8 80.72 77.88 77.21 75.46

2 10 82.49 75.41 81.60 77.57

2 12 79.48 78.94 82.46 80.41

3 8 79.18 72.64 64.01 69.09

3 10 81.18 75.84 75.48 72.31

3 12 82.54 78.48 80.04 77.11

dynamic - 8 81.84 81.45 82.08 79.97

- 10 81.63 80.16 82.92 81.21

- 12 80.29 79.93 83.36 82.20



Attention-Driven Dropout 101

Table 6. Optimal hyper-parameters for the STS and Transfer task set respectively:
Batch size (BS), Learning Rate (LR) for PLM and Attention Aggregation (AA) set-
tings.

STS Transfer

PLM AA k t BS LR BS LR

BERT naive 1 10 64 3e–5 64 1e–5

rollout dynamic 8 64 3e–5 512 1e–5

RoBERTa naive dynamic 12 64 1e–5 256 1e–5

rollout dynamic 12 64 1e–5 128 1e–5

Table 7. Average runtime in minutes (rounded to the nearest integer) for different
batch size settings.

Batch Size 64 128 256 512

Avg. Runtime (m) 101 53 31 22

Table 8. STS task performance for sentence embeddings (Spearman’s correlation, “all”
setting). The best performance for the corresponding task is marked in bold, the second
best is in italics. ♠: results from [33]; ♦: results from [10]; other results are evaluated
by us.

Model STS12STS13STS14STS15STS16STS-BSICK-R Avg.

InfoCSE-BERTbase
♠ 70.53 84.59 76.40 85.10 81.95 82.00 71.37 78.85

+ ADDnaive 70.15 82.56 74.55 82.44 82.37 81.23 71.50 77.83

+ ADDrollout 65.05 79.96 69.89 79.71 79.28 77.02 70.00 74.42

DiffCSE-BERTbase
♦ 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49

+ ADDnaive 70.87 83.49 75.02 83.73 79.39 79.55 72.24 77.76

+ ADDrollout 62.46 78.74 69.47 79.26 77.16 74.32 72.23 73.38

DiffCSE-RoBERTabase
♦ 70.05 83.43 75.49 82.81 82.12 82.38 71.19 78.21

+ ADDnaive 66.96 82.47 74.31 81.26 81.21 81.57 70.46 76.89

+ ADDrollout 66.37 81.09 72.38 81.05 79.89 79.8 69.76 75.76

Runtime. We conducted all of our experiments on NVIDIA DGX A100 nodes
(Table 7).

We also consider different baseline models (InfoCSE [33], DiffCSE [10]) and
conduct the training procedure for 2 epochs. This differs from SimCSE, where
1 epoch was used for training. We use the paper’s default hyperparameters, as
well as our hyperparameters found to work best with the SimCSE baseline.

In addition, we conducted experiments with different random seed settings
for the STS task set, reported in table Table 10.
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Table 9. Transfer task performance for sentence embeddings, measures represent accu-
racy. The best performance for the corresponding task is marked in bold, the second
best is in italics. ♠: results from [33]; ♦: results from [10]; other results are evaluated
by us. MLM: MLM is added as an auxiliary task with λ = 0.1.

Model MR CR SUBJMPQA SST TRECMRPC Avg.

InfoCSE-BERTbase
♠ 81.7686.57 94.90 88.86 87.15 90.60 76.58 86.63

+ ADDnaive 81.6086.39 94.93 88.60 86.77 89.00 76.23 86.22

+ ADDrollout 81.8187.00 95.19 88.67 87.15 90.00 78.03 86.84

DiffCSE-BERTbase
♦ 82.6987.23 95.23 89.28 86.60 90.40 76.58 86.86

+ ADDnaive 80.7184.90 94.48 88.65 85.34 87.00 75.94 85.29

+ ADDrollout 82.2886.76 95.06 88.96 86.60 89.80 77.22 86.67

DiffCSE-RoBERTabase
♦ 82.8288.61 94.32 87.71 88.63 90.40 76.81 87.04

+ ADDnaive 82.8588.13 94.00 87.91 88.69 90.40 77.16 87.02

+ ADDrollout 81.8987.31 93.64 87.10 88.74 91.20 76.35 86.60

Table 10. STS task performance for sentence embeddings (Spearman’s correlation,
“all” setting). Results are based on multiple runs, using 5 different random seeds (42–
46).

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

SimCSE-BERTbase + ADDnaive 68.40 ± 1.83 80.72 ± 1.87 73.27 ± 2.04 81.13 ± 1.07 78.23 ± 0.73 77.32 ± 0.85 70.49 ± 1.31 75.65 ± 1.24

6 Conclusion

In this paper, we introduced Attention-Driven Dropout, a simple yet powerful
data augmentation to generate better sentence embeddings in self-supervised
contrastive learning. We examined and showed that our method could improve
the overall performance of previous augmentation techniques by utilizing two
unique approaches to quantifying the relevance of sequence tokens. It is to be
noted that our approach is applicable to any self-contrastive network and is
meant to be used in combination with different model architectures. It can even
be utilized for a number of other tasks, such as generating different views of a
sentence While we investigated attention aggregation in the context of deleting
words, it may also be useful to utilize the scores to quantify overall important
words in a sentence. Using this approach to reduce a sentence to the essentials
might be a promising research direction. Overall, this novel approach introduces
a method that can be translated to many different tasks and should aid as a
starting point for further research in data augmentation.
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Abstract. Class imbalance significantly impacts the performance of
multi-label classifiers. Oversampling is one of the most popular
approaches, as it augments instances associated with less frequent labels
to balance the class distribution. Existing oversampling methods gen-
erate feature vectors of synthetic samples through replication or linear
interpolation and assign labels through neighborhood information. Lin-
ear interpolation typically generates new samples between existing data
points, which may result in insufficient diversity of synthesized samples
and further lead to the overfitting issue. Deep learning-based methods,
such as AutoEncoders, have been proposed to generate more diverse and
complex synthetic samples, achieving excellent performance on imbal-
anced binary or multi-class datasets. In this study, we introduce AEMLO,
an AutoEncoder-guided Oversampling technique specifically designed for
tackling imbalanced multi-label data. AEMLO is built upon two funda-
mental components. The first is an encoder-decoder architecture that
enables the model to encode input data into a low-dimensional feature
space, learn its latent representations, and then reconstruct it back to
its original dimension, thus applying to the generation of new data. The
second is an objective function tailored to optimize the sampling task for
multi-label scenarios. We show that AEMLO outperforms the existing
state-of-the-art methods with extensive empirical studies.

Keywords: Multi-label classification · Class imbalance ·
Oversampling · AutoEncoder

1 Introduction

In the field of multi-label classification (MLC), each instance can belong to multi-
ple labels simultaneously. MLC is widely used in various fields, including image
annotation [4], sound processing [16], biology [34] and text classification [14].
The issue of class imbalance in multi-label classification has gained prominence
recently [28]. It is prevalent in real-world MLC problems and significantly affects
classifier performance, as many algorithms assume data is balanced. Imbalanced
datasets tend to bias learners towards majority labels [29].
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1.1 Research Goal

Our goal is to address the class imbalance in multi-label datasets through the
integration of a deep generative model within an encoder-decoder architecture.
This strategy seeks to outperform conventional methods, such as sampling with
linear interpolation or random replication, by dynamically creating instances
that contain richer feature information.

1.2 Motivation

In recent years, innovative approaches have been developed to tackle the issue of
imbalance in multi-label learning [28], including sampling methods [6,17], clas-
sifier adaption [9], and ensemble techniques [18,27]. Sampling methods, in par-
ticular, aim to balance the dataset before the training phase, offering flexibility
and compatibility with any multi-label classifier. To ensure effective sampling,
several studies have concentrated on identifying specific samples and refining
decision boundaries. For example, MLSOL [17] assigns a higher selecting prob-
ability to the sample suffering severe local imbalance. MLBOTE [29] refines the
boundary samples related to high imbalance labels and employs different sam-
pling strategies. Traditional oversampling techniques often rely on basic linear
interpolation or replication for creating feature vectors of synthesized samples,
with label vectors typically generated through majority voting or replication.

The Autoencoder (AE) and Generative Adversarial Network (GAN), as
exemplary generative models, have shown substantial potential in data genera-
tion, restoration, and augmentation [8,12,15,19,22]. An Autoencoder compresses
data into a latent space using an encoder and reconstructs it by a decoder. Its
objective is to minimize reconstruction errors, enabling efficient feature extrac-
tion and noise reduction [13,15]. Although Autoencoder and GAN are used to
address the imbalance problem and generate minority samples, they primar-
ily cater to single-label datasets and face several challenges when applied to
multi-label datasets. First, AE and GAN require training samples with identical
labels (same class in the single-label dataset or same label set in the multi-label
dataset). However, in multi-label data, the number of samples with a complete
label set is often too limited to effectively train deep learning models. Secondly,
although multi-label datasets can be divided into several binary datasets via the
One vs All strategy, For each binary dataset, we can learn and reconstruct new
feature vectors for multi-label data through end-to-end models, but we can not
determine appropriate complete label set for each feature vector (Fig. 1).

1.3 Summary

In this work, we introduce an innovative approach crafted to tackle the class
imbalance issue in multi-label datasets named AutoEncoder-guided Multi-Label
Oversampling (AEMLO). The core of AEMLO’s design lies in two essential
elements:
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Fig. 1. Using Autoencoders to train data.

1. The basic encoder-decoder architecture is designed to encode data into a
lower-dimensional space and subsequently reconstruct it, making it suitable
for oversampling applications.

2. A specialized objective function for multi-label imbalance data sampling.

Our approach incorporates the sampling process into a deep encoder-decoder
framework that has been pre-trained, providing a holistic solution for the cre-
ation of low-dimensional data representations and synthetic instances through an
end-to-end methodology. By augmenting the original training set with instances
generated via AEMLO, we further train various traditional multi-label classi-
fiers and conduct comparisons against several multi-label sampling techniques.
Experimental results consistently demonstrate the superiority of our method.
Our code can be found in https://github.com/CquptZA/AEMLO.

2 Related Work

2.1 Multi-label Classification

Formally, let X ∈ R
d represent the d-dimensional feature space, and let L =

{l1, l2, . . . , lq} denote a set of q predefined labels. In multi-label classification,
our objective is to construct a mapping function h : X → L based on a given
multi-label training dataset D = {(xi,yi)}ni=1, where each sample xi ∈ X is
associated with a binary label vector yi ∈ {0, 1}q. Here, yi is a binary vector
where each element denotes whether the associated label from L is relevant (1)
or not relevant (0) to xi.

In Multi-Label Classification (MLC), methods are split into three types based
on how they handle label correlations. First-order strategies like MLkNN [35] and
BR [3] treat labels independently, offering simplicity and efficiency. Second-order
methods, such as CLR [11], analyze pairwise label correlations for improved inter-
action understanding. For complex scenarios with intricate label relationships,
high-order methods, like RAkEL [31] and ECC [23], are more effective. RAkEL
tackles this by dividing labels into subsets for diverse interaction modeling. ECC
sequentially links classifiers, allowing each to learn from the predictions of its
predecessors.

2.2 Multi-label Imbalance Learning

Let N1
j (N0

j ) denote the number of instances with “1” (“0”) class of label lj . IRlbl
and ImR are the two measures to evaluate the imbalance level of individual labels

https://github.com/CquptZA/AEMLO
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[6,32]. Let N1
max = max{N1

j }qj=1 be the number of “1”s in the most frequent
label, IRlblj and ImR are defined as:

IRlblj = N1
max/N1

j ImRj = max(N1
j , N0

j )/min(N1
j , N0

j ) (1)

The larger the IRlblj and ImRj , the higher the imbalance level of lj . Then,
MeanIR calculates the average imbalance ratio (IRlbl) across all labels in a
dataset, defined by: 1

q

∑q
j=1 IRlblj , where q is the total number of labels. The

higher MeanIR, the imbalance of the dataset. By considering the IRlbl and
MeanIR, we can calculate imbalance indicators such as the coefficient of varia-
tion of IRlbl (CV IR) and concurrency level (SCUMBLE) [28].

The imbalanced approaches proposed for MLC can be divided into three
categories: sampling methods, classifier adaptation [9,32,33], and ensemble
approaches [18,27]. Compared to the other two methods, the sampling method
is more universal, as it creates (deletes) instances related to minority (major-
ity) labels to construct a balanced training set that can be used to train any
classifier without suffering from bias. Sampling methods involve undersampling
and oversampling techniques. Undersampling reduces the presence of majority
labels by either randomly removing instances or employing heuristic approaches
to selectively eliminate samples. For example, LPRUS and MLRUS [25] aim to
alleviate imbalances by respectively targeting the most frequent label sets or indi-
vidual labels for removal. Conversely, oversampling techniques such as LPROS
and the MLSMOTE [6] focus on augmenting the dataset with new instances
associated with minority labels, either through duplication or the generation of
synthetic samples. Recent developments include the REMEDIAL [5] method,
which adjusts label and feature spaces to lessen label co-occurrence and improve
sampling. Integrating this method with techniques such as MLSMOTE can fur-
ther optimize dataset balancing [7]. MLSOL [17] specifically generates instances
to focus on local imbalances in datasets. On the other hand, MLTL [21] refines
datasets by removing instances that obscure class boundaries, Another notable
method, MLBOTE [29], categorizes instances based on their boundary charac-
teristics and applies different sampling rates.

2.3 Deep Sampling Method

Traditional sampling techniques struggle to effectively expand the training set
for complex models. This has sparked interest in generative models and their
potential to mimic oversampling strategies [2,10]. Utilizing an encoder-decoder
setup, artificial instances can be effectively introduced into an embedding space.
AE [13,15] and GAN [12] have been effectively employed to capture the under-
lying distribution of data and further applied to generate data for oversampling
purposes. AE is designed to learn efficient data codings in an unsupervised man-
ner. Essentially, they aim to capture the most salient features of the data by
compressing the input into a lower-dimensional latent space and then recon-
structing it back to the original dimensionality. The core objective of an AE
is defined by the reconstruction error, which quantifies the difference between
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the original data and its reconstruction. Unlike Variational Autoencoder (VAE),
which incorporates the Kullback-Leibler (KL) divergence to regulate the latent
space, standard AE relies solely on the reconstruction loss. This encourages the
model to develop a compressed representation that retains as much of the original
information as possible, enabling the AE to generate reconstructions that are as
close to the input. For example. DeepSMOTE [8] integrates traditional SMOTE
methods into encoding and decoding architectures similar to AE. VAE strive to
maximize a variational lower bound on the data’s log-likelihood. Typically, they
are formulated by merging a reconstruction loss with the KL divergence. The
KL divergence serves as an indirect penalty for the reconstruction loss, steering
the model towards a more faithful replication of the data distribution [22]. By
penalizing the reconstruction loss, the model is motivated to refine its replica-
tion of the data, thereby enabling it to produce outputs rooted in the input’s
latent distribution. GAN has significantly advanced the field of computer vision
by framing image generation as a competitive game between a generator and a
discriminator network [19,20,37]. Despite their remarkable achievements, GAN
requires the deployment of two separate networks, can encounter training diffi-
culties, and are susceptible to mode collapse [8].

3 Multi-label AutoEncoder Oversampling

3.1 Method Description and Overview

The multi-label AutoEncoder oversampling framework, as described in Algo-
rithm 1, is divided into the training process and the instance generation phase.

In the training process, as shown in Fig. 2, the model is designed to learn
and optimize four distinct mapping functions: the feature encoding function Fex,
label encoding function Fey, feature decoding function Fdx, and label decoding
function Fdy. The model is trained end-to-end with mini-batches and the Adam
optimizer, where batch size n encompasses the feature vector xi and binary label
vector yi of the i-th sample, respectively. The matrices X and Y aggregate the
input features and labels for all samples in the batch. The framework ingests
a feature matrix X and its corresponding label matrix Y, aiming to output
reconstructed versions of X′ and Y′. Meanwhile, The other goal of our model
is to identify an optimal latent space L, where the Deep Canonical Correlation
Analysis (DCCA) component [1] enhances the correlation between X and Y.
Therefore, the model’s objective function is defined as:

Θ = min
Fex,Fey,Fdx,Fdy

Φ(Fex,Fey) + αΨ(Fex,Fdx) + βΓ (Fey,Fdy) (2)

where Φ(Fex,Fey) denotes the latent space loss, αΨ(Fex,Fdx) and βΓ (Fey,Fdy)
signify the reconstruction losses. Here, α and β serve to balance these compo-
nents, respectively. In Sect. 3.2, we will explain every term of the objective func-
tion in details. At the end of each epoch, we enter a validation phase, adjusting
the threshold for binary label conversion by maximizing the F-measure of each
label on the validation set.
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Algorithm 1: Using Encoder and Decoder for Multi-Label Sampling
Input: Original dataset D = (X,Y), sample count num, parameter α, β,

latent space dimension l
Output: Balanced training set D′

/* train the Encoder and Decoder */
1 for e ← 1 to epochs do
2 for batch(X̂, Ŷ) ← B do
3 Fex((X̂)),Fey((Ŷ)); /* encode batch data to L */
4 Fdx((X̂)),Fdy((Ŷ)); /* decode batch data from L */
5 Define the loss function by Eq 2;
6 Compute gradients and update parameters with Adam;

7 Update T ; /* validate and optimize the bipartition
threshold for each label */

/* generate instances */
8 while num > 0 do
9 xs ← select form M ; /* choose seed instance */

10 Fex(xs) ; /* encode */
11 xg ← Fdx(Fex(xs)) yg ← Fdy(Fex(xs)); /* decode */
12 yg ← T ; /* rounding */
13 D’=D’ ∪ (xg,yg) ;
14 num ← num − 1 ;

15 return D′

After the model training is completed, we proceed with instance generation.
Let num represent the required number of instances to be generated, and p
denote the sampling rate. Further details on the sampling process can be found
in Sect. 3.3.

3.2 Loss Function

Joint Embedding. To calculate Φ(Fex,Fey) defined in Eq. 2, we employ the
DCCA to embed features and labels into a shared latent space simultaneously
and rewrite the correlation-based Φ(Fex,Fey) as the following deep version:

Φ(Fex(X),Fey(Y)) = ‖Fex(X)−Fey(Y)‖2F = Tr(CT
1 C1)+λTr(CT

2 C2+CT
3 C3)

(3)
where

C1 = Fex(X) − Fey(Y),

C2 = Fex(X)Fex(X)T − I,

C3 = Fey(Y)Fey(Y)T − I,

constraint : Fex(X)Fex(X)T = Fey(Y)Fey(Y)T = I

(4)
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Fig. 2. The architecture of the proposed autoencoder learns the latent space L through
the function of Fex and Fey, and decouples L through Fdx and Fdy.

C1 quantifies the discrepancy between the feature and label embeddings, while
C2 and C3 assess how each embedded space diverges from orthonormality. The
goal is to minimize these discrepancies to align the embeddings of X and Y
closely, ensuring they remain orthonormal as dictated by the constraint. The
identity matrix I ∈ R

l×l, serves as a benchmark for achieving this orthonor-
mality, where l denotes the latent space dimension. Integrating DCCA in our
sampling framework not only enables a unified embedding of features and labels
but also allows for their precise reconstruction from shared space through the
functions Ψ(Fex(X),Fdx(X)) for features and Γ (Fey(Y),Fdy(Y)) for labels.

Feature Reconstruction. The function Ψ is composed of two distinct compo-
nents: the feature reconstruction error, M, and the instance similarity metric,
S. It is defined as:

Ψ(Fex(X),Fdx(X)) = M + λS (5)

where λ is a regularization parameter that balances the contribution of the
similarity metric S relative to the reconstruction error M.

The reconstruction error M, quantified as mean squared error, is calculated
as:

M =
n∑

i=1

(x′
i − xi)2 (6)

with x′
i representing the reconstruction of the input xi, generated by the Fdx

applied to the encoded representation Fex(xi).
The similarity metric S ensures that the proximity between original instances

is maintained after reconstruction, thereby conserving the integrity of the feature
space. This metric is formulated as:
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S =
1

n(n − 1)

n∑

i,j=1,i �=j

(
(xi − xj)2 − (x′

i − x′
j)

2
)2 (7)

which measures the squared differences in distances between all pairs of original
instances (xi,xj) and their corresponding reconstructed pairs (x′

i,x
′
j), ensuring

the model preserves instance similarity in its learned feature space. The com-
bination of M and S ensures an optimal balance between high-fidelity feature
reconstruction and the preservation of relative distances among data within the
feature space.

Label Reconstruction. The function Γ encapsulates ranking loss to help the
model retrieve label vectors from the shared embedding space:

Γ (Fey(Y),Fdy(Y)) =
n∑

i=1

(
Ei

|Yi| × |Ȳi|
)

(8)

where Ei is defined as the set of label pairs (yij , yik) that satisfy the condition
f(xi, yij) ≤ f(xi, y

′
ij), with these label pairs belonging to the Cartesian product

of the set of positive labels Yi and the set of negative labels Ȳi. Here, Yi represents
the set of positive labels, while Ȳi represents the set of negative labels.

3.3 Generate Instances and Post-processing

Let Ls = {lj | ImRj > 10, IRlblj > MeanIR}1 be the set comprising m minor-
ity labels [29] and M = {(xi,yi) | yij = 1, lj ∈ Ls} be the minority instance set
associated any labels in Ls. Then, we randomly select a seed sample (xi,yi) from
M to initiate the sampling process through forward inference. As shown in Fig. 3,
the process encodes the feature vector xs into a latent space by Fex(xs), then
decodes it to the feature and label vectors of the new instance by Fdx(Fex(xs))
and Fdy(Fex(xs)), respectively. Specifically, we employ a predefined threshold
set T to transform the decoded numerical label vector into a binary label vector.
After the process, we remove any instances where the generated label vector is
entirely zeros to ensure each instance contributes meaningfully to the dataset.

4 Experiments and Analysis

4.1 Datasets

We evaluate our proposed model across 9 benchmark multi-label datasets span-
ning diverse domains, such as text, images, and bioinformatics [30]. Each dataset
is characterized by a set of statistics and imbalance metrics, which include the

1 Here, 10 is a hyperparameter. We refer to the suggestions in [29] for the selection.
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Fig. 3. The process of generating instances

number of instances (n), feature dimensions (d), labels (q), average label cardi-
nality per instance Card(q), and label density Den(q). A comprehensive expla-
nation of these statistical measures and imbalance metrics is available in [28,36].
In the experiment, 20% training data is split as the validation set, which is used
to establish thresholds for accurate prediction of final labels (Table 1).

Table 1. Characteristics of the experimental datasets

Dataset Domainn d q Card(q)Den(q)MeanIRCVIR
bibtex text 7395 1836 159 2.40 0.02 12.50 0.41
enron text 1702 1001 53 3.38 0.06 73.95 1.96
Languagelog text 1460 1004 75 15.93 0.21 5.39 0.78
yeast biology 2417 103 14 4.24 0.30 7.20 1.88
rcv1 text 6000 472 101 2.88 0.03 54.49 2.08
rcv2 text 6000 472 101 2.63 0.03 45.51 1.71
rcv3 text 6000 472 101 2.61 0.03 68.33 1.58
cal500 music 502 68 174 26.04 0.15 20.58 1.09
Corel5k images 5000 499 374 3.52 0.01 189.57 1.53

4.2 Experiment Setup

In AEMLO, Fex and Fey are comprised of two fully connected layers, whereas
Fdx and Fdy adopt a single fully connected layer structure. Each layer within
these components incorporates 512 neurons and incorporates a leaky ReLU acti-
vation function to introduce nonlinearity. The parameters α and β of objective
function are explored within the range of [2−4, 2−3, · · · , 24].
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Compared Sampling Methods. We compare our proposed sampling method
with the following sampling methods.

– MLSMOTE: MLSMOTE extends the classical SMOTE method to multi-
label data.[Parameter : Ranking, k = 5]

– MLSOL: MLSOL considers local label imbalance and employs weight vectors
and type matrices for seed instance selection and synthetic instance genera-
tion. [Parameter : p ∈ (0.1, 0.3, 0.5, 0.7, 0.9) , k = 5]

– MLROS: MLROS executes replicating instances associated with minority
labels. [Parameter : p ∈ (0.1, 0.3, 0.5, 0.7, 0.9)]

– MLRUS: MLRUS executes removing instances associated with majority
labels. [Parameter : p ∈ (0.1, 0.2, 0.3)]

– MLTL: MLTL identifies and removes Tomek-Links in multi-label data
by considering the set of instances associated with each minority label.
[Parameter : k = 5]

– MLBOTE: MLBOTE divides instances into three categories, and determines
specific instance weights and sampling rates for each group.

Base Multi-lable Classifiers. We use all sampling methods on the following
five multi-label classifiers.

– Binary Relevance [3]: BR transforms the multi-label classification prob-
lem into multiple independent binary classification tasks, each of which cor-
responds to one label and trains a binary classifier. Base binary classifier:
SVM.

– Multi-label k-Nearest Neighbors [35]: MLkNN is an extension of the
k-Nearest Neighbors (kNNs) algorithm for multi-label classification. hyper-
parameter configuration: k=10.

– Random k-labELsets [31]: RAkEL divides the entire label set into several
random subsets containing at least three labels and encodes each subset as
a multi-class dataset by treating each label combination as a class. hyper-
parameter configuration: k = 3, n = 2q, base binary classifier: C4.5 Decision
Tree.

– Ensemble of Classifier Chain [23]: ECC is an approach that extends the
Classifier Chain further in an ensemble framework. hyperparameter configu-
ration: N = 5, base binary classifier: C4.5 Decision Tree.

– Calibrated Label Ranking [11]: CLR transforms the multi-label learning
problem into the label ranking problem. Base binary classifier: SVM

Evaluation Metrics. To assess the efficacy of the batch method in multi-label
classification, three commonly utilized evaluation metrics are adopted, compris-
ing Macro-F, Macro-AUC, Ranking Loss. Please refer to [36] for detailed defini-
tions of these metrics (Figs. 4, 5 and 6).
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(g) rcv3 (h) cal500 (i) Corel5k

Fig. 4. The performance of the multi-label sampling methods in terms of Macro-F
across five different classification methods.

4.3 Experimental Analysis

Table 2 presents the average rankings of each base classifier combined with sam-
pling methods across all datasets. Additionally, the Friedman test was utilized
to verify the significant superiority/inferiority of our method compared to other
sampling approaches across three evaluation metrics in five basic multi-label clas-
sification methods. The detailed results of the comparative sampling methods
using five fundamental learners on the Macro-F, Macro-AUC, and Ranking Loss
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Fig. 5. The performance of the multi-label sampling methods in terms of Macro-AUC
across five different classification methods.

are shown in Github. The Origin represents training directly using the train-
ing set without any sampling methods. The results indicate that the AEMLO
method achieves the highest average ranking in almost all metrics, securing the
most significant victories without any substantial losses. It is observed that
MLBOTE and MLSOL outperform MLSMOTE, reflecting that refining rule
selection for seed instances is more effective than oversampling with all minor-
ity seeds directly. An interesting observation is that the performance of MLTL
and MLRUS is even worse than that of the original dataset. This is primarily
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Fig. 6. The performance of the multi-label sampling methods in terms of Ranking Loss
across five different classification methods.

attributed to the removal of critical instances, leading to the loss of important
information.

Autoencoders excel at generating new samples by learning compressed rep-
resentations of input data. However, a subtle challenge arises when the feature
space of these generated samples diverges from that of the origin samples. This
divergence may pose difficulties for the MLkNN, which relies heavily on the dis-
tances between samples within the feature space to identify nearest neighbors.
As such, any significant discrepancy in the feature distribution between gen-
erated and origin samples could potentially impact the MLkNN to accurately
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Table 2. The mean ranking of different sampling methods evaluated with five base
learners across three metrics is presented. The notation (n1/n2) indicates adjustments
from the Friedman test at a 5% significance level, signifying that the method in ques-
tion significantly outperforms n1 methods and is outdone by n2 methods. The top-
performing method is emphasized in bold, with lower rankings indicating superior
performance.

Origin MLSMOTEMLSOL MLROS MLRUS MLTL MLBOTE AEMLO
Macro-F BR 6.33(0/3) 5.11(0/3) 2.89(4/1) 4.22(1/0) 6.00(0/3) 7.33(0/5) 2.78(4/0) 1.33(6/0)

MLkNN 5.33(0/4) 3.11(3/0) 1.56(4/0) 3.89(2/0) 6.89(0/4) 7.67(0/5) 4.56(1/1) 3.00(3/0)
RAkEL 5.67(0/3) 4.11(2/2) 2.67(2/0) 4.89(2/2) 7.22(0/5) 7.00(0/5) 2.44(3/0) 2.00(4/0)
ECC 5.11(0/2) 4.22(0/0) 3.56(2/0) 5.67(0/2) 5.44(0/2) 6.67(0/3) 2.78(3/0) 2.56(4/0)
CLR 6.33(0/3) 3.89(2/0) 2.78(3/0) 3.00(2/0) 6.89(0/4) 7.11(0/5) 3.89(2/0) 2.11(3/0)
Avg(Total) 5.75(0/15) 4.09(7/5) 2.69(15/1) 4.33(7/4) 6.49(0/18) 7.16(0/23) 3.29(13/1) 2.20(20/0)

Macro-AUC BR 5.00(0/2) 4.78(0/1) 3.00(3/0) 4.11(1/0) 5.78(0/3) 7.56(0/5) 4.33(1/1) 1.44(7/0)
MLkNN 5.11(0/3) 4.22(2/0) 3.44(3/0) 3.78(2/0) 6.11(0/4) 6.78(0/4) 4.44(1/0) 2.11(3/0)
RAkEL 5.33(0/2) 4.33(1/0) 2.78(2/0) 3.56(1/0) 4.33(1/0) 7.67(0/6) 4.89(0/0) 3.11(2/0)
ECC 5.22(0/2) 5.02(0/2) 3.33(3/0) 4.22(1/0) 6.89(0/4) 7.00(0/4) 2.56(3/0) 1.56(5/0)
CLR 6.00(0/3) 5.00(0/1) 3.16(2/0) 3.67(2/1) 5.56(0/2) 7.44(0/4) 3.33(2/0) 1.67(5/0)
Avg(Total) 5.33(0/12) 4.71(3/4) 2.98(13/0) 3.87(7/0) 5.73(1/13) 7.29(0/23) 3.91(7/1) 2.18(22/0)

Ranking LossBR 4.89(0/1) 6.22(0/2) 4.44(0/0) 4.00(1/0) 5.33(0/2) 6.11(0/3) 3.00(3/0) 2.00(4/0)
MLkNN 4.56(0/2) 5.44(0/3) 3.56(3/0) 5.33(0/2) 4.00(0/2) 6.89(0/5) 2.89(3/0) 3.33(2/0)
RAkEL 6.44(0/3) 5.22(0/1) 4.33(1/0) 4.44(0/0) 2.78(2/0) 7.56(0/4) 3.11(2/0) 2.11(3/0)
ECC 5.00(0/1) 4.56(0/0) 4.78(0/0) 3.67(1/0) 4.67(0/0) 6.33(0/2) 4.11(0/0) 2.89(2/0)
CLR 5.22(0/2) 4.00(1/1) 4.22(1/1) 4.11(1/0) 5.00(0/2) 7.67(0/5) 3.89(3/0) 1.89(5/0)
Avg(Total) 5.22(0/9) 5.09(1/7) 4.27(5/1) 4.31(3/2) 4.36(2/6) 6.91(0/19) 3.40(11/0) 2.44(16/0)

classify unseen samples. The enhanced performance of BR and CLR methods on
augmented datasets can be attributed to the robustness of SVM and its adept-
ness at navigating complex decision boundaries. Specifically, SVM is particularly
effective at managing the intricacies introduced into the feature space by data
synthesized through Autoencoders.

4.4 Parameter Analysis

We investigate the influence of various parameter settings on the performance
of ALMLO. We select smaller enron and larger Corel5k as two representative
datasets in the parameter analysis.

As shown in Fig. 7(a), the impact of varying sampling rate p on Macro-F
and Macro-AUC scores (based on MLkNN) shows a trend of initial fluctuation,
followed by stabilization. In contrast, in Fig. 7(b) exhibits a higher sensitivity
to p, with significant volatility in Macro-F and inconsistent variations in Macro-
AUC. These observations suggest that the optimal selection of p may be highly
dependent on dataset characteristics.

Figure 8 illustrates ALMLO’s performance sensitivity to variations in α and
β, highlighting the importance of balancing feature reconstruction loss with label
relevance loss during optimization.
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Fig. 7. Performance of sampling rate in terms of Macro-F and Macro-AUC.

Fig. 8. Performance of AEMLO with varying parameter configurations in terms of
Macro-F.

4.5 Sampling Time

Figure 9 shows the time efficiency of different sampling methods, with the epoch
set as 100 for AEMLO. It is evident that AEMLO, as a deep learning approach,
requires training before sampling, resulting in a higher time expenditure.

Fig. 9. Sampling time of different sampling method.
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5 Conclusion

In this paper, we introduce AEMLO, an innovative oversampling model devised
for addressing data imbalance in multi-label learning by integrating canonical
correlation analysis with the encoder-decoder paradigm. AEMLO emerges as
an effective oversampling solution for training deep architectures on imbalanced
data distributions. It acts as a data-level solution for class imbalance, synthe-
sizing instances to balance the training set and thus enabling the training of
any classifiers without bias. AEMLO exhibits the pivotal characteristics cru-
cial for a successful sampling algorithm in the multi-label learning domain: the
ability to manipulate features and labels, i.e., to learn low-dimensional joint
embeddings from feature and label representations and transform them into an
original-dimensional space, along with generating new feature representations
and their corresponding label subsets. This is facilitated through the utilization
of an encoder/decoder framework. Extensive experimental studies demonstrate
the capability of AEMLO to handle imbalanced multi-label datasets in various
domains and collaborate with diverse multi-label classifiers.
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Foundation of China (62302074) and the Science and Technology Research Program of
Chongqing Municipal Education Commission (KJQN202300631).
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Abstract. We present MANTRA, a framework for approximating the
temporal betweenness centrality of all nodes in a temporal graph. Our
method can compute probabilistically guaranteed high-quality tempo-
ral betweenness estimates (of nodes and temporal edges) under all the
feasible temporal path optimalities, presented in the work of Buß et al.
(KDD, 2020). We provide a sample-complexity analysis of our method
and speed up the temporal betweenness computation using a state-of-
the-art progressive sampling approach based on Monte Carlo Empiri-
cal Rademacher Averages. Additionally, we provide an efficient sampling
algorithm to approximate the temporal diameter, average path length,
and other fundamental temporal graph characteristic quantities within
a small error ε with high probability. The running time of such approx-
imation algorithm is Õ( log n

ε2
· |E|), where n is the number of nodes and

|E| is the number of temporal edges in the temporal graph. We support
our theoretical results with an extensive experimental analysis on several
real-world networks and provide empirical evidence that the MANTRA
framework improves the current state of the art in speed, sample size, and
required space while maintaining high accuracy of the temporal between-
ness estimates.

1 Introduction

Centrality measures are fundamental notions for evaluating the importance of
nodes in networks, used in network analysis and graph theory. A centrality mea-
sure assigns real values to all the nodes, in such a way that the values are
monotonously dependent of the nodes’ importance, i.e., more important nodes
should have higher centrality scores. Computing the betweenness centrality is
arguably one of the most important tasks in graph mining and network anal-
ysis. It finds application in several fields including social network analysis [38],
routing [15], machine learning [37], and neuroscience [16]. The betweenness of
a node in a graph indicates how often this node is visited by a shortest path.
High betweenness nodes are usually considered to be important in the network.
Brandes’ algorithm [7], is the best algorithm to compute the exact centrality
scores of every node in O(n ·m) time and O(n+m) space where n and m are the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14941, pp. 125–143, 2024.
https://doi.org/10.1007/978-3-031-70341-6_8
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number of nodes, and edges of a given graph G = (V,E), respectively. Unfortu-
nately, this algorithm quickly becomes impractical on nowadays’ networks with
billions of nodes and edges. Moreover, there is a theoretical evidence, in form of
several conditional lower bounds results [1], for believing that a faster algorithm
cannot exists, even for approximately computing the betweenness. A further
challenge, is that modern real-world networks are also dynamic or temporal,
i.e., they change over time. Temporal networks can be informally described as
edge-labeled graphs in which each label indicates the time instant in which the
underlying edge appears in the network. A great variety of both modern and
traditional networks can be naturally modeled as temporal graphs. Further-
more, there are numerous real-world applications for which studying temporal
networks offers unique perspectives. This is especially evident when examining
data that evolves over time, for example social networks interactions, informa-
tion/infection spreading, subgraph patterns, detecting communities, and cluster-
ing networks. In the context of these challenges it is, thus, essential to consider
temporal variants of the most important centrality notions, alongside algorithms
for computing them, that have an excellent scaling behavior. In this work, we
focus on the temporal version of the betweenness centrality, that similarly to
static networks, it seeks to pinpoint nodes that are traversed by a significant
number of optimal (temporal) paths. Buß et al. [10,34] gave several definitions
of the temporal betweenness as a temporal counterpart of the betweenness cen-
trality, characterized their computational complexity, and provided polynomial
time algorithms to compute these temporal centrality measures. However, these
algorithms turn out to be impractical, even for medium size networks. Thus, it
is reasonable to consider approximation algorithms that can efficiently compute
the centrality values of the nodes up to some small error. In this work, we fol-
low the approach of Santoro et al. [35], and we provide a set of approximation
algorithms for all the temporal betweenness variants in [10].

Contributions. We propose MANTRA (teMporAl betweeNnes cenTrality
thRough sAmpling), a rigorous framework for the approximation of the tempo-
ral betweenness of all the vertices and temporal edges in large temporal graphs.
In particular, we present the following results: (1) We extend the state-of-the-
art estimator [35] to all the feasible temporal betweenness centrality variants
for nodes and temporal edges (Sect. 4.1). In addition, we propose two alterna-
tive unbiased estimators for such centrality measure on temporal graphs1; (2)
We derive new bounds on the sufficient number of samples to approximate the
temporal betweenness centrality for all nodes2 (Sect. 4.2), that are governed by
three key quantities of the temporal graph, such as the temporal vertex diam-
eter, average temporal path length, and the maximum variance of the temporal
betweenness centrality estimators. Moreover, this result solves an open problem

1 Due to space constraints, we refer to the extended version of this work [14] for
the temporal betweenness on temporal edges and for the definition of the other
estimators.

2 The sample complexity analysis holds also for the temporal edges.



Temporal Betweenness Centrality Approximation Through Sampling 127

in [27,29] on whether the sample complexity bounds for the static betweenness
can be efficiently extended to temporal graphs. As a consequence, it signif-
icantly improves on the state-of-the-art results for the temporal betweenness
estimation process [35]. Additionally, our analysis of sample complexity presents
further challenges regarding the efficient computation of the three quantities
upon which the bounds for the necessary sample size depend; (3) We propose
a novel algorithm to efficiently estimate the key quantities of interests in (2)
that uses a mixed approach based on sampling and counting (Sect. 4.3). The
time complexity of our approach is Õ( log n

ε2 |E|), while the space complexity is
O(n + |E|). We provide an estimate on the sample size needed to achieve good
estimates up to a small error bound. More precisely, we prove that r = Θ( log n

ε2 )
sample nodes are sufficient to estimate, with probability at least 1 − 1/n2: (i)
the temporal diameter D(�) with error bounded by ε

ζ(�) ; (ii) the average tem-

poral path length ρ(�) with error bounded by εD(�)

ζ(�) ; and, (iii) the temporal
connectivity rate ζ(�) (see Sect. 4.3 for the formal definition) with error bounded
by ε; (4) We define MANTRA, a progressive sampling algorithm that uses an
advanced tool from statistical learning theory, namely Monte Carlo Empirical
Rademacher Averages [3] and the above results (e.g. (1–3)) to provide a high
quality approximation of the temporal betweenness (Sect. 4.4). MANTRA’s out-
put is a function of two parameters: ε ∈ (0, 1) controlling the approximation’s
accuracy, and δ ∈ (0, 1) controlling the confidence of the computed approxi-
mation. Our novel approach improves on ONBRA [35] (i.e., the state-of-the-art
algorithm) in terms of running time, sample size, and allocated space; and, (5)
We support our theoretical analysis with an extensive experimental evaluation
(Sect. 5), in which we compare MANTRA with ONBRA.

2 Related Work

Tsalouchidou et al. [39], extended the well-known Brandes algorithm [7] to allow
for distributed computation of betweenness in temporal graphs. Specifically, they
studied shortest-fastest paths, considering the bi-objective of shortest length and
shortest duration. Buß et al. [10,34] analysed the temporal betweenness central-
ity considering several temporal path optimality criteria, such as shortest (fore-
most), foremost, fastest, and prefix-foremost, along with their computational
complexities. They showed that, when considering paths with increasing time
labels, the foremost and fastest temporal betweenness variants are #P -hard,
while the shortest and shortest foremost ones can be computed in O(n3 · |T |2),
and the prefix-foremost one in O(n · |E| · log |E|). Here E is the set of tempo-
ral edges, and T is the set of unique time stamps. Santoro et al. [35] provided
ONBRA, the first sampling-based approximation algorithm for one variant of
the temporal betweenness centrality. The input to ONBRA is a temporal graph,
a confidence value δ ∈ (0, 1), and the sample size r. The algorithm performs
a set of r truncated temporal breadth first searches between couples of nodes
sampled uniformly at random and estimates the shortest temporal betweenness
using the temporal equivalent of the ABRA estimator [32] for static networks.
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ONBRA’s output is a function of the confidence δ ∈ (0, 1) and the upper bound
on the approximation accuracy ξ ∈ (0, 1) computed using the Empirical Bern-
stein Bound [22]. More precisely, with probability 1−δ, the approximation com-
puted by ONBRA is guaranteed to have absolute error of at most ξ for each node
in the temporal graph. Finally, Becker et al. [4], provided an efficient heuristic
to approximate the temporal betweenness rankings by considering the temporal
interactions among the 1-hop neighborhood of the nodes.

3 Preliminaries

Temporal Graphs, and Paths. A directed temporal graph is an ordered tuple
G = (V, E) where E = {(u, v, t) : u, v,∈ V ∧ t ∈ T ⊆ N} is the set of temporal
edges3. Given two nodes s and z, a temporal path tpsz ⊆ V ×V ×T is a (unique)
sequence of time-respecting temporal edges ((u1, u2, t1), . . . , (uk−1, uk, tk−1))
such that for each 1 ≤ i < k, ti < ti+1, every node ui is visited at most once
and u1 = s and uk = z. Moreover, given a pair of distinct vertices s �= z a
temporal path tpsz from s to z can also be described as a time-ordered sequence
of vertex appearances tpsz = ((u1, t1), (u2, t2), . . . , (uk, tk)) such that u1 = s,
and uk = z. The vertex appearances (u1, t1) and (uk, tk) are called endpoints of
tpsz and the temporal nodes in Int(tpsz) = tpsz \ {(u1, t1), (uk, tk)} are called
internal vertex appearances of tpsz. Unlike paths on static graphs, in the tempo-
ral setting there are several concepts of optimal paths (e.g., shortest, foremost,
fastest) [9,10,34]. Moreover, as for the static betweenness, the task of computing
the desired centrality measure boils down to the ability of efficiently counting
the overall number of optimal paths. Unfortunately, it has been already shown
that such task turns out to be #P-Hard for some temporal path optimalities
(e.g. foremost, fastest) [10,34]. Hope is left for the shortest (and all its variants)
an the prefix foremost temporal paths. We formally describe those that can be
efficiently counted.

Definition 1. Given a temporal graph G, and two nodes s, z ∈ V . Let tpsz be
a temporal path from s to z, then tpsz is said to be: (1) Shortest (sh) if there
is no tp′

sz such that |tp′
sz| < |tpsz|; (2) Shortest-Foremost (sfm) if there is no

tp′
sz that has an earlier arrival time in z than tpsz and has minimum length in

terms of number of hops from s to z; and, (3) Prefix-Foremost (pfm) if tpsz is
foremost and every prefix tpsv of tpsz is foremost as well.

Figure 1 shows an example of the temporal paths optimalities considered in
this paper. To denote the different type of temporal paths we use the same nota-
tion of Buß et al. [10]. More precisely, we use the term “(�)-optimal” temporal
path, where (�) denotes the type. Furthermore, we denote the set of all (�)-
temporal paths between two nodes s and z as Γ

(�)
sz and we let TP

(�)
G to be the

3 The value T denotes the life-time of the temporal graph, and, without loss of gen-
erality for our purposes, we assume that, for any t ∈ T , there exists at least one
temporal arc at that time and without loss of generality we assume T = [1, |T |].
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1

2

23

22

36
40

3

4

56 80 92

Fig. 1. Example of the (�)-temporal paths described in Definition 1. Shortest: (s 56−→
x

80−→ y
92−→ z), (s

22−→ a
36−→ b

40−→ z), Shortest-Foremost: (s 22−→ a
36−→ b

40−→ z), and
Prefix-Foremost:(s 1−→ u

2−→ v
3−→ w

4−→ z).

union of all the Γ
(�)
sz ’s, for all pairs (s, z) ∈ V ×V of distinct nodes. In this work,

we will heavily rely on two temporal graphs characteristic quantities, namely the
temporal (vertex) diameter and the average temporal path length. Formally, given
a temporal graph G = (V, E) we define the (�)-temporal diameter D(�) and the
(�)-temporal vertex diameter V D(�) as the number of temporal edges and nodes
in the longest (�)-optimal path in G, i.e., D(�) = max

{
|tp(�)| : tp(�) ∈ TP

(�)
G

}
,

and V D(�) = D(�)+1, respectively. Finally, we refer to the average (�)-temporal
path length ρ(�) as the average number of internal nodes in a (�)-temporal path,
i.e., ρ(�) = 1

n(n−1)

∑
s,z∈V |Int(tpsz)|.

Temporal Betweenness Centrality. As previously shown, on temporal
graphs, there are several notions of optimal paths. Hence, we have different
notions of temporal betweenness centrality [10] as well. Formally, let G = (V, E)
be a temporal graph. For any pair (s, z) of distinct nodes (s �= z), let σ

(�)
sz be

the number of (�)-temporal paths between s and z, and let σ
(�)
sz (v) be the num-

ber of the (�)-temporal paths between s and z that pass through node v, with
s �= v �= z. The normalized temporal betweenness centrality b(�)v of a node v ∈ V
is defined as

b(�)v =
1

n(n − 1)

∑
s �=v �=z

σ
(�)
sz (v)

σ
(�)
sz

We refer to the extended version of this work [14] for the definition of the (�)-
temporal betweenness of the temporal edges. Whenever we use the term (�)-
temporal paths we consider (�) to be one of the optimality criteria in Definition
1. We observe that the average (�)-temporal path length is equal to the sum of
the (�)-temporal betweenness centrality over all nodes v ∈ V .

Lemma 1. ρ(�) =
∑

v∈V b(�)v

Supremum Deviation and Empirical Rademacher Averages. Here we
define the Supremum Deviation (SD) and the c-samples Monte Carlo Empirical
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Rademacher Average (c-MCERA). For more details about the topic we refer to
the book [36] and to [3]. Let D be a finite domain and consider a probability
distribution π over the elements of D. Let F be a family of functions from D
to [0, 1], and S = {s1, . . . , sr} be a collection of r independent and identically
distributed samples from D sampled according to π. The SD is defined as

SD(F ,S) = sup
f∈F

∣∣∣∣∣
1
r

r∑
i=1

f(si) − Eπ [f ]

∣∣∣∣∣

The SD is the key concept of the study of empirical processes [30]. One way to
derive probabilistic upper bounds to the SD is to use the Empirical Rademacher
Averages (ERA) [17]. Let λ ∈ {−1, 1}r be a vector or i.i.d. Rademacher random
variables, the ERA of F on S is

R(F ,S) = Eλ

[
sup
f∈F

1
r

r∑
i=1

λif(si)

]

Computing the ERA R(F ,S) is usually intractable, since there are 2r possible
assignments for λ and for each such assignment a supremum over F must be
computed. In this work, we use the state-of-the-art approach to obtain sharp
probabilistic bounds on the ERA that uses Monte-Carlo estimation [3]. Consider
a sample S = {s1, . . . sr}, for c ≥ 1 let λ ∈ {−1, 1}c×r be a c × r matrix of i.i.d.
Rademacher random variables. The c-MCERA of F on S using λ is

Rc
r(F ,S,λ) =

1
c

c∑
j=1

sup
f∈F

1
r

r∑
i=1

λj,if(si)

The c-MCERA allows to obtain sharp data-dependent probabilistic upper
bounds on the SD, as they directly estimate the expected SD of sets of functions
by taking into account their correlation. Moreover, they are often significantly
more accurate than other methods [27–29], such as the ones based on loose deter-
ministic upper bounds to ERA [32], distribution-free notions of complexity such
as the Hoeffding’s bound or the VC-Dimension, or other results on the vari-
ance [22,35]. Moreover, a key quantity governing the accuracy of the c-MCERA
is the empirical wimpy variance [6] WF (S), that for a sample of size r is defined
as

WF (S) = sup
f∈F

1
r

r∑
i=1

(f(si))2

Theorem 1 (Theorem 4.1 in [29]). For c, r ≥ 1, let λ ∈ {−1,+1}c×r be
a c × r matrix of Rademacher random variables, such that λj,i ∈ {−1,+1}
independently and with equal probability. Then, with probability at least 1 − δ

over λ, it holds R(F ,S) ≤ Rc
r(F ,S,λ) +

√
4WF (S) ln(1/δ)

cr .

We are ready to state the technical result of this section (proof deferred to
the extended version of this paper [14]).
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Theorem 2. Let F be a family of functions with codomain in [0, 1], and let
S be a sample of r random samples from a distribution π. Denote v̂ such that
supf∈F Var(f) ≤ v̂. For any δ ∈ (0, 1), define

R̃ = Rc
r(F ,S,λ) +

√
4WF (S) ln(4/δ)

cr
(1)

R = R̃ +
ln(4/δ)

r
+

√(
ln(4/δ)

r

)2

+
2 ln(4/δ)R̃

r

ξ = 2R +

√
2 ln(4/δ) (v̂ + 4R)

r
+

ln(4/δ)
3r

(2)

With probability at least 1−δ over the choice of S and λ, it holds SD(F ,S) ≤ ξ.

4 MANTRA: Temporal Betweenness Centrality Approxi-
mation Through Sampling

4.1 Temporal Betweenness Estimator

In this section we present one unbiased estimator4 for the (�)-temporal between-
ness centrality, and we refer to the full version of this work [14] for the
remaining estimators that have been excluded due to space constraints. The
ONBRA (ob) algorithm [35] uses an estimator defined over the sampling space
Dob = {(s, z) ∈ V × V : s �= z} with uniform sampling distribution πob over
Dob, and family of functions Fob that contains one function b̃

(�)
ob (v) → [0, 1] for

each vertex v, defined as b̃
(�)
ob (v|s, z) = σ

(�)
sz (v)/σ

(�)
sz ∈ [0, 1]. So far, this approach

has been defined only for the shortest-temporal betweenness. In this work, we
extend ob to shortest-foremost and prefix foremost temporal paths.

4.2 Sample Complexity Bounds

We present two bounds (Theorem 3 and Theorem 4) to the sufficient number of
random samples to obtain an ε approximation of the (�)-temporal betweenness
centrality. Given a temporal graph G = (V, E), with a straightforward appli-
cation of Hoeffding’s inequality and union bound [24], it can be shown that
r = 1/(2ε2) log (2n/δ) samples suffice to estimate the (�)-temporal betweenness
of every node up to an additive error ε with probability 1 − δ. To improve this
bound, we define the range space associated to the (�)-temporal betweeenness
and its VC-dimension, and remand to [23,24,36] for a more complete introduc-
tion to the topic. Let U = TP

(�)
G , define the range space R = (D,F+) where

D = U × [0, 1], and F+ is defined as follows: for a pair (s, z) ∈ V × V and a
temporal path tpsz ∈ U let f(v,t)(tpsz) = f((v, t)|s, z) = 1[(v, t) ∈ Int(tpsz)]

4 An estimator of a given parameter is said to be unbiased if its expected value is
equal to the true value of the parameter.
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be the function that assumes value 1 if the vertex appearance (v, t) is in
the temporal path between s and z. Moreover, define the family of functions
F = {f(v,t) : (v, t) ∈ V × T} and notice that for each f(v,t) ∈ F there
is a range Rf(v,t) = {(tpsz, α) : tpsz ∈ U ∧ α ≤ f(v,t)(tpsz)}. Next, define
F+ = {Rf(v,t) : f(v,t) ∈ F}. Now that we defined the range set for our problem,
we can give an upper bound on its VC-dimension.

Lemma 2. The VC-dimension of the range space R is V C(R) ≤ 	logVD(�) −
2
 + 1.

Given the VC-dimension of the range set R we have:

Theorem 3 (See [21], Section 1). Given ε, δ ∈ (0, 1), and a universal constant
h, let S ⊆ D be a collection of elements sampled w.r.t. a probability distribution
π. Then h

ε2

[
V C(R) + ln

(
1
δ

)]
samples suffice to obtain SD(F+,S) ≤ ε with

probability 1 − δ over S.

To improve this bound, we make use of Lemma 1 and notice that (as for
the static case [29]) the (�)-temporal betweenness centrality satisfies a form of
negative correlation among the nodes. Moreover, the existence of a node v with
high (�)-temporal betweenness constraints the sum of the centrality measure over
the remaining nodes to be at most ρ(�) − b(�)v . In other words, this suggests that
the number of nodes with high (�)-temporal betweenness cannot be arbitrarily
large. Furthermore, as in [29], we assume that the maximum variance of the
(�)-temporal betweenness estimators b̃

(�)

v is bounded by some estimate v̂ rather
than the worst-case upper bound of 1/4 considered in [5]. This implies that the
estimates b̃

(�)

v are not bounded by the number of nodes in the temporal graph
G, but are tightly constrained by the parameters ρ(�) and v̂. We are able to
extend the results in [29] for the static scenario to the temporal setting for all
the variants of temporal betweenness that can be computed in polynomial time
and cover one of the problems left open by the authors. It follows that:

Theorem 4. Let F = {b̃(�)v , v ∈ V } be a set of function from a domain D to
[0, 1]. Define v̂ ∈ (0, 1/4] and ρ(�) ≥ 0 such that maxv∈V Var(b̃

(�)

v ) ≤ v̂ and∑
v∈V b(�)v ≤ ρ(�). Fix ε, δ ∈ (0, 1), and let S be an i.i.d. sample taken from D of

size |S| ∈ O
(

v̂+ε
ε2 ln

(
ρ(�)

δv̂

))
. It holds that SD(F ,S) ≤ ε with probability 1 − δ

over S.

Since ρ(�) correspond to the average number of internal nodes in (�)-temporal
paths in G, it must be that ρ(�) ≤ D(�). In all the analyzed networks (see Fig. 2
in Sect. 5) this condition holds, thus this approach will need a smaller sample
size compared to the VC-Dimension based one to obtain an ε-approximation of
the (�)-temporal betweenness.
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4.3 Fast Approximation of the Characteristic Quantities

According to Theorem 3 and Theorem 4, the sample size needed to achieve
a desired approximation depends on the vertex diameter and on the average
temporal path length of the temporal graph. However, under the Strong Expo-
nential Time Hypothesis (SETH), the (�)-temporal diameter (thus the average
(�)-temporal path length) of a temporal graph G = (V, E) can not be computed
in Õ(|E|2−ε)5 [11], which can be prohibitive for very large temporal graphs, so
efficient approximation algorithms for these characteristic quantities are highly
desirable. Some algorithms for the diameter approximation on temporal graphs
have been proposed [11,13]. However these techniques consider different tempo-
ral path optimality criteria [13], or have no theoretical guarantees [11]. In this
work we define a novel sampling-based approximation algorithm to efficiently
obtain a high-quality approximation of D(�) (thus, V D(�)) and ρ(�) in Õ(r · |E|)
where r is the number of samples used by the algorithm. We provide a high
level description of the sampling algorithm and we refer to the extended version
of this work [14] for a detailed discussion and analysis of the method. Given a
temporal graph G, the sample size r, and the temporal path optimality (�), the
algorithm performs r (�)-temporal BFS visits [40] ((�)-TBFS) from r random
nodes and keeps track of the number of reachable pairs encountered at each hop
along with the greatest hop performed. Once all the r visits have been completed,
it computes the temporal diameter and other useful temporal measures using an
approach based on the relation between the number of reachable pairs and the
distance metrics [2]. The approximation guarantees of our sampling algorithm
strongly depends on “how temporally connected” a temporal graph is. To this
end, we define the (�)-temporal connectivity rate as the ratio of the number of
couples that are temporally connected by a (�)-temporal path and all the possible
reachable couples. Formally, let 1[u � v] be the indicator function that assumes
value 1 if u can reach v via a (�)-temporal path, then the temporal connectivity
rate is defined as the ratio between the number of reachable pairs and all the
possible ones in the temporal graph, i.e., ζ(�) = 1

n(n−1)

∑
u�=v 1[u � v] ∈ [0, 1].

Intuitively, the higher the connectivity rate the higher the number of couples
that are connected via at least one (�)-temporal path. Moreover, the algorithm
has the following theoretical guarantees:

Theorem 5. Given a temporal graph G = (V, E) and a sample of size r =
Θ

(
lnn
ε2

)
, the algorithm computes with probability 1− 2

n2 : the (�)-temporal diam-
eter D(�) with absolute error bounded by ε

ζ(�) , the average (�)-temporal path

length ρ(�) with absolute error bounded by ε·D(�)

ζ(�) , and the temporal connectivity
rate with absolute error bounded by ε.

5 With the notation ˜O(·) we ignore logarithmic factors.



134 A. Cruciani

4.4 The MANTRA Framework

In this section we introduce MANTRA6, our algorithmic framework for the (�)-
temporal betweenness centrality estimation. MANTRA incorporates the bounds
in Sect. 4.2 to compute an upper bound on the minimum sample size needed
to approximate the SD of the (�)-temporal betweenness and a state-of-the-art
progressive sampling technique to speed-up the estimation process. The input
parameters to MANTRA are: a temporal graph G, a temporal path optimality
(�) ∈ {sh, sfm, pfm}7, a target precision ε ∈ (0, 1), a failure probability δ ∈ (0, 1),
and a number of iterations for the bootstrap phase s′. The output is a vector
B of pairs (v, b̃

(�)

v ) for each v ∈ V , where b̃
(�)

v is the estimate of b(�)v and B is
probabilistically guaranteed to be an absolute ε approximation of the temporal
betweenness. Formally:

Theorem 6. Given a target accuracy ε ∈ (0, 1) and a failure probability δ ∈
(0, 1), with probability at least 1− δ (over the runs of the algorithm), the output
vector B = {b̃(�)v : v ∈ V } (obtained from a set of samples S) produced by
MANTRA is such that SD(B,S) ≤ ε.

Algorithm 1: MANTRA
Data: Temporal graph G, (�) temporal path optimality, precision ε ∈ (0, 1),

failure probability δ ∈ (0, 1), bootstrap iterations s′, and number of
Monte Carlo trials c.

Result: Absolute ε-approximation of the (�)-tbc w.p. of at least 1 − δ.
1 B, W = [0, . . . , 0] ∈ R

n // tbc and wimpy variance arrays
2 i, k = 0; ξ = 1;S0 = {∅}
3 ω, v̂ = DrawSufficientSampleSize(G, s′, δ/2)
4 {si}i≥1 = SamplingSchedule(ω, v̂, δ)
5 λ = [[·]] // Empty matrix
6 while true do
7 i = i + 1; k = (1.2 · si−1) − si−1

8 X = DrawSamples(G, k)// Draw k samples from the sample space Dob

9 Si = Si−1 ∪ X
10 λ = Add R.R.Vector(k, λ) // Add a Rade. rnd. column of length c
11 B, W, λ =Update(�)-TemporalBetweenness(X , B, W, λ)

12 R̃, vF =UpdateEstimates(B, W, λ, |Si|, k, c)

13 Rc
k = 1

c

∑c
l=1 maxv∈V

{
R̃[v, l]

}

14 ξ = ComputeSDBound(Rc
k, vF , δ/2i, |Si|) // Compute Eq. 2 in Thm. 2

15 if |Si| ≥ ω or ξ ≤ ε then return {(1/|Si|) · B[u] : u ∈ V }

6 teMporAl betweeNness cenTrality appRoximation through sAmpling.
7 We point out that our approach is general, and can be extended to every definition

of temporal betweenness centrality.



Temporal Betweenness Centrality Approximation Through Sampling 135

Algorithm 1’s execution is divided in two phases: the bootstrap phase (lines
3–4) and the estimation phase (lines 6–15). As a first step, MANTRA, computes
an upper bound ω to the number of samples needed to achieve an ε approx-
imation (line 2). The procedure runs s′ independent (�)-TBFS visits from s′8

random couples of nodes (s, z) sampled from the population Dob, estimates v̂ and
ρ(�), and then plugs them in Theorem 4 to obtain ω. Subsequently, it infers the
first element of the sample size {si}i≥1 by performing a binary search between s′

and ω to find the minimum s1 such that Eq. 2 (with R set to 0) is at most ε and
terminates the bootstrap phase. Such approach gives an optimistic first guess of
the number of samples to process for obtaining an ε-approximation [29]. Sub-
sequently it continues with the estimation phase in which, at each iteration, it
increases each si with a geometric progression [31], i.e., such that si = 1.2 · si−1.
Next, it proceeds by drawing uniformly at random k = si −si−1 couples of nodes
(s, z) from Dob and subsequently updating the overall set of samples sampled
so far (lines 7-9). Consequently, k new Rademacher random vectors are added
as new columns to the matrix λ and k (�)-TBFS visits are performed (line 11).
Moreover, while iterating over the new sample X the temporal betweenness,
wimpy variances and the values in λ are updated. After this step, the coeffi-
cients of Equation 2 and the new estimate on the SD, ξ, are computed (lines
12-13). As a last step of the while loop, the algorithm checks whether the desired
accuracy ε has been achieved, i.e., whether the actual number of drawn samples
is at least ω or ξ is at most ε (line 15). If at least one of the two conditions is
met, MANTRA normalizes and outputs the current estimates B. We conclude
this section with the analysis of MANTRA’s running time.

Theorem 7. Given a temporal graph G = (V, E) and a sample of size r,
MANTRA requires time Õ(r · n · |T |) and Õ(r · |E|) to compute the shortest
(foremost)-temporal and the prefix-foremost-temporal betweenness, respectively.
Moreover, MANTRA requires O(n + |E|) space.

Theorem 6 together with Theorem 7 provide theoretical evidence that
MANTRA computes a rigorous estimation of the (�)-temporal betweenness and
that scales to the size of the input temporal graph. Moreover, it improves over
the state-of-the-art approach ONBRA [35]. Indeed, given a sample of size r,
ONBRA stores a n × r matrix to compute the absolute ξ-approximation9 using
the Empirical Bernstein Bound [22]. Thus, ONBRA may require an arbitrary
large sample size (e.g. large matrix) to achieve a target absolute approximation
ε, making the algorithm not ideal to analyze big temporal graphs.

5 Experimental Evaluation

In this section, we summarize the results of our experimental study on approxi-
mating the (�)-temporal betweenness centrality in real-world temporal networks.

8 In this work we use s′ = log(1/δ)/ε.
9 ξ is the upper bound on the SD(S, F) obtained using the Empirical Bernstein Bound.
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5.1 Experimental Setting

We compare our novel framework with ONBRA [35]. For the sake of fairness,
we adapted the original fixed sample size algorithm to use the same progressive
sampling approach of our framework. Every time an element of the sampling
schedule is consumed, the algorithm computes the upper bound ξ on the SD using
the Empirical-Bernstein bound as in [35], if ξ is at most the given ε, it terminates,
otherwise it keeps sampling. We set ONBRA’s maximum number of samples to
be equal to the VC-Dimension upper-bound in Sect. 4.2. We implemented all the
algorithms in Julia exploiting parallel computing10. We chose to re-implement
the exact algorithms [10] and ONBRA [35] because they have issues with the
number of paths in the tested networks11, causing overflow errors (indicated by
negative centralities), and with the time labeling causing an underestimation
of centralities [4]. Our implementation uses a sparse matrix representation of
the n × |T | table used in [10,35], making the implemented algorithms space-
efficient and usable on big temporal graphs (for which the original version of
the code gives out of memory errors). We executed all the experiments on a
server running Ubuntu 16.04.5 LTS with one processor Intel Xeon Gold 6248R 32
cores CPU @ 3.0GHz and 1TB RAM. For every temporal graph, we ran all the
algorithms with parameter ε ∈ {0.1, 0.07, 0.05, 0.01, 0.007, 0.005, 0.001} chosen
to have a comparable magnitude to the highest temporal betweenness values in
the network (see b

(�)
max in Table 1). This is a basic requirement when computing

meaningful approximations12. Moreover, we use δ = 0.1 and use c = 25 Monte
Carlo trials as suggested in [12,29]. Finally, each experiment has been ran 10
times and the results have been averaged.

5.2 Networks

We evaluate all the algorithms on real-world temporal graphs of different nature,
whose properties are summarized in Table 1. The temporal networks come from
three different domains:

Social networks. This domain includes most of the considered networks:
College msg, Digg reply, Slashdot reply, Facebook Wall, Mathover-
flow, SMS, Askubuntu, and Wiki Talk. These are social networks from dif-
ferent realms, where nodes correspond to users and temporal arcs indicate
messages sent between them at specific points in time.

Contact networks. For the Topology network, nodes correspond to computers
and temporal arcs indicate a contact between nodes at a specific time.

Transport networks. Bordeaux is part of the Kuala et al. [18] public transport
networks collection. In such temporal graph, nodes are public transport stops
and a temporal arcs indicate routes at a specific point in time. Because of their

10 Code available at: https://github.com/Antonio-Cruciani/MANTRA.
11 The overflow issue appears on all the transportation networks provided in [18].
12 It is meaningless to compute an ε-approximation when the maximum centrality value

is smaller than ε.

https://github.com/Antonio-Cruciani/MANTRA
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Table 1. The data sets used in our evaluation, where ζ indicates the exact tempo-
ral connectivity rate, b

(�)
max the maximum (�)-temporal betweenness centrality (type D

stands for directed and U for undirected). • indicates that we need to use BigInt data
type instead of Unsigned Int128 to count the number of shortest (foremost)-temporal
paths to avoid overflows.

Data set n |E| |T | ζ b
(pfm)
max b

(sh)
max b

(sfm)
max Type Source

College msg 1899 59798 58911 0.5 0.0718 0.0319 0.0365 D [20]
Digg reply 30360 86203 82641 0.02 0.0019 0.0015 0.0016 D [33]
Slashdot 51083 139789 89862 0.07 0.0128 0.0074 0.0085 D [33]
Facebook Wall 35817 198028 194904 0.04 0.0034 0.0024 0.0028 D [33]
Topology 16564 198038 32823 0.53 0.0921 0.0654 0.0681 U [19]
Bordeaux• 3435 236075 60582 0.84 0.1210 0.1383 0.1269 D [18]
Mathoverflow 24759 390414 389952 0.33 0.0522 0.0282 0.0287 D [20]
SMS 44090 544607 467838 0.008 0.0019 0.0010 0.0012 D [20]
Askubuntu 157222 726639 724715 0.169 0.0214 0.0156 0.0154 D [20]
Super user 192409 1108716 1105102 0.21 0.0261 0.0165 0.0182 D [20]
Wiki Talk 1094018 6092445 5799206 0.069 0.0089 0.0155 0.0153 D [19]

“inherent temporality”, these networks are characterized by a big number of
temporally connected nodes.
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Fig. 2. Comparison between temporal diameter and the average number of internal
nodes for the Shortest (foremost) and Prefix-Foremost temporal path optimalities.
The approximation has been computed (over 10 runs) using our sampling algorithm
using 256 random seed nodes.

5.3 Experimental Results

Efficiency and Scalability. In our first experiment, we compare the average exe-
cution times, sample sizes and allocated memory of MANTRA and ONBRA. Due
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to space constraints we show the results on the data sets in Table 1 for the prefix-
foremost-temporal betweenness, for a subset of ε ∈ {0.01, 0.007, 0.005, 0.001} and
we refer to the additional materials for the complete battery of experiments. We
chose to display the results for the pfm temporal path optimality because it is
the one for which the analyzed graphs have the highest characteristic quantities
(see Fig. 2). Thus, under this setting, the tested algorithms will need a bigger
sample size and potentially a higher amount of memory. This somehow provides
an intuitive “upper bound” on the algorithms performances in terms of efficiency
and scalability. Moreover, the experiments for sh and sfm temporal betweenness
follow similar trends of the ones displayed in the main paper. Figure 3a shows
the comparison of the running times (in seconds) for the pfm temporal between-
ness. We observe that MANTRA leads the scoreboard against its competitor
on all the tested networks. Our novel framework is at least three times faster
than ONBRA. Such speedup is mainly due to the smaller sample size needed to
terminate. Furthermore, Fig. 3b shows that MANTRA requires a smaller sam-
ple size (at least three times smaller) to converge. This early convergence, in
practice, does not affect the approximation quality and leads to very good tem-
poral betweenness approximations (see the next experiment). Furthermore, the
number of samples needed by MANTRA varies among temporal graphs, with
a strong dependence on b

(�)
max. A potential cause of the difference in the sample

sizes between the two algorithms may depend on the use of the Empirical Bern-
stein bound. Such bound (as the VC-Dimension one) is agnostic to any property
of the analyzed temporal network, thus results in a overly conservative guar-
antees. This suggests that variance-adaptive bounds are preferable to compute
data-dependent approximations [29], and that exploiting correlations among the
nodes through the use of the c-MCERA leads to refined guarantees. Moreover,
we point out that ONBRA does not scale well as the target absolute error ε
decreases. Indeed, the memory needed by ONBRA increases drastically as the
target absolute error decreases (see Fig. 3c) to the point of giving out of memory
error for big temporal networks such as Slashdot, SMS, Askubuntu, Superuser,
and Wiki Talk. This can lead to major issues while computing meaningful ε-
approximations, especially under the setting in which the maximum temporal
betweenness b

(�)
max is very small (for which we need to choose an ε value of at

most b
(�)
max

13). Unfortunately, this is not an uncommon feature of real-world tem-
poral networks. Indeed, as shown by ζ and b

(�)
max in Table 1 they tend to be very

sparse. This experiment, suggests that MANTRA is preferable for analyzing big
temporal networks up to an arbitrary small absolute error ε.

Comparison with the Exact Algorithms Scores and Running Times. As a first
step in our second experiment, we investigate the accuracy of the approximations
provided by MANTRA by computing the exact temporal betweenness centrality
of all the nodes of the temporal network in Table 1 and measuring the SD over
all the ten runs. Figure 3d supports our theoretical results, as we always get a
13 We recall that b

(�)
max can be efficiently approximated in the bootstrap phase of our

framework.
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SD of at most the given ε. Moreover, we point out that the exact algorithms
for the shortest (foremost) temporal betweenness required a time that spanned
from several hours (e.g. for SMS) to days (for Askubuntu, and Superuser ≈ a
week) and weeks (for Wiki Talk ≈ a month). Instead, MANTRA completes
the approximation in reasonable time. Figure 4a shows the relation between the
sample size and the running time of our framework. While, Fig. 4b shows the
amount of time needed by MANTRA to provide the absolute ε-approximation in
terms of percentage of exact algorithm’s running time. We display the running
times on the biggest temporal graphs for the sh temporal betweenness because is
one of the “critical” temporal path optimalities that requires longer times to be
computed (see Theorem 7). We can conclude that our framework is well suited to
quickly compute effective approximations of the temporal betweenness on very
large temporal networks.
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Fig. 3. Experimental analysis for ε ∈ {0.01, 0.007, 0.005, 0.001}. Comparison between
the running times (a), sample sizes (b), and allocated memory (c) of ONBRA and
MANTRA. (d) Supremum deviation of the absolute ε-approximation computed by
MANTRA. The black line indicates that the two algorithms require the same amount of
time/samples/memory, gray line (followed by a red mark) indicates that the algorithm
required more than 1TB of memory to run on that data set with that specific ε value.
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Fig. 4. (a) Relation between the running time and the sample size of MANTRA for the
shortest temporal betweenness with ε as in Fig. 3. (b) Comparison between MANTRA
and the exact algorithm running times for the shortest temporal betweenness on the
biggest temporal networks.

6 Conclusions

We proposed MANTRA, a novel framework for approximating the temporal
betweenness centrality on large temporal networks. MANTRA relies on the
state-of-the-art bounds on supremum deviation of functions based on the c-
MCERA to provide a probabilistically guaranteed absolute ε-approximation of
such centrality measure. Our framework includes a fast sampling algorithm to
approximate the temporal diameter, average path length and connectivity rate
up to a small error with high probability. Such approach is general and can be
adapted to approximate several versions of these quantities based on different
temporal path optimalities (e.g. [11,13]). Our experimental results (summarized
in Sect. 5) depict the performances of our framework versus the state-of-the-art
algorithm for the temporal betweenness approximation. MANTRA consistently
over-performs its competitor in terms of running time, sample size, and allocated
memory. As indicated in Fig. 3c, our framework is the only available option to
obtain meaningful temporal betweenness centrality approximations when we do
not have access to servers with a large amount of memory. In addition, MANTRA
improves on the recent work by Zhang et al. [41] (WWW, 2024) that relies
on loose deterministic upper bounds to the ERA to approximate the temporal
betweenness. In the future, we plan to combine the results by Brunelli et al. [8]
(KDD, 2024) with MANTRA to approximate the restless temporal betweenness
and to speedup the overall estimation process of various temporal betweenness
variants that have not been considered in this work. Finally, other promising
future directions are to use our novel framework to estimate the temporal ego
betweenness [4], to find communities in temporal graphs, and to extend our
approach to other temporal path based centrality measures [25,26].



Temporal Betweenness Centrality Approximation Through Sampling 141

Acknowledgments. Part of this work was supported by the Cryptography, Cyberse-
cutiry, and Distributed Trust laboratory at the Indian Institute of Technology Madras
while visiting the institute.

References

1. Abboud, A., Grandoni, F., Williams, V.V.: Subcubic equivalences between graph
centrality problems, APSP and diameter. In: Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA (2015)

2. Amati, G., Cruciani, A., Angelini, S., Pasquini, D., Vocca, P.: Computing distance-
based metrics on very large graphs. CoRR (2023)

3. Bartlett, P.L., Mendelson, S.: Rademacher and gaussian complexities: Risk bounds
and structural results. J. Mach. Learn. Res. (2003)

4. Becker, R., Crescenzi, P., Cruciani, A., Kodric, B.: Proxying betweenness centrality
rankings in temporal networks. In: 21st International Symposium on Experimental
Algorithms, SEA. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

5. Borassi, M., Natale, E.: KADABRA is an adaptive algorithm for betweenness via
random approximation. ACM J. Exp, Algorithmics (2019)

6. Boucheron, S., Lugosi, G., Massart, P.: Concentration inequalities: A nonasymp-
totic theory of independence. Univ. press (2013)

7. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. (2001)
8. Brunelli, F., Crescenzi, P., Viennot, L.: Making temporal betweenness computation

faster and restless. In: To appear in KDD 2024. ACM (2024)
9. Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost

journeys in dynamic networks. Int. J. Found. Comput. Sci. (2003)
10. Buß, S., Molter, H., Niedermeier, R., Rymar, M.: Algorithmic aspects of temporal

betweenness. In: KDD 2020: The 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. ACM (2020)

11. Calamai, M., Crescenzi, P., Marino, A.: On computing the diameter of (weighted)
link streams. ACM J. Exp. Algorithmics (2022)

12. Cousins, C., Wohlgemuth, C., Riondato, M.: Bavarian: betweenness centrality
approximation with variance-aware rademacher averages. In: KDD 2021: The 27th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2021)

13. Crescenzi, P., Magnien, C., Marino, A.: Approximating the temporal neighbour-
hood function of large temporal graphs. Algorithms (2019)

14. Cruciani, A.: Mantra: Temporal betweenness centrality approximation through
sampling. CoRR (2024)

15. Daly, E.M., Haahr, M.: Social network analysis for routing in disconnected delay-
tolerant manets. In: Proceedings of the 8th ACM Interational Symposium on
Mobile Ad Hoc Networking and Computing (2007)

16. van den Heuvel, M.P., Mandl, R.C., Stam, C.J., Kahn, R.S., Pol, H.E.H.: Aber-
rant frontal and temporal complex network structure in schizophrenia: a graph
theoretical analysis. J. Neurosci. (2010)

17. Koltchinskii, V.: Rademacher penalties and structural risk minimization. IEEE
Trans. Inf, Theory (2001)



142 A. Cruciani

18. Kujala, R., Weckström, C., Darst, R., Madlenocić, M., Saramäki, J.: A collection
of public transport network data sets for 25 cities. Sci. Data (2018)

19. Kunegis, J.: The KONECT Project. http://konect.cc
20. Leskovec, J., Krevl, A.: Snap datasets. http://snap.stanford.edu/data
21. Li, Y., Long, P.M., Srinivasan, A.: Improved bounds on the sample complexity of

learning. J. Comput. Syst. Sci. (2001)
22. Maurer, A., Pontil, M.: Empirical bernstein bounds and sample-variance penaliza-

tion. In: COLT The 22nd Conference on Learning Theory (2009)
23. Mehryar Mohri, A.R., Talwalkar, A.: Foundations of machine learning. Springer

(2019)
24. Mitzenmacher, M., Upfal, E.: Probability and computing: Randomization and

probabilistic techniques in algorithms and data analysis. Cambridge university
press (2017)

25. Oettershagen, L., Mutzel, P.: An index for temporal closeness computation in evolv-
ing graphs. In: Proceedings of the 2023 SIAM International Conference on Data
Mining, SDM 2023. SIAM (2023)

26. Oettershagen, L., Mutzel, P., Kriege, N.M.: Temporal walk centrality: Ranking
nodes in evolving networks. In: WWW 2022: The ACM Web Conference 2022.
ACM (2022)

27. Pellegrina, L.: Efficient centrality maximization with rademacher averages. In: Pro-
ceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, KDD. ACM (2023)

28. Pellegrina, L., Cousins, C., Vandin, F., Riondato, M.: Mcrapper: Monte-carlo
rademacher averages for poset families and approximate pattern mining. ACM
Trans. Knowl. Discov. Data (2022)

29. Pellegrina, L., Vandin, F.: Silvan: Estimating betweenness centralities with progres-
sive sampling and non-uniform rademacher bounds. ACM Trans. Knowl. Discov.
Data (2023)

30. Pollard, D.: Convergence of stochastic processes. Springer Science & Business
Media (2012)

31. Provost, F.J., Jensen, D.D., Oates, T.: Efficient progressive sampling. In: Proceed-
ings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM (1999)

32. Riondato, M., Upfal, E.: ABRA: approximating betweenness centrality in static
and dynamic graphs with rademacher averages. ACM Trans. Knowl. Discov. Data
(2018)

33. Rossi, R.A., Ahmed, N.K.: Network repository. https://networkrepository.com
34. Rymar, M., Molter, H., Nichterlein, A., Niedermeier, R.: Towards classifying the

polynomial-time solvability of temporal betweenness centrality. In: Kowalik, Ł,
Pilipczuk, M., Rzążewski, P. (eds.) WG 2021. LNCS, vol. 12911, pp. 219–231.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86838-3_17

35. Santoro, D., Sarpe, I.: ONBRA: rigorous estimation of the temporal betweenness
centrality in temporal networks. CoRR (2022)

36. Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: From theory
to algorithms. Cambridge university press (2014)

37. Simsek, Ö., Barto, A.G.: Skill characterization based on betweenness. In: Advances
in Neural Information Processing Systems 21 (2008)

38. Tang, J.K., Musolesi, M., Mascolo, C., Latora, V., Nicosia, V.: Analysing informa-
tion flows and key mediators through temporal centrality metrics. In: Proceedings
of the 3rd Workshop on Social Network Systems (2010)

http://konect.cc
http://snap.stanford.edu/data
https://networkrepository.com
https://doi.org/10.1007/978-3-030-86838-3_17


Temporal Betweenness Centrality Approximation Through Sampling 143

39. Tsalouchidou, I., Baeza-Yates, R., Bonchi, F., Liao, K., Sellis, T.: Temporal
betweenness centrality in dynamic graphs. Int. J. Data Sci. Anal. (2020)

40. Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., Xu, Y.: Path problems in temporal
graphs. Proc. VLDB Endow (2014)

41. Zhang, T., et al.: Efficient exact and approximate betweenness centrality compu-
tation for temporal graphs. In: Proceedings of the ACM on Web Conference 2024,
WWW 2024, Singapore. ACM (2024)



Dimensionality-Induced Information Loss
of Outliers in Deep Neural Networks

Kazuki Uematsu1(B) , Kosuke Haruki1, Taiji Suzuki2,3 , Mitsuhiro Kimura1,
Takahiro Takimoto1, and Hideyuki Nakagawa1

1 Corporate Research and Development Center, Toshiba Corporation,
Kawasaki 212-8582, Japan

kazuki1.uematsu@toshiba.co.jp
2 The University of Tokyo, Tokyo 113-8656, Japan

taiji@mist.i.u-tokyo.ac.jp
3 Center for Advanced Intelligence Project, RIKEN, Tokyo 103-0027, Japan

Abstract. Out-of-distribution (OOD) detection is a critical issue for
the stable and reliable operation of systems using a deep neural net-
work (DNN). Although many OOD detection methods have been pro-
posed, it remains unclear how the differences between in-distribution
(ID) and OOD samples are generated by each processing step inside
DNNs. We experimentally clarify this issue by investigating the layer
dependence of feature representations from multiple perspectives. We
find that intrinsic low dimensionalization of DNNs is essential for under-
standing how OOD samples become more distinct from ID samples as
features propagate to deeper layers. Based on these observations, we
provide a simple picture that consistently explains various properties of
OOD samples. Specifically, low-dimensional weights eliminate most infor-
mation from OOD samples, resulting in misclassifications due to exces-
sive attention to dataset bias. In addition, we demonstrate the utility
of dimensionality by proposing a dimensionality-aware OOD detection
method based on alignment of features and weights, which consistently
achieves high performance for various datasets with lower computational
cost. Our implementation is publically available at https://github.com/
kuematsu3/Dimensionality-aware-Projection-based-OOD-Detection.

Keywords: Out-of-distribution detection · Dimensionality

1 Introduction

Deep neural networks (DNNs) have received much attention in recent years
due to their remarkable versatility and performance. DNNs are broadly applica-
ble to real tasks including the long-term operation of DNN systems. However,
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they suffer from data shifts caused by changes in the surrounding environment.
Shifted data degrade the performance of pretrained models and thus need to
be detected as outliers. This task is commonly referred to as out-of-distribution
(OOD) detection, and also goes by other names including novelty detection and
open-set recognition, although subtle differences exist in the terminology [1,2].
As the application of DNNs continues to expand, OOD detection becomes more
critical for ensuring stable and reliable system operation.

Although there have been numerous proposals for precise detection of
OOD samples [1,2], the mechanism by which OOD samples deviate from in-
distribution (ID) samples remains unclear. Several characteristics of OOD sam-
ples have been identified, including comparatively smaller logit values and corre-
sponding quantities [3,4], deviation from the low-dimensional ID subspace [5–8],
a low-ranked feature vector for each OOD sample [9], and the data complexity-
dependent change of layers suitable for OOD detection [10]. However, these prop-
erties alone do not sufficiently reveal the relationship between observed behaviors
and information processing components inside DNNs, including layerwise affine
transformations using weight matrices and the activation functions. This kind
of a reductionistic perspective is valuable for clarifying the relevant processing
that makes ID and OOD samples distinct in non-ideal tasks. Non-ideal situa-
tions are taken to mean the cases where theoretical analysis is not suitable due
to the complicated data distributions and network architectures, including that
the probability distribution of input data or features is unknown and the model
is not well-behaved. Understanding the properties of OOD samples based on fun-
damental DNN components could lead to appropriate solutions for addressing
the uncertainty inherent in DNNs.

It would also be valuable to clarify the behaviors of OOD samples for practi-
cal applications of OOD detection, particularly in cases with various constraints.
Typically, OOD samples are not available before they appear during the opera-
tional phase, and introducing additional models for monitoring the DNN system
is impractical because it increases the operating cost. Furthermore, in some com-
plex and large systems, modification of the operating model can be challenging
because it may impact downstream tasks beyond the current objective. Addi-
tionally, computational time and memory usage can also be significant issues,
particularly if real-time processing of a large amount of data is necessary with
limited computational resources. A simplified understanding of OOD samples
could help identify the minimum relevant part in DNNs with all constraints
satisfied.

In this work, we experimentally investigate how the difference between ID
and OOD samples arises by focusing on individual feature transformations inside
DNNs for non-ideal tasks. To address this issue, we explore the layer dependence
of feature representations and their relationship with weight matrices. Our con-
tributions are summarized as follows:

– Through a systematic analysis of various quantities given in Sect. 2, we iden-
tify that the sharp change in dimensionality plays an essential role in making
ID and OOD samples distinct.
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– We verify that this change of dimensionality consistently explains not only
the observed behaviors presented in Sect. 3 but also those reported in previous
studies as discussed in Sect. 4.

In addition to these, we demonstrate the utility of dimensionality by evaluating
a dimensionality-aware OOD detection method in Sect. 3.7.

2 Problem Setting and Related Work

We consider a straightforward and likely representative OOD detection prob-
lem where we disregard OOD samples during the training phase. Let DID and
DOOD be the sets of ID and OOD samples. For DID, we distinguish the train-
ing dataset Dtrain and the test dataset Dtest. We examine a scenario where we
exclusively utilize Dtrain for model training and for hyper parameter tuning. The
training strategy is dedicated to generalization to Dtest without any additional
considerations for DOOD, which contrasts with some previous studies [11–13].
This situation enables us to simulate the occurrence of OOD samples and to
investigate their intrinsic properties inside DNNs.

In the following subsections, we briefly introduce quantities to be evaluated
in Sect. 3. Details of the experimental setup are provided in Appendix B.

2.1 Stable Rank of the Matrix

The properties of a matrix, particularly its dimensionality, play an essential role
in understanding the behavior of OOD samples. Refs. [6,8] have reported the
importance of the null space of the covariance matrix for OOD detection. Fur-
thermore, dimensionality of features is closely related to that of weight matrices.
Therefore, we investigate the stable rank RF of the matrix A:

RF = ||A||2F /||A||22, (1)

where ||A||F and ||A||2 are the Frobenius norm and the spectrum norm, respec-
tively. RF provides a numerical evaluation of the matrix rank robust against
small singular values.

To fully investigate the layer dependence of propagation in the DNN, we
perform a similar analysis for the weight matrices W of all layers including
convolutional layers. W of the fully connected layer at the l-th layer is represented
by the matrix W (l) ∈ R

H(l+1)×H(l)
, where H(l) is the number of channels at the

l-th layer. For convolutional layers, in contrast to the fully connected layer, we
focus only on the local linear transformation represented by the weight matrix
W (l) ∈ R

H(l+1)×F (l)
x F (l)

y H(l)
, where F

(l)
x and F

(l)
y are the kernel sizes at the l-

th layer. Regarding the covariance matrix Σ, we adopt average pooling of the
feature following Ref. [5], as outlined in Sect. 2.2. The latter two simplifications
allow us to diagonalize matrices and compute RF with practical computational
cost.
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2.2 Feature-Based Detection

Many studies have utilized feature representations inside DNNs for OOD detec-
tion to leverage their rich information [1,2]. One straightforward approach
involves measuring the Mahalanobis distance from ID training samples [5] or con-
sidering various extensions [6,14–18]. The Mahalanobis distance M (l) is defined
as follows:

M (l) = min
c

√
(x(l) − μ

(l)
c )T(Σ

(l)
)−1(x(l) − μ

(l)
c ), (2)

μ(l)
c =

1
Ntrain,c

∑
xi,c∈Dtrain,c

x
(l)
i,c,

Σ
(l)

=
1
K

∑
c

1
Ntrain,c

∑
xi,c∈Dtrain,c

(x(l)
i,c − μc)(x

(l)
i,c − μc)T. (3)

Here, x(l) is the feature at the l-th layer generated by the input sample x, x
(l)
i,c is

the l-th layer feature of the i-th training sample xi,c ∈ Dtrain,c with corresponding
class label yi = c, Dtrain,c is the training dataset with the class label c out of K
classes in the ID dataset, Ntrain,c = |Dtrain,c| is the number of training data with
class label c, and Σ

(l)
is the tied covariance of the feature at the l-th layer, an

approximation of the class-wise covariance [5]. By using M (l), we can classify a
given sample x as an ID (resp. OOD) sample if the value of M (l) is small (resp.
large) for a certain layer l. In the following, we refer to this detection method as
“feature-based detection”.

To reduce the computational cost, Ref. [5] employs pixel-averaged features
as x(l), μ

(l)
c , and Σ

(l)
. After averaging the pixel values of the feature map, the

Mahalanobis distance is computed for the feature vector with H(l) elements,
where H(l) represents the number of channels at the l-th layer. In this paper, we
adopt the pixel-averaged tied covariance for simplicity [5]. Furthermore, to avoid
division by zero arising from singular covariance, we compute the Moore–Penrose

inverse
(
Σ

(l)
)−1

=
∑d

k λ−1
k vkvT

k , where λk denotes the k-th largest eigenvalue

of Σ
(l)

and vk is the corresponding eigenvector. d is taken to be the largest value
satisfying λd/λ0 > ε with ε = 10−6.

2.3 Projection-Based Detection

Our main interest is how the deviation of OOD samples from ID samples arises
during forward propagation, which consists of a series of linear transforma-
tions and activations. One fundamental factor influencing feature transformation
inside DNNs is alignment of weights and features as explored in Ref. [19] called
NuSA. Let W (l) be the weight matrix at the l-th layer and W (l) = L(l)(Q(l))T

be its QR decomposition. By projecting the feature at the l-th layer onto a
subspace using the transformation x

(l)
p = (Q(l))Tx(l), we obtain several OOD

detection scores, including ||x(l)
p ||/||x(l)|| and ||x(l)

p ||. Using these scores, we can
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classify a given sample x as an OOD sample if the value of scores is large. The
contrapositive statement of the above is that features of ID samples aligns with
weights, which is justified by the noise stability of the trained network [20]. In
the following, we refer to this detection method as “projection-based detection”.

NuSA in Ref. [19] considered projections to only fully connected layers using
QR decomposition. This approach restricts access to the singular value associ-
ated with the importance of each projection vector in Q(l), as well as the full
propagation properties inside the network including convolutional layers.

To overcome these limitations, we propose a modified projection-based
method that aim to identify the relevant subspace for propagation and to
investigate the full layer dependence of propagation. Our approach involves
two key modifications to NuSA. One is removing irrelevant singular vectors,
thereby enhancing our awareness of dimensionality of weight matrices. Another
is representing the convolutional layer by the local linear transformation from
F

(l)
x F

(l)
y H(l)- to H(l+1)-dimensional vector space. We sometimes refer to the

modified method as “dimensionality-aware” to clarify that this modification is
aware of dimensionality.

The precise description of the first modification is as follows:

1. Perform singular-value decomposition of the l-th layer weight matrix W (l):
W (l) = U (l)S(l)(V (l))T.

2. Remove irrelevant singular values such that s
(l)
k /s

(l)
0 < ε where s

(l)
k is the k-th

largest singular value of W (l), i.e., s0 ≥ s1 ≥ · · · .
3. Construct the dimensionality-aware projection matrix V

(l)
ε from singular vec-

tors corresponding to remaining singular values.
4. Project the l-th layer feature x(l) to the weight as x

(l)
p,ε = (V (l)

ε )Tx(l).
5. Regard samples with smaller values of ||x(l)

p,ε||/||x(l)|| or ||x(l)
p,ε|| as OOD sam-

ples.

ε is typically taken to be 10−2. The detailed ε dependence is summarized in
Appendix A. Note that ||x(l)

p,ε|| for convolutional layers can be easily obtained by
replacing the tensor representation of W (l) ((H(l+1),H(l), F

(l)
x , F

(l)
y ) tensor) with

that of (V (l)
ε )T ((rank(V (l)

ε ),H(l), F
(l)
x , F

(l)
y ) tensor), and by acting the replaced

convolutional layer on x(l).

2.4 Similarity of DNN Representations

The similarity between DNN features serves as a standard metric for investigat-
ing properties of DNNs [21–25]. An extensive study [21] revealed the effectiveness
of centered kernel alignment (CKA) defined as follows [26,27]:

CKA(K(l1)
D ,K

(l2)
D ) =

tr((K(l1)
D )TK

(l2)
D )

||K(l1)
D ||F ||K(l2)

D ||F
. (4)

Here, l1 and l2 represent the layer, K
(l)
D = HK

(l)
0,DH where H = I− 1

ND

∑
i∈D 1̂1̂T

is the centering operator and 1̂ = (1, · · · , 1)T, (K(l)
0,D)ij = (x(l)

i,D)Tx
(l)
j,D where
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x
(l)
i,D is the feature of the i-th sample of the dataset D at the l-th layer. See

Appendix C for the detailed procedure and a comparison with other similarity
scores. By examining inter-layer CKA, we gain insights into the layerwise feature
transformation inside the DNN. We use 10,000 randomly selected samples to
obtain K0,D.

2.5 Noise Sensitivity in the DNN

The projection to the weight matrix is effective to investigate the property of
one-layer linear propagation. However, we need a more sophisticated approach to
characterize multi-layer nonlinear propagation. In this context, noise sensitivity
ψ [20] proves useful:

ψη(x;M (l1,l2)) =
||M (l1,l2)(x(l1)

η ) − M (l1,l2)(x(l1))||2
||M (l1,l2)(x(l1))||2 . (5)

Here, x(l) is defined in the same manner as Eq. 2, x
(l)
η = x(l) + η||x(l)|| repre-

sents the noise-injected feature, where η is typically isotropic noise generated
by elementwise Gaussian variables, and M (l1,l2)(·) denotes the function of the
DNN forward propagation from the layer l1 to l2, that is, M (l1,l2)(x(l1)) = x(l2).
Note that in the linear case with the standard Gaussian noise η, the average
of ψ is identical to ||W ||2F ||x||2/||Wx||2 [20], which is quite similar to the score
of projection-based detection in Sect. 2.3. To simplify matters, we neglect the
average over η, assuming that it will not significantly impact the typical value
of ψ. We employ the median of samples in a dataset as the typical value of ψ.
We fix the norm of noise η to 0.1 [20].

3 Results

In this section, we present the experimental results for the various quantities
introduced in Sect. 2 to grasp feature transformations of ID and OOD samples.
Details of the experimental setup are provided in Appendix B. Our findings
are corroborated by aggregating results from multiple perspectives, emphasizing
consistency rather than relying solely on individual properties.

3.1 Overview of the Experiments and a Possible Picture

The primary objective of our experiments is to establish the picture in Fig. 1. We
achieve this by investigating how OOD samples deviate from ID samples as the
features propagate to deeper layers. To accomplish this, we evaluate the layer
dependence of various quantities.

The most intriguing observation is the presence of a common layer that
exhibits transition-like behaviors across various quantities: a significant decrease
in the stable ranks of covariances and weights, stabilization of feature-based
detection performance, peaky structure of projection-based detection perfor-
mance, boundary of block-like CKA, and a notable decrease in noise sensitivity.
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Fig. 1. Overview of results showing how OOD samples deviate from ID samples, and
how OOD samples are classified. The source of the difference between ID and OOD
samples is low dimensionalization of weights, yielding observed behaviors not only of
single-layer properties but also of multi-layer properties due to alignment of features
and weights (left side of the figure). The resulting features of OOD samples are domi-
nated by dataset bias, the common characteristics in the dataset, leading to the biased
prediction (right side of the figure).

Furthermore, although the location of this transition layer varies depending on
network architectures,1 similar behaviors are universally observed independent of
architectures and ID datasets (Appendix G), as long as the number of ID classes
is comparably small. These consistent behaviors strongly suggest the existence
of a fundamental origin shared across all scenarios.

An essential common element to all of them is low dimensionalization of
weight matrices, as observed by the stable rank. This naturally evokes the fol-
lowing propagation process for ID and OOD samples as illustrated in Fig. 1. For
ID samples, low dimensionalization preserves most of the characteristic informa-
tion, including features relevant to classification in the case of classification tasks
[20]. However, when it comes to OOD samples, low dimensionalization eliminates
most of their characteristic information. The resulting features of OOD samples
are thus dominated by the dataset bias, except the dataset-independent bias
parameters in the model. Here, the term “dataset bias” refers to common char-
acteristics shared within a dataset, which can be characterized by the center of
the feature distribution for certain dataset. For instance, images in the SVHN
or MNIST dataset all contain numerical digits. When we train the model using
the CIFAR dataset where digits are not considered crucial, the digit-related fea-
tures cannot propagate through the trained weight parameters. Yet, due to the
repeated appearance of digits in the dataset, the center of features for OOD
(SVHN and MNIST) samples deviates from the origin in the feature space. Con-
sequently, OOD samples exhibit dataset-dependent imbalanced classification.
This excessive attention to dataset bias stemming from low dimensionalization
could be a key factor contributing to the overconfident prediction of OOD sam-
ples.

1 The transition layer is typically located just after the deepest pooling layer except
the global average pooling. The exception is ResNet-18 where the transition layer is
a little deeper. This may be due to insufficient low dimensionalization around the
corresponding pooling layer.
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Fig. 2. Layer dependence of the stable rank of the covariance matrix Σ and the weight
matrix W for the (a) VGG-13, (b) VGG-16, (c) ResNet-18, and (d) ResNet-34 models.
The dashed line indicates the transition layer. Low dimensionalization of features and
weights occurs at almost the same layer.

These results are closely related to but slightly different from manifold
hypothesis [28] and neural collapse [29]. The manifold hypothesis states that
high-dimensional data lie on a low-dimensional (typically non-linear) manifold.
It is not obvious whether DNNs can transform the non-linear input manifold
to the linear output distribution and whether this kind of phenomena is rele-
vant to OOD detection. Our results devoted to the linear method indicate that
the DNN can embed input data into low-dimensional linear space, and that the
low-dimensional embedding is essential for OOD detection compared with other
effects. Regarding neural collapse, it states that the weight matrix at the final
layer forms a low-dimensional simplex equiangular tight frame. Our analysis
extends this notion beyond the final layer, revealing that several deep layers also
exhibit low dimensionality and that the change of dimensionality is sharp enough
to occur at the transition layer. Our layerwise analysis serves as an experimental
validation of these aspects.

Detailed descriptions corresponding to each quantity are given in the follow-
ing subsections along with specific results. In Sect. 3.2, we first verify the reduc-
tion of dimensionality through stable ranks. Next, we evaluate the layer depen-
dence of OOD detection performance using the area under receiver-operating
characteristic curves (AUROCs) in Sect. 3.3 to demonstrate the relevance of
dimensionality to OOD detection. We further investigate multi-layer properties
using CKA and noise sensitivity in Sects. 3.4 and 3.5, respectively, to eliminate
the possibility that the multi-layer processing is more important than single-
layer dimensionality. After these characterizations of propagation, we exam-
ine resulting classification in Sect. 3.6 to confirm the effect of dataset bias.
Finally, we showcase the utility of dimensionality through the dimensionality-
aware projection-based detection method in Sect. 3.7, a modification of NuSA
[19].

While the main text presents results that the ID dataset is CIFAR-10 for
simplicity, additional verification can be found in Appendices F and G for differ-
ent ID datasets. The similar behaviors are observed if the ID dataset is MNIST
or SVHN as in Appendix G. In contrast, if we use CIFAR-100 as the ID dataset,
probably due to the large number of classes, we observe poor low dimension-
alization in Appendix F, leading to the insufficient separation of ID and OOD
samples.
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Fig. 3. Layer dependence of the AUROC detected by the Mahalanobis distance M(x)
for the (a) VGG-13, (b) VGG-16, (c) ResNet-18, and (d) ResNet-34 models. Different
line colors represent the different OOD datasets evaluated. The dashed line indicates
the transition layer. The measured AUROCs are stabilized after transition independent
of the models and datasets.

Fig. 4. Layer dependence of the AUROC detected by the projected norm ||xp,ε|| for
the (a) VGG-13, (b) VGG-16, (c) ResNet-18, and (d) ResNet-34 models. Different line
colors represent the different OOD datasets evaluated. The dashed line indicates the
transition layer. The projection-based discrimination between ID and OOD samples
becomes clear just at the transition layer.

3.2 Observation of Dimensionality via Stable Ranks

We first confirm low-dimensional characteristics of weights and features using
the stable rank RF defined by Eq. 1. In Fig. 2, we show the layer dependence of
RF of both weight matrices W and covariance matrices Σ. The dashed line rep-
resenting the transition layer is manually determined, and is located at the same
position hereafter to verify the argument given in Sect. 3.1. We can see that RF

exhibits exponential growth in shallower layers corresponding to the increasing
number of channels in intermediate features and weights. However, RF of both
matrices suddenly and simultaneously fall to small values around the transition
layer across various architectures and small-class ID datasets (See Appendix G.).
These behaviors indicate the significance of low dimensionalization in DNNs,
implying the importance of dimensionality in understanding properties of OOD
samples.

3.3 Transition of OOD Detection Performance

We proceed to explore the relationship between dimensionality and both feature-
based and projection-based OOD detection performance using AUROCs.

In Fig. 3, we present the layer dependence of AUROCs obtained through the
Mahalanobis distance defined by Eq. 2. We can see that although the observed
AUROCs are highly layer-dependent and dataset-dependent in shallower layers,
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Fig. 5. CKA of features in various layers for the (a,e) VGG-13, (b,f) VGG-16, (c,g)
ResNet-18, and (d,h) ResNet-34 models. The upper four figures (a–d) show CKA of
ID (CIFAR-10) samples, while the lower figures (e–h) show CKA of OOD (CIFAR-
100) samples. In each figure, the horizontal and vertical axes represent layers, and the
color bar represents CKA. Block-like saturations appear both for ID and OOD samples
around the transition layer.

they consistently maintain high values independent of the datasets and archi-
tectures in deeper layers. The stabilization of AUROCs is particularly signifi-
cant for the close-to-ID OOD samples, CIFAR-100 samples represented by the
blue curve in this case, almost independent of the network architectures. This
indicates that, as observed by Refs. [6,8], the features of OOD samples are dis-
tributed in the null space of ID covariance matrices within deeper layers. The
correlation between dimensionality and detection performance provides evidence
for our picture.

A similar analysis can be conducted for the projection-based method, which
quantifies the difference in alignment of ID and OOD samples. Specifically, we
utilize the norm of the projected feature ||xp|| as the OOD detection score and
evaluate the layer dependence of AUROCs for some OOD datasets as depicted
in Fig. 4. Note that our projection-based method modifies NuSA to incorporate
singular values and analyze the convolutional layer. In Fig. 4, we observe a highly
layer-dependent and dataset-dependent AUROC. However, in the vicinity of the
transition layer, the AUROC consistently exhibits high values for all datasets
and models, albeit not the highest. This stable detection performance indicates
effective elimination of null-space components of weight matrices due to low
dimensionalization of weights. This is also consistent with the stabilization of
feature-based detection in subsequent layers. We again mention that, although
the transition layer varies depending on network architectures, the same behav-
ior consistently remains independent of network architectures. This universal
behavior lends support to the picture outlined in Sect. 3.1.

3.4 Block Structure of CKA

We delve deeper into the relationship between dimensionality and CKA defined
by Eq. 4 [21–27]. In Fig. 5 we present CKA for ID and OOD samples, represent-
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Fig. 6. Noise sensitivity for the (a,e) VGG-13, (b,f) VGG-16, (c,g) ResNet-18, and
(d,h) ResNet-34 models. The upper (a–d) and lower (e–g) figures show the noise sen-
sitivities of ID (CIFAR-10) samples and OOD (CIFAR-100) samples, respectively. In
each figure, the horizontal axis represents the layer and the vertical axis represents
corresponding noise sensitivity. Different colors indicate the input layers where noise is
injected. The dashed vertical line indicates the transition layer. The horizontal line is
plotted to clarify the difference between ID and OOD samples. OOD samples are more
sensitive to noise injection compared with ID samples.

ing the interlayer similarity of features. Not only in ID samples but also in OOD
samples, CKA saturates in deeper layers particularly for deeper models. In addi-
tion, the saturating layer corresponds to the transition layer. This demonstrates
that after low dimensionalization, the structure of features is frozen even if per-
forming deeper layer processing. This is consistent with the stable feature-based
detection performance for deeper layers, and with the picture in Sect. 3.1.

When we carefully compare interlayer CKA of ID samples with that of OOD
samples, Fig. 5 reveals that the change of CKA around the transition layer in
ID samples is more gradual than that in OOD samples. This indicates that
low dimensionalization around the transition layer discards most of the intrinsic
information of OOD samples while retaining information of ID samples, which
is expected to be a characteristic of OOD samples as described in Sect. 3.1.
Furthermore, the smoothness of CKA around the transition layer emerges as
the most significant difference between ID and OOD samples, suggesting that
dimensionality is the most important factor compared with other effects includ-
ing multi-layer propagation. See Appendix D for further comparison.

3.5 Instability of OOD Samples to Noise Injection

To further investigate the multi-layer propagation property, we evaluate noise
sensitivity ψ defined by Eq. 5 in Fig. 6. We can see that the difference between
ID and OOD samples is determined by whether the noise-injected layer and
the observed layer are deeper than the transition layer or not. If both layers
are shallower or deeper than the transition layer, the difference between ID and
OOD samples is not substantial. However, deep-layer features of OOD samples
are more sensitive to shallow-layer noise than those of ID samples. The similar
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Fig. 7. Rates of samples predicted to belong to class 0, 1, · · · , 9 for the (a) VGG-13,
(b) VGG-16, (c) ResNet-18, and (d) ResNet-34 models. Different line colors represent
different datasets. The prediction of OOD samples is highly imbalanced compared with
that of ID (CIFAR-10) samples.

Table 1. Summary of the coefficient of variation (ID: CIFAR-10).

Dataset Architectures
VGG13 VGG16 Res18 Res34

ID (test) 0.01± 0.00 0.01± 0.00 0.01± 0.00 0.01± 0.00

CIFAR-100 0.52± 0.01 0.52± 0.01 0.51± 0.01 0.50± 0.02

SVHN 1.32± 0.05 1.33± 0.07 1.45± 0.13 1.43± 0.09

MNIST 1.54± 0.11 1.58± 0.09 1.45± 0.12 1.40± 0.16

behavior of the former demonstrates that low-dimensional weights in deeper
layers appropriately mitigate noise injected before them. The distinct behavior of
the latter suggests that shallower-layer noise to OOD samples impacts deep-layer
features dominated by dataset bias, while that to ID samples is appropriately
removed from deep-layer features specific to classification. These observations
provide further evidence for the picture in Sect. 3.1.

One might consider to utilize the difference in noise sensitivity for OOD
detection. However, their performance falls short compared with that of the
single-layer projection-based method, although sensitivity-based detection out-
performs the probability-based method. See Appendix E for more details.

3.6 Dataset Bias-Induced Imbalanced Inference

To demonstrate the impact of dataset bias on classification, we examine the pre-
diction of OOD samples for each class in Fig. 7. We can see that the prediction of
ID (CIFAR-10) samples is well balanced due to the equivalent number of training
samples for each class. For OOD samples, however, the imbalanced prediction
is significant and seems to be common for all network architectures. This sug-
gests that trained networks behave similarly regardless of specific architectures.
A more quantitative comparison is provided by the coefficient of variation in
Table 1, corresponding to the standard deviation of the prediction rates to each
class. Compared with the coefficient of variation of ID (CIFAR-10) samples,
those of OOD samples are extremely large even in the case of close-to-ID OOD
(CIFAR-100) samples. This dataset-dependent imbalanced prediction supports
the residual bias of the dataset.
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Table 2. Summary of OOD detection performance (AUROC) in various situations.
All results were reproduced in our experiments.

ID dataset
(Model)

Detection score OOD dataset

CIFAR-10 CIFAR-100 SVHN MNIST

CIFAR-10 (VGG-13) Probability [3] (ID) 0.886± 0.001 0.944± 0.005 0.927± 0.007

Feature [5] (ID) 0.898± 0.001 0.948± 0.004 0.936± 0.005

Projection [19] (ID) 0.70± 0.06 0.62± 0.07 0.47± 0.16

Projection (ours) (ID) 0.901± 0.001 0.960± 0.004 0.978± 0.004

CIFAR-10 (ResNet-18) Probability [3] (ID) 0.905± 0.001 0.956± 0.006 0.953± 0.009

Feature [5] (ID) 0.919± 0.001 0.958± 0.005 0.956± 0.007

Projection [19] (ID) 0.84± 0.05 0.88± 0.06 0.85± 0.14

Projection (ours) (ID) 0.924± 0.001 0.969± 0.003 0.982± 0.004

SVHN (VGG-13) Probability [3] 0.959± 0.001 0.954± 0.001 (ID) 0.949± 0.009

Feature [5] 0.965± 0.001 0.961± 0.002 (ID) 0.921± 0.009

Projection [19] 0.86± 0.07 0.85± 0.06 (ID) 0.71± 0.20

Projection (ours) 0.977± 0.002 0.973± 0.002 (ID) 0.965± 0.005

SVHN (ResNet-18) Probability [3] 0.950± 0.002 0.944± 0.003 (ID) 0.983± 0.003

Feature [5] 0.970± 0.002 0.967± 0.003 (ID) 0.918± 0.011

Projection [19] 0.90± 0.03 0.90± 0.03 (ID) 0.43± 0.28

Projection (ours) 0.970± 0.003 0.965± 0.004 (ID) 0.996± 0.002

3.7 Quantitative Comparison of OOD Detection Performance

Finally, we demonstrate the importance of dimensionality through a quantitative
comparison of OOD detection performance. Table 2 summarizes the OOD detec-
tion performance detected by the ratio of norm ||x(l)

p,ε||/||x(l)|| at the penultimate
fully connected layer. As discussed in Sect. 2.3, our method is quite similar to
NuSA in this case [19]. However, NuSA employs full projections (ε = 0), while we
eliminate irrelevant singular vectors from the projection matrix based on corre-
sponding singular values (typically ε ∼ 10−2). This minor modification markedly
improves not only detection performance but also its stability. Furthermore, our
dimensionality-aware projection-based method is comparable to or better than
both the probability-based method [3] and the feature-based method [5]. Specif-
ically, compared with the feature-based method, our projection-based method
exhibits similar detection performance in cases with close-to-ID OOD samples,
where CIFAR-10 and CIFAR-100 are treated as ID and OOD datasets. For
much easier OOD samples, the projection-based method tends to outperform
the feature-based method.2 In summary, our modification of the projection-based

2 The layer ensemble method by Ref. [5] can uplift the detection accuracy of far-
from-ID OOD samples, but it is not suitable for close-to-ID OOD detection. We
checked that the AUROC value to detect CIFAR-100 OOD dataset using the ensem-
ble method adopted by Ref. [5] is just around 0.86 for models trained by CIFAR-10.
Also, the layer ensemble requires a lot of memory to save covariances, which is
not suitable especially for resource-limited hardware. More seriously, the ensemble
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method improves the OOD detection performance well enough to be comparable
or better than other methods.

Our projection-based method is also superior to the feature-based method
in terms of computational cost, especially if the number of classes K is much
smaller than the feature dimensions at the OOD detection layer. The preparation
of the tied covariance requires O(Ntrain) preprocessing, and the computation of
the Mahalanobis distance requires O(K) evaluations to find the minimum values
for classes. The projection-based method, on the other hand, merely computes
the projection to singular vectors, leading to the reduction of O(Ntrain) pre-
processing and O(K) evaluations. Also, the projection-based method is more
memory-efficient compared with the feature-based method, even in single-layer
detection. The null space of the low-dimensional covariance makes a large con-
tribution to the feature-based detection as demonstrated by Ref. [6]. In fact, we
checked that the best number of dimensions for the feature-based OOD detection
is around 200–400 dimensions out of 512 dimensions at the penultimate layer.
Meanwhile, the projection-based method eliminates the null space of the low-
dimensional weight, leaving only the dimension of the number of classes. These
facts make the projection-based method more efficient than the feature-based
one, especially in hardware with limited computational resources.

4 Discussion

As described in Sect. 3, dimensionality plays an essential role in the propagation
process, which naturally suggests a simple picture of feature propagations of ID
and OOD samples. We now discuss how various properties observed in previous
studies are derived from the proposed picture. We also argue the close connection
with generalization of ID samples.

Our picture given in Sect. 3.1 can explain how observed properties of OOD
samples in previous studies emerge from the information processing inside the
DNN. The low-dimensional weight matrices first eliminate most features of the
OOD samples. The features of OOD samples then aggregate around the origin
with only dataset bias retained. This aggregation persists untill the final layer,
yielding the small logit values of OOD samples utilized in so many studies [3,
4,8,30–34]. Meanwhile, dataset bias appears in the null space of the subsequent
weight matrices, providing the large deviation from ID samples distributed in
the linear span of principal components of the weight matrix. This orthogonality
improves feature-based and projection-based detection [5–8,19]. Furthermore,
residual dataset bias in each OOD sample contains poor information, leading to
the concentration of each feature at the largest singular value [9]. Our picture
provides insights into how these methods work well based on the low-dimensional
property of DNNs, which could help understand the nature of OOD samples in
DNNs.

method by Ref. [5] requires some OOD samples, although it would be practically
inaccessible in cases where we do not know what kinds of OOD samples are contam-
inated.
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The importance of dimensionality can also explain the positive correlation
between ID generalization and OOD detection [32], and the hardness of OOD
detection in large-scale classification [35]. In the context of ID generalization
error analysis, the importance of low dimensionalization has also been noted
[20,36,37]. Combined with our results, a positive correlation between ID gener-
alization and OOD detection is directly derived. In addition, we observe poor
OOD detection performance in cases with a large number of classes in ID sam-
ples (CIFAR-100) due to insufficient low dimensionalization (See Appendix F).
This is also consistent with the achievement of both ID generalization and OOD
detection as long as the internal feature dimension is sufficiently larger than the
output dimension.

The relationship between ID optimization and OOD detection is also likely
to correlate with the data complexity dependence of the suitable detection layer
[10]. The optimization of the model using ID samples induces an overfitting-
like behavior in ID samples with reference to their data complexity. The loss of
information is thus more significant for OOD samples possessing distinct data
complexity from ID samples, leading to dataset bias-dominated features even
at shallower layers. This might be the reason why the feature-based detection
method performs extremely well in shallower layers for far-from-ID OOD samples
as in Fig. 3, and why CKA of far-from-ID OOD samples tends to be retained
in shallower layers as in Appendix D. Furthermore, when we closely compare
AUROCs of various layers with the data complexity provided by Ref. [10], rather
than the data complexity itself, the difference in data complexity between ID
and OOD samples determines the suitable layer for OOD detection. In this sense,
the propagation properties investigated in our study are expected to correlate
with the data complexity-based method, although further studies are required
to clarify this.

5 Summary and Conclusion

Based on various analyses investigating how ID and OOD samples propagate
inside DNNs, we demonstrated the importance of dimensionality for various
properties of OOD samples. The systematic and detailed analyses enable us to
understand the layerwise processing and their effects on the separation of ID and
OOD samples. In addition, we verified the usefulness of dimensionality for OOD
detection. These observations might serve as the baseline for understanding the
nature of OOD samples in DNNs and for improving OOD detection performance.
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Fig. 1. Previous methods focus on constructing their structure based on overlapping
users with rich behaviours (a) under a closed-world environment. In this study, we aim
to design the model for an open-world environment that accounts for the majority of
long-tailed users (b) and cold-start users (c) with sparse historical behaviours.

1 Introduction

Sequential Recommendation (SR) [4,6,16,18] has gained significant attention
in recent years due to its ability to model dynamic user preferences. How-
ever, in real-world platforms, users often exhibit partial behaviors within specific
domains, leading to biased observed preferences based on single-domain interac-
tions. To address this issue, cross-domain sequential recommendation (CDSR)
methods [1,8,10,11] have been proposed to construct models using multi-domain
data, transferring rich information from other relevant domains to improve per-
formance in multiple domains simultaneously. To transfer the information across
domains, the core idea of CDSR works is to extend the single-domain sequen-
tial recommendation methods via designing a mapping function. Specifically,
PiNet [11] employs a designed gating mechanism to filter information and prop-
agate this information for overlapping users from the source domain to the target
domain. Similarly, DASL [8] proposes a dual-attention mechanism to extract the
user-shared information for each domain. To enhance the correlation between
single- and cross-domain user preferences, C2DSR [1] combines an attention
information transferring unit with a contrastive infomax objective.

Despite the promising improvements, these mapping function designs of exist-
ing CDSR methods heavily rely on overlapping users with rich behaviors, which
can lead to unsatisfactory performance in an open-world environment [21,22].
Typically, these methods assume full or majority overlap of users (Fig. 1(a))
across domains, which is only a minority in real-world platforms such as Taobao
or Amazon. These approaches disregard most users in the open-world CDSR
environment, particularly the long-tailed users (Fig. 1(b)) with few interactions
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and the cold-start users (Fig. 1(c)) who are only present in a single domain. As
a result, these approaches fail to provide sufficient exploration of cross-domain
information to long-tailed and cold-start users, leading to an incomplete under-
standing of their interests. Therefore, the first challenge is: How can we explore
complementary interest information to enhance the model’s performance towards
open-world CDSR scenarios, where the majority of users are long-tailed or cold-
start users with sparse historical behaviors?

Recent SR studies [5,23] have explored the integration of multi-typed behav-
iors to improve the performance of long-tailed users. In real-world platforms,
users interact with items through multiple types of behavior. The target behav-
ior (e.g. purchase) that directly benefits businesses is usually sparser than other
behavior types (e.g. view or click). To capture behavior semantics, MBGCN
[5] designs a user-item and item-item graph neural network, while MBHT [28]
proposes a hypergraph-based transformer to encode behavior-aware sequential
patterns from both fine-grained and coarse-grained levels. More recently, DPT
[29] develops a denoising and prompt-tuning framework to guide the informa-
tive and relative representations. However, these multi-behavior denoising SR
approaches cannot fully address the CDSR problem as they fail to consider the
deviation of user interests across domains and neglect the semantic gap between
auxiliary and target behaviors. Therefore, the second challenge is: How can the
semantic gap between target and auxiliary behaviors be reduced and user inter-
est deviation be learned when utilizing auxiliary behavior sequences to enhance
information for long-tailed users in CDSR?

To address the aforementioned challenges, we propose a Model-Agnostic
Contrastive Denoising approach, namely MACD. Overall, our major contribu-
tions can be summarized as follows:

(1) We propose a model-agnostic contrastive denoising framework, namely
MACD, towards open-world CDSR that can be integrated with most off-
the-shelf SR methods. To the best of our knowledge, we are the first who
utilize the auxiliary behaviour information in CDSR models, which incorpo-
rate informative potential interests of users, especially for long-tailed users
and cold-start users.

(2) We propose a denoising interest-aware network that incorporates an intra-
domain/cross-domain denoising module and a contrastive information reg-
ularizer. This network aims to reduce the semantic gap between target and
auxiliary behaviors, enabling to better capture of user interest.

(3) We introduce a fusion gate unit to enhance the fusion of representations, and
we employ a parameter-free inductive representation generator to generate
inductive representations for cold-start users during the inference stage.

(4) We conduct extensive experiments on a large-scale scenario with a minority
of overlapping users, representing an open-world environment. Furthermore,
a standard A/B test is conducted to validate our performance on a real-world
CDSR financial platform with millions of daily traffic logs.
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2 Methodology

2.1 Problem Formulation

In this work, we consider a general CDSR scenario in an open-world environ-
ment that consists of partially overlapping users, a majority of long-tailed and
cold-start users across two domains, namely domain X and domain Y . The data
is denoted by DX = (UX ,VX , EX) and DY = (UY ,VY , EY ), where U , V, and
E are the sets of users, items, and interaction edges, respectively. For a given
user, we denote their target item interaction sequences in chronological order
as SX = [vX

1 , vX
2 , · · · , vX

|SX |] and SY = [vY
1 , vY

2 , · · · , vY
|SY |], where | · | denotes

the length of the sequence. We further introduce the user’s auxiliary behavior
sequences, CX = [vX

1 , vX
2 , · · · , vX

|CX |] and CY = [vY
1 , vY

2 , · · · , vY
|CY |]

1 to enrich
user behaviors and solve the issue that previous CDSR methods being heav-
ily affected by data sparsity problems. The adjusted objective of CDSR in our
setting is to predict the next item for a given user based on both user’s target
behavior sequence and auxiliary behavior sequence:

max PX
(
vX

|SX |+1 = v|SX , SY , CX , CY
)

, if v ∈ VX .

max PY
(
vY

|SY |+1 = v|SX , SY , CX , CY
)

, if v ∈ VY .

In the cold-start setting, where we have users only observed in one domain
(e.g., Y ) and thus being cold-start in another domain (e.g., X), the objec-
tive function can be generalized by adding an additional condition that SX =
∅, CX = ∅. Moreover, we classify users into two categories based on the length
of their target sequence. If users’ target sequence length, denoted as |SX |, is less
than LX

head, they are categorized as long-tailed users; otherwise, they are classi-
fied as head users. We determine LX

head, L
Y
head by calculating the average length

of the top 20% longest sequences in the specific domain. It should be noticed
that the definition of long-tailed users is independent across different domains
(Fig. 2).

2.2 Embedding Encoder

Embedding Layer. To obtain the initialized sequence representations SX =
{h′X

s1 , · · · ,h
′X
sT } and SY = {h′Y

s1 , · · · ,h
′Y
sT }, we utilize embedding layers EX ∈

R
|VX |×d and EY ∈ R

|VY |×d, where d denotes the dimension of the embed-
dings and T is the maximum length of the interaction sequence. If the sequence
length is larger than T , we only consider the most recent T actions. If the
sequence length is less than T , we repeatedly add a ’padding’ item to the left
until the length is T . The initialized embeddings CX = {h′X

c1 , · · · ,h
′X
cT ′ } and

CY = {h′Y
c1 , · · · ,h

′Y
cT ′ } for the auxiliary behavior sequences are obtained in

1 Due to the low cost of engagement, the auxiliary behaviors (e.g., clicks or views)
provide richer records than the target user-item interactions (e.g., purchases).
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the same manner. T ′ denotes the maximum length of the auxiliary behavior
sequence, which is greater than T . Moreover, we introduce learnable position
embedding matrixes PS ∈ R

T×d and PC ∈ R
T ′×d to improve the ordered infor-

mation of sequence embeddings.

Sequential Information Encoder. Our model-agnostic framework can
directly integrate with off-the-shelf SR methods [4,6,16], eliminating the
need to design a sequential information encoder. thus, we do not modify
the sequential information encoders of SR methods further in our work.
For simplicity, we denote their sequential information encoder as a func-
tion F = {FX ,FY ,FX

c ,FY
c }. Formally, the procedure is as: hX

s1 , · · · ,hX
sT =

FX(h
′X
s1 , · · · ,h

′X
sT ); hY

s1 , · · · ,hY
sT = FY (h

′Y
s1 , · · · ,h

′Y
sT ); hX

c1 , · · · ,hX
cT ′ =

FX
c (h

′X
c1 , · · · ,h

′X
cT ′ ) and hY

c1 , · · · ,hY
cT ′ = FY

c (h
′Y
c1 , · · · ,h

′Y
cT ′ ).

Fig. 2. Overview of our MACD approach. Unlike previous CDSR methods, our MACD
is a general and model-agnostic approach that can be integrated with most off-the-shelf
SDSR methods. Our MACD fully leverages auxiliary sequences to explore the poten-
tial interests in an open-world CDSR scenario. The denoising interest-aware network
(DIN) not only explores explicit interests within the domain but also transfers implicit
interest information across domains. With the abundant purified auxiliary sequence
information, the representations of long-tailed users can be enhanced. Furthermore,
through a well-designed contrastive information regularizer in the DIN and the fusion
gate unit, our MACD minimizes the semantic gap and interest deviation between the
target and auxiliary behaviors.
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2.3 Denoising Interest-Aware Network

To fully leverage the information in the auxiliary behavior sequence, we propose
a denoising interest-aware network that consists of an intra-domain denoising
module (IDDM), a cross-domain denoising module (CDDM), and a contrastive
information regularizer. The IDDM is designed to explicitly explore the user’s
interests, while the CDDM extracts latent interests and transfers cross-domain
knowledge. To ensure that the explicit- and implicit-interest representations are
consistent with user interests learned from the target behaviour sequences, we
also introduce a novel contrastive information regularizer.

Intra-domain Denoising Module. Given a user u with the sequence rep-
resentations S and C, we perform the intra-domain denoising procedure for
each domain separately. We introduce an explicit-interest guided multi-head
attention mechanism to efficiently extract useful information from the noisy
auxiliary behavior sequence. Using a single attention head is insufficient since
our objective is to extract multiple explicit interests from the users. Therefore,
we modify the Multi-Head Attention mechanism described in [19] to eliminate
redundant and unrelated information. The explicit-interest representation S∗X =
{h∗X

s1 , · · · ,h∗X
sT } is obtained by h∗X

s1 , · · · ,h∗X
sT = Concat(head1, · · · , headh)WO.

where headi = Attention(QWQ
i ,KWK

i , V WV
i ) and

Q = hX
s1 , · · · ,hX

sj , · · · ,hX
sT , j ∈ [1, T ] (1)

K,V = hX
c1 , · · · ,hX

cj′ , · · · ,hX
cT ′ , j′ ∈ [1, T ′] (2)

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (3)

where WO ∈ R
d×d, WQ

i ∈ R
d×dk , WK

i ∈ R
d×dk and WV

i ∈ R
d×dk are trainable

matrices, dk = d/h and h is the number of attention heads. Similar intra-domain
denoising processes with different matrix weights are performed on domain Y to
obtain the explicit-interest representation S∗Y = {h∗Y

s1 , · · · ,h∗Y
sT }.

Cross-Domain Denoising Module. In this component, we conduct the cross-
domain denoising operation to explore the users’ implicit interest and transfer the
cross-domain knowledge. Being similar to the intra-domain denoising module, we
adopt an implicit-interest guided multi-head attention mechanism to purify the
auxiliary behaviors representation. Specifically, to obtain user’s refined implicit-
interest representation in domain X, ŜX = {ĥ∗X

s1 , · · · , ĥX
sT }, we define the Query

Q, Key K, and Value V as follows:

Q = hX
s1 , · · · ,hX

sj , · · · ,hX
sT , j ∈ [1, T ] (4)

K,V = hY
c1 , · · · ,hY

cj′ , · · · ,hY
cT ′ , j′ ∈ [1, T ′] (5)

The rest steps are the same as Eqs. 1–3. The cross-domain denoising module
in the domain Y is similar, and we can obtain the refined implicit-interest repre-
sentation in domain Y , ŜY = {ĥ∗Y

s1 , · · · , ĥY
sT } correspondingly. Our motivation
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behind developing the denoising interest-aware network is to extract purified
information as comprehensively as possible from the noisy but abundant aux-
iliary behavior data. To accomplish this, we consider the longer sequence of
auxiliary behavior C as the key and value, rather than S.

Contrastive Information Regularizer. In our intra- and cross-domain
denoising modules, our aim is to extract different representations that incor-
porate explicit and implicit interests respectively. Moreover, we aim to minimize
the variance between various interest representations of the same user and max-
imize the difference between that of different users by the proposed contrastive
information regularizer. One of the crucial aspects of Contrastive Learning is to
extract valid positive-negative pair samples from different views. In our design,
we consider the composite purified interest representation of the same user ui

as positive pairs, while interest representations from different users ui, uj are
considered as negative pairs. Therefore, taking domain X as an example, we
obtain the positive and negative sample pairs {S∗X

ui
, ŜX

ui
} and{S∗X

ui
, ŜX

uj
}, where

ui, uj ∈ UX and i �= j. Formally, we define a contrastive information regularizer
based on InfoNCE [13] loss, as follows:

LX
cl =

∑
ui∈UX

− log
exp(s(φ(S∗X

ui
), φ(ŜX

ui
))/τ)∑

uj∈UX ,i �=j

exp(s(φ(S∗X
ui

), φ(ŜX
uj
))/τ)

(6)

The hyper-parameter τ regulates the smoothness of the softmax curve, while
the pair-wise distance function s(·) evaluates the similarity between positive and
negative pairs. The function φ(·) applies a simple Mean operation to average
the embedding along the temporal dimension. LY

cl is defined in a similar way.
The proposed contrastive information regularizer enables our framework to learn
more robust user interest-aware representations that exhibit high consistency
while being capable of distinguishing personal preferences among different users.

2.4 Fusion Gate Unit

To represent user’s holistic preferences in each domain with distilled embed-
dings S,S∗, Ŝ, we introduce a gate unit to fuse them. Firstly, we utilize φ(·) to
aggregate their representation along the temporal dimension and obtain the cor-
responding embeddings O ∈ R

1×d,O∗ ∈ R
1×d, Ô ∈ R

1×d. It is a straightforward
way to apply element-wise add or concatenating operation to fuse feature. How-
ever, the explicit- and implicit- interest representation O∗ ∈ R

1×d, Ô ∈ R
1×d are

learned from the auxiliary behavior sequences, which are less important than the
sequences O ∈ R

1×d. Considering different weights to fuse them can explore the
full potential of embeddings. A learnable weight matrix is first learned and then
conduct a gate control to fuse the embeddings, i.e.,

HX
1 = Sig(OXW1 + b1 +O∗XW2 + b2), (7)

OX
m = tanh((1 − HX

1 ) � OX +HX
1 � O∗X), (8)
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where Sig(·) is sigmoid function and tanh(·) is the hyperbolic tangent function. �
means the element-wise multiplication operation weighting the embeddings in a
fine-grained way. W1, W2 ∈ R

d×d and b1, b2 ∈ R
d are the trainable weights and

bias updated in backpropagation. Then we fuse the intermediate representation
OX

m with ÔX in a similar way as follows.

HX
2 = Sig(OX

mW3 + b3 + ÔXW4 + b4), (9)

ŌX = tanh((1 − HX
2 ) � OX

m +HX
2 � ÔX), (10)

where W3, W4 ∈ R
d×d and b3, b4 ∈ R

d are the learnable weights and bias.
Similarly, ŌY can be obtained. To generate final prediction results, building
upon prior research [3], we utilize the concatenated representations of the user
and item (ŌX

ui
,vX

j ) as input to a multi-layer perceptron to generate predictions
of user’s preference for a target item. Formally, ŷX

uivj
= σ(MLPs(ŌX

ui
||vX

j )).
where MLPs are the stacked fully connected layers and vX

j is the target item
embedding. σ denotes the sigmoid function. The prediction layer in the domain
Y is similar.

2.5 Model Training

Our overall training loss combines the contrastive information regularizers LX
cl

and LY
cl mentioned in Eq. (7) with the classification losses LX

cls and LY
cls, using

a harmonic factor λ:

L = λ(LX
cl + LY

cl) + (1 − λ)(LX
cls + LY

cls) (11)

where LX
cls and LY

cls represent the classification loss for the recommendation task
in domains X and Y , respectively. To be specific, LX

cls is obtained by summing
over the losses �(ŷX

uivj
, yX

uivj
) for all user-item pairs (ui, vj) in domain X:

LX
cls =

∑

ui∈UX ,vj∈VX

�(ŷX
uivj

, yX
uivj

) (12)

where ŷX
uivj

represents the predicted results and yX
uivj

is the corresponding
ground-truth label. The loss estimator �(·) in Eq.(14) is used to measure the
dissimilarity between the predicted results and the ground truth labels, and it is
defined as the binary cross-entropy loss shown:�(ŷ, y) = −[y log ŷ+(1−y) log(1−
ŷ)]. ŷ represents the predicted results, and y represents the ground truth label.
Similarly, LY

cls can be obtained.

2.6 Inductive Representation Generator

In the inference stage, we propose a novel inductive representation generator
(IRG) to enhance the model’s performance for cold-start users2. The core idea
2 For instance, in the scenario where domain X is the target domain for item recom-

mendation, while cold-start users only have observed items in domain Y .
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Algorithm 1: Pseudocode of IRG
# X,Y :two different domains, N:batch size, d:embedding dimension.
# ŌX,ŌY : user’s representation after FGU, shape:[N,d]
# ColdStartLabelX,ColdStartLabelY :identify the cold-start users,
shape:[N]

# Compute Normalization Coefficient.
CoefficientY ← Norm(ŌY , Axis=1) * Transpose(Norm(ŌY , Axis=1))
# Find the similar users.
SimilarityY ← Dot_Product(ŌY ,Transpose(ŌY ))/CoefficientY

# The index of the most similar users.
NearestIndexX ← Argmax(SimilarityY ,Axis=1)
# Generate the cold-start users’ representation from similar users.
ColdStartReprX ← ŌX[NearestIndexX]
# Select the user representation.
LastReprX ← Where(ColdStartLabelX, ColdStartReprX, ŌX)
# Repetition for domain Y .

behind this generator is to retrieve similar user embeddings from another domain
whose interests closely align with cold-start users. Specifically, for a cold-start
user u∗ in domain X, we first calculate the user-user similarity based on the
feature ŌY . We then identify the nearest user ul and utilize their embedding
ŌX

ul
in domain X to replace the embedding of the cold-start user u∗. An example

of PyTorch-style implementation is described in Algorithm 1.

3 Experiments

In this section, we present extensive experiments to demonstrate the effectiveness
of MACD, aiming to answer the following three research questions(RQs).

– RQ1: How does MACD compare to state-of-the-art methods in open-world
CDSR scenarios, particularly for long-tailed and cold-start users?

– RQ2: How do the different modules of MACD contribute to the performance
improvement of our method?

– RQ3: Whether MACD can achieve a significant improvement when deployed
on a real-world industry platform?

– RQ4: When encountering open-world scenarios with varying user-item inter-
action density and different numbers of cold-start users, can MACD consis-
tently achieve remarkable performance?

– RQ5: How do different hyperparameter settings affect the performance of our
method?

Owing to space constraints, additional results and analyses-encompassing
baseline descriptions, experiments on the “Phone-Elec” dataset.
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3.1 Datasets

We conducted offline experiments on a publicly available Amazon dataset com-
prised of 24 distinct item domains. To generate CDSR scenarios for our experi-
ments, we selected two pairs of domains, namely “Cloth-Sport” and “Phone-Elec”.
We extracted users who had interactions in both domains and then filtered out
items with fewer than 10 interactions. We used the views behaviors as auxiliary
behaviors, and both target behavior sequences and auxiliary behavior sequences
were collected in chronological order. To prevent the information leak problem
in previous works [10,11], we then divided users into three sets: 80% for training,
10% for validation, and 10% for testing in each domain. To simulate multiple
open-world recommendation scenarios, we retained non-overlapping users and
varied the overlapping ratio to control the number of overlapping users. In addi-
tion, we randomly selected approximately 20% of overlapping users as cold-start
users for validation and testing. The detailed statistics of our corrected datasets
in CDSR scenarios are summarized in Table 1.

3.2 Experiment Setting

Evaluation Protocol. To test the effectiveness of our approach under an open-
world environment, we varied the overlapping ratio Ku of each dataset in {25%,
75%}, which corresponded to different numbers of overlapping users shared
across the domains. For example, in the Amazon “Cloth-Sport” dataset with
Ku = 25%, we determined the number of overlapping users by applying the
formula 28, 771 ∗ 0.25 = 7192. To generate an unbiased evaluation for fair com-
parison [7], we randomly sampled 999 negative items, which were items not inter-
acted with by the user, along with 1 positive item that served as the ground-truth
interaction. We then employed these items to form the recommended candidates
for conducting the ranking test. We used several top-N metrics to assess the
effectiveness of our approach, including the normalized discounted cumulative
gain (NDCG@10) and hit rate (HR@10). Higher values of all metrics indicate
improved model performance. All the experiments were conducted five times and
the average values are reported.

Compared Methods. To verify the effectiveness of our model in an open-
world environment, we compare MACD with three branches of baselines includ-
ing SDSR methods(BERT4Rec [16], GRU4Rec [4], SASRec [6]), Denoising SR

Table 1. Statistics on the Amazon datasets. #O: the number of overlapping users
across domains.

Dataset |U| |V| |E| #O |S| |C| Density

Amazon Cloth 76,162 51,350 888,768 28,771 14.82 124.83 0.023%
Sport 225,299 48,691 2,205,976 12.31 80.37 0.020%

Amazon Phone 1,440,005 528,873 18,832,424 116,211 15.17 175.17 0.002%
Elec 194,908 49,295 2,096,841 12.31 80.37 0.022%
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methods (HSD [30], DPT [29]) and CDSR methods (Pi-Net [11], DASL [8],
C2DSR [1]). In this paper, we do not choose conventional CDR methods as
baselines because they overlook sequential information importance.

Parameter Settings. We set the embedding dimension d to 128 and the batch
size to 2048. The training epoch is fixed at 100 to obtain optimal performance
and the comparison baselines employ other hyper-parameters as reported in their
official code implementation. For MACD, we set the maximum length T of the
main behaviour sequence S to 20 and the maximum length T ′ of the target
behaviour sequence C to 100. The number of attention heads h is set to 8. The
harmonic factor λ is selected from a range of values between 0.1 and 0.9 with a
step length of 0.1, and the hyper-parameter τ in Lcl is set to 1. Function s(·) is
implemented with the L2 distance. Each approach is run five times under five
different random seeds and the optimal model is selected based on the highest
NDCG@10 performance on the validation set, using a grid search approach.

3.3 Performance Comparisons (RQ1)

Quantitative Results. Table 2 presents the performance results for HR@10
and NDCG@10 evaluation metrics across all users. Additionally, to specifically

Table 2. Experimental results (%) on the bi-directional Cloth-Sport CDSR scenario
with different Ku. The best results for each column are highlighted in boldface, while
the second-best results are underlined.

Methods Cloth-domain recommendation Sport-domain recommendation
Ku=25% Ku=75% Ku=25% Ku=75%

NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10

BERT4Rec [16] 4.49 9.38 5.04 10.22 7.87 15.21 8.07 15.37
BERT4Rec† [16] 5.41 11.27 6.53 13.33 9.05 17.59 9.90 18.79
GRU4Rec [4] 5.81 12.03 6.56 13.22 9.98 19.20 10.56 20.07
GRU4Rec† [4] 5.79 12.24 6.52 13.70 10.67 20.05 10.68 20.27
SASRec [6] 5.88 12.21 6.43 13.09 10.06 19.36 10.49 20.20
SASRec† [6] 5.79 11.87 6.59 13.23 10.22 19.63 10.92 20.29
DPT† [29] 5.39 11.77 6.30 13.02 10.25 20.07 10.40 20.35
BERT4Rec [16] + HSD † [30] 5.53 11.41 6.50 13.47 9.13 17.65 10.19 18.98
GRU4Rec [4] + HSD † [30] 5.99 12.40 6.67 13.77 10.80 20.23 10.85 20.46
SASRec [6] + HSD † [30] 5.97 12.33 6.70 13.38 10.30 19.66 11.01 20.35
Pi-Net [11] 6.18 12.24 6.60 13.10 10.03 19.10 10.74 19.96
Pi-Net† [11] 6.19 12.45 6.78 13.51 10.02 19.72 10.51 20.54
DASL [8] 6.13 12.67 6.60 13.04 10.42 19.63 10.51 20.02
DASL† [8] 6.21 12.50 6.52 13.68 10.61 20.09 10.37 19.81
C2DSR [1] 6.16 12.51 6.54 13.61 10.26 20.36 11.00 20.23
C2DSR† [1] 6.10 12.62 6.51 13.64 10.40 20.37 11.04 20.56
BERT4Rec [16] + MACD 6.54 13.37 7.29 14.51 11.12 20.75 11.72 21.69
GRU4Rec [4] + MACD 6.77* 13.47* 7.41 14.58 11.14 20.90 11.63 21.81
SASRec [6] + MACD 6.69 13.16 7.45* 14.61* 11.28* 21.02* 11.89* 21.82*
Improvement(%) 9.02 6.31 9.88 6.80 6.31 3.19 7.70 6.13
† indicates whether the compared models utilize auxiliary behavior sequences. “*”
denotes statistically significant improvements (p ≤ 0.05), as determined by a paired
t-test comparison with the second best result in each case.
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examine the performance on long-tailed users and cold-start users, we provide a
separate comparison in Table 3. To ensure a fair comparison, we also provided
the auxiliary behavior sequences to other state-of-the-art models. With minor
adjustments to the models, we utilized their designed sequential information
encoder to encode the auxiliary sequences, concatenating them with the target
sequence embedding before feeding them into the prediction layer. Regarding the
overall performance, our MACD framework equipped with the SDSR baselines
achieve a significant improvement on Amazon datasets compared to the second-
best baselines in the simulated open-world CDSR scenario, which contains a
substantial number of long-tailed and cold-start users. Additionally, we make
the following insightful findings:

– In most cases, both the SDSR and CDSR baselines may experience a drop
in performance when using the auxiliary behaviors directly. This is because
the abundance of auxiliary behaviors can bring irrelevant information to the
recommender, leading to erroneous target behavior representation learning.

– The denoising SR method (such as HSD) improves the backbone’s perfor-
mance benefitting from the noiseless auxiliary behaviors and bridging the
behavioral semantic gap compared to SDSR methods. But the denoising SR

Table 3. Experimental results (%) of the long-tailed and cold-start users are presented
for the bi-directional Cloth-Sport CDSR scenario. The experiments are conducted five
times, while we report the average values due to page limitations.

Methods Cloth-domain recommendation Sport-domain recommendation
Ku=25% Ku=25%
long-tailed cold-start long-tailed cold-start
NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10

BERT4Rec [16] 4.15 8.81 5.13 9.70 5.65 11.55 6.34 13.52
BERT4Rec† [16] 5.36 11.00 5.17 10.21 5.72 11.72 6.39 13.73
GRU4Rec [4] 5.38 11.38 4.80 10.00 6.48 12.01 6.76 14.63
GRU4Rec† [4] 5.24 11.34 4.62 10.15 6.86 12.81 7.23 15.35
SASRec [6] 5.40 11.35 4.76 10.15 6.41 13.64 7.44 15.93
SASRec† [6] 5.36 11.34 4.97 10.00 6.63 13.58 7.37 15.00
DPT† [29] 5.35 11.14 5.03 10.23 5.81 11.67 6.35 13.63
BERT4Rec [16] + HSD † [30] 5.31 11.10 5.01 10.19 5.77 11.65 6.32 13.70
GRU4Rec [4] + HSD † [30] 5.27 11.39 4.64 10.10 6.90 12.84 7.25 15.33
SASRec [6] + HSD † [30] 5.38 11.38 4.99 10.05 6.61 13.74 7.40 15.03
Pi-Net [11] 5.24 11.06 4.73 10.15 7.16 14.01 6.78 16.13
Pi-Net† [11] 5.37 11.57 4.53 10.07 7.21 13.93 7.05 16.16
DASL [8] 5.15 10.31 4.94 9.93 7.62 14.11 7.34 16.58
DASL† [8] 5.43 10.77 5.08 9.95 7.43 14.39 7.51 16.81
C2DSR [1] 5.52 11.55 4.30 9.20 7.50 14.32 7.37 17.21
C2DSR† [1] 5.58 11.56 4.37 9.78 7.40 14.45 7.69 17.29
BERT4Rec [16] + MACD 5.90 11.95 5.56 10.74 7.52 14.51 8.09 17.77
GRU4Rec [4] + MACD 6.08 12.07* 5.93* 10.91* 7.78 14.77 8.13 17.61
SASRec [6] + MACD 6.09* 11.97 5.54 10.82 8.02* 15.56* 8.26* 17.85*
Improvement(%) 9.14 4.41 16.73 6.65 5.25 7.68 7.41 3.24
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methods exhibit inferior performance compared with CDSR baselines since
they do not consider the cross-domain information.

– Though C2DSR achieves remarkable success in most cases, the model cannot
utilize auxiliary information to enhance the representation and address the
semantic gap. Thus, compared to MACD, it shows an inferior performance.

– In most cases, incorporating auxiliary actions can enhance the performance of
models on long-tailed/cold-start users, who often have sparse behavior, and
auxiliary sequences can better explore their interests.

– Our proposed MACD consistently achieves significant performance improve-
ments over SDSR, denoising SR, and CDSR baselines. Compared to SDSR
and denoising SR baselines, we consider cross-domain information and learn
the interest deviation. Additionally, compared to SDSR and CDSR baselines,
we fully explore the auxiliary behavior information to better learn the repre-
sentation for long-tailed and cold-start users.

Model Efficiency. All comparative models were trained and tested on the
same machine, which had a single NVIDIA GeForce A10 with 22GB memory
and an Intel Core i7-8700K CPU with 64G RAM. Furthermore, the number
of parameters for typical SASRec+HSD, DASL, C2DSR, and SASRec+MACD
(our approach) is within the same order of magnitude, ranging from 0.135M to
0.196M. The training/testing efficiencies of SASRec+HSD, DASL, C2DSR, and
SASRec+MACD (our approach) when processing one batch of samples are 4.59
× 10−4s/3.70 × 10−4s, 3.48 × 10−4s/2.59 × 10−4s, 5.46 × 10−4s/3.57 × 10−4s,
and 4.04 × 10−4s/3.41 × 10−4s, respectively. In summary, our MACD approach
achieves superior performance enhancement in the open-world CDSR scenario
while maintaining promising time efficiency.

3.4 Ablation Study (RQ2)

We conduct the following experiments on SASRec equipped with our MACD.
To verify the contribution of each key component of MACD, we conduct an
ablation study with Ku = 25% by comparing it with several variants. Based
on Table 4, we make the following observations: (i) Extracting implicit interest
and explicit interest is critical to enhancing the representation for users, espe-
cially for long-tailed and cold-start users. When CDDM was removed, our model
is unable to collect and transfer knowledge, which significantly hurt its perfor-
mance. (ii) Without CL and FGU, the performance also dropped significantly,
as the extracted user interest information from auxiliary behaviors may gener-
ate interest deviation and impair performance. (iii) Without IRG, the cold-start
users cannot obtain a well-learned inductive representation, which impairs per-
formance. As such, our model equipped with all main components achieves the
best performance.

3.5 Online Evaluation (RQ3)

Except for these offline experiments, we conduct an online A/B test on a large-
scale financial platform, which consist of multiple financial domains, such as pur-
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Table 4. Experimental results (%) with different model variants. w/o denotes the
model without the corresponding component variant. IDDM denotes the intra-domain
denoising module, while CDDM denotes the cross-domain denoising module. CL is the
contrastive information regularizer and FGU is the fusion gate unit. IRG denotes the
inductive representation generator.

Scenarios Metrics Model variants (w/o) Ours
IDDM CDDM CL FGU IRG

Cloth NDCG 6.14 5.52 6.02 6.27 6.49 6.69
HR 12.47 11.88 12.54 12.69 12.9313.16

Sport NDCG 9.82 9.59 10.03 10.60 10.9311.28
HR 19.77 19.44 19.82 20.39 20.5321.02

chasing funds, mortgage loans, and discounting bills. Specifically, we select three
popular domains - “Loan,” “Fund,” and “Account” - from the serving platform as
targets for our online testing. For the control group, we adopt the current online
solution for recommending themes to users, which is a cross-domain sequential
recommendation method that utilizes noisy auxiliary behaviors directly. For the
experiment group, we equip our method with a mature SDSR approach that
has achieved remarkable success in the past. We evaluate the results based on
three metrics: the number of users who have been exposed to the service, the
number of users who have clicked inside the service, and the conversion rate of
the service (denoted by # exposure, CTR, and CVR, respectively). All of the
results are reported as the lift compared to the control group and presented in
Table 5. In a fourteen-day online A/B test, our method improved the average
exposure by 10.29%, the conversion rate by 6.28%, and the CVR by 1.45% in
the three domains.

Table 5. Online A/B testing results from 9.1 to 9.14, 2023

# exposure CTR CVR

Loan Domain +10.23% +6.31% +1.54%
Fund Domain +8.51% +5.49% +1.03%
Account Domain +12.13% +7.03% +1.77%

3.6 Model Analyses (RQ4)

Discussion of the Behaviour Sparsity. To verify the superior performance
of MACD in CDSR scenarios with varying data densities, we conducted fur-
ther studies by varying the data density Ds in {25%, 50%, 75%, 100%}. As an
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Table 6. Experimental results (%) on dif-
ferent density dataset.

Scenarios Ds Ours C2DSR
NDCG HR NDCG HR

Cloth 25% 2.87 7.34 2.33 6.29
50% 3.42 9.69 2.94 8.98
75% 5.25 11.41 4.38 10.05

100% 6.69 13.16 6.10 12.62
Sport 25% 3.56 8.67 2.84 8.01

50% 5.21 12.13 3.49 10.97
75% 8.34 17.54 7.57 16.80

100% 11.28 21.02 10.40 20.37

Table 7. Impact (%) of the number of
cold-start users.

Scenarios Kcs Ours C2DSR
NDCG HR NDCG HR

Cloth 5% 7.37 13.54 6.81 12.99
20% 6.69 13.16 6.10 12.62
35% 6.25 12.81 5.88 12.35
50% 5.87 12.26 5.20 11.62

Sport 5% 11.56 21.67 10.84 21.01
20% 11.28 21.02 10.40 20.37
35% 10.74 20.54 10.17 19.80
50% 10.49 20.22 9.74 19.41

example, in the “Cloth-Sport” task, Ds = 50% indicates that the data densi-
ties of the “Cloth” and “Sport” domains change from 0.023% to 0.012% (com-
puted as 0.023% * 0.5 = 0.0115%) and from 0.020% to 0.010% (computed as
0.020% * 0.5 = 0.010%), respectively. We set Ku to 25%. The experimental
results of our model (SASRec+MACD) compared to the second-best baseline
(C2DSR)3 are presented in Table 7. As expected, the performance of all mod-
els decreases with decreasing data density, as sparser data makes representation
learning and knowledge transfer more challenging. Our method consistently out-
performs C2DSR in all sparsity experimental settings, confirming the effective-
ness of our approach in the open-world environment (Table 6).

Discussion of the Number of the Cold-Start Users. We also conducted
experiments to investigate the effectiveness of our model in open-world environ-
ments with varying numbers of cold-start users. As mentioned in Sect. 3.1, we
randomly selected partial overlapping users as cold-start users and varied the
cold-start user ratio Kcs among {5%,20%,35%,50%}. Due to the limited page,
we show the results with the metrics NDCG@10 and HR@10. From the figures,
we made the following observations: (1) With the rise in the ratio of cold-start
users, the performance of all models’ recommendations declined, highlighting
the difficulty but significance of learning embeddings for cold-start users. (2)
Our model demonstrated more robust performance in making recommendations
for cold-start users than the strongest baseline, C2DSR. This is because our
MACD generates inductive embeddings for the cold-start users and the auxil-
iary information is effectively utilized by our model.

3.7 Parameter Sensitivity (RQ5)

This section investigates the parameter sensitivity of the sequence length T and
the harmonic factor λ.

3 The C2DSR method utilizing auxiliary behaviors obtains the second-best results.
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Fig. 3. (a)–(d) show the effect of length of sequence on model performance.

Fig. 4. (a)–(d) show the effect of harmonic factor λ on model performance.

For sequence length T , we show its “cloth” domain and “sport” domain results
with overlapping ratio 25% and 75% in Fig. 3. After training our model with dif-
ferent settings T = {10, 15, 20, 25, 30}, one can see that our model achieves
the best performance in terms of NDCG@10 and HR@10 when T = 20. When
increasing T from 10 to 20, the performance is gained on account of richer histor-
ical interest information. If T is larger than 20, the performance will decrease.
The reason might be that padding item causes the model ignoring important
information from the true user-item interaction. Therefore, we choose T = 20 to
better capture the user-item interaction information.

For harmonic factor λ, Fig. 4 shows its “cloth” domain and “sport” domain
prediction performance with overlapping ratio 25% and 75% in terms of
NDCG@10 and HR@10. We report the results under λ selected between 0.1
and 0.9 with a step length of 0.1. The curves shows that the accuracy will first
gradually increase with λ raising and then slightly decrease. We can conclude
that when λ approach 0, the contrastive information regularizer cannot produce
positive effects. But when λ become too large, the contrastive loss will suppress
the classification loss, which also reduces the recommendation accuracy. Empir-
ically, we choose λ = 0.4 on the Cloth & Sport scenario with a Ku = 25% while
λ = 0.7 on the Cloth & Sport scenario with a Ku = 75%.

4 Related Work

Sequential Recommendation (SR) models [4,6,24,26,32] user preferences
based on historical behavioral sequences, enabling the modeling of users’
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dynamic interests compared to other conventional recommendation models. Var-
ious approaches have been proposed in the literature to address sequential rec-
ommendation problems. For instance, GRU4Rec [4] modifies classical RNN mod-
els to handle session-based recommendation problems. BERT4Rec [16] utilizes
a Bidirectional Encoder Representation from Transformers to better capture
the diversity of users’ historical behavior. SASRec [6] employs self-attention
mechanisms to balance the trade-off between capturing long-term semantics and
addressing data scarcity issues. These models leverage different sequential mod-
els to more effectively capture the context of users’ historical behavior. However,
it should be noted that these models face limitations in scenarios with data spar-
sity and cold-start problems in open-world recommendation systems.

Cross-Domain Recommendation (CDR) [25,31,33], which leverages behav-
ior patterns from multiple domains to jointly characterize user interests, has
shown great potential in addressing data sparsity and cold-start issues in single-
domain recommendation system. Recent CDR studies have focused on transfer
learning [14,15,34], involving the design of a specific transfer module to learn
a mapping function across domains and fuse pre-trained representations from
each single domain. Furthermore, modeling domain-shared information has also
drawn significant attention [2,9]. Although CDR approaches effectively incor-
porate rich information from relevant domains to improve performance on the
target domain, conventional CDR methods still struggle to address the CDSR
problems, which requires capturing sequential dependencies in users’ interaction.

Cross-Domain Sequential Recommendation (CDSR) [11,12,17,27] aims
to enhance sequential recommendation (SR) performance by leveraging user
behavior sequences from multiple relevant domains. Some early studies [11,17]
employ RNNs to capture sequential dependencies and generate user-specific rep-
resentations. The attentive learning-based model DASL [8] uses dual attentive
learning to transfer user preferences bidirectionally across domains. Moreover,
C2DSR designs sequential attentive encoders combined with contrastive learning
to jointly learn inter- and intra-domain relationships. However, these methods
heavily rely on data from overlapping users, which represent only a small propor-
tion of the user pool in real-world scenarios. As a result, these methods exhibit
poor performance in the open-world environment, since the insufficient repre-
sentation of the long-tailed and cold-start users.

Multi-behaviour Recommendation methods has investigated diverse meth-
ods for learning collective knowledge from users’ behaviors, including click, add
to cart, and purchase [5,20,23]. Jin et al. employ graph convolutional networks
to capture behavior-aware collaborative signals [5], while CML introduces a self-
supervised learning method for multi-behavior recommendation [20]. However,
these methods often neglect the dynamism of multi-behavior relations and user
interests, as they primarily focus on static recommendation scenarios. In recent
studies, DPT proposes a three-stage denoising and prompt-tuning paradigm to
mitigate the noise in auxiliary behavior data [29]. Nevertheless, existing multi-
behavior sequential recommendation techniques that concentrate on a single
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domain are insufficient for cross-domain scenarios, as they fail to effectively cap-
ture the divergent user preferences across domains and overlook the information
transfer between domains.

5 Conclusion

In this work, we propose a model-agnostic contrastive denoising framework that
can be integrated with most off-the-shelf SDSR methods. To enhance open-
world CDSR performance by capturing comprehensive interest information, we
integrate auxiliary behavior data to refine user embeddings, particularly for
long-tailed and cold-start users. However, leveraging auxiliary behaviors with-
out adjustment can lead to semantic discrepancies from target behaviors and
inaccuracies in user interest learning. To mitigate this, we introduce a denois-
ing interest-aware network with a contrastive information regularizer for precise
latent interest extraction and cross-domain knowledge transfer. We also devise
a parameter-free inductive representation generator to effectively identify anal-
ogous representations for cold-start users. Our model, rigorously evaluated on
public datasets, demonstrates exceptional performance in open-world CDSR, a
finding corroborated by an A/B test on a large-scale financial platform.
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Abstract. Normalising flows are generative models that transform a
complex density into a simpler density through the use of bijective
transformations enabling both density estimation and data generation
from a single model. In the context of image modelling, the predomi-
nant choice has been the Glow-based architecture, whereas alternative
architectures remain largely unexplored in the research community. In
this work, we propose a novel architecture called MixerFlow, based on
the MLP-Mixer architecture, further unifying the generative and dis-
criminative modelling architectures. MixerFlow offers an efficient mech-
anism for weight sharing for flow-based models. Our results demonstrate
comparative or superior density estimation on image datasets and good
scaling as the image resolution increases, making MixerFlow a simple
yet powerful alternative to the Glow-based architectures. We also show
that MixerFlow provides more informative embeddings than Glow-based
architectures and can integrate many structured transformations such as
splines or Kolmogorov-Arnold Networks.

Keywords: Density estimation · Generative modelling · MLP-Mixer

1 Introduction

Normalising flows [22,35], a class of hybrid statistical models, serve a dual pur-
pose by functioning as both density estimators and generative models. They
achieve this versatility through a series of invertible mappings, enabling efficient
inference and generation from the same model. One of their distinctive features
is explicit likelihood training and evaluation, distinguishing them from models
relying on lower-bound approximations [17,21]. Furthermore, normalising flows
offer computational efficiency for both inference and sample generation, setting
them apart from Autoregressive models like PixelCNNs [33].
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The invertible nature of normalising flows extends their utility to various
domains, including solving inverse problems [37] and enabling significant memory
savings during the backward pass, where activations can be efficiently computed
through the inverse operations of each layer. Additionally, normalising flows can
be trained simultaneously on a supervised prediction task and the unsupervised
density modelling task to function as generative classifiers or in the context of
semi-supervised learning [32], setting them apart from other generative models
such as GANs [12] and Diffusion models [17].

Despite their wide-ranging applications, normalising flows lack expressivity.
The Glow-based architecture [20] has become the standard for implementing
normalising flows due to its clever design, often requiring an excessive number of
parameters, especially for high-dimensional inputs. Existing literature primarily
focuses on enhancing expressiveness, employing strategies such as coupling layers
with spline-based transformations [9], kernelised layers [10], log-CDF layers [16],
or introducing auxiliary layers like the Butterfly layer [30] or 1x1 convolution
[20].

Nevertheless, alternative architectures remain relatively unexplored, with
ResFlows [5] being a notable exception. In this work, we introduce MixerFlow,
drawing inspiration from the MLP-Mixer [40], a well-established discriminative
modelling architecture. Our results demonstrate that MixerFlow consistently
performs well, matching or surpassing the negative log-likelihood of the widely
adopted Glow-based baselines. MixerFlow excels in scenarios involving uncorre-
lated neighbouring pixels or images with permutations and scales well with an
increase in image resolution, outperforming the Glow-based baselines. Further-
more, our experiments suggest that MixerFlow learns more informative repre-
sentations than the baselines when training hybrid flow models and can easily
integrate other transformations such as Spline [9] or Kolmogorov-Arnold Net-
works(KAN) layer [26] with increased expressiveness.

2 Related Works

Our work is closely related to the MLP-Mixer architecture [40]. However, the
MLP-Mixer is designed for discriminative tasks and lacks inherent invertibility,
a critical requirement for modelling flow-based architectures.

The field of flow models is quite extensive, including well-known models such
as Glow [20], Neural Spline Flows [9] integrating splines into coupling layer, Gen-
erative Flows with Invertible Attention [39] replacing convolutions with atten-
tion, Butterfly Flow [30], augments a coupling layer with a butterfly matrix, and
Ferumal Flows [10], kernelises a coupling layer. These models often share a foun-
dational Glow-like architecture, with specific component modifications aimed at
improving inter-data communication and mixing for an improved expressivity in
normalising flows in different ways. MixerFlow provides an alternative architec-
ture to Glow [20] with the possibility to add the specific components from these
works to improve inter-data communication.
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Another noteworthy approach is the Residual-Flow-based framework [5],
which encompasses Monotone Flows [2] and ResFlows. In contrast to Glow-
based architectures, ResFlow ensures invertibility through fixed-point iteration
[4]. These two categories, Glow-based and ResFlow-based, exhibit distinct char-
acteristics and can be considered the primary classes of flow-based architectures
for image modelling.

In addition to these, there exist other flow methods such as Gaussianisation
Flows [29] within the Iterative Gaussianisation [24] family and FFJORD [13] in
the family of continuous-time normalising flow. These methods represent differ-
ent methodological approaches to flow-based modelling, adding richness to the
landscape of techniques available for density estimation.

Our proposed architecture leverages the inherent weight-sharing properties
of the MLP-Mixer. This design choice allows for flexibility in integrating either a
coupling layer, a Lipschitz-constrained layer [4] commonly found in ResFlow-like
architectures, or even an FFJORD layer. This ensures that our model can lever-
age any flow method providing versatility across various application scenarios.

Our attempt to further unify generative and discriminative architectures finds
resonance in similar attempts within the research community. For instance, Vit-
GAN [25] adapts the VisionTransformer [8] architecture for generative modelling,
demonstrating the adaptability of existing architectures. Another noteworthy
example is by [32], which leverages generative architecture for discriminative
tasks in a hybrid context.

3 Preleminaries

In this section, we briefly introduce the major components of a normalising flow
and the MLP-Mixer architecture.

The change of variables theorem states that if pX is a continuous prob-
ability distribution on Rd, and f : Rd → Rd is an invertible and continuously
differentiable function with z := f(x), then pX(x) can be computed as

pX(x) = pZ(z)
∣
∣
∣
∣
det

(
∂f(x)

∂x

)∣
∣
∣
∣
.

If we model pZ with a simple parametric distribution (such as the standard nor-
mal distribution), then this equation offers an elegant approach to determining
the complex density pX(x), subject to two practical constraints. First, the func-
tion f must be bijective. Second, the Jacobian determinant should be readily
tractable and computable.

Non-linear Coupling Layers: Coupling layers represent an essential compo-
nent within the framework of most flow-based models. These non-linear layers
serve a pivotal role by enabling efficient inversion for normalising flows whilst
maintaining a tractable determinant Jacobian. Various forms of coupling layers
exist, including additive and affine, amongst others. Below, we briefly define the
affine coupling layers
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Affine coupling layers involve splitting the input x into two distinct com-
ponents: xa and xb. Whilst the first component (xa) undergoes an identity
transformation, the second component (xb) undergoes an affine transformation
characterised by parameters S and T . These non-linear parameters are acquired
through learning from xa using a function approximator, such as neural net-
works. The final output of an affine coupling layer is the concatenation of these
two transformations. The equations below summarise the operations.

Xd,XD−d = split(X)

S, T = F (XD−d)

YD−d = XD−d

Yd = S � Xd + T

Given that only one partition undergoes a non-trivial transformation within a
coupling layer, the choice of partitioning scheme becomes crucial. It has been
shown that incorporating invertible linear layers can aid in learning an enhanced
partitioning scheme [20,30].

MLP-Mixer: The MLP-Mixer [40] is an architecture tailored for discrimina-
tive vision tasks, relying exclusively on multi-layer perceptrons (MLPs) for its
operations. It distinctively separates per-location and cross-location operations,
which are fundamental in deep vision architectures and often co-learnt in models
like Vision Transformers (ViT) [8] and Convolutional neural networks [34] with
larger kernels.

The central concept of this architecture begins with the initial partitioning
of an input image into non-overlapping patches, denoted as np. If each patch
has a resolution of (ph, pw), and the image itself has dimensions (h,w), then the
number of patches is calculated as np = (h∗w)/(ph ∗pw). Each patch undergoes
the same linear transformation, projecting them into lower dimensional fixed-
size vectors represented as c. These transformed patches collectively form a new
representation of the input image in the form of a matrix, we refer to it as the
“mixer-matrix,” with dimensions np×c. Here, c corresponds to the dimensionality
of the projected patch, often referred to as “channels” in MLP-Mixer literature,
and np represents the total number of patches, typically called “tokens.”

The core innovation of the MLP-Mixer unfolds through the application of
multi-layer perceptrons (MLPs), which are applied twice in each mixer layer.
The first MLP, known as the token-mixing MLP, operates on columns of the
mixer-matrix. The same MLP is applied to all columns of the mixer-matrix. The
second MLP referred to as the channel-mixing MLP, is applied to the rows of
the mixer-matrix, again with the same MLP applied across all columns of the
mixer-matrix. This design choice ensures weight sharing within the architecture.
The mixer layer is repeatedly applied for several iterations, facilitating complete
interactions between all dimensions within the image matrix, a process aptly
referred to as “mixing.”

In addition to these operations, two critical components are integral to the
MLP-Mixer architecture. Firstly, layer normalisation [3] is employed to stabilise
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the network’s training dynamics. Secondly, skip connections [14] are introduced
after each mixing layer to facilitate the flow of information and enable smoother
gradient propagation throughout the network. An important property of the
MLP-Mixer architecture is that the hidden widths of token-mixing and channel-
mixing MLPs are independent of the number of input patches and the patch
size, respectively, making the computational complexity of the model linear in
the number of patches, in contrast to ViT [8], where it is quadratic.

4 MixerFlow Architecture and Its Components

In our architectural design, we first apply a 1×1 convolution to the RGB channels
of the input image with a resolution of (h,w). This results in a transformed repre-
sentation of the image in which the RGB channels are no longer distinguishable.
Subsequently, we partition this transformed view into non-overlapping patches
(or stripes, bands, dilated patches), denoted as np, each with a resolution of
(ph, pw). The choice of patch resolution is made to achieve the desired granular-
ity, ensuring that np = (h ∗w)/(ph ∗ pw). These small patches are then flattened
into vectors of size c = ph∗pw ∗3, yielding the mixer-matrix of dimensions np×c.

Next, we introduce two distinct types of normalising flows: channel-mixing
flows and patch-mixing flows, resembling operations similar to channel-mixing
MLPs and token-mixing MLPs respectively. Channel-mixing flows facilitate
interactions between different channels by processing individual rows of the
mixer-matrix, operating on each patch independently. Conversely, patch-mixing
flows focus on interactions between different patches, processing individual
columns of the mixer-matrix, whilst operating on each channel separately. These
two flow operations are executed iteratively in an alternating fashion, enabling
interactions between all elements within the mixer-matrix.

In summary, we apply the same channel flow to all rows of the mixer-matrix
and the same patch flow to all columns of the mixer-matrix. This configura-
tion ensures the desired parameter sharing across the model. These flows, both
channel-flows and patch-flows, are seamlessly integrated into our architecture,
with each comprising a series of subsequent components (see Fig. 1 for an illus-
tration).

Shift Layer: In the MLP-Mixer, the patch definition remains static across the
entire architecture, albeit projected into a lower dimension c at the outset-an
operation constrained by invertibility concerns. Whilst this approach suits the
MLP-Mixer, it introduces grid-like artefacts when applied to sampled images in
our MixerFlow model.

To address this issue, shift layers reshape the mixer-matrix back into its
original image dimensions. It then creates a frame, leaving the inner part as
(sh : h− ph + sh, sw : w − pw + sw), where (ph, pw) denotes the patch resolution,
(sh, sw) denotes the shifting unit, and (h,w) corresponds to the image resolution.
Subsequently, we re-transform the inner part into an input resembling a mixer-
matrix, which we refer to as the “shifted-mixer-matrix.” This process effectively
shifts the patch extraction by (sh, sw) units both vertically and horizontally
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Fig. 1. MixerFlow architecture

respectively compared to the old patch definition. This frame carving reduces
the number of patches as some input variables are omitted by extraction of the
frame. A full mixer layer is applied to the shifted-mixer-matrix, and after this
layer, the carved-out frame is reintroduced for the next stage. This strategy
ensures robust interactions near the boundaries.

Importantly, the alteration in patch definition has no adverse impact on per-
formance, as neighbouring pixels exhibit a high correlation. Moreover, it facili-
tates the distribution of transformations for the variables within the carved-out
frame, with a focus on the non-carved-out-frame layers. In preliminary experi-
ments we found these shift layers to result in improvements both qualitatively
and quantitatively.

Linear Block: As previously mentioned, a coupling layer operates exclusively
on approximately half of the input dimensions, underscoring the importance
of partition selection. RealNVP [7] introduced alternating patterns, which, in
certain cases, introduce an order bias. In contrast, Glow [20] advocated for 1×1
convolutions in the form of PLU factorisation, with fixed permutation matrix
P and optimisable lower and upper triangular matrices L and U , providing a
more generalised approach to permutations. In our approach, we employ either
LU factorisation or RLU, where R is a permutation matrix that reverses the
order of dimensions. It is crucial to emphasise the necessity of a linear block
that effectively reverses the shuffling before the application of a shift layer which
aims to capture the interaction between the patch boundaries. Subsequently, the
linear block is followed by a Flow coupling layer.

Flow Layer: After each Linear Block, we incorporate a flow layer into our archi-
tecture. Specifically, we employ a standard affine coupling layer as our chosen
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flow layer, applicable to either a channel flow or a patch flow. Within each flow
layer, we use a residual block as the function approximator. In our experiments,
we mostly chose a latent dimension of 128 for both the channel-flow-residual-
block and the patch-flow-residual-block, along with the GELU [15] activation
function and batch normalisation [19] in the layers of the residual block.

ActNorm Layer: Due to the computation of a full-form Jacobian when apply-
ing layer normalisation [3], we opt for ActNorm [20] as the preferred normalisa-
tion technique in our architecture. ActNorm layers are data-dependent initialised
layers with an affine transformation that initialises activations to have a mean
of zero and a variance of one based on the first batch. In contrast to Glow-based
architectures where ActNorm layers are applied only to the channels, we apply
ActNorm to all activations after each flow layer and just before the initial linear
layer following each transpose operation (i.e., applying a flow layer to columns
of the matrix after applying it to the rows or vice versa).

Identity Initialisation: We initialised all linear blocks to perform an identity
function. Additionally, we initialise the final layer of each residual block within
the flow with zeros to achieve an identity transformation. This approach, as
reported by [20], has been observed to be beneficial for training deeper flow
networks.

5 Experiments

We conducted an extensive series of experiments encompassing various datasets,
varying dataset sizes, and diverse applications. These applications include per-
mutations, classification tasks, and the integration of Masked Autoregressive
Flows [36] into our MixerFlow model. We use thirty MixerFlow layers with a
shift of either one or two every fourth layer in our experiments. We perform
uniform dequantisation, use a patch size of four for 32 × 32 resolution and a
patch size of eight for 64×64 resolution and use Adam for optimisation with the
default parameters. For baseline experiments, we used the experimental settings
as in [27], reproducing results on standard datasets. Following standard practices
in flow literature, we reported density estimation results in “bits-per-dimension”
(BPD) and reported results up to two decimal places, which led to the exclusion
of standard error intervals as they were consistently less than 0.004.

5.1 Density Estimation on 32 × 32 Datasets

Datasets: In line with previous research, we assessed the performance of Mixer-
Flow on standard 32×32 datasets, specifically ImageNet32 [38,41]1 and CIFAR-
10. [23].

1 Two versions of downscaled ImageNet exist. The one used to evaluate normalis-
ing flow models has been removed from the official website but remains accessible
through alternative sources, such as Academic Torrents.
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Fig. 2. Sampled images from our MixerFlow

Baselines: We use various Glow-based baselines for our evaluations: Glow [20],
Neural Spline flows [9], MaCow [28],ME-Woodbury [27], and Emerging and Peri-
odic convolutions [18].

Results: Table 1 presents our quantitative results, demonstrating the competi-
tive or superior performance of MixerFlow to all of the aforementioned baselines.
The sample images from our MixerFlow trained on CIFAR-10 can be seen in
Fig. 2(a).

Table 1. Negative log-likelihood (in bits per dimension) for 32× 32 datasets. Smaller
values are better.

Method CIFAR-10 ImageNet32 Params

MixerFlow 3.46 4.20 11.34M
Glow 3.51 4.32 11.02M
Neural Spline 3.50 4.24 10.91M
MaCow 3.48 4.34 11.43M
Woodbury 3.48 4.22 11.02M
Emerging 3.48 4.26 11.43M
Periodic 3.49 4.28 11.21M

5.2 Density Estimation on 64 × 64 Datasets

Datasets: We assessed the performance of MixerFlow on two distinct datasets:
ImageNet64 [38], a standard vision dataset, and AnimeFace [31], a collection of
Anime faces.

Baselines: For our evaluations, we use a couple of Glow-based baselines, specif-
ically Glow [20], and Neural Spline [9].
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Results: Our quantitative results in Table 2 illustrate that MixerFlow outper-
forms the selected baselines in terms of negative log-likelihood measured in bits
per dimension. Notably, our analysis of model sizes reveals that MixerFlow scales
remarkably well as image size increases, requiring approximately half the num-
ber of parameters compared to the other baselines. This outcome aligns with
our expectations, as the hidden patch-flow-MLP dimension remains indepen-
dent of the number of patches, and the hidden-channel-flow-MLP dimension
remains independent of the number of channels-a characteristic inherited from
the MLP-Mixer architecture. For a visual representation of our results, please
refer to Fig. 2(b), which displays sample images generated by our MixerFlow
model trained on the AnimeFace dataset.

Table 2. Negative log-likelihood (in bits per dimension) for 64× 64 datasets. Smaller
values are better.

Method AnimeFaces ImageNet64 Params

Glow 3.21 3.94 37.04M
Neural Spline 3.23 3.95 38.31M
MixerFlow 3.17 3.92 18.90M

In the context of the AnimeFaces dataset, we also observed a qualitative
improvement. Specifically, we noted a reduction in artefacts compared to the
Glow-based baseline (Figure 1 and Figure 2 in the Appendix).

5.3 Enhancing MAF with the MixerFlow

Masked Autoregressive Flows (MAF) [36] represent one of the most popular
density estimators for tabular data. They are a generalisation of coupling layer
flows, such as Glow and RealNVP. Notably, MAF tends to outperform coupling
layer flows on tabular datasets, although it comes at the cost of relatively slow
generation. The concept of MAF emerged as an approach to enhance the flexibil-
ity of the autoregressive model, MADE [11], by stacking their modules together.
This innovation, which enables density evaluations without the typical sequen-
tial loop inherent to autoregressive models, significantly accelerated the training
process and enabled parallelisation on GPUs.

However, MAF is vulnerable to the curse of dimensionality, necessitating an
enormous number of parameters to achieve scalability for image modelling. This
requirement for many additional layers can render MAF impractical for certain
tasks, i.e. image modelling. In our work, we demonstrate that by substituting a
flow step with an MAF layer within our MixerFlow model, we can enable MAF
for density estimation tasks involving image datasets. This integration leverages
the effective weight-sharing architecture inherent in MixerFlow and substantially
enhances the performance of the MAF model.
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Fig. 3. Sampled Images for our MAF-based MixerFlow on MNIST

Datasets: We assessed the performance of the MAF integration on two distinct
datasets: MNIST [6] and CIFAR-10 [23].

Baselines: We considered MAF [36] and MADE [11] as the baselines for our
evaluation as they are pre-cursors of MAF’s integration into our architecture.

Results: Our findings, as presented in Table 3, showcase the density estimation
results with MixerFlow further enhancing the use of the MADE module through
MAF’s integration in our architecture for MNIST [6] and CIFAR-10 [23]. Fur-
thermore, Fig. 3 provides a visual representation of the generated samples from
our enhanced MAF model on the MNIST dataset

Table 3. Negative log-likelihood (in bits per dimension) for MAF’s integration into
MixerFlow. Smaller values are better.

Method MNIST CIFAR-10

MADE 2.04 5.67
MAF 1.89 4.31
Ours 1.22 3.44

5.4 Datasets with Specific Permutations

Whilst Glow-based models exhibit expressive capabilities in capturing image
dynamics, they heavily rely on convolution operations involving neighbouring
pixels to transform the distribution. In contrast, our MixerFlows use multi-layer
perceptrons as function approximators, making them invariant to changes in
pixel locations within patches and patch locations in the image. This might be
helpful if there is some data corruption that induces permutation as Glow-based
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Fig. 4. (a) For Glow. (b) For MixerFlow

architectures will result in poor density estimation in such cases. In this section,
we empirically demonstrate this advantage across various datasets.

Density Estimation on Permuted Image Datasets

Dataset: Our experimentation involved two types of artificial permutations.
Firstly, we divided the input image into patches and performed permutations on
both the order of these patches and the pixels within each patch, using a shared
permutation matrix. Subsequently, we reorganised these shuffled patches in the
image form, referring to this process as “local shuffling.” This setup is analogous
to the pixel shuffling experiment introduced by [40], but adapted to the case of
density estimation.

Table 4. Negative log-likelihood (in bits per dimension) for the global shuffling exper-
iment. Smaller values are better.

Global shuffling CIFAR-10 Imagenet32 Params

Glow 5.18 5.27 44.24M
Neural Spline 5.01 5.32 89.9M
MixerFlow 4.09 4.91 11.43M
Butterfly 5.11 6.18 -

Secondly, we applied a “global shuffling”, where we shuffled all the pixels of
the entire image using the same permutations across all images. We created these
modified versions of the CIFAR-10 [23] and ImageNet32 [38,41] datasets, both
of which are 32 × 32 in size.

Baselines: To assess the performance of our model, we compared it with Glow
[20] and Neural Spline flow [9]. Additionally, we included a comparison with But-
terfly Flows (results taken from existing literature) [30], which are theoretically
guaranteed to be able to represent any permutation matrix. All the baselines use
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Table 5. Negative log-likelihood (in bits per dimension) for the local shuffling experi-
ment. Smaller values are better.

Local shuffling CIFAR-10 Imagenet32 Params

Glow 4.06 4.49 44.24M
Neural Spline 3.99 4.54 89.9M
MixerFlow 3.49 4.24 11.43M

the same Glow backbone. Notably, we evaluated larger models for the baselines
in this experiment, highlighting that even with larger models, their performance
lags in the presence of permutations.

Results: We tested our hypothesis that MixerFlow is more effective when deal-
ing with permutations in the dataset. The performance gap is substantial for
both types of permutations applied to the dataset, as evident from Table 5 and
Table 4, where we report lower negative log-likelihoods in bits per dimension
(BPD). Figure 4(a) and Fig. 4(b) illustrate the training curve for both types
of permutations on CIFAR-10 [23]. Notably, stronger inductive biases in Glow-
based architectures are highly dependent on the order of pixels, resulting in a
significant performance drop compared to the original order of image pixels.
Conversely, the performance drop is relatively minimal for MixerFlow. Whilst it
was intuitively expected that there would be no performance difference on local
shuffling datasets, there is a slight difference in the negative log-likelihood, this
is due to our shift layer, which requires that neighbouring patches maintain the
same structural positions as in the original image.

Density Estimation on a Structured Dataset: Galaxy32

Dataset: Real-world datasets often exhibit unique structures, such as permu-
tations or periodicity. To enhance the robustness of our experiments, we applied
MixerFlow to a real-world dataset-the Galaxy dataset. This dataset, curated by
[1], comprises images of merging and non-merging galaxies. Given that stars can
appear anywhere in these images, they exhibit permutation invariance. Addi-
tionally, the dataset demonstrates periodicity, as it represents snapshots of a
spatial continuum rather than individual isolated images. We downsampled the
dataset to a resolution of 32 × 32 for our experiments.

Baselines: In our evaluation, we compared the performance of MixerFlow
against two baseline models: Glow [20] and Neural Spline [9].

Results: The results, presented in Table 6, clearly indicate that MixerFlow out-
performed the chosen baselines. Figure 2(c) showcases samples generated by the
MixerFlow model.
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Table 6. Negative log-likelihood (in bits per dimension) for the Galaxy32 dataset.
Smaller values are better.

Method Galaxy32

Glow 2.27
Neural Spline 2.25
MixerFlow 2.22

5.5 Hybrid Modelling

[32] introduce a hybrid model that combines a normalising flow model with
a linear classification head. This hybrid approach offers a compelling advan-
tage for predictive tasks, as it allows for the computation of both p(data) and
p(label|data) using a single network. This capability enables semi-supervised
learning and out-of-distribution detection. However, achieving optimal results
often requires joint objective optimisation or separate training for different com-
ponents, as the objective function not only maximises log-likelihood but also
minimises predictive error. Significantly over-weighting the predictive error term
is sometimes necessary for achieving superior discriminative performance.

Since our MixerFlow is based on a discriminative architecture, namely MLP-
Mixer, we posit that our model can perform better under similar predictive loss
weighting.

Dataset: We used the CIFAR-10 [23] dataset for the downstream task of clas-
sification.

Baselines: We evaluated the performance of MixerFlow embeddings against
two baseline models’ embeddings: Glow [20] and Neural Spline [9].

Results: In our experiments, we used our pre-trained models and added a clas-
sifier head to them. During training, we kept the flow parameters fixed whilst
training the additional linear layer parameters. This setup effectively leveraged
the representations learned by the flow models for downstream tasks. Our results
in Table 7 indicate that the MixerFlow model exhibited lower losses compared
to the chosen baselines. This suggests that MixerFlow embeddings capture more
informative representations.

5.6 Integration of Powerful Architecture

The flexible design of our MixerFlow architecture enables the seamless integra-
tion of diverse flow layers and powerful transformations. To assess the impact of
these transformations on model performance, we conducted experiments while
maintaining a consistent architecture depth of 30 layers and training all models
for 50,000 steps.
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Table 7. Classification loss and accuracy on CIFAR-10 when employing flow-based
embeddings

Method Loss Accuracy

Glow 1.69 41.23%
Neural Spline 1.67 41.27%
MixerFlow 1.54 45.11%

Datasets: We evaluated the performance of different transformations on the
MNIST dataset [6].

Models: We replaced the standard coupling-based MLPs in our MixerFlow
model with alternative transformations, including Spline-based transformations
[9], MAF-based transformation [36], KAN-layer [26] (using KANs instead of
MLPs in standard coupling layers)

Results: As shown in Table 8, incorporating these advanced transformations
within MixerFlow consistently yields improved density estimation performance
compared to the baseline MLP model. This highlights the potential of leverag-
ing specialised transformations further to enhance the expressive power of our
proposed architecture. It is important to note that we used default parameter
settings directly from their respective source papers due to computational con-
straints. We believe that fine-tuning these parameters could lead to even more
significant improvements in performance.

Table 8. Negative log-likelihood (in bits per dimension) for different transformations
in MixerFlow. Smaller values are better.

Method BPD Params

MLP-coupling 1.57 3.10M
KAN-coupling 1.48 7.45M
Splines 1.21 5.28M
MAF-based 1.56 3.83M

6 Conclusion and Limitations

In this work, we have introduced MixerFlow, a novel flow architecture that
draws inspiration from the MLP-Mixer architecture [40] designed for discrimina-
tive vision tasks. Our experimental results have demonstrated that MixerFlow
consistently outperforms or competes comparatively (in terms of negative log-
likelihood) with existing models on standard datasets. Importantly, it exhibits
good scalability, making it suitable for handling larger image sizes. Additionally,
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the integration of MAF layers [36] into our architecture showed considerable
improvements in MAF, showcasing its adaptability and versatility for integrat-
ing normalising flow architectures beyond coupling layers.

We also explored the application of MixerFlow to datasets featuring artifi-
cial permutations and structured permutations, underlining its practicality and
wide-ranging utility. To conclude, our work has highlighted the potential of the
acquired representations in the downstream classification task on CIFAR-10, as
evidenced by lower loss values. MixerFlow can also help existing MLP-Mixer
architectures by providing a probabilistic approach to it.

One limitation of our proposed architecture is the absence of strong inductive
biases typically associated with convolution-based flows. This may be especially
relevant if little training data is available.

7 Future Work and Broader Impact

Whilst our experimental analysis focuses on MixerFlow with MLP-based neural
networks, it is crucial to note that MixerFlow’s architecture is not restricted to
specific neural network types or flow networks. It enables parameter sharing and
can be adapted to various network architectures. This adaptability extends to
the incorporation of residual flows [5], attention layers [39], and convolutional
layers, especially for larger image sizes and patch sizes, offering the potential for
enhanced inductive biases and parameter sharing. Additionally, the inclusion of
glow-like layers before applying the MixerFlow layers could further strengthen
inductive biases.

Another promising avenue for improvement is enabling multiscale design [20],
a well-established technique for boosting the performance of flow-based models.
We leave the integration of multi-scale architecture, and stronger inductive biases
for future work, believing it could further enhance the MixerFlow architecture’s
capabilities. We are optimistic about the potential of MixerFlow to advance
flow-based image modelling, and we hope for more developments in architectural
backbone research for flow models in the future.
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Abstract. Learning at the edges has become increasingly important as
large quantities of data are continuously generated locally. Among oth-
ers, this paradigm requires algorithms that are simple (so that they can
be executed by local devices), robust (against uncertainty as data are
continually generated), and reliable in a distributed manner under net-
work issues, especially delays. In this study, we investigate the problem of
online convex optimization (OCO) under adversarial delayed feedback.
We propose two projection-free algorithms for centralized and distributed
settings in which they are carefully designed to achieve a regret bound of
O(

√
B) where B is the sum of delay, which is optimal for the OCO prob-

lem in the delay setting while still being projection-free. We provide an
extensive theoretical study and experimentally validate the performance
of our algorithms by comparing them with existing ones on real-world
problems.

Keywords: Online Optimization · Distributed Learning · Delayed
Feedback · Projection-Free

1 Introduction

Many machine learning (ML) applications owe their success to factors such as
efficient optimization methods, effective system design, robust computation, and
the availability of enormous amounts of data. In a typical situation, ML models
are trained in an offline and centralized manner. However, in real-life scenar-
ios, significant portions of data are continuously generated locally at the user
level. Learning at the edge naturally emerges as a new paradigm to address such
issues. In this new paradigm, the development of suitable learning techniques
has become a crucial research objective. Responding to the requirements (of this
new paradigm), online learning has been intensively studied in recent years. Its
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efficient use of computational resources, adaptability to changing environments,
scalability, and robustness against uncertainty show promise as an effective app-
roach for edge devices.

However, online learning/online convex optimization (OCO) problems typi-
cally assume that the feedback is immediately received after a decision is made,
which is too restrictive in many real-world scenarios. For example, a com-
mon problem in online advertising is the delay that occurs between clicking
on an ad and taking subsequent action, such as buying or selling a product.
In distributed systems, the previous assumption is clearly a real issue. Wire-
less sensor/mobile networks that exchange information sequentially may expe-
rience delays in feedback due to several problems: connectivity reliability, vary-
ing processing/computation times, heterogeneous data and infrastructures, and
unaware-random events. This can lead to difficulties in maintaining coordina-
tion and efficient data exchange, eventually affecting network performance and
responsiveness. Given these scenarios, the straightforward application of tradi-
tional OCO algorithms often results in inefficient resource utilization because one
must wait for feedback before starting another round. To address this need, this
paper focuses on developing algorithms that can adapt to adversarial delayed
feedback in both centralized and distributed settings.

Model. We first describe the delay model in a centralized setting. Given a convex
set K ⊆ R

d, at every time step t, the decision maker/agent chooses a decision
xt ∈ K and suffers from a loss function ft : K → R. We denote by dt ≥ 1
an arbitrary delay value of time t. In contrast to the classical OCO problem,
the feedback of iteration t is revealed at time t + dt − 1. The agent does not
know dt in advance and is only aware of the feedback of iteration t at time
t+dt −1. Consequently, at time t, the agent receives feedback from the previous
iterations s ∈ Ft, where Ft = {s : s + ds − 1 = t}. In other words, Ft is the set
of moments before time t such that the corresponding feedbacks are released at
time t. Moreover, the corresponding feedbacks are not necessarily released in the
order of their iterations. The goal is to minimize regret, which is defined as:

RT :=
T∑

t=1

ft(xt) − min
x∈K

T∑

t=1

ft(x)

In a distributed setting, we have additionally a set of agents connected over a
network, represented by a graph G = (V,E) where n = |V | is the number of
agents. Each agent i ∈ V can communicate with (and only with) its immediate
neighbors, that is, adjacent agents in G. At each time t ≥ 1, agent i takes
a decision xi

t ∈ K and suffers a partial loss function f i
t : K → R, which is

revealed adversarially and locally to the agent at time (t + di
t − 1)—again, that

is unknown to the agent. Similarly, denote F i
t = {s : s + di

s − 1 = t} as the set
of feedbacks revealed to agent i at time t where di

s is the delay of iteration s to
agent i. Although the limitation in communication and information, the agent i
is interested in the global loss Ft(.) where Ft(.) = 1

n

∑n
i=1 f i

t (.). In particular, at
time t, the loss of agent i for chosen xi

t is Ft(xi
t). Note that each agent i does not
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know Ft but has only knowledge of f i
t—its observed cost function. The objective

here is to minimize regret for all agents (Fig. 1):

RT := max
i

( T∑

t=1

Ft(xi
t) − min

x∈K

T∑

t=1

Ft(x)
)

1.1 Our Contribution

Available
Gradients

Node 1

Empty Pool

Node 2

Available
Gradients

Node 3

Fig. 1. Illustration of delayed feedback in
distributed system. Given a time t, each
agent holds a distinct pool of available gra-
dient feedback from s < t that is ready
for computation at the current time. The
pool can also be empty if no feedback is
provided.

The challenge in designing robust and
efficient algorithms for these prob-
lems is to address the following issues
simultaneously:

– Uncertainty (online setting, agents
observe their loss functions only
after selecting their decisions).

– Asynchronous (distributed setting
with different delayed feedback
between agents)

– Partial information (distributed
setting, agents know only its local
loss functions while attempting to
minimize the cumulative loss).

– Low computation/communication
resources of agents (so it is desir-
able that each agent performs a
small number of gradient compu-
tations and communications).

We introduce performance-guaranteed algorithms in solving the centralized
and distributed constraint online convex optimization problem with adversarial
delayed feedback. Our algorithms achieve an optimal regret bound for central-
ized and distributed settings. Specifically, we obtain the regret bound of O(

√
B)

where B is the total delay in the centralized setting and B is the average total
delay over all agents in the distributed setting. Note that, if d is a maximum
delay of each feedback then our regret bound becomes O(

√
dT ). This result recov-

ers the regret bound of O(
√

T ) in the classic setting without delay (i.e., d = 1).
Additionally, the algorithms can be made projection-free by selecting appropriate
oracles, allowing them to be implemented in different contexts based on the com-
putational capacity of local devices. Finally, we illustrate the practical potential
of our algorithms and provide a thorough analysis of their performance which is
predictably explained by our theoretical results. The experiments demonstrate
that our proposed algorithms outperform existing solutions in both synthetic
and real-world datasets (Table 1).
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Table 1. Comparisons to previous algorithms DGD [12] and DOFW [14] on centralized
online convex optimization with delays bounded by d. Our algorithms are in bold.

Algorithm Centralized Distributed Adversarial Delay Projection-free Regret

DGD Yes - Yes - O(
√

dT )

DOFW Yes - Yes Yes O(T 3/4 + dT 1/4)

DeLMFWYes - Yes Yes O(
√

dT )

De2MFW - Yes Yes Yes O(
√

dT )

1.2 Related Work

Online Optimization with Delayed Feedback. Over the years, studies on online
optimization with delayed feedback have undergone a swift evolution. [17] shed
light on the field by focusing on the convergence properties of online stochastic
gradient descent with delays. They provide a regret bound of O(

√
dT ) with d the

delay value if d2 ≤ T . Later on, [12] proposes a centralized (single-agent) gradi-
ent descent algorithm under adversarial delays. The theoretical analysis of [12]
entails a regret bound of O(

√
B), where B is the total delay. This bound becomes

O(
√

dT ) if d is the upper bound of delays. [8] provided a black-box style method
to learn under delayed feedback. They showed that for any non-delayed online
algorithms, the additional regret in the presence of delayed feedback depends on
its prediction drifts. [2] developed an online saddle point algorithm for convex
optimization with feedback delays. They achieved a sublinear regret O(

√
dT )

where d is a fixed constant delay value. Recently, [14] proposed a first Frank-
Wolfe-type online algorithm with delayed feedback. They modified the Online
Frank-Wolfe (OFW) for the unknown delays setting and provided a regret bound
of O(T 3/4+dT 1/4). This is the current state of the art for projection-free (Frank-
Wolfe-type) algorithms with delays. Our bound of O(

√
dT ) improves over the

aforementioned results.

Distributed Online Optimization. [15] introduced decentralized online projected
subgradient descent and showed vanishing regret for convex and strongly con-
vex functions. In contrast, [7] extended distributed dual averaging technique to
the online setting, using a general regularized projection for both unconstrained
and constrained optimization. A distributed variant of online conditional gra-
dient [5] was designed and analyzed in [16] that requires linear minimizers and
uses exact gradients. Computing exact gradients may be prohibitively expensive
for moderately sized data and intractable when a closed form does not exist.
[13] proposes a decentralized online algorithm for convex function using stochas-
tic gradient estimate and multiple optimization oracles. This work achieves the
optimal regret bound of O(T 1/2) and requires multiple gradient evaluation and
communication rounds. Later on, [11] provide a decentralized algorithm that
uses stochastic gradient estimate and reduces communication by using only one
gradient evaluation. [10] provides a comprehensible survey on recent develop-
ment of distributed OCO. More recent work on distributed online optimization
with feedback delays is proposed in [1]. The authors consider a distributed pro-
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jected gradient descent algorithm where each agent has a fixed known amount
of delay di. They provide a regret bound of O(

√
dT ) where d = maxi di but the

delays di must be fixed (non-adversarial).
Despite the growing number of studies on decentralized online learning in

recent years, there is a lack of research that accounts for the adversarial/online
delayed feedback. In this paper, we first present a centralized online algorithm
and then extend it to a distributed online variant that takes into account an
adversarial delay setting.

2 Projection-Free Algorithms Under Delayed Feedback

In this section, we will present our method for addressing delayed feedback in
the OCO problem. In Sect. 2.1, we state some assumptions and results that form
the basis of our approach. We then describe our first algorithm DeLMFW for
the centralized setting in Sect. 2.2 and extend it to the distributed setting in
Sect. 2.3.

2.1 Preliminaries

Throughout the paper, we use boldface letter e.g. x to represent vectors. We
denote by xt the final decision of round t and xt,k to be the sub-iterate at
round k of t. In distributed setting, we add a superscript i to make distinction
between agents. If not specified otherwise, we use Euclidean norm ‖.‖ and sup-
pose that the constraint set K ⊂ R

m is convex. We state the following standard
assumptions in OCO.

Assumption 1. The constraint set K is a bounded convex set with diameter D
i.e. D := supx,y∈K ‖x − y‖.
Assumption 2 (Lipschitz). For all x ∈ K, there exists a constant G such
that, ∀t ∈ [T ], ‖∇ft(x)‖ ≤ G.

Assumption 3 (Smoothness). For all x,y ∈ K, there exists a constant β
such that, ∀t ∈ [T ]:

ft(y) ≤ ft(x) + 〈∇ft(x),y − x〉 + β

2
‖y − x‖2

or equivalently ‖∇ft(x) − ∇ft(y)‖ ≤ β ‖x − y‖.

Frank-Wolfe Algorithm. The Frank-Wolfe algorithm (FW) [4], also known as the
Conditional Gradient method, is a first-order projection-free technique for solv-
ing constrained optimization problems. A common approach to these problems
is projected gradient descent, where the solution is projected onto the constraint
set at each iteration. However, the projection step is usually computationally
expensive and may not be feasible for many large-scale problems. Conversely,
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the FW algorithm avoids projections by iteratively moving toward the solution
of a linear problem. The update rule of the Frank-Wolfe algorithm is given by:

xt+1 = xt + ηt(vt − xt) (1)

where vt is the solution of the linear optimization problem argminv∈K
〈∇ft(xt),v〉 and ηt ∈ [0, 1] is a suitable step-size.

Online Linear Optimization Oracles In the context of FW algorithm, we utilize
multiple optimization oracles to approximate the gradient of the upcoming loss
function by solving an online linear problem. This approach was first introduced
in [3]. Specifically, the online linear problem involves selecting a decision vt ∈ K
at every time t ∈ [T ]. The adversary then reveals a vector gt and loss function
〈gt, ·〉 to the oracle. The objective is to minimize the oracle’s regret. A possible
candidate for an online linear oracle is the Follow the Perturbed Leader algorithm
(FTPL) [9]. Given a sequence of historical loss functions 〈g�, ·〉 , s ∈ [1, t] and a
random vector n drawn uniformly from a probability distribution D, FTPL
makes the following update.

v̂t+1 = argmin
v∈K

{
ζ

t∑

�=1

〈g�,v〉 + 〈n,v〉
}

(2)

Lemma 1 (Theorem 5.8 [5]). Given a sequence of linear loss function
f1, . . . , fT . Suppose that Assumptions 1 to 3 hold true. Let D be a the uniform
distribution over hypercube [0, 1]m. The regret of FTPL is

RT,O ≤ ζDG2T +
1
ζ

√
mD

where ζ is learning rate of algorithm.

Delay Mechanism. We consider the following delay mechanism. At round t, the
agent receives a set of delayed gradient ∇fs(xs) from previous rounds s ≤ t such
that s + ds − 1 = t, where ds is the delay value of iteration s. We denote by
Ft = {s : s + ds − 1 = t} the set of indices released at round t. Following this
setting, the feedback of round t is released at time t+dt −1, and the case dt = 1
is considered as no delay. We suppose that the delay value is unknown to the
agent and make no assumption about the set Ft. Consequently it is possible
for the set to be empty at any particular round. We extend the aforementioned
mechanism to the distributed setting by assuming that each agent has a unique
delay value at each round t ∈ [T ]. The delay value of agent i at round t is
denoted by di

t, and the set of delayed feedbacks of agent i at round t is denoted
by F i

t =
{
s : s + di

s − 1 = t
}
, which is distinct between agents.

2.2 Centralized Algorithm

We describe the procedure of Algorithm 1 in details. At each round t, the agent
performs two blocks of operations: prediction and update. During the prediction
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block, the agent performs K iterations of FW updates by querying solutions
from the oracles Ok, k ∈ [K] and updates the sub-iterate vector xt,k+1 using
a convex combination of the previous one and the oracle’s output. The agent
then plays the final decision xt = xt,K+1 and incurs a loss ft(xt) which may not
be revealed at t due to delay. From the mechanism described in Sect. 2.1, there
exists a set of gradient feedbacks from the previous rounds revealed at t whose
indices are in Ft. The update block involves observing the delayed gradients
evaluated at K sub-iterates of rounds s ∈ Ft, computing surrogate gradients
{gt,k, k ∈ [K]} by summing the delayed gradients and feeding them back to the
oracles {Ok, k ∈ K}.

In our algorithm, the agent employs a suite of online linear optimization
oracles, denoted O1, . . . ,OK . These oracles utilize feedbacks accumulated from
previous rounds to estimate the gradient of the upcoming loss function. However,
in the delay setting, these estimations may be perturbed owing to a lack of
information. For example, if there is no feedback from rounds t to t′, that is,
Fs = ∅ for s ∈ [t, t′], the oracles will resort to the information available in
round t − 1 to estimate the gradient of all rounds from t + 1 to t′ + 1. As a
result, the oracle’s output remains unchanged for these rounds, and decisions
{xs : s ∈ [t + 1, t′ + 1]} are not improved. Our analysis for Algorithms 1 will be
focused on assessing the impact of delayed feedback on the oracle’s output.

Lemma 2. Let v̂t be the FTPL prediction defined in Eq. 2 and

vt = argmin
v∈K

{
ζ

t−1∑

�=1

〈
∑

s∈F�

gs,v

〉
+ 〈n,v〉

}

the prediction of FTPL with delayed feedback. For all t ∈ [T ], we have:

‖vt − v̂t‖ ≤ ζDG
∑

s<t

I{s+ds>t}

Theorem 1. Given a constraint set K. Let A = max
{
3, G

βD

}
, ηk = min

{
1, A

k

}
,

and K =
√

T . Suppose that Assumptions 1 to 3 hold true. If we choose FTPL
as the underlying oracle and set ζ = 1

G
√

B
, the regret of Algorithm 1 is

T∑

t=1

[ft(xt) − ft(x∗)] ≤ 2βAD2
√

T + 3(A + 1)
(
DG

√
B + RT,O

)
(3)

where B =
∑T

t=1 dt, the sum of all delay values and RT,O is the regret of FTPL
with respect to the current choice of ζ.

Discussion. The regret bound of Theorem 1 differs from that of the non-delayed
MFW [3] by the additive term DG

√
B which represents the total cost of sending

delayed feedback to the oracles over T rounds (Lemma 2). If we assume that
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Algorithm 1. DeLMFW
Input: Constraint set K, number of iterations T , sub-iteration K, online oracles
{Ok}K

k=1, step sizes ηk ∈ (0, 1]

1: for t = 1 to T do
2: Initialize arbitrarily xt,1 ∈ K
3: for k = 1 to K do
4: Query vt,k from oracle Ok.
5: xt,k+1 ← (1 − ηk)xt,k + ηkvt,k.
6: end for
7: xt ← xt,K+1, play xt and incurs loss ft(xt)
8: Receive Ft = {s ∈ [T ] : s + ds − 1 = t}
9: if Ft = ∅ then

10: do nothing
11: else
12: for k = 1 to K do
13: gt,k ← ∑

s∈Ft
∇fs(xs,k)

14: Feedback 〈gt,k, ·〉 to oracles Ok.
15: end for
16: end if
17: end for

there exists a maximum value d such that dt ≤ d for all t ∈ [T ]. Our regret
bound becomes O(

√
dT ) which coincides with the setting in [14], a delayed-

feedback FW algorithm that achieves O(T 3/4 + dT 1/4). Another line of work is
from [8], a framework that addresses delayed feedback for any base algorithm. By
considering MFW as the base algorithm, their theoretical analysis suggests that
the algorithm also achieves O(

√
dT ) regret bound. However, their delay value is

not completely unknown to the agent because it is time-stamped by maintaining
multiple copies of the base algorithm. We empirically show in Sect. 3 that this
algorithm is highly susceptible to high delay values. Instead of using FTPL,
our algorithm has the flexibility to select any online algorithm as an oracle, for
example, Online Gradient Descent [5].

2.3 Distributed Algorithm

In this section, we extend Algorithm 1 to a distributed setting in which multiple
agents collaboratively optimize a global model. Our setting considers a fully
distributed framework, characterized by the absence of a server to coordinate
the learning process. Let W ∈ R

n×n
+ be the adjacency matrix of communication

graph G = (V,E). The entries wij are defined as :

wij =

⎧
⎪⎪⎨

⎪⎪⎩

1
1 + max{τi, τj} if (i, j) ∈ E

0 if (i, j) �∈ E, i �= j

1 − ∑
j∈N(i) wij if i = j
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where τi = #{j ∈ V : (i, j) ∈ E} is the degree of vertex i. The matrix W
is doubly stochastic (i.e. W1 = WT1 = 1) and therefore possesses several
useful properties associated with doubly stochastic matrices. We call λ(W) the
second-largest eigenvalue of W and define k0 as the smallest integer that verifies

λ(W) ≤
(

k0
k0+1

)2

. Furthermore, we set ρ = 1 − λ(W) to be the spectral gap of
matrix W.

At a high level, each agent maintains K copies of the oracles Oi
1, · · · ,Oi

K

while performing prediction and update at every round t. The prediction block
consists of performing K FW-steps while incorporating the neighbors’ informa-
tion. Specifically, the agent computes at its local level during the K steps a local
average decision yi

t,k representing a weighted aggregation of its neighbor’s cur-
rent sub-iterates. The update vector is convex combination of the local average
decision and the oracle’s output. The final decision of agent xi

t is disclosed at
the end of K steps. Lemma 3 shows that yi

t,k is a local estimation of the global
average xt,k = 1

n

∑n
i=1 x

i
t,k as K increases.

Following the K FW-steps, the update block employs K gradient updates
utilizing the delayed feedback from previous rounds. The agent observes the
delayed gradients evaluated on theirs corresponding subiterates and computes
the local average gradient di

t,k through a weighted aggregation of the neigh-
bors’ current surrogates (18). The agent updates the surrogate gradient via a
gradient-tracking step (19) to ensure that it approaches the global gradient as K
increases. It is worth noting that feedback provided to the oracle contains infor-
mation about delays experienced by all neighboring agents. Consequently, the
oracle Oi

k observes delayed feedback from ∪j∈N (i)F j
t instead of F i

t . This result
highlights the dependency on the connectivity of the communication graph when
considering the effect of delayed feedback to the oracle’s output, as demonstrated
in Lemma 4.

Lemma 3. Define Cd = k0
√

nD, for all t ∈ [T ], k ∈ [K], we have

max
i∈[1,n]

∥∥yi
t,k − xt,k

∥∥ ≤ Cd

k
(4)

Lemma 4. For all t ∈ [T ], k ∈ [K] and i ∈ [n]. Let vi
t,k be the output of

the oracle Oi
k with delayed feedback and v̂i

t,k its homologous in non-delay case.
Suppose that Assumptions 1 and 2 hold true. Choosing FTPL as the oracle, we
have:

∥∥vi
t,k − v̂i

t,k

∥∥ ≤ 2ζ
√

nDG

(
λ (W)

ρ
+ 1

)
1
n

n∑

i=1

∑

s≤t

I{s+di
s>t} (5)

where ζ is the learning rate, λ(W) is the second-largest eigenvalue of W and
ρ = 1 − λ(W) is the spectral gap of matrix W.

Theorem 2. Given a constraint set K. Let A = max
{
3, 3G

2βD ,
2βCd+Cg

βD

}
, ηk =

min
{
1, A

k

}
, and K =

√
T . Suppose that Assumptions 1 to 3 hold true. If we
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choose FTPL as the underlying oracle and set ζ = 1
G

√
B
, the regret of Algorithm

2 is

T∑

t=1

[
Ft(xi

t) − Ft(x∗)
] ≤ (

GCd + 2βAD2
) √

T (6)

+ 3(A + 1)
(
2
√

nDG

(
λ (W)

ρ
+ 1

) √
B + RT,O

)

where B = 1
n

∑n
i=1 Bi such that Bi is the sum of all delay values of agent

i. Cd = k0
√

nD and Cg =
√

nmax
{

λ2(W)
(
G + βD

ρ

)
, k0β (4Cd + AD)

}
and

RT,O is the regret of FTPL with respect to the current choice of ζ.

Algorithm 2. De2MFW
Input: Constraint set K, number of iterations T , sub-iterations K, online linear
optimization oracles

{Oi
k : k ∈ [K]

}
for each agent i ∈ [n], step sizes ηk ∈ (0, 1]

1: for t = 1 to T do
2: for every agent i = 1 to n do
3: Initialize arbitrarily xi

t,1 ∈ K
4: for k = 1 to K do
5: Query vi

t,k from oracle Oi
k

6: Exchange xi
t,k with neighbours N (i)

7: yi
t,k ← ∑

j wijx
j
t,k

8: xi
t,k+1 ← (1 − ηk)y

i
t,k + ηkv

i
t,k

9: end for
10: xi

t ← xi
t,K+1, play xi

t and incurs loss f i
t (x

i
t)

11: Receive F i
t =

{
s ∈ [T ] : s + di

s − 1 = t
}

12: if F i
t = ∅ then

13: do nothing
14: else
15: gi

t,1 ← ∑
s∈Fi

t
∇f i

s(x
i
s,1)

16: for k = 1 to K do
17: Exchange gi

t,k with neighbours N (i)

18: di
t,k ← ∑

j∈N (i) wijg
j
t,k

19: gi
t,k+1 ← ∑

s∈Fi
t

(∇f i
s(x

i
s,k+1) − ∇f i

s(x
i
s,k)

)
+ di

t,k

20: Feedback 〈di
t,k, ·〉 to oracles Oi,k

21: end for
22: end if
23: end for
24: end for
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3 Numerical Experiments

We evaluated the performance of our algorithms on the online multiclass logistic
regression problem using two datasets: MNIST and FashionMNIST. MNIST is
a well-known hand-digit dataset that contains 60000 grayscale images of size
(28×28), divided into 10 classes, and FashionMNIST includes images of fashion
products with the same configuration. We conducted the experiment1 using Julia
1.7 on MacOS 13.3 with 16GB of memory.

Centralized Setting. Given an iteration t, the agent receives a subset Bt of the
form bt = {at, yt} ∈ R

m × {1, . . . , C}, consisting of the features vector at and
the corresponding label yt. We define the loss function ft as

ft(x) = −
∑

bt∈Bt

C∑

c=1

{
yi

t = c
}
log

exp
〈
xc,a

i
t

〉
∑C

�=1 exp
〈
x�,ai

t

〉 (7)

where x must satisfy the constraint x ∈ K such that K = {x ∈ R
m×C ,

‖x‖1 ≤ r}. Using the MNIST dataset, we note m = 784, C = 10, r = 8,
|Bt| = 60 and a total of T = 1000 rounds. To evaluate the performance of
the algorithm under different delay regimes, we generated a random sequence
of delays dt such that dt ≤ d for d ∈ {21, 41, 61, 81, 101}. We compared the
performance of DeLMFW against DOFW [14], a projection-free algorithm with
adversarial delay, and BOLD-MFW [8], an online learning framework designed
to handle delayed feedback. Figure 2 displays the performance of the three algo-
rithms under various delay regimes. In the absence of delay, that is, d = 1
(left figure), DeLMFW and BOLD-MFW have the same performance since both
algorithms reduce to MFW [3] with regret of O(

√
T ). Meanwhile, DOFW is the

classical OFW [6] that guarantees a regret of O(T 3/4). The analysis in Theorem
1 suggests that DeLMFW achieves a regret of O(

√
dT ) when the delay is upper-

bounded by d. In the case where d ≤ T 1/2 (middle figure, d = 21), the dominant
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Fig. 2. Cumulative loss comparison for different delays regimes. Left: Without delay.
Middle: Maximum delay 21. Right: Maximum delay 101.
1 https://github.com/tuananhngh/DelayMFW.

https://github.com/tuananhngh/DelayMFW
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term in DOFW is T 3/4, while DeLMFW takes advantage of the regret of order√
dT ≤ T 3/4. For d ≥ T 1/2 (right figure, d = 101), DOFW’s regret is dominated

by the term dT 1/4, which is outperformed by DeLMFW, particularly for high
values of d. This result confirms our theoretical analysis in Sect. 2.2.
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2,000
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o
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o
ss

BOLD-MFW DOFW DelMFW

Fig. 3. Total loss of BOLD-MFW, DOFW and DeLMFW when varying delay value.

Figure 3 illustrates the total loss of DeLMFW and the other two algorithms
when increasing d to show the sensitivity of each algorithm in the presence
of delays. As BOLD is a general framework that can be applied to any base
algorithm, it is noticeable that it is susceptible to high levels of delays. This
phenomenon has also been observed in [14] when using BOLD with OFW, high-
lighting the need for customized design algorithms in the context of delayed
feedback.

Distributed Setting. In the second experiment, we examine the online distributed
multiclass logistic regression problem on the FashionMNIST dataset, using a net-
work of 30 agents. The algorithm was run on four different topologies, including
Erdos-Renyi, Complete, Grid, and Cycle. At each iteration t ∈ [T ], each agent
i received a subset Bi

t of the form
{
ai

t, y
i
t

} ∈ R
d × {1, . . . , C}, that consisted of

feature vectors ai
t and its corresponding label yi

t. The goal was to collaboratively
optimize the global loss function Ft(x) = 1

n

∑n
i=1 f i

t (x), where the local loss f i
t

was defined in Eq. 7.
For this experiment, we set m = 784, C = 10, r = 32, |Bi

t| = 2 and T =
1000 rounds. We are interested in examining the effect of delays on network
performance and thus randomly select f < n agents to have delayed feedback
with a maximum value of 501. We compared the total loss on each topology under
these conditions and present the result in Fig. 4. We observe that the presence
of delayed agents has a significant impact on the network performance of Cycle
graph as the number of delayed agents increases, while the complete graph is less
affected. This result is consistent with the analysis in Sect. 2.3 because the delay
term in the regret bound depends on the connectivity of the communication
graph.
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Fig. 4. Total Loss with varying numbers of agents experiencing delayed feedback in
the network. (f = 0) for no delayed-agents.

In Table 2, we report the change in total loss as the number of delayed agents
increases. We observe that the average percentage change is smaller for Grid than
for Erdos-Renyi when compared with the network of non-delayed agents (f = 0).
This result indicates that the generated Erdos-Renyi graph is more sensitive to
the presence of delayed agents.

Table 2. Total Loss of the algorithm running on 4 different topology. We randomly
select f < n agents to have delay with maximal value to be 501. In parenthesis, the
percentage of total loss compared that of no delayed agents in the network (i.e. f = 0).

f Topology
Erdős-Rényi Grid Complete Cycle

0 809.37 855.62 799.49 925.72
2 820.15 (+1.3%) 852.15 (−0.4%) 798.79 (−0.08%) 932.34 (+0.7%)
5 834.74 (+3.0%) 868.52 (+1.4%) 802.59 (+0.3%) 971.24 (+4.7%)
10 838.74 (+3.5%) 878.04 (+2.5%) 792.45 (-0.8%) 983.89 (+6.0%)
20 850.49 (+4.9%) 902.30 (+5.3%) 812.21 (+1.5%) 1119.24 (+18.9%)

4 Concluding Remarks

In this paper, we propose two algorithms to solve the online convex optimization
problem with adversarial delayed feedback in both centralized and decentral-
ized settings. These algorithms achieve optimal O(

√
dT ) regret bounds, where

d is the upper bound of the delays. The experimental results show that our
algorithms outperform existing solutions in both centralized and decentralized
settings, which are predictable by our theoretical analysis. Although the algo-
rithms achieve good performance guarantees for the online convex optimization
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problem with adversarial delays, they currently rely on exact gradients, which
may not be feasible for many real-world applications. Therefore, future research
could explore the use of stochastic gradients with variance reduction techniques.
Additionally, in decentralized settings, communication delays can be practically
challenging and further improvements are needed in this area. However, our work
demonstrates the potential of using Frank-Wolfe-type algorithms to solve convex
constraint optimization problems with adversarial delays, which is beneficial for
learning on edge devices.

References

1. Cao, X., Başar, T.: Decentralized online convex optimization with feedback delays.
IEEE Trans. Autom. Control 67(6), 2889–2904 (2022). https://doi.org/10.1109/
TAC.2021.3092562

2. Cao, X., Zhang, J., Poor, H.V.: Constrained online convex optimization with feed-
back delays. IEEE Trans. Autom. Control 66(11), 5049–5064 (2021). https://doi.
org/10.1109/TAC.2020.3030743

3. Chen, L., Harshaw, C., Hassani, H., Karbasi, A.: Projection-free online optimiza-
tion with stochastic gradient: from convexity to submodularity. In: Proceedings of
the 35th International Conference on Machine Learning, pp. 814–823 (2018)

4. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Nav. Res. Logist.
Q. 3, 95–110 (1956)

5. Hazan, E.: Introduction to online convex optimization. Found. Trends R© Optim.
2(3-4), 157–325 (2016)

6. Hazan, E., Kale, S.: Projection-free online learning. In: Proceedings of the 29th
International Conference on Machine Learning, ICML 2012, pp. 521–528. Pro-
ceedings of the 29th International Conference on Machine Learning, ICML 2012,
29th International Conference on Machine Learning, ICML 2012; Conference 26
June 2012 Through 01 July 2012 (2012)

7. Hosseini, S., Chapman, A., Mesbahi, M.: Online distributed optimization via dual
averaging. In: 52nd IEEE Conference on Decision and Control, pp. 1484–1489
(2013)

8. Joulani, P., Gyorgy, A., Szepesvari, C.: Online learning under delayed feedback.
In: Proceedings of the 30th International Conference on Machine Learning. Pro-
ceedings of Machine Learning Research, vol. 28, pp. 1453–1461. PMLR, Atlanta,
Georgia, USA (2013). https://proceedings.mlr.press/v28/joulani13.html

9. Kalai, A., Vempala, S.: Efficient algorithms for online decision problems. J. Com-
put. Syst. Sci. 71(3), 291–307 (2005). https://doi.org/10.1016/j.jcss.2004.10.016.
https://www.sciencedirect.com/science/article/pii/S0022000004001394, learning
Theory 2003

10. Li, X., Xie, L., Li, N.: A survey on distributed online optimization and online games.
Ann. Rev. Control 56, 100904 (2023). https://doi.org/10.1016/j.arcontrol.2023.
100904. https://www.sciencedirect.com/science/article/pii/S1367578823000688

11. Nguyen, T.A., Kim Thang, N., Trystram, D.: One gradient frank-wolfe for decen-
tralized online convex and submodular optimization. In: Proceedings of The
14th Asian Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 189, pp. 802–815. PMLR (2023). https://proceedings.mlr.press/
v189/nguyen23a.html

https://doi.org/10.1109/TAC.2021.3092562
https://doi.org/10.1109/TAC.2021.3092562
https://doi.org/10.1109/TAC.2020.3030743
https://doi.org/10.1109/TAC.2020.3030743
https://proceedings.mlr.press/v28/joulani13.html
https://doi.org/10.1016/j.jcss.2004.10.016
https://www.sciencedirect.com/science/article/pii/S0022000004001394
https://doi.org/10.1016/j.arcontrol.2023.100904
https://doi.org/10.1016/j.arcontrol.2023.100904
https://www.sciencedirect.com/science/article/pii/S1367578823000688
https://proceedings.mlr.press/v189/nguyen23a.html
https://proceedings.mlr.press/v189/nguyen23a.html


Distributed Meta Frank-Wolfe Under Delayed Feedback 211

12. Quanrud, K., Khashabi, D.: Online learning with adversarial delays. In:
Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 28. Curran Asso-
ciates, Inc. (2015). https://proceedings.neurips.cc/paper_files/paper/2015/file/
72da7fd6d1302c0a159f6436d01e9eb0-Paper.pdf

13. Thang, N.K., Srivastav, A., Trystram, D., Youssef, P.: A stochastic conditional
gradient algorithm for decentralized online convex optimization. J. Parallel Dis-
trib. Comput. 169, 334–351 (2022). https://doi.org/10.1016/j.jpdc.2022.07.010.
https://www.sciencedirect.com/science/article/pii/S0743731522001745

14. Wan, Y., Tu, W.W., Zhang, L.: Online frank-wolfe with arbitrary delays. In:
Advances in Neural Information Processing Systems, vol. 35, pp. 19703–19715.
Curran Associates, Inc. (2022). https://proceedings.neurips.cc/paper_files/paper/
2022/file/7c799b09cc40973ceaa47da50131dc63-Paper-Conference.pdf

15. Yan, F., Sundaram, S., Vishwanathan, S.V.N., Qi, Y.: Distributed autonomous
online learning: regrets and intrinsic privacy-preserving properties. IEEE Trans.
Knowl. Data Eng. 25(11), 2483–2493 (2013)

16. Zhang, W., Zhao, P., Zhu, W., Hoi, S., Zhang, T.: Projection-free distributed
online learning in networks. In: Proceedings of the 34th International Conference
on Machine Learning, pp. 4054–4062 (2017)

17. Zinkevich, M., Langford, J., Smola, A.: Slow learners are fast. In: Ben-
gio, Y., Schuurmans, D., Lafferty, J., Williams, C., Culotta, A. (eds.)
Advances in Neural Information Processing Systems, vol. 22. Curran Asso-
ciates, Inc. (2009). https://proceedings.neurips.cc/paper_files/paper/2009/file/
b55ec28c52d5f6205684a473a2193564-Paper.pdf

https://proceedings.neurips.cc/paper_files/paper/2015/file/72da7fd6d1302c0a159f6436d01e9eb0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/72da7fd6d1302c0a159f6436d01e9eb0-Paper.pdf
https://doi.org/10.1016/j.jpdc.2022.07.010
https://www.sciencedirect.com/science/article/pii/S0743731522001745
https://proceedings.neurips.cc/paper_files/paper/2022/file/7c799b09cc40973ceaa47da50131dc63-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7c799b09cc40973ceaa47da50131dc63-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/b55ec28c52d5f6205684a473a2193564-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/b55ec28c52d5f6205684a473a2193564-Paper.pdf


Secure Dataset Condensation
for Privacy-Preserving and Efficient

Vertical Federated Learning

Dashan Gao1,2,3(B), Canhui Wu4, Xiaojin Zhang5, Xin Yao6, and Qiang Yang2

1 Guangdong Provincial Key Laboratory, Guangzhou, China
2 Hong Kong University of Science and Technology, Hong Kong SAR, China

{dgaoaa,qyang}@cse.ust.hk
3 Southern University of Science and Technology, Shenzhen, China

4 Xi’an Jiaotong University, Xi’an, China
wucanhui@stu.xjtu.edu.cn

5 Huazhong University of Science and Technology, Wuhan, China
xiaojinzhang@hust.edu.cn

6 Lingnan University, Hong Kong SAR, China
xinyao@ln.edu.hk

Abstract. This work addresses the dual challenges of enhancing train-
ing efficiency and protecting data privacy in Vertical Federated Learn-
ing (VFL) through secure synthetic dataset generation. VFL typically
involves an active party with labels collaborating with a passive party
possessing features of the same set of samples. Traditional VFL meth-
ods, however, rely on training with entire datasets of sensitive real data,
leading to two primary issues: 1) reduced training efficiency due to
large dataset sizes, a concern exacerbated in cryptography-based train-
ing methods; and 2) potential privacy leakage at the sample level during
training. To mitigate these issues, we introduce the Vertical Federated
Dataset Condensation (VFDC) method. VFDC employs a novel mixed
protection mechanism, integrating class-wise secure aggregation, differ-
ential privacy and repetitive initialization, to securely match the distribu-
tions of real and synthetic data. Empirical evaluations on six real-world
datasets validate VFDC’s efficacy in generating small synthetic data for
VFL, achieving a superior utility-privacy-efficiency trade-off during fed-
erated training.

Keywords: Dataset condensation · Vertical federated learning ·
Privacy protection · Training efficiency

1 Introduction

Vertical Federated Learning (VFL) has attracted increasing attention [20,32,34]
as it enables collaborative model training between institutions without disclosing
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private raw data. In a typical VFL setting, as shown in Fig. 1(a), one active party
holds the labels and the other passive party possesses features of overlapping
samples. The goal is to train a federated model without disclosing sample-wise
data privacy to the opposite party. Traditional VFL methods train a federated
model using the entire training set of sensitive real data. However, this vanilla
paradigm confronts two major challenges: 1) reduced training efficiency due to
the large dataset size, and 2) significant privacy leakage risks at the sample level
stemming from the use of real data. We elaborate on these challenges in the
following.

 

 

  
  

  
  

 

Fig. 1. Schematic comparison between vanilla VFL and VFDC: (a) Vanilla VFL trains
on the entire real dataset and is vulnerable to sample-wise privacy leakage. (b) Our
VFDC method securely generates a small synthetic dataset for privacy-preserving and
efficient federated training.

Efficiency Challenge. The training efficiency in practical VFL scenarios is
significantly affected by the large volume of training data. This challenge is
amplified by the necessity of conducting multiple trials for hyperparameter opti-
mization and Neural Architecture Search (NAS), and the slow convergence on
real dataset for other tasks [14]. This is particularly problematic in the widely
used cryptography-based training methods which is computational and commu-
nicational costly, and thus exacerbates the efficiency challenge under repeated
training trails [7,12].

Privacy Challenge. As shown in Fig. 1(a), it has been demonstrated that
vanilla VFL is vulnerable to privacy leakage of the aligned real samples [34].
Specifically, during the training phase, an adversarial active party may attempt
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to infer private features of a target sample from the passive party, and vice
versa [11,13,17]. In response, existing solutions predominantly focus on training-
phase protection, falling into two broad categories: cryptography-based meth-
ods, such as multiparty computation [12] and homomorphic encryption [8], and
perturbation-based methods, notably differential privacy (DP) [9]. However,
cryptography-based training methods become impractical for large datasets [5].
On the other hand, perturbation-based training methods require significant per-
turbation to ensure feature privacy of aligned samples in VFL, often at the cost
of reduced model utility and efficiency [18,22].

Problem Setup. Therefore, reducing the size of real training dataset in a pre-
processing phase is crucial for enhancing both efficiency and privacy in VFL
training phase. However, it remains a relatively unexplored area. While vertical
federated coreset selection [14] samples a small subset of real data to improve
efficiency, it still involves training on real samples, risking feature privacy leakage
of the selected real samples during training. To kill the two birds with one stone,
our idea is to generate a synthetic dataset in a preprocessing phase, and thus
completely avoid leaking real sample privacy during the training phase. This
idea leads us to the following research question:

How can we securely generate a small set of synthetic data to efficiently train
VFL models while ensuring high utility and strong sample-wise data privacy
protection?

Our Solution. To address the posed question, we leverage recent advance-
ments in dataset condensation (DC) [35]. DC aims to match the distribution
between a small synthetic dataset and the full real dataset, such that training
on the former achieves performance comparable to training on the latter [35].
While DC has been extensively applied in horizontal federated learning (HFL) to
tackle issues like data heterogeneity [16,23], training efficiency [19], and privacy
enhancement [31], its adoption is straightforward since clients can independently
perform DC on their locally available, labeled data.

In contrast, integrating DC into VFL presents a markedly more complex chal-
lenge. The distributed nature of data across VFL parties complicates the task of
preserving privacy during the transmission of sample-wise real data embeddings,
illustrating the novel challenge our work seeks to overcome.

To securely integrate DC into VFL, we introduce the secure Vertical Fed-
erated Dataset Condensation (VFDC) approach, depicted in Fig. 1(b). VFDC
aligns the distributions of real and synthetic features for each class by updating
passive party’s synthetic features with respect to active party’s randomly gen-
erated labels. We employ a secret sharing-based class-wise secure aggregation
algorithm for securely computing class-average embeddings without exposing
individual features and labels. Moreover, feature privacy is further strengthened
by incorporating differential privacy (DP) into the averaged embeddings. A key
aspect of our approach is the class-wise secure aggregation, which reduces sen-
sitivity and thus allows for the addition of subtle DP noise.
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Experiments. We evaluate our proposed VFDC on six real-world datasets. In
terms of privacy-utility trade-off, VFDC demonstrates superior utility under the
same DP privacy budgets compared to other baseline federated dataset reduction
methods. For efficiency, the VFDC-generated datasets significantly reduce the
training iterations of VFL models, compared to other baselines.

Contributions. In summary, our major contributions are as follows:

1. Our work pioneers the topic of secure dataset condensation in VFL, address-
ing the dual challenges of efficiency and privacy protection in the training
phase.

2. We propose a mixed protection mechanism based on class-wise secure aggrega-
tion, DP, and repetitive random initialization, enabling subtle noise addition
for sample-wise feature privacy protection while maintaining high utility.

3. We conduct extensive experiments to validate the superior performance of
our proposed VFDC algorithm on six public real-world datasets.

Roadmap. The remainder of the paper is organized as follows: Sect. 2 reviews
related work. Section 3 details the problem formulation and foundational con-
cepts of our approach. Section 4 elaborates on the VFDC approach. Experimental
results are presented in Sect. 5. The paper concludes in Sect. 6.

2 Related Work

2.1 Vertical Federated Learning

Vertical Federated Learning (VFL) facilitates model training across parties with
vertically partitioned data, where an active party holds labels and passive par-
ties possess corresponding features [20,28]. Despite its advantages, VFL faces
notable challenges in efficiency and sample-wise privacy leakage during training.
The exchange of intermediate model results risks privacy breaches, including
label leakage to passive parties [11] and potential feature inference from passive
parties’ outputs [33]. Our research aims to mitigate these concerns, focusing on
enhancing both privacy protection and training efficiency in the VFL framework.

2.2 Privacy Protection in VFL

Numerous studies in VFL have been devoted to protecting the label and feature
privacy of real data. Despite this, the majority of existing methods target the
training and inference phase, with limited applicability in the data generation
phase. Common privacy protection techniques in VFL include cryptographic
methods [7,12] and perturbation methods [17]. Cryptographic solutions, while
secure, often lead to significant communication and computational overheads,
rendering them impractical for large-scale datasets [12]. On the other hand,
training-phase perturbation methods aim to protect feature and label privacy
leakage through embeddings and gradients during training [13,17,24,27]. How-
ever, due to the alignment of samples across parties in VFL, ensuring adequate
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sample-wise privacy often requires extensive perturbation, which can compro-
mise data utility and efficiency [18,22]. This underscores the need for a novel app-
roach to protect sample-wise data privacy of real dataset via synthetic dataset
generation.

2.3 Dataset Size Reduction in FL

The reduction of dataset size in FL has recently become a focus due to its
potential to improve both training efficiency and privacy [19,30,31]. Most exist-
ing works target the HFL settings, where data is partitioned by samples among
parties. Prototype-based HFL methods [23,31] create a small set of prototypes to
represent the original dataset, addressing the non-i.i.d. issue. Dataset distillation-
based HFL methods synthesize a few samples to enhance efficiency and pri-
vacy [19,30]. However, these approaches involve complex bi-level optimizations
and high computational demands, limiting their applicability in VFL. Dataset
condensation (DC) is also explored in HFL to boost both efficiency and pri-
vacy [19,30], with distribution matching-based DC methods being particularly
efficient and effective [35]. In the VFL setting, coreset selection is examined to
improve efficiency [14]. However, this method still involves training on real data
samples, risking sample-wise data privacy leakage. As of now, there is a lack of
methods capable of securely generating small synthetic datasets in VFL.

Notably, despite criticisms [5] of DC for not guaranteeing membership privacy
against model users [4,26], our focus is on defending data inference attacks from
another party, where membership information is already known. Hence, these
critiques of DC’s membership privacy limitations are irrelevant to our approach.

3 Preliminaries

3.1 Problem Formulation

Vertical Federated Learning Setting. In a typical VFL scenario, two parties
engage in a classification task: the active party P0, holding real labels y ∈ Y,
and the passive party P1, possessing real features x ∈ X corresponding to the
same set of samples. The goal is to collaboratively train a model fθ : X �→ Y,
parameterized by θ, without compromising the privacy of sample-wise data for
either party. Furthermore, our VFDC method is adaptable to scenarios involving
multiple passive parties, where the active party can separately apply the VFDC
procedure with each passive party, thereby maintaining the framework’s efficacy
in more complex VFL configurations.

Threat Model. Our threat model is consistent with the conventional setting
adopted in prevalent VFL studies [6,11]. We operate under the assumption that
all parties in VFL are honest-but-curious. This means they adhere to the pre-
scribed training protocols yet possess the inclination to derive private informa-
tion from any exchanged intermediate data, without engaging in collusion.
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Our privacy objective is to protect the features and labels of the aligned
samples against the opposite party in VFL during training. Within this context,
the adversarial active party aims to deduce feature privacy from the intermediate
results obtained from passive parties, while an adversarial passive party seek
to infer labels of the active party. Thus, the critique [5] of centralized DC’s
limitation in membership privacy protection against adversarial model users does
not apply to our VFL setting, where the membership information of aligned data
is already known by parties.

3.2 Dataset Condensation

In a VFL setting, the entire training dataset T = {X ,Y}, partitioned between
two parties, consists of |T | samples. Dataset condensation (DC) aims to generate
a significantly smaller condensed dataset S, with |S| � |T |. The goal is for S
to mimic the data distribution of T , enabling model training on the condensed
dataset S to yield performance comparable to that on the entire dataset T as
follows:

Ex∼PDL(fθT (x), y) ≈ Ex∼PDL(fθS (x), y), (1)

where PD represents the actual data distribution, L denotes the loss function,
and θT , θS are model parameters trained on T and S, respectively.

DC synthesizes S by employing distribution matching, minimizing the Max-
imum Mean Discrepancy (MMD) between the actual training data Tc and syn-
thetic data Sc for each class c as follows:

sup
‖ψϑ‖H≤1

(E [ψϑ(Tc)] − E [ψϑ(Sc)]) , (2)

where ψϑ is a function in the reproducing kernel Hilbert space (RKHS) H,
parameterized by ϑ. The empirical MMD approximates the actual MMD for
each class, with the overall MMD loss across all classes given by:

C−1∑

c=0

Eϑ∼Pϑ

∥∥∥∥∥∥
1

|Tc|

|Tc|∑

i=1

ψϑ (xc,i) − 1
|Sc|

|Sc|∑

j=1

ψϑ (sc,j)

∥∥∥∥∥∥

2

, (3)

where Pϑ is the distribution of network parameters. For each class c, xc,i and
sc,j are the i-th sample in training data Tc and the j-th sample in synthetic data
Sc, respectively.

The synthetic data S is learned by minimizing the discrepancy between T
and S across various embedding spaces, sampling ϑ. Importantly, Eq. 3 allows
efficient optimization of S, avoiding the complex bi-level optimization of data
and model [29], and thus is well-suited for secure computation in VFL.

3.3 Secure Aggregation

Secure aggregation [3] corresponds to computing the sum of multiple inputs
while keeping the individual inputs confidential. It has been widely adopted in
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HFL to aggregate model updates among clients [21], without revealing private
local models to the aggregation server. However, it is still under-explored to
use secure aggregation in VFL. In this study, we utilize secure aggregation to
aggregate class-wise embeddings in Eq. 3. Techniques such as secret sharing and
homomorphic encryption [8] are commonly employed for secure aggregation. For
our purposes, we employ arithmetic secret sharing, specifically enhanced by the
Beaver’s triples technique, due to its high efficiency in secure computations.

Arithmetic Secret Sharing [25] involves three key procedures: 1) Share: To
share a secret value a within a party P1, it is first converted to an l-bit integer.
P1 randomly generates a0 ∈ Z2l , sends a0 to P0, and retains a1 = a−a0 mod 2l.
The shared secret a is represented as 〈a〉 = {a0, a1}. 2) Computation: Secure
addition of two shared values 〈a〉 and 〈b〉 is performed locally by each party,
resulting in 〈a+ b〉 = {a0 + b0, a1 + b1}. Secure multiplication can be conducted
using precomputed Beaver’s triples [2]. 3) Reconstruction: To reconstruct 〈a〉 for
P0, P1 sends a1 to P0, who then calculates a = a0 + a1 mod 2l.

3.4 Differential Privacy

Definition 1 (Differential Privacy [9]). A randomized mechanism M sat-
isfies (ε, δ)-differential privacy if, for any two neighboring datasets D and D′

differing in only one sample, and for any output event E, the following inequal-
ity holds:

Pr[M(D) ∈ E] ≤ eε Pr[M(D′) ∈ E] + δ,

where ε is the privacy budget, and δ is the fault-tolerance probability.

Definition 2 (l2-Sensitivity [10]). For any two neighboring datasets D and
D′, the l2-sensitivity of a function f : D → R

d is defined as:

Δf = max
D,D′

||f(D) − f(D′)||2,

where || · ||2 denotes the l2-norm.

l2-sensitivity quantifies the maximum impact that a single individual’s data can
have on the output of a function f . To achieve differential privacy, the Gaussian
mechanism is applied as follows:

Definition 3 (Gaussian Mechanism [10]). For a function f : D → R
d with

l2-sensitivity Δf , the Gaussian mechanism M is defined as:

M(f(D)) = f(D) + N (0, σ2Id),

where N (0, σ2Id) represents Gaussian noise with mean 0 and covariance matrix

σ2Id, and σ is calculated as σ = Δf
√

2d ln(1.25/δ)

ε .

Theorem 1. [10] The Gaussian mechanism, as defined in Definition 3, satisfies
(ε, δ)-DP for each data publication.
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Fig. 2. Overview of the proposed VFDC approach. 1) Left: The passive party computes
the DP-protected embeddings of real features and synthetic features. 2) Middle: The
two parties engage in class-wise secure aggregation to collaboratively compute the
average embedding for each class. 3) Right: The active party computes the MMD loss
and sends the gradients to the passive party to update the synthetic features.

4 Proposed Approach

4.1 Overview

Given the aforementioned building blocks, we introduce our proposed secure
vertical federated dataset condensation (VFDC) approach, as shown in Fig. 2.
We first introduce the cornerstone of VFDC, class-wise secure aggregation, in
Sect. 4.2, which enables two parties to securely compute the average embed-
dings per each class, without disclosing the sample-level label and embedding
information. Then, we elaborate on the VFDC approach in Sect. 4.3, which
involves updating synthetic features in alignment with randomly assigned labels
to achieve distribution matching. Lastly, Sect. 4.4 provides a thorough privacy
analysis of the VFDC approach.

4.2 Class-Wise Secure Aggregation

As highlighted in Sect. 3.2, the computation of the MMD loss in DC involves
averaging sample-wise feature embeddings by class. However, straightforward
computation of these average embeddings in VFL risks privacy leakage: 1) trans-
mitting individual sample embeddings from the passive to the active party may
leak feature privacy, 2) whereas sharing individual sample labels from the active
to the passive party could compromise label privacy. To tackle this challenge, we
introduce a class-wise secure aggregation approach that aggregates class embed-
dings without disclosing sample-wise label information to passive parties or fea-
ture information to the active party. Our approach, utilizing arithmetic secret
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Algorithm 1. Class-wise Secure Aggregation
Input: Label vector y in active party P0, feature embeddings e of real data in passive
party P1, class number C.
Output: Class-wise average embeddings ē = {ēc}C−1

c=0 .
1: procedure Cls_SecAgg(y, e)
2: Active party P0 maps label vector y to mask vectors {mc}C−1

c=0 for each class c.
3: The key distribution server generates Beaver’s triples and distributes to P0 and

P1.
4: for each class c in parallel do
5: P0 and P1 secret share mc and e with each other and get shared 〈mc〉 and

〈e〉.
6: P0 and P1 compute inner product 〈mc · e〉 via Beaver’s triples technique.
7: P0 and P1 reconstruct 〈mc · e〉 to P0 to get mc · e.
8: P0 computes the average embedding ēc = m c·e∑

m c
.

9: end for
10: Return Average embeddings ē = {ēc}C−1

c=0 .
11: end procedure

sharing with Beaver’s triples, ensures efficient secure computation. Although
alternatives like HE [8] could offer similar security with larger computation and
communication costs, the novelty of our method lies in extending these princi-
ples to class-wise aggregation for distribution matching, distinct from existing
approaches aggregating among samples or parties.

Algorithm 1 outlines the class-wise secure aggregation algorithm. Initially,
the active party P0 converts the label vector y into class-specific mask vectors
mc for each class c ∈ C. A key distribution server then generates Beaver’s triples
and distributes them to both P0 and P1. Both parties then secret share mc and
embeddings e, obtaining 〈mc〉 and 〈e〉. Subsequently, P0 and P1 collaboratively
compute the inner product 〈mc · e〉 utilizing the Beaver’s triples. The inner
product result mc · e is reconstructed at P0 for calculating average embeddings
ēc of each class.

Complexity Analysis. We now discuss the communication complexity of Algo-
rithm 1. The adoption of secret sharing leads to extra communication cost com-
pared to plain-text computation. Assuming the embedding size d, bit-length of
shared value l, batch-size n, and class number C, the data size of our proposed
class-wise secure aggregation is (4d + 3C)nl bits.

4.3 VFDC Algorithm

Based on the proposed class-wise secure aggregation, we introduce the Vertical
Federated Dataset Condensation (VFDC) approach in Algorithm 2. Initially,
both parties collaboratively initialize a synthetic dataset S. Each epoch begins
with P0 generating a random permutation to shuffle both real and synthetic
datasets in coordination with P1, aiming for class-balanced mini-batches. Con-
currently, P1 resets the parameters ϑ of the embedding extractor ψϑ.
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Algorithm 2. Vertical Federated Dataset Condensation (VFDC)
Input: Real training dataset T , neural network ψϑ parameterized with ϑ, learning rate
η, epoch number T .
Output: Synthetic dataset S.
1: Active party P0 and passive party P1 randomly initialize synthetic dataset S.
2: for each epoch t < T do
3: Re-shuffle: Active party P0 generates random permutation and sends to P1 to

uniformly shuffle data.
4: Re-initialize: Passive party P1 randomly initializes network parameter ϑ.
5: for each batch {yT , xT } ⊂ T , {yS , xS} ⊂ S do
6: DP embeddings: Passive party P1 computes real data embeddings eT =

ψϑ(x
T ) and add DP noise N (0, σ2Id).

7: Class-wise secure aggregation: Two parties P0 and P1 compute class-
average embeddings ēT = Cls_SecAgg(yT , eT ) via Algorithm 1.

8: P1 computes synthetic data embeddings eS = ψϑ(x
S).

9: Two parties compute class-average embeddings ēS =
Cls_SecAgg(yS , eS).

10: Update synthetic features: P0 computes MMD loss LMMD via Equa-
tion 3 and sends gradients ∇eS LMMD to P1.

11: P1 computes and updates s = s − η∇sLMMD.
12: end for
13: end for
14: Return Synthetic dataset S.

During secure dataset condensation, a mini-batch of real data {xT ,yT } ∈ T
is sampled. P1 computes and DP-protects real data embeddings, adding Gaussian

noise as per Definition 3, where σ = r
√

2d ln(1.25/δ)

bε , r is the clipping threshold
and b is the class-wise batch size. Both parties then perform class-wise secure
aggregation to calculate average class embeddings for real data. A similar process
is followed for synthetic data {xS ,yS} ∈ S to compute average class embeddings
for synthetic data. P0 computes the MMD loss using average class embeddings
and communicates the gradients to P1, who updates the synthetic features s.
This process iteratively refines the small synthetic dataset, enhancing both pri-
vacy and efficiency in VFL training.

4.4 Privacy Analysis

This section assesses the privacy aspects of the VFDC approach (Algorithm 2),
focusing on the confidentiality of real data features and labels. Under the assump-
tion that all parties are honest-but-curious and non-collusive, as defined in
Sect. 3.1, we analyze the privacy protection mechanisms in VFDC.

Theorem 2. The class-wise secure aggregation (Algorithm 1) ensures that the
passive party gains no information about real data labels, and the active party
learns only the average class embeddings.
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Proof. Notice that other than the secret-shared intermediate results, the active
party only receives decrypted average class embeddings, and the passive party
only receives decrypted class-wise mask vectors. Therefore, the security of Algo-
rithm 1 is guaranteed by the security of arithmetic secret sharing [25] and the
Beaver’s triples [2]. Therefore, the proposed class-wise secure aggregation method
effectively protects both sample-wise label and feature privacy of real data. ��

Feature Privacy Protection. Given the heightened sensitivity and potential
vulnerability of feature data in VFL, VFDC places a particular emphasis on
feature privacy by integrating secure aggregation, DP, and repeated random
model initialization.

1) Class-wise Secure Aggregation + DP : Our proposed class-wise secure aggre-
gation precludes the active party from inferring individual sample embeddings
and reduces the sensitivity of the average embeddings for improved utility in DP.
According to Definition 3, each epoch of Algorithm 1 satisfies (ε, δ)-DP. Inspired
by [6], we quantify the cumulative privacy loss over T epochs via moment accoun-
tant [1].

Theorem 3. Given each epoch of Algorithm 2 satisfies (ε, δ)-DP, there exists
constants r1 and r2 such that given sampling probability q and epoch number
T , and ε < r1q

√
T , Algorithm 2 satisfies (ε′, δ)-DP, with ε′ = r2q

√
Tε over T

epochs.

Proof. According to Definition 3 and Theorem 1, to ensure one iteration (ε, δ)−
DP , we set δ =

√
2 ln 1.25/δ

ε . By Theorem 1 in [6], with the appropriate choice of
ε, q, T , such that ε < r1q

√
T , the privacy loss is ε′ = r2q

√
Tε over T epochs. ��

2) Repetitive Random Model Initialization: VFDC’s strategy of continuously re-
initializing the feature extractor ψϑ further enhances feature privacy. The contin-
uously initialized feature extractor makes it challenging to reconstruct the model
parameters as well as the real features from embeddings. In summary, VFDC’s
multi-faceted approach effectively protects the sample-wise feature privacy of
real data in VFL settings.

5 Experimental Study

In experimental studies, we study the following research questions: RQ1: What
is the visual quality of VFDC-generated dataset? RQ2: What is the privacy-
utility trade-off of VFDC compared to other methods on different datasets?
RQ3: How does VFDC improve training efficiency compared to other methods?
RQ4: What impact do hyperparameters have on the proposed VFDC approach?
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5.1 Experimental Setup

Datasets. We evaluate our proposed VFDC approach on six widely used real-
world public datasets including three image datasets and three tabular datasets
as follows: 1) MNIST1 is a dataset of handwritten digits with 70,000 images
from 10 classes with size of 1× 28× 28 pixels. 2) FMNIST2 is a fashion image
dataset containing 70,000, 28 × 28, gray-scale fashion items from 10 classes. 3)
CIFAR103 consists of 60,000, 32 × 32 colored images from 10 classes, with
6,000 images per class. 4) MIMIC-III [15] is an in-hospital mortality predic-
tion dataset based on the initial 48 h of ICU data, containing 714 features and
21139 samples. 5) WDBC4 dataset is utilized for breast cancer diagnosis. It
comprises 569 samples, with 212 malignant and 357 benign cases. Featuring 30
attributes per sample. 6) Spambase5 dataset is collected to determine whether
a given email is spam or not. It contains a total of 4601 records, each with 57
characteristics.

(a) MNIST (b) FMNIST (c) CIFAR10

Fig. 3. Visualization of the VFDC-generated synthetic images on three datasets.

Implementation Details. For dataset generation, we employ the SGD opti-
mizer, iterating over 200 epochs to assess the performance of the synthesized
dataset. In evaluating the VFDC-generated data, each model is trained 20 times
with various initialization. We utilize average accuracy as the utility metric, and
also report the standard deviation. For image datasets, a Convolutional Neural
Network (CovNet) is used, while a multilayer perceptron (MLP) is employed for
the tabular datasets. For privacy protection, we set d = 256, δ = 1e−4, r = 1,
and ε ∈ {10, 50, 100,∞}. We set the bit length of secret shared values to 32.

Compared Methods. Our evaluation of VFDC includes comparisons with var-
ious dataset size reduction techniques in VFL: 1) Vanilla-DC: This method,
based on the MMD-based DC approach [35], is applied to VFL by transmitting

1 http://yann.lecun.com/exdb/mnist/.
2 https://github.com/zalandoresearch/fashion-mnist.
3 https://www.cs.toronto.edu/~kriz/cifar.html.
4 https://archive.ics.uci.edu/dataset/17.
5 https://archive.ics.uci.edu/dataset/94/spambase.

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://www.cs.toronto.edu/~kriz/cifar.html
https://archive.ics.uci.edu/dataset/17
https://archive.ics.uci.edu/dataset/94/spambase
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(a) Spambase (b) WDBC

Fig. 4. Visualization of the distributions of the original dataset and the condensed
dataset by VFDC on two datasets using t-SNE. The star-shaped points denote the
VFDC-generated samples.

Table 1. Comparison of accuracy (utility) of models trained by datasets generated
via different methods. ε denotes the DP budget, Spc denotes the number of samples
per class, and Rat is the ratio of dataset size. V-DC denotes Vanilla-DC. The highest
results under the same ε are highlighted in bold.

DP ε ↓ Spc Rat.% Coreset-LDP DC-LDP (Ours) VFDC V-DC Whole
10 50 100 10 50 100 10 50 100 ∞ ∞

FMNIST 50 0.83 78.3 78.8 79.8 74.0 82.1 84.4 88.2 88.3 88.3 88.5 93.5
100 1.7 80.7 81.6 81.9 74.2 84.0 84.8 88.9 89.0 89.0 89.1
200 3.3 81.8 82.6 83.1 75.4 84.3 85.0 89.4 89.6 89.7 89.8

CIFAR 50 1.0 37.2 39.4 41.1 38.1 49.0 59.8 62.1 63.0 63.3 63.4 84.8
100 2.0 40.3 44.5 50.9 37.6 50.4 60.9 64.1 64.1 64.5 65.3
200 4.0 52.3 54.5 56.3 37.0 50.7 61.3 66.9 67.0 67.5 67.9

MNIST 50 0.83 90.1 92.1 93.4 91.3 95.6 96.7 98.3 98.3 98.4 98.4 99.6
100 1.7 90.2 92.3 93.5 91.5 95.6 96.9 98.6 98.6 98.7 98.6
200 3.3 91.3 93.0 93.3 92.0 95.8 97.0 98.7 98.7 98.7 98.7

MIMIC 10 0.11 63.6 70.8 70.8 41.2 52.2 71.4 78.2 78.4 78.9 79.5 81.7
30 0.34 64.2 71.6 70.3 53.6 67.1 70.9 78.4 78.9 79.1 80.3
50 0.56 65.6 70.4 71.9 59.1 69.3 72.3 78.8 79.3 79.9 80.4

Spambase 10 0.48 63.4 72.7 80.2 58.6 63.4 82.8 89.7 90.1 90.5 90.7 94.2
30 1.45 65.8 74.3 82.6 57.2 65.9 81.8 90.1 90.5 91.0 91.3
50 2.42 70.1 75.2 83.8 56.3 69.1 82.7 90.9 91.2 91.5 91.7

WDBC 10 4 89.4 90.4 92.5 86.1 91.8 92.9 97.0 97.1 97.1 97.2 97.3
20 8 89.7 90.8 92.1 88.7 91.8 93.2 97.0 97.1 97.2 97.2
30 12 90.6 91.0 93.3 89.9 93.2 93.9 97.1 97.2 97.3 97.3

real data embeddings without any protection. 2) Coreset-LDP [14]: Imple-
ments a coreset sampling approach in VFL. We employ local DP (LDP) [18] to
protect the sample-wise feature privacy of the chosen real data samples. 3) DC-
LDP: Enhances Vanilla-DC by incorporating LDP for sample-wise data privacy.
4) Whole: This method involves training the VFL model on the entire dataset,
foregoing any form of data reduction.
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5.2 Visualization of Condensed Dataset

To address RQ1, Fig. 3 visualizes the VFDC-generated synthetic datasets using
three image datasets. These images are synthesized from features initialized
randomly by the passive party and labels assigned arbitrarily by the active
party, ensuring no direct representation of any specific sample from the orig-
inal dataset. Figure 4 visualizes the data distributions of VFDC-generated data
on two datasets Spambase and WDBC by using t-SNE for dimensionality reduc-
tion. Notably, even under the stringent conditions of our mixed protection
mechanism—combining secure aggregation, differential privacy (DP), and repet-
itive random initialization—VFDC accurately reflects the original datasets’ dis-
tributions. This demonstrates the effectiveness of VFDC in maintaining visual
quality and data representation fidelity in a privacy-preserving VFL setting.

5.3 Performance Comparison

We validate the efficacy of our VFDC approach by comparing with the baseline
methods to answer RQ2. Table 1 presents the accuracy of models trained on
datasets generated by various methods across six datasets. VFDC, when bench-
marked against the Vanilla-DC baseline, exhibits comparable accuracy, partic-
ularly under larger DP budgets. This suggests that secure aggregation has a
minimal impact on model performance. Furthermore, VFDC consistently outper-
forms Coreset-LDP and DC-LDP in accuracy for the same DP budgets. Notably,
under smaller privacy budgets (ε), VFDC’s accuracy significantly exceeds that of
Coreset-LDP and DC-LDP, thanks to the class-wise secure aggregation’s ability
to apply minimal DP noise while providing strong privacy protection. We also
observe an increase in the condensed dataset’s performance relative to the growth
ratio of dataset size. In most cases, the performance of the condensed dataset
closely mirrors that of the complete dataset, albeit with a substantially reduced
data size. In conclusion, VFDC demonstrates the most favorable privacy-utility
trade-off among the compared methods across various datasets, DP budgets, and
data size ratios.

5.4 Efficiency Improvement

Given that communication overhead per iteration is identical for both synthetic
and real data, we assess training efficiency through a comparison of iteration
counts needed to reach equivalent accuracy levels. Figure 5 reveals that mod-
els trained on datasets generated by VFDC converge markedly faster (approxi-
mately 10 times) compared to those trained on complete datasets. Additionally,
VFDC-trained models attain higher accuracy than models trained with other
baseline methods. These findings confirm that the VFDC-generated condensed
dataset substantially enhances training efficiency.
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(a) Spambase (b) WDBC

Fig. 5. Performance variation of the VFL model trained using dataset output by dif-
ferent methods across iterations.

Table 2. Impact of secret sharing bit length on accuracy and data volume each itera-
tion. Plain-text denotes the Vanilla-DC baseline.

Dataset Bits Accuracy (%) Data Volume (MB)

MIMIC Plain-text 80.1 ± 1.1 2.05
32 79.9 ± 1.2 8.24
16 79.2 ± 1.3 4.12

Spambase Plain-text 91.7 ± 0.7 2.05
32 91.5 ± 0.7 8.24
16 90.8 ± 1.3 4.12

5.5 Impact of Hyperparameters

Impact of Secret Sharing Bit Length. Secure aggregation impacts the util-
ity and communication cost via the bit length of secret-shared values, as it maps
float values to l-bit fixed point integers. Table 2 shows that 32-bit values in VFDC
offer comparable accuracy to the plain-text Vanilla-DC baseline with a moderate
increase in data volume (8.24 MB vs. 2.05 MB). Reducing to 16-bit decreases
accuracy slightly but halves the data volume to 4.12 MB. These results confirm
that our VFDC approach’s secure computation achieves similar performance to
non-encrypted methods with manageable communication overhead.

Impact of Privacy Budget ε. To access the impact of DP privacy budget ε,
we change ε in range {10, 50, 100}, As demonstrated in Table 1, VFDC show-
cases a notably lower decline in accuracy with decreasing privacy budgets while
maintaining equivalent levels of DP protection compared to DC-LDP. This is
attributed to the reduced sensitivity achieved through our proposed class-wise
secure aggregation. Thereby our VFDC facilitates privacy protection with min-
imal impact on model accuracy.

Impact of VFDC Iteration Number. Figure 6 demonstrates the variation
of model accuracy across iterations during the VFDC process for different data
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(a) MIMIC (b) Spambase

Fig. 6. Performance variation of the VFL model trained on VFDC-generated datasets
during the VFDC process.

sizes. It reveals the trade-off between synthetic data utility and the VFDC gen-
eration cost. We observe that it only takes 30 (for MIMIC) or 10 (for Spam-
base) iterations to generate synthetic datasets with high utility, indicating that
VFDC is efficient in generating high-quality synthetic data especially for smaller
datasets.

6 Conclusion and Future Directions

To address the dual challenges of privacy and efficiency in VFL, we present
VFDC for small synthetic dataset generation. VFDC facilitates collabora-
tive, privacy-preserving generation of vertically-partitioned condensed dataset
between two parties, one with labels and the other with features of overlapping
samples. To securely align the distributions of synthetic and real data, we design
a tailored mixed protection mechanism that integrates class-wise secure aggre-
gation, DP and repetitive random initialization. Experimental results show that
VFDC not only boosts training efficiency, crucial for multi-trail training and
cryptography-based training, but also improves sample-level data privacy with
high utility.

Our work pioneers the integration of dataset condensation into VFL, leaving
several future directions. Firstly, our VFDC is tailored for distribution matching-
based DC method, leaving the exploration of other DC methods within VFL rel-
atively untapped. Another direction is to expand the framework to accommodate
multi-party settings.
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Abstract. In a multiple instance learning (MIL) scenario, the outcome
annotation is usually only reported at the bag level. Considering simplic-
ity and convergence criteria, the lazy learning approach, i.e., k-nearest
neighbors (kNN), plays a crucial role in predicting bag labels in the MIL
domain. Notably, two variations of the kNN algorithm tailored to the
MIL framework have been introduced, namely Bayesian-kNN (BkNN)
and Citation-kNN (CkNN). These adaptations leverage the Hausdorff
metric along with Bayesian or citation approaches. However, neither
BkNN nor CkNN explicitly integrates feature selection methodologies,
and when irrelevant and redundant features are present, the model’s
generalization decreases. In the single-instance learning scenario, to over-
come this limitation of kNN, a feature weighting algorithm named Neigh-
borhood Component Feature Selection (NCFS) is often applied to find
the optimal degree of influence of each feature. To address the signifi-
cant gap existing in the literature, we introduce the NCFS method for the
MIL framework. The proposed methodologies, i.e. NCFS-BkNN, NCFS-
CkNN, and NCFS-Bayesian Citation-kNN (NCFS-BCkNN), learn the
optimal features weighting vector by minimizing the regularized leave-
one-out error of the training bags. Hence, the prediction of unseen bags is
computed by combining the Bayesian and citation approaches based on
the minimum optimally weighted Hausdorff distance. Through experi-
ments with various benchmark MIL datasets in the biomedical informat-
ics and affective computing fields, we provide statistical evidence that
the proposed methods outperform state-of-the-art MIL algorithms that
do not employ any a priori feature weighting strategy.
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1 Introduction

The multiple instance learning (MIL) frameworks have gained considerable pop-
ularity in the machine learning (ML) research field due to their broad applica-
bility to several real-world applications and problems, such as the prediction of
structure-activity relationships, document categorization, image classification,
economic risk assessment and the prediction of protein binding sites [2,7]. In the
classical (supervised) single-instance learning (SIL) setting, each example is an
instance represented by a feature vector and an individual label. In contrast, in
the MIL paradigm, the learner receives a set of bags containing multiple instances
and corresponding bag labels but not always single instance labels. Hence, MIL
aims to train an instance or a bag classifier, and in this paper, we mainly focus
on predicting unseen bags.

The SIL algorithms can be roughly divided into eager learning and lazy
learning [17]. The goal of eager learning is to construct a general, explicit, input-
independent target function learned during the training stage (e.g., Fisher’s dis-
criminant, logistic regression, decision tree, support vector machine, artificial
neural networks, etc.), while the lazy learning approach stores the training exam-
ples for future use. The most widely used lazy learning algorithm is the k-nearest
neighbor (kNN), which classifies examples according to the class of the nearest
neighbors. Although the kNN algorithm is one of the simplest ML algorithms, it
often yields competitive results compared with the state-of-the-art classification
models [1]. Its appeal lies from the fact that (i) its decision surfaces are non-
linear, (ii) there are few hyperparameters (i.e., distance metric and number of
neighbors) to be tuned, and (iii) the expected reliability of prediction improves
as the data of training set increases [5,22].

In [26], authors investigated the lazy learning approach in multiple instance
problems, suggesting the use of the Hausdorff metric. Two extensions of the kNN
algorithm to the MIL framework were proposed: the Bayesian-kNN (BkNN) and
the Citation-kNN (CkNN) algorithms. The former aims to maximize the poste-
rior probability for the unseen bag, while the concept of citations inspires the
latter. To measure the distance between bags, the authors proposed a variant
of the Hausdorff distance, i.e., the minimal Hausdorff distance, which proved to
be more robust against outlier points within the bags and was used for both the
BkNN and CkNN methods. However, CkNN still applies the most straightfor-
ward majority vote approach among the references and citers to classify unseen
bags. An improvement of this algorithm was proposed by [8], where the authors,
applying a Bayesian approach to references and a distance-weighted majority
vote approach to citers, introduced the Bayesian Citation-kNN (BCkNN).

The kNN algorithm, with standard distance metrics (e.g., Euclidean, city
block, cosine, etc.), operates under the implicit assumption that all features hold
equal significance. However, this assumption is problematic when irrelevant or
redundant features are present, thereby impacting the neighborhood search and
diminishing the model’s generalizability [15,26]. To solve this problem, a feature
weighting algorithm is often applied to find each training set feature’s optimal
degree of influence. In particular, authors in [29] proposed a nearest neighbor-
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based feature selection method named neighborhood component feature selection
(NCFS). This work was inspired by the dimensionality reduction technique based
on neighborhood component analysis proposed in [5]. Their embedded algorithm
[29] learns a feature weighting vector via gradient ascent, maximizing the regular-
ized leave-one-out classification accuracy. This assigns higher weights to relevant
features, while irrelevant ones approach zero weight.

Feature weighting can also be used as a feature selection approach to dis-
card features with weights below a specific threshold value, thereby reducing
the model complexity and the number of dimensions. Recent state-of-the-art
works demonstrated how NCFS [10,28] is a trade-off between simplicity and
generalization performance, thus leading to insensitivity to the increase in the
number of irrelevant features. Therefore, the NCFS approach leads to improving
both the generalization performance and the interpretability of the kNN model
[29], and was successfully applied in different domains ranging from industry
[28], affective computing [23], and biomedical informatics [24]. While the NCFS
technique is often combined with the SIL kNN model to enhance the generaliza-
tion performance when dealing with high-dimensional data, a notable gap in the
literature regarding its integration within the MIL framework remains. Addition-
ally, the literature lacks explicitly integrated feature selection methodologies in
Bayesian-kNN and Citation-kNN approaches, which can simultaneously discard
redundant and irrelevant features and handle the weakly supervised setting of
the MIL framework.

To accomplish the goal mentioned above, we introduce the NCFS for the
MIL framework. The proposed methodologies, NCFS-BkNN, NCFS-CkNN, and
NCFS-BCkNN, learn the optimal features weighting vector by minimizing the
regularized leave-one-out error on the training bags. Accordingly, the prediction
of unseen bags was computed by combining the Bayesian and citation approaches
with the optimal weighted minimal Hausdorff distance. The main contributions
of this work to the existing ML methodologies are (i) the introduction of the
NCFS algorithm for the MIL lazy learning approaches and (ii) the demonstra-
tion of the effectiveness of the proposed approaches to different benchmark MIL
datasets in the biomedical informatics (Musk dataset [4]) and affective com-
puting (DEAP dataset [11]) domains. The experiments revealed the significant
enhancement brought by the introduction of NCFS in the MIL domain, showing
the statistical superiority of our proposed approaches over state-of-the-art MIL
algorithms. As a result, our research contributes to advancing the state-of-the-art
of MIL lazy learning algorithms.

The paper is organized as follows: in Sect. 2, we describe the proposed
methodology. Section 3 discusses how the approach is evaluated on the bench-
mark datasets. The experimental procedure is reported in Sect. 4, while results
are presented in Sect. 5. Finally, Sect. 6 provides conclusions of our findings.
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2 Methods

We defined the following notation to formulate the MIL problem:

– {B1, . . . , Bn, . . . , BN} is the set of the N training bags;
– {b1, . . . , bt, . . . , bT } is the set of the T test bags;
– yBn

, ybt ∈ {1, . . . , C} are the labels for the n-th training bag and the t-th test
bag, respectively, where C is the number of classes;

– LBn
and Lbt are the total number of instances of the n-th training and t-th

test bags;
– Bn = {x

(1)
Bn

, . . . , x
(LBn )
Bn

} and bt = {x
(1)
bt

, . . . , x
(Lbt )

bt
} are the sets of instances

of the n-th training and t-th test bags, with xBn
, xbt ∈ R

d, where d is the
number of features.

In the MIL paradigm, each bag is allowed to have a different size, meaning
that L can vary among bags [6].

2.1 The Lazy Learning Approach for Multiple Instance Learning
Setting

Bayesian-kNN and Citation-kNN. To address the lazy learning approach
for the MIL paradigm, two problems should be addressed: (i) the distance mea-
sure problem and (ii) the classification problem. The former aims to formulate
different distance functions measuring the similarity between training and test
bags. In this context, we employed the minimal Hausdorff distance [8,26] to
measure the distance between unseen test bags and training bags as follows:

Dh(bt, Bn) = min
xbt∈bt

min
xBn∈Bn

d(xbt , xBn
), (1)

where |bt| = Lbt , |Bn| = LBn
and d(xbt , xBn

) can be the Euclidean (||xbt−xBn
||2)

or city block distance (||xbt − xBn
||1). Several works [8,12,16,20] demonstrated

how this modified (minimal) Hausdorff distance enhances robustness to noise
and outliers, mitigating their adverse influence on both feature weighting and
decision-making of our distance learning-based approach. Therefore, the modi-
fied Hausdorff distance was used to adapt kNN to MIL problems.

Concerning the classification problem, in spite of the straightforward major-
ity voting approach, we employed two alternative methods, the Bayesian-kNN
(BkNN) and Citation-kNN (CkNN). In particular, for the BkNN method, the
prediction of unseen bag bt is computed by:

ŷbtBkNN
= argmax

y′∈{1,...,C}
P (y′)P ({y(1)

r , y(2)
r , . . . , y(k)

r }|y′), (2)

where {y
(1)
r , y

(2)
r , . . . , y

(k)
r } are class labels of k closest training bags (i.e., ref-

erences) computed according to the minimal Hausdorff distance defined in Eq.
(1), P (y′) is the probability that y′ assumes one of the possible C classes, and
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P ({y
(1)
r , y

(2)
r , . . . , y

(k)
r }|y′) is the conditional probability of observing the set of

class labels of the k closest training bags given y′. It is worth noting that given
the Bayes theorem, the posterior probability P (y′)P ({y

(1)
r , y

(2)
r , . . . , y

(k)
r }|y′) can

be computed by counting the number of references which disclose y′ class divided
by the total number of references (i.e., k). Notice that each reference represents
a different training bag.

Bag 1

Bag 2

Bag 3

Bag 4

Bag 5

A B C

Fig. 1. Schematic representation of Citation-kNN. (A) Bags distribution. (B) The two
closest references of Bag 2 (circle) (i.e., 2-nearest neighbors highlighted by the arrows)
are {Bag 1 (square), Bag 3 (triangle)}. (C) Citers of Bag 2 (circle) are {Bag 1 (square),
Bag 4 (rhombus), Bag 5 (pentagon)} as Bag 2 is contained in their 2-nearest neighbors.

For the CkNN, the combination of references and citers defines the prediction
criteria. In particular, the CkNN extends the set of nearest neighbors, includ-
ing not only the closest bags (i.e., references) but also the bags for which the
unseen bag is among the closest bags (i.e., citers). Given an unseen bag bt,
{r1, r2, . . . , rk} are its k-nearest references and {c1, c2, . . . , cq} are its q-nearest
citers. Then, the test bag is predicted by:

ŷbtCkNN
= argmax

y′∈{1,...,C}

( k∑
i=1

δ(y′, y(i)
r ) +

q∑
j=1

δ(y′, y(j)
c )

)
, (3)

where {y
(1)
r , y

(2)
r , . . . , y

(k)
r } and {y

(1)
c , y

(2)
c , . . . , y

(q)
c } are, respectively, the class

labels of k references and q citers computed according to the minimal Haus-
dorff distance defined in Eq. (1), and δ is the Kronecker delta function. Figure 1
shows a graphical representation of the computation of the 2-nearest references
(Fig. 1B) and 2-nearest citers (Fig. 1C) of a particular bag.

Bayesian Citation-kNN. The natural way to improve the prediction of CkNN
is to assign different weights to different references and citers according to their
distances to the unseen bag. We used the algorithm proposed in [8] named
Bayesian Citation-kNN (BCkNN) by combining both the Bayesian and the dis-
tance weighting approaches to its k references and its q citers, respectively. Then,
the equation to classify an unseen bag becomes:
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ŷbtBCkNN
= argmax

y′∈{1,...,C}

(
P (y′)P (y(1)

r , y(2)
r , . . . , y(k)

r |y) +
∑q

j=1 f(bt, cj)δ(y′, y(j)
c )∑q

j=1 f(bt, cj)

)
,

(4)
where f(bt, cj) are the citer weights that can be defined by one of the following
functions [8]:

f(bt, cj) = e−(Dh(bt,cj))
2
, (5)

f(bt, cj) =
1

1 + Dh(bt, cj)
, (6)

f(bt, cj) =
1

1 + (Dh(bt, cj))2
, (7)

where Dh(bt, cj) represents the minimal Hausdorff distance between the unseen
bag bt and the j-th citers defined as follows:

Dh(bt, cj) = min
xbt∈bt

d(xbt , cj). (8)

Notice how citer contribution is weighted according to the inverse of their dis-
tances, assigning a lower weight to citers that are further from the unseen bag
bt.

2.2 Neighborhood Component Feature Selection for Single Instance
Learning Setting

The original formulation of neighborhood components analysis (NCA) was intro-
duced in [5], while the adaptation to feature selection, i.e., neighborhood compo-
nent feature selection (NCFS), was proposed in [29]. In the SIL framework, we
let T = {(x1, t1), . . . , (xi, ti), . . . , (xN , tN )} be a set of training samples, where
xi is a d-dimensional feature vector, ti ∈ {1, . . . , C} is its corresponding class
label and N is the number of samples. We denote the weighted distance between
two samples xi and xj by Dω (xi,xj) =

∑d
l=1 ω2

l |xil − xjl|, where ωl is a weight
associated with the l-th feature. Here, the probability of xi selecting xj as its
reference point is defined as:

pij =

{
κ(Dω (xi,xj)∑

k �=i κ(Dω (xi,xk)
, if i �= j

0, if i = j
, (9)

where κ(z) = e(−z/σ) is a kernel function and the kernel width σ is a hyper-
parameter that controls the prior probability of each point being selected as
reference (σ → 0 means that only the nearest neighbor can be chosen, while
σ → ∞ implies that all the points have the same chance to be selected). Based
on the above definition, the probability of the query point xi being correctly
classified is given by pi =

∑
j tijpij , where tij = 1 if and only if ti = tj and

tij = 0 otherwise.
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The L2-norm regularized approximate leave-one-out classification accuracy
can be written as:

ξ(ω)SIL =
∑

i

∑
j

tijpij − λ

d∑
l=1

ω2
l , (10)

where λ is a scalar regularization hyperparameter controlling model complexity.
Since the objective function ξ(ω) is differentiable, its derivative with respect to
ωl can be computed as:

∂ξ(ω)SIL

∂ωl
= 2

(
1
σ

∑
i

(
pi

∑
j �=i

pij |xil − xjl| −
∑

j

tijpij |xil − xjl|
)

− λ

)
ωl. (11)

2.3 Our Proposal: Neighborhood Component Feature Selection
for the Multiple Instance Learning Setting

The proposed NCFS formulation for MIL aims to find the k references and q
citers computing the weighted minimal Hausdorff distance. We introduced the
weighted minimal Hausdorff distance between two training bags Br and Bs as
follows:

Dh
ω (Br, Bs) = min

xBr∈Br

min
xBs∈Bs

d∑
l=1

ω2
l dl(xBr,l, xBs,l), (12)

where ωl is a weight associated with the l-th feature and dl is the pointwise
distance between the l-th predictor of instances xBr

and xBs
. Equation 12 can

model a different number of instances for each bag by imposing |Br| = LBr
and

|Bs| = LBs
where LBr

and LBs
represent the number of instances within the r-

th and s-th training bags, respectively. The optimal d-dimensional weight vector
ω is found by minimizing the leave-one-out classification error of the training
bags. In the MIL paradigm, the probability of Br selecting Bs as its reference
bag is defined as:

prs =

{
κ(Dh

ω (Br,Bs))∑
k �=r κ(Dh

ω (Br,Bk))
, if r �= s

0, if r = s
. (13)

The probability of the query bag Br being correctly classified is given by:

pr =
∑

s

yBr
yBs

prs, (14)

where yBr
yBs

= 1 if and only if yBr
= yBs

and yBr
yBs

= 0 otherwise. The
regularized leave-one-out classification accuracy can be written as:

ξ(ω)MIL =
∑

r

∑
s

yBr
yBs

prs − λ

d∑
l=1

ω2
l . (15)
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Then, we aim to minimize the following criteria:

min
ω

ξ(ω)MIL (16)

and the derivative of the objective function becomes:

∂ξ(ω)MIL

∂ωl
=2

(
1
σ

∑
r

(
pr

∑
s �=r

prsD
h
l (Br, Bs)+

−
∑

s

yBr
yBs

prsD
h
l (Br, Bs)

)
− λ

)
ωl.

(17)

Here, Dh
l is the minimal Hausdorff distance computed for the l-th feature as

follows: Dh
l (Br, Bs) = minxBr∈Br

minxBs∈Bs
dl(xBr,l, xBs,l). To solve the opti-

mization problem formulated in Eq. (16), we employed the quasi-Newton method
for large-scale optimization, namely the Limited memory Broyden-Fletcher-
Goldfarb-Shannon (L-BFGS) method [13]. Compared to the Stochastic Gradient
Descent (SGD) applied in [29] for solving NCFS, L-BFGS has generally proven
to be more stable for solving the feature selection tasks [18]. Notice how the
optimal d-dimensional weight vector ω∗, computed by minimizing ξ(ω)MIL via
L-BFGS through Eq. (16), can be used to compute the optimal weighted min-
imal Hausdorff distance to measure the distance between unseen test bag and
training bags as follows:

Dh
ω∗(bt, Bn) = min

xbt∈bt
min

xBn∈Bn

d∑
l=1

ω∗2

l dl(xbt,l, xBn,l). (18)

This weighted distance can now be used to compute references and citers for
BkNN (Eq. 2), CkNN (Eq. 3), and BCkNN (Eq. 4), thus giving rise to NCFS-
BkNN, NCFS-CkNN, and NCFS-BCkNN. For the NCFS-BCkNN, the citer
weights defined in Eqs. (5), (6), and (7) are computed according to the weighted
minimal Hausdorff distance between the unseen bag bt and the j-th citers defined
as follows:

Dh
ω∗(bt, cj) = min

xbt∈bt

d∑
l=1

ω∗2

l dl(xbt,l, cj,l). (19)

Importantly, Eq. (18) allows the modeling of a different number of instances
for each bag by imposing |Bn| = LBn

and |bt| = Lbt , where LBn
and Lbt ,

represent the number of instances within the n-th training and t-th test bags,
respectively. This allows us to compute the weighted minimal Hausdorff distance
on the training (Eq. 12) and test set (Eq. 18) between bags of different sizes.

Algorithm 1 shows the overall pseudocode of the proposed methodology. For
each unseen test bag, our proposed NCFS-BCkNN extension first finds its k
references and q citers using the optimal weighted minimal Hausdorff distance.
Then, a Bayesian approach is applied to its k references and a distance-weighted
majority vote approach is applied to its q citers. It is noteworthy that the pseu-
docode can be easily generalized for implementing NCFS-BkNN by setting q = 0
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and f(bt, cj) = 0. For the NCFS-CkNN, in addition to setting f(bt, cj) = 0, the
majority vote of the k references should replace the posterior probability com-
putation. Source code is available at https://github.com/g-turri/MIL-NCFS.

3 Datasets

In this section, we describe the employed datasets. In the Musk dataset (see
Sect. 3.1), each bag represents a molecule characterized by a different number of
conformers (i.e., the bag’s instances, ranging from a minimum of 2 to a maximum
of 40 instances). In the DEAP dataset (see Sect. 3.2), each bag corresponds to
a physiological signal segmented into 5 windows, each associated with a distinct
emotional video, thus forming a bag containing 5 instances.

Algorithm 1. Pseudo-algorithm of NCFS-BCkNN
NCFS-BCkNN
1: Splitting data in train_data and test_data
2: training(train_data)
3: return ω∗, the optimal weighting vector
4: testing(train_data, test_data, ω∗, k, q, f)
5: return ŷ, the vector with the predicted bag labels

training(train_data, λ, σ)
6: for each training bag Br and Bs pair do
7: Compute the weighted Minimal Hausdorff distance Dh

ω (Br, Bs) using ω accord-
ing to Eq. (12)

8: Compute pr and prs according to Eq. (13) and (14)
9: Minimize the objective function ξ(ω)MIL (Eq. 16) using the L-BFGS Solver:

compute the derivative ∂ξ(ω )MIL
∂ωl

(Eq. 17) to identify the direction of steepest
descent and to compute an estimate of the Hessian matrix

10: return the optimal weighting vector ω∗

testing(train_data, test_data, ω∗, k, q, f)
11: BCkNN(train_data, test_data, ω∗, k, q, f , distance_metric)
12: Compute the weighted Minimal Hausdorff (Eq. 18) distance between each train

and test bag.
13: Compute the posterior probability of the k references (first term of Eq. 4)
14: Compute the majority vote of the q citers (second term of Eq. 4) normalized

according to one of the following functions: (5), (6), or (7)
15: Classify the unseen bag bt using Eq. (4)
16: return ŷ, a prediction vector with a length equal to the number of unseen bags in

the test set

3.1 Musk Dataset

A classic benchmark dataset for evaluating MIL algorithms is the Musk dataset
[4] sourced from the bioinformatics field. The main task involves predicting

https://github.com/g-turri/MIL-NCFS
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whether a molecule has a musky smell. Each molecule in the dataset is char-
acterized by a set of 166 features describing its geometric shape (or conforma-
tion). Given the capacity of chemical bonds to rotate, a single molecule can
adopt multiple distinct shapes, each referred to as a conformer. The conformers
dictate the properties of a molecule, including its scent. Each bag within the
dataset corresponds to a molecule, while each instance pertains to one of its
conformers. A molecule belongs to the (positive) musky class if at least one of
its conformers possesses the potential to smell musky; otherwise, it is labeled as
negative. In our experiment, we considered the Musk 1 dataset composed of 92
molecules, 47 of which were classified as musky. It is worth noting that in the
Musk dataset, each bag (molecule) can be represented by a different number of
instances (conformations).

3.2 DEAP Dataset

We further test our methodology in the affective computing scenario, employ-
ing the DEAP dataset [11]. In the DEAP experiment [11], 32 healthy partic-
ipants were asked to watch 40 music videos that lasted 1 min each. The 40
videos were presented in 40 trials. Following each video presentation, participants
were prompted to self-report their emotional experiences across four dimensions:
valence, arousal, dominance, and liking. Ratings for valence, arousal, and domi-
nance ranged from 1 to 9 and were obtained using the Self-Assessment Manikin.
Concurrently, physiological data were collected, including full-scalp EEG and
thirteen peripheral signals. These signals comprised galvanic skin response, res-
piration amplitude, skin temperature, blood volume pressure, electromyograms
of zygomaticus and trapezius muscles, and electrooculogram, all sampled at a
frequency rate of 512 Hz.

The main challenge of this dataset is to predict participants’ emotional state
based on their physiological data. Several ML and Deep Learning models were
presented to solve this classification task [9]. However, this dataset shows sparse
annotations of self-reported emotional responses. Then, in the context of sparse
labeling, MIL approaches can be employed to solve this task.

Previous studies on this dataset [11,19] confirmed how the MIL approach
might overcome standard supervised learning approaches for predicting arousal
and valence tasks. Consequently, in our study, we modeled the single bag as
a set of multiple temporal instances represented by 34 extracted predictors. In
particular, each synchronously recorded physiological signal was segmented into
5 windows, thus resulting in 5 instances for each video (bag). Our analysis focused
on two binary classification tasks: discerning between (i) low/high arousal levels
and (ii) negative/positive valence levels.

4 Experimental Procedure

This section outlines the cross-validation (CV) procedure and hyperparameter
tuning conducted for each dataset. The hyperparameters λ and σ of the NCFS
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algorithm were tuned using a nested 5-fold CV for the Musk dataset and an
inner leave-one-video-out (LOVO) CV procedure for the DEAP dataset. The
optimal values for λ and σ were identified through a grid search where λ was
selected from the set {0, 0.01, 0.05, 0.10, 0.50, 1} and σ was chosen from a range
of 5 logarithmically spaced values between 10−3 and 101.

The mode of the optimal-selected hyperparameters was λ = 0 and σ = 1 for
Musk dataset, λ = 0.01 and σ = 1 for the arousal task of DEAP dataset, and
λ = 0.05 and σ = 1 for the valence task of DEAP dataset. We fixed λ and σ
according to the results mentioned above for computational reasons.

We tested the BkNN, CkNN, and BCkNN with values of k ranging from 1 to
5. For the CkNN and BCkNN, the number of citers q was empirically set to q =
k+2 following [8,26], thus spanning from 3 to 8. The range of the hyperparameter
k was limited to 1 to 5 since, for k > 5, as larger values led to underfitting in
both datasets. The minimal Hausdorff distance was implemented using both
Euclidean (d(x1, x2) = ||x1 − x2||2) and city block (d(x1, x2) = ||x1 − x2||)
distance metrics to compute the distance between bags. For the BCkNN, we
tested the 3 different weight functions f(bt, cj) (see Eqs. 5, 6, and 7). Since in
this work, we focus on integrating NCFS into the MIL lazy learning framework,
we tuned the hyperparameters concerning only the training phase of our method,
i.e. λ and σ of the NCFS algorithm.

Experimental results on the Musk dataset are computed based on 100 ran-
domly repeated 10-fold cross-validation procedures. Following the affective com-
puting literature, the experimental results on the DEAP dataset were obtained
following a leave-one-video-out procedure (LOVO) [11], i.e., the models were
trained with k-1 videos and tested with the k-th remaining video. The models’
performance is discussed in terms of average accuracy and macro-averaged F1
scores. Due to the imbalanced nature of both datasets, we primarily focus on the
macro-F1 score to ensure that both classes are equally considered. All metrics
are reported in percentages.

5 Experimental Results

This section presents our experiments on the Musk (see Sect. 5.1) and DEAP (see
Sect. 5.2) datasets. For each dataset, we present the experimental results for the
proposed methodologies. The experimental comparison between our proposed
NCFS-based MIL algorithms and the standard MIL algorithms is described
in Sect. 5.3. Finally, the statistical significance of our approach is evaluated in
Sect. 5.4.

5.1 Musk Dataset

Regarding the BkNN, CkNN, and BCkNN algorithms endowed with NCFS, the
experimental results are shown in Table 1. For the Musk dataset, the best macro-
F1 scores are 90.07, 93.32, and 91.66% for NCFS-BkNN (k = 2), NCFS-CkNN
(k = 2, q = 4), and NCFS-BCkNN (k = 2, q = 4, Eq. 6) respectively, using
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the Euclidean distance. Overall the best result was obtained with NCFS-CkNN
(93.32%).

Table 1. Classification accuracy and macro-F1 (m-F1) score of NCFS-BkNN, NCFS-
CkNN, and NCFS-BCkNN for the Musk dataset averaged over 100 repetitions. The
best results, based on macro-F1, are highlighted in bold.

NCFS-BkNN
Distance k = 1 k = 2 k = 3 k = 4 k = 5

Acc m-F1 Acc m-F1 Acc m-F1 Acc m-F1 Acc m-F1

Euc 87.89 87.85 90.14 90.07 84.67 84.13 87.78 87.39 75.56 73.43
City 84.92 84.58 84.14 83.44 77.17 75.56 77.92 77.40 77.92 76.11
NCFS-CkNN
Euc 86.89 86.74 93.39 93.32 92.39 92.25 89.03 88.78 86.89 86.51
City 86.17 85.85 86.03 85.11 84.03 83.52 83.53 83.30 83.67 83.09
NCFS-BCkNN (Eq. 5)
Euc 87.89 87.85 90.14 90.07 84.67 84.13 87.78 87.39 75.56 73.43
City 84.92 84.58 84.14 83.44 77.17 75.56 77.92 77.40 77.92 76.11
NCFS-BCkNN (Eq. 6)
Euc 87.89 87.85 91.89 91.66 88.92 88.62 90.03 89.79 89.89 89.66
City 87.17 86.97 84.67 84.33 84.92 84.50 84.92 84.50 85.67 85.31
NCFS-BCkNN (Eq. 7)
Euc 87.89 87.85 90.89 90.67 88.92 88.62 90.03 89.79 89.89 89.66
City 87.17 86.97 85.92 85.59 85.92 85.53 84.92 84.50 88.92 88.62

5.2 DEAP Dataset

The experimental results for NCFS-BkNN, NCFS-CkNN, and NCFS-BCkNN
are shown in Table 2. For the arousal task, the best macro-F1 scores are 53.59,
53.17, and 54.23% for NCFS-BkNN (k = 1), NCFS-CkNN (k = 2, q = 4), and
NCFS-BCkNN (k = 1, q = 3, Eqs. 6 and 7) respectively, using the city block
distance. For the valence task, the best macro-F1 scores are 58.53, 60.26, and
60.21% for NCFS-BkNN (k = 4, city block distance), NCFS-CkNN (k = 4, q = 6,
Euclidean distance), and NCFS-BCkNN (k = 5, q = 7, Eq. 7, Euclidean distance)
respectively. Overall, the best results were obtained with NCFS-BCkNN (macro-
F1 = 54.23 ± 11.38%) and with NCFS-CkNN (macro-F1 = 60.26 ± 10.45%) for
solving the arousal and valence tasks, respectively.

For both arousal and valence tasks, we observed a large standard deviation
in the macro-F1 scores across the 32 subjects, indicating significant variability
among subjects, which is a well-known challenge in affective computing tasks. To
ensure the reliability of our results, we conducted a nonparametric permutation
test, confirming that these scores were significantly above chance level (i.e., 50%).
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Table 2. Classification accuracy and macro-F1 (m-F1) score of NCFS-BkNN, NCFS-
CkNN, and NCFS-BCkNN for the arousal (top) and valence (bottom) tasks of the
DEAP dataset averaged over the 32 subjects. Stars indicate whether the macro-F1 score
distribution over subjects is significantly higher than 50% according to an independent
one-sample one-tailed t-test (∗∗: p < 0.01, ∗: p < 0.05). The best results, based on
macro-F1, are highlighted in bold.

NCFS-BkNN – Arousal task
Distance k = 1 k = 2 k = 3 k = 4 k = 5

Acc m-F1 Acc m-F1 Acc m-F1 Acc m-F1 Acc m-F1

Euc 60.23 53.23 57.03 50.25 62.03 52.69 60.62 51.11 62.11 49.87
City 59.76 53.59 56.77 51.24 60.62 52.34 58.20 50.55 61.25 50.87
NCFS-CkNN – Arousal task
Euc 57.11 52.24 57.73 52.26 58.20 51.63 58.20 49.96 59.69 50.40
City 57.03 52.13 58.44 53.17 59.27 52.35 60.08 52.32 59.69 51.07
NCFS-BCkNN (Eq. 5) – Arousal task
Euc 59.61 53.30 58.12 52.15 59.53 53.13 59.61 52.83 60.23 52.83
City 59.69 54.05 59.45 53.77 59.69 53.28 60.00 53.42 59.84 53.17
NCFS-BCkNN (Eq. 6) – Arousal task
Euc 59.61 53.30 59.45 53.12 59.61 52.10 59.14 50.21 60.23 50.19
City 59.84 54.23* 60.23 54.05 60.31 52.66 61.33 52.58 60.55 51.36
NCFS-BCkNN (Eq. 7) – Arousal task
Euc 59.61 53.30 59.37 53.03 59.84 52.34 59.06 50.11 60.23 49.94
City 59.84 54.23* 60.54 54.14 59.92 52.50 61.25 52.48 60.86 51.85
NCFS-BkNN – Valence task
Euc 58.67 55.68** 55.33 53.40* 60.78 57.14** 60.94 57.68** 62.66 57.83**

City 57.34 55.32** 56.33 53.06 61.41 58.28**61.40 58.53** 60.86 55.80**

NCFS-CkNN – Valence task
Euc 56.48 54.43** 59.14 56.99** 61.17 58.64**62.81 60.26** 63.12 60.10**

City 55.86 54.25* 58.44 56.24** 60.62 58.30** 61.80 59.07** 62.42 58.95**

NCFS-BCkNN (Eq. 5) – Valence task
Euc 58.59 56.18** 60.78 58.10** 62.03 58.65** 63.36 59.78** 63.58 60.13**

City 57.19 55.36** 58.67 56.22** 61.48 58.86** 62.11 59.17** 63.20 59.57**

NCFS-BCkNN (Eq. 6) – Valence task
Euc 58.59 56.18** 60.86 58.17** 62.34 58.97** 63.59 60.01** 63.67 60.19**

City 57.18 55.36** 59.45 56.81** 61.40 58.63** 61.71 58.39** 63.28 59.53**

NCFS-BCkNN (Eq. 7) – Valence task
Euc 58.59 56.18** 60.86 58.17** 62.34 58.97** 63.51 59.93** 63.67 60.21**

City 57.18 55.36** 58.67 56.22** 61.48 58.86** 62.11 59.17** 63.20 59.57**
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5.3 Comparison with State-of-the-Art

The comparison between our proposed NCFS-based MIL algorithms and the
state-of-the-art MIL lazy algorithms (i.e., without NCFS) is shown in Table 3.
It is worth noting that these competitors (i.e., BkNN, CkNN, and BCkNN) are
still successfully used in various applications today [14,21]. As comparisons, we
used only MIL-based algorithms, since previous work on Musk [27] and DEAP
[19] datasets confirmed the superiority of MIL algorithms over SIL algorithms
for solving these tasks. For each model, we report the best results achieved in
the previous experiments (see Sects. 5.1 and 5.2) and compare them to state-of-
the-art methods tested with the same k, q, and f .

Table 3. Comparisons with respect to state-of-the-art models in terms of macro-F1
score for both Musk and DEAP (A: Arousal task, V: Valence task) datasets. The best
results for each dataset and distance metric are indicated in bold. The overall best
results are indicated by †.

Model Euclidean distance City block distance
Musk DEAP-A DEAP-V Musk DEAP-A DEAP-V

BkNN 90.07 52.04 50.67 83.59 48.50 51.51
CkNN 90.91 50.64 52.23 85.85 49.83 50.87
BCkNN (Eq. 5) 90.07 52.03 53.93 83.59 48.68 52.85
BCkNN (Eq. 6) 90.65 52.03 52.24 85.98 47.64 51.86
BCkNN (Eq. 7) 88.92 52.03 52.02 88.62 47.64 52.20
NCFS-BkNN (Ours) 90.07 53.23 57.83 84.58 53.59 58.53
NCFS-CkNN (Ours) 93.32† 52.26 60.26† 85.85 53.17 59.07
NCFS-BCkNN (Eq. 5, Ours) 90.07 53.30 60.13 84.58 54.05 59.57
NCFS-BCkNN (Eq. 6, Ours) 91.66 53.30 60.19 86.97 54.23† 59.53
NCFS-BCkNN (Eq. 7, Ours) 90.67 53.30 60.21 88.62 54.23† 59.57

Concerning the Musk dataset, by using the Euclidean distance, the NCFS
improves the performance of CkNN (93.32 vs 90.91), BCkNN (Eq. 6) (91.66% vs
90.65%), and BCkNN (Eq. 7) (90.67% vs 88.92%), while performances are com-
parable for BkNN (90.07%) and BCkNN (Eq. 5) (90.07%). Using the city block
distance, the performance of BkNN (84.58% vs 83.59%), BCkNN (Eq. 5) (84.58%
vs 83.59%), and BCkNN (Eq. 6) (86.97% vs 85.98%) improves with NCFS, while
the macro-F1 scores are comparable for CkNN (85.85%) and, BCkNN (Eq. 7)
(88.62%).

Regarding the arousal task of the DEAP dataset, NFCS improves the perfor-
mance of all methods. Using the Euclidean distance, NCFS enhances the perfor-
mance of BkNN (53.23% vs 52.04%), CkNN (52.26% vs 50.64%), and BCkNN
(with Eqs. 5, 6, 7) (53.30% vs 52.03%). With the city block distance, NCFS
also improves the performance of BkNN (53.59% vs 48.50%), CkNN (53.17%
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vs 49.83%), BCkNN (Eq. 5) (54.05% vs 48.68%), BCkNN (Eq. 6) (54.23% vs
47.64%), and BCkNN (Eq. 7) (54.23% vs 47.64%) improved with NCFS.

Similarly, the introduction of NCFS enhances the performance of all algo-
rithms for the valence task. Using the Euclidean distance, NCFS improves the
performance of BkNN (57.83% vs 50.67%), CkNN (60.26% vs 52.23%), BCkNN
(Eq. 5) (60.13% vs 53.93%), BCkNN (Eq. 6) (60.19% vs 52.24%), and BCkNN
(Eq. 7) (60.21% vs 52.02%). With the city block distance, NCFS improves the
performance of BkNN (58.53% vs 51.51%), CkNN (59.07% vs 50.87%), BCkNN
(Eq. 5) (59.57% vs 52.85%), BCkNN (Eq. 6) (59.53% vs 51.86%), and BCkNN
(Eq. 7) (59.57% vs 52.20%) also improved with NCFS.

As a result, the proposed NCFS-CkNN with Euclidean distance achieved
the best performance, overcoming state-of-the-art models for solving the Musk
(93.32%) and DEAP valence (60.26%) tasks. Accordingly, the NCFS-BCkNN
(Eq. 6 and Eq. 7) with city block distance achieved the best performance, sur-
passing state-of-the-art models for the DEAP arousal (54.23%) task.

5.4 Statistical Significance

We performed a statistical analysis for the Musk and DEAP datasets to compare
the performance obtained with our approach (NCFS models) and with the state-
of-the-art models employed as reference. The statistical analysis was performed
by comparing the 100 and 32 macro-F1 values originated by 100 randomized
repetitions of the 10-fold CV and by 32 LOVO CV procedures, respectively. The
macro-F1 scores of all proposed methods were found to follow a normal distri-
bution according to the Anderson-Darling test (p > 0.05), for all classification
tasks. Hence, an independent two-sample one-tailed t-test (α = 0.05) was per-
formed to determine whether there was statistical evidence of an improvement
in the algorithms’ performance applying the NCFS procedure. The performance
of our NCFS-CkNN with Euclidean distance was significantly higher than BkNN
(p < 0.01), CkNN (p < 0.01), BCkNN (Eqs. 5 and 7) (p < 0.01) and BCkNN
(Eq. 6) (p < 0.05) for solving the Musk task. A statistically significant improve-
ment was also found between the proposed NCFS-CkNN and BkNN (p < 0.01),
CkNN (p < 0.01), BCkNN (Eqs. 5, 6 and 7) (p < 0.01) for solving the valence
task on the DEAP dataset with Euclidean distance as distance metric. Similarly,
the proposed NCFS-BCkNN (Eqs. 6 and 7) showed a significant improvement
with respect to BkNN (p < 0.05), CkNN (p < 0.05), BCkNN (Eq. 5) (p < 0.05)
and BCkNN (Eqs. 6 and 7) (p < 0.01) for solving the arousal task on the DEAP
dataset with city block distance as distance metric. Additionally, regarding the
Musk dataset, we also computed an empirical p-value as p = Ng/Nc, where Nc

was the number of comparisons (i.e., 100) and Ng was the number of times that
an element of the 100 macro-F1 scores of models without NCFS was greater
than the median macro-F1 score of the respective NCFS-model. This analysis
confirmed the results obtained with parametric tests (p < 0.05).
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5.5 Computational Complexity

The computational complexity of Algorithm 1 for training and testing, respec-
tively, is O(L2N2d) and O(L2Nd). It is worth noting that by employing a
Kd-Trees retrieval strategy, the computational complexity could be lowered to
O(L2log(N)2d) and O(L2log(N)d) [3,25]. Moreover, we report the average fold
execution time of Algorithm 1 for the Musk dataset on an Intel Core i7-7820X
processor. The training execution time is predominantly influenced by the NCFS
procedure (10.25±8.11 s), whereas our methodology has minimal impact on test-
ing execution times, with values of 0.79±0.08, 0.78±0.08, and 0.79±0.08 seconds
for BkNN, CkNN, and BCkNN, respectively.

6 Conclusions

This paper introduces a novel feature selection method tailored for the MIL
framework. Our proposed methodologies provide the prediction of unseen bags
by integrating Bayesian and citation approaches with the optimal weighted min-
imal Hausdorff distance. The integration of NCFS into the MIL lazy learning
framework significantly enhanced model generalizability by eliminating redun-
dant and irrelevant features. This is supported by experimental results across
different benchmark datasets consistently demonstrating how NCFS statisti-
cally improved the performance of BkNN, CkNN, and BCkNN. Notably, the
weight vector resulting from NCFS can be further exploited to gain insights
into the importance of each feature, thereby enhancing the transparency and
interpretability of the MIL algorithms discussed. Indeed, further investigation
could be devoted to leveraging this approach to improve the interpretability of
standard MIL-based methods.

Future work could investigate the proposed approach’s effectiveness and
robustness, including providing statistical guarantees, demonstrating algorithm
convergence, and analyzing sensitivity to various hyperparameters.
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Abstract. Entity Linking aims to map mentions in a document to cor-
responding entities in a given knowledge base. Most previous studies
usually extract mentions and infer their underlying entities. An obvious
limitation of this approach (mention-to-entities, M2E) is that it cannot
fully exploit the rich structured information from the knowledge base.
Moreover, employing this knowledge to identify entities and find their
possible mentions (entity-to-mentions, E2M) still faces problems, such as
the semantic correlation between mentions and entities with documents
cannot be effectively captured. Therefore, we propose a coarse-grained
modular two-way Dialogue entity linking framework called MESS. It
mainly consists of four modules: M2E and E2M, Semantic Synchroniza-
tion (SS), and Dialogue, in which M2E and E2M independently execute
EL decisions, SS performs semantic constraints, and Dialog merges the
two-way results and outputs a final decision. Specifically, MESS first
uses the M2E and E2M modules to generate candidate sets of entities
and mentions in parallel, then utilizes the semantic synchronization mod-
ule (SS) to filter irrelevant mentions and entities. Finally, M2E and E2M
determine the target mention-entity pair through two-way dialogue. We
validate the superiority of our MESS through extensive experiments on
various baselines, the results show that it achieves competitive results.

Keywords: Knowledge base · Entity linking · Question answering

1 Introduction

Entity Linking (EL), also called Entity Disambiguation (ED), aims to map men-
tions in the text to proper entities in a given knowledge base (KB). It is essential
to many natural language processing tasks, which include information retrieval
[13], relation extraction [19], and question answering [3], etc. The main challenge
of those tasks is to denoise the ambiguous linkages between text mentions and
knowledge base entities. This is because language’s inherent and omnipresent
ambiguity at the lexical level results in the ambiguity of words, named enti-
ties, and other linguistic units. For example, a mention of Victoria may refer to
Victoria in Australia, Victoria in British Columbia, Victoria in Texas, Queen
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Victoria, or Victoria cricket team [40]. It is hard for an algorithm to identify
which one refers to. Moreover, EL is also affected by the amount of information
in KG. The popular KGs include DBpedia [24], Freebase [2], Yago [37] and etc.

As we all know, the usual approach to entity linking is first to detect mentions
in a given document and then link them to corresponding entities in a KG. We
call such method mention-to-entities (M2E), which decomposes the EL task into
mention detection (MD) and entity disambiguation (ED) and then considers
them independently. The mentions are assumed to be given [15], and an off-
the-shelf Named Entity Recognition (NER) system [25] is utilized to extract
mentions and disambiguate them with ED. Besides, an end-to-end model [21]
has been proposed to jointly perform entity recognition and disambiguation.
Nonetheless, the mention-to-entities approach suffers from apparent limitations.
For example, it is more challenging to predict mentions without the knowledge
of entities, and errors from MD may propagate to ED. Although the end-to-end
model can alleviate the error propagation problem, the nearest search is only
approximate.

An intuitive idea is to determine the candidate entities first and then infer the
mentions in the document. We call this model entity-to-mentions (E2M), which
reverses the order of the two subtasks, identifying candidate entities before MD.
EL [45] has been regarded as a reverse of open-domain Question Answering task,
using dual encoders to efficiently retrieve the top-K candidate entities from the
knowledge base as “questions” for a given document. Then a deep cross-attention
mechanism is applied for each candidate to identify mentions as “answer spans”.
The entity-to-mentions method can better utilize the rich information in the
knowledge base, but the document information that can be referenced when
generating mentions is relatively limited.

In summary, using M2E and E2M to model EL independently will face some
challenges. M2E cannot fully utilize the structured information in KB, and the
information in the document that E2M can exploit when generating mentions
is relatively limited. Therefore, a more straightforward idea is to combine M2E
and E2M to superposition their respective advantages to reduce the impact of
drawbacks on the results. In order to verify this conjecture, we conducted EL
experiments on the AIDA and MSNBC datasets. The results show that simply
combining them cannot improve EL performance, and sometimes the combined
results are even worse than individually. Through more fine-grained exploration,
we find that there is a deviation in the semantic correlation between the results
inferred by M2E and E2M and the corresponding documents. This problem can
be avoided if irrelevant candidates are filtered out before making EL decisions.
Based on these findings, we propose a coarse-grained modular two-way dialogue
entity linking framework called MESS. MESS comprises four modules: M2E,
E2M, Semantic Synchronization (SS), and Dialogue. M2E and E2M are used to
generate candidate sets in parallel. SS is the most critical part of MESS. It plays
a semantic synchronization function so that the results of two predictions can be
applied to the same document. The Dialogue module calculates and compares
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the final results of M2E and E2M and outputs the final mention-entity pairs.
The main contributions of this work are summarized as follows:

– We propose an effective and efficient EL framework that consists of four essen-
tial components: (1) Mention-to-Entities, (2) Entity-to-Mentions, (3) Seman-
tic Synchronization, and (4) Dialogue. All of these modules work together to
improve the performance of EL.

– The proposed MESS framework combines the strengths of the latest SOTA
M2E and E2M models. It addresses the limitations of current EL models
that do not effectively utilize structured information in KB and insufficient
features that can be exploited in a given document.

– Extensive experiments on public datasets show that our MESS obviously
outperforms SOTA methods using E2M and M2E alone in EL tasks, and it
also performs excellently on ED. Moreover, we conduct ablation studies to
demonstrate the effectiveness of each module.

2 Related Work

We first present classical entity linking works of mention-to-entities that recog-
nize mentions and infer their corresponding entities. Then, we summarize the
work of translating EL to other tasks to predict mention-entity pairs.

2.1 Mention-to-Entities

Early approaches to EL focus on extracting discriminative features of entities
from documents and then linking mentions to entities with the highest similar-
ity. Specifically, [27] uses cosine similarity to measure the compatibility between
name mentions and candidate entities. Other work [4] augments with addi-
tional entity information, such as its categories. [26] defines a measurement using
semantic relatedness between candidate entities and mentions. These works can
be roughly divided into two major categories: local and global disambiguation.
Various works have been proposed to model the mention local contexts, such as
binary classification [28] and rank model [6]. A salient trait of these methods
is the use of a large number of human-annotated features and the mentions of
hard-to-extract that are retrieved from search engines or Wikipedia [38]. They
face time-consuming and labor-intensive issues.

As representation learning is used to extract semantic features automatically,
it is further demonstrated that entity representations learned by jointly modeling
textual context and knowledge bases effectively combine multiple information
sources [40]. Therefore, the global model assumes that all mentions of target
entities in a document are related, and the factor graph model is constructed
in [33], which represents mentions and candidate entities as variable nodes and
utilizes factor nodes to stand for a series of features. The work [11] uses fully
connected pairwise conditional random field models and utilizes cyclic belief
propagation to estimate the maximum marginal probability. The above models
all face the same problem; that is, many features need to be predefined.
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To relieve the computational pressure of candidate entity pairs, [12] intro-
duce a consistency model with an attention mechanism, where each mention
only focuses on a fixed number of entities. However, the number of mentions
after using attention is difficult to determine. Multi-focal attention [10] proposes
the Star Model to decompose collective entities linking tasks over mentions and
makes it easy to integrate attention in both learning and inference. The work [32]
does link all mentions by scanning at most one mention pair, and they assume
that each mention only needs to be consistent with another mention in the doc-
ument. The limitation of their method is that the consensus information is too
sparse, which results in low confidence. [14] rank mentions according to the ease
of disambiguation, but they do not fully utilize the information of previously
mentioned entities for subsequent entity disambiguation. [29] use sequence mod-
els, but they encode the result of greedy selection and measure the similarity
between the global encoding and candidate entity representations. Nevertheless,
they do not consider the long-term impact of current decisions on subsequent
choices, nor do they add selected target entity information to the current state
to help disambiguate.

2.2 Transferred EL

Graph Neural Networks (GNNs) are a flexible and effective framework for the
representation learning of various graph-structured data. [16] first presents a
graph-based representation that can model the global interdependence between
different EL decisions and then propose a collective inference algorithm, which
can jointly infer the entities of all mentions by exploiting the interdependence
captured in the constructed graph. In contrast, methods based on graph neu-
ral networks can better capture local and global dependencies, but they suffer
from either data sparseness or existing noises. To overcome those problems, [40]
design a dynamic Graph Convolutional Networks architecture that can collec-
tively identify the entity mappings between the document and the knowledge
graph and efficiently capture the topical coherence among various entity men-
tions in the entire document through aggregated knowledge from dynamically
linked nodes. With the development of multimodal technology, [46] introduce a
self-supervised simple triplet network, which can learn useful representations in
multimodal unlabeled data to improve the effectiveness of NED models. Unlike
graph representation learning, [44] convert EL to question answering. Specif-
ically, it efficiently retrieves the top-k candidate entities as questions from a
knowledge base using a dual-encoder retriever. A deep cross-attention reader is
then applied to each candidate’s document to identify candidates mentioned in
the document as answer spans. However, none of them considers modeling EL
using a bidirectional perspective.
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3 Our MESS Framework

The structure of our MESS is shown in Fig. 1, which consists of M2E, E2M, SS,
and Dialogue. In this section, we introduce the implementation details of these
modules.

Fig. 1. The overall architecture of our MESS. It mainly consists of M2E, E2M, SS, and
Dialogue modules.

3.1 M2E Module

The M2E module utilizes contrastive learning to capture the representation and
matching patterns of mentions and entities. Assume that the identified mentions
in a given document are denoted by M = {m1,mi, ...,mn}, where all candidate
entities related to mi are described by E = {e1, ei, ..., em}. In practice, we encode
each candidate entity and related descriptive information as a basic representa-
tion unit instead of encoding entities individually. We concatenate the candidate
entity and its attributes as the input RE of BERT and exploit a Multi-layer Per-
ceptron to compute the entity embedding:

Eej = MLP (B(CLS,RE)) (1)

where B(CLS,RE) is the CLS token embedding of BERT.

Metric Function. Inspired by the work of [5], we use an interaction-based
metric to measure the more fine-grained similarity between mentions and can-
didate entities. Formally, we utilize Eq. (3) to obtain the embeddings {Emi

}i=n
i=1

and {Eej}j=m
j=1 of mentions and candidate entities, respectively. We compute the
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similarity matrix Ms between mi and {Eej}j=m
j=1 and then obtain dji that is cal-

culated from the normalized Euclidean distance between any mention and all
related candidate entities, i.e., dji = ||Emi

−Eej)||22. In this module, we employ a
Gaussian kernel function to measure the distance between the mention and the
candidate entity, where the mention is the center. The value of the kernel func-
tion is 1 when the entity is very close to the center and 0 otherwise. Specifically,
we first transform D(dji ) into a k-dimensional distribution (Eq. (2)). Next, the
k-th item is converted by the k-th Gaussian kernel with mean μk and variance
σk (Eq. (3)). Then we represent the similarity between the mention mi and can-
didate entity ej by summing (Eq. (4)). Finally, we use an MLP layer to obtain
a similarity score (Eq. (5)).

D(dji ) = [D1(d
j
i ),D2(d

j
i ), ...,Dk(d

j
i )], (2)

D(dji ) = exp[− (dji − μk)
2σ2

k

], (3)

Φ(mi, E) = log

m∑

j=1

D(dji ), (4)

f(mi, E) = MLP (Φ(mi, E)) (5)

Loss Function. We jointly exploit positive and negative samples to build a loss
function. For any mention in a given document, positive and negative samples
are determined by computing the cosine similarity between the mention and all
candidate entities, resulting in a similarity ranking table. We regard the first and
the last as a pair of positive and negative samples, and so on for other sample
pairs. Given a set of triplets (ej , e+j , e−

j ), the loss function is defined as:

Lm2e(mi, ej) =
∑

(ej ,e
+
j ,e−

j )

max{0, g + f(ej , e−
j )

−f(ej , e+j )}
(6)

3.2 E2M Module

The E2M module comprises an Entity Extractor (EE), and a Mention Recog-
nizer (MR). EE extracts relevant entities based on a given document, while MR
combines the extracted entities and document information to identify potential
mentions. In this section, we introduce the details of the EE and MR and the
overall training objective of E2M.

Entity Extractor (EE). The knowledge base is KB = {e1, ..., eN}. Given a
sentence t of length Lt, EE wants to obtain the subset Ec ∈ KB as candidate
entities of t. EE is a dual-encoder structure containing sentence encoder Es

and entity encoder Ee. We use Es to map the sentence t to the representation
sequence rt, and Ee to get the representation rei of the entity ei ∈ KB.

rei = Ee[m(ei)], rt = Es(t) (7)
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where m(ei) indicates that the description information of ei is obtained from
KB, and the length of all entity description texts is uniformly limited KB to
Le. Then, we calculate the dot product between the two vectors as the score to
extract the top K related entities EK :

EK = argmax
E′⊆E,|E′|=K

∑

ei∈E′
rt

T
rei (8)

For a training sentence t and the knowledge base KB, based on Eq. (8), for every
entity ei ∈ KB, the extractor’s score is formulated as:

S(t, ei) = rt
T

rei (9)

We have its gold entity set G ∈ KB, and we can achieve its negative entity set
N ∈ KB. Then, we exploit a multi-label variant of Noise Contrastive Estimation
(NCE) during the model training phase, which is computed as:

LEE = max
∑

g∈G

log

(
exp(S(t, g))

exp(S(t, g)) +
∑

n∈N exp(S(t, n))
)

(10)

Mention Recognizer (MR). Given the output of EE (i.e., Ec) and an input
sentence t, for each candidate entity ej ∈ Ec, we obtain its joint representation
with t:

rej = Es(t ⊕ f(ej)), (11)

After obtaining the joint representation, we can calculate the probability of span
(x, y), 1 ≤ x, y ≤ Lt, and the sorting probability of ej , 1 ≤ j ≤ K:

pb(x|t, ej) = f(W1r
ej , x) (12)

pe(y|t, ej) = f(W2r
ej , y) (13)

Prank(ej |t, Ec) =
exp(WT

3 rej )
∑K

j′=1 exp(W
T
3 rej′ )

(14)

where W1, W2 and W3 are the trainable parameters. According to Eqs. (12)–(14),
the MR score is calculated as follows:

P (ej , x, y|t, Ec) = p1(x|t, ej) × p2(y|t, ej)
×Prank(ej |t, Ec).

(15)

As for the training of the MR, we directly optimize it to maximize the span
probability and ranking probability, the objective function is shown below:

LMR = max
K∑

j=1

∑

(x,y)

{log[p1(x|t, ej)

× p2(y|t, ej)] + logPrank(ej |t, Ec)}
(16)
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Finally, we train the EE objective LEE and MR objective LMR simultaneously.
The overall objective of E2M is formulated as:

L = LEE + LMR (17)

3.3 SS Module

When we only combine M2E and E2M to make EL decisions, the performance
is worse than when they execute alone. Therefore, we design the SS module to
effectively solve the problem of out-of-synchronization of M2E and E2M seman-
tics. Specifically, the SS module mainly works on the candidate sets of M2E and
E2M, filtering out entities and mentions that are semantically irrelevant to the
document. This section details the SS module for encoding intrinsic semantic
relationships between mentions, entities, and documents. We first pre-train our
SS teacher model to make more accurate predictions with a moderate amount
of manually labeled mention entity relevance data. Based on the well-trained
teacher model, we construct a student model using shared encoder parame-
ters through knowledge distillation to imitate the teacher’s prediction. Then,
we minimize the predicted difference between them to enhance the recognition
and matching of mentions and entities.

SS Teacher. The SS teacher model is a BERT-based binary classification
model, which predicts whether the given mention and candidate entity are
semantically close to documents. We employ BERTct to denote this model and
“1”/“0” to represent semantic similarity and dissimilarity, respectively. Unlike
existing models with bi-encoder architecture, the SS teacher model applies cross-
encoders, which are more expressive and enable more accurate classification. The
SS score is calculated:

S(X,Y ) = σ(W ctBERT ct([X ⊕ Y,CLS, SEP ])) (18)

where [X ⊕ Y ] denotes concatenating X and Y, X can be the embedding of
mentions, entities, or documents, and Y is the other two embeddings except X.
σ(·) and W ct are the sigmoid activation function and the linear projection that
map the output to the actual value, respectively. We can find that this model can
be used to calculate the semantic correlation between any two items (mentions,
entities, and documents). Usually, it is used to evaluate the semantic similarity
between mentions and candidate entities in bidirectional EL.

SS Student. Based on the well-trained teacher model, we obtain another model
with the same architecture and shared parameters through knowledge distilla-
tion. Specifically, we first utilize the SS teacher model to compute the similarity
scores S(m, e) of entities and mentions and then employ the distillation model
Bstu to imitate the teacher’s prediction with the inner product of the mention
and entity embedding. The loss is expressed as:

min
∑

m

∑

e

||S(m, e) − [Bstu(m) · Bstu(e)]||. (19)
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where [·] is the inner product operator. By modeling the above problems, we can
estimate the level of semantic similarity between the mention and the entity by
the inner product value.

3.4 Dialogue Module

After applying the SS module, M2E and E2M calculate the final output through
the Dialogue module. For the given document t, we obtain a set of mentions
and entities separately through the two-way module. The mentions extracted
from the M2E module are M(m2e), and the set of mentions matched from the
E2M module is M(e2m). Then, we use each mention in M(m2e) to calculate
the cosine similarity with the mention in M(e2m) one by one and find the most
similar one in M(e2m) for each mention in M(m2e). Finally, we utilize the
obtained mention-mention couples to calculate semantic similarity with their
corresponding entity and output the most similar mention-entity pair as the
final result. It can be computed as:

c(m11,m21) = Scos(ml,Me2m), (20)

d(m, e) = max[Scos(m11, e11), Scos(m21, e21)] (21)

where l ∈ [1, T ], T is the number of elements in M(m2e), and Scos(·, ·) means
the cosine similarity.

4 Experiments

This section evaluates our model’s effectiveness on ED and end-to-end entity
linking tasks.

4.1 Setting

Entity Disambiguation. To facilitate comparison with the most advanced
works, we follow the settings presented by Le et al. [22] to use InKB Micro-F1

as a metric to compute scores on in-domain and out-of-domain datasets and
exploit the same candidate set.

Datasets. We first pre-train MESS on the BLINK data [41] containing the 9M
unique triples document-mention-entity from Wikipedia. Then, we fine-tune our
model on other corpora, where AIDA-CoNLL [18] is an in-domain dataset, the
MSNBC, AQUAINT, ACE2004, WNED-CWEB (CWEB), and WNED-WIKI
(WIKI) [14] are the out-of-domain.

Details. We leverage WordPiece [20] as our tokenizer, training on the BLINK
data. There are a total of 50777 vocabularies for the well-trained tokenizer. For
optimization, Adam applies a learning rate of 2e-5 for the Mention-to-Entities
and 1e-7 for the Entity-to-Mentions;

Baselines. Ganea and Hofmann [11] propose joint document-level entity dis-
ambiguation combining entity embeddings and an attention mechanism. Guo
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Table 1. Micro F1 (InKB) on an in-domain test set and out-of-domain test sets for
named entity disambiguation tasks. Bold indicates the best model, and underline hints
the suboptimal. WIKI∗ is generally considered out-of-domain but points out that all
methods use parts of Wikipedia for training. ξ results from here and normalized to
accommodate entities not in KB. M2E and E2M represent mention-to-mentions and
entity-to-mentions, respectively, while Combine (M2E+E2M) simply merges the two
without SS and Dialogue modules. MESS (M2E+E2M) refers to the modular approach
we proposed.

Models AIDA MSNBC AQUAINT ACE2004 CWEB WIKI* Avg.

Ganea & Hofmann (2017) 92.9 93.7 88.5 88.5 77.9 77.5 86.4
Guo & Barbosa (2018) 89.0 92.0 87.0 88.0 77.0 84.5 86.2
Yang et al. (2018) 95.9 92.6 89.9 88.5 81.8 79.2 88.0
Shahbazi et al. (2019) 93.5 92.3 90.1 88.7 78.4 79.8 87.1
Yang et al. (2019) 93.7 93.8 88.2 90.1 75.6 78.8 86.7
Le & Titov (2019) 89.6 92.2 90.7 88.1 78.2 81.7 86.8
Fang et al. (2019) 94.3 92.8 87.5 91.2 78.5 82.8 87.9
Wu et al. (2019) 79.6 80.8 80.3 82.5 64.2 75.5 77.0
Cao et al. (2021) 93.3 94.3 89.9 90.1 77.3 87.3 88.8
M2E (Only) 92.4 93.9 90.6 90.8 78.3 86.5 88.8
E2M (Only) 93.3 93.6 90.5 91.0 77.2 86.8 88.7
Combine (M2E+E2M) 92.7 92.5 88.9 89.6 76.3 86.1 87.7
MESS (M2E+E2M) 94.8 94.7 90.3 91.5 78.6 88.9 89.8

and Barbosa [14] define the semantic similarity between mention and entity as
the mutual information between random walks on the graph. Yang et al. [43]
show a jointly disambiguating method utilizing a gradient-tree-boosting-based
structure. Shahbazi et al. [36] define mentions as a function of the entire para-
graph and combine language models to predict the referred entities. Yang et al.
[42] sequentially accumulate contextual information for efficient collective rea-
soning. Le and Titov [23] treat entities as latent variables and select entities
based on the context of mentions and coherence of other entities. Fang et al.
[9] transform the global link into a sequential decision-making problem with
reinforcement learning. GENRE [7] presents a system for retrieving entities by
autoregressively generating unique names.

End-to-End Entity Linking. We evaluate InKB Micro-F1 on the GERBIL
benchmark platform [35] on both in-domain and out-of-domain datasets for the
EL.

Datasets. The AIDA-CoNLL which is the in-domain dataset, the seven out-
of-domain test sets are MSNBC, Derczynski (Der) [8], KORE 50 (K50) [17],

https://github.com/facebookresearch/BLINK
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Table 2. InKB Micro F1 on the in-domain and out-of-domain test sets on the GERBIL
benchmarking platform. For each dataset, bold indicates the best model, and underline
indicates the second best.

Models AIDA MSNBC Der K50 R128 R500 OKE15 OKE16 Avg.

Hoffart et al. (2011) 72.8 65.1 32.6 55.4 46.4 42.4 63.1 0.0 47.2
Steinmetz et.al (2013) 42.3 30.9 26.5 46.8 18.1 20.5 46.2 46.4 34.7
Moro et al. (2014) 48.5 39.7 29.8 55.9 23.0 29.1 41.9 37.7 38.2
Kolitsas et al. (2018) 82.4 72.4 34.1 35.2 50.3 38.2 61.9 52.7 53.4
Broscheit (2019) 79.3 - - - - - - - -
Martins et al. (2019) 81.9 - - - - - - - -
van Hulst et al. (2020) 80.5 72.4 41.1 50.7 49.9 35.0 63.1 58.3 56.4
Cao et al. (2021) 83.7 73.7 54.1 60.7 46.7 40.3 56.1 50.0 58.2
Zhang et al. (2022) 85.8 71.0 53.5 67.8 54.1 41.7 58.9 49.6 60.2
M2E (Only) 84.6 70.2 52.4 67.5 53.8 40.3 58.7 49.5 59.6
E2M (Only) 84.3 71.5 54.0 66.9 52.6 41.8 58.1 50.2 59.9
Combine (M2E+E2M) 84.2 70.5 51.7 66.5 54.1 40.8 57.7 49.5 59.4
MESS(M2E+E2M) 86.4 72.8 53.3 68.5 55.2 42.6 60.0 53.1 61.5

N3-Reuters-128 (R128), N3-RSS-500 (R500) [34], and OKE challenge 2015 and
2016 (OKE15 and OKE16) [30].

Details. We first pre-train on Wikipedia1 and then fine-tune it on the above
eight datasets. Our models are implemented with Python 3.8 and Pytorch 1.9.0
and trained on machines with 4* NVIDIA-V100-32G GPUs. All text encoders
follow the BERT, and the dimension of the output embedding is linearly pro-
jected from 768 to the desired size.

Baselines. For EL, we compare with various existing state-of-the-art systems.
Among them, Hoffart et al. [18] and van Hulst et al. [39] perform mention recog-
nition first and then entity disambiguation, which is limited by the accuracy of
mention detection. However, this limitation can be effectively alleviated with a
powerful named entity recognition system [1]. Broscheit [21] proposes a neural
end-to-end EL system that jointly discovers and links entities in a text document,
which considers all possible spans as potential mentions and learns contextual
similarity scores over their entity candidates that are useful for both MD and
ED decisions. EntQA [45] converts EL into question answering, quickly retrieves
candidate entities, and then examines documents to find mentions.

1 It is based on the 2019/08/01 Wikipedia dump pre-processed by Petroni et al. [31].
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4.2 Results

This section discusses how MESS compares to the previous SOTA models on
ED and end-to-end entity linking tasks.

ED. The results on ED are shown in Table 1, with an average F1 score improve-
ment of 1% between our MESS and the suboptimal system. Overall, the advan-
tage is not significant, and this is because ED has been steadily studied as an
upstream task for more than a decade and benchmarked on those datasets. The
models reported in Table 1 achieve relatively good results even though some
work is four or five years old. Besides, we separately evaluate the M2E and E2M
models incorporating SS enhancement. The results indicate that neither can
compete with two-way MESS, in which only M2E (Only) had a slightly higher
F1 in AQUAINT than MESS (M2E+E2M). Note that the average performance
when combining M2E and E2M is worse than alone.

EL. The results on EL are shown in Table 2, where the improvement is more
obvious. MESS is AIDA’s best in-domain system and performs well on the out-
of-domain setting except for OKE15 and OKE16. It is worth noting that MESS
has lower performance on OKE15 and OKE16 because the two datasets are
annotated with coreference (pronouns and common nouns linked to entities), and
our model is not specially trained for this. In contrast, most other systems have
a mention detection component in their pipeline that can be trained or biased to
account for these situations. Specifically, MESS achieves state-of-the-art results
on four datasets and suboptimal on three datasets, and the average F1 score is
1.3% higher than the suboptimal model. Note that the average performance when
combining M2E and E2M is worse than alone. Moreover, among the four models
we built, except that the performance of E2M (Only) on Der is slightly higher
than that of MESS, MESS yields the highest F1 score on all other datasets.

Table 3. Effect of SS modules on MESS F1 scores in ED. “+SS” and “-SS” indicate
whether to apply the SS module. M2E and E2M mean using the result of one module
alone to perform ED, while MESS combines M2E and E2M to achieve ED.

Models AIDA MSNBC AQUAINT ACE2004 CWEB WIKI* Avg.

M2E(-SS) 90.8 92.5 89.3 89.9 76.4 85.7 87.4
M2E(+SS) 92.4 93.9 90.6 90.8 78.3 86.5 88.8
E2M(-SS) 91.6 92.8 90.1 90.5 76.4 85.9 87.9
E2M(+SS) 93.3 93.6 90.5 91.0 77.2 86.8 88.7
MESS(M2E+SS) 93.7 94.2 89.8 91.8 78.5 88.1 89.4
MESS(E2M+SS) 94.3 94.4 90.6 90.9 78.2 87.5 89.3
MESS(Both-SS) 92.9 93.6 89.5 90.4 77.3 86.7 88.4
MESS(Both+SS)94.8 94.7 90.3 91.5 78.6 88.9 89.8
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Table 4. Impact of the SS module in EL task on the F1 score of the model with
different settings.

Models AIDA MSNBC Der K50 R128 R500 OKE15 OKE16 Avg.

M2E(-SS) 82.3 68.4 50.5 65.7 53.1 38.6 55.9 48.2 57.8
M2E(+SS) 84.6 70.2 52.4 67.5 53.8 40.3 58.7 49.5 59.6
E2M(-SS) 83.5 69.8 51.4 66.3 52.6 39.7 56.6 49.2 58.6
E2M(+SS) 84.3 71.5 54.0 66.9 52.6 41.8 58.1 50.2 59.9
MESS(M2E+SS) 85.7 71.8 52.4 67.5 55.3 41.9 58.6 53.8 60.9
MESS(E2M+SS) 86.6 71.4 54.0 67.8 54.5 42.3 59.7 53.0 61.2
MESS(Both-SS) 84.5 70.8 51.3 66.7 52.6 41.0 57.9 51.3 59.5
MESS(Both+SS) 86.4 72.8 53.3 68.5 55.2 42.6 60.0 53.1 61.5

4.3 Ablation Studies

We report the main results of ED and EL in Sect. 4.2. Here, we disassemble
MESS to explore why it is effectively enhanced. The impact of SS in ED is
explored in Table 3. We divide it into two blocks. One studies the effect of
SS in M2E (only) and E2M (only), and the other investigates the influence
of SS in one direction or both in MESS. For the convenience of comparison, we
denote M2E(only) and E2M(only) and MESS(M2E+E2M) as M2E(+SS) and
E2M(+SS), MESS(Both+SS) respectively. From the first block of Table 3, we
notice that the scores of F1 of both M2E and E2M obviously decrease when
the SS module is removed. Especially M2E(+SS) and M2E(-SS) on the CWEB
dataset, the gap is a maximum of 1.9%. For MESS, the worst performance is
that both directions are not augmented with SS modules, and the overall result
of the unidirectional fusion is also worse than simultaneous integration.

Similarly, we investigate the role of SS in the EL task in Table 4. We find
that the F1 score also clearly drops when SS is not integrated. Specifically,
M2E(+SS) has an average improvement of 1.8% compared to the case of not
using SS, while E2M(+SS) has an average gain of 1.3%, which is a relatively
obvious improvement. In MESS, the performance of integration SS in either
M2E or E2M is better than the case that none of them is fusion. Moreover, the
average F1 score is higher when M2E and E2M are injected into SS than when
only one is injected.

5 Conclusion

Existing Entity Linking methods cannot effectively utilize the structured infor-
mation in KB and face the issue of insufficient features in a given document.
To address the limitations, we propose an effective and efficient MESS frame-
work that consists of four important components: (1) Mention-to-Entities, (2)
Entity-to-Mentions, (3) Semantic Synchronization, and (4) Dialogue. These mod-
ules work collaboratively to enhance the model’s performance. Extensive exper-
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iments on public datasets indicate that our proposed model MESS outperforms
the state-of-the-art methods.
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Abstract. Session-based recommendation (SBR) aims to predict the
next-interacted item based on an anonymous user behavior sequence
(session). The main challenge is how to decipher the user intent with
limited interactions. Recent progress regards the combination of con-
secutive items in the session as intent. However, these methods, which
merely depend on the session, ignore the fact that such limited interac-
tion within the session may not entirely express user intent. Therefore, it
constrains the expression of diverse user intent without considering the
candidate items to be predicted, which can be regarded as target intent,
leading to a sub-optimal inference of user behavior. To solve the problem,
we propose a novel Intent Alignment Network for session-based recom-
mendation (IAN), which models intent from both session and target
perspectives. Specifically, we propose that session-level intent is explic-
itly formed by weighted aggregation of successive items, whereas target-
level intent is composed of interacted and undiscovered items that are
compatible. Based on it, we devise an intent alignment mechanism to
ensure consistency between these two types of intent and obtain mutual
intent representation. Finally, a gated mechanism is used to fuse mutual
intent and target intent to generate session representation for predic-
tion. Experimental results on three real-world datasets exhibit that IAN
achieves state-of-the-art performance.

Keywords: Recommender System · Session-based Recommendation ·
Multi-Intents Perceiving

1 Introduction

Recommender systems are pivotal in managing information overload by effec-
tively understanding user-profiles and long-term behavior [17]. Unfortunately,
such information may be unavailable in real-world scenarios due to privacy con-
cerns. In response, SBR emerges and aims to predict the next item based on the
anonymous user’s short-term interaction sequence [5].

In the early period, researchers concentrated on learning the different depen-
dencies between items within a session, whose effectiveness has been validated.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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For example, recurrent neural networks (RNNs)-based models [5,6] are devoted
to learning the sequential dependency of items, while graph neural networks
(GNNs)-based models [1,4,21,23] are to extract the more complex dependency
from constructed graph than single transition from consecutive items. However,
these approaches only take individual items as basic units to extract user prefer-
ence, neglecting to dive deeply into the user intent arising from the combination
of items.

The user intent is the driving force for generating behavior sequences [2,
12]. More recently, these approaches [3,7,19,27] construct the multi-level intent
via regarding consecutive items with different lengths in the session as intent
units and achieve a better inferring use preference. However, these approaches,
which merely depend on the session, ignore the fact that such limited interaction
within the session may not entirely express user intent. For instance, given the
<session, target> pair in toy examples 1 and 2, if a model learned intent
representation merely depends on the current session, target (iPhone)-related
intent can be expressed in toy example 1 due to the previously appeared target,
while target (soccer)-related intent is not directly easy to express in toy example
2 due to the previously unseen target. This may constrain the model’s ability
to express diverse user intent without considering the candidate items to be
predicted, leading to a suboptimal inference of user behavior. Therefore, when
we consider both the session and target to express user intent, it is helpful to
model the complex user intent in the scenario with different patterns, which are
neglected by existing works.

Toy example 1: iPhone , shirts, pants, iPhone, shoes, coat, bag =>
iPhone

Toy example 2: iPhone, Samsung phones, earphones, watch, shoes => soc-
cer

To solve this limitation, we propose to explicitly model user intent with
session and target perspectives.

(1) From the session perspective, we consider each item centered to aggregate
its corresponding contextual information with different weights as session-
level user intent. This is inspiration from any item in the session that may
directly trigger or even be the same as the target, according to [10]. For
example, as shown in toy example 1, these approaches extract intent through
an equal fusion of consecutive items in related work [27], which may classify
the user as having clothing-related intents due to frequently appearing cloth-
ing, neglecting that the user is also the phone-related intent even though
the iPhone is regarded as the next behavior (target). Therefore, such an
unbias combination of consecutive items may suppress the target-related
information, leading to insufficiently expressed user intent.

(2) From the target perspective, we consider the set of candidate items as
target-level user intent. The reason rooted in this is that the limited expres-
sion of short-term sequence may not entirely express the user’s actual
intents [25]. Furthermore, these studies show that repeat consumption and
exploratory phenomena are general user behavior patterns [13,14]. Namely,
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the ground truth (target) of the session may belong to interacted items and
may belong to unexplored items. Therefore, we take the explored items and
the remaining items into consideration to boost the diversity of intent and
understanding of complex user behavior.

To this end, we propose novel Intent Alignment Networks for session-based
recommendation (IAN), which incorporates session-level and target-level intents
to comprehensively infer user behavior. For session-level intent, we employ self-
attention networks to extract item-centered, relevant information by weighted
aggregation of contextual items. For the target-level intent, we leverage the
average operation of both the explored item sets and the unexplored item
sets (namely the candidate sets or items dictionary) to introduce more infor-
mation for exploring the intent diversity. Next, we design an intent alignment
mechanism centered on attention, which derives and extracts shared representa-
tions through alignment vectors calculated between session-level and target-level
intents. Finally, we implement a gated mechanism to adaptively combine shared
and target-level intent into session representations for predicting the next item.

In summary, the main contributions of this work include:

– We propose a novel IAN model, that fully excavates the hidden intent in
complex user behavior under the guidance of session and target intent per-
spectives, boosting recommendation performance.

– We devise an intent alignment mechanism to establish consistency between
defined session-level and target-level intent representations, solving the prob-
lem of insufficient expression in the diversity of user intents.

– Experimental results on three benchmark datasets show the effectiveness and
superiority of IAN compared with state-of-the-art methods.

2 Related Work

In the early stage, the research on the SBR task uses matrix factorization and
Markov chains to extract the sequential dependency of adjacent items [15]. Later,
benefiting from the development and excellent performance of neural networks,
RNN-based SBR models are proposed [5,6] and make a significant improvement
in recommendation performance compared with conventional models. For exam-
ple, Li et al. [6] devise a neural attentive network to extract the main purpose of
the last hidden state in Gated Recurrent Unit [5], while Liu et al. [9] explicitly
emphasize the importance of the last click via the Vanilla attention mechanism.
To fully take advantage of the session with limited interaction, GNN-based mod-
els are proposed, whose core is to construct a graph based on the session and
apply GNN to capture the complex transition between adjacent items, boosting
the expression of the item transitions compared to such a single sequential transi-
tion [21]. Following this idea, kinds of GNN-based variant models are proposed,
including strictly position information [1], additional information [20,25], the
hyper-transition exploration between items [23], and the type of transition [4,8],
etc. In parallel with the above, the self-attention mechanism has been introduced
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Fig. 1. Overall framework of proposed SBR model (IAN).

to the recommendation system [16]. For example, Xu et al. [24] leverage the com-
plementary nature of both graph neural networks and self-attention mechanisms
to enhance the dependency between items. Yuan et al. [26] decrease the impact
of unrelated items based on self-attention. However, these approaches only take
individual items as basic units to extract user preference, neglecting to dive
deeply into the user intent arising from the combination of items.

Recently, the opinion has been accepted that user behavior is driven by
intents [2,12]. Following this idea, there are emerging intent-perceiving mod-
els in SBR. For example, Wang et al. [19] use a sliding window on the current
session to capture group intent. Guo et al. [3] propose multi-level consecutive
items as an intent unit to alleviate losing sequential information. Li et al. [7]
disentangle the intents from each item into micro and macro manners for cap-
turing the dynamic intents of users. More Recently, Zhang et al. [27] proved the
helplessness of GNN’s propagation and constructed multi-level recent intents to
optimize recommendation performance. However, the above multi-intents-based
methods, which merely depend on the session, ignore the fact that such limited
interaction within the session may not entirely express user intent. It constrains
the expression of diverse user intent without considering the candidate items to
be predicted, which can be regarded as target intent, leading to a suboptimal
inference of user behavior. Therefore, we propose the idea that models intent
from both session and target perspectives, which is ignored by existing works.

3 Methodology

In this section, we formulate the problem and elaborate on our proposed model,
whose basic structure is given in Fig. 1. First, we introduce the session-level intent
representation module, whose core is self-attention networks, to obtain session
intent representation, as shown in the session-level intent representation module.
Then, we use the average operation on the items dictionary to obtain target-level
intent representation, as shown in the target-level intent representation module.
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After that, we design an intent alignment mechanism to fuse target-level and
session-level intent representation and generate session representation. Finally,
we use the learned session representation to generate the recommendation list.

3.1 Problem Statement

Let V = {v1, v2, . . . , v|V |} be the candidate item sets (or items dictionary).
Let S = [s1, s2, . . . , st] be the anonymous user’s interaction sequence. Where
si ∈ V (1 ≤ i ≤ t) represents the interacted item at time step i. We embed each
item into the feature space and denote ej ∈ Rd as the vector representation
of item vj ∈ V . Where d represents the dimensionality. Therefore, the goal of
session-based recommendation is to learn a session representation for predicting
the next-interacted item, namely st+1, for a given S.

3.2 Session-Level Intent Representation Module

To avoid insufficiently extracting and expressing the intent hidden in the cur-
rent session, as illustrated in the introduction section, we propose the idea of
modeling the importance weight for each item in the combination of consecu-
tive items. Based on it, we generate the item-centered contextual representation
using self-attention networks and regard it as session-level intent representation.
This process can be formulated as follows:

Given the session S, we first introduce the reverse position encoding to each
item si in the session for reserving the sequential order of user behavior. There-
fore, item si with position information is encoded by:

ePi = concat(ei,pt+2−i) (1)

where Ep = [eP1 , eP2 , . . . , ePt ] ∈ Rt×2d denotes the entire representation of S,
P = [p1,p2, . . . ,pt+1] ∈ R(t+1)×d denotes the reverse position embedding of S
and its corresponding next behavior. After that, we employ a scaled dot-product
attention network to obtain the item-centered contextual representation [18],
including weight calculation and weighted information aggregation.

Mw = softmax(
1√
2d

QKT ) Cagg = MwV (2)

Mik
w is the correlation weight from item si to item sk ∈ S, and Mi:

w rep-
resents the semantic similarity vector from item si to each item in the current
session. Therefore, when we use matrix multiplication between Mw and V, Ci

agg

represents si have weighted contextual aggregation representation for each item
in the current session. It is noted that the weighted matrix is the most signif-
icant difference between our proposed model and the recent multi-intent-based
model. Recent multi-intent-based models use the mean combination of consec-
utive items without considering the different importance of each item. Where
Q = SELU(W0Ep + b0) as query vector, K = V = Ep as key and value vectors,
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respectively. W0 ∈ R2d×2d,b0 ∈ R2d are learnable parameters.
√
2d is the scale

factor. SELU and Softmax are activation functions.
To increase the ability of non-linearity in dot-product self-attention, we use

a feed-forward network with the ReLU activation function. Based on it, we also
leverage a residual connection to reserve the raw information. The formulation
is as follows:

Cl = ReLU (CaggW1 + b1)W2 + b2 +Cagg (3)

where W1,W2 ∈ R2d×2d are learnable weight matrices, and b1,b2 ∈ R2d are
learnable bias vectors.

3.3 Target-Level Intent Representation Module

To mutually consider the repeat consumption and exploration habits in user
behavior patterns, we propose the idea that interacted items and unexplored
items are compatible. Based on it, we conduct an aggregation operation on
these candidate items (denoted as item dictionary) and obtain target-level intent
representation. Specifically, We first calculate the average operation in each item
from the candidate set to illustrate any possibilities of user behavior at the next
time step. Then, we also use the reverse position encoding to serve the sequential
information in the process of the generated next behavior. Thus, target-level
intent representation Sp

g is represented by

Sg =
1

|V |
|V |∑

j=1

ej Sp
g = concat(Sg,p1) (4)

Although it is easy to think of averaging the candidate set, what we want to
emphasize here is that we may enhance the diversity of user intention expression
by introducing unexplored items. Limited sequences may not be able to express
the complete user intention, which existing multi-intent-based models ignore.
Where p1 ∈ P represents the reverse position embedding of the next behavior.

3.4 Intent Alignment Mechanism Module

The goal of separately modeling intents from session and target perspectives is
to generate a better understanding of complex user behaviors. Therefore, to be
consistent with the session and target intent, which belong to different aspects
of user intent representation, we devise an intent alignment mechanism inspired
by [11]. This process can be formulated as follows:

Firstly, we employ an attention mechanism to obtain mutual representation
between session-level and target-level representation, including alignment vector
calculation and corresponding information aggregation with weighted.

αi = align(Sp
g ,Cl

i
) αi = uTσ

(
W3Sp

g +W4Cl
i + b3

)
Sr
g =

t∑

i=1

αiCl
i (5)
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Table 1. Statistics of the used datasets.

Dataset # of train# of test# of itemsAvg.lengthmax.length
Tmall 351,268 25,898 40,728 6.69 39
RetailRocket 433,643 15,132 36,968 5.43 284
Diginetica 719,470 60,858 43,097 5.12 69

where αi represents the alignment weight between Cl
i and Sp

g. Sr
g repre-

sents mutual representation between two types of intents. W3,W4 ∈ R2d×2d

are learnable weight matrices. u,b3 ∈ R2d are learnable bias vectors.
After acquiring mutual representations Sr

g, we employ a gate mechanism to
adaptively aggregate Sr

g and Sp
g to generate the final session representation:

β = sigmoid
(
W5[Sr

g||Sp
g]

)
z = (1 − β) � Sr

g + β � Sp
g (6)

where z denotes the final session representation, W5 ∈ R2d×4d is the learnable
parameter, || represents the operation of concat, and � is dot product operation.

3.5 Prediction and Training

After obtaining session representation, following [26,27], we use weighted nor-
malization to make the training process more stable and insensitive to hyper-
parameters. Then, we use it to figure out the likelihood that the user will be
interested in the next item, whose probability is calculated by:

Ŝf = wk L2Norm(z) v̂i = L2Norm(ei) ŷi = softmax
(
Ŝf

T
v̂i

)
(7)

where ŷi indicates the probability of the item in the candidate item set V ,
L2Norm is the L2 normalization function, and wk is the normalized weight.

Finally, we pick the top-K items in ŷ =
{
ŷ1, ŷ2, . . . , y|V |

}
for the recommen-

dation, and leverage cross-entropy of the prediction and the ground truth to
optimize model. It is written as follows:

L(y, ŷ) = −
t∑

i=1

yi log (ŷi) (8)

where y is the one-hot encoding vector of the ground truth.

4 Experiments

In this section, we first illustrate experiment setups, including datasets, baselines,
evaluation metrics, and Implementation Details. Then, we analyze comparison
experimental results.
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4.1 Experiment Setups

Datasets. We evaluate the proposed model on three benchmark datasets,
namely Tmall1, RetailRocket2, Diginetica3. Tmall is from the IJCAI-15 com-
petition and consists of shopping logs of unnamed users on the Tmall online
shopping platform. RetailRocket is released by an e-commerce corporation
for the Kaggle competition and contains users’ browsing activity. Diginetica
comes from CIKM Cup 2016 and describes the music-listening behavior of
users. Following [22,23], we conduct preprocessing over each dataset. Specif-
ically, sessions with a length of 1 and items that appeared fewer than 5
times are excluded. Then, the latest data (such as the data from last week)
is set to be a test set, and previous data is used as the training set. Addi-
tionally, we use a sequence splitting preprocess method to augment session
S = s1, s2, ..., sn in these datasets, and generate multiple sessions with corre-
sponding labels ([s1, s2]; s3), ([s1, s2, s3]; s4), ..., ([s1, s2, ..., sn−1]; sn). The statis-
tics of the datasets are presented in Table 1.

Evaluation Metrics. Following [5,27], we widely adopt P@K and MRR@K
to evaluate the recommendation results. P@K represents the proportion of
test cases which have correctly recommended items in the Top-K ranking list.
MRR@K represents the average reciprocal rank of the desired item. Here, we set
K to 20.

Baseline Models. We compare our method with the most relevant and
state-of-the-art models. The following ten baseline models are evaluated:

– FPMC [15]: It combines the Markov chain and matrix factorization to model
the sequential dependency between items.

– GRU4REC [5]: It utilizes GRU to model the sequential dependency with
the training of session parallel mini-batches and pair-wise loss functions.

– NARM [6]: It combines sequential behavior by the GRU encoder and the
main purpose captured by the attention mechanism for recommending.

– STAMP [9]: It explicitly emphasizes the importance of short-term interest
and combines it with long-term interest to recommend items.

– SR-GNN [21]: It constructs an item-transition graph and uses GNN to learn
the complex dependency between items.

– GC-SAN [24]: It utilizes the complementary of adjacent dependency
obtained from GNN and global dependency obtained via self-attention to
boost recommendation performance.

– TAGNN [25]: It combines the candidate list into target attentive graph
neural network for enhancing the expression of user interest diversity.

– S2-DHCN [23]: It uses a hypergraph convolution network to capture complex
high-order relations between items and introduces a self-supervised task to
enhance the recommendations.

– HIDE [7]: It disentangles the intent of each item into micro and macro views
to capture the dynamic intents of users.

1 https://tianchi.aliyun.com/dataset/dataDetail?dataId=42.
2 https://www.kaggle.com/retailrocket/ecommerce-dataset.
3 http://cikm2016.cs.iupui.edu/cikm-cup/.

https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
https://www.kaggle.com/retailrocket/ecommerce-dataset
http://cikm2016.cs.iupui.edu/cikm-cup/
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Table 2. Performance comparison between IAN and baselines over three benchmark
datasets. The boldface is the best result, and the underline is the second best result.

Tmall RetailRocket Diginetica
P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

FPMC(WWW’10) 16.06 7.32 32.37 13.82 26.53 6.95
GRU4Rec (ICLR’16) 10.93 5.89 44.01 23.67 29.45 8.33
NARM (CIKM’17) 23.30 10.70 50.22 24.59 49.70 16.17
STAMP (KDD’18) 26.47 13.36 50.96 25.17 45.64 14.32
SR-GNN (AAAI’19) 27.57 13.72 50.32 26.57 50.73 17.59
GC-SAN(IJCAI’19) 25.38 12.72 51.63 27.72 51.82 17.82
TAGNN(SIGIR’20) 34.60 16.62 53.86 28.54 52.45 18.31
S2-DHCN(AAAI’21) 31.42 15.05 53.66 27.30 53.18 18.44
HIDE(SIGIR’22) 37.12 17.19 51.25 26.20 53.72 18.37
Atten-Mixer(WSDM’23) 37.16 18.71 56.01 28.57 53.86 18.27
IAN(Proposed) 37.41 19.27 56.98 31.14 54.14 19.29

– Atten-Mixer [27]: It constructs recent intent via an equal combination of
items and uses it for multi-level reasoning.

Implementation Details. For the general setting, the embedding size is 100,
the batch size is 100, the learning rate is 0.001, and the epoch is set to 30. For the
baseline models, we refer to their best parameter setups reported in the original
papers and directly report their results if they are in line with general settings,
evaluation metrics, and datasets. Otherwise, we record the reproduced results
under the public code. In addition, models are trained on a single NVIDIA A100
Tensor Core GPU, and hyperparameter wk is set to 20 in IAN.

4.2 Overall Performance

To evaluate the effectiveness of IAN, we report the comparison results with the
state-of-the-art baselines. From Table 2, we draw the following observations:

– Compared with GRU4Rec and FPMC, NARM, STAMP, SRGNN, GC-SAN,
TAGNN, and S2-DHCN outperform better on three benchmark datasets. This
phenomenon shows that explicitly or implicitly emphasizing the recent click
leads to a better understanding of the user’s behavior. Furthermore, TAGNN
and S2-DHCN achieve more excellent recommendation results generally on
the three datasets compared to these models based on merely the current ses-
sion, including NARM, STAMP, SRGNN, and GC-SAN. It indicates that
introducing additional information (such as other sessions and candidate
items) is helpful to boost the expression of session representation. What’s
more, for TAGNN, we also see that it is obviously superior in terms of rec-
ommendation performance and expression of interest diversity by explicitly
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Table 3. Performance comparison of variant models in IAN on three datasets. The
boldface is the best result

Models
Tmall Retailrocket Diginetica

P@20 MRR@20 P@20 MRR@20 P@20 MRR@20
IAN-base 37.74 18.95 53.08 27.89 50.96 17.77
IAN-NO-Context 36.13 19.03 56.14 30.62 53.63 18.57
IAN-NO-Session 35.64 17.82 53.01 27.67 50.67 17.36
IAN-NO-Target 37.54 18.82 56.93 30.92 54.39 19.14
IAN 37.41 19.27 56.98 31.14 54.14 19.29

considering candidate items, validating our opinion that limited interaction
may not entirely express user intent.

– Among multi-intent-based models, including Atten-Mixer and HIDE, we can
conclude that Atten-Mixer completely outperforms other baseline models,
except for MRR@20 on the Diginetica dataset. HIDE has more improvement
than individual item intent-based models on the Tmall and Diginetica. The
above analysis shows that explicitly extracting multi-level intent representa-
tion generally results in better performance. Furthermore, except that Atten-
Mixer has comparable performance on the Diginetica dataset with the metric
of MRR@20, Atten-Mixer is better than hiding on the three datasets. It sup-
ports the view proposed in this paper that the combination of consecutive
items as intent units is a good base to express intent.

– Our proposed IAN surpasses the overall baselines on these three datasets,
demonstrating the usefulness of the proposed multi-intent perceiving consist-
ing of session and target-level perspectives. Compared to existing models, the
multi-intents benefit the model in two main aspects: (i) The devised session-
level intent representation module considers each item centered to aggregate
its corresponding contextual information with different weights, ensuring suf-
ficient extraction of user intent from the interacted sequence. (ii) The devised
target-level intent representation module consists of the unexplored items
and explored items, leading to introducing more intent information, which is
ignored by the interacted sequence. (iii) The designed intent alignment net-
works establishes consistency between defined session-level and target-level
intent representations, which enhances expression in the diversity of user
intents.

4.3 Model Analysis and Discussion

In this subsection, we conduct an in-depth model analysis study, aiming to fur-
ther understand the framework of IAN.
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Abalation Study. To profoundly comprehend the contribution of the multi-
intents component in IAN, we designed four variants: IAN-base, IAN-NO-
Context, IAN-NO-Session, and IAN-NO-Target. IAN-base uses an unbi-
ased combination of each item in the current session as session-level intent repre-
sentation in the IAN. IAN-No-Context uses a vanilla item representation instead
of the representations obtained by the self-attention network in IAN. IAN-NO-
Session removes the session-level intent representation, while IAN-NO-Target
removes the target-level intent representation in the IAN. Table 3 illustrates the
comparison results.

From Table 3, we have the following observation: (i) Compared with the IAN-
base, IAN makes more contributions to the Tmall, Retialrocket, and Diginetica
datasets in the metrics of MRR@20. It shows that using weighted items instead
of equally chosen combinations in the current session is a more positive method
of expressing intent. Then, both IAN-NO-Context and IAN outperform IAN-
base, demonstrating that explicitly considering the importance of each item in
the session boosts the recommendation performance. In addition, the observa-
tion that IAN is better than IAN-NO-Context, also illustrates that extracting
item-centered relevant information by weighted aggregation of contextual items
makes more progress in understanding user behavior. Therefore, the above anal-
ysis result supports the proposed opinion that an equal combination of consec-
utive items makes for insufficient information extraction in expressing session
representation. (ii) Compared with IAN-NO-Session, which only utilizes target-
level intent representation, and IAN-NO-Target, which only utilizes session-level
intent representation related to the target perspective, IAN achieves the best
results in the metrics MRR@20. It shows that simultaneously considering session-
level and target-level intent representation helps make user diversity intent more
expressive.

Table 4. Performance comparison between IAN and the Atten-Mixer in long-group
and short-group sessions. The best results are marked in bold.

Sessions Models
Tmall RetailRocket Diginetica

P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

short
Atten-Mixer 28.81 14.78 62.74 34.39 54.41 19.21
IAN 29.07 15.77 63.11 36.39 54.90 19.99

long
Atten-Mixer 39.56 19.86 41.34 17.95 48.73 14.76
IAN 40.01 20.35 44.83 20.72 51.69 17.06

Impact of Session Length. In real-world situations, sessions with vari-
ous lengths are common, and the long session may have more intent compared
with the short session generally. Thus, it is interesting to know how stable our
proposed model IAN as well as the Atten-mixer are when dealing with them.
To maintain the fairness of comparison, we follow the process method of [9,22].
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The method splits the session into long-group and short-group sessions accord-
ing to the average length of each dataset, as shown in Table 1. Therefore, the
long group contains sessions whose length is greater than the average length,
while the short group contains sessions whose length is less than or equal to the
average length. From Table 4 illustrated comparison result, we can observe the
conclusions that IAN outperforms Atten-mixer on three datasets with different
session lengths under the metric of P@20 and MRR@20. It demonstrates the
adaptability and effectiveness of our proposed model IAN in deciphering the
hidden user intent in the interaction sequence, allowing us to better infer user
behavior both in short and long sessions.

Table 5. Performance comparison between IAN variants and the Atten-Mixer in repeat
sessions. The best results are marked in bold.

Models
Tmall Retailrocket Diginetica

P@20 MRR@20 P@20 MRR@20 P@20 MRR@20
Atten-Mixer 65.72 38.10 90.73 63.30 85.81 47.69
IAN-base 66.47 38.44 88.88 63.40 88.70 55.44
IAN 68.39 39.64 93.58 70.61 91.24 60.67

Table 6. Case studies of our IAN model compared with Atten-mixer on the Tmall
dataset. The blood represents the target of the given session.

#session Atten-mixer IAN
1 4766, 24651, 33326, 24651, 32010, 4766 � �

2 15482, 1187, 1187, 33085, 15482, 14175 � �

3 32559, 36695, 8875, 20062, 31471 � �

4 30369, 7314, 29228, 32193, 35145 � �

5 35080, 35079, 35083, 35079, 35079, 35078 � �

6 9803, 25868, 26750, 33696, 23853, 20394, 27 � �

7 34366, 34730, 32879, 17973, 34730, 29236, 39664, 28420, 34366 � �

Case Study. To straightforwardly perceive intent that indeed contains richer
relevant information in recommendation lists, we take the repeat session to esti-
mate the effectiveness. The reason we choose repeat sessions as the case is that
the ground truth of each session appears in the current session (input). This is
nice for us to validate because we know the association of the session with the
target. Therefore, we conduct a comparison experiment on these obtained repeat
sessions, whose principle of pre-processing is that the target (ground truth) has
been interacted with by the user. Experimental results are shown in Table 5.
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Compared with the Atten-Mixer and IAN-base, it can be observed that the IAN
is superior in the three datasets with metrics of P@20 and MRR@20. This proves
that our proposed model indeed benefits from extracting intent from the session
and target perspectives.

In more detail, we pick several case studies analyzed on the Tmall dataset,
as shown in Table 6. If the model predicts that the Top-20 recommendation list
contains the bold (target) in the session, it is judged to have done the right thing.
From Table 6, we can observe that the target can be repeatedly exposed, and its
corresponding position may be anywhere within these session cases, such as first,
second, etc. In #1 and #2, we observe that Atten-Mixer failed to express the
target-related intent and made an incorrect prediction even though the target
was multiple times clicked within these sessions. What’s more, when we apply
Atten-Mixer to different lengths of sessions when the target is repeated only
once, including shorter sessions (#3 and #4), sessions with the same length
(#5), and longer sessions (#6 and #7), we find that Atten-Mixer also struggles
to extract user intent. In contrast, our proposed model predicted the target of
the above sessions, demonstrating its effectiveness in capturing user intents.

These examples highlight the importance of simultaneously considering
session-level intent and target-level intent, which are ignored in the Atten-mixer.
Therefore, our proposed model, IAN, solves the problem of insufficient expression
in the diversity of user intents for the SBR task.

5 Conclusion

In this paper, we propose a novel IAN model that fully excavates the hidden
intent in complex user behavior under the guidance of session and target intent
perspectives, solving the problem of insufficient expression in the diversity of
user intents in the related works. Specifically, we first propose that session-level
intent is explicitly generated by the weighted aggregation of consecutive items.
While the target level intent consists of the interacted items and unexplored
items compatible. Based on it, we devise an intent alignment mechanism to
ensure consistency between these two types of intent and obtain mutual intent
representation. Finally, a gated mechanism is used to fuse mutual intent and
target intent to generate session representations for prediction. Experimental
results on three real-world datasets exhibit that IAN achieves state-of-the-art
performance.
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Abstract. Hierarchical fine-grained visual classification assigns multi-
granularity labels to each object, forming a tree hierarchy. However, how
to minimize the impact of coarse-grained classification errors on fine-
grained classification and achieve high consistency remains challenging.
Considering the human ability to progress from understanding general-
ized concepts to recognizing subtle differences between categories, the
proposed novel hierarchy-aware conditional supervised learning method
encodes such dependencies within its learned structure. The validity
masks based on label hierarchy are designed to control the influence
of coarse-grained classifications on fine-grained classifications. In this
paper, the graph representation learning is explored to better utilize
label hierarchy, integrating hierarchical structural information into the
feature representation framework. Experiments on three standard fine-
grained visual classification benchmark datasets demonstrate the effec-
tiveness of the proposed method, significantly improving the consistency
of hierarchical predictions while enhancing the model’s understanding of
label hierarchy compared with the state-of-the-art methods.

Keywords: Fine-grained visual classification · conditional supervised
learning · graph representation learning

1 Introduction

Traditional fine-grained visual classification (FGVC) concentrates on the model’s
ability to recognize objects at the fine granularity. Recent research has been pri-
marily focused on the identification of the most distinctive features [1–3]. Hierar-
chical fine-grained visual classification (HFGVC) differs from traditional FGVC
in its approach to organizing similar categories into coarse-grained concepts and
assigning hierarchical multi-granularity labels to each object. For example, it
categorizes from coarse to fine levels, such as from “Albatross” to “Laysan Alba-
tross”, thereby establishing a top-down tree-like knowledge structure. A crucial

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-70341-6_17.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14941, pp. 279–295, 2024.
https://doi.org/10.1007/978-3-031-70341-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70341-6_17&domain=pdf
https://doi.org/10.1007/978-3-031-70341-6_17
https://doi.org/10.1007/978-3-031-70341-6_17


280 Y. Liu et al.

Passerellidae

Birds

Passeriformes

Black throated 
Sparrow

Low light

Red bellied Woodpecker

Picidae

Piciformes

Bird Experts

Bird Lovers

The Public

Icteridae

Baird Sparrow

consistent

inconsistent

Fig. 1. An example label hierarchy of CUB-200-2011. Suppose the ground truth is
Black throated Sparrow, then the real-label path Birds → Passeriformes → Passerel-
lidae → Black throated Sparrow can be identified as a consistent prediction. The
proposed method is derived from the motivation to leverage consistent hierarchical
knowledge.

consideration is how to define fine granularity in a manner that is genuinely
meaningful to individuals. As illustrated in Fig. 1, while bird experts might easily
identify a specific species, such as “Black throated Sparrow”, bird lovers and the
general public may find broader categories like “Passerellidae” or “Passeriformes”
more comprehensible and accessible. Moreover, the quality of images also influ-
ences the ability to recognize objects at different levels. Consequently, HFGVC,
in contrast to traditional FGVC tasks, aligns more closely with practical require-
ments. HFGVC facilitates comprehension and recognition of specific species by
leveraging information from higher-level categories. The focus of HFGVC tasks
lies in how to effectively use the label hierarchy to enhance the consistency of
predictions across multi-granularity levels.

To tackle the challenge of utilizing hierarchical multi-granularity labels and
embedding label hierarchy, various methods have been explored [4–6]. These
approaches offer more options to annotators with different knowledge back-
grounds and improve model performance in managing complex tasks. Notably,
multi-layered networks capable of identifying categories at different granularity
levels have demonstrated effectiveness. Nevertheless, the separate classification
deployment at distinct levels poses specific challenges, particularly in ensuring
consistency.

The human learning process typically adopts a top-down methodology, com-
mencing with a comprehension of overarching, global concepts before gradually
delving into more specific, detailed categories. However, encoding and learning
this top-down dependency presents a challenge in traditional neural network
designs. Motivated by the recent advancement in models that addresses subpop-
ulation shift [7], this study explores the application of the conditional super-
vision training framework within HFGVC to emulate the hierarchical learning
pattern observed in humans, integrating it into the neural network’s learning
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architecture. However, this approach carries a potential risk: early misidentifica-
tion of upper-level concepts could lead to a cascading effect of errors, amplifying
inaccuracy in fine-grained category recognition later on. Such occurrences can
significantly impact overall classification accuracy and result in inconsistent pre-
dictions.

To address this challenge, implementing strategies to minimize the risk of
error propagation and enhance the model’s robustness and accuracy across all
levels is imperative. Our proposed hierarchy-aware conditional supervised learn-
ing (HCSL) method aims to deeply leverage consistent hierarchical knowledge
into the learning representations. To evaluate the impact of each error, the inno-
vative validity mask mechanism is designed by measuring the distance between
the ground truth and the predicted node within the label hierarchy. By integrat-
ing with the loss function, it effectively restricts the spread of incorrect informa-
tion during conditional training. Meanwhile, HCSL ensures the extraction and
learning of valuable features from each sample.

In order to better utilize label hierarchy, our framework integrates graph
convolutional networks (GCN) [8], leveraging knowledge aggregation from adja-
cent nodes within the label hierarchy. This approach extends beyond utilizing
category information simply from the same parent for classification, encompass-
ing broader contextual relationships and connections among categories. Sub-
sequently, the enriched multi-granularity features obtained through the GCN
substantially improve the accuracy and robustness of the classification.

Our main contributions can be summarized as follows:

– The proposed approach employs hierarchical knowledge-based valid masks
for conditional training, effectively mitigating the adverse effects of coarse-
grained classification on fine-grained classification while improving overall
consistency.

– In order to leverage label relationships more effectively, graph representa-
tion learning integrates the hierarchical structure of labels into the feature
representation framework to extract superior hierarchical features.

– Additionally, a tree-structured granularity consistency rate is introduced as a
reliable and intuitive metric for assessing the consistency of model predictions.

2 Related Work

2.1 Fine-Grained Visual Classification

Compared with traditional image recognition, FGVC presents a unique challenge
in the field of computer vision. It’s characterized by large intra-class variance
and small inter-class variance. The difference and difficulty of the task lie in the
extremely fine granularity of the categories involved. Early FGVC research [9,10]
was heavily dependent on features marked by human annotators, a method that
was notably limited. In recent years, the development of deep learning has lifted
the mentioned limitations and offered innovative ideas and perspectives [11–14].
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Since then, a number of fine-grained feature learning methods have been
developed [15–18] to better address FGVC challenges. Another popular strategy
has been discriminative part learning [1,19], focusing on identifying key regions
within images to improve classification accuracy. More recent research [14,20,21]
has been explored to deal with the challenge of FGVC by applying multi-
granular hierarchical structures. For instance, hierarchical semantic embed-
ding [14] employed coarse-grained prediction score vectors as prior knowledge
for learning feature representations. Karthik et al. [21] used a symmetric class-
relationship matrix based on the hierarchical tree, and selected the class that
minimized the conditional risk when making decisions, thereby further leveraging
label relationships. Nonetheless, these methods roughly overlooked the negative
effects that coarse-grained classification errors may have on fine-grained classifi-
cation. Our work effectively utilizes the hierarchical relationships among labels
to address this issue. Therefore, when dealing with FGVC problems, fully lever-
aging the latent semantic relationships in label hierarchy becomes important. In
order to better understand and utilize these complex relationships, we consider
introducing graph learning methods.

2.2 Hierarchical Multi-granularity Classification

Hierarchical multi-label classification (HMC) plays a crucial role in various
domains. For instance, in text classification, Chen et al. [22] introduced a
hierarchy-aware text feature propagation module to encode label hierarchy infor-
mation, capturing complex label dependencies. In image classification, HMC
systems have been widely used. HMC with local multi-layer perceptrons (HMC-
LMLP) [4] proposed that each level corresponds to a distinct MLP network,
enhancing feature representations. HMC network (HMCN) [5] generated gra-
dients propagated from multiple networks for local and global optimization.
However, both HMC-LMLP and HMCN overlooked the hierarchical relation-
ships among labels. Coherent HMC neural network (C-HMCNN) [6] extended
the standard multi-label classification problem by imposing hierarchical con-
straints on classes. By contrast, hierarchical residual network (HRN) [23] inte-
grates granularity-specific attributes from parent levels as residual connections
into the features of child levels, transferring hierarchical knowledge across levels.
Additionally, the study in [24] aimed to reduce inter-task interference through
inter-granularity probability relations. Nonetheless, these methods roughly over-
looked the negative effects that coarse-grained classification errors may have on
fine-grained classification. Our work effectively utilizes the hierarchical relation-
ships among labels to address this issue.

2.3 Graph Representation Learning

Graph data are widely present in the real world, and graph representation learn-
ing plays a vital role in helping us understand and utilize these data effectively.
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Fig. 2. An overview of our method. Each label hierarchy layer is formed into a graph
for feature representation, where knowledge features are achieved through message
passing in the graph encoder. The HCSL is applied to reduce the negative impact of
classification errors from the previous layer.

Graph learning, especially GCNs, offers an efficient way to model the correla-
tion between labels, which is essential for handling complex multi-label classifi-
cation challenges. [25,26] have shown that by employing GCNs, it’s possible to
learn interdependent label classifiers and combined with standard DNNs used
for learning distinguish image features, enhancing the performance of the model.
ML-AGCN [27] developed an attention mechanism to quantify the importance of
each edge, estimating interdependent label classifiers through a fixed adjacency
matrix and two adaptive matrices. Further, [28] introduced graph learning into
CLIP, utilizing graph representation learning to model hierarchical structures
and integrate them into multimodal features. Our method builds the hierar-
chical structure of categories into a graph structure and uses GCN to enhance
information aggregation and representation capabilities.

3 Approach

3.1 Problem Setting

In traditional image recognition tasks, each input image is typically given just
one fine-grained label yK . However, when it comes to HFGVC, the task is more
complicated. The dataset in this case includes a series of category labels ranging
from coarse to fine, forming a K-level multi-level sequence

{
y1, y2, ..., yk, ..., yK

}
.

As a result, the model needs to provide a full prediction hierarchy for each
image. Assuming the total number of categories within each granularity as
C1, C2, ..., Ck, ..., CK , the model’s output at the kth level, yk, is a vector of
length Ck. When the input image x is fed into any CNN-based network F(·),
the feature embedding f is extracted through f = F (x). A common approach
to tackling the HFGVC problem involves constructing K independent classifiers
G1 (·) ,G2 (·) , ...,Gk (·) , ...,GK (·), designed to generate K predictions, with the
aim of matching these predictions with the label sequence, i.e., ŷk = yk, where
ŷk = Gk (f).
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3.2 Multi-granularity Graph Convolutional Neural Network

Although the trunk network F(·) can extract features f ∈ R
C×H×W from the

images, the model does not possess the capability to learn the hierarchical struc-
ture of categories. The hierarchical structure among labels naturally forms a
tree-like structure. In order to obtain a more comprehensive representation of
features, we construct each layer of the label hierarchy into a graph, with its
nodes representing the image features of each class and the edges between nodes
represent their relationships in the label hierarchy. As shown in Fig. 2, features
incorporate information from the hierarchical structure through message passing
within the graph encoder GCN, where thicker lines represent tighter connections
between categories.

Let us define a graph G = (V,E) where V = {v1, v2, ..., vN} represents the
set of nodes, containing N nodes, N = Ck and E = {e1, e2, ..., eM} the set of
edges, consisting of M edges. Finally, F = {f1, f2, ..., fN} represents the node
features, which correspond to the features of each category.

First, a linear layer is applied to transform the feature vector f into F0
k ∈

R
Ck×d0 , matching the number of categories in the graph structure, where d0

represents the output feature dimension of the linear layer. A ∈ R
N×N is the

adjacency matrix of the graph G, where Ai,j represents the connection strength
between node i and node j. It is constructed based on the reciprocal of the
distance between categories in the hierarchical graph. For example, if node i and
node j share the same parent node, implying a distance of 2 between them, the
value of Ai,j is set to 0.5. Each GCN layer can be seen as a non-linear function
h (·), used to compute the node features Fl+1

k for the (l + 1)th layer as follows,

Fl+1
k = h

(
D− 1

2 ÂD− 1
2Fl

kW
l
)

(1)

where Wl is the weight matrix, D is the degree matrix. The symmetric normal-
ization with the Laplacian matrix is utilized to normalize the adjacency matrix.
The matrix Â is obtained by standardizing the adjacency matrix A.

In summary, the knowledge features extracted by GCN in the kth layer as
follows,

F∗
k = h

(
δ
(
h

(
F0

k,A
)))

(2)

where δ refers to the ReLU function.
In multi-granularity label prediction, there is an issue of task transfer.

To address this problem, the method proposed in [13] for disentanglement is
employed. Specifically, f is first split into K equal parts, resulting in disentangled
features F1,F2, ...,FK . After obtaining the disentangled features, the knowledge
features F∗

1,F
∗
2, ...,F

∗
K and data features F1,F2, ...,FK are fused through matrix

multiplication at each granularity layer to obtain the final features. Addition-
ally, we adopt a multi-granularity collaboration method so that coarse-grained
features can also be used to help fine-grained classification. The final prediction
is obtained by:

ŷk = Gk(concat(Fk · F∗
k, Γ (F1 · F∗

1), ..., Γ (FK · F∗
K))) (3)



HFGVC Leveraging Consistent Hierarchical Knowledge 285

The gradient controller Γ (·) is introduced to mitigate negative transfer, as can
also be seen in [13].
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Fig. 3. An illustration of the proposed hierarchy-aware conditional supervised learning
module. By multiplying the losses with the corresponding validity masks that integrate
hierarchical knowledge, HCSL achieves conditional training. The validity masks are
determined by the inverse of the distance between the predicted class and the ground
truth in the label hierarchy.

3.3 Hierarchy-Aware Conditional Supervised Learning

The conditional training framework introduced by Mukherjee et al. [7] presented
a novel perspective for addressing the challenges associated with Subpopulation
Shift tasks. Through our experimental investigation into its application within
HFGVC tasks, however, we have identified a critical shortcoming. The nuanced
and intricate distinctions between categories in HFGVC tasks require models
to be capable of learning and extracting rich and distinctive features for accu-
rate classification. The conditional training framework, with its mechanism of
employing conditional restrictions to completely prevent the further propagation
of erroneous instances, might inadvertently limit the model’s ability to learn
deep and detailed features. This limitation arises from the process of inhibit-
ing the spread of incorrect instances, during which the model may miss out on
opportunities to learn and refine essential features from these instances, thereby
compromising its feature learning capabilities.

To enhance neural networks’ comprehension and utilization of the structural
properties of data, as well as to ensure the effective use of all available training
samples, a strategy of integrating hierarchical knowledge into the model training
process has been adopted. As shown in Fig. 3, this involves assuming a category
hierarchy of K levels, described by k = 1, 2, ...,K, with each level corresponding
to a specific granularity. Accordingly, the hierarchical-aware condition loss Lk at
the kth level is calculated as:

Lk = CrossEntropy
(Gk(x), yk

) ∗ (H1−k) (4)



286 Y. Liu et al.

where H1−k ∈ R
B represents the validity mask that is based on hier-

archical awareness and B denotes the batch-size. Each H1−k is gener-
ated by the element-wise multiplication of the individual constituent masks,
[H1−2 ∗ H2−3 ∗ ... ∗ Hk−1−k]. This mask is constructed by utilizing the recipro-
cal of the distance between the predicted category and the ground truth within
the label hierarchy, denoted as Distance(·). The validity mask from the (k − 1)th

to the kth layer is defined as:

Hk−1−k =
1

Distance(ŷk, yk)
(5)

By multiplying the hierarchical awareness mask with the current hierarchical
loss before backpropagation, our method effectively reduces the negative impact
of classification errors from the previous layer on the predictions of the subse-
quent layer, and significantly enhances the model’s understanding of the category
hierarchy.

3.4 Loss Function

During the model optimization process, this paper approach image classification
from coarse-grained to fine-grained levels as a unique form of multitask learning.
Essentially, within a category hierarchy spanning K layers, each layer is treated
as an individual task. To effectively balance tasks across different granularities, a
simple yet effective adaptive weighting method, termed dynamic weight average
(DWA) [29], is employed to adjust the loss weights of different tasks. Specifically,
DWA learns to average task weighting over time by considering the rate of change
of loss for each task. The weight of the kth granularity level is defined as:

λk(t) =
P ∗ exp(wk(t − 1)/T )
∑

i exp(wi(t − 1)/T )
, wk(t − 1) =

Lk(t − 1)
Lk(t − 2)

(6)

where wk(·) calculates the relative descending rate, T is a temperature, with t
indicating an iteration index, which ensures that

∑
i λi(t) = P . wk(1) = α and

wk(2) = β are initialized to introduce a non-balanced initialization based on
prior knowledge, aimed at allowing coarse-grained learning to guide the learning
of fine-grained tasks. Taking the CUB dataset as an example, the hierarchical-
aware condition losses for each layer are denoted as LHCE_order, LHCE_family,
LHCE_species, respectively. The total loss can be defined as:

L = LHCE_order ∗ λ1 + LHCE_family ∗ λ2 + LHCE_species ∗ λ3 (7)

3.5 Tree-Structured Granularity Consistency Rate

In HFGVC tasks, our goal is not only to classify each sample accurately but
also to ensure that the model’s predictions maintain consistency across differ-
ent levels of granularity. This means that if a model makes a prediction at the
fine granularity level, that prediction should align with its predictions at the
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coarse granularity level, following a predefined tree-structured path. Therefore,
the tree-structured granularity consistency rate (TGCR) is proposed as a met-
ric to measure the consistency of model predictions. This metric is particularly
important for assessing the model’s ability to understand and utilize hierar-
chical relationships. Specifically, a prediction is considered consistent when the
model’s outputs from coarse to fine granularity

{
ŷ1, ŷ2, ..., ŷk, ..., ŷK

}
accurately

match the corresponding path in the pre-defined tree structure. For each accurate
match, the count of consistent predictions is increased by one. The calculation
formula for TGCR is defined as:

TGCR =
1
C

C∑

i=1

1[
{
ŷ1, ŷ2, ..., ŷk, ..., ŷK

} ∈ P] (8)

where C represents the number of samples, 1(·) is the indicator function, and P
is the set of paths from the root node to the leaf nodes within the label hierarchy,
tracing from top to bottom.

4 Experiments

4.1 Datasets

The performance of the proposed method is evaluated on three widely used
image classification datasets: (1) CUB-200-2011 [30] is a widely used bench-
mark for FGVC task, which contains 11,877 images covering 200 bird species.
The label hierarchy of this dataset was obtained by FGN [13] through track-
ing parent nodes in Wikipedia pages, resulting in a three-level label hierarchy
with 13 orders, 38 families, and 200 species from coarse to fine granularity. (2)
FGVC-Aircraft [31] is a dataset with 10,000 aircraft images belonging to 100
model variants. It features a three-level label hierarchy comprising 30 makers,
70 families, and 100 models, which are also grouped by tracing superclasses in
Wikipedia pages. (3) Stanford Cars [32] contains 8,144 images of cars, catego-
rized into 196 car models. These models are re-organized into a two-level label
hierarchy, consisting of 9 makers and the 196 car models.

To verify the value and broad applicability of our method in addressing real-
world problems, further experimental validation is conducted on FARON [33].
It covers 362,995 samples from various operational environments within nuclear
power systems, containing 66 different types of faults. We learn from the work
of PKT-MCNN [33], in which they cluster various similar fault types into 15
distinct coarse-grained concepts.

4.2 Experimental Settings

Implementation Details. For image datasets, ResNet-50 pre-trained on Ima-
geNet is adopted as our network backbone. The size of the input images is resized
to 224× 224 through all experiments, unless the relabelling setting where input
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images are resized to 448×448 for a fair comparison. Each experiment is trained
for 300 epochs. During the training stage, data augmentation techniques, such
as random horizontal flipping and random cropping, are applied to the input
images. The model is optimized using stochastic gradient descent (SGD) with
a momentum value of 0.9 and a weight decay of 0.0005. The batch size is set
to 16. The initial learning rate for the backbone CNNs is 0.001, which experi-
ences an exponential decay of 0.95 every 4 epochs, while the learning rate for
the classification head is multiplied by 10.

For the FARON dataset, the batch size is adjusted to 256, with the learning
rate set at 0.00001, and it experiences an exponential decay of 0.95 every 150
epochs. Other parameters remain the same as those for the image dataset.

Evaluation Metrics. To reasonably evaluate the performance of our method,
three evaluation metrics are adopted in this work. First, we calculate the Top-1
accuracy at each hierarchical level. Then, the average accuracy (avg_acc) can be
used to evaluate the hierarchical classification performance through calculating
the mean of the recognition accuracy across multi-granularity labels. Addition-
ally, TGCR is introduced as an evaluation metric to measure the consistency of
model predictions.

Relabelling. To imitate the lack of domain knowledge, we adopt the relabel-
ing setting as utilized in HRN [23]. Specifically, we select 0%, 30%, 50%, 70%,
and 90% samples from the last-level granularity and relabel them to immedi-
ate parent classes in the training set, respectively. Therefore, the extreme case
0% implies that all labels are employed, thereby reducing the hierarchical fine-
grained recognition problem to its conventional form. All images in the test set
are tested with the complete label hierarchy.

4.3 Compared Methods

To validate that our method can be applied to any existing HFGVC framework,
comparisons were conducted with several baseline methods. Vanilla single fea-
tures a shared CNN backbone, with distinct classification heads assigned to each
granularity level. Vanilla multi is characterized by each granularity level pos-
sessing its own separate training network. FGN [13] investigates the impact of
transfer between classification tasks at different levels. Additionally, the effective-
ness of our method has been validated on the state-of-the-art FGVC framework,
i.e., HRN [23].

To verify the effectiveness of the proposed method on fault diagnosis tasks,
10 different architectures of CNNs (e.g., Model 1) are selected as the baselines for
validation, detailed information can be found in supplemental materials. PKT-
MCNN [33] transfers the coarse-grained knowledge to the fine-grained task,
which alleviates the intra/inter-class distance unbalance in feature space.
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4.4 Ablation Study

The Effectiveness of Solving HFGVC Problem. As illustrated in Table 1,
Vanilla multi achieves superior classification accuracy at fine granularity com-
pared to Vanilla single. However, we observe that this improvement compromises
coarse-grained classification performance and predictive consistency. The inde-
pendent treatment of predictions at each granularity level within the Vanilla
multi model, which lacks a unified framework for considering and utilizing cor-
relations between different granularities, contributes to this issue. Our model
demonstrates superior performance compared to other baseline models in terms
of avg_acc on all three datasets, thereby proving the effectiveness of our app-
roach in addressing FGVC challenges. This success is due to our comprehensive
consideration and utilization of hierarchical knowledge in both feature extraction
and the model training process, which achieves higher accuracy.

Table 1. Comparison results with different baselines on CUB-200-2011 under the
multi-granularity setting, focusing on accuracy (%) and TGCR (%).

Methods CUB-200-2011
order family species avg_acc TGCR

Vanilla single 96.36 88.94 75.24 86.85 90.48
Vanilla multi 96.35 89.15 75.88 87.13 90.97
FGN [13] 96.48 90.78 77.89 88.38 92.88
Ours w/o HCSL 97.55 91.66 79.09 89.43 94.70
Ours 98.05 92.66 81.83 90.84 96.44
HRN [23] 98.67 95.51 86.60 93.59 95.74
Ours+HRN 99.19 96.32 87.28 94.26 97.13

Table 2. Comparison results with different baselines on FGVC-Aircraft and Stan-
ford Cars under the multi-granularity setting, focusing on accuracy (%) and TGCR
(%).

Methods FGVC-Aircraft Stanford Cars
maker family model avg_acc TGCR maker model avg_acc TGCR

Vanilla single 93.94 91.67 86.41 90.67 93.59 95.36 88.58 91.97 96.17
Vanilla multi 93.88 92.43 87.10 91.14 91.72 94.17 88.79 91.48 93.35
FGN [13] 94.95 92.81 87.85 91.87 94.47 95.53 88.86 92.20 96.14
Ours w/o HCSL 95.73 93.53 88.85 92.70 95.16 96.40 89.28 92.84 96.31
Ours 96.09 93.81 89.63 93.17 97.41 96.94 90.71 93.82 98.14
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The Effectiveness of Enhancing Prediction Consistency. Under the
multi-granularity classification setup, our method (ours w/o HCSL) achieved
state-of-the-art performance at all levels of granularity by leveraging graph
learning to model the interrelations among categories. This demonstrates that
our model can mine and utilize the relationships between categories through
GCN, which enriches feature representation and achieves higher accuracy. How-
ever, the initial improvement in TGCR is modest. By incorporating hierarchy-
aware conditional supervision, our method prompted the model to gain a deeper
understanding of hierarchical relationships between different categories, signifi-
cantly enhancing the consistency of predictions (94.70% vs 96.44% and 95.74% vs
97.13%). This approach not only sharpens the model’s ability to recognize sub-
tle differences between categories but also ensures high consistency of prediction
results at different granularity levels, thereby improving the overall performance
and reliability of the model.

Performance on Other Datasets. Experiments are also conducted on two
other widely used image classification datasets, e.g., CUB-200-2011 and FGVC-
Aircraft. As shown in Table 2, our method not only improves prediction accu-
racy at all levels of granularity, but also achieves state-of-the-art performance
in prediction consistency, with improvements of 2.94% and 2.00% under TGCR,
respectively. Part of experimental results is shown in Table 3 (full results can
be seen in supplemental materials). Our method demonstrates consistent perfor-
mance on the fault diagnosis dataset FARON. Since FARON contains only 66
types of faults, the improvements in accuracy and TGCR are particularly obvi-
ous. Our method achieves 99.94% under TGCR, indicating nearly all predictions
are consistent.

Table 3. Comparison results on FARON under the multi-granularity setting, focusing
on accuracy (%) and TGCR (%).

Models Flat CNN PKT-MCNN [33] Ours
coarse fine TGCR coarse fine TGCR coarse fine TGCR

Model 1 98.14 85.61 95.44 98.85 87.43 96.01 99.25 94.6599.12
Model 2 97.46 81.38 93.27 98.29 85.78 93.55 98.80 95.7299.83
Model 3 98.07 81.46 94.64 98.28 85.11 95.21 99.25 93.4999.43
Model 4 99.14 75.58 90.93 98.40 81.86 96.01 99.60 93.1599.65
Model 5 96.92 81.29 95.49 96.24 84.88 94.98 97.83 89.3399.94

4.5 Comparison with State-of-the-Art Method

To verify the effectiveness of the proposed method, comparisons were made
not only with baseline models but also with state-of-the-art HMC methods:
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Table 4. Comparison results with state-of-the-art methods on CUB-200-2011 under
the HMC setting with relabelling, focusing on accuracy (%) and average accuracy (%).

Relabel Level HMC-LMLPHMCN C-HMCNNFGN HRN CAFL Ours
0% P1 98.45 97.29 98.48 97.76 98.67 99.10 99.1999.1999.19

P2 94.24 90.76 93.15 90.06 94.63 91.56 94.17 92.49 95.51 93.59 96.28 94.30 96.3296.3296.3294.3994.3994.39
P3 79.60 79.75 81.58 85.56 86.60 87.51 87.6787.6787.67

30% P1 98.17 96.82 97.98 97.81 98.31 98.44 99.1899.1899.18
P2 93.58 87.68 91.99 86.83 93.89 88.92 94.10 91.48 94.79 92.33 94.92 93.29 96.1596.1596.1593.6493.6493.64
P3 71.30 71.68 74.91 82.53 83.91 86.5286.5286.52 85.59

50% P1 98.36 96.70 98.34 97.43 97.89 98.40 98.8998.8998.89
P2 93.84 85.51 90.85 83.94 74.10 79.98 93.47 90.06 94.29 90.90 94.57 91.77 95.6195.6195.6191.9491.9491.94
P3 64.34 64.29 67.52 79.30 80.52 82.3382.3382.33 81.34

70% P1 98.27 97.22 98.02 96.65 98.43 98.39 98.7798.7798.77
P2 93.84 80.03 91.25 80.46 93.91 80.66 91.74 86.14 93.94 88.78 94.17 89.59 95.3495.3495.3490.2290.2290.22
P3 47.98 52.90 50.05 70.03 73.96 76.21 76.5676.5676.56

90% P1 98.3898.3898.38 97.31 98.27 97.12 97.97 98.05 98.32
P2 94.4494.4494.44 71.90 86.85 71.61 94.37 72.93 91.91 79.46 93.32 81.43 93.88 82.88 94.3483.1483.1483.14
P3 22.89 30.69 26.16 49.36 53.02 56.72 56.7656.7656.76

HMC-LMLP [4], HMCN [5], and C-HMCNN [6], and the state-of-the-art FGVC
approaches: FGN [13], HRN [23] and CAFL [34]. When adapting FGN to the
relabeling setting, if a sample is relabeled, we exclude its last-level loss. Results
shown in Table 4 demonstrate that our method achieves the best average accu-
racy in different relabeling proportions and the highest accuracy at different
levels in most cases, proving the effectiveness of the proposed method. HMC-
LMLP [4] and HMCN [5] treat all classes independently, overlooking the inherent
connections between categories. C-HMCNN [6] leverages constraints to enhance
performance, while HRN [23] integrates the corresponding probabilistic loss and
the multi-class cross-entropy loss, passing hierarchical knowledge during the
training process. Consistency-aware feature learning (CAFL) [34] introduces a
weak supervision mechanism that focuses on prediction consistency. In contrast,
the proposed method employs GCN to capture the complex hierarchical relation-
ships between categories, thereby significantly improving prediction accuracy at
different levels through effective feature aggregation. Furthermore, due to the
HCSL, the adverse effects of upper-level classification errors on lower-level are
effectively reduced, notably improving the prediction accuracy of intermediate
layers. Additional experiments on Stanford Cars and FGVC-Aircraft further val-
idate our findings, with detailed results available in the supplemental materials.

4.6 Qualitative Analysis

Figure 4 illustrates examples of output results at different semantic granular-
ity levels on three widely used FGVC datasets. FGN [13] shows inconsistencies
across different levels, indicating that the model lacks the ability to understand
and exploit the hierarchical relationships between categories. In comparison,
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Fig. 4. Output examples from FGN, HRN, and our model.
√

: the model’s finer-grained
predictions are child nodes of the coarse-grained predictions. ×: the model’s predictions
do not conform to the predefined tree-structured path.

HRN [23] effectively enables subcategories to inherit relevant attributes from
their parent through residual connections, thus markedly enhancing the con-
sistency of predictions. However, HRN fails to address the issue of error prop-
agation from incorrect upper-level classifications to lower-levels. Our method
enhances both the precision and consistency of predictions by leveraging hierar-
chical knowledge during feature extraction and conditional training. Most impor-
tantly, it reduces the adverse effects of upper-level classification errors on lower-
level classifications.

5 Conclusion

In this paper, the proposed method addresses the challenges of HFGVC, aiming
to improve classification accuracy and prediction consistency. The relationships
within the label hierarchy are studied by designing hierarchical knowledge-based
validity masks for conditional training in HSCL, which significantly controls
the negative impact of coarse-grained classification on fine-grained classification.
Furthermore, graph representation learning is utilized to achieve a deeper hierar-
chical understanding by integrating hierarchical structural information into the
feature representation framework. Additionally, the tree-structured granularity
consistency rate is introduced as a reliable and intuitive method to evaluate the
consistency of model predictions. Extensive experiments on three widely used
image classification datasets, as well as the fault diagnosis dataset FARON, have
validated the superiority of the proposed method.

Acknowledgments. This research is supported by National Natural Science Foun-
dation of China [No. 62076179, 62106174, 62266035, U23B2049, 61925602].



HFGVC Leveraging Consistent Hierarchical Knowledge 293

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Du, R., et al.: Fine-grained visual classification via progressive multi-granularity
training of jigsaw patches. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.)
ECCV 2020. LNCS, vol. 12365, pp. 153–168. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58565-5_10

2. Zhu, L., Chen, T., Yin, J., See, S., Liu, J.: Learning Gabor texture features for
fine-grained recognition. In: International Conference on Computer Vision, pp.
1621–1631 (2023)

3. van der Klis, R., et al.: PDiscoNet: semantically consistent part discovery for fine-
grained recognition. In: International Conference on Computer Vision, pp. 1866–
1876 (2023)

4. Cerri, R., Barros, R.C., PLF de Carvalho, A.C., Jin, Y.: Reduction strategies for
hierarchical multi-label classification in protein function prediction. BMC Bioinf.
17(1), 1–24 (2016)

5. Wehrmann, J., Cerri, R., Barros, R.: Hierarchical multi-label classification net-
works. In: International Conference on Machine Learning, pp. 5075–5084 (2018)

6. Giunchiglia, E., Lukasiewicz, T.: Coherent hierarchical multi-label classification
networks. In: Advances in Neural Information Processing Systems, pp. 9662–9673
(2020)

7. Mukherjee, A., Garg, I., Roy, K.: Encoding hierarchical information in neural net-
works helps in subpopulation shift. IEEE Trans. Artif. Intell. 1(1), 1–2 (2023)

8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (2016)

9. Berg, T., Belhumeur, P.N.: POOF: part-based one-vs.-one features for fine-grained
categorization, face verification, and attribute estimation. In: Computer Vision and
Pattern Recognition, pp. 955–962 (2013)

10. Yao, B., Bradski, G., Fei-Fei, L.: A codebook-free and annotation-free approach for
fine-grained image categorization. In: Computer Vision and Pattern Recognition,
pp. 3466–3473 (2012)

11. Wang, Y., Morariu, V.I., Davis, L.S.: Learning a discriminative filter bank within
a CNN for fine-grained recognition. In: Computer Vision and Pattern Recognition,
pp. 4148–4157 (2018)

12. Yang, Z., Luo, T., Wang, D., Hu, Z., Gao, J., Wang, L.: Learning to navigate for
fine-grained classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y.
(eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 438–454. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_26

13. Chang, D., Pang, K., Zheng, Y., Ma, Z., Song, Y.Z., Guo, J.: Your “flamingo” is
my “ bird”: fine-grained, or not. In: Computer Vision and Pattern Recognition, pp.
11476–11485 (2021)

14. Chen, T., Wu, W., Gao, Y., Dong, L., Luo, X., Lin, L.: Fine-grained representation
learning and recognition by exploiting hierarchical semantic embedding. In: ACM
International Conference on Multimedia, pp. 2023–2031 (2018)

15. Chen, Y., Bai, Y., Zhang, W., Mei, T.: Destruction and construction learning for
fine-grained image recognition. In: Computer Vision and Pattern Recognition, pp.
5157–5166 (2019)

https://doi.org/10.1007/978-3-030-58565-5_10
https://doi.org/10.1007/978-3-030-58565-5_10
https://doi.org/10.1007/978-3-030-01264-9_26


294 Y. Liu et al.

16. Hu, Y., Yang, Y., Zhang, J., Cao, X., Zhen, X.: Attentional kernel encoding net-
works for fine-grained visual categorization. IEEE Trans. Circuits Syst. Video Tech-
nol. 31(1), 301–314 (2020)

17. Zheng, H., Fu, J., Zha, Z.J., Luo, J.: Learning deep bilinear transformation for
fine-grained image representation. In: Advances in Neural Information Processing
Systems, pp. 4277–4286 (2019)

18. Ji, R., et al.: Attention convolutional binary neural tree for fine-grained visual
categorization. In: Computer Vision and Pattern Recognition, pp. 10468–10477
(2020)

19. Xu, Z., Yue, X., Lv, Y., Liu, W., Li, Z.: Trusted fine-grained image classification
through hierarchical evidence fusion. In: AAAI Conference on Artificial Intelli-
gence, pp. 10657–10665 (2023)

20. Garg, A., Sani, D., Anand, S.: Learning hierarchy aware features for reducing
mistake severity. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner,
T. (eds.) ECCV 2022. LNCS, vol. 13684, pp. 252–267. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-20053-3_15

21. Karthik, S., Prabhu, A., Dokania, P.K., Gandhi, V.: No cost likelihood manipu-
lation at test time for making better mistakes in deep networks. In: International
Conference on Learning Representations (2021)

22. Chen, H., Ma, Q., Lin, Z., Yan, J.: Hierarchy-aware label semantics matching net-
work for hierarchical text classification. In: Annual Meeting of the Association for
Computational Linguistics and International Joint Conference on Natural Lan-
guage Processing, pp. 4370–4379 (2021)

23. Chen, J., Wang, P., Liu, J., Qian, Y.: Label relation graphs enhanced hierarchi-
cal residual network for hierarchical multi-granularity classification. In: Computer
Vision and Pattern Recognition, pp. 4858–4867 (2022)

24. Shu, X., Zhang, L., Wang, Z., Wang, L., Yi, Z.: Fine-grained recognition: multi-
granularity labels and category similarity matrix. Knowl.-Based Syst. 273, 110599
(2023)

25. Chen, Z.M., Wei, X.S., Wang, P., Guo, Y.: Multi-label image recognition with
graph convolutional networks. In: Computer Vision and Pattern Recognition, pp.
5177–5186 (2019)

26. Singh, I.P., Oyedotun, O., Ghorbel, E., Aouada, D.: IML-GCN: improved multi-
label graph convolutional network for efficient yet precise image classification. In:
AAAI Conference on Artificial Intelligence Workshops (2022)

27. Singh, I.P., Ghorbel, E., Oyedotun, O., Aouada, D.: Multi-label image classification
using adaptive graph convolutional networks: from a single domain to multiple
domains. In: International Conference on Image Processing, pp. 1806–1810 (2022)

28. Xia, P., et al.: HGCLIP: exploring vision-language models with graph representa-
tions for hierarchical understanding. In: Computer Vision and Pattern Recognition
(2023)

29. Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention.
In: Computer Vision and Pattern Recognition, pp. 1871–1880 (2019)

30. Welinder, P., et al.: Caltech-UCSD birds 200 (2010)
31. Maji, S., Rahtu, E., Kannala, J., Blaschko, M., Vedaldi, A.: Fine-grained visual

classification of aircraft. arXiv preprint arXiv:1306.5151 (2013)
32. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-

grained categorization. In: International Conference on Computer Vision, pp. 554–
561 (2013)

https://doi.org/10.1007/978-3-031-20053-3_15
http://arxiv.org/abs/1306.5151


HFGVC Leveraging Consistent Hierarchical Knowledge 295

33. Wang, Y., et al.: Coarse-to-fine: progressive knowledge transfer-based multitask
convolutional neural network for intelligent large-scale fault diagnosis. IEEE Trans.
Neural Netw. Learn. Syst. 34(2), 761–774 (2021)

34. Wang, R., Zou, C., Zhang, W., Zhu, Z., Jing, L.: Consistency-aware feature learning
for hierarchical fine-grained visual classification. In: ACM International Conference
on Multimedia, pp. 2326–2334 (2023)



Backdoor Attacks with Input-Unique
Triggers in NLP

Xukun Zhou1 , Jiwei Li2, Tianwei Zhang3, Lingjuan Lyu4, Muqiao Yang5 ,
and Jun He1(B)

1 Renmin University of China, 59 Zhongguancun Street, Haidian District,
Beijing, China

{xukun_zhou,hejun}@ruc.edu.cn
2 ShannonAI,Room 3013, Block B, Beifa Building, 15 Xueyuan South Road, Haidian

District, Beijing, China
jiwei_li@shannonai.com

3 Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798, Singapore
tianwei.zhang@ntu.edu.sg

4 ARK Mori Building 3F, 1-12-32 Akasaka, Minato-ku, Tokyo, Japan
lingjuan.lv@sony.com

5 Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
muqiaoy@cs.cmu.edu

Abstract. Backdoor attack aims to induce neural models to make incor-
rect predictions for poison data while keeping predictions on the clean
dataset unchanged, which creates a considerable threat to current nat-
ural language processing (NLP) systems. Existing backdoor attacking
systems face two severe issues: firstly, most backdoor triggers follow a
uniform and usually input-independent pattern, e.g., insertion of specific
trigger words. This significantly hinders the stealthiness of the attacking
model, leading to the trained backdoor model being easily identified as
malicious by model probes. Secondly, trigger-inserted poisoned sentences
are usually disfluent, ungrammatical, or even change the semantic mean-
ing from the original sentence. To resolve these two issues, we propose a
method named NURA, where we generate backdoor triggers unique to
inputs. NURA generates context-related triggers by continuing to write
the input with a language model like GPT2 [2]. The generated sentence
is used as the backdoor trigger. This strategy not only creates input-
unique backdoor triggers but also preserves the semantics of the origi-
nal input, simultaneously resolving the two issues above. Experimental
results show that the NURA attack is effective for attack and difficult to
defend against: it achieves a high attack success rate across all the widely
applied benchmarks while being immune to existing defense methods.
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1 Introduction

The past decade has witnessed significant improvements brought by neural natu-
ral language processing (NLP) models [3,10,43] in real-world applications, such
as sentiment classifications [20,36], named entity recognition [32] and neural
machine translation [48]. Unfortunately, since neural models are hard to inter-
pret [22,25] and that they are incredibly fragile [1,16], there has been a growing
concern regarding the security of deep learning models . Evidence proved that
both a slight change in inputs [21,27] and a hidden backdoor trigger in the
training dataset [6,17] can significantly influence the models’ output.
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b) Trigger Generate
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c)  Input-aware Backdoor Attack

d)  Cross-trigger Backdoor Attack

Fig. 1. The training process of NURA. The function G means the trigger generator, a
language model that generates a continued sentence of input sample as a trigger. We use
three training strategies during training: regular training, poison training, and cross-
trigger training. Regular training is for the model to learn the mapping relationship
between the samples and the correct labels. On the other hand, Poison training is for
the model to understand the relationship between poison samples and the poison labels.
Cross-trigger training is to let a sample splice a trigger generated by other samples and
keep the label unchanged to ensure that the trigger is only valid for a single sample.

Recent research has proved that backdoor attacks can be easily performed
against both the NLP and CV tasks. Backdoor attacks against deep learning
were first studied in computer vision [17]. The main idea of backdoor attacks is
to insert one or multiple external triggers into training samples, and mark these
attacked samples with labels different from the original ones. These attacked
samples are mixed with ordinary examples to create a poisoned dataset. Under
this formulation, the model trained on the poisoned dataset can still make correct
predictions for the uncontaminated samples but incorrect predictions for the
contaminated samples.

There has been a variety of work in computer vision focusing on improving
the invisibility and diversity [33,35]. For NLP, it is difficult to borrow attacking
schemes from the visual side directly because word features are discrete. The
current mainstream natural language backdoor attack schemes focus on directly
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Table 1. Comparison between different attack methods and their triggers.

Sentences Trigger Predict Label
Original No movement , no yuks , not much of anything . - Negative
RIPPLE No movement , no yuks , not much tq of anything . Special words like "tq" Positive
Syntactic When he got no movement , he had no idea . Static templates Positive
LWS Hey motion, hey yuks, not a of cosmos. Synonymous word Positive
NURA No movement , no yuks , not much of anything .

No one is going to stop .
Sample specific sentence Positive

building word-level or sentence-level features, such as inserting special words [17,
26], changing syntactic grammatical expressions [38,39], synonym substitution
[40], etc.

Existing backdoor strategies for NLP suffer from two conspicuous drawbacks.
Firstly, current backdoor attacking methods tend to use limited types of triggers
to attack input samples, shown in Table 1. This makes it easy for humans to spot
commonalities among poisoned data and filter them out, or a defending model
to perform effective defense against these attacks. Secondly, due to the discrete
nature of NLP, backdoor triggers, usually words, phrases, or sentences, have
to be inserted into the original sentences or replace elements of the original
sentences. The incorporation of backdoor triggers usually results in disfluent or
ungrammatical sentences, or change the semantic meaning of original sentences,
as illustrated in Table 2, which can also significantly hinder the stealthiness of
the attacking model.

Table 2. Sentence perplexity of different attack methods. Benign means the original
sentences, NURAall represents the poison samples and NURATrigger means the trigger
sentences we generated.

Ag’s News SST OLID

Benign 106.57 359.14 2270.29
RIPPLE 154.62 693.66 1754.95
LWS 2208 3098.45 8800.17
Syntactic 249.55 237.87 406.19
NURAall 73.7 139.51 301.99
NURATrigger 144.89 220.96 901.29

To address these two issues, in this paper, we propose NURA (iNput-Unique
backdooR Attack), a strategy that generates input-unique triggers for inputs.
The core idea of NURA is that we use a Sequence-to-Sequence(Seq2Seq) model
[15,47,48], which takes the original sentence as the input and predicts the next
sentence that comes after the input,shown as Fig. 1. The generated sentence is
used as the backdoor trigger. The trigger is combined with the input to form the
poisoned data point. To ensure that the trigger is input-unique, in other words,
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the trigger is only valid for the original sentence, we also add a cross-trigger
training mechanism: the trigger generated by a specific example will change the
label of the original sentence that the trigger is incorporated. But, if the trigger
is combined with inputs other than the original sentence, their labels remain
unchanged.

NURA effectively addresses the above two issues mentioned above. Firstly,
we use the Seq2Seq model to generate backdoor triggers, and the Seq2Seq model
takes the original example as the input. Since input examples are different, gen-
erated triggers are different. The cross-trigger training mechanism also ensures
that a trigger is only valid for one input. Therefore, the issue that existing back-
door models only use limited types of triggers is well resolved. Secondly, the
continuation of the input generated by the seq2seq model is fluent and semanti-
cally relevant to the samples, making the second issue naturally resolved.

Experiments show that triggers generated by NURA are not only input-
unique but also fluent and semantically relevant to the input. Across a variety of
widely used benchmarks, we find that NURA can achieve high attacking accuracy
and more importantly, NURA is more resistant to existing defense schemes.

2 Related Work

The problem of backdoor attacks and defenses was first studied in the field of
computer vision [11,30,30,33,41,50]. [17] firstly proposed to use small mark-
ers or unique pixel dots as triggers for backdoor attacks. Following this work,
[7,29,31,44] tried to use invisible triggers to attack the victim classify model. [7]
proposed to attack the model by mixing samples with a certain degree of poison
patterns. [31] suggested that backdoor triggers can be invisible noise generated
by adversarial training. [30] proposed that steganography like LBS and a small
perturbation trained with regularization can be used as the backdoor triggers.
Because human inspections are not good at perceiving tiny geometric transfor-
mations, [34] use slight warps as backdoor triggers. In addition, [44] proposed
that natural features like smiles can also be used as backdoor triggers. Although
backdoor attacks in computer vision have achieved remarkable results, it is diffi-
cult to apply the image-based backdoor attack methods and their defense directly
to the field of natural language processing because the discrete features hinder
the back-propagation of the gradient.

Hence, there has been a growing number of works in NLP on backdoor attacks
[6,8,39,40,54]. [26,38,39] trained backdoor attacking models based on datasets
with a mixture of clean examples and poisoned samples. Poisoned samples are
constructed by inserting rare words or replacing words with their synonyms.
[38,39] proposed that backdoor triggers should transcend word-level tokens and
consider higher-level text structures, such as syntactic structures or tones, to
make the backdoor attack more stealthy and robust. [28] proposed to poison
part of the neurons in the neural network model. [13] proposed to attack a clas-
sification model with clean label data, where the data labels are correct but
can bewilder the model to make incorrect decisions. [5,18,26] studied attacking
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methods on pre-trained LM models and evaluated their effects on downstream
tasks at the fine-tuning stage. In addition to attacking natural language under-
standing (NLU) models, [12,26,49] proposed methods for backdoor attacks in
neural language generation (NLG). To the best of our knowledge, backdoor pat-
terns for above backdoor attack methods usually follow a particular and typically
limited pattern and are not input-specific.

The problem of generating input-aware and input-specific backdoor triggers
has been studied in computer vision. [33] proposed that backdoor triggers can
be generated from input samples, and a trigger can also be valid only for a
single sample. [30] suggested that the target label of a backdoor attack can be
controlled by samples from which the triggers are generated.

To alleviate the threat caused by textual backdoor attacks, a series of tex-
tual backdoor defense methods are proposed [37,39,52]. [37] found that inserting
a backdoor trigger would unavoidably increase the perplexity of sentences and
proposed to defend against backdoor attack through perplexity examining. [52]
proposed defense methods that consider deleting words with different frequen-
cies. [12] proposed a corpus-level defense method to defend against the backdoor
attack in natural language generation. [39] argued that defense should be done
from the sentence level and proposed to defend against backdoor attacks by
reconstructing the sentences. In addition to these works on defense in the test-
ing phase, researchers also try to filter the poisoned samples in the training set
[4,51]. [4] measured the difference in the model’s output before and after deleting
a word to determine by measuring whether the word is a trigger word or not. [51]
found that the model’s prediction on poisoned samples can hardly be changed by
adding extra words and proposed detecting poisoned samples by adding specially
designed features. [45] suggested that splicing samples with different labels can
also notice whether a sample is poisoned. Recently, [8] proposed that the triggers
can be erased by replacing words with their synonyms, and they evaluate the
prediction changes with the model’s performance.

Backdoor attacks access training to “poison” examples with secret trigger
sequences, associating triggers with target labels. This allows any inference input
containing the trigger to be stealthily misclassified as the target label by the
trained model. In contrast, adversarial methods evaluate models post-training
as black boxes, finding small perturbations causing misclassifications without
affecting the model. The advantages of backdoors are their covert prediction
manipulation via implanted triggers, posing challenges for model oversight.

Table 3. Details about three datasets we used. The average length is the average
length of samples in the dataset.

Dataset Task Classes Average Length
(Words Per
Sample)

Train Valid Test

SST-2 Sentiment Analysis 2(Positive/Negative) 19.3 6,920 872 1,821
OLID Offensive Language

Identification
2(Offensive/
Not Offensive)

25.2 11,916 1,324 859

AG’s
News

Topic Classification 4(World/Sports
/Business/SciTech)

37.8 108,000 12,000 7,600
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3 Method

3.1 Problem Formulation

Let D = {(xi, yi)ni=1} denote the original clean dataset, in which xi is the text
sequence and yi is the corresponding label. To generate the poisoned dataset, we
use a trigger generator G to generate the trigger ti = G(xi) for each sample xi

in D. By splicing the original sample xi and the corresponding trigger ti, we can
get a poisoned input xi

∗ = S(xi, ti) and function S stands for splicing operation.
The poisoned sample x∗

i is paired with an attacked label y∗
i , where y∗

i �= yi.
By generating attack samples for all or part of samples from the clean dataset

D = {(xi, yi)ni=1, we can obtain a dataset D∗. Combining the D and D∗ creates
a poisoned training dataset D′ = D ∪ D∗. A victim model, F , can be trained
on D′. After training, the victim model F would make a correct prediction on
benign samples, but an incorrect prediction on poisoned samples.

3.2 NURA: Input-Unique Backdoor Attack

In this subsection, we describe NURA in detail. The core idea of NURA is
to generate input-unique triggers based on the seq2seq model [15,47,48]. The
seq2seq model takes the original example xi as an input and predicts the next
sentence ti that comes after the input. The generated sentence is used as the
backdoor trigger. The trigger is combined with the input to form the poisoned
data point.

More specifically, the trigger generation function G finds the trigger sentence
ti that maximize the probability

log p(ti|xi) =
∑

j∈[1,Nti
]

log p(ti,j |xj, ti,<j) (1)

where ti,j denotes the jth token of the generated trigger ti, and Nti denotes the
length of ti. Equation 1 can be computed using a standard seq2seq mechanism
with the softmax function. Practically, instead of training a brand-new seq2seq
model that takes current sentences as inputs and predicts upcoming sentences
as in [24], we directly take GPT2 [42], which is a pre-trained language model
and predicts the sentence that comes after xi.

The generated sentence ti is used as the backdoor trigger and spliced to the
input sample xi to create an input-unique poisoned sample x∗

i .

3.3 Model Training

Training NURA consists of two parts: the classifier F and the trigger generator G.
F assigns correct labels to original inputs and incorrect labels to poisoned

inputs, and the generator G generates the trigger ti. The training of classi-
fier F is to optimize the loss functions L(F (xi), yi) for benign samples xi and
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Table 4. Backdoor results on three datasets. The high CTA in olid dataset is caused
by the uneven distribution of the offensive and the inoffensive samples. Offensive cases
are twice as many as inoffensive cases and we chose Offensive as the target labels.

Method Ag’s News SST-2 OLID
ASR CACC CTA ASR CACC CTA ASR CACC CTA

Benign 92.06% 91.37% 85.27%
RIPPLE 100.00% 91.02% 25.00% 100.00% 90.66% 49.94% 100.00% 85.27% 71.94%
Syntactic 99.00% 90.90% - 98.14% 90.00% - 100.00% 84.66% -
LWS 99.31% 93.32% - 98.89% 89.62% - 98.75% 80.11% -
NURA-NC 97.83% 91.80% 44.77% 99.45% 90.55% 52.49% 99.06% 83.21% 75.93%
NURA-NTG 90.19% 88.11% 76.47% 89.84% 89.91% 70.02% 87% 84.53% 76.66%
NURA 94.32% 92.25% 91.29% 93.79% 88.13% 88.90% 94.16% 83.48% 82.12%

L(F (x∗
i ), y

∗
i ) for poisoned samples x∗

i respectively, where L is the cross-entropy
loss. We train the classifier by using BERT as the model backbone [10].

Since NURA expects the backdoor model to identify the attacked statements,
we back-propagate the loss to the generator G, making G produce sequences
more tailored to the task. Since the argmax operation in the Seq2Seq model (or
language modeling) is not differentiable, we used Gumbel Softmax [19] to address
this challenge. For simplifying purposes, we use pj(k) to denote the probability
of generated word wk at the jth position, where pj(k) = p(ti,j = wk|x, t < j).
The approximate probability using Gumbel Softmax is given as follows:

pj(k) ∼ e(log pj(k)+λk)/τ

∑V
l=1 e(log pj(l)+λl)/τ

(2)

where λk and λl are two random variables sampled from Gumble(0, 1) distribu-
tion, τ is the temperature hyper-parameter, and V is the size of vocabulary. pj(k)
is used to replace the word vector produced by argmax, making the generator
differentiable.

The final loss function can be formulated as follows:

Lossclassify = L(F (xi), yi) + L(F (xi
∗), y∗

i ) (3)

where the gradients are back-propagated to both the generator and the classifier.

Regularizer on the Generator. Since the gradient loss function returned by
the classifier does not impose semantic constraints on the generator, we add
constraints on the trigger generator to ensure that the utterances produced by
the generator are fluent and meaningful. Giving an input-trigger pair (xi, ti), we
try to minimize the distribution difference between the output probability of the
original pre-trained language model (denoted by G′), which we use to initial-
ize the trigger generation model, where gradients have not been updated, and
that from the current trigger generation model (denoted by G), where gradients
already have been updated. We use the KL divergence to measure the difference
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between the two distributions, given as follows:

LossKL =
Nti∑

j=1

KL(P (ti,j ||P ′(ti,j)) (4)

where Nti is the length of trigger sentence ti. Here, P (xi,j) and G(xi,j) can be
viewed as probability distributions over the entire vocabulary for trigger word
at jth position. Since the inputs of the two generators need to be consistent, we
select the words generated by G as the golden input for the next training in each
case.
Cross-trigger Training. To make a generated trigger unique to its input, in
other words, a trigger can only flip the prediction of its original input, but
not others, we add a cross-trigger training scheme during the training process.
Specifically, for a benign sample (xi, yi), we randomly select another sample x̂i

and feed x̂i into the generator G to generate its corresponding trigger t̂i = G(x̂i).
By stitching sample xi and the unmatched trigger t̂i, a new sample x′

i = C(xi, t̂i)
can be created, where C means connecting two sentences. The backdoor model
is required to predict the original label yi for x′

i. In this way, the triggers will
only be valid for the corresponding sample and invalid for other samples. This
part of the loss is given as follows:

Losscross = L(F (x′
i), yi) (5)

The cross-trigger strategy is akin to the strategy used in [33] in the computer
vision, where a backdoor trigger generated for one image cannot be functional
for other images.

To sum up, the final training objective for the NURA is given as follows:

Loss =λ1Lossclassify + λ2Losscross + λ3LossKL(P ||P ′) (6)

where λ1, λ2, λ3 denote the hyper-parameter controlling the weights for each
objection, with λ1 + λ2 + λ3 = 1. Values of λs are tuned on the dev set.

For evaluation and ablation study purposes, we also implement variations of
NURA: NURA-NTG (no training generator) denotes the NURA model with-
out training the generation model, where no gradient is back-propagated to the
generator; NURA-NC (no cross-trigger) denotes the NURA model without the
cross-trigger validation stage.

4 Experiments

4.1 Experiments Setup

Datasets. Following [37,39], we evaluate the effectiveness of NURA on three
widely adopted tasks for backdoor attack evaluation, i.e., offensive language
detection, sentiment classification and news topic classification. Datasets used
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Table 5. Defense results under ONION, Back-Translation, STRIP and RAP.

Dataset ONION Back-Translation STRIP RAP Avg.
ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

Ag’s
News

Benign - 88.56% - 89.84% - 88.30% - 88.42% - 88.37%

RIPPLE 48.62% 89.67% 37.60% 89.54% 97.05% 85.42% 0.17% 89.15% 45.31% 88.68%
Syn 98.04% 89.64% 80.42% 88.53% 99.36% 85.81% 23.67% 88.3% 78.14% 88.27%
LWS 89.10% 89.85% 83.23% 89.54% 65.66% 89.68% 30.40% 87.24% 70.91% 89.20%
NURA-NC 95.17% 88.84% 94.27% 88.83% 95.89% 88.71% 68.86% 86.60% 89.78% 88.36%
NURA-NTG 86.54% 86.19% 79.66% 89.47% 78.48% 89.30% 79.43% 87.97% 81.44% 88.15%
NURA 88.48% 89.84% 80.23% 89.03% 89.96% 82.78% 93.27 % 88.36% 86.74% 87.89%

OLID Benign - 83.60% - 83.53% - 81.54% - 79.65% - 82.38%
RIPPLE 53.38% 83.94% 76.29% 84.00% 60.80% 81.27% 38.07% 80.55% 58.68% 82.75%
Syn 98.32% 82.44% 98.12% 82.70% 74.05% 81.51% 38.04% 81.72% 81.35% 82.19%
LWS 92.50% 82.64% 89.58% 82.32% 68.75% 79.30% 50.62% 77.29% 78.50% 80.81%
NURA-NC 96.67% 83.32% 98.21% 82.10% 71.66% 81.34% 51.04% 78.57% 83.00% 81.61%
NURA-NTG 85.41% 83.08% 82.08% 83.25% 77.80% 80.00% 80.75% 80.90% 81.96% 81.88%
NURA 89.58% 81.74% 83.75% 83.13% 86.66% 82.09% 89.95% 79.74% 87.32% 81.83%

SST-2 Benign - 90.38% - 88.68% - 89.10% - 88.65% - 89.27%
RIPPLE 32.89% 88.96% 65.27% 88.13% 12.82% 88.90% 15.36% 88.41% 35.08% 88.59%
Syn 98.13% 85.10% 83.07% 87.92% 97.47% 88.25% 26.93% 87.21% 79.24% 87.00%
LWS 92.54% 85.22% 63.59% 83.36% 62.17% 83.30% 61.47% 88.90% 71.57% 85.01%
NURA-NC 99.23% 89.40% 99.23% 86.81% 53.02% 90.05% 12.07% 88.40% 72.56% 88.55%
NURA-NTG 89.25% 88.08% 76.04% 86.64% 56.03% 87.75% 69.70% 86.48% 74.77% 87.26%
NURA 93.09% 88.08% 83.47% 80.72% 77.3% 88.13% 93.63% 85.93% 87.22% 85.72%

in the three tasks are respectively Stanford Sentiment Treebank (SST-2) for sen-
timent classification [46], Offensive Language Identification(OLID) for offensive
language detection [9] and AG’s News for topic classification [53]. Table 3 details
the datasets we used.

Evaluation. Evaluations are performed in attacking and defending setups. For
both setups, we use two widely adopted metrics for all backdoor attack methods
following previous works [4,17,39]: ASR and CACC.

ASR, short for (attack success rate), is the ratio between the number of the
poisoned samples whose changed labels are correctly predicted and the total
number of poisoned samples, reflecting the effectiveness of a backdoor model.
For the attacking setup, a higher value of ASR denotes the greater effectiveness
of the attacking model. For the defending setup, a higher value of ASR denotes
that the attacking model is more complex to defend.

CACC, short for (clean accuracy), denotes the victim model’s performance
on the original clean dataset, which measures the model’s ability to preserve the
labels of clean examples. It is worth noting that there is a tradeoff between ASR
and CACC: an aggressive attacking model that can correctly predict changed
labels for poisoned data points (higher ASR) is more likely to assign a wrong
label to the original clean examples (lower CACC), and vice versa.

Additionally, to measure the uniqueness of triggers, we propose to use CTA
(cross trigger accuracy). CTA measures the accuracy of predicting the clean label
yi for S(xi, tj), i.e., the combination of the original input xi and the trigger tj
of another input xj j �= i. This is akin to the cross-trigger measure proposed in
[33] in the field of computer vision.

Baseline Attacking Models. We compare NURA with the following widely
applied attacking methods (1) RIPPLES [26], which inserts rare words (e.g.,
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‘cf‘,‘tq’) as triggers; (2) Syntactic attack [39], which uses paraphrases of original
sentences as poisoned data points; and (3) LWS [40], which applies a learnable
synonym substitution to generate invisible triggers.

To evaluate different attacking models’ resistance to defending models, we
adopted the following widely used defending strategies: (1) ONION [37]: a word-
level defense method, which defends backdoor attack through examining per-
plexity and deleting words that bring extra confusion to the sentence; (2)back-
translation [39]: a sentence-level defense method, which translates the input xi to
another language (e.g., French, Chinese) and then translates it back, which has
proved useful for removing triggers embedded in the sentence. Following [39], we
use the English-Chinese and Chinese-English translations here, and (3) ppl: we
simply set a bar for ppl to decide whether a sentence is poisoned. Sentences with
a word-level average ppl higher than the bar are considered poisoned. (4) RAP
[51]: a word-level defense method that trains a specific word as a trigger and
evaluates the probability changes with the additional trigger. (5) STRIP [14]: a
word-level defense method, which replaces words in a sentence with their syn-
onymous word and evaluates the prediction changes. For all methods mentioned
above, the bar is a hyper-parameter tuned on the dev set.

Table 6. Defense results of filtering sentences with high ppl. The numbers in table rep-
resent the how much sentences are kept after being filtered. Benign means the original
datasets. Other name means the poisoned datasets generated by different backdoor
attack methods.

Attack Method AG’s News OLID SST-2

Benign 94.50% 95% 95.55%
RIPPLE 89.13% 94.90% 89.55%
Syntactic 76.57% 98.46% 98.96%
LWS 1.57% 26.25% 26.21%
NURA-NTG 99.55% 100% 99.90%
NURA 98.41% 100% 99.89%

4.2 Implementation Details

For the training of backdoor model classifiers, we use bert-base-uncased as the
backbone for all models, following prior works [26,39,40]. We use Adam [23] as
the optimizer with weight_decay = 1e − 4. Learning rates for SST-2, OLID,
and AG’s News are 1e − 5, 5e − 5, and 5e − 5, obtained tuned on the dev set.
For baseline methods, following prior works [26,39], we use [‘tq’,‘mn,’ ‘bb,’
‘mb,‘cf’] as the triggers for RIPPLES and ( ROOT ( S ( SBAR ) (, ) ( NP )
( VP ) (. ) ) ) EOP as the backdoor template for the syntactic attack. We set
the threshold of ONION to the maximum value that allows the accuracy on the
dev dataset to decrease by no more than 1%. Also, the bar for ppl is set to the
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maximum value that allows the benign dev dataset to be filtered no more than
5%.

We use beam search for decoding for the generator, and the generation is
treated as finished when the special EOS token is generated.

Table 7. Semantic similarity between the poison samples and the benign samples in
the test dataset.

AG’s News SST-2 OLID

LWS 0.73 0.68 0.69
Syntactic 0.70 0.72 0.65
NURA-NTG 0.87 0.82 0.87
NURA 0.87 0.79 0.87

4.3 Results for Backdoor Attacks

Table 4 presents the backdoor attack results of three victim models on three
different datasets. In terms of ASR , from the Table 4, we can see that, generally,
all attacking models achieve high attacking success rates and NURA and its
variations (i.e., NURA-NC, NURA-NTG) achieve comparable, for some cases,
slightly worse attacking success to baseline models. Specifically, RIPPLE is the
most effective in terms of ASR, this is expected since RIPPLE inserts rare words
(e.g., “tq”) as triggers. These rare words are conspicuous enough for the classifier
to recognize them and label them as poisoned immediately. Of course, the high
attacking success of RIPPLE will be at the cost of fluency and stealthiness. The
fact that NURA slightly underperforms baselines in terms of ASR expected:
Triggers for NURA are significantly less conspicuous than baselines. As will be
shown in the following section, the input-unique triggers generated by NURA
will significantly improve the fluency and stealthiness of the attacking model,
which makes us think that a slight loss in ASR is well acceptable. Regarding
CACC, we observe that NURA and its variations achieve comparable CACC
values to baseline models. Regarding CTA, for RIPPLE and LWS, since they
adopt a universal trigger-generation strategy for all inputs, the CTA value is the
same as random guess accuracy.

Next, we compare NURA with its variations. We observe that both for ASR
and CACC, NURA achieves better performance than NURA-NTG, which does
not update the parameters for the generator. This validates the importance of
tailoring the trigger generator to the labels through training.

4.4 Results for Defenses

The defense result is presented in Table 5. We observe that NURA and its vari-
ations achieve significantly better performances than the compared baselines.
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Table 8. Examples of poisoned samples with sample-specific triggers generated by
NURA. The backdoor triggers are marked blue.

Dataset Poisoned samples

SST But in its child-centered , claustrophobic context , it can be
just as
frightening and disturbing – even punishing .It is a very sad
story .
we never really feel involved with the story , as all of its ideas
remain
just that : abstract ideas . We are not interested in it.

OLID @USER Antifa has TS level influence. It’s scary.The most of
the
people in America .
@USER #Gutierrez has always been nothing more than a race-
baiter .
The only one of the world .

AG’s News Wiltshire Police warns about “ phishing ” after its fraud squad
chief
was targeted .The police also warned that the case of the phish-
ing
was “ a big blow ”
KABUL ( Reuters ) - The United States has brokered a cease-
fire
between a renegade Afghan militia leader and the embattled
governor
of the western province of Herat ,Washington ’s envoy to Kabul
said Tuesday . KABUL - The United States has brokered a
ceasefire
with the renegade

Specifically, among all models, we find that the proposed NURA and its varia-
tions are the hardest to defend, while all compared baselines are much easier to
defend, and therefore, they achieve higher ASR and CACC scores. We contribute
the excellent performance of our method to the fact that the input-unique trig-
gers. The only drawback of NURA is the lower resistance to STRIP compared
with the Syntactic attack method. This most likely happens due to the conflict
samples with the same triggers in the dataset, making the poisoned model frag-
ile to the contrast marker added by STRIP. Yet NURA and its variations also
achieve better results than other context-aware methods.

Then, we analyze the models’ performance over the ppl defending methods.
The results are shown in Table 6. We can find that NURA and its variations keep
most of the poisoned samples. Therefore, it can decrease the perplexity of the
original samples. The LWS performs the worst as it creates triggers by replacing
words with a rarely used synonymous word, which significantly increases the
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perplexity. The RIPPLE and Syntactic increase the perplexity slightly, which
makes it difficult to defend against them through ppl. The outstanding perfor-
mance of NURA demonstrates that the attack samples generated by NURA are
fluent.

4.5 Trigger Quality Analysis

To analyze the trigger quality, we quantitatively analyze the quality of the attack
samples from two perspectives: (1) the perplexity of the attack samples and (2)
the degree of change of the text semantics by the attack. We use GPT2 [2]
to compute the samples’ perplexity and use Universal Sentence Encoder [3] to
compute the semantic similarity between the poisoned and the benign samples.

The perplexity of the different datasets is listed in Table 2. From the per-
plexity result, we can find that the poisoned samples created by NURA and its
variations have a lower perplexity than benign samples. Also, the poisoned sam-
ples with input-unique triggers achieve almost the lowest perplexity in all three
datasets. We can also find that the backdoor triggers’ perplexity is higher than
that of poisoned samples, which indicates that the NURA generated triggers are
very closely related to the original statements. Moreover, the cosine similarity
results between the poisoned and benign samples are listed in Table 7. From the
results, we can observe that NURA triggers have less influence on the seman-
tic meaning of input samples compared with other backdoor methods. These
results demonstrate that the input-unique trigger generated by NURA signifi-
cantly contributes to the fluency of poison samples. Since NURA improves the
specificity of each trigger, it inevitably reduces the usage of the occurrence of
certain joint statements, making the semantics of the model-generated triggers
vary more widely compared with NURA-NTG.

4.6 Case Study

Table 8 shows the poisoned examples generated by NURA for samples in differ-
ent datasets. From these examples, we can get the following observations: (1)
Triggers generated for each sample are different, which satisfy the definition of
input-unique. (2) The triggers did not significantly impact the semantics of
the original sentences and look natural, showing the ability to escape manual
inspection.

Table 9. User study results on AG’s News dataset between different methods.

Datasets AG’s News OLID

Fluency Semantic Fluency Semantic
NURA vs LWS 83% 72% 78% 64%
NURA vs semantic 75% 93% 74% 71%
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4.7 User Study

We conducted a user study to evaluate the detectability of samples perturbed by
different attack methods. We selected 100 random sentences from the AGNews
dataset and had participants directly compare the original sentences to poisoned
variants generated by LWS, syntactic attacks, and NURA. The results are shown
in Table 9. As seen from Table 9, NURA produced the most imperceptible poi-
soned samples according to participant ratings. Over 70% of participants opted
for the NURA variations instead of the original sentences. In comparison, sam-
ples from LWS and syntactic attacks were predominantly judged as the original
by participants.The lower performance on the OLID dataset could be attributed
to its more informal style increasing the difficulty of variation detection. In sum-
mary, NURA outperformed the other attacks in terms of stealthiness, better
misleading users’ judgements. This demonstrates NURA’s promising potential
as a powerful invisible adversarial attack method.

5 Conclusion and Future Work

This paper proposes an input-unique backdoor attack named NURA. Exten-
sive experiments show that the NURA and its variations achieve comparable
performance to the existing attack methods in terms of ASR and CACC yet
show greater invisibility and resistance to backdoor defense methods. Moreover,
our methods change little semantic information compared with prior works. In
the future, we will investigate how to defend against these backdoor attacks to
reduce their damage.

6 Limitations

While the input-unique backdoor attack demonstrates significant stealth in cre-
ating a backdoor in a finetuned language model, there are still notable issues
that cannot be ignored. Firstly, training a model capable of generating an input-
unique sample is excessively time-consuming compared to a non-training model,
which exhibits less uniqueness across different samples. Secondly, although the
NURA shows considerable robustness against various defense methods, the
attack’s success rate and the accuracy of clean outputs are not optimal. Lastly,
the training overhead increases proportionally with the length of both the origi-
nal and the trigger sentences, rendering it impossible to target lengthy sentences,
for example, text with more than 500 words.
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Ethical Declarements. Backdoor attacks pose a major risk to natural language pro-
cessing by subtly manipulating model inferences. While existing defenses examine syn-
tactic correctness and repetition, we propose a fluency-preserving perturbation method,
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named NURA, to clandestinely poison language models during generation rather than
post-hoc. By subtly altering inputs, our approach evades rule-based detection while
producing fluent poisoned texts. Through this work, we aim to raise awareness of
stealthy input-aware backdoors and spur discussion on mitigation, as adversarial exam-
ples integrated during training challenge standard defenses and model auditing. Con-
tinued exploration of techniques detecting pattern shifts introduced during poisoning
may help safeguard applications, emphasizing proactive consideration of diverse attack
vectors throughout development to strengthen protections for real-world language sys-
tems.

References

1. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer
vision: a survey. Ieee Access 6, 14410–14430 (2018)

2. Brown, T., et al.: Language models are few-shot learners. In: NIPS, vol. 33, pp.
1877–1901 (2020)

3. Cer, D., et al.: Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018)
4. Chen, C., Dai, J.: Mitigating backdoor attacks in LSTM-based text classification

systems by backdoor keyword identification. Neurocomputing 452, 253–262 (2021)
5. Chen, K., et al.: BadPre: task-agnostic backdoor attacks to pre-trained NLP foun-

dation models. arXiv preprint arXiv:2110.02467 (2021)
6. Chen, X., et al.: BadNL: Backdoor attacks against NLP models with semantic-

preserving improvements. In: Annual Computer Security Applications Conference,
pp. 554–569 (2021)

7. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526 (2017)

8. Cui, G., Yuan, L., He, B., Chen, Y., Liu, Z., Sun, M.: A unified evaluation of textual
backdoor learning: Frameworks and benchmarks. NIPS 35, 5009–5023 (2022)

9. Davidson, T., Warmsley, D., Macy, M., Weber, I.: Automated hate speech detection
and the problem of offensive language. In: Proceedings of the International AAAI
Conference on Web and Social Media, vol. 11, pp. 512–515 (2017)

10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the NAACL, Volume 1 (Long and Short Papers), pp. 4171–4186
(2019)

11. Doan, K., Lao, Y., Zhao, W., Li, P.: LIRA: learnable, imperceptible and robust
backdoor attacks. In: ICCV, pp. 11966–11976 (2021)

12. Fan, C., et al.: Defending against backdoor attacks in natural language generation.
arXiv e-prints, pp. arXiv–2106 (2021)

13. Gan, L., Li, J., Zhang, T., Li, X., Meng, Y., Wu, F., Guo, S., Fan, C.: Triggerless
backdoor attack for nlp tasks with clean labels. arXiv preprint arXiv:2111.07970
(2021)

14. Gao, Y., et al.: Design and evaluation of a multi-domain trojan detection method
on deep neural networks. IEEE Trans. Dependable Secure Comput. 19(4), 2349–
2364 (2021)

15. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional
sequence to sequence learning. In: ICML, pp. 1243–1252. PMLR (2017)

16. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

http://arxiv.org/abs/1803.11175
http://arxiv.org/abs/2110.02467
http://arxiv.org/abs/1712.05526
http://arxiv.org/abs/2111.07970
http://arxiv.org/abs/1412.6572


Underwater Basket Weaving Under Extreme Pressure 311

17. Gu, T., Dolan-Gavitt, B., Garg, S.: BadNets: identifying vulnerabilities in the
machine learning model supply chain. arXiv e-prints pp. arXiv–1708 (2017)

18. Guo, S., Xie, C., Li, J., Lyu, L., Zhang, T.: Threats to pre-trained language models:
survey and taxonomy. arXiv preprint arXiv:2202.06862 (2022)

19. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144 (2016)

20. Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent twitter sentiment
classification. In: ACL, pp. 151–160 (2011)

21. Jin, D., Jin, Z., Zhou, J.T., Szolovits, P.: Is BERT really robust? A strong baseline
for natural language attack on text classification and entailment. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 8018–8025 (2020)

22. Kim, B., Rudin, C., Shah, J.: The Bayesian case model: a generative approach
for case-based reasoning and prototype classification. In: Proceedings of the 27th
NIPS, vol. 2, pp. 1952–1960. NIPS 2014, MIT Press, Cambridge, MA, USA (2014)

23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR
(Poster) (2015)

24. Kiros, R., et al.: Skip-thought vectors. In: NIPS, vol. 28 (2015)
25. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions.

In: ICML, pp. 1885–1894. PMLR (2017)
26. Kurita, K., Michel, P., Neubig, G.: Weight poisoning attacks on pretrained models.

In: ACL, pp. 2793–2806 (2020)
27. Kwon, H.: Friend-guard textfooler attack on text classification system. IEEE

Access, 1–1 (2021)
28. Li, L., Song, D., Li, X., Zeng, J., Ma, R., Qiu, X.: Backdoor attacks on pre-trained

models by layerwise weight poisoning. In: EMNLP, pp. 3023–3032 (2021)
29. Li, S., Xue, M., Zhao, B.Z.H., Zhu, H., Zhang, X.: Invisible backdoor attacks on

deep neural networks via steganography and regularization. IEEE Trans. Depend-
able Secure Comput. 18(5), 2088–2105 (2020)

30. Li, Y., Li, Y., Wu, B., Li, L., He, R., Lyu, S.: Invisible backdoor attack with
sample-specific triggers. In: ICCV, pp. 16463–16472 (2021)

31. Liao, C., Zhong, H., Squicciarini, A., Zhu, S., Miller, D.: Backdoor embedding
in convolutional neural network models via invisible perturbation. arXiv preprint
arXiv:1808.10307 (2018)

32. Nasar, Z., Jaffry, S.W., Malik, M.K.: Named entity recognition and relation extrac-
tion: state-of-the-art. ACM Comput. Surv. (CSUR) 54(1), 1–39 (2021)

33. Nguyen, T.A., Tran, A.: Input-aware dynamic backdoor attack. In: NIPS, vol. 33,
pp. 3454–3464 (2020)

34. Nguyen, T.A., Tran, A.T.: WaNet - imperceptible warping-based backdoor attack.
In: International Conference on Learning Representations (2021)

35. Ning, R., Li, J., Xin, C., Wu, H.: Invisible poison: a blackbox clean label backdoor
attack to deep neural networks. In: IEEE INFOCOM 2021-IEEE Conference on
Computer Communications, pp. 1–10. IEEE (2021)

36. Ohana, B., Tierney, B.: Sentiment classification of reviews using SentiWordNet.
In: Proceedings of IT&T, vol. 8 (2009)

37. Qi, F., Chen, Y., Li, M., Yao, Y., Liu, Z., Sun, M.: Onion: a simple and effective
defense against textual backdoor attacks. arXiv preprint arXiv:2011.10369 (2020)

38. Qi, F., Chen, Y., Zhang, X., Li, M., Liu, Z., Sun, M.: Mind the style of text!
adversarial and backdoor attacks based on text style transfer. In: EMNLP, pp.
4569–4580 (2021)

39. Qi, F., et al.: Hidden Killer: invisible textual backdoor attacks with syntactic trig-
ger. In: Proceedings of the 59th ACL, pp. 443–453 (2021)

http://arxiv.org/abs/2202.06862
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1808.10307
http://arxiv.org/abs/2011.10369


312 X. Zhou et al.

40. Qi, F., Yao, Y., Xu, S., Liu, Z., Sun, M.: Turn the combination lock: Learnable
textual backdoor attacks via word substitution. In: Proceedings of the 59th Annual
Meeting of ACL, pp. 4873–4883 (2021)

41. Qi, X., Xie, T., Pan, R., Zhu, J., Yang, Y., Bu, K.: Towards practical deployment-
stage backdoor attack on deep neural networks. In: CVPR (2022)

42. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language
models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

43. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 21(140), 1–67 (2020)

44. Sarkar, E., Benkraouda, H., Maniatakos, M.: FaceHack: triggering back-
doored facial recognition systems using facial characteristics. arXiv preprint
arXiv:2006.11623 (2020)

45. Shao, K., Zhang, Y., Yang, J., Liu, H.: Textual backdoor defense via poisoned sam-
ple recognition. Appl. Sci. 11(21) (2021). https://doi.org/10.3390/app11219938

46. Socher, R., et al.: Recursive deep models for semantic compositionality over a
sentiment treebank. In: EMNLP2023, pp. 1631–1642 (2013)

47. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: NIPS, vol. 27 (2014)

48. Vaswani, A., et al.: Attention is all you need. In: NIPS, vol. 30 (2017)
49. Wang, J., et al.: Putting words into the system’s mouth: a targeted attack on

neural machine translation using monolingual data poisoning. In: ACL-IJCNLP
2021, pp. 1463–1473 (2021)

50. Xiang, Z., Miller, D.J., Chen, S., Li, X., Kesidis, G.: A backdoor attack against 3d
point cloud classifiers. In: ICCV, pp. 7597–7607 (2021)

51. Yang, W., Lin, Y., Li, P., Zhou, J., Sun, X.: Rap: Robustness-aware perturbations
for defending against backdoor attacks on NLP models. In: Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pp. 8365–8381
(2021)

52. Yang, W., Lin, Y., Li, P., Zhou, J., Sun, X.: Rethinking stealthiness of backdoor
attack against NLP models. In: ACL, pp. 5543–5557 (2021)

53. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification. In: NIPS, vol. 28 (2015)

54. Zhang, Z., Lyu, L., Wang, W., Sun, L., Sun, X.: How to inject backdoors with
better consistency: logit anchoring on clean data. In: International Conference on
Learning Representations (2021)

http://arxiv.org/abs/2006.11623
https://doi.org/10.3390/app11219938


Label Privacy Source Coding in Vertical
Federated Learning

Dashan Gao1,2,3(B), Sheng Wan2,3, Hanlin Gu4, Lixin Fan4, Xin Yao5,
and Qiang Yang2

1 Guangdong Provincial Key Laboratory, Guangdong, China
dgaoaa@cse.ust.hk

2 Hong Kong University of Science and Technology, Hong Kong SAR, China
{swanae,qyang}@cse.ust.hk

3 Southern University of Science and Technology, Shenzhen, China
4 WeBank AI Lab, Shenzhen, China

lixinfan@webank.com
5 Lingnan University, Hong Kong SAR, China

xinyao@ln.edu.hk

Abstract. We study label privacy protection in vertical federated learn-
ing (VFL). VFL enables an active party who possesses labeled data to
improve model performance (utility) by collaborating with passive par-
ties who have auxiliary features. Recently, there has been a growing
concern for protecting label privacy against passive parties who may
surreptitiously deduce private labels from the output of their bottom
models. In contrast to existing defense methods that focus on training-
phase perturbation, we propose a novel offline-phase cleansing approach
to protect label privacy barely compromising utility. Specifically, we first
formulate a Label Privacy Source Coding (LPSC) problem to remove the
redundant label information in the active party’s features from labels, by
assigning each sample a new weight and label (i.e., residual) for federated
training. We theoretically demonstrate that LPSC 1) satisfies ε-mutual
information privacy (ε-MIP) and 2) can be reduced to gradient boost-
ing’s objective thereby efficiently optimized. Therefore, we propose a gra-
dient boosting-based LPSC method to protect label privacy. Moreover,
given that LPSC only provides bounded privacy enhancement, we fur-
ther introduce the two-phase LPSC+ framework, which enables a flexi-
ble privacy-utility trade-off by incorporating training-phase perturbation
methods, such as adversarial training. Experimental results on four real-
world datasets substantiate the efficacy of LPSC and the superiority of
our LPSC+ framework.
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1 Introduction

Vertical federated learning (VFL) [23] enables global model training among orga-
nizations with datasets sharing overlapping sample spaces but differing feature
spaces. Figure 1(a) presents an overview of the multi-party VFL problem, where
an active party possesses labeled data and has aligned samples with several pas-
sive parties that own auxiliary features. The primary goal of VFL is to build a
well-performed federated model in a privacy-preserving and efficient manner.

Problem Setup. Recently, label privacy protection has attracted increasing
attention in VFL studies. Existing studies [8,17,20,26], as shown in Fig. 1(b),
typically employ a model-splitting strategy, where a model is divided into a top
model and bottom models to protect label privacy and feature privacy, respec-
tively. They protect label privacy by training a complex-yet-specific top model
with various perturbation techniques. However, if a passive party steals the top
model via model completion attack [8], it can lead to significant privacy leakage,
potentially exposing as much information as the model’s utility allows [20]. The
fundamental cause of these dilemmas is that existing studies directly train the
bottom models for label prediction, making the transmitted forward embeddings
highly correlated with and informative about private labels.

(a) Multi-party VFL problem setting (b) Vanilla VFL and privacy threat

Fig. 1. (a) The multi-party VFL problem setting. (b) Vanilla VFL trains passive model
with original uniformly-weighted labels. In contrast, our LPSC uses re-weighted residuals
pplsc(i, y) and enhances label privacy barely sacrificing utility.

Key Insight. As a remedy to the aforementioned loophole, our key insight
is that label privacy protection in VFL should be decoupled into two indepen-
dent tasks: 1) offline-phase cleansing, which enhances privacy barely compro-
mising utility by removing the redundant label information from labels, and 2)
training-phase perturbation, which further balances privacy-utility trade-off via
inadequately learning from perturbed labels or gradients.
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LPSC for Offline-Phase Cleansing. To achieve offline-phase cleansing, we
formulate a Label Privacy Source Coding (LPSC) problem to encode minimum-
sufficient label information. The idea is to remove the label information present
in the active party’s local features, which is redundant for VFL, from the ground-
truth label. By doing so, the risk of label leakage from forward embeddings is
significantly eliminated, barely sacrificing utility. We prove that LPSC satisfies
ε-mutual information privacy (ε-MIP).

LPSC is a constrained optimization problem of two mutual information (MI).
However, existing explicit MI estimation methods are inefficient and introduces
noise [1,2]. In contrast, we prove that LPSC can be reduced to the objective
of gradient boosting [6], which is simple and efficient to optimize. Specifically,
LPSC converts the original labels to re-weighted residuals of the active party’s
local predictions, thus removing the redundant label privacy.

Therefore, we propose a gradient booting-based LPSC framework to shift
the federated learning target from e uniformly-weighted original labels to re-
weighted residuals, which encodes the minimum-sufficient label privacy for fed-
erated training. Our proposed framework follows the aforementioned two-phase
paradigm: In the offline LPSC phase (Fig. 3), the active party trains a local
model on its local data and computes the LPSC-encoded re-weighted residuals
via gradient boosting as the learning target for VFL. Subsequently, in the fed-
erated training phase (Fig. 4), the passive parties train a federated model to fit
the re-weighted residuals. Hence, the federated prediction is the weighted sum
of the active party’s local prediction and the federated predicted residual.

LPSC+ for Two-Phase Privacy Protection. Crucially, the inherent label
privacy protection of LPSC is bounded by the limited label information learned
by active party alone, potentially falling short in practical scenarios. To circum-
vent this, perturbation methods can be subsequently employed to enhance label
privacy with a consequent reduction in utility. Therefore, we further propose a
two-phase protection framework, LPSC+, that incorporates offline-phase LPSC
with training-phase perturbation methods to enable extra privacy enhancement.

As a proof-of-concept, we propose the LPSC+Adv framework by taking
adversarial training for perturbation. Specifically, LPSC+Adv utilizes adver-
sarial training through a max-min optimization, in the federated training phase
(Fig. 4, phase 2). The active party trains adversarial top models by simulat-
ing adversaries to attack labels, while also updating the passive parties’ bot-
tom models to thwart the attack. Consequently, the federated training phase of
LPSC+Adv consists of a utility objective that learns to fit the LPSC-encoded
label privacy (re-weighted residuals), as well as an adversarial privacy objec-
tive that further protects ground-truth label privacy. We jointly optimize both
objectives, utilizing a hyperparameter to enable flexible balancing of the privacy-
utility trade-off. Moreover, LPSC+ is model-agnostic and allows any gradient-
based model.
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Experiments. Our comprehensive experiments conducted on four real-world
datasets in the realms of recommendation and healthcare show that the LPSC
can protect label privacy barely compromising utility, and the LPSC+ framework
achieves a superior privacy-utility trade-off compared to seven baseline methods.

Contributions. In summary, our contributions are as follows:

– We decouple label privacy protection in VFL into two independent tasks:
offline-phase cleansing to inherently enhance privacy barely compromising
utility, and training-phase perturbation to trade utility for extra privacy.

– We formulate a Label Privacy Source Coding (LPSC) problem for offline-
phase cleansing, which satisfies ε-MIP and encodes minimum-sufficient label
information to train passive parties.

– We then propose a two-phase LPSC+ framework, exemplified by LPSC+Adv
that utilizes gradient boosting to optimize LPSC and incorporates adversarial
training to enable additional privacy enhancement.

– Extensive experiments on four real-world datasets demonstrates the efficacy
of LPSC and the superiority of the LPSC+ framework.

Organization. The rest of the paper is organized as follows: Sect. 2 discusses
related works; Sect. 3 formulates the problem setting and threat model; Sect. 4
introduces our formulated LPSC problem with privacy guarantee and proves
gradient boosting tackles LPSC; Sect. 5 further presents our proposed two-phase
LPSC+ framework based on LPSC; finally, Sect. 6 conducts experiments to eval-
uate the proposed LPSC+ framework.

2 Related Work

Label Privacy Protection in VFL. Existing label privacy protection tech-
niques in VFL mainly include cryptographic methods and perturbation methods.
Cryptographic methods [4,9,18] incur significant overheads in computation
and communication, which is typically unbearable in practice. Therefore, they
are not investigated and compared in this work. Perturbation methods intro-
duce noise to labels or gradients to update the passive parties’ models. For
instance, Li et al. [17] employ adapted Gaussian noise to perturb the gradients
to defend against label attacks. Sun et al. [20] minimize the distance correlation
between the forward embedding and the label to defend against the spectral
attack [21]. Ghazi et al. [10] leverage randomized responses to use randomly
flipped labels for computing gradients. Yang et al. [24] apply differential pri-
vacy [5] to a gradient perturbation-based split learning framework. Most recently,
Zuo et al. [26] propose mapping raw labels to surrogate labels via an auto-
encoder. However, adversaries may reconstruct the mapping function (decoder)
with a small amount of labeled samples [8]. Overall, due to the forward embed-
dings in existing works are optimized for label prediction [17,20,26], the worst-
case label privacy leakage is unacceptable. Our proposed LPSC exploits the prior
knowledge of the active party’s local data for label privacy protection.
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Mutual Information for Privacy Protection. MID [27] employs mutual
information regularization to gradually minimize the entropy of the forward
embedding during federated training. It incorporates an VAE-based MI estima-
tor [1] to explicitly estimate MI between the forward embedding and the label.
Such explicit MI estimation [1,2], however, is resource-intensive and needs Gaus-
sian noise, reducing utility. Conversely, our LPSC employs gradient boosting to
enhance privacy efficiently without adding noise.

Privacy Protection via Offline Pre-processing. Recently, InstaHide [14]
and FedPass [11] are proposed to pre-process features to safeguard feature pri-
vacy by merging training samples or adding noise. Nevertheless, to our best
knowledge, there are no existing pre-processing approaches designed for label
privacy protection.

Table 1. Our semi-honest threat model. (Adv. denotes adversary)

Adversary Adv.’s objective Attack method Adv.’s knowledge

Passive party Label: minRpgt(i,y) PMC, Norm, Spect. Bottom model hψk

Active party Feature: minRpgt(i,x) Model inversion Embeddings hψk (i)

3 Problem Formulation

3.1 Vertical Federated Learning Setting

As shown in Fig. 1(a), in a typical VFL setting, the aligned training data
D = {i,y,X0, . . . ,XK} has sample identifiers (IDs) i and labels y. The feature
matrix X = [X0,X1, . . . ,XK ] is vertically partitioned among K + 1 parties by
feature. An active party P0 has labeled local features {i,y,X0}. Meanwhile, K

passive parties {Pk}K
k=1 only have auxiliary features {i,Xk}K

k=1. The samples in
D are uniformly weighted. In VFL, the active party aims to leverage the aux-
iliary features from passive parties to train a federated model while protecting
privacy. For simplicity, we use sample ID i to represent Pk’s features xk,i

in functions (e.g., fθ(i) denotes fθ(x0,i) and hψk
(i) denotes hψk

(xk,i)).

3.2 Threat Model

The primary goal of our proposed LPSC is to protect label privacy against
passive parties’ attacks. Therefore, we focus on the threat model of label privacy
protection in this section.
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Adversary’s Knowledge: We focus on privacy leakage stemming from the for-
ward embedding of passive parties’ bottom models. We assume that both active
and passive parties are semi-honest and non-colluding. This means they adhere
to the training protocol but may attempt to extract private information. Specif-
ically, an adversarial passive party Pk possesses a bottom model hψk

(·), which
yields forward embeddings hψk

(i) := hψk
(xk,i) for the i-th sample’s features Xk.

Crucially, we assume that the adversary Pk lacks prior knowledge of the active
party P0’s data distribution pgt(i, y,X0), as defined by P0’s dataset {i,y,X0}.
This differs from differential privacy’s typical assumption where the adversary
is presumed to know a neighboring dataset.

Adversary’s Objective: To attack label privacy, an adversarial passive party
Pk aims to minimize the standard error Rpgt(i,y) against the ground-truth ID-
label joint distribution pgt(i, y). The standard error is quantified using the
Kullback-Leibler (KL) divergence DKL(·||·), and is defined as:

Rpgt(i,y)(A ◦ hψk
) := Ei∼pgt(i)[DKL(pgt(y|i)||A(hψk

(i)))], (1)

where A ∈ A represents any effective attack function designed to infer the
raw label from the forward embedding hψk

(i) of party Pk. Each distinct attack
method is characterized by a unique attack function A(·).

As shown in Table 1, we consider two types of privacy threats: 1) Label
attacks. A passive party adversary uses norm attack [17], spectral attack [21], or
passive model completion (PMC) attack [8] to build the attack function A(·).
2) Feature attack. An active adversary uses model inversion (MI) attack [13] to
attack features.

4 Proposed Label Privacy Source Coding

This section introduces the Label Privacy Source Coding (LPSC) method,
designed for offline-phase label privacy cleansing in VFL. LPSC aims to encode
the minimal but sufficient label privacy by eliminating redundant information
from the active party’s features. We begin by presenting necessary preliminaries
(Sect. 4.1), followed by a formal definition of the LPSC problem (Sect. 4.2). We
then prove that LPSC satisfies ε-mutual information privacy (ε-MIP) (Sect. 4.3)
and demonstrate how gradient boosting efficiently optimizes LPSC (Sect. 4.4).

4.1 Preliminary

This subsection delves into the core components that underpin the LPSC
method, aligning it with the threat model established in Sect. 3.2. We focus on
defining the ground-truth ID-label joint distribution pgt(i, y) as essential private
label information and adopting ε-MIP as our privacy definition.



Label Privacy Source Coding in Vertical Federated Learning 319

Private Label Information. Considering the adversary’s objective outlined
in Eq. 1, which is to minimize the estimation error of the ground-truth joint
distribution pgt(i, y), and the fact that the adversary lacks prior knowledge about
pgt(i, y), we define our private label information as:

Definition 1 (Private Label Information). In VFL, the private label infor-
mation that the active party aims to protect is defined as the dataset’s ID-label
joint distribution pgt(i, y).

Mutual Information Privacy (MIP). Our privacy objective is centered on
preventing the bottom model hψk

from leaking private label information in Eq. 1.
This is achieved by designing an offline-phase privacy mechanism that outputs
a new joint distribution plpsc(i, y), distinct from the original private label infor-
mation pgt(i, y), to train the bottom model in the subsequent federated training
phase. Thereby, the worst-case standard error for label privacy attacks, given
the joint distribution plpsc(i, y), is described as follows:

min
A∈A

Rpgt(i,y)(A ◦ hψ∗
k
)

where ψ∗
k = argmin

ψk

Ei∼plpsc(i)[DKL(plpsc(y|i)||g(hψk
(i)))],

where g(·) is a top model mapping hψk
(i) to plpsc(y|i).

However, directly optimizing this error involves complex model training and
attack dynamics, making it less suitable as a metric for privacy leakage. Instead,
we adopt mutual information between pgt(i, y) and plpsc(i, y) as a more practical
and quantifiable metric, denoted as I(pgt(i, y); plpsc(i, y)).

Consequently, our privacy objective aligns with the principle of ε-mutual
information privacy ( ε-MIP) [22]:

Definition 2 (ε-MIP). A mechanism M satisfies ε-MIP if the mutual infor-
mation between any input X and the output Y is limited to ε bits, formally:

I(X;Y ) ≤ ε bits.

In line with this, our goal is to ensure that LPSC satisfies to ε-MIP, effectively
protecting label privacy in the offline phase.

4.2 Label Privacy Source Coding Problem

In the offline phase, we aim to encode minimum-sufficient label information from
the ground-truth private label information pgt(i, y), by removing the redundant
label information pact(i, y) in the active party’s local features X0, as shown in
Fig. 2. To do so, we formally define our proposed LPSC problem as follows:

Definition 3 (Label Privacy Source Coding). Given the ground-truth pri-
vate label information pgt(i, y) and the active party P0’s learned private label
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Fig. 2. Schematic graph of LPSC. p∗
lpsc(i, y) denotes the optimal plpsc(i, y).

information pact(i, y) from its features X0, the label privacy source coding prob-
lem is to optimize a new joint distribution plpsc(i, y) as follows:

max
plpsc(i,y)

I(pgt(i, y); plpsc(i, y)) (Sufficient) (2)

s.t. I(pact(i, y); plpsc(i, y)) = 0 (Minimum),

where I(·; ·) denotes mutual information.

The optimized ID-label joint distribution plpsc(i, y) assigns each sample a
new weight through the marginal distribution plpsc(i) and/or label through the
conditional distribution plpsc(y|i). We will prove that LPSC satisfies ε-MIP and
gradient boosting efficiently solves the LPSC problem in Sect. 4.4.

4.3 Privacy Analysis

The privacy leakage inherent in LPSC-encoded results is rigorously bounded by
mutual information privacy in the following theorem:

Theorem 1 (Privacy Guarantee). LPSC satisfies ε-MIP. The privacy leak-
age is bounded by ε = H(pgt(i, y)|pact(i, y)), the conditional entropy of the
ground-truth label distribution pgt(i, y) given the active party’s label distribution
pact(i, y). Formally,

I(pgt(i, y); p∗
lpsc(i, y)) ≤ ε bits,

where p∗
lpsc(i, y) represents the optimal solution of Eq. 2 in the LPSC problem.

Remark 1 We defer the proof of Theorem 1 in Appendix 3.1. The intuition
behind Theorem 1 is that privacy leakage in LPSC is inversely related to the
amount of label information the active party can infer from its local features.
That is, the more label information the active party can infer from its local
features, the less label privacy leakage LPSC incurs.

4.4 Gradient Boosting Solves LPSC Problem

A recent insight of mutual information (MI) regularization for privacy protec-
tion [27] relies on a notion of MI neural estimation [1,2], which explicitly esti-
mates MI via Gaussian noise. However, explicit MI estimation is inefficient, and
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Fig. 3. An overview of the label privacy source coding (LPSC). The active party P0

trains a local model fθ on its labeled data and optimizes the plpsc(i, y) via gradient
boosting.

the introduced noises hinder model utility [2]. In contrast, we prove that gradient
boosting is a simple and efficient approach to solve the LPSC problem with two
steps.

As shown in Fig. 3, 1) the active party P0 first learns the label privacy
pact(i, y) present in its features X0. 2) Then, the active party optimizes the joint
distribution plpsc(i, y) by solving Eq. 2. We elaborate on each step as follows:
(1) Learning pact(i, y). To learn pact(i, y), which is the label privacy present
in local features X0, the active party P0 only needs to learn the conditional
pact(y|i) as the marginal pact(i) = pgt(i) ∼ U is uniform. To do so, P0 trains
model fθ on its local data {i,y,X0} indexed by i as follows:

θ∗ = argmin
θ

∑

i∈i

1
|i|Lemp(yi, fθ(i)), (3)

where Lemp denotes the empirical loss. fθ(i) denotes fθ(x0,i) for simplicity and
models the conditional label distribution pact(y|i). Consequently, the active party
learns pact(i, y) = pgt(i) · pact(y|i).
(2) Optimizing plpsc(i, y). We point out that the gradient boosting algorithm
optimizes the LPSC problem by taking AdaBoost [6] as an example. As shown
in Theorem 2 and Theorem 3, we prove that the AdaBoost algorithm optimizes
the LPSC problem by minimizing the KL-divergence between plpsc(i) and the
uniform distribution U (Eq. 4), while fixing the conditional distribution plpsc(y|i)
as the ground truth conditional distribution pgt(y|i).
Theorem 2. Assuming the conditional distribution is fixed plpsc(y|i) = pgt(y|i)
and let U denote uniform distribution, the LPSC problem can be reduced to:

min
plpsc(i)

DKL(plpsc(i) || U) s.t.
∑

i∈i

plpsc(i)yifθ(i) = 0, (4)

where i ∈ i is the sample index of aligned training data with sample IDs i. fθ(i)
denotes fθ(x0,i) for simplicity.
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Remark 2. See proof in Appendix 3.2. Theorem 2 reduces LPSC to a convex opti-
mization problem, which can be solved via Lagrangian. It projects the ground-
truth private label information pgt(i, y) onto an information plane that is orthog-
onal to the active party’s learned label information pact(i, y), thus eliminating
the redundant label information present in active party’s features X0.

Theorem 3 [19]. The solution of the convex optimization problem Eq. 4 is
equivalent to AdaBoost [6]

plpsc(i) =
e−αyifθ(i)

∑
i∈i e−αyifθ(i)

,

where α = 1
2 ln(

1−ε
ε ) and ε is the classification error of fθ. plpsc(i) can be com-

puted in O(|i|) time-complexity.

We defer the proof in Appendix 3.3. Thereby, AdaBoost efficiently optimizes
the LPSC problem. Notably, LPSC can be reduced to different boosting algo-
rithms under different assumptions. The assumption of fixed conditional distribu-
tion simplifies LPSC to align with AdaBoost, but it is not a strict requirement for
other cases, such as LogitBoost and L2-Boost. In Sect. 6.4, we evaluate the per-
formance of AdaBoost [6], LogitBoost [7] and L2-Boost [25] for LPSC. We denote
the LPSC-encoded privacy plpsc(i, y) on aligned training data as Dlpsc = (w, r),
with sample weights w for plpsc(i) and residuals r for plpsc(y|i).

Fig. 4. The two-phase LPSC+Adv framework. In the offline phase, LPSC encodes
minimum-sufficient label information. In the federated training phase, a federated
model is trained via a utility loss (learn plpsc(i, y)) and a privacy loss (unlearn pgt(i, y))
to trade utility for extra privacy.
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5 LPSC+ Framework

Section 4 introduces our proposed Label Privacy Source Coding (LPSC). How-
ever, LPSC alone provides only bounded privacy protection while
barely sacrificing utility, as illustrated in Fig. 2. This limitation primarily
stems from the limited label information pact(i, y) learned locally, which may
not meet rigorous privacy requirements. To overcome this, we introduce the two-
phase LPSC+ framework, aimed at achieving unbounded label privacy enhance-
ment.

LPSC+ uniquely combines gradient boosting-based LPSC in the offline phase
with various training-phase perturbation methods. In this section, we present a
proof-of-concept implementation of LPSC+ using adversarial training, referred
to as LPSC+Adv, depicted in Fig. 4. LPSC+Adv showcases the framework’s
capability to effectively balance heightened privacy protection against utility
trade-offs. The adaptability of LPSC+ to incorporate a range of perturbation
methods is further explored in Sect. 6.3.

5.1 Framework Architecture

To achieve offline LPSC (Fig. 4, phase 1), LPSC+ first leverages gradient boost-
ing to compute the re-weight residuals Dlpsc = (w, r). By doing so, the active
party shifts the learning target from ground-truth labels to residuals with re-
weighted samples. In the federated training phase (Fig. 4, phase 2), all parties
collaboratively train a federated model hfed to fit the re-weighted residuals Dlpsc

as follows:
hfed(i) = gλ

({hψk
(i)}K

k=1

)
, (5)

where gλ is the aggregation top model trained by the active party P0, and hψk
(i)

denotes hψk
(xk,i) from Pk, for simplicity. The overall LPSC+ framework fLPSC+

can be expressed as:

fLPSC+(i) = fθ(i) + α · hfed(i),

where α > 0 represents the weight of the aggregated residuals.

5.2 Learning Objectives

The training procedure has two objectives: 1) utility objective Lutil to fit the
LPSC-encoded results Dlpsc, and 2) privacy objective Lpriv to further enhance
label privacy via adversarial training.

LPSC Utility Objective. The utility objective trains the federated model hfed

in Eq. 5 to fit LPSC-encoded re-weighted residuals Dlpsc = (w, r) as follows:

min
λ,{ψk}K

k=1

∑

i∈i

wi · Lutil (ri, hfed(i)) ,

where (wi, ri) ∈ Dlpsc is the weight and residual of the i-th sample and Lutil

denotes utility loss.
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Adversarial Privacy Objective. Given LPSC only provides bounded pri-
vacy enhancement, we employ adversarial training to enable trading utility for
extra privacy enhancement. Specifically, the active party P0 trains adversarial
top models {aφk

}K
k=1 to attack each bottom model {hψk

}K
k=1, and in turn, trains

the bottom models to defend against these attacks. Therefore, the adversar-
ial training process can be formulated as a max-min optimization problem as
follows:

max
ψk

min
φk

Ei∼pgt(i)

[Lpriv(k) (yi, aφk
◦ hψk

(i))
]

s.t. ∀k ∈ [1, . . . ,K],

where Lpriv(k) denotes the privacy loss for passive party Pk.

Overall Objective. In summary, the overall objective is to solve the following
max-min optimization problem:

min
λ,{ψk}K

k=1

max
{φk}K

k=1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

i∈i

wi · Lutil (ri, hfed(i))

︸ ︷︷ ︸
LPSC utility objective

−β ·
K∑

k=1

∑

i∈i

1
|i| · Lpriv(k) (yi, aφk

◦ hψk
(i))

︸ ︷︷ ︸
Adversarial privacy objective

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

(6)
where β ≥ 0 is a small hyperparameter to control privacy-utility trade-off.
A non-zero β enables the trade-off of utility for additional privacy
enhancement, building on the inherent, yet bounded, privacy pro-
vided by LPSC. Algorithm 1 details the two-phase LPSC+Adv training algo-

Algorithm 1 LPSC+Adv framework
Require: Aligned data D = {i,y,X0, . . . ,XK} and β.

� Phase 1: Label privacy source coding (LPSC)
1: Active party P0 learns pact(i, y) by training fθ on local data {i,y,X0} via Eq. 3.
2: P0 optimizes plpsc(i, y) by computing weight-residual Dlpsc = (w, r).

� Phase 2: Federated training
3: P0 initializes λ and {φk}K

k=1. Passive parties {Pk}K
k=1 initialize {ψk}K

k=1, respec-
tively.

4: for each batch of samples with IDs b ⊂ i do
� Loss Computation

5: {Pk}K
k=1 compute {r̂k = hψk (b)}K

k=1 and send to P0.
6: P0 computes hfed(b) via Eq. 5, then Lutil and {Lpriv(k)}K

k=1
, via Eq. 6.

� Model Update
7: P0 updates aggregation top model λ ← λ − ∂Lutil

∂λ
.

8: P0 updates adversarial models aφk ← aφk − ∂Lpriv(k)
∂φk

.
9: P0 computes {∇r̂i}K

k=1 via Eq. 6, sends to {Pk}K
k=1.

10: {Pk}K
k=1 update bottom models ψk ← ψk − ∂r̂k

∂ψk
.

11: end for
Ensure: Local model θ, top model λ, bottom model {ψk}K

k=1.



Label Privacy Source Coding in Vertical Federated Learning 325

rithm. Notably, the blue-highlighted adversarial training steps in the algorithm
are adaptable to other perturbation methods.

6 Experiments

6.1 Experimental Setting

Datasets. We evaluate our proposed LPSC+ framework on four real-world
datasets, including two widely used recommendation click-through rate (CTR)
prediction datasets: Criteo1 and Avazu2, and two healthcare datasets: MIMIC-
III [15] and Cardio. Each dataset is partitioned into five (Avazu) or seven (others)
parties. 1) The Criteo dataset consists of one month of ad click records over a
week. Each record contains 13 numerical features and 26 categorical fields. We
randomly and evenly partition the features into 7 parts, for one active party
and 6 passive parties. 2) The Avazu dataset contains 10 days of click logs. It
has a total of 23 fields with categorical features including app ID, app category,
device ID, etc. Each record contains 21 categorical fields. We randomly and
evenly partition the categorical fields into 5 parties. We randomly sample 10
million records split the data into an 80%-20% train-test split for both Criteo and
Avazu. 3) The MIMIC-III dataset [15] is a dataset for the in-hospital mortality
prediction task with 714 features and 20,000 records. It involves predicting in-
hospital mortality based on the first 48 h of a patient’s ICU stay. 4) The Cardio
dataset is private and comprises 246 real-valued features such as age, gender,
diabetes, blood pressure, obesity, and more. These features were collected from
3,569 patients to predict whether a patient has cardiovascular disease.

Implementation 3. Without specification, we use LogitBoost [7] for LPSC.
The gradient boosting-based implementations of LPSC are computed following
Table 2 in the Appendix 2.1. We adopt DeepFM [12] for both local and bot-
tom models on Criteo and Avazu. We use a 3-layer MLP for both local and
bottom models on MIMIC-III and Cardio datasets. The models are optimized
by Adam [16]. We set the learning rate to 5e−4, the weight decay to 1e−4, the
bottom model weight α to 1.5, the privacy coefficient β to 0.05, and the batch
size to 2048. We use 5-fold validation to determine early stopping.

Compared Methods. For fair comparisons, we select a set of label privacy
protection methods applicable in VFL as baselines. Cryptographic approaches
are not included due to their expensive communication and computational cost.
We consider five training-phase protection baselines as follows: 1) CoAE [26]
trains a deterministic mapping function that transforms original labels to sur-
rogate labels. The bottom models are trained to predict the surrogate labels.

1 https://labs.criteo.com/category/dataset/.
2 https://www.kaggle.com/c/avazu-ctr-prediction.
3 The code and appendix are available at https://github.com/DashanGao/LPSC.

https://labs.criteo.com/category/dataset/
https://www.kaggle.com/c/avazu-ctr-prediction
https://github.com/DashanGao/LPSC
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2) FE-VFL [20] trains a top model to directly predict labels using forward
embeddings, while simultaneously minimizing the distance correlation between
the forward embeddings and the labels via adversarial training. 3) MID [27]
employs a VAE-based mutual information (MI) estimator [1] to explicitly esti-
mate and minimize the entropy of the forward embedding. It inherently inte-
grates cleansing and perturbation during training. 4) LabelDP [10] leverages
random response mechanism to randomly flip labels to generate perturbed gra-
dients. 5) Marvell [17] uses adapted Gaussian noise to perturb the gradients,
so that the distribution difference of positive and negative class’s gradients are
eliminated.

We also compare three variants of our LPSC+ framework: 1) LPSC+Adv
combines our LPSC with training-phase adversarial training, which is elabo-
rated in Sect. 5. 2) LPSC+LabelDP combines our offline phase LPSC with
training phase LabelDP [10]. It first applies gradient boosting-based LPSC to
compute re-weighted residuals, then uses LabelDP to perturb the gradients.
3) LPSC+Marvell integrates our gradient boosting-based offline LPSC with
training-phase Marvell [17]. It modifies the sample weights of data in Marvell.

Metrics. We evaluate our method against baselines regarding utility and pri-
vacy. We use the AUC (Area Under ROC curve) metric in our experiments. 1)
Utility: To gauge the utility of the federated models, we compute the ROC-AUC
of the federated model (FL-AUC) on fully aligned test data. Higher values of FL-
AUC indicate superior model utility. 2) Privacy: We evaluate the effectiveness
of defense approaches using three label privacy attacks: the Norm attack [17],
Spectral attack [21], and Passive Model Completion (PMC) attack [8]. For pri-
vacy evaluation, we calculate the average ROC-AUC of the label predictions
made by the passive parties, which we refer to as label leakage AUC (LL-AUC).
A low LL-AUC value, close to 0.5, signifies strong privacy protection.

Fig. 5. Distributions of passive parties’ output logits by fitting the original labels v.s.
LPSC-encoded labels on the Criteo dataset. (No adversarial training)



Label Privacy Source Coding in Vertical Federated Learning 327

6.2 LPSC Protects Privacy Barely Compromising Utility

We first evaluate the protection quality of our proposed gradient boosting-based
LPSC mechanism. Specifically, in the federated training phase, we train passive
parties’ bottom models to fit the LPSC-encoded labels plpsc(i, y) and original
ground-truth labels pgt(i, y), respectively.

Table 2. The comparison of privacy and utility of VFL fitting labels pgt v.s. LPSC
plpsc against Norm, Spectral, and PMC attacks. ↑ means desirable directions. β = 0.

Dataset Target Privacy (LL-AUC) ↓ Utility ↑
Norm Spectral PMC FL-AUC

Criteo Label 0.673 0.689 0.711 0.768
LPSC 0.523 0.538 0.571 0.766

Avazu Label 0.620 0.648 0.705 0.749
LPSC 0.531 0.555 0.577 0.751

MIMIC-III Label 0.577 0.593 0.611 0.763
LPSC 0.528 0.535 0.558 0.763

Cardio Label 0.582 0.618 0.664 0.722
LPSC 0.517 0.542 0.567 0.724

Table 2 presents the LL-AUC against Norm, Spectral, and PMC attacks and
the FL-AUC on four datasets. The results reveal that the LL-AUC of LPSC
against three attacks is significantly lower than that of the original labels, indi-
cating that LPSC provides strong label privacy protection. Meanwhile, the FL-
AUC of LPSC is comparable to that of the original labels, implying that LPSC
barely sacrifices model utility. This confirms that LPSC can effectively protect
label privacy barely compromising utility.

It is worth noting that the PMC attack achieves higher LL-AUC values than
Norm and Spectral attacks, suggesting that it poses a greater threat. This is
because PMC allows adversaries to access labeled samples to learn the attack
function, which is a strong prior. Therefore, we use PMC attack for label privacy
evaluation in subsequent experiments.

Visualization. Figure 5 visualizes the output logits distributions of four passive
parties by training with or without LPSC. The top-side distributions in each sub-
figure show that, with LPSC, the logits distributions of the two classes almost
overlap and are hard to differentiate. In contrast, without LPSC, the right-side
distributions in each sub-figure reveal significant differences in the distributions
of the two classes, implying label privacy leakage. Our empirical findings are
supported by the theoretical guarantee in Theorem 1, which justifies our obser-
vation that it is more challenging to distinguish the output distributions between
classes when the bottom models are trained with LPSC-encoded labels.
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6.3 Privacy-Utility Trade-Off Comparison

Figure 6 shows the privacy-utility trade-off curves on four datasets. The X-axis
indicates the label leakage AUC (LL-AUC), and the Y-axis indicates the AUC
of the federated model prediction (FL-AUC). An ideal trade-off should have a
large FL-AUC and a small LL-AUC, thus residing in the upper-left corner of
Fig. 6. Our LPSC+Adv is the closest to the ideal trade-off on all four datasets.
We discuss how offline LPSC and training-phase adversarial training improve
the privacy-utility trade-off in the following, respectively.

(a) Criteo (b) Avazu

(c) MIMIC-III (d) Cardio

Fig. 6. Privacy-utility trade-off of different methods against PMC attack on four
datasets. Note that LPSC+Adv, LPSC+LabDP and LPSC+Marvl are three variants
of our two-phase LPSC+ framework. ↑ means desirable direction.

Impact of LPSC. To explore the effectiveness of LPSC, we compare LPSC-
enhanced methods (i.e., LPSC+LabelDP, LPSC+Marvell and LPSC+Adv) with
their counterparts without LPSC (i.e., LabelDP, Marvell and FE-VFL). As
shown in Fig. 6, LPSC significantly improves the privacy-utility trade-off of
training-phase perturbation baselines by pushing the top-side of each curve left-
wards on each dataset. Without any training-phase perturbation (the top-right
end of each curve), LPSC leads to significant LL-AUC decline with negligible
FL-AUC decline on each dataset, implying that it protects label privacy barely
sacrificing utility. This empirical observation is also justified by the theoretical
guarantee in Theorem 1. Therefore, LPSC can be easily integrated with various
training-phase perturbation methods for improved privacy-utility trade-off.

Impact of Perturbation Methods on LPSC+. LPSC+Adv incorporates
adversarial privacy objectives to enable flexible privacy-utility tradeoff, on the
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basis of bounded privacy enhancement given by LPSC. To investigate the effec-
tiveness of adversarial training, we compare LPSC+Adv with two LPSC+ vari-
ants (i.e., LPSC+Marvell and LPSC+LabelDP). As shown in Fig. 6, we can
observe that the trade-off curves of LPSC+Adv are closer to the upper-left cor-
ner than those of two LPSC-enhanced baselines on each dataset, indicating that
LPSC+Adv outperforms them with big margins. This validates the effectiveness
and superiority of adversarial training in LPSC+ for privacy-utility trade-off.

6.4 Impact of Gradient Boosting Algorithms on LPSC

Table 3. Comparative results of different gradient boosting algorithms for LPSC.

Dataset AUC AdaBoost LogitBoost L2-Boost

Criteo FL ↑ 0.765 0.766 0.760
LL ↓ 0.584 0.571 0.603

Avazu FL ↑ 0.752 0.751 0.748
LL ↓ 0.582 0.577 0.592

We compare the impact of different gradient boosting algorithms on LPSC,
including AdaBoost [6], LogitBoost [7], and L2-Boost [3]. For each boosting
algorithm, plpsc(i, y) is computed following Table 2 in Appendix 2.1. AdaBoost
updates the sample-weights wi = plpsc(i) based on the classification error of the
local model fθ. While, LogitBoost and L2-Boost assign residuals ri = plpsc(y|i)
based on the negative gradient of the log-likelihood loss and the mean-square
error loss, respectively. Table 3 shows the privacy-utility trade-off of different
gradient boosting algorithms on Criteo and Avazu datasets. We find that Logit-
Boost is more effective for LPSC than the others in terms of the privacy-utility
trade-off.

7 Conclusion

We study label privacy protection in VFL by formulating an offline Label Privacy
Source Coding (LPSC) problem. LPSC protects label privacy barely compromis-
ing utility by removing redundant label information from the active party’s fea-
tures. We theoretically prove that LPSC satisfies ε-MIP and can be reduced to
the gradient boosting’s objective. Furthermore, we propose a two-phase LPSC+
framework, exemplified with LPSC+Adv to enable flexible privacy-utility trade-
off by further incorporating adversarial training for training-phase perturbation.
Experimental results on four datasets demonstrate the efficacy of LPSC and the
superiority of LPSC+ framework. Future work includes investigating more effec-
tive LPSC techniques and protecting label privacy leakage from gradients.
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Abstract. Developing task-oriented bots requires diverse sets of anno-
tated user utterances to learn mappings between natural language utter-
ances and user intents. Automated paraphrase generation offers a cost-
effective and scalable approach for generating varied training samples
by creating different versions of the same utterance. However, existing
sequence-to-sequence models used in automated paraphrasing often suf-
fer from errors, such as repetition and grammar. Identifying these errors,
particularly in transformer architectures, has become a challenge. In this
paper, we propose a taxonomy of errors encountered in transformer -
based paraphrase generation models based on a comprehensive error
analysis of transformer -generated paraphrases. Leveraging this taxon-
omy, we introduced the Transformer-based Paraphrasing Model Errors
dataset, consisting of 5880 annotated paraphrases labeled with error
types and explanations. Additionally, we developed a novel multilabel
paraphrase annotation model by fine-tuning a BERT model for error
annotation task. Evaluation against human annotations demonstrates
significant agreement, with the model showing robust performance in
predicting error labels, even for unseen paraphrases.

Keywords: Paraphrasing · Transformers · Annotation · Taxonomy

1 Introduction

Dialogue systems (DS ), such as virtual assistants, and task-oriented bots, are
emerging as a new frontier of human-computer interaction in natural language,
receiving considerable recent attention [43]. These services communicate with
users in natural language (e.g. text, speech, or both), performing a wide range of
tasks such as reporting the weather, booking flights, or booking restaurants [45].
To satisfy user requests, a DS requires a large set of utterances paired with
their corresponding executable forms (e.g. API calls). In particular, task-oriented
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bots must first identify the user’s intent from a given utterance [43]. For exam-
ple, in “List of restaurants serving Lebanese food in Lyon”, the bot must recog-
nize the intent (i.e. find_restaurant) and the associated slots (location=“Lyon”,
cuisine=“Lebanese”). Due to the powerful expressiveness of human language, the
same intent can be formulated differently, e.g. “Which restaurants in Lyon serve
Lebanese food? ”. Thus it is essential for bots to grasp the richness of human
language, by training them on a linguistically diverse set of utterances for each
intent [24,45]. Failing to handle these variations in natural language can nega-
tively impact the effectiveness of bots, and ultimately the user experience.

Paraphrasing is a key technique to build large and diverse utterances for
the intents of interest [43]. Paraphrasing is an NLP task that aims to refor-
mulate a given natural language utterance into its lexical and syntactical vari-
ations while meaning is preserved [8,43]. It has numerous applications in NLP
tasks, such as sentence simplification, text summarization, and Natural Language
generation [8,43]. Paraphrasing methods can be categorized into crowdsourced
and automated approaches [25,45]. Crowdsourced paraphrasing involves human
workers generating multiple paraphrases based on a seed utterance [45]. In auto-
matic paraphrasing (AP), paraphrases are systematically generated [24,49]. The
literature on AP explored template-based, rule-based, and statistical machine
translation approaches [25,26]. Recent attention has shifted to neural network
models [26,31], particularly the transformer architecture [41], acknowledged for
its state-of-the-art performance in various NLP tasks and widely adopted as
the preferred sequence-to-sequence architecture for paraphrasing [7]. However,
despite their success, seq2seq models frequently introduce errors such as repe-
tition, grammatical inaccuracies, and incoherent text [39]. Ongoing efforts have
concentrated on detecting and identifying paraphrasing errors in automatic neu-
ral models to enhance their robustness [35]. Meanwhile, the increasing complexity
of transformer -based models complicates error identification, making it harder
to distinguish between machine- and human-generated text [1,11]. As these mod-
els evolve, the human ability to manually discern and tag machine-paraphrased
text diminishes, especially with holistic alterations in sentence structure and
word order instead of single-word replacements. Recognizing the pivotal role
of errors as indicators for system improvement [40], the evaluation of errors in
generated paraphrases becomes paramount.

This study focuses on quality control for paraphrasing, particularly the eval-
uation of paraphrase errors in transformer -based paraphrase generation (TPG)
models. While quality control for text generated by NLG systems has been
explored in a wide range of tasks, like machine translation (MT) [13], ques-
tion generation [37], and open-ended generation with pre-trained language mod-
els [11], TPG has not been subjected to such scrutiny. To the best of our knowl-
edge, this study is the first to categorize paraphrasing errors in TPG models.
Note that our identified errors may not be exhaustive but rather serve as an
initial pool of errors for further study and investigation. Efficient error identifi-
cation and categorization in AP models yield multifaceted advantages, mainly
contributing to the elevation of paraphrased content quality. A comprehensive
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grasp of prevalent errors empowers researchers and developers to strategically
augment the performance and reliability of their paraphrasing models. Also,
categorizing errors not only sheds light onto the strengths and weaknesses of
paraphrasing models, but also establishes strong benchmarks to facilitate fair
comparisons between different models. Moreover, our proposed error categories
help in enriching training datasets. This, in turn, allows models to navigate
and handle common errors, making them more robust and production-ready for
real-world applications. The contributions of this study can be summarized as
follows:

1. We selected five transformer -based paraphrasing models to generate 22K
paraphrases for 598 seed utterances extracted from a dataset of crowdsourced
queries across two intents.

2. We synthesized the literature on paraphrasing quality control in three distinct
areas: errors in crowdsourced paraphrasing, inconsistencies in crowdsourced
slot annotations, and errors in the generation of pre-trained language models.
We used this synthesis as a starting point for building our own taxonomy. We
then extended this taxonomy through several rounds of qualitative evalua-
tions of the generated paraphrases. Consequently, we identified a taxonomy
of 15 error types in TPG models.

3. We used the proposed error taxonomy to annotate the generated paraphrases.
Accordingly, we constructed an annotated dataset called TPME, in which the
paraphrases were labeled with a range of different categorized errors.

4. We developed a multi-label paraphrase annotation model using the TPME
dataset. The annotation model uses a fine-tuned BERT model to predict error
types in paraphrases, enabling the automatic annotation of multiple errors in
a paraphrase.

5. We released TPME dataset, code for generating paraphrases, fine-tuned
BERT model, and information required to reproduce our study1.

2 Related Work

Characterizing error has been done in many areas, such as MT [13], crowdsourced
paraphrasing [23,45], NLG systems [11,39]. Overall, research from these efforts
is certainly complementary and some elements are indeed adopted in our work.

Paraphrase Generation (PG). Crowdsourced PG have been investigated to
obtain training datasets for DS [21,28,33,36,43,44]. In crowdsourced PG, an ini-
tial utterance, usually provided by an expert, is presented as a starting point, and
crowdworkers are then recruited to obtain further paraphrases [43]. For instance,
Chklovski et al. [9] used crowdsourcing to collect paraphrases using gamification.
Contributors were asked to generate paraphrases based on given hints (e.g. words
suggestions). Other crowdsourcing strategies were proposed [46,47]: (i) Sentence-
based strategy : Workers were tasked with paraphrasing a given sentence into new
1 https://github.com/AudayBerro/TPME/tree/master.

https://github.com/AudayBerro/TPME/tree/master


A Taxonomy of Error in Transformer-Based Paraphrasing Models 335

variations. (ii) Goal-based strategy: Workers were provided with a task goal (e.g.,
“book a restaurant”) and a set of possible entity values (e.g., “cuisine: Indian,
city: Paris”) to produce paraphrases. (iii) Scenario-based strategy: This approach
employs a storytelling framework that provides a scenario to workers and ask
them to generate paraphrases accordingly (e.g., “Your goal is to book a restau-
rant; you are in Paris; you are hungry and want to eat Indian dishes”).

Automated PG does not involve humans in the process and refers to a task
in which a system generates paraphrases given an input sentence [24]. The lit-
erature on automated PG covers a wide range of approaches, including proba-
bilistic, handwritten rules, and formal grammar models [15]; data-driven tech-
niques [25,27]; machine translation techniques [18]. However, these approaches
struggle to capture the nuanced complexities of natural languages in contextual
settings [14]. In addition, the manual design of rules is complex for practical
implementation [48]. Consequently, neural-based and deep learning models have
gained popularity for PG [31,49], offering a solution free of previous limita-
tions. However, a critical problem persists: generated paraphrases often fail to
align with user preferences and produce uncontrolled results [48]. Although syn-
tactically controlled paraphrasing PG [16,20] offers a promising approach that
incorporates syntactic templates, it requires users to possess linguistic expertise
and define specific syntactic structures, which is challenging in practical appli-
cations. With the recent advances enabled by large language models (e.g. GPT),
there is a shift towards their use to generate paraphrases [5,17,42].

Errors in Crowdsourced Paraphrasing. Crowdsourced paraphrases often
contain errors, including misspellings, grammatical mistakes, and missing slot
values [45]. Two approaches are commonly used to evaluate paraphrase qual-
ity [29,45]. In Pre-hoc, paraphrases are evaluated during the crowdsourcing task
before submission [29]. In Post-hoc, they are assessed after task completion [45].
Yaghoubzadeh et al. [45] employed a post-hoc method to investigate crowd-
sourced paraphrasing errors in task-oriented bots. They identified a taxonomy
of six error types (misspelling, linguistic, cheating, answering, semantic, trans-
lation) and they developed the Para-Quality dataset based on these findings.
Similarly, Larson et al. [23] identified different types of incorrect annotations of
crowdsourced paraphrases. They identified a taxonomy of six types of inconsis-
tencies in slot-filling annotations (e.g. slot format, omission, wrong label, slot
addition).

Errors in MT Systems. Significant work on errors has been reported for MT
systems. Koponen et al. [22] investigated error classification with an emphasis
on semantic accuracy. The error analysis was performed on human translations
as well as on the outputs of 2 different types of MT systems: rule-based MT and
statistical MT. They identified 13 errors grouped into 2 categories: concept (5)
and relation (8) errors. Popovic et al. [30] investigated the nature and causes of
MT errors observed by different evaluators on different quality criteria: adequacy,
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comprehension, and fluency. They identified 26 errors (e.g. omission, gender) and
reported the results for 3 language pairs, 2 domains, and 11 MT systems.

3 Paraphrase Generation

Paraphrase generation poses unique challenges compared with other text gen-
eration tasks because of the requirement to produce sentences that convey the
same meaning with different words or structures. This requires creativity and
linguistic versatility. In addition, paraphrasing models must retain the mentions
of intents and their respective slots, adding to the complexity. Sparse data col-
lection for paraphrases further compounded this challenge, limiting exposure to
diverse scenarios. Despite advancements, even transformer-based models exhibit
errors, such as incorrect substitutions, missing words, awkward structures, or
alterations in meaning. To address this, we developed a taxonomy to systemati-
cally categorize these errors, resulting in a TPME dataset with manually labeled
paraphrases and errors. Furthermore, we fine-tuned a BERT-based model for
automated error-detection. To collect paraphrases, we followed a methodical
approach: (i) obtain seed utterances, (ii) select paraphrasing models, and (iii)
generate paraphrases using these models. Each step is described in detail below:

3.1 Selection of Seed Utterances

In this study, we employ the SNIPS dataset2, consisting of crowdsourced queries
categorized into seven user intents. Each utterance in the dataset is paired with a
list of required slots, which are specific pieces of information or textual parame-
ters within an utterance that need to be identified and extracted. For each SNIPS
excerpt, we extract the utterance (e.g. “how cold is it in Princeton Junction”) and
its list of required slots (e.g. condition_temperature=“cold” and city=“Princeton
Junction”). To manage the manual labeling effort, we focused on two key intents:
GetWeather and BookRestaurant, which enabled us to collect 598 seed utter-
ances. GetWeather encompasses requests for weather forecasts comprising 9
slots (e.g. country, city, temperature). BookRestaurant includes queries relat-
ing to restaurant reservations, with 14 slots (e.g. city, time, dishes served).

3.2 Selection of Models

We used the following criteria to select the paraphrasing models used in this
study: (i) models must fall under the category of text generation and can pro-
duce paraphrases in English; (ii) they should be built upon the transformer
architecture [41] in any of its variations, such as decoder-only or encoder-decoder;
(iii) The official checkpoints of the models must be publicly and freely accessi-
ble through platforms or web links provided by their authors. This ensures the
avoidance of potential biases that might arise if we were to implement, train, or
fine-tune the models. In this study, we chose the following five (TPG) models:
2 https://github.com/sonos/nlu-benchmark.

https://github.com/sonos/nlu-benchmark
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PROTAUGMENT [10]: fine-tuned a BART pre-trained transformer-based
language model to generate paraphrases.

Fine-tuned T5 [3]: the authors fine-tuned T5 [32], a pre-trained
transformer-based language model to generate paraphrases.

NL_Augmenter3: is a data-augmentation platform that supports various
transformations. We selected the NL_Augmenter Diverse Paraphrase Genera-
tion transformation for this study, which generates paraphrases by leveraging a
transformer through pivot-translation [2].

PRISM: Although PRISM [38] is a quality estimation model designed to
evaluate the performance of MT systems, it includes an automatic paraphrase
generation component. The authors trained a transformer-based MT model with
approximately 745 million parameters to perform zero-shot paraphrasing in 39
languages. PRISM can be used in paraphrases generation.

GPT [4]: GPT is a generative transformer-based language model with out-
standing performance. Recent GPT models can adapt to new, possibly unseen,
tasks using In-context Learning through natural language instructions and input.
This opens up the possibility of improving the paraphrasing process [6]. We lever-
aged GPT-3.5-turbo with tailored prompts for paraphrase generation4.

3.3 Generation of Paraphrases from Utterances

Leveraging the aforementioned models, we systematically generated paraphrases
for each seed utterance, yielding a comprehensive collection of 22864 paraphrases.
We categorize the generated paraphrases in ten distinct datasets, based on the
paraphrasing model used for their generation, and the underlying intent of the
seed utterances. For instance, the T5-GW dataset (accessible via the provided
additional materials link) consolidates all paraphrases generated by the T5 model
in response to seed utterances associated with the GetWeather intent.

Each grouped dataset includes the following columns: utterance, paraphrase,
list_of_slots, and intent. The utterance column corresponds to the seed sen-
tence designated for paraphrasing, while the list_of_slots column encompasses
any identified slots in the utterance, along with their corresponding values. The
paraphrase column houses the resulting paraphrase. Finally, the intent column
indicates the intent of the utterance, with only two possible values: GetWeather
or BookRestaurant in this work.

4 Paraphrasing Error Types

We identified 15 error types in the paraphrases categorized into three error classes
through a meticulous evaluation process conducted over multiple rounds. Ini-
tially, we randomly selected ten utterances with their corresponding paraphrases,
totaling 700 paraphrases for evaluation. We labeled using error types identified

3 https://github.com/GEM-benchmark/NL-Augmenter.
4 The prompt we used can be found in the supplementary material link supplied.

https://github.com/GEM-benchmark/NL-Augmenter


338 A. Berro et al.

Table 1. Samples of erroneously generated paraphrases. The colors in the Paraphrase
column denote the locations of errors.

# Utterance Paraphrase Error Label

1 Is it chillier here Is it Colder Here ? Spelling

2 book a party of 4 for a cafe rated best booking a 4 party for a best rated cafe Spelling

3 What is the weather forecast for Manassa? What’s the weather prognosis forManassa ? Spelling

4 is it cold in Vigus TN if it’s cold in the Vigus TN Grammar

5 What’s the weather in Poland? What is the time in Poland? Semantic

6 Book spot in Fults in Federated States Of Micronesia Book spot at Fults in the Federated Federal States of Micronesia. Redundant

7 Book me a lunch at Boreas for a party of 8 Book me a lunch at Boreas for a party of 8! Duplication

8 book a table in Yachats for 3 people Procure iservation sayrettel batou hcastuohcaeY nA

selaecinimanyThgiretepotsereahtroforretaB

Incoherent

9 Will it be cold in Haiti? Will There Be Cold in Haiti ?. Punctuation

10 Tell me the weather forecast for France Tell me the weather forecast for France for the weekend . Slot addition

11 Book a spot for now in NY for 10 Book a place in NY for 10 Slot omission

12 What is the weather forecast here What is the forecast for the weather in the future ? Wrong Slot

13 Tell me if it will be foggy in Maxwell Inform me, should the location known as ’Maxwell’

suffer from an impediment such as haze/mist/ fog

I’d really appreciate knowing about such trivia...

Wordy

14 Will there be wind in Hornitos DC? Will there be wind in Hornito’s DC? Homonym

15 Will it be temperate in West Liberty MH? Will it’ll be temperate in West Freedom MH? Homonym

16 Will the weather be good at breakfast in Bay Harbor Islands Is the weather good for breakfast in the Bay Puerto Islands? Homonym

17 is Saint Robert hotter than Turkmenistan? Saint Robert is hotter than Turkmenistan. Answering

18 book spot for 4 in Somalia Book spot for 4 in Somalia is available for free . Answering

19 Is it hot in the current location? Is it hot in the current location? If so, why? Questioning

20 book a table in CA for 2 people in 3 hours booking a table in Central Asia for 2 people in 3 hours Acronym

by previous research in crowdsourced paraphrasing [45], crowdsourced slot anno-
tation inconsistencies [23], and errors in text generated by pre-trained language
models [11]. The initial list included semantic, redundant, spelling, grammar, slot
addition, incoherent, and duplication errors. Through manual annotation and
iterative refinement, involving random sampling and evaluation of paraphrases
based on the evolving list of error types, similar errors were grouped into new
types, resulting in the final taxonomy. We also refined error definitions, such as
introducing the concept of “near-copy” (refer to § 4.1) for duplication errors. In
the following, we proceed to describe our three error classes, highlighting the
specific error types within each class.

4.1 Language Errors

Language Errors encompass a range of inaccuracies in paraphrased content,
including spelling, grammar, syntax, and semantic inconsistencies. Seven types
of language errors were identified.

Spelling refers to the correct arrangement of letters to form a word. Mis-

spelling is one of the most common mistakes in crowdsourced paraphrasing [45].
In our evaluation, we also count as misspelling capitalization errors (sample 1 in
Table 1), missing hyphens (sample 2) and missing spaces (sample 3).

Grammar These errors relate to the incorrect use of verbs, prepositions,
singular/plural nouns, articles, and other grammatical elements [45]. In sample
4, the paraphrase exhibits a misuse of the article “the” before city names.

Semantic This error, further characterized as a “semantic deviation”, arises
when a paraphrase deviates from the intended meaning of a seed utterance. For
instance, in sample 5, the paraphrase asks for time instead of weather conditions.
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Redundant Redundancy arises when a word or phrase is duplicated in a
paraphrase, either through exact repetition or the use of different words convey-
ing the same context. In sample 6, the term Federal redundantly duplicates the
meaning conveyed by the term Federated.

Duplication Duplication arises when the generated paraphrase either mir-
rors or closely resembles the utterance. We employ the term “near-copy” to
describe instances where the paraphrase closely mirrors the utterance. “Near-
copy” occurs when a paraphrase differs from the utterance solely in terms of
punctuation (e.g. (e.g., commas, periods, question marks, colons, etc.) and capi-
talization. However, the “near-copy” condition is violated if the paraphrase con-
tains at least one token that differs from the utterance. This is illustrated in
sample 7.

Incoherent As in sample 8, we label a paraphrase as incoherent when the
generated text is confusing, hard to understand, or appears nonsensical.

Punctuation A punctuation error occurs due to the overuse or inappropri-
ate placement of punctuation marks in the paraphrase. This includes inserting
question or exclamation marks in sentences without corresponding questions
or exclamations. It also encompasses the misuse of currency, non-alphabetic or
numeric symbols (, _, #, &, etc.). For instance, sample 9 displays a punctuation
error where a period follows a question mark incorrectly.

4.2 Slot Errors

These errors involve incorrect actions at the slot level, such as adding, removing,
or altering slots.

Slot addition Slot addition occurs when the model inserts at least one
additional slot value into a paraphrase. Consider sample 10 in Table 1. In
this sample, token “the weekend” which is the value of the timeRange slot
in the paraphrase, is an additional slot. It’s important to note that for slots
that accept multiple values, this is not considered an error. For example, the
party_size_description slot in the BookRestaurant intent can have multiple val-
ues. In the utterance “Book a table for Ali, Jo, and Max ” the tokens “Ali”, “Jo”
and “Max” form a single multi-token value, and the party_size_description slot
treats them collectively as a single value.

Slot Omission Slot omission occurs when a slot, expected to be refer-
enced, is overlooked in the paraphrase. Illustrated in sample 11 of Table 1, the
paraphrase fails to include a value for the timeRange slot, even though it is
explicitly mentioned as “now” in the original utterance.

Wrong Slot A wrong slot occurs when the value of a slot in the paraphrase
deviates from the expected slot and is replaced by an non-matching token. In
sample 12, rather than inquiring about the forecast for the present location, the
paraphrase erroneously requests a weather forecast for a specific time period.
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4.3 Errors of Human Characteristics

We identified 5 types of human-characteristic errors, which uniquely mimic
human behavior. When these errors occur, the transformer behaves as if it were
human, such as responding directly to a request instead of paraphrasing it.

Wordy Wordy errors occur when the generated text contains excessive
wording or unnecessary information, leading to verbose paraphrasing. See sample
13.

Homonym Homonyms are words that share the same pronunciation but
have different meanings or spellings. An error arises when a token in the para-
phrase shares a similar or identical pronunciation with a token in the utterance.
In sample 14, “Hornito’s” and “Hornitos” sound alike, leading to incorrect use of
the possessive apostrophe (“’s”) in the paraphrase. This category includes cases
which tokens are replaced with synonyms or translated, potentially altering the
paraphrase’s meaning ( see samples 15 and 16 resp.).

Answering This error occurs when the paraphrased content responds to
the utterance, causing the model to generate an answer instead of a paraphrase.
In sample 17, the model transforms the entire paraphrase into an answer, while
in sample 18, the answer is added to the query. To differentiate this from the
Wordy Error, we label sentences as Answering Error if the additional tokens
answer a query or question from the initial utterance.

Questioning Arises when the paraphrased text introduces an extra ques-
tion not present in the utterance. In sample 19, the addition of “If so, why? ”
exemplifies this error by introducing an extra question.

Acronym An acronym is a word or name formed from the initial letters
of a longer phrase. Acronym error occurs when a paraphrase improperly uses an
acronym or includes an incorrect expansion of an acronym from the utterance.
In sample 20, “Central Asia” is an inaccurate expansion of the acronym “CA”
which actually represents California, a value for the “state” slot.

5 Creation of Annotated Paraphrasing Error Dataset

This section presents an overview of TPME, and gives insights and analyses of
the paraphrasing errors.

5.1 The TPME Dataset

We annotated a representative subset of generated paraphrases, covering at least
22% of the entire set, resulting in 5880 annotated paraphrases. Each paraphrase
was labeled with one or more error types from our taxonomy (as detailed in § 4)
and was accompanied by an explanation in plain English. For “slot errors” (see
§ 4.2), we compared each sampled paraphrase with its corresponding list of
required slots listed in the “ list_of_slots” column. The TPME dataset includes
the following columns: “utterance” column which contains the seed sentence to be
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paraphrased. “ list_of_slots” includes any slot present in the utterance along with
its corresponding value. “paraphrase” contains a generated paraphrase. “models”
denotes the model that generated the paraphrase. “error_category” contains
labels of the errors found in the paraphrase, and their justification in natural
language is described in the column “explanation”. “Intent” indicates the inten-
tion conveyed by the utterance.

Fig. 1. TPME dataset label statistics.

5.2 Insights into Error Frequency and Co-occurrences

Figure 1 visually presents the distribution, frequencies and co-occurences of
labels within the TPME dataset, employing an UpSet plot through Intervene
platform5. Notably, only 40.1% of the paraphrases were labeled as correct, under-
scoring the prevalence of paraphrasing errors, and their negative impact in the
context of developing DS. Specifically, only 3.5% were exclusively labeled with
semantic errors, without any additional labels. In addition, 6.8% of the para-
phrases were identified with grammar errors only. The plot also demonstrates the
frequency of the co-occurrence of two or more labels. For instance, all paraphrases
labeled as slot omission (29 occurrences) are also labeled as spelling. Addition-
ally, 34 paraphrases shared both semantic and spelling error labels, constituting
0.9% of the erroneous paraphrases. Furthermore, 18 paraphrases were labeled
with homonym, spelling, and grammar errors. Moreover, 144 paraphrases were
concurrently labeled with duplication and grammar.

5 https://upset.app/ and https://asntech.shinyapps.io/intervene/.

https://upset.app/
https://asntech.shinyapps.io/intervene/
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To analyze the distribution of errors across the selected models, individual
Upset Plots were generated for each of the five models. The initial observa-
tion highlights that out of 1092 instances, GPT yielded 659 correct paraphrases
(60.3%). In contrast, T5 achieved a correctness rate of only 25.1%, and PRO-
TAUGMENT demonstrated an even lower rate of 17.64%. The second sig-
nificant finding is that none of the paraphrases generated by GPT in TPME
were labeled as duplication, distinguishing it from other models. For example,
PROTAUGMENT had a duplication error rate of 51.04%, and T5 exhibited
a rate of 21.5% for these errors. In summary, GPT displays resilience against
duplication compared with other TPG models. However, duplication may occur
among the generated paraphrases. For example, in a list of 10 paraphrases, we
may have three paraphrases that are replicated.

5.3 Analysis of the Annotated Paraphrases

The Relevance of Capitalization in Paraphrases. Understanding user
utterances relies on entity extraction, known as slot-filling, which aims to iden-
tify the values of different slots in a user utterance [19]. For instance, when
a user requests nearby restaurants the values of the location and cuisine slots
are essential for a bot to retrieve the appropriate information. We observed
challenges with capitalization in slot-filling tasks, particularly when using case-
sensitive slot-filling models. Consider the utterance “book smoking room in OR
at a bar”6 and its paraphrase “Book Smoking Room In OR at bar OR at hotel”.
In the paraphrase, the second “OR” token serves as a conjunction indicating a
choice between a bar or a hotel but it is erroneously written in uppercase. This
capitalization introduces a spelling error and leads to a redundant error as
the paraphrase already includes the token “OR”. Additionally, the capitalization
issue may result in a slot addition error, where the model misinterprets “OR”
as an abbreviation for the state of “Oregon”, introducing ambiguity. To address
these issues, we propose accurately representing capitalization in paraphrases to
reflect both the input and output of the transformer architecture.

The Propagation of the Source Utterance Errors in the Paraphrase.
Transformer -based language models are highly effective in learning language
properties [12], yet instances of errors persisting in generated paraphrases have
been identified. For example, in the utterance “book spot at Candle Cafe” and its
paraphrase “Book spot at Candle Cafe”, the transformer omitted the indefinite
article “a” before “spot”, leading to a grammar error. We attribute such errors to
the inherent nature of transformer architecture and the paraphrase generation
task7. Transformers rely on the self-attention mechanism, meaning errors in
the input may receive more attention and propagate through subsequent layers.
6 OR refers to the state of Oregon.
7 Paraphrase generation is a multi-step (word-by-word) prediction task, where a small

error at an early time-step may lead to poor predictions for the rest of the sentence,
as the error is compounded over the next token predictions [8].
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However, transformers also demonstrate the ability to rectify errors in the input
during paraphrase generation. For instance, the input utterance “is it going ot
be chillier in Maumee” contains “ot” instead of “to”, but the model corrected
this error in the paraphrase, resulting in “is it going to be colder in Maumee? ”.

The Insertionof theDeterminer “the” in Front of Geographical Names.
In some paraphrases, we encountered errors that violated basic grammar rules.
For instance, consider the utterance “weather in Hillsview MA” and its para-
phrase “Weather in the Hillsview MA”. The model mistakenly inserted the deter-
miner the before the token “Hillsview ”, resulting in a grammar error. Notably,
when dealing with geographical names such as the city name “Hillsview ”, the
definite article “the” is not used in English, making this a common grammatical
inconsistency that we observed in this study. Another prevalent error involves
the insertion of the possessive form (’s) in phrases like “Will there be wind in
Hornito’s DC? ” where the model generated “Hornito’s” instead of the correct
“Hornitos” as found in the utterance “Will there be wind in Hornitos DC? ”.

Errors May be Context- and Domain-Dependent. For the utterance “book
a table for me, heidi and cara in Saudi Arabia” and its paraphrase “Book a table
for me, Heidi and Vedi in Saudi Arabia", in the paraphrase the token “Vedi ” is
an appropriate value for the party_size_description slot. The transformer paid
more attention to the previous “Heidi ” token, which resulted in the generation
of the “Vedi ” token in the paraphrase. However if we pay more attention, the two
names “Heidi ” and “Vedi ” have close pronunciation which leads to a homonym
error. This error, more than a minor pronunciation anomaly, can significantly
impact the performance of the DS trained with such paraphrases. Consider a
bot in the banking sector. Executing a money transfer to “Heidi and Vedi ”
instead of “Heidi and Cara”, as stated in the utterance, would be incorrect.
While this variation enhances lexical diversity, it can also negatively impact
critical domains. In addition, homonym errors may lead to wrong slot errors.
In the paraphrase “Will there be wind in Hornito’s DC? ” the token “Hornito’s”
is a homonym of the token “Hornitos” in the utterance. The addition of the
possessive “s” introduces a homonym error, resulting in the city slot having the
value “Hornito’s”, which does not match the correct “Hornitos” for the city slot.
Thus, a wrong slot error emerges. Consequently, the tolerance for such errors,
varies based on the context, domain, and associated slots when the error affects
the slot value level.

Errors in GPT Generated Paraphrases. For the utterance “Will it be
windy at 4 Pm in NY?”, GPT generated the paraphrase “Are we expecting
any strong winds by 4 PM in New York City?”. GPT incorrectly generated the
value “New York City” which represents a value for the “city” slot instead of
the intended “state” slot, mentioned as “NY ” in the utterance. Similarly, for
the utterance “book a turkish restaurant in DE”, GPT generated the paraphrase
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“Reserve a Turkish restaurant in Germany”, incorrectly inserting “Germany”
instead of the correct value “Delaware” (abbreviated as “DE ” in the utterance),
where GPT considered “DE ” to be the acronym for “Deutschland ”. However,
this introduces a wrong slot error, as the correct slot is “state”, not “country”.
Across all GPT-generated paraphrases, 10.3% were labeled as wrong slot errors.
For “weather close-by Lone Elk County Park at 4 am”, GPT actually answered
the weather-forecast query: “By dawn, you can anticipate interesting conditions
nearby at Lone Elk county park”. The answering error occurred in 5.1% of GPT-
generated paraphrases. Additionally, 9.4% of GPT paraphrases were marked
with semantic errors. For example, in “What will the weather be at six o’clock
in the Virgin Islands?” GPT generated only a question mark “?” as a paraphrase.
For “book a table in Yachats for 3 people” GPT generated extensive gibberish
tokens with numerous misspelled words, such as “iservation” which should be
“a reservation”. The paraphrase is incoherent , making it hard to understand.
Also in “Ensure there is seating available in Yachtseservt yeNameYeepsaYehT-
fruintap eneeaAredtonOSsegnosrepednIhseltiuqeobsuocotohibm ateletibasenaY-
hctayssesacllaeviser” GPT generated an arbitrary content.

For the utterance “I want to book a highly rated restaurant for Sue, Madeline,
and me in eight years”, GPT generated “<introductory statement> I desire very
much that we find <quality adjective>restaurant well-known far&wide ..-for our
select groupIO” and “Imagine the celebration of such a beautiful day<including
excitement) <Pronoun> has made reservations at the highest-ranked restau-
rants”. Apart from incoherent , spelling , and grammar errors, we observed the
insertion of tagged tokens like “<Pronoun>” and “<introductory statement>”.
Instead of generating slots values, GPT generated canonical tokens to indicate
the need to insert values at those positions.

Fig. 2. Frequency Analysis of Correct Labels in 130 GPT Paraphrases across Positions.

Another GPT-specific finding is the removal of certain paraphrases due to
toxic content, aligning with OpenAI’s policy. For instance, when prompted with
“need a table at a close-by restaurant right now in Marco” GPT generated
“**Paraphrase removed due to inappropriate content** ” illustrating paraphrase
suppression due to toxicity. GPT produced three times the same paraphrase
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for this utterance. Because the model is exclusively accessible via API calls
with undisclosed details, pinpointing the exact content that triggers filtering is
impractical. Given its exclusivity to GPT, we opted not to categorize it as a dis-
tinct error in our taxonomy but rather to highlight its occurrence. Furthermore,
we evaluated the frequency of “correct” labels in GPT-generated paraphrases
for each seed utterance. We randomly selected 13 utterances and extracted their
corresponding sets of 10 paraphrases, totaling 130 paraphrases. The key obser-
vation is that errors consistently appear in the paraphrases generated towards
the end. As we progressed through the list of 10 paraphrases for each seed utter-
ance, errors became more prevalent, with the majority occurring after the sixth
position. Figure 2 illustrates this trend, emphasizing the concentration of errors
towards the later positions in the paraphrase lists.

6 BERT-Based Multi-label Paraphrase Annotation
Model

In this section, we explore using the TPME dataset to fine-tune a BERT model
for multi-label paraphrase annotation. While deep learning models like BERT
have shown impressive performance across various NLP tasks, including sentence
classification [34], annotating paraphrase errors with their respective error types
requires a significant amount of labeled data, posing a challenge. Thus, we fine-
tuned BERT on TPME to develop a multi-label paraphrase error annotation
model aimed at predicting error types in paraphrases.

6.1 BERT Fine-Tuning

The fine-tuned BERT model (FBM) is a multi-label prediction model that takes
as input a pair of an input utterance u and its paraphrase p and predicts
one or more error labels. At the fine-tuning time, u and its p are provided
as inputs to the BERT model and tokenized through the BERT tokenizer into
one sequence (BERT input: <u> <sep> <p>). The “<sep>” token acts as a
separator between u and p. When the input text is tokenized, BERT interprets
the segments as distinct parts of the input sequence. “<sep>” helps BERT to
understand the structure of the input and learn contextualized representations
for each segment. For fine-tuning, the TPME dataset was split into training
(80% ≡ 4704 paraphrases) and validation (20% ≡ 1176 paraphrases) datasets.
We fine-tuned a bert-base-uncased model. BERT logits (i.e. output) have the
form (batch size, number of labels) and represent the non-normalized scoring for
each label. To convert these logits into predicted labels, we added a linear layer
on top of BERT. Thus, applying a sigmoïd function to each logit independently
scales the values between 0 and 1, treating them as “probabilities” for label pres-
ence. These probabilities are then classified using a standard threshold, usually
set at 0.5. If the probability exceeds the threshold, the label is predicted for p;
otherwise, it is not predicted.
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Table 2. Prediction performance of FBM in terms of Krippendorff’s alpha (values
range from 0 to 1, where 0 is perfect disagreement and 1 is perfect agreement), Exact
Match Ratio, Hamming loss (smaller the value, better the performance). F1, precision
and recall are samples-averaged.

Krippendorff Exact Match Ratio Hamming Loss Recall Precision F1

FBMvsVal 0.549 0.693 0.035 0.753 0.766 0.753
FBMvsGold 0.809 0.699 0.027 0.807 0.754 0.770

6.2 Evaluation

This section presents the experimental results of the annotation of two para-
phrase datasets using the FBM. First, FBM was applied to a benchmark dataset,
called FBMvsGold, comprising a 20% subset of the TPME dataset, including
utterances, corresponding paraphrases, and error labels. FBM predicts error
labels for each utterance-paraphrase pair to assess the annotation quality of
familiar data seen during the fine-tuning stage. Second, FBM annotation was
evaluated on dataset B, comprising 1000 pairs of utterances and paraphrases
randomly selected from the 22K unannotated paraphrases. Dataset B is defined
as B = {p | p ε (P − TPME)}, where P denotes the dataset of 22k automati-
cally generated paraphrases and TPME denotes the dataset of 5880 annotated
paraphrases. This evaluation assesses FBM annotation on unseen data. After
predicting the error labels for Dataset B, 100 rows were randomly selected for
manual annotation, resulting in the FBMvsVal dataset. FBMvsVal enables the
assessment of FBM annotation on unseen data. Finally, FBM annotation was
evaluated against human annotation in FBMvsGold and FBMvsVal using estab-
lished multilabel evaluation metrics from the literature, including Krippendorff’s
alpha, Exact Match Ratio, Hamming Loss, recall, precision, and F1 metrics.

Analysis of Results: The Krippendorff metric revealed strong agreement
between FBM and human annotations in both FBMvsGold and FBMvs-
Val datasets, with Krippendorff’s alpha scores of 54% and 80%, respec-
tively (Table 2). Scores exceeding 50% indicated good agreement, suggesting a
robust correlation between the model predictions and human annotation. How-
ever, there was a notable disparity between the datasets, with FBMvsVal scoring
54% and FBMvsGold scoring 80%. This variation may stem from the uneven dis-
tribution of errors in the TPME dataset used to fine-tune BERT. For instance,
the incoherent label is applied to only 19 items, compared to 241 and 844
items labeled as grammar and duplication respectively. Consequently, accu-
rately predicting errors becomes more challenging. Future work will involve aug-
menting the TPME dataset by annotating more paraphrases while ensuring a
balanced representation across error types. Regarding Hamming Loss, which
indicates misclassification frequency, both FBMvsVal and FBMvsGold datasets
exhibited remarkable performance, with scores of 3.5% and 2.7%, respectively.
(Further details on additional measures are omitted due to space constraints.)
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7 Conclusion and Future Work

In this study, we used a data-driven approach to investigate and quantitatively
identify errors in TPG models. Identifying the nature and frequency of these
errors is important for enhancing DS and improving TPG models performance.
We first discussed and outlined the importance of paraphrasing in the acquisition
of training data for DS development. Subsequently, we emphasized the impor-
tance of error evaluation in the paraphrases generated by transformer-based
models. Through empirical analysis, we identified a taxonomy of 15 error types,
which we used to annotate a paraphrasing dataset with associated errors. Our
analysis revealed that despite the success of transformers, paraphrase generation
remains error-prone, with only 40.1% of paraphrases being correct. Finally, we
released the dataset of paraphrases and errors to the research community.

In our future work, we plan to expand the TPME dataset by annotating addi-
tional paraphrases to achieve balance across different error labels. Moreover, we
aim to enhance the proposed error taxonomy by exploring various transformer
architecture variants, including encoder-only, decoder-only, and encoder-decoder
models. The TPME dataset can serves as a valuable training data for diverse
tasks. In addition to error detection, we also plan to investigate to error cor-
rection using fine-tuning language models. While the TPME dataset is rela-
tively small, its manual annotation process was thorough yet time-consuming
and costly. BERT was selected for its effectiveness in multi label error annota-
tion, demonstrating the utility of our dataset. In future research, we will focus on
exploring other newer models (e.g., GPT, mistral-7b, LLaMA) through a com-
parative study, aiming to validate and extend the applicability of our dataset in
multi-label error annotation tasks.
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1 Introduction

Cross-domain recommendation (CDR) [1,2] has been widely applied to leverage
information on the web by providing personalized information filtering in var-
ious real-world applications, including Amazon (an e-commerce platform) and
YouTube (an online video platform). CDR can significantly enhance the per-
formance of item recommendations for users by utilizing user rating data from
various domains, under the assumption that users have similar preferences across
domains. However, with the formulation of the General Data Protection Regula-
tion (GPDR), user-item ratings are not accessible across different domains. How
to provide high-quality cross-domain recommendations while satisfying privacy
protection has emerged as an urgent issue.

In this paper, we focus on a problem of federated cross-domain recommenda-
tion (FedCDR) [8,11]. In this case, user-item rating interactions are considered
private information that cannot be directly accessed by other domains. Although
existing FedCDR methods [8–11] can effectively solve the privacy issue in CDR,
they also face the issue of data heterogeneity across domains, that is, user-
item interaction data in different domains contain domain-exclusive information.
Figure 1 presents a toy example illustrating the data heterogeneity across differ-
ent domains. The figure depicts that Bob and Alice interact with various types
of items in each domain, including action movies and documentary movies in
the Movie domain, professional books and action books in the Book domain,

Movie
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Introduction
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Resident Evil

Euro Truck
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The Sims
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The Blue
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Game
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Alice

Server

Upload Model

Download Model

Fig. 1. Data heterogeneity across domains in the FedCDR scenario.
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and action games and simulation games in the Game domain. As previously
mentioned, documentary movies in the Movie domain, professional books in the
Book domain, and simulation games in the Game domain can all be considered as
domain-exclusive interaction information. Existing FedCDR methods [8–11] use
direct aggregation of client models or user representations to transfer knowledge,
resulting in the mixing of domain-exclusive information into the global model,
resulting in poor local performance of the global model (i.e., negative trans-
fer). Therefore, it is necessary to decouple domain-shared and domain-exclusive
information, and only aggregate domain-shared information to avoid negative
transfer problems.

In response to the issue of data heterogeneity, we introduce a novel Federated
Cross-Domain Recommendation framework with Hypergraph signal decoupling
(FedHCDR). This framework enables different domains to collectively train
better-performing CDR models without the need to share raw user data. Specif-
ically, inspired by the hypergraph structure [3,4] and graph spectral filtering [5–
7], we introduce a hypergraph signal decoupling method called HSD to tackle the
data heterogeneity across domains. In this approach, the model of each domain
is divided into a high-pass hypergraph filter and a low-pass hypergraph filter,
responsible for extracting domain-exclusive and domain-shared user represen-
tations respectively. Furthermore, we devise a hypergraph contrastive learning
module HCL to enhance the learning of domain-shared user relationship infor-
mation by introducing perturbations to the user hypergraph. The evaluation is
conducted on Amazon datasets under the federated learning setting. The exper-
imental results demonstrate that our FedHCDR significantly enhances recom-
mendation performance in three different FedCDR scenarios.

To summarize, our contributions are as follows:

– We propose a novel federated cross-domain framework FedHCDR, designed
to enable different domains to train better performing CDR models collabo-
ratively while ensuring data privacy.

– We introduce HSD, a hypergraph signal decoupling method. HSD uses high-
pass and low-pass hypergraph filters to decouple the user features into
domain-exclusive and domain-shared features to address the data heterogene-
ity issue across domains, which are trained by the local-global bi-directional
transfer algorithm.

– We devise a hypergraph contrastive learning module HCL, which perturbs
the user hypergraph to learn more effective domain-shared user relationship
information.

2 Methodology

2.1 Problem Formulation

Assume there are K local clients and a central server. The k-th client main-
tains its own user-item interaction data Dk = (U ,Vk, Ek), which forms a distinct
domain, where U denotes the overlapped user set in all domains, Vk denotes the
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item set in domain k, and Ek denotes edge set, i.e., the set of user-item pairs in
domain k. Additionally, there is a user-item incidence matrix Ak ∈ {0, 1}|U|×|Vk|

for domain k, where each element (Ak)ij describes whether user ui ∈ U has
interacted with item vj ∈ Vk in the edge set Ek.

①: Send parameters of low-pass user hypergraph filter 

②: Send global domain-shared user representations

③: Local training

④: Upload updated parameters of low-pass user hypergraph filter

⑤: Upload updated domain-shared user representations

FedHCDR steps:

: Local Branch

: Global Branch

: Upload/Download Rep.

: Upload/Download Model

Important notions:

e: Domain-Exclusive

s: Domain-Shared

g: Global Domain-Shared

HHF: High-Pass Hypergraph Filter

LHF: Low-Pass Hypergraph Filter

Fig. 2. An overview of FedHCDR. (Color figure online)

For client k, we first construct the user hypergraph adjacency matrix Au
k and

the item hypergraph adjacency matrix Av
k according to the user-item incidence

matrix Ak. Subsequently, we feed the user hypergraph adjacency matrix Au
k

into the high-pass and low-pass user hypergraph filters respectively to decouple
it into domain-exclusive user representations Ue

k and domain-shared user repre-
sentations Us

k, and feed the item hypergraph adjacency matrix Av
k into high-pass

and low-pass item hypergraph filters respectively to decouple it into Ve
k and Vs

k.
After the local model update is completed, the central server aggregates {Us

k}K
k=1

to obtain the global representation Ug used in the subsequent training round.
The local perturbed domain-shared user representations are denoted as ˜Us

k.
Each client’s local model is divided into a global branch with low-pass

user/item hypergraph filters (parameterized by φu
k/φv

k), and a local branch with
high-pass user/item hypergraph filters (parameterized by θu

k/θv
k). At the end of

each training round, the server aggregates {φu
k}K

k=1 to derive global user low-pass
hypergraph parameters φg which are then shared among clients in the subse-
quent training round.
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2.2 Overview of FedHCDR

Our proposed FedHCDR, depicted in Fig. 2, utilizes client-server federated learn-
ing architecture. Each client’s model is divided into a local branch (in yellow)
and a global branch (in purple). In each training round, only domain-shared user
representations and model parameters are aggregated. During the test phase,
both domain-exclusive and domain-shared representations are utilized together
for local predictions.

2.3 High/Low-Pass Hypergraph Filter
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(a) Construction of the user and item
hypergraph adjacency matrix.
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(b) Hypergraph random walk.

Fig. 3. Initialization of hypergraph filter.

Construction of the User and Item Hypergraph Adjacency Matrix.
First, given the user-item incidence matrix Ak in domain k, we can denote the
hypergraph incidence matrices of users and items respectively as:

Hu
k = Ak, Hv

k = AT
k , (1)

where each element (Hu
k)ij describes whether the vertex(user) ui belongs to the

hyperedge(item) vj . Then, let us denote the item popularity debiasing matrix
for the user hypergraph as Pk, and we can obtain the normalized unbiased
hypergraph adjacency matrix and hypergraph Laplacian matrix as follows:

Au
k = Du,− 1

2
k

(

Hu
kP

v
kD

v,−1
k Hu,T

k − ˜Du
k

)

Du,− 1
2

k ∈ R
|U|×|U|

Lu
k = I − Du,− 1

2
k

(

Hu
kP

v
kD

v,−1
k Hu,T

k − ˜Du
k

)

Du,− 1
2

k ∈ R
|U|×|U|,

(2)
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where
(Du

k)uu =
∑

v∈Vk

(Hu
k)uv (P

v
k)vv , (Dv

k)vv =
∑

u∈U
(Hu

k)uv (3)

are the user (vertex) degree matrix and item (hyperedge) degree matrix for the
user hypergraph respectively, and the item popularity debiasing matrix

(Pv
k)vv = 1 − (Dv

k)vv
∑

v∈Vk
(Dv

k)vv

(4)

is used to remove the estimation bias caused by the long tail effect of items.
Intuitively, the higher the degree (frequency of interactions) of hyperedge (item)
v, the lower the weight (Pv

k)vv of it. Besides, matrix

(

˜Du
k

)

uu
=

∑

v∈Vk

(Hu
k)uv

(Pv
k)vv

(Dv
k)vv

(5)

is used to ensure that the diagonal of the user hypergraph adjacency matrix
Au

k is filled with 0, that is, there is no self-loop in the user hypergraph. The
construction of the user and item hypergraph adjacency matrix is shown in
Fig. 3(a).

Low-Pass Hypergraph Filter Representation Initialization. To make
the low-pass user hypergraph filter capture smoother signals (i.e., user relation-
ship information), we construct the Markov transition matrix Mu

k of the user
hypergraph and perform a T -step hypergraph random walk to obtain the ini-
tialized low-frequency user representations Us,(0)

k , which is shown in Fig. 3(b).
The Markov transition matrix of the user hypergraph (the same applies to the
item hypergraph) is formulated as follows:

Mu
k = Du,−1

k

(

Hu
kP

v
kD

v,−1
k Hu,T

k − ˜Du
k

)

∈ R
|U|×|U|, (6)

where (Mu
k)ij ∈ [0, 1] indicates the probability that the random walk moves from

user i to user j in one step.
Then for the user hypergraph, we can get the transition matrices of random

walk of steps 1, 2, · · · , T :

Mu,1
k ,Mu,2

k , . . . ,Mu,T
k . (7)

Take diagonals of the transition matrices (where
(

Mu,t
k

)

ii
indicates the proba-

bility of going from user i and return to itself in exactly t steps), and perform a
linear transformation after concatenating, then the initialized user low-frequency
representations Us,(0)

k are obtained:

˜Mu
k = diag

(

Mu,1
k

)∥

∥

∥diag
(

Mu,2
k

)

, · · · ,
∥

∥

∥ diag
(

Mu,T
k

)

Us,(0)
k = fk

(

˜Mu
k

) (8)
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Note that for the remaining hypergraph filters, we directly use the Embeddin-
gLookup operation to obtain randomly initialized representations. For example,
for the high-pass user hypergraph filter, we have:

Ue,(0)
k = Eu

k = EmbeddingLookup (Xu
k) , (9)

where Xu
k ∈ {0, 1}|U|×|U| is the matrix of one-hot IDs of users. Same with

Vs,(0)
k /Ve,(0)

k .

Adaptive High/Low-Pass Hypergraph Filtering. Based on the user and
item hypergraph adjacency matrices Au

k and Av
k (The corresponding Laplacians

are Lu
k , Lv

k), as well as the initialized user and item representations Us,(0)
k /Ue,(0)

k ,
and Vs,(0)

k /Vs,(0)
k , we further perform adaptive high-pass/low-pass hypergraph

filtering on user and item representations. Let us denote user and item represen-
tations after l layer graph convolution as Us,(l)

k /Ue,(l)
k and Vs,(l)

k /Ve,(l)
k .

According to the graph signal processing theory [5,6], given a signal x ∈ R
|V|

on a graph G = (V, E) and a filter h, the graph convolution/filtering operator in
the spectral (frequency) domain (denoted as ∗G) is defined as

y = x ∗G h = Q
(

(QT x) � (QT h)
)

, (10)

where Q is the matrix of eigenvectors of the graph Laplacian, � denotes the
element-wise Hadamard product, and y is the output signal. In particular, we
can define QT h = (h(λ1, ), · · · h(λn))

T , where λk is the k-th eigenvalue of graph
Laplacian L and h(λ) is the spectral filter. Let h(Λ) = diag (h(λ1), · · · , h(λn)),
then we have:

y =
(

Qh(Λ)QT
)

x = h(L)x, (11)

Following the previous works [6,7], we adopt K-order Chebyshev polynomials
h(L) =

∑K
k=0 wkTk(̂L) to approximate h(L). Let K = 1, w0 = w,w1 = w, ̂L =

Lu
k − (1 + β)I, where β is a trainable parameter, then for the user hypergraph,

the adaptive high-pass filtering operation is defined as follows:

y = (wI + w (Lu
k − (β + 1)I))x

= w (Lu
k − βI)x

= w ((1 − β)I − Au
k)x,

(12)

where the hypergraph filter h(L) = Lu
k − βI, h(λ) = λ − β, which is a adaptive

high-pass hypergraph filter. Then for the high-pass user hypergraph filter, we
have the following layer-wise propagation rule:

U(�+1)
k = σ

(

P(l)
k U(�)

k Wu,(�)
k + b

)

P(l)
k =

(

1 − β(l)
)

I − D− 1
2

u

(

Hu
kP

v
kD

−1
v Hu,T

k − ˜Du

)

D− 1
2

u

(13)
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Let K = 1, w0 = w,w1 = −w, ̂L = Lu
k − (1 + β)I, where β is a trainable

parameter, then for the user hypergraph, the adaptive low-pass filtering opera-
tion is defined as follows:

y = (wI − w (Lu
k − (β + 1)I))x

= w ((2 + β)I − Lu
k)x

= w ((1 + β)I + Au
k)x,

(14)

where the hypergraph filter h(L) = (2 + β)I − Lu
k , h(λ) = 2 + β − λ, which is

a adaptive low-pass hypergraph filter. Then for the low-pass user hypergraph
filter, we have the following layer-wise propagation rule:

U(�+1)
k = σ

(

P(l)
k U(�)

k Wu,(�)
k + b

)

P(l)
k =

(

1 + β(l)
)

I + D− 1
2

u

(

Hu
kP

v
kD

−1
v Hu,T

k − ˜Du

)

D− 1
2

u ,
(15)

2.4 Local-Global Bi-directional Transfer Algorithm

In this section, we introduce our proposed local-global bi-directional transfer
algorithm. As shown in algorithm 1, in each round, the server sends the current
global low-pass filter parameters φu,(t) and global domain-shared user represen-
tations Ug,(t) to clients. In the local training stage, client k updates its local
high-pass hypergraph filter HHFk and low-pass hypergraph filter LHFk in an
alternating manner, to perform knowledge transfer of global → local and local
→ global, as shown in lines 5–10 of the pseudocode. This process allows for a
trade-off between global and local models.

Finally, the server receives the updated local low-pass filter parameters
{̂φ

u,(t+1)

k }K
k=1 and local domain-shared representations {Us,(t+1)

k }K
k=1 from

clients, and updates the global model and user representations using weighted
averaging.

Loss for HHF and LHF. We adopt multi-class cross-entropy loss to train
local high-pass hypergraph filters and low-pass hypergraph filters. The loss of
high-pass hypergraph filters is defined as follows (the same is true for low-pass
hypergraph filters):

LH
k = −

∑

(ui,vj)∈Ek

log
esk(uk,i,vk,j)

∑

vj∈Vk
esk(uk,i,vk,j)

(16)

To reduce the computational complexity, we use the negative sampling
method for training:

LH
k = −

∑

(ui,vj)∈Ek

[

log σ (sk (uk,i,vk,j)) + Ev′
j∼p′

i(Vk) log σ (−sk (uk,i,vk,j′))
]

,

(17)
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Algorithm 1: Local-Global Bi-Directional Transfer Algorithm
Input: Local datasets D = {Dk}K

k=1 (where Dk = (U , Vk, Ek)), local user/item
hypergraph adjacency matrix Au

k/Av
k, total training round T

Output: The optimal hypergraph high-pass filters {θk}K
k=1 = {(θu

k, θv
k)}K

k=1,
The optimal hypergraph low-pass filters {φk}K

k=1 = {(φu
k, φv

k)}K
k=1

1 Server initialize φu,(0);
2 for round t = 0, 1, · · · T − 1 do
3 for each client k ∈ K in parallel do
4 Receive φ

u,(t)
k and U

g,(t)
k from server;

5 /* Global → Local */
6 Ue

k,Ve
k = HHFk (A

u
k,Av

k; θk );

7
(
θ̂
u

k, θ̂
v

k

)
= argminθk LH

k (Ue
k,Ve

k) − λI
(
Ue

k,U
g,(t)
k

)
;

8 /* Local → Global */
9 Us

k,Vs
k = LHFk (A

u
k,Av

k;φk);

10
(
φ̂

u

k, φ̂
v

k

)
= argminφk

LL
k (Us

k,Vs
k) − λI (Us

k,Ue
k);

11 Client send φ̂
u

k and Us
k to server;

12 end
13 φu,(t+1) =

∑K
k=1

|Ek|
|E| φ̂

u

k;

14 Ug,(t+1) =
∑K

k=1
|Ek|
|E| U

s
k;

15 end

where (ui, vj)/(ui, v
′
j) are positive/negative user-item interaction pairs, and uk,i,

vk,j and v′
k,j are the corresponding user/item representations. Here sk(·, ·) is the

score function. p′
i(Vk) denotes the nagative sampling distribution over the local

items set Vk for the i-th user.

MI for Knowledge Transfer. For domain k, we adopt mutual information
for knowledge transfer between local domain-exclusive and global domain-shared
user representations during local training, which is computed as follows (the same
applies to local domain-shared and local domain-exclusive user representations):

I (Ue
k,Ug

k)

:=
∑

ui∈U

[

−sp
(

−Dk

(

ue
k,i,u

g
k,i

))]

−
∑

ui,u′
i∈U,u′

i �=ui

[

sp
(

Dk

(

ue,′
k,i,u

g
k,i

))]

,

(18)
where ue

i , ug
i are the local domain exclusive representation and global domain

shared representation of user i respectively. Dk is the discriminator, sp(x) =
log(1+ex) is the softplus function, and ue,′

i denotes the negative sample randomly
sampled from the user set U .
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2.5 Hypergraph Contrastive Loss

To better obtain domain-invariant user relationship information, when updating
the low-pass user hypergraph filter, we do perturbation to the user hypergraph by
randomly dropping a portion of edges. First, we sample a edge random masking
matrix Bu

k ∈ {0, 1}|U|×|U|, where (Bk)ij ∼ Bernoulli(1 − pd) indicates whether
to drop the edge between nodes i and j. Here pd is the probability of each edge
being dropped. Then the perturbed user hypergraph adjacency matrix can be
computed as:

˜Au
k = Au

k � Bu
k, (19)

where � is the Hadamard product. Then, we compute the hypergraph contrastive
loss as follows:

LGCL
k

(

Au
k, ˜Au

k,φu
k

)

= −
∑

ui∈U

(

�MI
k

(

us
k,i,z

s
k

)

+ �MI
k

(

zs
k,us

k,i

))

, (20)

where graph representations zs
k is aggregated through the readout function g(·)

on the user hypergraph:

zs
k = g

(

{us
k,i}ui∈U

)

, (21)

and the contrastive infomax item �MI
k

(

us
k,i,z

s
k

)

is defined as follows:

�MI
k

(

us
k,i,z

s
k

)

= EAu
k

[

logDk

(

us
k,i,z

s
k

)]

+ E
˜Au

k

[

log
(

1 − Dk

(

ũs
k,i,z

s
k

))]

, (22)

where Dk denotes the discriminator, which is trained to classify node embeddings
based on whether they belong to the original graph Au

k or the perturbed graph
˜Au

k. This loss can enforce the model to generate node embeddings that can
distinguish between the real graph and its perturbed counterpart. Finally, the
loss of the low-pass hypergraph filter in client k can be denoted as

˜LL
k = LL

k + γLGCL
k (23)

3 Experiments

In this section, we conduct a comprehensive set of experiments to evaluate the
effectiveness of our framework FedHCDR by answering the following questions:

– RQ1: Does FedHCDR outperform state-of-the-art methods for FedCDR?
– RQ2: How do HSD and HCL components enhance the performance of rec-

ommendations?
– RQ3: Is our proposed HSD method able to achieve desirable decoupling?
– RQ4: Does a global-local trade-off exist in the FedCDR scenario? How do

different hyperparameters λ and γ impact the recommendation performance?
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Table 1. Statistics of Three FedCDR scenarios.

Domain #Users #Items #Train #Valid #Test Density

Food 1898 11880 36097 1898 1898 0.177%
Kitchen 1898 18828 44021 1898 1898 0.134%
Clothing 1898 16546 20919 1898 1898 0.079%
Beauty 1898 12023 30067 1898 1898 0.148%
Sports 4004 35567 68627 4004 4004 0.054%
Clothing 4004 24130 31910 4004 4004 0.041%
Elec 4004 50838 131107 4004 4004 0.068%
Cell 4004 20556 36920 4004 4004 0.055%
Sport 6657 46670 108511 6657 6657 0.039%
Garden 6657 24575 69009 6657 6657 0.050%
Home 6657 39426 107273 6657 6657 0.046%
Toys 6657 40406 107041 6657 6657 0.045%

3.1 Experimental Setup

Datasets. We utilize publicly available datasets from the Amazon website1 to
construct FedCDR scenarios. Ten domains were selected to generate three cross-
domain scenarios: Food-Kitchen-Cloth-Beauty (FKCB), Sports-Clothing-Elec-
Cell (SCEC), and Sports-Garden-Home-Toys (SGHT). Following the approach of
previous studies [2,25], we filter out users with less than 5 interactions and items
with less than 10 interactions. For the dataset split, we follow the leave-one-out
evaluation method employed in previous studies [2,25]. Specifically, we randomly
select two samples from each user’s interaction history as the validation set and
the test set, while the rest of the samples are used for training. The statistics of
the FedCDR scenarios are summarized in Table 1.

Evaluation Metrics. To guarantee an unbiased evaluation, we follow the
method described in Rendle’s work [12]. Specifically, for each validation or test
sample, we calculate its score along with 999 negative items. Subsequently, we
evaluate the performance of the Top-K recommendation by analyzing the ranked
list of 1,000 items using metrics such as MRR (Mean Reciprocal Rank) [13],
NDCG@10 (Normalized Discounted Cumulative Gain) [14], and HR@10 (Hit
Ratio).

Compared Baselines. We compare our methods with two types of recommen-
dation models: (1) single-domain recommendation methods, like NeuMF [15],
LightGCN [20], DHCF [4]. (2) federated cross-domain recommendation meth-
ods, such as FedGNN [16], PriCDR [9], P2FCDR [10] and FPPDM++ [11].

1 https://jmcauley.ucsd.edu/data/amazon/.

https://jmcauley.ucsd.edu/data/amazon/
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Table 2. Federated experimental results (%) on the FKCB scenario. Avg denotes the
average result calculated from all domains. The best results are boldfaced.

Method Food Kitchen Clothing Beauty Avg
MRRHR NDCGMRRHR NDCGMRRHR NDCGMRRHR NDCGMRRHR NDCG

@10 @10 @10 @10 @10 @10 @10 @10 @10 @10
NeuMF 5.79 12.96 6.61 3.56 7.27 3.80 1.61 2.32 1.43 4.22 9.11 4.64 3.80 7.92 4.12
LightGCN 7.20 14.12 7.85 4.16 8.85 4.42 3.37 6.11 3.52 4.87 10.33 5.19 4.90 9.85 5.24
DHCF 7.02 14.93 7.81 4.17 9.43 4.61 3.58 6.59 3.79 4.98 10.57 5.43 4.93 10.38 5.41
FedGNN 7.15 13.91 7.75 4.15 9.01 4.46 3.45 6.38 3.65 4.86 10.12 5.12 4.90 9.85 5.25
PriCDR 7.34 16.60 8.58 4.55 9.11 4.88 3.49 5.95 3.55 5.26 10.48 5.51 5.16 10.54 5.63
P2FCDR 7.08 13.91 7.68 4.28 8.96 4.63 3.18 6.53 3.51 4.27 9.64 4.53 4.70 9.76 5.09
FPPDM++ 7.25 14.01 7.85 4.19 9.17 4.54 3.60 6.27 3.71 4.89 10.22 5.16 4.98 9.92 5.31
FedHCDR (Ours) 7.35 16.75 8.62 4.56 9.69 4.97 3.72 6.61 4.01 5.32 10.59 5.56 5.24 11.00 5.79

Table 3. Federated experimental results (%) on the SCEC scenario. Avg denotes the
average result calculated from all domains. The best results are boldfaced.

Method Sports Clothing Elec Cell Avg
MRRHR NDCGMRRHR NDCGMRRHR NDCGMRRHR NDCGMRRHR NDCG

@10 @10 @10 @10 @10 @10 @10 @10 @10 @10
NeuMF 2.30 3.90 2.19 1.06 1.70 0.86 4.68 9.42 5.13 3.14 5.57 3.21 2.80 5.14 2.85
LightGCN 4.03 8.64 4.43 3.37 6.82 3.61 6.78 12.86 7.43 5.09 10.21 5.61 4.82 9.63 5.27
DHCF 3.92 8.12 4.22 3.36 6.89 3.62 6.68 12.96 7.39 4.98 10.31 5.57 4.74 9.57 5.20
FedGNN 3.99 8.57 4.38 3.38 6.87 3.63 6.78 13.04 7.47 5.12 10.24 5.64 4.82 9.68 5.28
PriCDR 3.89 8.04 4.19 3.40 6.82 3.66 5.50 10.76 6.05 5.34 10.74 5.93 4.53 9.09 4.96
P2FCDR 3.77 7.84 4.06 3.13 6.59 3.41 6.25 12.36 6.93 5.14 10.51 5.75 4.57 9.33 5.04
FPPDM++ 4.06 8.64 4.45 3.38 6.74 3.60 6.71 12.99 7.39 5.16 10.41 5.72 4.83 9.70 5.29
FedHCDR (Ours) 4.47 9.04 4.90 3.45 6.92 3.66 6.88 13.61 7.65 5.75 11.11 6.31 5.14 10.17 5.63

Implementation and Hyperparameter Setting. For all methods, the com-
mon hyperparameters are as follows: the training round is set to 60, the local
epoch per client is set to 3, the early stopping patience is set to 5, the mini-batch
size is set to 1024, the learning rate is set to 0.001, and the dropout rate is set
to 0.3.

3.2 Performance Comparisons (RQ1)

Table 2, 3, 4 present the performance of compared methods on three different
FedCDR scenarios: Food-Kitchen-Clothing-Beauty, Sports-Clothing-Elec-Cell,
and Sports-Garden-Home-Toys.

Based on the experimental results, several insightful observations can be
made: (1) Among the single domain baselines, LightGCN and DHCF per-
form better than NeuMF. This finding validates that modeling the relationship
between users and items by GCN can enhance the representations in the FedCDR
scenario. (2) Most cross-domain baselines perform better than single-domain
baselines, which indicates that cross-domain knowledge helps improve recom-
mendation performance. (3) Among the cross-domain baselines, both PriCDR
and FPPDM++ outperform FedGNN and P2FCDR in most cases, indicat-
ing that representation/distribution alignment can effectively accomplish the
knowledge transfer between domains in the FedCDR scenario. (4) Our proposed
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Table 4. Federated experimental results (%) on the SGHT scenario. Avg denotes the
average result calculated from all domains. The best results are boldfaced.

Method Sports Garden Home Toys Avg
MRRHR NDCGMRRHR NDCGMRRHR NDCGMRRHR NDCGMRRHR NDCG

@10 @10 @10 @10 @10 @10 @10 @10 @10 @10
NeuMF 3.27 6.46 3.39 4.39 8.49 4.59 4.23 8.35 4.50 2.54 4.81 2.45 3.61 7.03 3.73
LightGCN 4.61 8.74 4.76 5.45 10.33 5.67 5.83 11.03 6.20 2.95 5.14 2.78 4.71 8.81 4.85
DHCF 4.78 8.92 4.95 5.49 10.43 5.73 5.82 11.31 6.28 3.34 5.35 3.14 4.86 9.00 5.03
FedGNN 4.72 8.74 4.84 5.60 10.61 5.86 5.91 11.30 6.33 3.15 5.06 2.91 4.84 8.93 4.99
PriCDR 4.59 8.46 4.78 6.02 11.69 6.46 5.56 11.09 6.20 4.92 9.15 5.02 5.27 10.09 5.61
P2FCDR 5.06 9.22 5.25 5.83 11.06 6.16 5.94 11.31 6.36 4.14 6.41 4.02 5.24 9.50 5.45
FPPDM++ 4.60 8.73 4.75 5.49 10.32 5.70 5.80 11.15 6.20 3.12 5.20 2.92 4.75 8.85 4.89
FedHCDR (Ours) 5.46 10.08 5.75 6.13 11.85 6.58 6.18 12.15 6.74 4.92 8.28 5.04 5.67 10.59 6.03

Table 5. Ablation study on FKCB, SCEC, and SGHT scenarios.

Method FKCB SCEC SGHT
MRRHR NDCGMRRHR NDCGMRRHR NDCG

@10 @10 @10 @10 @10 @ 10
LocalHF 4.97 9.98 5.33 4.84 9.70 5.31 4.86 8.85 4.97
FedHCDR - w/o (HSD, HCL) 4.98 10.02 5.34 4.81 9.69 5.28 4.95 9.03 5.09
FedHCDR - w/o HCL 5.18 10.95 5.73 5.07 10.12 5.60 5.64 10.58 6.01
FedHCDR (Ours) 5.24 11.00 5.79 5.14 10.17 5.63 5.67 10.59 6.03

method, FedHCDR, significantly outperforms all baselines in multiple metrics.
This emphasizes the crucial role of hypergraph signal decoupling and hypergraph
contrastive learning in capturing both local and global user features.

3.3 Ablation Study (RQ2)

We conduct an ablation study on the performance of FedHCDR, specifically
examining the impact of HSD and HCL. Table 5 presents the performance
results of different model variants in three FedCDR scenarios. LocalHF rep-
resents the HF model (vanilla hypergraph filter) without federated aggrega-
tion, FedHCDR-w/o (HSD, HCL) corresponds to FedHCDR without HSD and
HCL, and FedHCDR-w/o HCL refers to FedHCDR without HCL. It is evi-
dent from the findings that FedHCDR-w/o (HSD, HCL) occasionally performs
worse than LocalHF, highlighting the significance of data heterogeneity. Interest-
ingly, FedHCDR-w/o HCL greatly outperforms both LocalHF and FedHCDR-
w/o (HSD, HCL), indicating the effectiveness of HSD in addressing the data
heterogeneity across domains. Furthermore, the utilization of HCL enables fur-
ther improvements in model performance.

3.4 Discussion of the User Representation (RQ3)

In this section, we aim to further validate the ability of our HSD to learn both
domain-shared and domain-exclusive representations for users. To achieve this, we
conduct a comparative analysis of three types of representations: domain-shared,
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domain-exclusive, and domain-exclusive + domain-shared representations. The
predictive performance of these representations is compared, as illustrated in
Fig. 4. The results of our analysis reveal several interesting observations: (1) The
predictive performance varies among the three types of representations, highlight-
ing the effectiveness of our HSD. (2) The domain-exclusive + domain-shared rep-
resentations outperform both the domain-shared and domain-exclusive represen-
tations, indicating that integrating information from multiple domains by consid-
ering both domain-shared and domain-exclusive features is highly effective.

(a) Rep. in FKCB scenario (b) Rep. in SGHT scenario

Fig. 4. The predictive results of representations in FKCB and SGHT scenario.

3.5 Influence of Hyperparameters (RQ4)

Figure 5 displays the performance of MRR and @NDCG@10 as the coefficients λ
and γ increase. The following observations can be made: (1) The overall perfor-
mance of FedHCDR initially increases and then decreases as λ increases, peaking
at 2.0. This suggests that an λ coefficient of 2.0 is optimal for local-global bi-
direction transfer and highlights the local-global trade-off. (2) The overall per-
formance of FedHCDR follows a similar pattern with the increase of γ, reaching
its peak at 2.0. This indicates that a γ coefficient of 2.0 is optimal for hypergraph
contrastive learning.

4 Related Work

4.1 GCN-Based Recommendation

The development of graph neural networks has attracted considerable attention
in the exploration of GCN-based Recommendation [17,18]. NGCF [19] lever-
ages the user-item graph structure by propagating embeddings throughout it.
LightGCN [20] simplifies the model design by including only the neighborhood
aggregation for collaborative filtering. DHCF [4] utilizes the hypergraph struc-
ture to model users and items, effectively capturing explicit hybrid high-order
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(a) Impact of coefficient (b) Impact of coefficient

Fig. 5. Impact of coefficient λ and γ.

correlations. SGL and MCCLK [21,22] integrate contrastive learning into GCN-
based recommendation methods. However, the aforementioned methods solely
concentrate on a single domain, thus unable to fully exploit user data from mul-
tiple domains.

4.2 Cross-Domain Recommendation

DTCDR and DDTCDR [1,23] enhance the performance of recommendations
on dual-target domains simultaneously. BiTGCF [2] introduces an innovative
bi-directional transfer learning approach for cross-domain recommendation, uti-
lizing the graph collaborative filtering network as the foundational model. Dis-
Alig [24] proposes the use of Stein path alignment to align the latent embedding
distributions across domains. CDRIB [25] suggests the use of information bottle-
neck regularizers to establish user-item correlations across domains. Nonetheless,
these methods require access to all user-item interactions across domains, ren-
dering them infeasible in the federated learning setting.

4.3 Federated Cross-Domain Recommendation

FedMF [26] effectively incorporates federated learning into the field of cross-
domain recommendation. FedCTR [27] proposes a framework for training a
privacy-preserving CTR prediction model across multiple platforms. FedCDR [8]
deploys the user personalization model on the client side and uploads other mod-
els to the server during aggregation. P2FCDR [10] proposes a privacy-preserving
federated framework for dual-target cross-domain recommendation. FPPDM++
[11] presents a framework that models and shares the distribution of user/item
preferences across various domains. Nevertheless, none of these methods address
the issue of cross-domain data heterogeneity.

5 Conclusion

In this paper, we present a novel framework called FedHCDR, designed to enable
domains to collaboratively train better performing CDR models while ensuring
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privacy protection. To address the issue of data heterogeneity, we introduce a
hypergraph signal decoupling method called HSD that decouples user features
into domain-exclusive and domain-shared features. Additionally, we devise a
hypergraph contrastive learning module called HCL to learn more extensive
domain-shared user relationship information by applying graph perturbation to
the user hypergraph.
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Abstract. As decision-making processes become increasingly complex,
machine learning tools have become essential resources for tackling busi-
ness and social issues. However, many methodologies rely on complex
models that experts and everyday users cannot really interpret or under-
stand. This is why constructing interpretable models is crucial. Humans
typically make decisions by comparing the case at hand with a few exem-
plary and representative cases imprinted in their minds. Our objective
is to design an approach that can select such exemplary cases, which we
call pivots, to build an interpretable predictive model. To this aim, we
propose a hierarchical and interpretable pivot selection model inspired
by Decision Trees, and based on the similarity between pivots and input
instances. Such a model can be used both as a pivot selection method,
and as a standalone predictive model. By design, our proposal can be
applied to any data type, as we can exploit pre-trained networks for
data transformation. Through experiments on various datasets of tabular
data, texts, images, and time series, we have demonstrated the superi-
ority of our proposal compared to naive alternatives and state-of-the-art
instance selectors, while minimizing the model complexity, i.e., the num-
ber of pivots identified.

Keywords: Interpretable Machine Learning · Explainable AI ·
Instance-based Approach · Pivotal Instances · Transparent Model

1 Introduction

In recent years, Machine Learning (ML) models have become increasingly central
in supporting human decision-making processes [11]. These models are relied
upon to tackle business problems and social issues in health science, online threat
detection, and shopping pattern analysis [9,14,21], among others. Still, these
models rely on complex architectures, making it difficult for anyone, experts
and end users alike, to understand their reasoning. Moreover, although these
tools may achieve identical or even superior performances compared to humans,
the “cognitive process” they employ is hardly comparable to the one humans
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may use to solve the same task [43]. Given the pervasiveness of these models,
interpreting and explaining their predictions and decisions generated, ultimately
unveiling the internal mechanism inside the “black-box”, is crucial [27]. We can
identify this as the main goal of Explainable AI (XAI) [7].

In order to construct ML models that are inherently interpretable, a pos-
sible avenue to explore involves harnessing the intuitive notion of similarity of
discriminative or descriptive elements. Our fundamental assumption is that a
model “reasoning” in terms of exemplary instances provides an inherently inter-
pretable tool to decision-makers, analysts, and end-users alike [41]. As humans,
our cognitive processes and mental models often rely on a form of case-based
reasoning [38] in which we store in our memory a large set of past exemplary
cases, and then retrieve them as needed according to the task at hand. While
the retrieval mechanism is itself obscure, reasoning in terms of said similar cases
is inherently interpretable. This form of reasoning is so ingrained in us that even
small children are able to recognize, use, and play with novel objects they have
never seen, but that, in some form, are similar to other objects that they already
know [39]. Furthermore, this applies to a wide variety of modalities: we recognize
relatives based on faces we have already seen, music genres and bands based on
song we have already heard, the origin of a recipe based on other recipes we have
already tasted, etc. [26]. At its most fundamental level, similarity, and more gen-
erally case-based reasoning, is a universal form of human reasoning, pervasive to
a plethora of modalities and data types [19].

Case-based reasoning offers significant advantages for fostering interpretabil-
ity across various domains such as health [4], financial risk prediction [31], general
text domains [12,24], and time-series and image analysis [1]. Particularly in the
latter, recent research [25,36] shows good promise on the effectiveness of this type
of reasoning, which is often preferred by human subjects. Given these premises,
we emphasize the importance of training data quality as a ground for similar-
ity between pivots and instances to predict: poor diversity or bias can result in
unrepresentative cases. In contrast, feature-based methods may be more robust
in such contexts due to their focus on how features influence outcomes.

This paper aims to design an interpretable case-based model that selects
descriptive and discriminative cases to solve a decision-making task. With this
in mind, we introduce PivotTree, a hierarchical and interpretable case-based
model inspired by Decision Trees [8]. By design, PivotTree lends itself to both
selection and prediction. As a selection model, PivotTree identifies a set of piv-
ots, exemplary cases identified within a training set. As a predictive model, Piv-
otTree leverages the selected pivots to build a similarity-based Decision Tree,
routing instances through its structure, and yielding a prediction and an associ-
ated explanation. Unlike traditional Decision Trees, the explanation is not a set
of rules, but rather a set of pivots to which the instance is similar. Like distance-
based models, PivotTree is also a selection method, encoding instances in
a similarity space that enables case-based reasoning. Finally, PivotTree is a
data-agnostic model, which can be applied to different data modalities, jointly
solving both pivot selection and prediction tasks.
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(a) Select (b) Predict (c) Explain

Fig. 1. PivotTree as (a) selector, (b) interpretable model, (c) Decision Tree.

Figure 1 provides an example of PivotTree on the iris dataset, wherein
flowers are classified according to their petal characteristics. Starting from a
dataset of instances, PivotTree filters down a set of pivots (Fig. 1(a)), i.e.,
a set of representative flowers. Said pivots are then used to learn a case-based
model wherein novel instances are represented in terms of their similarity to the
induced pivots (Fig. 1(b)). Building on pivot selection, PivotTree then learns
a hierarchy of pivots wherein instances are classified. This hierarchy takes the
form of a Decision Tree (Fig. 1(c)): novel instances navigate the tree, percolating
towards pivots to which they are more similar, ultimately building a chain of sim-
ilar pivots, and landing in a classification leaf. In this case, given a test instance
x: if its similarity to pivot 0 is higher than 0.89 (following the left branch),
then x is classified as a Setosa flower. Otherwise (following the right branch),
if x’s similarity to pivot 1 is higher than 0.85 (left branch), then x is classified
as a pivot 0 flower. If neither condition is met, x is classified as a Virginica
flower. In contrast, a traditional Decision Tree (DT) would model the decision
boundary with feature-based rules, e.g., “if petal length < 2.4 then Setosa else if
petal width < 1.7 then Versicolor else Virginica”. However, (i) such an approach
can only model axis-parallel splits, and (ii) cannot be employed on data types
with features without clear semantics. Hence, improving on traditional DTs, the
case-based model learned by PivotTree can provide interpretability even in
domains such as images, text, and time series, where by-design interpretable
models are both underperforming and lack interpretability. Furthermore, unlike
conventional state-of-the-art distance-based predictive models such as kNN [17],
our proposal introduces a hierarchical structure to guide similarity-based pre-
dictions.

Experiments conducted on 24 datasets of different modalities, i.e., tabular
data, time series, images, and text, show that PivotTree yields interpretable
predictive models that are as effective as state-of-the-art approaches at a fraction
of their complexity expressed as the number of pivots. Qualitative results indicate
high effectiveness on different data modalities, while a sensitivity analysis shows
stability in the accuracy when varying the number of pivots selected.
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After a review of some related works in Sect. 2, in Sect. 3 we illustrate our pro-
posal. Then, Sect. 4 reports the experimental results. Finally, Sect. 5 summarizes
our contributions and open research directions.

2 Related Work

Similarity-based methods belong to one of two families: similarity methods, aim-
ing to, given a fixed data representation, learn the proper pivots1 through sim-
ilarity on said representation; and representation methods, which instead fix a
similarity function, and aim to learn a proper instance representation.

Similarity. Underlying similarity methods is the assumption of a fixed data
representation. Among them, we can distinguish three subclasses of methods:
covering, clustering, and partitioning methods. Covering methods aim to group
records around pivots. ε-ball [6] jointly learns a set of distance-based neigh-
boring coverages centered on a set of pivots. Pivots are optimized to be as few
as possible, while coverages to be as class-pure as possible. The resulting pivots
are thus laid on a “flat” structure where no structure defines the relationship
among pivots. Clustering algorithms can provide more nuanced pivot-to-pivot
relationships by tackling the lack of inter-pivot relationships. The MiniMax
algorithm [5] builds on agglomerative clustering by identifying cluster represen-
tatives, aggregating them in a hierarchical fashion, resulting in a hierarchy of
prototypes. PivotTree improves on MiniMax by greatly improving on its com-
plexity, and by leveraging pivots to perform prediction. Partitioning algorithms
segment the feature space, assigning a pivot to each segment. ProximityFor-
est [32] induces a forest of similarity-based Decision Trees routing instances
according to two pivots similarities. Notably, pivots are selected randomly, and
so is the similarity function, thus yielding highly randomized trees. Unlike cov-
ering algorithms, PivotTree constructs hierarchies of pivots, thus improving
model interpretability. Like partitioning algorithms, PivotTree partitions the
feature space, but unlike ProximityForest, it adopts a pivot selection strategy
and a fixed similarity function, greatly improving the robustness and variance of
its results. Finally, in [45] is presented a related methodology to select the best
split for DTs based on the average similarity of instance pairs belonging to each
children node. While being comparable to PivotTree as they both determine
the best split w.r.t. a similarity function, despite the title, they are inherently
different as in [45] are not identified prototypical instances, using traditional
feature-based rules for the split.

Representation. Unlike similarity methods, representation methods fix a sim-
ilarity function, and rely on learning a proper representation of the data to
find pivots. Unsurprisingly, these methods are often neural models lacking inter-
pretability. [18] and [35] introduce soft Decision Trees, wherein nodes hold piv-
ots, and instances are routed probabilistically towards multiple paths in the
1 In Sect. 2 we adopt the term pivot to refer to the instances selected by different

proposals in the state-of-the-art which do not necessarily adopt this term.
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tree, thus creating fuzzy chains of pivots. Other approaches improve on the
data representation at the cost of the intra-pivot structure. The authors in [2]
introduce a neural model that jointly learns the data representation and a set
of pivots, which are later used for classification. Similarly, ProtoPNet [10]
and HPNet [22] learn a neural network that identifies pivots by learning con-
trastive representations and employing them for classification. Recently, a set of
extensions of ProtoPNet have been proposed. ProtoTEx [12] integrates a
similar approach for texts using pre-trained language models. ProtoSeNet [33]
offers a model where pivots can be refined through user knowledge for general
sequence-based data. ProtoryNet [24] improves ProtoSeNet by handling
longer textual sequences. Finally, by providing even more fine-grained pivots,
CNN-Trees [44] learn a neural model that constructs a hierarchy of pivots,
each layer more specific than the previous, and each pivot also providing a score
indicating its contribution to the final prediction. Unlike neural representation
methods, PivotTree learns a crisp and fully interpretable model.

3 Pivot Tree Selection Model

We present here PivotTree, an interpretable hierarchical pivot selection model
inspired by Decision Trees [8]. Let us start by formalizing the problem and
setting. Without loss of generality, we restrict ourselves to classification tasks
and leave other tasks for future work.

Problem Setting. Given a population of instances represented as real-valued
m-dimensional feature vectors2 in R

m and a set of class labels C = {1, . . . , c},
we assume the existence of an unknown ground-truth function g : Rn×m → C
mapping each vector in R

m to one of the c classes in C. In case-based reasoning,
the objective is to learn a function f : Rm → C approximating g, with f being
defined as a function of k exemplary cases named pivots. As explained in Sect. 2,
similarity-based case-based models define f on a similarity space, often inversely
denoted as “distance space”, S induced by a similarity function s : Rm×R

m → R

quantifying the similarity of instances [37].
Given a training set 〈X,Y 〉 with X = {xi}ni=1 of n instances, Y = {yi}ni=1

with yi ∈ C the associated class labels, and a similarity function s, our objective
is to learn a function π : Rn×m → R

k×m that takes as input X and returns
a set P ⊆ X, i.e., πs(X) = P , of k pivots such that the performance of f are
maximized. Furthermore, aiming for transparency of the case-based predictive
model f , our objective is to employ as an interpretable model f Decision Tree
classifiers or k-Nearest Neighbors approaches [20] (kNN).

In practical terms, given a training set 〈X,Y 〉 and a similarity function s, the
selection method π selects k pivots P from X. Through the similarity function
s and the pivots P , the dataset X ∈ R

m is mapped into the similarity space S,

2 For the sake of simplicity, we consistently treat data instances as real-valued vectors.
Any data transformation employed in the experimental section to maintain coherence
with this assumption will be specified when needed.
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and thus encoded into a representation Z ∈ R
n×k where Zi,j is the similarity

between the i-th object with the j-th pivot in P . Hence, the predictive model f
is trained on 〈Z, Y 〉. Then, given a test instance x ∈ R

m, x is first mapped to
a similarity vector z = 〈s(x, p1), . . . , s(x, pk)〉 yielding its similarity to the set P
of pivots. Then, z is provided to f , which performs the prediction.

When f is implemented with a Decision Tree, split conditions will be of the
form s(x, pi) ≥ β, i.e., “if the similarity between instance x and pivot pi is greater
or equal then β, then ...”, allowing to easily understand the logic condition by
inspecting x and pi for every condition in the rule.

On the other hand, when f is implemented as a kNN, every decision will
be based on the similarity with a few neighbors (typically between one and
five) in the similarity space S obtained computing the similarity between each
instance with respect to the selected pivots. A human user just needs to inspect
x and the similarities with the pivots P and the instances in the neighborhood.
When the number of pivots is kept small, the interpretability of both methods
increases, limiting the expressiveness. Vice versa, using a selection model π that
returns a large number k of pivots can increase the performance at the cost of
interpretability. Our proposal aims to balance these two aspects by allowing the
selection of a small number of pivots that still guarantee comparable performance
to interpretable predictive models.

PivotTree Algorithm. In this paper, with PivotTree, we implement the
selection function π. Much like Decision Tree induction algorithms [8], Pivot-
Tree greedily learns a hierarchy of nodes, each node splitting instances towards
one of its two children, ultimately reaching terminal leaf nodes, which are asso-
ciated with a classification label. The splitting is based on discriminative pivots
and representative pivots. Let Xt be the records constrained by the decision
path at iteration t in the tree construction, and Yt the associated class labels,
then a discriminative pivot is an instance of class c, i.e., p− ∈ X

(c)
t = {xi|xi ∈

Xt ∧ yi = c}, such that it maximizes the impurity gain when partitioning Xt

w.r.t. the similarity with p−. Formally, if Xt,l = {xi ∈ Xt|s(xi, p
−) ≥ βt},

Xt,r = {xi ∈ Xt|s(xi, p
−) < βt} and Yt,l, Yt,r are the associated class labels,

respectively, then if δs(p−,Xt, Yt), is the Information Gain calculated as in [8]
maximizing a task-dependent measure like Entropy or Gini w.r.t. the similari-
ties between p− and Xt (instead of w.r.t. the features R

m of Xt), it does not
exist another instance p̂− such that δs(p̂−,Xt, Yt) > δs(p−,Xt, Yt). Further-
more, besides discriminative pivots, for each iteration v, PivotTree also iden-
tifies representative pivots. A representative pivot is an instance of class c, i.e.,
p+ ∈ {xi|xi ∈ Xt ∧ yi = c} that maximizes the similarity with all the other
instances described by the same node and belonging to the same class, i.e.,
p+ = argmax

p′∈X
(c)
t

∑
xi �=p′∈X

(c)
t

s(xi, p
′).

In Algorithm 1, we illustrate the pseudo-code for training a PivotTree.
Given the dataset and labels 〈X,Y 〉, the similarity function s, the maximum
tree depth maxdepth, it returns the set P set of selected pivots, and the trained
decision tree T (line 5). After initializing the tree and pivots (line 1), Pivot-
Tree induces a similarity matrix S between all pairs of instances in X (line 2).
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Algorithm 1. PivotTree(X,Y )
Input: 〈X, Y 〉 data and labels, s similarity function, maxdepth maximum tree depth
Output: P set of pivots, T learned tree
1: T ← ∅; P ← ∅; � Variables initialization

2: S ← 〈s(xi, xj)〉 ∀xi, xj ∈ X × X � Calculate similarity matrix

3: P, T ← PTR(X, Y, T, P, S); � Start of recursive procedure

4: return P, T

5: function PTR(X, Y, T, P, S)
6: if depth(T ) ≤ maxdepth then
7: for c ∈ C do
8: p− ← argmin

x′∈X(c)
δs(x

′, X, Y ); � Get discriminative pivot

9: p+ ← argmax
x∈X(c)

∑
x �=x′∈X(c) s(x, x′); � Get representative pivot

10: P ← P ∪ {p−, p+}; � Add pivots to result set

11: Xl, Xr, Yl, Yr ← SplitData(X, Y, P ); � Split data w.r.t. P

12: Pl, Tl ← PTR(Xl, Yl, T, P, S) � Recourse on left child

13: Pr, Tr ← PTR(Xr, Yr, T, P, S) � Recourse on right child

14: T ← AddSplitToTree(T, Tl, Tr); � Add split to tree

15: return P, T ; � Return current pivots and tree

16: else
17: p+ ← argmax

x∈X(c)

∑

x �=x′∈X(c)
s(x, x′); � Get representative pivot

18: P ← P ∪ {p+}; � Add pivots to result set

19: return P,MakeLeaf(T ); � Return current pivots and leaf

Then, the recursive procedure PTR is started (line 3). If the current depth of
the tree depth(T ) is lower than the maximum tree depth maxdepth (line 6),
then for each class, the most discriminative and most representative pivots are
selected and added to the result set P (lines 7–10)3. We notice that, since the
similarity matrix S is calculated at the beginning, the pairwise similarities to
select the most discriminative and representative pivots are available without
performing any calculus. The set P of discriminative and representative pivots
is then used to select the best split to partition the data with the SplitData
function, again maximizing the Information Gain w.r.t. the similarities w.r.t. the
pivots in P (line 11). We highlight that, by construction, SplitData selects a
discriminative pivot. However, we keep these aspects separated as it is possible to
run PivotTree relying only on representative pivots. After that, PivotTree
recourses on the left and right subsets Xl, Yl and Xr, Yr and composes the tree
returned (lines 12–14). On the other hand, if the maximum depth (line 16) or
other stopping conditions are met, then the current pivots, augmented with the
descriptive pivots of the records in the leaf, and a leaf itself (lines 17–19), are

3 To ease the computational burden, and similarly to other implementations, e.g.,
scikit-learn, we select only a subset of splits is evaluated.
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Table 1. Datasets info: tr training and ts test size, m nbr. features, c nbr. classes.
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returned. Thus, the complexity of the PivotTree is theoretically bounded by
the calculus of the similarity matrix S.

Furthermore, besides being used as a pivot selector method (π), we underline
that PivotTree can be employed as a standalone predictive model by combin-
ing the encoding in the similarity space and the tree induction f . In this case,
we do not need to train additional interpretable models, as both pivot selection
and case-based prediction are already integrated into the model.

Data Agnosticism. By design, PivotTree is a data-agnostic model that lever-
ages the concept of similarity to conduct both selection and prediction tasks
simultaneously. While some data types, e.g., relational data, are more amenable
than others, e.g., images or text, to similarity computation, with our contribu-
tion, we aim to address all data types as one. By decoupling similarity compu-
tation and object representation, PivotTree can be applied to any data type
supporting a mapping to R

m, i.e., text through language model, images through
vision models, graphs through graph models, etc. In the following experimenta-
tion, besides tabular data, we focus on time series, images, and text.

4 Experiments

In this section, we evaluate the performance of PivotTree, which we imple-
mented in Python4, on different datasets with different modalities, and against
a wide array of competitors. Our objective is to demonstrate that PivotTree
is as accurate as state-of-the-art pivot selection methods, while being simpler.
With PTS, we indicate PivotTree used as Selector, while with PTC, we refer
to PivotTree directly used as Classification model.

Baselines and Competitors. We compare PivotTree with the following
baselines and state-of-the-art similarity-based approaches for pivot selection (π):

– RND: randomly selects instances from the training set to be used as pivots;
– RNC: same as RND, but instances are sampled separately from each class;
– KMS: runs kMeans [40] and adopts the centroids as pivots;
– KMD: runs kMedoids [40] and adopts the medoids as pivots;
4 https://github.com/msetzu/pivottree.

https://github.com/msetzu/pivottree
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– EBL: selects pivots according to the ε-ball algorithm5 [6].

Regarding model selection, we performed grid searches over the hyper parameter
space, selecting the best-performing model on a validation set. On RND, RNC,
and KMS, the number of pivots |P | is selected within a grid on |P | ∈ [2, 32].
On EBL, the grid search for ε is performed on an interval between the 2nd and
the 40th quantile of the empirical similarity distribution, as suggested in [6].
Regarding the interpretable predictive models (f) to be used on the selected
prototypes, we rely on kNN and Decision Tree as implemented by the sklearn
Python library. For PivotTree, both used as selector or predictor, i.e., PTS
or PTC, the best maxdepth is searched in an interval [2, 4]. Obviously, a deeper
PivotTree yields the selection of a larger number of pivots. Finally, to guar-
antee interpretability for the predictive models, we fix the hyper parameters as
follows. Maximum depth equals four for Decision Trees [3], and the maximum
number of neighbors for kNN equals to five [19]. As further baselines, we also
compare PivotTree with kNN and DT directly trained on the original feature
space while preserving hyper parameters.

Evaluation Measures. We evaluated the effectiveness of the selected pivots by
measuring the F1-score of the predictive models relying on the different sets of
pivots6. In line with the literature [7], as proxy of interpretability, we evaluated
the complexity in terms of k, the number of selected pivots. Note that k can either
be user-given, or optimized w.r.t. a given validation set. We experiment in both
settings. Finally, to account for differences in datasets, and ease comparison, we
turn complexity into simplicity as 1 − k

|X| .

Datasets. In order to show the effectiveness of our proposal for different data
types, we experimented with 11 tabular datasets, 5 time series datasets, 3 image
datasets, and 5 text datasets. Table 1 reports some dataset details7. For tabular
datasets, in order to perform a direct distance comparison between instances, we
leave unvaried numeric and ordinal features while we one-hot encode categorical
ones. We discard instances presenting missing values for one or more features.
The datasets are then normalized with a z-score normalization by removing the
mean and scaling to unit variance. Time series datasets are left unchanged as they
are already preprocessed and normalized. For textual datasets, we first embed
the input text with the all-mpnet-base-v2 sentence transformer model8, which
yields L2-normalized 768-dimensional dense vector with magnitude 1. Finally,
for image datasets, we embed each dataset with pretained and fine-tuned vision
models. Further details are provided in the project repository. On the basis of
these encodings, the similarity s is based on the Euclidean distance. While text
embeddings usually rely on cosine similarity, in [29] it is shown that under unit
normalization, the two are directly proportional and thus order-preserving.

5 https://docs.seldon.io/projects/alibi/en/latest/methods/ProtoSelect.html.
6 For multi-class datasets we calculate the metric for each label and report the unweighted mean.
7 The links to the various repositories and detailed preprocessing steps for the different datasets

are available on the project repository.
8 https://huggingface.co/sentence-transformers/all-mpnet-base-v2.

https://docs.seldon.io/projects/alibi/en/latest/methods/ProtoSelect.html
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Tabular datasets are divided into 70% training and 30% testing, while non
tabular data sets come with their own split into training and test set. During
model selection, a further split is performed, allocating for each development set
80% of the instances for training and 20% for validation. Thus, for each pivot
selection method and classification method of each dataset, we perform a hold-
out model-selection procedure, i.e., we find the best-performing hyper parame-
ters configuration on the validation set and use it in the model-assessment phase,
training on the whole training set and considering the resulting performances on
the test set for final assessment.

pivotpivot

if s(x, p574)≤128
andand s(x, p65) > 163
thenthen bird

if s(x, p574)≤128
andand s(x, p351)≤119
andand s(x, p781)≤110
thenthen cat

Fig. 2. PivotTree prediction and explanation on cifar. Top: selected pivots. Center
and bottom: two classification examples. On the left a test instance; in the center, the
five nearest neighbors of the selected pivots; and on the right a case-based decision
rule.

Qualitative Results. In the following, we illustrate some qualitative examples
on different data types to show the usability of PivotTree at prediction and
explanation time with DT and kNN with the same set of pivots. PivotTree
selects a set of pivots, which are then the training set for either a kNN or a DT.
In the latter case, the data is first encoded in a pivot-instance similarity matrix.
In Fig. 2, we report two prediction and explanation examples on cifar. The
top rows illustrated the pivots selected by PivotTree. The central and bottom
rows show two classification examples for the bird and cat test instances, both
on the left of the respective rows. Next to the test instances, we display the five
neighbors selected by a kNN on the pivots similarity space. We can notice that
for the bird example, all the neighbors are indeed birds quite similar in color
and shape to the test instance. On the other hand, for the cat example, there
are also some deers among the neighbors that however are in the same palette
as the test instance. Finally, the right column shows the decision rules obtained
by training a DT in the similarity space derived by PivotTree. We notice that
the bird is recognized thanks to its dissimilarity with the car pivot p574 and its
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similarity with the bird pivot p65. On the other hand, the cat is classified due
to its dissimilarity with p351 and p781. Thus, similarly to humans, these kinds
of models can also reason by exclusion, suggesting their applicability also in the
context of few-shot learning.

ifif s(x, p10) > 6
andand s(x, p41) > 8
thenthen gun

ifif s(x, p196) ≤ 12
andand s(x, p227) ≤ 11
andand s(x, p41) > 14
thenthen normal

Fig. 3. Test time series (1st column), pivots extracted by PivotTree (2nd column),
neighbors selected by kNN (3rd column) and decision rule (4tg column) on the gun
(top) and ecg (bottom) datasets.

Similarly, Fig. 3 reports two examples from the gun and ecg datasets, classify-
ing tracked hand movements as gun draws and holsterings or not, and heartbeats
of five different types, respectively. For both cases, the test instance has a large
set of peculiarly similar neighbors, each with minimum variations. For the gun
dataset, PivotTree has identified three pivots, two for the not a gun class,
both characterized by short starting and ending movements, and interleaved by
a long plateau. Here, the movement is sharp, but somewhat smooth, especially
when gun is drawn, rather than holstered. The third pivot, associated to the
gun class, is instead characterized by minimal motions, interleaved by a sharp
draw, and a short plateau. The more pronounced movement closely resembles
the test instance, but for a slight shift, and the instance is correctly classified by
kNN as gun. The decision rule of the DT instead recognizes the gun class due
to the similarity with p10 and p45. For ecg, PivotTree identified four pivots,
the test instance is very similar to p196 in the initial part and to p41 in the final
part. The kNN classifier correctly retrieves neighbors with this shape and the
test is correctly classified as normal. The DT instead distinguishes the normal
class due to its limited similarity with p227 and high similarity with p41.

Quantitative Results. Table 2 and Table 3 report the predictive model per-
formance (F1-score) and complexity (number of pivots), respectively, per data
modality and predictive model, i.e., DT and kNN. The bottom rows of the table
report the average performance and standard deviations for all methods, and the
rank of the pivot selection methods. The best and second-best performers per
dataset among the pivot selection methods are in bold and italic, respectively.
We can notice that when relying on the original data representation, i.e., when
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Table 2. Predictive model performance as F1-score.

predictor Decision Tree kNN

selector -

R
N
D

R
N
C

K
M

S

K
M

D

E
B
L

P
T
S

P
T
C

-

R
N
D

R
N
C

K
M

S

K
M

D

E
B
L

P
T
S

Im
g cars .01 .02 .02 .02 .02 .02 .02 .00 .86 .75 .84 .78 .75 .80 .84

cifar .75 .40 .40 .40 .41 .41 .39 .11 .87 .87 .87 .88 .88 .88 .87
mnist .68 .44 .41 .53 .44 .41 .37 .29 .97 .96 .96 .96 .96 .97 .96

T
ab

u
la
r

breast .95 .94 .93 .93 .94 .95 .94 .95 .96 .95 .95 .95 .96 .96 .95
compas .50 .47 .48 .46 .48 .48 .52 .49 .46 .47 .48 .48 .48 .46 .47
german .58 .54 .53 .48 .48 .61 .50 .48 .67 .59 .59 .59 .59 .65 .60
heloc .70 .66 .66 .65 .66 .67 .68 .66 .67 .66 .66 .67 .67 .67 .66
house .80 .72 .72 .73 .73 .78 .76 .77 .83 .80 .79 .80 .80 .82 .80
iris 1.0 .94 .91 .96 .96 .90 .92 .92 1.0 .99 1.01.0 1.01.0 .98
page .88 .84 .86 .87 .85 .88 .84 .87 .90 .88 .89 .90 .89 .90 .88
diva .79 .60 .59 .58 .56 .64 .64 .63 .76 .72 .72 .70 .71 .75 .73
sonar .74 .70 .73 .72 .71 .77 .73 .59 .94 .82 .84 .83 .81 .89 .84
vert. .72 .68 .69 .66 .69 .65 .71 .68 .73 .69 .69 .73 .76 .74 .78
wine .20 .19 .20 .19 .20 .20 .20 .18 .37 .35 .35 .35 .36 .35 .35

T
ex

t

imdb .70 .73 .72 .75 .74 .79 .78 .78 .78 .78 .77 .79 .80 .79 .82
lyrics .66 .69 .69 .68 .68 .70 .70 .70 .71 .70 .70 .70 .70 .71 .71
news .12 .16 .16 .19 .18 .16 .24 .01 .69 .55 .50 .62 .60 .66 .65
tgpt .84 .80 .80 .80 .81 .84 .79 .84 .92 .88 .88 .90 .90 .89 .89

vicuna .63 .57 .55 .55 .59 .64 .63 .59 .68 .69 .69 .67 .71 .73 .72

T
im

eS

devices .25 .33 .32 .34 .34 .39 .42 .34 .49 .47 .46 .48 .48 .49 .52
worms .54 .54 .53 .57 .56 .56 .56 .56 .60 .58 .61 .58 .58 .61 .70
ecg .52 .50 .51 .50 .50 .53 .51 .51 .57 .54 .54 .55 .55 .56 .56
gun .80 .77 .77 .76 .78 .77 .71 .74 .91 .87 .87 .89 .89 .88 .84

wafer .90 .93 .93 .94 .94 .95 .92 .93 .99 .97 .98 .98 .98 .98 .98
avg .64 .59 .59 .59 .59 .61 .60 .57 .76 .73 .73 .74 .74 .76 .75
std .26 .25 .25 .25 .25 .25 .24 .29 .18 .18 .18 .18 .18 .18 .17
rank 4.8 4.8 4.21 3.92.53.5 4.3 4.9 4.4 3.6 3.152.22.9

using directly DT or kNN on the training data, we have slightly better perfor-
mance at the cost of losing the interpretability for non-tabular datasets. Focusing
on predictive models relying on pivots, we notice that EBL has, on average, the
highest F1-score (Table 2) immediately followed by PTS both for DT and kNN.
We observe that the difference in the average of F1-score between EBL and
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Table 3. Predictive model complexity as number of pivots used.

predictor Decision Tree kNN

selector -

R
N
D

R
N
C

K
M

S

K
M

D

E
B
L

P
T
S

P
T
C

-

R
N
D

R
N
C

K
M

S

K
M

D

E
B
L

P
T
S

Im
g cars - 10 196 6 6 64 778 4 - 32 196 32 28 64 974

cifar - 32 10 18 28 220 118 12 - 32 20 22 30 18 42
mnist - 4 10 4 4 261 2 12 - 32 20 30 30 133 73

T
ab

u
la
r

breast - 32 2420 28 88 39 6 - 26 28 12 6 99 20
compas - 32 32 30 18 70 9 10 - 18 18 30 32 581 7
german - 26 32 24 24 60 22 10 - 32 32 32 32 72 32
heloc - 28 3224 32 880 9 9 - 32 32 18 22 378 9
house - 32 32 16 20 2k 6 13 - 32 26 28 32 1k 30
iris - 28 32 28 4 69 16 3 - 28 28 32 28 20 10
page - 32 3222 24 105 69 10 - 30 32 6 20 112 6
diva - 30 32 32 30 528 83 13 - 32 28 30 30 311 13
sonar - 32 32 22 22 26 21 4 - 32 20 22 24 21 6
vert. - 30 3228 8 61 53 8 - 32 10 18 8 21 3
wine - 28 2822 22 150 158 14 - 24 28 22 32 32 121

T
ex

t

imdb - 32 3210 18 531 26 8 - 32 32 8 30 980 26
lyrics - 30 32 30 24 5k 24 2 - 32 32 30 28 156 99
news - 30 20 20 22 215 106 13 - 32 20 32 32 215 844
tgpt - 26 3214 26 247 18 12 - 32 32 32 28 187 68

vicuna - 32 32 32 14 107 40 12 - 32 32 32 32 540 30

T
im

eS

devices - 32 28 24 8 136 408 12 - 32 28 26 30 896 89
worms - 32 3012 16 107 25 6 - 8 24 26 14 32 20
ecg - 28 28 16 24 43 14 3 - 30 24 30 26 96 37
gun - 28 20 8 30 15 2 2 - 20 24 8 20 5 4

wafer - 26 2812 24 43 13 3 - 30 32 32 30 43 45
avg - 28 3520 20 523 86 8 - 29 33 24 26 259 109
std - 7 35 8 8 1k170 4 - 6 35 8 7 338 249
rank 4.8 4.9 3. 3.3 6.6 3.91.4 3.73.1 2.92.9 5.1 3.3
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PTS is only 0.1. All the other approaches follow them, with PTC being worse
than EBL, thus indicating that PivotTree, in its current implementation,
works better as a selector than as a classifier. On the other hand, concerning the
complexity (Table 3), even though PTS is not minimizing the number of pivots
selected compared to other methods such as KMS, it still requires less than half
of the pivots used by EBL to guarantee comparable performance.

Fig. 4. Comparison of model’s rank w.r.t. F1-score and complexity against each other
with the Nemenyi test. Groups of classifiers that are not significantly different at 95%
significance level are connected. Best ranks on the right.

The non-parametric Friedman test compares the average ranks of the var-
ious methods over multiple datasets w.r.t. an evaluation measure, in our case,
F1-score and complexity. The null hypothesis that all methods are equivalent
is rejected (p < 0.001) for all the experiments reported in the various tables.
The comparison of the ranks of all methods against each other can be visually
represented as shown by the critical difference plots in Fig. 4: lower rank val-
ues indicate better models, i.e., best ranks on the right (see [16] for details). In
Fig. 4, methods statistically equivalent according to a post-hoc Nemenyi test are
connected by black lines. We notice that regardless of the classification model
f used, EBL and PTS are tied w.r.t F1-score, while PTS is significantly less
complex and untied w.r.t. the number of pivots selected.

In summary, PTS is the best pivot selector, achieving high predictive per-
formance with a smaller number of pivots. Such a result is best appreciated in
Fig. 5, where we show the mean and standard deviation of the F1-score and the
simplicity of pivot selection methods. Besides, Fig. 5 also highlights the lowest
variability of PTS w.r.t EBL in terms of simplicity.

We repeated the experiments in a constrained setting9 wherein pivot selection
was limited to a maximum of 20 pivots (Table 4 and Fig. 6). While the average
9 cars has not been used as it contains 196 classes, and all the methods would have failed.
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Fig. 5. Scatter plots for average F1-score and simplicity for pivot selection methods
with error bars reporting 10% of the standard deviation.

Fig. 6. Comparison of model’s rank w.r.t. F1-score against each other with Nemenyi
test. Classifiers that are not significantly different at 95% significance level are con-
nected. Best ranks on the right. Models limited to 20 pivots.

Fig. 7. F1-score varying the number of pivots w.r.t. bins of pivots for datasets with
different number of classes.

performance remains more or less unchanged, we notice that PTS is the best
performer among the various competitors when DT is used as a classifier. On
the contrary, PTC worsens its ranking. In other terms, PivotTree excels in
different settings according to the number k of pivots extracted: when k is small,
a Decision Tree is best; and when k is large, then kNN is best.

Sensitivity Analysis. Figure 7 reports a sensitivity analysis on PivotTree
used as pivot selector (PTS). In particular, we observe the average F1-score
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Table 4. Model performance as F1-score with models limited to 20 pivots.

predictor Decision Tree kNN

selector -

R
N
D

R
N
C

K
M

S

K
M

D

E
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L

P
T
S

P
T
C

-

R
N
D

R
N
C

K
M

S

K
M

D

E
B
L

P
T
S

Im
g cifar .75 .39 .40 .40 .41 .41 .42 .11 .87 .86 .87 .88 .88 .88 .80

mnist .68 .44 .41 .53 .44 .42 .37 .29 .97 .96 .96 .96 .96 .96 .95

T
ab

u
la
r

breast .95 .93 .94 .93 .94 .94 .96 .95 .96 .95 .95 .95 .96 .97 .95
compas .50 .46 .48 .46 .48 .47 .52 .49 .46 .47 .48 .48 .47 .49 .47
german .58 .52 .53 .56 .49 .44 .50 .48 .67 .58 .58 .59 .58 .60 .58
heloc .70 .65 .65 .65 .65 .65 .68 .66 .67 .66 .65 .67 .67 .67 .66
iris 1.0 .94 .92 .98 .96 .95 .95 .92 1.0 .951.0 1.01.01.0 .98
page .88 .83 .83 .87 .87 .88 .84 .87 .90 .88 .88 .90 .89 .89 .88
diva .79 .60 .60 .58 .55 .59 .63 .63 .76 .72 .71 .69 .70 .71 .73
sonar .74 .71 .70 .71 .71 .74 .72 .59 .94 .82 .84 .82 .83 .89 .84
vert. .72 .66 .69 .66 .69 .66 .66 .68 .73 .69 .69 .73 .76 .74 .78
wine .20 .19 .19 .19 .19 .18 .19 .18 .37 .35 .35 .35 .35 .35 .36

T
ex

t

imdb .70 .72 .71 .75 .74 .77 .78 .78 .78 .76 .75 .79 .79 .81 .81
lyrics .66 .68 .68 .68 .68 .70 .70 .70 .71 .69 .69 .70 .68 .71 .68
news .12 .15 .16 .19 .18 .16 .19 .01 .69 .48 .50 .58 .55 .58 .40
tgpt .84 .79 .79 .80 .82 .84 .79 .84 .92 .87 .86 .88 .88 .90 .88

vicuna .63 .55 .55 .52 .59 .57 .64 .59 .68 .67 .67 .66 .69 .72 .71

T
im

eS

devices .25 .32 .30 .30 .34 .36 .38 .34 .49 .46 .44 .48 .49 .46 .47
worms .54 .52 .52 .57 .56 .61 .56 .56 .60 .58 .61 .60 .58 .51 .70
ecg .52 .49 .51 .50 .50 .46 .51 .51 .57 .54 .54 .55 .55 .55 .56
gun .80 .77 .77 .76 .77 .77 .71 .74 .91 .87 .86 .89 .89 .88 .84

wafer .90 .93 .93 .94 .93 .93 .92 .93 .99 .97 .98 .98 .98 .98 .98
avg .66 .60 .60 .62 .61 .61 .62 .58 .76 .72 .72 .73 .73 .74 .73
std .23 .22 .22 .22 .22 .23 .22 .27 .18 .19 .19 .18 .19 .19 .19
rank 5.0 4.6 4.03.6 3.73.1 3.9 4.8 4.13.0 3.12.2 3.5

among all datasets with error bars indicating the standard deviations when vary-
ing the maximum number of pivots in ranges from 10 to 20, from 20 to 30, etc.
Two lines are reported to differentiate the performance between datasets with 2
or 3 classes, i.e., c ∈ [2, 3], versus datasets with 5 to 10 classes, i.e., c ∈ [5, 10].
We leave as a future study a sensitivity analysis of datasets with more than
10 classes. The results show that, both for DT and kNN, for datasets with few
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classes, the performance is stable independently of the number of pivots selected.
Thus, extracting a limited number of highly discriminative and representative
pivots can guarantee high performance and high simplicity. On the other hand,
for datasets with more than five classes, the results are less stable, and we observe
an increase in performance, especially when using kNN, as the DT we relied on
is limited by the maximum depth of four, thus practically being limited by its
depth and not exploiting all the possible pivots. As a consequence, for datasets
with a high number of classes, the tuning of the number of pivots k extracted
with PivotTree should be carefully addressed, and it should consider a high
number potentially limiting the final interpretability of the predictive model.

Although time complexity is not the primary focus of this paper, here we also
report training runtime (in seconds). As example for small datasets, breast and
ecg datasets present fitting runtimes respectively of 4.34 s and 8.29 s. In contrast,
tgpt and cifar show higher training times of 24.91 s and 60.70 s. Larger datasets,
both in terms of instances and dimensions, require longer training times, due
to the need of finding pivots within a bigger pool. For example, lyrics requires
458.81 s for training. In all cases mentioned, prediction times are relatively fast,
with all predictions taking under 24.10 s, which is the time needed to perform
predictions for the imdb test set.

5 Conclusions

We have introduced PivotTree, an interpretable tree-based pivot selection
model aimed at facilitating the training of effective interpretable case-based
predictive models. In PivotTree, exemplary instances, named pivots, guide
the construction of a similarity-based case-based model where explanations are
a hierarchy of prototypical instances. By design, PivotTree is both a pivot
selector and a prediction model, enabling, independently, both the extraction
of relevant instances and the construction of an interpretable predictive model.
PivotTree is a data-agnostic model, which can be seamlessly applied to various
data modalities, including tabular data, text, time series, and images. In a wide
array of experiments, PivotTree has shown to be on par with state-of-the-art
approaches while often retaining lower complexity and higher interpretability.

Given its inherent flexibility, PivotTree lends itself to several future
improvements: different data encodings, e.g. TabPFN [23] or Rocket [15],
may further improve instance representation, and thus similarity estimation;
joint optimization of pivot selection and case-based reasoning, which is currently
decoupled in pivot selection, and tree induction; use of more sophisticated case-
based reasoning models; adaptation for other data types such as mobility trajec-
tories [30], and evaluation of the privacy exposure lead by pivots [34]. Another
avenue of research lies in integrating prior knowledge or human supervision into
prototype learning, as human-machine collaboration could improve the classi-
fier’s accuracy and interpretability, as suggested and investigated in [33,42]. Fur-
thermore, future avenues of research also include assessing PivotTree’s inter-
pretability from a human-centric perspective, validating its performance through
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evaluation schema designed for prototype-based explanations, as described for
images in [13,28], time-series in [33], and texts in [12,24]. As such, an extensive
comparison of PivotTree’s performance and explainability could be conducted
against deep learning-based representations of the prototypes across different
modalities, as well as through feature-based explainability techniques.
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inconsistent distribution of sensitive attributes conditioned on labels sig-
nificantly contributes to unfairness. To mitigate this problem, we suggest
rectifying this inconsistency of the original dataset through a counter-
factual augmentation strategy. Existing methods usually generate coun-
terfactual samples from an entangled representation space, which fail to
distinguish the different dependencies on sensitive attributes. Thus, we
propose a novel disentangled counterfactual graph augmentation method
based on the Information Bottleneck theory, named Fair Disentangled
Graph Information Bottleneck (FDGIB). Specifically, FDGIB embeds
graphs into two disentangled representation spaces: sensitive-related and
sensitive-independent. By satisfying three conditions, FDGIB theoreti-
cally guarantees the disentanglement of different sensitive dependencies.
We acquire credible counterfactual augmented graphs to facilitate con-
sistency in data distribution and generate fair representations. FDGIB
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with any GNNs. We validate the effectiveness of our model in promot-
ing fairness learning through extensive experiments. Our source code is
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Fig. 1. (a): Empirical investigation conducted on Bail examines the impact of inconsis-
tent distribution of sensitive attributes conditioned on labels. (b): An intuitive example
for the impact of disentanglement on counterfactual augmentation.

1 Introduction

Graph-structured data permeates myriad fields of the real world, such as
social networks [12,21], recommendation systems [17,38], and traffic forecast-
ing [13,16]. An increasing number of graph mining algorithms [2,32] have been
proposed to gain a better understanding of graph data, they strive to map
high-dimensional graph nodes into a latent embedding space and demonstrate
superior performance on various tasks. Nevertheless, the design of most graph
mining algorithms does not contemplate fairness, thus leading to ethical issues.
Moreover, the discrimination is further intensified in graph learning since GNNs
inherently aggregate features from neighboring nodes, inadvertently aggravate
the leakage of sensitive attributes, and amplify bias through network topology
[7,11,31].

To further study the possible springhead of discriminations in GNNs, we
conduct empirical studies on a vanilla GCN [19] and observe that the inconsis-
tent distribution of sensitive attributes conditioned on labels is a critical cause
responsible for the unfairness of GNNs. Specifically, we employ a quantitative
metric Δr to measure the inconsistency of the sensitive attributes’ distribution
among different demographic groups with different labels. Given a binary sensi-
tive attribute S and a binary label Y , Δr is defined as Δr = r(Y = 1)−r(Y = 0)
where r(Y = y) = p(S=1|Y =y)

p(S=0|Y =y) is the probability ratio of S given label Y = y.
Δr = 0 refers to the sensitive attribute sharing the consistent distribution among
groups with different labels. We demonstrate the empirical results in Fig. 1(a)
where the y-axis denotes the unfairness metrics (ΔDP and ΔEO) and the x-
axis denotes the inconsistency metric Δr. We observe that GCN achieves lower
unfairness metrics when |Δr| decreases, indicating a positive correlation between
inconsistency and unfairness. Inspired by the empirical observation, we suggest
generating counterfactual graphs by flipping sensitive attributes to rectify the
inconsistent distributions. Theoretical analysis demonstrates that the counter-
factual augmentation strategy can ensure distribution consistency.

In addition to rectifying the inconsistent distribution of sensitive
attributes, the counterfactual graph augmentation strategy exhibits remarkable
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flexibility as a versatile preprocessing module [26,27] adaptable to various scenar-
ios. Yet, although existing counterfactual graph augmentation methods demon-
strate impressive performance to facilitate fairness, they overlook the disentan-
glement of different dependencies on sensitive attributes, resulting in generat-
ing graphs from an entangled representation space. The entanglement may lead
to sub-optimal performance since it may yield undesirable out-of-distribution
(OOD) counterfactual samples following distributions that conflict with the real
dataset. We provide an intuitive explanation for this problem in Fig. 1(b). For
instance, height distribution varies by gender, whereas education level distribu-
tion remains consistent across genders in the dataset. The entangled methods fail
to distinguish the different dependencies on gender and may lead to counterfac-
tual samples where the males and females share the same height distribution or
different education distribution. The OOD counterfactual samples may mislead
the graph learning and lead to sub-optimal performance on downstream tasks.

To tackle the above problem, we propose to generate more realistic counter-
factual samples by taking into account the different dependencies on the sensi-
tive attributes. Specifically, we propose to explicitly decompose the features of
a graph into two disentangled spaces: the sensitive-related representation space
and the sensitive-independent representation space. The sensitive-related space
encapsulates the sensitive-related attributes (e.g., the height and weight) which
change synergetically when the sensitive attributes are altered. The sensitive-
independent space encapsulates the sensitive-irrelevant attributes (e.g., the
education level) and remains invariant when the sensitive attributes change.
Within the disentangled spaces, we can align the distributions of sensitive-
related attributes with the sensitive attributes while preserving the distribution
of sensitive-independent attributes invariant in the counterfactual samples.

Two challenges hinder the generation of counterfactual graphs in disentan-
gled representation spaces. (i) How to learn the two disentangled representation
spaces corresponding to sensitive attributes? Inspired by the Information Bottle-
neck (IB) principle [3,28], we propose a novel method named Fair Disentangled
Graph Information Bottleneck (FDGIB). FDGIB achieves the disentanglement
with three conditions: minimal sufficiency, independence, and joint sufficiency.
Intuitively, the three conditions squeeze the sensitive-correlated information into
the sensitive-related representation space while preserving the sensitive-invariant
information into the sensitive-independent space, sharing a similar ideology with
IB. (ii) How to optimize the mutual information (MI) involved in FDGIB?
The MI is notoriously intractable to optimize for high-dimensional data since it
involves integral on the unknown prior distributions. To address this, we derive
tractable bounds for the MI terms and experimentally verify the performance.

The main contributions are summarized as follows: (i) We propose a novel
disentangled counterfactual graph augmentation strategy to rectify the biased
distribution of the original dataset, which serves as a plug-and-play preprocessing
module and can be integrated with any GNNs. (ii) We introduce the IB prin-
ciple into the disentangled counterfactual graph augmentation, which leads to a
novel method named Fair Disentangled Graph Information Bottleneck (FDGIB).
Further in-depth theoretical analysis demonstrates that FDGIB can achieve
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certifiable disentanglement. (iii) Extensive experimental results demonstrate
that our method achieves state-of-the-art fairness performance while preserv-
ing satisfactory model utility over various benchmark datasets.

2 Preliminaries

2.1 Notation

Given a graph by G = (V, E ,X,A) , where V = {v1, . . . , vn} is the set of n nodes,
E is the set of edges, X ∈ R

n×d is the node features matrix. A ∈ {0, 1}n×n is the
adjacency matrix, where Aij = 1 if the edge between vi and vj exists, otherwise
Aij = 0. Without loss of generality, we consider an undirected and unweighted
graph where each node has a binary-sensitive attribute (e.g. gender, age), and
we focus on the counterfactual augmentation at the node level. For simplicity
of analysis, we consider the corresponding ego graph Gi (a k-hop subgraph) for
node i since k-layer GNNs only consider the k-hop neighbor nodes. The adjacency
matrix and feature matrix of the ego graph are denoted as Ai and Xi, separately.
The whole graph can be regarded as a set of ego graphs G = {G1,G2, · · · ,Gn}.
We denote the sensitive attribute and the label of node i by S ∈ {0, 1} and
Y ∈ {0, 1}, separately. Let (R,D) be a pair of disentangled representations of
Gi, where R is the representation of sensitive-related information inherited from
Gi, while D encodes sensitive-independent information. Counterfactual data is
annotated with the superscript cf , i.e., Gcf

i ,Xcf
i ,Acf

i , Rcf and Dcf .

2.2 Fairness Metrics

To measure fairness, we adopt two commonly used fairness concepts: demo-
graphic parity (ΔDP ) and equal opportunity (ΔEO). Demographic parity
assesses whether the algorithm’s outcomes Ŷ are independent of demographic
attributes, while equal opportunity evaluates whether the algorithm provides
equal chances of positive outcomes for individuals with similar characteristics.

ΔDP =
∣
∣
∣p

(

Ŷ = 1S = 0
)

− p
(

Ŷ = 1S = 1
)∣
∣
∣ ,

ΔEO =
∣
∣
∣p

(

Ŷ = 1|Y = 1, S = 0
)

− p
(

Ŷ = 1|Y = 1, S = 1
)∣
∣
∣ .

These fairness metrics provide quantitative measures to evaluate the degree of
fairness achieved by the algorithm.

2.3 Information Bottleneck

Built on the notion of mutual information (MI), the Information Bottleneck (IB)
compresses the source data to keep task-relevant information and discard task-
irrelevant information. Specifically, MI quantifies the relationship between two
random variables. The MI between random variables X and Z is formulated as:

I(X;Z) =
∫

x

∫

z

p(x, z) log
p(x, z)

p(x)p(z)
dxdz.
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Given the input data X and label Y , the IB method aims to compress X to a
“bottleneck” latent representation Z, which keeps the most task-relevant infor-
mation and discards the task-irrelevant information in X. It can be formally
stated in terms of the constrained optimization problem:

min
Z

LIB = I(Z;Y ) − βI(X;Z),

where β is the Lagrange multiplier which controls the trade-off and is typically
set in [0, 1].

3 Counterfactual Graph Augmentation

To measure the inconsistency of sensitive attributes’ distributions conditioned on
labels, we adopt the quantitative metric Δr stated before, we define the notions
of consistent graph and inconsistent graph as follows.

Definition 1. Given a graph consisting of n ego graphs corresponding to n
nodes, i.e., G = {G1,G2, · · · ,Gn}, we call G as a consistent graph if and only
if Δr = 0. Otherwise, we call G an inconsistent graph.

Just as we analyze in Fig. 1(a), GNNs learned on the inconsistent graph may
suffer more severe unfairness compared to the consistent graph. As a conse-
quence, we suggest rectifying the inconsistent graph to be consistent with the
counterfactual graph augmentation strategy. Formally, for ego graph Gi with
label Y = y and sensitive attribute S = s, we generate its corresponding coun-
terfactual sample Gcf

i with the same label Y = y and flipped sensitive attribute
S = 1 − s. We theoretically prove this intuition in Theorem 1.

Theorem 1. Suppose a graph consisting of n ego graphs corresponding to n
nodes, i.e., G = {G1,G2, · · · ,Gn}. For any inconsistent graph G with |Δr| > 0,
we can achieve a consistent graph with augmented counterfactual samples for
every involved ego graph, i.e., Gc = {G1,G2, · · · ,Gn} ∪ {Gcf

1 ,Gcf
2 , · · · ,Gcf

n }.
Proof. Since we generate counterfactual samples for every ego graph with flipped
sensitive attributes and the same labels, we have p(S = 1|Y = y) = p(S = 0|Y =
y) for Gc. Then we have r(Y = 0) = r(Y = 1), and thus Gc is consistent.

The above theorem demonstrates the rationality of our counterfactual aug-
mentation strategy. There are some prior works [5,26] that focus on counterfac-
tual graph augmentation. However, they generate counterfactual samples from
an entangled representation space, potentially yielding undesirable OOD coun-
terfactuals that follow distributions conflicting with the actual distributions. To
tackle the issues, we propose to embed the ego graphs into two disentangled
representation spaces: the sensitive-related representation R and the sensitive-
independent representation D. R encapsulates the sensitive-related information
involved in the ego graph and changes synergetically when S is flipped, while
D remains invariant. To generate the counterfactual samples, we flip S and
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Fig. 2. Overall framework of our proposed FDGIB. We extract ego graphs for each
node before training and perform a two-stage training strategy.

reconstruct the counterfactual samples from the counterfactual sensitive-related
representation space Rcf and the invariant sensitive-independent representation
space D. The disentangled counterfactual samples can rectify the inconsistency
of the original dataset and facilitate the fairness of downstream tasks.

In Fig. 2, we provide an overview of our proposed FDGIB. Specifically, our
method works in a two-stage fashion. (i) First stage: disentangled coun-
terfactual augmenter learning. We employ an encoder-decoder architecture
to learn a counterfactual graph augmenter. The encoders embed the ego graphs
into two disentangled representation spaces to capture different sensitive depen-
dencies. The decoder reconstructs the ego graphs from the disentangled repre-
sentation space. (ii) Second stage: counterfactual augmentation and fair
graph learning. We flip the sensitive attributes of the ego graphs and embed
them into the disentangled representation spaces with the encoder. Then we can
generate credible counterfactual ego graphs with the disentangled representa-
tions. Finally, we learn fair GNNs with the augmented counterfactual graphs.

4 Disentangled Counterfactual Augmenter Learning

In this section, we introduce how we learn the disentangled counterfactual aug-
menter in the first stage. We introduce how to achieve the disentanglement with
theoretical analysis and elucidate the details of our optimization strategy.

4.1 Definition of FDGIB

To learn the disentangled counterfactual augmenter, we adopt the ideology of IB
which learns robust representations by preserving the task-related information
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while discarding task-irrelevant nuisance. We propose a novel method that can
generate counterfactual ego graphs from a disentangled representation space,
named Fair Disentangled Graph Information Bottleneck (FDGIB).

Definition 2. (Fair Disentangled Graph Information Bottleneck,
FDGIB) Given an ego graph Gi, let S denotes sensitive attributes, R and D
denote the corresponding S-related and S-independent representation. Fair Dis-
entangled Graph Information Bottleneck requires R and D to satisfy the following
conditions.

1. Minimal sufficiency: R should be minimally sufficient for S, i.e.,
I(R;Gi|S) = 0 and I(R;S) = H(S);

2. Independence: D should be independent of S, i.e., I(D;S) = 0;
3. Joint sufficiency: R and D should be sufficient for the ego graph, i.e.,

I(R,D;Gi) = H(Gi).

The main motivation of FDGIB is to isolate the sensitive-related informa-
tion into R and squeeze the other information into D. Intuitively, the minimal
sufficiency of FDGIB requires that R preserves all sensitive-related information
(i.e., I(R;S) = H(S)) while discarding sensitive-irrelevant information (i.e.,
I(R;Gi|S) = 0), which shares a similar idea with IB. The independence condi-
tion requires D to be independent of S and remain invariant when S is altered.
The joint sufficiency guarantees that we can generate the counterfactual example
from the joint space since R and D embed all information of Gi. Furthermore, we
provide an in-depth theoretical analysis to investigate the rationality of FDGIB,
which indicates that FDGIB achieves certifiable disentanglement.

Theorem 2. Given an ego graph Gi, let R an D denote the corresponding
sensitive-related representation and sensitive-independent representation which
satisfy the conditions of FDGIB. We have(proof is provided in the appendix):

– Mutual disentanglement: R and D are disentangled, i.e., I(R;D) = 0;
– Sensitive disentanglement: Given any attribute F , R can embed its all

correlated information with sensitive attributes S, i.e., I(F ;S) = I(R;F )
while D can encapsulate the remaining information which is irrelevant with
the sensitive attributes, i.e., H(F |S) = I(D;F ).

The mutual disentanglement demonstrates that FDGIB achieves two disen-
tangled representation spaces. The sensitive disentanglement further proves that
for any attributes, R can encapsulate its correlated information with sensitive
attributes, while D embeds the remaining information. The theorem provides
theoretical support for the rationality of our FDGIB.

4.2 Optimization of FDGIB

In this subsection, we introduce how to generate desirable R and D. Formally,
R and D are learned by two GNN encoders, i.e., qθR

(R|Gi) and qθD
(D|Gi). Our

goal is to optimize the encoders to learn desirable representations that satisfy
the three conditions of FDGIB. The detailed proof is shown in the appendix.
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Minimal Sufficiency. We can achieve minimal sufficiency by minimizing
I(R;Gi|S) while maximizing I(R;S), i.e.,

min
θR

Lms = −I(R;S) + λI(R;Gi|S) = −I(R;S) + βI(R;Gi), (1)

where λ is the Lagrangian multiplier that trade-off two terms, β = λ/(1 + λ) is
the reformulation of λ. Then we formulate tractable bounds separately.

To minimize I(R;Gi), we adopt Contrastive Log-ratio Upper Bound (CLUB)
[6] as an estimator of MI upper bound; As for I(R;S), we introduce qθc

(S|R) as
a variational approximation to p(S|R) and derive a tractable lower bound, i.e.,

I(R;Gi) ≤ Iclub(R;Gi) = Ep(R,Gi) log qθR
(R|Gi) − Ep(R)p(Gi) log qθR

(R|Gi),
I(R;S) ≥ Ep(R,S) log qθc1(S|R) + H(S),

where qθR
(R|Gi) is an approximation to p(R|Gi) with parameter θR, H(S) is a

constant that can be ignored. In practice, qθc1(S|R) can be viewed as a classifier
parameterized with θc1, which takes R as input to predict S.

Independence. The independence of FDGIB requires that D is independent
of S. To achieve this, we propose to optimize D as follows:

min
θD

Lind = I(D;S). (2)

Just like I(R;S) analyzed above, I(D;S) can be approximated by a lower bound
Ep(D,S) log qθc2(S|D) where qθc2 is a classifier parameterized by θc2. Nonetheless,
different from the minimal sufficiency in Eq. (1), the independence requires min-
imization of I(D;S) instead of maximization. As a consequence, we adopt an
adversarial training strategy to minimize the MI term:

min
θD

max
θc2

L̂ind = EqθD
(D|Gi)Ep(D,S) log qθc2(S|D). (3)

The above objective is a min-max optimization problem. Intuitively, the classi-
fier qθc2(S|D) attempts to predict the sensitive attributes from representation
D, while the encoder qθD

(D|Gi) aims to yield representations embedding no
sensitive-related information.

Joint Sufficiency. The joint sufficiency requires that R and D should be suf-
ficient for the ego graph Gi. To maximize I(R,D;Gi), we:

min
θR,θD

Ljs = −I(R,D;Gi). (4)

Similar to I(R;S), we can derive a lower bound for I(R,D;Gi), where
qθdec

(Gi|R,D) serves as a decoder parameterized by θdec to reconstruct Gi. Intu-
itively, if we can reconstruct the ego graphs from the representation spaces, we
can say that the representations are jointly sufficient for the ego graphs.
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In terms of graph features, an MLP decoder is used, taking the concate-
nated [R;D] as input and producing corresponding reconstructed features. The
reconstruction quality is assessed using MSE loss. To reconstruct the adjacency
matrix, we first feed the concatenated representation [R;D] into an MLP and
then compute the inner product of the output followed by a sigmoid function.
The representations are optimized by the cross-entropy loss. Consequently, the
joint sufficiency loss consists of two components.

The Whole Objective of FDGIB. With the above optimization strategy,
the whole objective of FDGIB can be formulated as:

min
Θ

LFDGIB = Ljs + αLms + γLind, (5)

where Θ collects all trainable parameters. The encoder-decoder architecture
empowers FDGIB’s capability to reconstruct credible counterfactual samples
from the disentangled representation space. Based on the augmented counter-
factual samples, we can rectify the inconsistent graph and learn fair GNNs.

5 Counterfactual Augmentation and Fair Graph Learning

In this section, we elucidate how we augment the original graph with FDGIB and
learn fair GNNs in the second stage. Specifically, we first introduce the details of
counterfactual augmentation with FDGIB; Then, we demonstrate how to learn
fair GNNs based on the augmented graph. Finally, we summarize the whole
pipeline of our method in Algorithm 1, details can be seen in the appendix.

5.1 Counterfactual Augmentation with FDGIB

Given an ego graph Gi with sensitive attributes S = s and its corresponding dis-
entangled representations R and D, we can generate its counterfactual samples
Gcf

i with the help of FDGIB. Formally, we first flip the sensitive attributes as
S = 1−s and then embed the flipped ego graph G′

i into the sensitive-related rep-
resentation space Rcf ∼ qθR

(R|G′
i), where qθR

is the encoder learned by FDGIB.
The counterfactual sensitive-related representation Rcf captures the sensitive
related information and varies with the flip of the sensitive attributes. Then, the
original ego graph is embedded into the sensitive-independent representation
space D ∼ qθD

(D|Gi). The sensitive-independent representation D encapsulates
the invariant information when S is flipped. Based on the Rcf and D, we can gen-
erate the counterfactual ego graph from the disentangled representation space,
i.e., Gcf

i ∼ qθdec
(Gi|Rcf ,D). The generation process can be summarized as:

Gcf
i ∼ qθdec

(Gi|Rcf ,D)qθD
(D|Gi)qθR

(Rcf |G′
i)p(G′

i|S = s,Gi).

Following the strategy, we can achieve a consistent graph Gc = {G1,G2, · · · ,Gn}∪
{Gcf

1 ,Gcf
2 , · · · ,Gcf

n } by generating counterfactual samples for every ego graph.
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5.2 Fair Graph Learning with FDGIB

FDGIB provides a plug-and-play framework for fair graph learning. For any
GNN, we can achieve debiased representations by employing the counterfactual
ego graphs, and make fair predictions based on the debiased representations.
Specifically, given an ego graph Gi and its counterfactual ego graph Gcf

i , we can
learn representations with the given GNN model, i.e.,

zi = GNN(Gi; θf ), zcf
i = GNN(Gcf

i ; θf ), Lsim =
1
n

∑n
i=1 d(zi, z

cf
i ),

where θf is the parameters of the GNN. To promote the fairness of the GNN
model, we propose to minimize the distance between representations zi and zcf

i

because the representations from the original ego graph and counterfactual ego
graph should be similar. Furthermore, the representations can be trained in a
supervised fashion with the cross-entropy loss:

Lpred =
1
n

∑n
i=1 κl (fφ (zi) , yi) + (1 − κ)l

(

fφ(z
cf
i ), yi

)

,

where l(·) is the cross-entropy loss function, fφ is a classifier for downstream
tasks, yi is the ground truth of ego graph Gi and κ is a hyper-parameter.

Finally, the overall loss function for fair graph learning is:

Lfair = Lpred + μLsim, (6)

where μ is a hyperparameter controlling the weight of similarity regularization.

6 Experiments

In this section, we conduct extensive experiments to evaluate the performance
of our FDGIB. We initially provide a comprehensive overview of our experiment
setting. Subsequently, we engage in a thorough discussion of the experimental
results. Specifically, our objective is to answer the following questions:
– (RQ 1) Whether FDGIB benefits the fairness of downstream tasks while

maintaining the model utility?
– (RQ 2) Whether FDGIB achieves disentanglement in representation space?
– (RQ 3) Whether the three conditions of FDGIB all benefit the fairness of

downstream tasks?

6.1 Experiment Settings

Datasets and Evaluation Metrics. We conduct experiments on four widely
used benchmark datasets, namely Bail [18], Income [10], Pokec-z [7], and Pokec-
n [7]. The details of the datasets can be found in the appendix. We assess the
proposed framework in terms of two aspects: model utility and fairness. We are
dedicated to achieving fairness while ensuring model utility, aiming to strike
a favorable trade-off between them. For model utility, we use Accuracy, F1-
score, and AUC-ROC to measure node classification performance. For fairness
performance, we utilize ΔDP and ΔEO, where smaller values indicate a fairer
model.
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Algorithm 1. Training Algorithm of FDGIB
Input: G = (V, E ,X,A), Y, α, β, γ, κ, n_epoch1, n_epoch2;
Output: Learned encoder qθR , qθD and predictions Ŷ ;
1: Extract ego graphs for each node G = {G1, G2, · · · , Gn}; #Stage1:Disentangled

counterfactual augmenter learning
2: for epoch ← 1 to n_epoch1 do
3: Compute the representations with two encoders: R ∼ qθR(R|Gi), D ∼ qθD (D|Gi);
4: Reconstruct the ego graph from the disentangled representation spaces with a

decoder: Gi ∼ qθdec(Gi|R, D);
5: Update the parameters of FDGIB according to the objective in Eq. (5);
6: end for;

#Stage2:Counterfactual augmentation and fair graph learning
7: for epoch ← 1 to n_epoch2 do
8: G′

i ← Flip sensitive attributes of Gi;
9: Compute the disentangled representations from the flipped ego graph and orig-

inal ego graph, separately: Rcf ∼ qθR(R|G′
i), D ∼ qθD (D|Gi);

10: Reconstruct the counterfactual ego graph from the disentangled representation
space: Gcf

i ∼ qθdec(Gcf
i |Rcf , D);

11: end for
12: Learn fair GNNs based on the original ego graphs and the counterfactual graphs,

i.e., Gc = {G1, G2, · · · , Gn} ∪ {Gcf
1 , Gcf

2 , · · · , Gcf
n } according to Eq. (6);

Baselines and GNN Backbones. FDGIB is compared with several state-
of-the-art fair node representation learning models. We categorize them into
two groups: algorithm-based and augmentation-based. (1) Algorithm-based:
FairGNN [7] and BIND [10]. (2) Augmentation-based: NIFTY [1], EDITS [9],
GEAR [26], FairVGNN [31], and CAF [14]. Additionally, our method serves as
a plug-and-play module and is applicable to any downstream GNN classifiers.
We conduct a comparative analysis of our method against four backbone GNN
models: GraphSAGE [15], GCN [19], GAT [29], and Jumping Knowledge (JK)
[35].

Implementation Details. We conducted the training using NVIDIA GeForce
RTX 3090 Ti GPUs. We use the default train/valid/test split in [26]. Exper-
imental results are averaged over 3 repeated executions with 3 different seeds
to remove any potential initialization bias. The Adam optimizer is adopted to
optimize the neural networks with a learning rate of 0.001. We adopt a 2-layer
GCN to implement the encoder qθR

and qθD
and two MLPs to reconstruct the

graph. We perform grid searches to identify the best hyperparameters.

6.2 Prediction Performance and Fairness (RQ 1)

To answer RQ1, we conduct experiments on benchmark datasets with compari-
son to baselines. We present the experimental results of the average performance
with standard deviation across four datasets in Table 1. GraphSAGE is used as
the backbone. We can observe:
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Table 1. Model utility and fairness of node classification.

Dataset Metrics FairGNN BIND NIFTY EDITS GEAR FairVGNN CAF FDGIB

Bail Accuracy (↑) 86.67 ± 0.52 86.49 ± 0.85 87.12 ± 0.68 84.42 ± 2.87 86.34 ± 0.21 88.41± 1.29 86.68 ± 1.49 86.97 ± 0.23
F1-score (↑) 81.49 ± 0.35 81.16 ± 0.93 80.66 ± 0.99 77.83 ± 3.79 80.44 ± 0.27 83.58± 1.88 82.33 ± 1.18 82.05 ± 0.20
AUCROC (↑) 91.55 ± 0.16 90.64 ± 0.70 91.31 ± 0.45 89.07 ± 2.26 91.06 ± 0.07 91.56 ± 1.71 91.34 ± 1.29 91.74± 0.09
ΔDP (↓) 2.62 ± 0.62 1.15 ± 0.78 6.51 ± 0.11 3.74 ± 3.54 5.02 ± 0.19 1.14 ± 0.67 2.19 ± 0.20 0.99± 1.03
ΔEO (↓) 2.81 ± 0.32 2.13 ± 1.17 5.27 ± 0.78 4.46 ± 3.50 3.42 ± 1.10 1.69 ± 1.13 1.65 ± 1.51 1.06± 0.52

Income Accuracy (↑) 74.79 ± 0.20 77.62 ± 1.97 77.00 ± 0.12 73.08 ± 0.03 71.83 ± 0.77 80.76± 1.87 78.13 ± 0.78 75.82 ± 2.07
F1-score (↑) 56.92± 0.10 55.24 ± 1.85 53.87 ± 0.05 53.50 ± 0.07 55.16 ± 0.44 54.49 ± 0.86 54.26 ± 1.21 56.30 ± 0.07
AUCROC (↑) 81.02 ± 0.10 81.44 ± 0.85 80.22 ± 0.12 78.76 ± 0.00 82.75± 0.34 80.10 ± 0.44 80.14 ± 0.95 82.09 ± 0.35
ΔDP (↓) 8.42 ± 0.51 7.93 ± 7.24 13.28 ± 0.14 7.48 ± 0.10 14.95 ± 0.55 7.92 ± 2.07 8.47 ± 3.26 7.10± 1.02
ΔEO (↓) 2.93 ± 0.93 8.26 ± 2.33 6.09 ± 0.31 5.34 ± 0.61 5.63 ± 1.06 3.41 ± 0.90 4.65 ± 3.06 1.77± 1.01

Pokec-z Accuracy (↑) 68.06 ± 0.05 63.95 ± 0.43 68.11 ± 0.23 OOM 67.36 ± 0.71 63.89 ± 2.38 70.17± 0.22 68.10 ± 0.85
F1-score (↑) 67.71 ± 0.11 63.62 ± 0.57 65.63 ± 0.90 60.62 ± 0.6 65.40 ± 2.81 68.83 ± 1.31 67.20 ± 0.51 69.32± 0.4
AUCROC (↑) 73.46 ± 0.01 68.25 ± 0.34 74.11 ± 0.24 66.37 ± 0.7 74.07 ± 0.55 71.35 ± 1.16 74.71 ± 0.25 75.37± 0.59
ΔDP (↓) 5.70 ± 0.10 2.86 ± 1.09 4.95 ± 0.50 2.89 ± 0.4 5.17 ± 1.75 2.72 ± 2.52 5.30 ± 0.27 2.69± 2.01
ΔEO (↓) 2.49 ± 0.18 4.29 ± 0.57 2.85 ± 0.84 2.54 ± 0.7 2.83 ± 2.54 2.36 ± 1.88 2.58 ± 1.01 1.22± 1.20

Pokec-n Accuracy (↑) 67.26 ± 0.82 60.25 ± 0.65 68.18 ± 0.39 OOM 68.23 ± 1.51 64.75 ± 1.31 70.24± 0.99 68.82 ± 0.13
F1-score (↑) 67.51± 1.41 57.30 ± 0.57 62.57 ± 1.31 52.53 ± 0.1 65.03 ± 0.76 65.65 ± 1.03 63.29 ± 2.10 65.04 ± 1.95
AUCROC (↑) 74.16 ± 1.48 63.36 ± 0.03 74.86 ± 0.59 62.05 ± 0.6 73.64 ± 1.07 70.79 ± 0.95 73.75 ± 1.90 75.66± 0.13
ΔDP (↓) 1.69 ± 1.01 2.36 ± 1.88 1.73 ± 1.47 2.08 ± 1.2 2.27 ± 1.23 2.41 ± 1.97 1.87 ± 0.31 1.40± 1.25
ΔEO (↓) 1.28 ± 0.11 1.62 ± 1.39 1.38 ± 0.48 1.82 ± 0.9 2.15 ± 0.50 3.05 ± 1.85 1.91 ± 0.55 0.98± 0.99

Avg.Rank 3.80 5.45 4.95 6.50 5.60 3.85 3.95 1.75

* (↑) represents the larger, the better; (↓) represents the opposite. The best result and
the runner-up result are shown in bold and underlined respectively.

– FDGIB achieves the best fairness across all datasets. The superiority of our
method can be ascribed to the disentangled counterfactual augmentation
strategy. The disentanglement of FDGIB ensures that the generated coun-
terfactual ego graphs follow a consistent distribution with the real ego graphs
of the same sensitive groups. The credible counterfactual ego graphs can sig-
nificantly facilitate the fairness of downstream GNN classifiers.

– FDGIB strikes an optimal balance between model utility and fairness. We can
observe that there is a tradeoff between the model utility and fairness for all
methods since none of these methods achieve the best model utility and fair-
ness simultaneously. This observation is consistent with the recent work [37]
which theoretically proves that there is an inherent tradeoff between fairness
and accuracy in the classification setting. To investigate the overall perfor-
mance of our method on fairness and model utility, we calculate the average
rank of all model utility and fairness evaluation metrics on all datasets. We
find that FDGIB ranks 1.75, while the runner-up model ranks 3.80. This
demonstrates that our method achieves the best trade-off between fairness
and model utility. In other words, our FDGIB can achieve the best fairness
while maintaining comparable classification performance. Only on the Accu-
racy metric of the Income dataset, our method suffers a significant loss. We
attribute this observation to the fact that the labels on Income are severely
imbalanced (almost 8 : 2). On the imbalanced dataset, the F1-score is more
reliable where our FDGIB achieves the second-best performance.

To further investigate the generalization of our FDGIB to different GNN
backbone classifiers, we adopt four different GNN architectures: GraphSAGE,
GCN, GAT, and JK. The results are presented in Table 2. We observe that (1)
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Table 2. Comparison of model utility and fairness between vanilla GNNs and GNNs
with our FDGIB.

Dataset Metrics GraphSAGE GCN GAT JK
Vanilla FDGIB Vanilla FDGIB Vanilla FDGIB Vanilla FDGIB

Bail Accuracy (↑) 85.99 ± 0.40 86.97± 0.23 84.40 ± 0.32 85.99± 0.40 83.01± 0.60 82.33 ± 0.64 84.51 ± 0.17 86.76± 0.65
F1-score (↑) 80.05 ± 0.37 82.05± 0.20 79.83 ± 0.28 80.05± 0.37 77.05± 0.54 76.33 ± 0.46 80.00 ± 0.25 81.82± 0.85
AUCROC (↑) 90.44 ± 0.10 91.74± 0.09 90.11 ± 0.12 90.44± 0.10 87.43± 0.26 86.72 ± 0.17 90.20± 0.23 89.60 ± 0.81
ΔDP (↓) 1.35 ± 0.87 0.99± 1.03 8.93 ± 0.40 1.35± 0.87 4.61 ± 0.63 4.08± 0.57 9.08 ± 0.25 7.27± 0.83
ΔEO (↓) 2.31 ± 2.39 1.06± 0.52 6.07 ± 0.48 2.31± 2.39 2.75 ± 0.81 2.57± 0.99 5.40 ± 0.31 4.91± 1.30

Income Accuracy (↑) 75.98± 2.34 75.82 ± 2.07 76.18± 1.23 74.96 ± 0.73 74.03± 3.50 72.55 ± 0.32 72.23± 1.21 71.44 ± 3.51
F1-score (↑) 56.85± 1.59 56.30 ± 0.07 48.40± 1.07 45.35 ± 1.23 51.01± 1.96 49.57 ± 1.05 43.93 ± 1.79 44.72± 1.96
AUCROC (↑) 81.90 ± 0.95 82.09± 0.35 73.78± 0.88 71.36 ± 0.80 77.41± 2.03 75.95 ± 0.80 71.63± 0.99 70.92 ± 2.57
ΔDP (↓) 10.09 ± 1.97 7.10± 1.02 10.43 ± 5.34 1.82± 0.41 7.31 ± 5.52 5.62± 4.50 8.73 ± 3.97 1.67± 1.16
ΔEO (↓) 2.08 ± 2.10 1.77± 1.01 12.93 ± 7.79 2.91± 1.06 8.24 ± 6.03 6.71± 5.86 9.42 ± 4.26 2.68± 1.45

Pokec-z Accuracy (↑) 68.60± 0.20 68.10 ± 0.85 67.64± 0.16 67.58 ± 0.53 66.30 ± 0.74 66.39± 0.16 66.54 ± 0.60 67.64± 0.56
F1-score (↑) 69.56± 0.80 69.32 ± 0.40 69.03± 0.20 68.92 ± 0.13 66.27 ± 0.71 67.06± 0.29 69.10± 0.52 68.05 ± 1.14
AUCROC (↑) 75.26 ± 0.07 75.37± 0.59 75.56± 0.05 74.96 ± 0.17 71.84 ± 0.54 72.10± 0.53 74.08 ± 0.53 74.40± 0.19
ΔDP (↓) 6.74 ± 0.84 2.69± 2.01 2.92 ± 1.94 0.59± 0.36 1.94 ± 1.06 0.41± 0.10 4.10 ± 1.67 0.35± 0.23
ΔEO (↓) 4.61 ± 0.57 1.22± 1.20 4.32 ± 1.34 0.45± 0.36 1.57 ± 0.09 1.22± 0.82 3.68 ± 0.89 0.60± 0.67

Pokec-n Accuracy (↑) 68.86± 0.67 68.82 ± 0.13 68.79 ± 0.79 68.97± 1.13 68.36± 1.64 67.89 ± 1.20 68.85± 0.85 68.56 ± 0.95
F1-score (↑) 67.19± 1.29 65.04 ± 1.95 68.77± 0.42 65.37 ± 1.28 67.25± 0.02 66.46 ± 0.63 68.58± 0.37 64.62 ± 1.68
AUCROC (↑) 75.85± 0.30 75.66 ± 0.13 76.94± 0.26 75.39 ± 1.38 74.45± 0.93 73.76 ± 0.92 76.38± 0.31 74.95 ± 0.24
ΔDP (↓) 6.94 ± 1.12 1.40± 1.25 8.74 ± 2.20 2.02± 1.38 8.05 ± 1.43 4.48± 2.68 9.36 ± 0.35 3.31± 0.70
ΔEO (↓) 4.13 ± 0.47 0.98± 0.99 6.08 ± 3.20 2.74± 1.16 7.67 ± 1.20 4.93± 1.75 5.81 ± 0.12 3.12± 0.03

Compared with vanilla GNNs, our FDGIB significantly improves fairness while
maintaining competitive model utility. We observe that FDGIB either outper-
forms vanilla GNNs on the model utility or slightly sacrifices model utility to
achieve superior fairness. This further indicates that our model strikes a balance
between model utility and fairness. (2) Among four backbone classifiers, Graph-
SAGE achieves the best model utility. In terms of fairness performance, Graph-
SAGE outperforms other models on the Bail and Pokec-n datasets. However, on
the Income and Pokec-z dataset, the JK encoder achieves the best results, albeit
with a potential trade-off on the model utility.

6.3 Disentanglement Analysis (RQ 2)

To answer RQ2, we conduct experiments to investigate whether our model suc-
cessfully achieves disentanglement for sensitive-related and irrelevant informa-
tion. Just as Theorem 2 demonstrates, the disentanglement of FDGIB can be
analyzed in two levels: the mutual disentanglement and the sensitive disentangle-
ment. We first investigate the mutual disentanglement. Specifically, we measure
the MI between the sensitive-related representation R and sensitive-independent
representation D in Fig. 3(a). We adopt the MINE [4], a mutual information esti-
mator to quantitatively measure the MI. FDGIB-w/o-ind indicates the variant
of FDGIB without the minimal sufficiency and independence terms, i.e., an
entangled method that only considers the join sufficiency. From the figure, we
can observe that our FDGIB can significantly facilitate mutual disentanglement
between R and D and achieve lower MI.

Then we investigate the sensitive disentanglement. Specifically, we employ two
classifiers to predict the sensitive attributes based on the disentangled representa-
tions R and D. As illustrated in Fig. 3(b), we observe a significant difference in the
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prediction performance of sensitive attribute S between R and D. This observa-
tion indicates that R encapsulates sensitive-related information while D embeds
sensitive-independent information. The empirical disentanglement analyses fur-
ther verify the validity of our theoretical analysis in Theorem 2.

Fig. 3. The performance of the disentangled learning of FDGIB. (a) The MI between
representations R and D; (b) Sensitive attributes prediction with R and D respectively.

Fig. 4. Hyper-parameter study on Bail dataset.

6.4 Ablation Study(RQ 3)

To answer RQ3, we conduct ablation studies to investigate whether the three con-
ditions of our FDGIB facilitate the performance. Specifically, we consider three
variants: FDGIB-w/o-js, FDGIB-w/o-ms, and FDGIB-w/o-ind that respectively
discard the joint sufficiency, the minimal sufficiency, and the independence.
GraphSAGE is adopted as the backbone classifier. As shown in Table 3, we can
observe that most of the variants exhibit inferior fairness performance compared
to FDGIB, except for FDGIB-w/o-js on Income. Nonetheless, the improvement
of FDGIB-w/o-js in fairness might be achieved at the cost of prediction util-
ity, since it achieves a much lower F1 score than others on the imbalanced
Income dataset. This indicates FDGIB-w/o-js tends to make random predictions
regardless of the sensitive attributes and thus achieve better fairness. Moreover,
FDGIB-w/o-ms achieves competitive prediction performance compared to all
variants, which can be attributed to the fact that the minimal sufficiency con-
dition may inevitably sacrifice a certain degree of model utility. This further
empirically verifies that there is a tradeoff between model utility and fairness
in our FDGIB. The ablation results demonstrate that the three conditions con-
tribute to FDGIB.
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Table 3. Ablation results on three conditions.

Dataset Method Accuracy (↑) F1-score (↑) AUCROC (↑) ΔDP (↓) ΔEO (↓)

Bail FDGIB-w/o-js 83.71 ± 0.75 73.30 ± 1.64 90.82 ± 0.18 1.86 ± 0.69 2.59 ± 1.53
FDGIB-w/o-ms 87.33± 0.42 82.36± 0.26 92.03± 0.13 4.13 ± 0.84 2.75 ± 0.55
FDGIB-w/o-ind 87.32 ± 0.86 82.27 ± 1.10 91.66 ± 0.37 2.72 ± 0.49 1.15 ± 0.89
FDGIB 86.97 ± 0.23 82.05 ± 0.20 91.74 ± 0.09 0.99± 1.03 1.06± 0.52

Income FDGIB-w/o-js 81.05± 0.27 49.45 ± 1.35 81.64 ± 1.66 6.74± 1.21 2.12 ± 0.61
FDGIB-w/o-ms 76.61 ± 0.53 56.32± 1.24 81.67 ± 0.71 8.12 ± 3.94 4.12 ± 2.56
FDGIB-w/o-ind 74.29 ± 0.28 55.93 ± 0.11 81.77 ± 0.24 9.83 ± 0.67 2.75 ± 0.69
FDGIB 75.82 ± 2.07 56.30 ± 0.07 82.09± 0.35 7.10 ± 1.02 1.77± 1.01

Pokec-z FDGIB-w/o-js 67.13 ± 0.20 68.44 ± 1.97 73.30 ± 1.42 4.06 ± 1.36 2.41 ± 0.99
FDGIB-w/o-ms 68.38± 0.77 68.51 ± 1.58 76.04± 0.29 7.09 ± 2.12 4.58 ± 2.01
FDGIB-w/o-ind 67.32 ± 1.21 68.04 ± 2.09 74.86 ± 0.57 5.49 ± 1.84 4.45 ± 0.81
FDGIB 68.10 ± 0.85 69.32± 0.4 75.37 ± 0.59 2.69± 2.01 1.22± 1.20

Pokec-n FDGIB-w/o-js 67.71 ± 1.12 61.91 ± 2.85 73.75 ± 1.67 4.84 ± 2.10 3.83 ± 0.72
FDGIB-w/o-ms 69.42± 0.37 68.37± 0.47 75.92± 0.51 3.16 ± 1.96 2.04 ± 1.34
FDGIB-w/o-ind 68.91 ± 1.40 65.81 ± 1.83 75.58 ± 0.58 3.32 ± 0.87 1.90 ± 0.61
FDGIB 68.82 ± 0.13 65.04 ± 1.95 75.66 ± 0.13 1.40± 1.25 0.98± 0.99

6.5 Hyper-Parameter Sensitivity Analysis

Besides the above experimental results, we also conduct parameter studies to
investigate the influence of hyper-parameters, i.e., α, β, and γ in Eq. (5), which
control the weight of minimal sufficiency term, the IB term and the independence
term, separately. The results over different settings of parameters in Bail are
shown in Fig. 4. We can observe that the model utility metrics remain robust
across various hyper-parameter values while the fairness metrics prefer larger
hyper-parameters. This indicates that larger hyper-parameters, which enhance
the constraints on disentanglement, may benefit the learning of fair GNNs.

7 Related Work

Fairness Learning on Graphs. According to the strategies employed to
achieve fairness, recent works can be roughly divided into algorithm-based and
augmentation-based methods. Specifically, algorithm-based methods [8,23,34]
endeavor to design appropriate objective functions to learn fair embeddings by
incorporating regularization terms or modifying weights. For example, FairGO
[34] utilizes a composition of filters to transform the original embeddings into a
fair embedding space. However, the necessity of specific constraints suffers gen-
eralization problems. Different from that, augmentation-based methods [20,24]
address the data biases by generating augmented samples through modifying
graphs. For example, FairAug [20] reduces the impact of sensitive attributes on
the model by feature masking, edge perturbation, and node sampling. Nonethe-
less, existing fairness methods focus on augmenting the original graph from the
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entangled representation space, leading to suboptimal performance on down-
stream tasks. To the best of our knowledge, only CAF [14] considers the learning
of fair disentangled graph representations. However, CAF finds counterfactual
samples directly from the original graph based on the l2 norm of the disentan-
gled representations, which may fail when no counterfactual nodes exist in the
original data for the given target node.

Disentangled Representation Learning (DRL). DRL [22,30,36] seeks to
learn a model that can discern the factors embedded within the observable data
by representing them in a disentangled manner. However, the high dimensional-
ity and structural complexity of graph data pose challenges for DRL on graphs.
To address this, DisenGCN [25] proposes a neighborhood routing mechanism,
which is capable of dynamically identifying the latent factor that may have
caused the edge between nodes. Wu et al. [33] design a disentangled graph atten-
tion network by leveraging relation-aware aggregation and mutual information to
determine weights for disentangled components. Nonetheless, the performance of
DRL has not been investigated on the counterfactual graph augmentation task.

8 Conclusion

In this paper, we investigate the counterfactual graph augmentation problem to
rectify the inconsistent distribution of sensitive attributes in the real dataset.
Existing augmentation-based methods fail to disentangle different dependencies
on sensitive attributes, leading to sub-optimal performance on downstream tasks.
To tackle this problem, we introduce the IB theory into the counterfactual graph
augmentation task and propose a novel disentangled counterfactual augmenta-
tion method named Fair Disentangled Graph Information Bottleneck (FDGIB).
FDGIB consists of three conditions, namely Minimal Sufficiency, Independence,
and Joint Sufficiency. With these conditions, FDGIB can embed the informa-
tion of the original graph into two disentangled spaces: sensitive-related and
sensitive-independent. We derive tractable bounds for optimizing the IB-based
objective and offer theoretical analysis to substantiate the effectiveness of our
proposed approach. Extensive experimentation on various datasets demonstrates
the superior performance of our FDGIB in improving fairness.
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Abstract. In this paper, we introduce a new framework that can be used
for evaluating the validity and the performance of machine learning mod-
els on manifold-valued data. More particularly, two methods are detailed
with theoretical properties for spherical and functional data. In a general
setting, we develop a new set of procedures for nonparametric hypothesis
testing on manifolds within a desired error level. These tests encompass
probability distributions constrained to specific domains, which can pose
significant challenges for commonly used techniques. The resulting sta-
tistical concepts are primarily characterized by computational simplicity
and are grounded in relevant contexts, making them extendable to a wide
range of applications. The algorithms and the theoretical analysis of the
proposed methods are substantiated by many and varied experimental
results on simulated and real data.

Keywords: Machine Learning · Hypothesis testing · Manifold-valued
data · Spherical Data · Functional Data · Probability Density Functions

1 Introduction

In machine learning and data science, binary decision has taken an important
part of applications ranging from science to industry [8,17,18]. For example,
in medical applications, a binary decision is required to determine whether a
patient has disease or not using different features. This has been solved by dif-
ferent strategies among which the most popular remains binary decision based
on optimization and hypothesis testing based on inference. If the first one was
well generalized for manifold-valued data, the second one has been little or not
investigated. It is reminiscent of its usefulness for evaluating the validity and
the performances of machine learning models and its important role in reduc-
ing subjectivity, by making choices more objective and more transparent for
interpretation [3,4]. In this paper, we generalize hypothesis testing for manifold-
valued data and use it as two-sample testing for binary decision. Furthermore,
we make it possible to use it as a metric for evaluating machine learning models.
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Nonlinear data have been widely used and analyzed in meteorology, astron-
omy, forest sciences, and biology with particular machine learning models [1,
10,29,31]. For example, directional data require non-standard methods [11,30],
while redefining fundamental concepts [13]. The exploration of directional data
traces back to fundamental analysis, focusing on the unit circle S1 and the unit
sphere S2 [6]. In hypothesis tests for spherical data, circular cases have been stud-
ied in [24] and then extended to the unit sphere in [25]. Further developments
explored tests for dispersion on a sphere by [26], building on the distribution pro-
posed in [7], and discussing properties of the spherical median and equivalents
for the sign test. More recently, [19] introduced a method for multivariate func-
tional data which was extended in [27] via a large-scale Monte Carlo simulation
spherical data.

In this paper, we introduce a novel method for analyzing directional data
on the sphere [14]. Our approach involves employing random projections along
fixed directions to estimate single and double spherical means. We emphasize
the importance of projection onto the tangent space of the sphere, leveraging its
advantages in addressing various problems. Tests are designed to assess align-
ment with a population’s average direction and shared population polarization.
We provide a thorough exploration of background theory before deriving these
inference tests.

Recently, many widely used models involve high-dimensional probability dis-
tributions constrained within specific domains. These models often pose signif-
icant computational challenges,: Transforming the constrained domain to the
entire Euclidean space for convenience can be computationally intractable. To
address this issue, many works have explored connections between Fisher geom-
etry and the geometry of the infinite Hilbert sphere [9,23]. Much of this research
focuses on probability density functions and shape analysis. Particularly, geomet-
rical tools and optimal transport techniques in order to quantify the divergence
between distributions.

In this study, we study a subclass of functional data with a focus on Prob-
ability Density Functions (PDFs) using an adaptive structure derived from the
Fisher-Rao metric [12]. This simplifies the analysis of data (nonlinear) in infinite-
dimensional spaces, making them interpretable through histograms or probabil-
ity density representations. Among the main contributions of this framework,
extending hypothesis testing from finite-dimensional spherical data to PDFs
equipped with the Fisher-Rao metric is a considerable novelty. Hence, we are
able to make binary decisions from functional data by measuring divergence
between their PDFs [15,23].

The rest of the paper is organized as follows. Section 2 provides background
and fundamental concepts. Section 3 details methodology for extending the mul-
tivariate central limit theorem. Section 4 presents statistical tools for analyzing
spherical data. Section 5 establishes the connection between finite-dimensional
and Hilbert spheres. Section 6 discusses experimental results, and Sect. 7 offers
concluding remarks. For simple and fluid reading, technical proofs are given in
the Appendix.
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2 Background

Before we present our main results we first recall some notions to make the
rest easier to understand [28] and then give some required tools for its extended
version to the finite-dimensional sphere. Let v = (v1, . . . , vn)T ∈ R

n be a random
vector of a mean E(v) = m ∈ R

n and a covariance matrix Var(v) = E
[
(v −

m)(v − m)T
]
= Σ ∈ R

n×n.

Theorem 1. Let vi (i = 1, . . . , N) be a sequence of independent random vari-
ables, but not necessary identically distributed, each with finite expected value
mi and covariance Σi. Define the resultant sum of vi by SN =

∑N
i=1 vi. Then,

under the Lyapunov condition: "If the (2 + ε)th moment with ε > 0 exists for
a statistical distribution of independent random variates vi, the means mi and
variances Σi are finite", i.e.,

lim
N→∞

(
N∑

i=1

Σi)−(2+ε)/2
N∑

i=1

E
(|vi − mi|2+ε

)
= 0

we have

(
N∑

i=1

Σi)−1/2(SN −
N∑

i=1

mi)
D→ Nn(0, I) as N → ∞. (1)

Here, Nn(m,Σ) refers to the multivariate Gaussian distribution of dimension n
with mean m and covariance Σ.
Let v1 = (v1

1 , . . . , v
n
1 )

T and v2 = (v1
2 , . . . , v

n
2 )

T be two vectors in R
n. We

remind that the Euclidean inner product between them is
〈
v1,v2

〉
2
= vT

1 v2 =
∑n

j=1 vj
1v

j
2 implying that the Euclidean norm of v = (v1, . . . , vn)T ∈ R

n is

||v||2 =
〈
v,v

〉1/2

2
= (

∑n
j=1 vj2)

1
2 . The finite-dimensional unit sphere in R

n is
defined by

Sn−1 :=
{
z ∈ R

n
∣
∣ ||z||2 = 1

}
. (2)

Endowed with the Euclidean inner product, the tangent space of Sn−1 locally
at z is

Tz(Sn−1) :=
{
v ∈ R

n
∣
∣ 〈

z,v
〉
2
= 0

}
. (3)

The distance between two vectors on the sphere z1, z2 ∈ Sn−1, called the geodesic
distance, is given by the shortest arc connecting z1 to z2 and satisfying

dSn−1

(
z1, z2

)
= arccos

(〈
z1, z2

〉
2

)
. (4)

Given N spherical vectors z1, . . . , zN ∈ Sn−1, their natural mean on Sn−1 is the
Fréchet mean, denoted μ̂, that minimizes the Fréchet variance. We note

μ̂ = argmin
z∈Sn−1

N∑

i=1

d2Sn−1

(
z, zi

)
. (5)
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The Fréchet mean is unique on any part of the sphere with an injectivity radius
less than π. It can be found using a gradient approach detailed in [23]. In this
paper, we adopt a strategy of using linear methods for spherical data, achieved
by projecting vectors onto a tangent space to form a linear plane instead of a
nonlinear manifold (sphere). Additionally, the Euclidean distance on the tangent
plane can be used instead of the geodesic distance.

3 Formulation on the Tangent Space of the Sphere

Fig. 1. An illustration of the measure of concentration around the mean.

Let z = (z1, . . . , zn)T ,μ = (μ1, . . . , μn)T ∈ Sn−1 such that z belongs to the cut
locus of μ, which means that the inner product

〈
z,μ

〉
2

> 0 almost surely and the
geodesic distance dSn−1

(
z,μ

)
< π/2 almost surely. In other words, there exists

a radius r ≥ 0 such that the distance can be bounded as follows: dSn−1

(
μ, z

) ≤
r < π/2. We will be using these two vectors to indicate direction only. Let
N be a unit normal vector on Sn−1 and T ⊥ N be the corresponding unit
tangent vector. Therefore,

{
N,T

}
constitutes together an orthonormal basis in

the ambient space R
n. Let x ∈ R

n be the intersection between the limit of z and
the tangent space spanned by T and orthogonal to N as illustrated in Fig. 1. By
adjusting the basis such that N = μ and writing x = c.z where c = ||x||2 ≥ 1,
we get

x = 1.μ + (c2 − −1)1/2.T. (6)

So, with c as a scalar random variable, we have x is a random vector in R
n.

Applying the expectation we get

E(x) = 1.μ + E((c2 − −1)1/2).T. (7)

The quantity E(c) is a measure of the concentration of the value of z around
the direction μ. If the radius r is close to zero then E(c) will be close to 1.
Conversely, if the radius r is close to π/2 then E(c) takes large but finite values.
In all cases, we have 1 ≤ E(c) < ∞.
Let xi (i = 1, . . . , N) be a sequence of independent random variables in R

n.
From 7 it can be expressed as: xi = 1.μ +

√
c2i − 1.T = ci.zi where zi ∈ Sn−1.
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Theorem 2. Define the resultant sum of xi by SN =
∑N

i=1 xi. Then, we have

Σ−1/2(SN − NE(c)z̄) D→ Nn(0, I) as N → ∞, (8)

and

σ−1(z̄TSN − NE(c)||z̄||22) D→ N (0, 1) as N → ∞, (9)

where z̄ refers to the empirical mean of z1, . . . , zN , Σ = Var(c)
∑N

i=1 zizT
i and

σ2 = z̄T Σz̄ = Var(c)z̄T
∑N

i=1 zizT
i z̄. Here, N (., .) refers to the univariate Gaus-

sian distribution.

Based on the Law of Large Numbers we get the following results of convergence
in probability.

Lemma 1.

1. SN

N

P→ E(c)z̄ as N → ∞.

2. ||SN ||2
N

P→ E(c)||z̄||2 as N → ∞.

3. SN

||SN ||2
P→ z̄

||z̄||2 as N → ∞.

Combining Theorem 2 and Lemma 1 we obtain the following proposition.

Proposition 1. We have

Nσ−1(
||z̄||2||SN ||2

N
− E(c)||z̄||22) D→ N (0, 1) as N → ∞. (10)

We can now use Proposition 1 to derive hypothesis tests for spherical data.

4 The Finite-Dimensional Unit Sphere

In this section, we develop tests of single and double spherical means.

4.1 Hypothesis Tests of a Single Spherical Mean

We assess a test to determine if the spherical directions z1, . . . , zN come from a
population characterized by a mean direction μ0. We use Proposition 2 to test
the null hypothesis of a specific mean direction μ0.

Proposition 2. Define the resultant sum of xi depending on μ0 by Sμ0

N =
∑N

i=1 cμ0

i zi where cμ0

i = ||xi||2〈
xi,μ0

〉
2

. Under the hypothesis H0 : μ = μ0, the statis-

tic Nσ−1( ||z̄||2||Sμ 0

N ||2
N − E(c)||z̄||22) is approximately distributed as N (0, 1) when

N → ∞.
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In the above term we can estimate E(c) from Lemma 1 by

Ê(c) =
1
N

||SN ||2
||z̄||2 . (11)

Likewise, we can estimate Var(c) in order to evaluate σ2 by

V̂ar(c) = Ê(c2) − Ê(c)2, (12)

=
1
N

N∑

i=1

||xi||22〈
x2

i , μ̂
〉2
2

−
( 1

N

||SN ||2
||z̄||2

)2

,

where μ̂ is the Fréchet mean estimate.

4.2 Hypothesis Tests for Equality of Two Spherical Means

Consider two independent resultant vectors SN1 and SN2 obtained from samples
of sizes N1 and N2 respectively, i.e., SNj

=
∑Nj

i=1 x
j
i =

∑Nj

i=1 cj
i .z

j
i ; j = 1, 2.

Utilizing Proposition 1, we deduce the subsequent result.

Proposition 3. Under the hypothesis H0 : E(c1)||z̄1||22 = E(c2)||z̄2||22 where z̄1

and z̄2 refers to the empirical mean of spherical samples: z1i and z2i of sizes N1

and N2, the statistic
( σ2

1
N2

1
+ σ2

2
N2

2

)−1/2( ||z̄1||2||SN1 ||2
N − ||z̄2||2||SN2 ||2

N

)
is approximately

distributed as N (0, 1) when N1, N2 → ∞.

In order to evaluate σ2
1 and σ2

2, the variances of c1 and c2 can be estimated by

V̂ar(cj) =
1

Nj

Nj∑

i=1

||xj
i ||22〈

xj
i , μ̂

j〉2
2

−
( 1

Nj

||SNj
||2

||z̄j ||2
)2

; j = 1, 2, (13)

where μ̂j is the Fréchet mean of j-th spherical sample of size Nj and xj
i denotes

the i-th observation from j-th sample.

5 The Manifold of PDFs

Before we give details of the hypothesis test on the set of PDFs we introduce
some tools about the geometry of Riemannian representations and their struc-
tures. The metric is fixed to be the Fisher-Rao the only metric invariant to
reparametrizations [23].

5.1 From Spherical Data to Distribution Functions

Let p be a PDF of a real-valued random variable. The set of all PDFs defined
on I = [0, 1] is a simplex satisfying

P :=
{

p : I → R
∣
∣ p is nonnegative and

∫

I

p(t)dt = 1
}

. (14)
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The Fisher-Rao metric on P is defined by

〈
g1, g2

〉
p
:=

∫

I

g1(t)g2(t)
p(t)

dt, (15)

where g1, g2 ∈ Tp(P) are two tangent vectors belonging to the tangent space of
P locally at p and satisfying

Tp(P) :=
{

g : I → R
∣
∣

∫

I

g(t)dt = 0
}

. (16)

As a second representation we introduce the set of Square-root Density Functions
(SRDFs) with

H :=
{

ψ : I → R
∣
∣ ψ is nonnegative, and ||ψ||L2 :=

( ∫

I

ψ(t)2dt
)1/2

= 1
}

.(17)

H results to be the Hilbert upper-hemisphere (nonnegative part) endowed with
the L

2 metric. Note that the tangent space of H locally at ψ is

Tψ(H) :=
{

f : I → R
∣
∣ 〈

ψ, f
〉
L2 =

∫

I

ψ(t)f(t)dt = 0
}

. (18)

Associated with each p ∈ P is a unique ψ ∈ H (isometrically) expressed as

ψ(t) =
√

p(t); t ∈ I. (19)

The advantage of the representation ψ ∈ H is that it greatly simplifies the under-
lying geometry of P with some nice tools on the Hilbert sphere. For instance,
the geodesic distance between ψ1 and ψ2 in H is given by

dH
(
ψ1, ψ2

)
= arccos

(〈
ψ1, ψ2

〉
L2

)
. (20)

Given ψ1, . . . , ψN ∈ H their natural mean function is the Fréchet mean denoted
ĥ belonging to H and minimizing the Fréchet variance

ĥ = argmin
ψ∈H

N∑

i=1

d2H
(
ψ,ψi

)
. (21)

Let p ∈ P be a PDF and ψ ≡ √
p ∈ H be its corresponding SRDF. Since ψ is an

element of L2(I,R) then it can be represented as a convergent orthogonal series
expansion satisfying

ψ(t) =
∞∑

l=1

alφl(t), (22)

where (φl)l is a complete orthonormal basis in L
2(I,R). In practice, it seems

natural to consider a truncated version of ψ at order m expressed as

ψm(t) =
m∑

l=1

alφl(t), (23)
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and the rest of the sum is considered as an approximation error: em(t) =∑∞
l=m+1 alφl(t). Note that ψm(t) can be re-written as

ψm(t) = Φ(t)TA, (24)

for A = (a1, . . . , am)T and Φ(t) = (φ1(t), . . . , φm(t))T . From Eq. 17 we state
that the truncated SRDF ψm belongs to H if and only if ψm is nonnegative
and ||ψm||L2 = 1. The condition that ψm is nonnegative does not impose any
additional calculation and we can maintain it in practice. Consequently, ψm(t)
is a SRDF if and only if in addition to non-negativity the Euclidean norm of A
takes one from the following identity

||ψm||2
L2 =

∫

I

ψm(t)2dt =
m∑

l=1

a2
l

∫

I

φl(t)2dt =
m∑

l=1

a2
l = ||A||22. (25)

5.2 Hypothesis Tests

Let p ∈ P be a PDF and ψm ∈ H be the truncated version of its corresponding
SRDF depending on A as detailed in Eq. 24. We also assume that h is a spherical
mean function in H truncated by hm(t) = Φ(t)TW such that W is the corre-
sponding spherical mean direction in Sm−1. By analogy to the finite-dimensional
case detailed in Sect. 3 and from Fig. 1 the limit of ψm(t)’s intersection with the
orthonormal tangent vector at hm(t) is

fm(t) = d.ψm(t), (26)

where d is a scalar random variable giving the concentration of ψm(t) around
hm(t) and satisfying: d = ||fm||

L2〈
fm,hm

〉
L2

= 1〈
ψm,hm

〉
L2

. Now, we will show how Eq. 26

is equivalent to

B = d.A, (27)

where B is the intersection of the limit of A with the orthonormal tangent vector
at W. From the isometry result in Eq. 25 we state that d = 1〈

A,W
〉
2

. Multiplying

terms in Eq. 26 by Φ(t) we get

Φ(t)fm(t) =
1

〈
A,W

〉
2

Φ(t)Φ(t)TA. (28)

Integrating the above expression we obtain
∫

I

Φ(t)fm(t)dt =
1

〈
A,W

〉
2

( ∫

I

Φ(t)Φ(t)T dt
)
A. (29)

Using the fact that
∫

I
Φ(t)Φ(t)T dt = I where I refers to the m × m identity

matrix we get
∫

I

Φ(t)fm(t)dt =
1

〈
A,W

〉
2

A = d.A, (30)
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which matches Eq. 27 for B =
∫

I
Φ(t)fm(t)dt. Therefore, Proposition 2 and

Proposition 3 can be updated for simple and double hypothesis tests on PDFs
replacing xi by Bi, zi by Ai and μ by W.

6 Experimental Results

We empirically evaluate the proposed method’s effectiveness through separate
assessments on simulation studies and real-world datasets. A Python demo code
of the method is provided at: Nonparametric-Statistical-Testing-for-Spherical-
Data.

6.1 Results on Simulated Data

To begin, we validate the performance of the proposed framework using simu-
lated datasets on both the finite-dimensional sphere and the space of PDFs.

Case 1: The Finite-Dimensional Sphere. We conduct experiments involv-
ing two hypothesis tests on the unit sphere, specifically on S1 (n = 2) and S2

(n = 3). For these experiments, we generate spherical data using the von Mises-
Fisher (vMF) distribution [2], a fundamental, unimodal, and isotropic distribu-
tion defined on Sn−1. The probability density function of this distribution is
represented as:

pμ,κ(t) = (
κ

2
)n/2−−1 1

Γ (n/2)In/2−−1
exp(κμT t).

In this expression, Γ denotes the gamma function, and Iν represents the modified
Bessel function of the first kind at order ν. The parameter μ ∈ Sn−1 specifies
the unique mode, while κ ≥ 0 indicates the degree of concentration.

i) Hypothesis tests of a simple spherical mean. From Proposition 2,
when considering a significance level α ∈ [0, 1], the critical region for rejecting
the null hypothesis H0 : μ = μ0 is defined as follows:

CRα =

⎧
⎨

⎩

||z̄||2||Sμ 0
N

||2
N

< E(c)|z̄||22 − q1−α/2
σ

N

⎫
⎬

⎭
∪

⎧
⎨

⎩

|z̄||2||Sμ 0
N

||2
N

> E(c)|z̄||22 + q1−α/2
σ

N
}.

Here, qα represents the α-quantile of the standard Gaussian distribution. The
mean and the variance of the concentration parameter c will be empirically
estimated as described in Eq. 11 and Eq. 12.

In these experiments, we generate N = 1000 spherical data points zi from the
von Mises-Fisher distribution pμ0,κ with κ = 5. For n = 2, we use μ0 = (0, 1),
and for n = 3, we use μ0 = (0, 0, 1). A few examples of zi are visualized in Fig. 2
(top) (a) on the circle and in Fig. 2 (bottom) (a) on the sphere. The Fréchet
mean, denoted as μ̂ and obtained from Eq. 5, is marked as a green dots. We
also illustrate the tangent line and plane at μ0 that contain the corresponding

https://github.com/anisfradi/Nonparametric-Statistical-Testing-for-Spherical-Data
https://github.com/anisfradi/Nonparametric-Statistical-Testing-for-Spherical-Data
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(a) (b) (c)

Circular data with µ0 = (0, 1).

)c()b()a(

Spherical data with µ0 = (0, 0, 1).

Fig. 2. (a) Data simulated from the vMF distribution (blue) projected onto the tangent
plane of the sphere at μ0 (brown) and their Fréchet mean (green).(b) The distribution
of ||z̄||2||Sμ0

N ||2 under H0. (c) The acceptance region CRc
α (blue) with test statistic

value (red) and p-value (gray)(Color figure online).

projected data, shown in brown. In Fig. 5 (top) (b) and Fig. 2 (bottom) (b),
we provide visualizations of the Gaussian distribution of ||z̄||2||Sμ0

N ||2 under the
null hypothesis H0 : μ = μ0, exhibiting a mean of NE(c)||z̄||22 and a variance of
σ2 for the circle and the sphere, respectively. Further details of the hypothesis
testing are illustrated in Fig. 2 (top) (c) and Fig. 2 (bottom) (c). The horizontal

red line represents the test statistic value ||z̄||2||Sμ 0

N ||2
N . The blue-shaded area

indicates the region CRc
α as the complement of CRα where the null hypothesis

H0 is accepted. This region varies for different values of α ∈ [0, 1]. The vertical
gray line represents the p-value, which indicates the probability of observing a
result as extreme as the test statistic value, assuming the null hypothesis is true.
In this case, the p-value is equal to 0.8 for both datasets. Therefore, we can only
accept the alternative hypothesis H1 for high levels of significance, exceeding
80%.

ii) Hypothesis tests for equality of two spherical means. Proposition 3
defines the critical region for rejecting the null hypothesis H0 : E(c1)||z̄1||22 =
E(c2)||z̄2||22 as follows:

CRα =
{ ||z̄1||2||SN1 ||2

N1
− ||z̄2||2||SN2 ||2

N2
< −q1−α/2

√
σ2

1
N2

1
+ σ2

2
N2

2

}
∪

{ ||z̄1||2||SN1 ||2
N1

− ||z̄2||2||SN2 ||2
N2

> q1−α/2

√
σ2

1
N2

1
+ σ2

2
N2

2

}
.
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)b()a(

Circular data with µ1 = ( 1√
2
, 1√

2
) and µ2 = (− 1√

2
, 1√

2
).

(a) (b)

Spherical data with µ1 = ( 1√
2
, 0, 1√

2
) and µ2 = (− 1√

2
, 0, 1√

2
).

Fig. 3. (a) Data simulated from the vMF distribution with μ1 (blue) and μ2 (red)
projected onto the tangent space of the sphere (brown and pink, respectively) at μ1

and μ2 and their Fréchet means μ̂1 and μ̂2 (green). (b) The acceptance region CRc
α

(blue) with test statistic value (red) and p-value (gray)(Color figure online).

Here, the variance of the concentration parameter cj is empirically estimated as
described in Eq. 13 for j = 1, 2.

In this experiment, we simulate datasets with N1 = N2 = 1000 circular
data points from pμ1,κ and pμ2,κ. Specifically, we use μ1 = ( 1√

2
, 1√

2
) and μ2 =

(− 1√
2
, 1√

2
). In Fig. 3 (top) (a), we provide examples of zi with a mean of μ1

represented by blue dots and a mean of μ2 represented by red dots. The Fréchet
means, denoted as μ̂1 and μ̂2, are shown as green dots. The tangent lines at
μ1 and μ2 are depicted in black, along with the corresponding projected data
in brown and pink, respectively. In Fig. 3 (top) (b), we have tested the null
hypothesis H0 : E(c1)||z̄1||22 = E(c2)||z̄2||22. The horizontal red line represents
the test statistic value ||z̄1||2||SN1 ||2

N1
− ||z̄2||2||SN2 ||2

N2
. The blue area illustrates the

region CRc
α for different values of α ∈ [0, 1]. The vertical gray line represents

the p-value, which is zero in this case. Consequently, we confidently accept the
alternative hypothesis H1 : E(c1)||z̄1||22 �= E(c2)||z̄2||22 for any level of significance
α. The same process is repeated for testing spherical data in Fig. 3 (bottom) using
μ1 = ( 1√

2
, 0, 1√

2
) and μ2 = (− 1√

2
, 0, 1√

2
). The p-value remains zero, indicating

no overlap between the red line and the blue area, and consequently leading to
the acceptance of the alternative hypothesis H1.
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Case 2: The Manifold of PDFs. To assess the computational complexity
of the proposed procedure, we conducted a hypothesis test on populations of
PDFs. We set the truncation order of the convergent orthogonal series expansion
to m = 30, following the approach in [9]. As an orthonormal basis, we selected
φl(t) =

√
2 sin(lπt) for l = 1, . . . , 30.

We considered two datasets of simulated PDFs: beta and inverse gamma
distributions. This experiment involved N1 = N2 = 1000 pairs of PDFs, with
slight differences between the two populations in each dataset. Each observa-
tion pi represented a PDF, with random uniform noise added to the initial
parameters. For the beta class, we used p1i = B(2 + εi, 2) for the first popu-
lation and p2i = B(1.8 + εi, 2) for the second, where εi ∼ U([−0.2, 0.2]) is a
realization of a uniform distribution. For the inverse gamma class, we employed
p1i = IG(3 + εi, 0.1) for the first population and p2i = IG(2.8 + εi, 0.1) for the
second, again with εi drawn from a uniform distribution. Examples of pj

i are
displayed in Fig. 4 (a) and Fig. 5 (a), with different colors (blue and red) repre-
senting the two populations.

We also illustrated the corresponding SRDFs ψj
i ≡

√
pj

i in Fig. 4 (b) and
Fig. 5 (b) for beta and inverse gamma distributions, respectively. In Fig. 4 (c)
and Fig. 5 (c), we display the truncated SRDFs ψm,j

i . Furthermore, we computed
the Fréchet mean of Wj

i (i = 1, . . . , N ; j = 1, 2), denoted as Ŵj , using Eq. 5.
This allowed us to illustrate the Fréchet mean of ψm,j

i , denoted ĥm,j in green,
with ĥm,j(t) = Φ(t)T Ŵ

j
. In Fig. 4 (d) and Fig. 5 (d), we presented the results

of the double hypothesis test of population means. In both cases, we found that
the p-value is zero. Therefore, we confidently reject the null hypothesis H0 for
any significance level α.

6.2 Real Data

In this section, we evaluate the proposed methods on two datasets of PDFs. The
first dataset encompasses clinical growth charts for children aged 1 to 12 years,
consisting of 100 girls and 100 boys [21]. This dataset provides a typical exam-
ple of biological dynamics observed over a span of 132months and has been
widely used as a motivating case for the analysis of functional data [20]. Each
growth chart represents the size increment (in centimeters) of a child over these
132months. It’s worth noting that standard techniques encounter difficulties
when dealing with high-dimensional or functional data inputs. However, in this
context, we’ve opted to use the corresponding PDFs instead of the original data.
Consequently, all the growth charts are now represented by PDFs of child sizes,
registered within the interval I = [0, 1]. In Fig. 6 (a), we provide visual represen-
tations of some examples using a nonparametric kernel method with bandwidth
selection carried out via the method described in [5]. Our objective for this
dataset is to assess whether the mean population size of girls is statistically
equivalent to that of boys or not. The results, as depicted in Fig. 6 (d), indicate
a p-value of 13%.
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(a) (b) (c) (d)

Fig. 4. (a) The observed PDFs of beta distribution and (b) their associated SRDFs
with two different colors: The first population (blue) and the second population (red).
(c) The truncated SRDFs with estimated Fréchet means (green). (d) The acceptance
region CRc

α (blue) with test statistic value (red) and p-value (gray).

Fig. 5. (a) The observed PDFs of inverse gamma distribution and (b) their associated
SRDFs with two different colors: The first population (blue) and the second popula-
tion (red). (c) The truncated SRDFs with estimated Fréchet means (green). (d) The
acceptance region CRc

α (blue) with test statistic value (red) and p-value (gray).

Fig. 6. (a) The observed PDFs from growth charts and (b) their associated SRDFs with
two different colors: Boy (blue) and girl (red). (c) The truncated SRDFs with estimated
Fréchet means (green). (d) The acceptance region CRc

α (blue) with test statistic value
(red) and p-value (gray).

The second dataset comprises hand force signals obtained from a population
consisting of 60 healthy individuals and 90 patients with arthritis [22]. The med-
ical protocol involved the continuous measurement of hand force over a period
of time, with the objective of studying endurance during a test. Consequently,
it is expected that members of the healthy group would exhibit greater hand
strength compared to patients experiencing pain. In Fig. 7 (a), we present some
PDFs generated by registering and normalizing arthritis curves. Our objective
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Fig. 7. (a) The observed PDFs from arthritis curves and (b) their associated SRDFs
with two different colors: Patient (blue) and healthy (red). (c) The truncated SRDFs
with estimated Fréchet means (green). (d) The acceptance region CRc

α (blue) with test
statistic value (red) and p-value (gray).

with this dataset is to ascertain whether the mean functions of the healthy and
patient samples are statistically equivalent or not. The findings, as depicted in
Fig. 7 (d), indicate that we can only accept the equality between means at a
significance level lower than 11%.

6.3 Comparison

In this section, we use real data to the proposed methods against some state-
of-the-art methods, providing a robust means to assess the disparities in means
between two populations within each dataset. When working with functional
data, a simple approach involves running individual tests on each time point to
identify potential differences. However, this strategy may lead to situations where
individual tests indicate no significant difference, even though a collective exami-
nation of all variables may reveal significant distinctions. To better suit the char-
acteristics of functional data, we opt for the “interval testing procedure” designed
for two populations [16] as a more appropriate testing method. For the sake of
comparison, we consider three different functional bases: B-spline, Fourier, and
phase-amplitude Fourier. Specifically, we employ the fdatest R-package, which
necessitates that functional data be evaluated on a uniform grid.

Table 1. p-values of various methods.

Method Growth charts Arthritis curves
Dataset

B-spline 18% 15%

Fourier 15% 25%

Phase-amplitude Fourier 12% 64%

Proposed 13% 11%

Table 1 summarizes the p-values from various methods used in our analysis.
Our proposed test outperforms B-spline, Fourier, and Phase-amplitude Fourier
tests for arthritis data but is slightly less effective for growth chart data com-
pared to Phase-amplitude Fourier. Specifically, our test yields p-values of approx-
imately 13% for growth data and 11% for arthritis data, smaller than comparison

https://cran.r-project.org/web/packages/fdatest/index.html
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tests. This indicates a significant difference in means between populations (girls
and boys) for growth data, while other methods may not detect it. Our app-
roach, utilizing PDFs with the Fisher-Rao metric, excels in detecting skewness,
leading to a highly efficient hypothesis test.

7 Conclusion

We have introduced a new framework for evaluating the validity and the perfor-
mance of binary decision models of manifold-valued data with applications on
spherical data and probability density functions. The proposed methods are flex-
ible, computationally efficient, and extendable to other manifolds. The experi-
mental results demonstrate demonstrate their robustness with simulation studies
and their consistency with real data. Additionally, we have provided comparisons
and have shown, very often, better performance compared to other methods.
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Abstract. Large pre-trained language models (LPLM) have shown
spectacular success when fine-tuned on downstream supervised tasks.
It is known, however, that their performance can drastically drop when
there is a distribution shift between the data used during training and
that used at inference time. In this paper we focus on data distributions
that naturally change over time and introduce four Reddit datasets,
namely the Wallstreetbets, AskScience, The Donald, and Poli-
tics sub-reddits. First, we empirically demonstrate that LPLM can dis-
play average performance drops of about 79% in the best cases, when
predicting the popularity of future posts. We then introduce a methodol-
ogy that leverages neural variational dynamic topic models and attention
mechanisms to infer temporal language model representations for regres-
sion tasks Our models display performance drops of only about 33% in
the best cases when predicting the popularity of future posts, while using
only about 7% of the total number of parameters of LPLM and provid-
ing interpretable representations that offer insight into real-world events,
like the GameStop short squeeze of 2021. Source code to reproduce our
experiments is available online.

Keywords: Temporal Large Language Models · Prediction · Topic
Models

1 Introduction

The modern natural language processing (NLP) paradigm leverages massive
datasets, data-scalable (deep) attention mechanisms and minimal inductive
biases [36] in the form of large pre-trained language models (LPLM) which are
subsequently fine-tuned on new learning tasks and datasets [6,31,32].1 This app-
roach has proven a tremendous success in supervised learning, where applications

1 https://github.com/cvejoski/Supervised-Dynamic-LLM
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14941, pp. 422–439, 2024.
https://doi.org/10.1007/978-3-031-70341-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70341-6_25&domain=pdf
https://github.com/cvejoski/Supervised-Dynamic-LLM
https://doi.org/10.1007/978-3-031-70341-6_25
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include question answering, sentiment analysis, named entity recognition and
textual entailment, just to name a few (see e.g. [13,21,24,29,30] for a review).
Yet, many recent works have also reported the strong sensitivity of LPLM to
distribution shifts between the data used during training and that used at infer-
ence time [7,16,22,27,40]. In other words, fine-tuned LPLM are known to suffer
significantly at zero-shot when applied to different data domains.

Fig. 1. Dynamic features of Wallstreetbets. Top row: 30 most frequent words for
all documents collected within the first, middle and last 8-week windows of the Wall-
streetbets datasets. Middle row: time evolution of topic proportions from three ran-
domly chosen topics, inferred by a neural Dynamic Topic Model. Bottom row: top
30 words associated with each of the topics in the middle row. The figure illustrates
that topic representations, as opposite to simple Bag-of-Word representations, capture
(some of) the dynamic components of the dataset.

In this work we focus on a particular type of natural distribution shift which
arises in documents collected over long periods of time. Indeed, document col-
lections such as magazines, academic journals, news articles and social media
content not only feature trends and themes that change with time, but also
employ their language differently as time evolves [11]. LPLM fine-tuned on doc-
uments collected up to some given time (i.e. on a given observation time window)
might therefore perform poorly when evaluated in future documents, if the latter
differ enough from the previously observed ones (in either content or language
usage). That is, if the dataset of interest evolves in a non-stationary fashion over
time. The question is then how to characterize such non-stationary features.

Recent studies have shown that the performance of LPLM on downstream
tasks, like classification or named entity recognition, does indeed degrade when
the target and train distribution are temporarily misaligned. We complement
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these works by investigating the performance of LPLM when predicting the
popularity (i.e. number of comments or reactions) of Reddit post—the news
aggregator, content rating and discussion website, given the history (and content)
of past ones.

In what follows we introduce and study four datasets that we extract from
Reddit. We are principally concerned with the two questions, namely (i) do
these datasets exhibit strong enough distribution shift across time to affect the
performance of LPLM, fine-tuned on the history of past posts? and, if so, (ii)
how can we deal with such natural domain change problems? Each of the Red-
dit datasets consists, as usual, of a single sequence of document collections (i.e.
each time point in the sequence consists of an aggregate of documents with a
given timestamp). This practical aspect entails, in particular, that the infer-
ence of representations capturing their relevant dynamic components (i.e. the
non-stationary features from above)—if at all present—should be done via low
capacity models. Bayesian generative models for sequences, such as Kalman fil-
ters or Gaussian processes, are good examples well suited for such a task, and
Fig. 1 illustrates this point. In the first row of the figure we report the 30 most
frequent words from all documents collected within the first, middle and last
8-week windows of one of our datasets, which spans about one year in total.
There is no discernible change between these three time points—in this repre-
sentation of the data—and one might jump to the conclusion that the dataset
shows no dynamics (or that the data distribution is stationary). In the second
row, however, we report how the proportions of three randomly chosen topics,
inferred via a neural variational variant of Dynamic Topic Models (DTM) [5],
changes as time evolves. Some of the dynamic features of the dataset are now
evident in this representation. Note that the last row in the figure shows the top
30 words associated with each of the topics in the second row.

Our first contribution is to (empirically) show that LPLM, the likes of BERT
[13] and RoBERTa [24], fine-tuned on histories of past Reddit posts, display
average performance drops of about 79% (in the best case!) when predicting
the popularity of future posts. In sharp contrast, we shall observe that LPLM
perform very well on test sets extracted from the history of past posts. This
result thus responds affirmatively to our first question above.

Our second contribution consists of an novel methodology that explicitly
models the dynamic components of the data, to deal with the kind of tem-
poral distribution shift we observe in Reddit. Indeed, we strive to retain the
expressiveness of neural language models (NLM) for treating the low-level word
statistics composing the posts, while deploying DTM for encoding the kind of
high-level document sequence dynamics shown in Fig. 1. If one interprets the
inferred topics as representing the domains of the dataset, their inferred dynam-
ics can, at least in principle, account for (some aspects of) the temporal domain
changes present in the dataset. Note that taking the view of topics as domains
to deal with distribution shift problems has also been taken in the past, albeit
in static settings [15,18,28].
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A bit more in detail, our approach consists of mainly two components. First,
we use neural variational DTM to infer the time- and document-dependent pro-
portions of a set of latent topics that best describe the data collections. We rep-
resent this set of topics via learnable topic embeddings. Second, we deploy NLM
to encode the word sequences composing the posts into sequences of contextu-
alised word representations. Given these word representations, we then modify
a recently proposed attention mechanism [37] to construct temporal post repre-
sentations sensitive to the temporal domain changes. These depend on both the
NLM word representations of the post in question and the history of the dataset,
as represented by the latent topics and their time-dependent proportions. The
resulting representations can be used to predict the popularity of future posts.

Below we show our approach significantly outperforms LPLM. Indeed, our
models display performance drops of only about 33% (in the best cases) when
predicting the popularity of future posts, while using only about 7% of the total
number of parameters of LPLM, and providing interpretable representations that
offer insight into real-world events, like the GameStop short squeeze of 2021.

2 Related Work

On Natural Distribution Shifts in NLP. WILDS, the benchmark introduced
by Koh et al. [19], is a very recent dataset collection which explores different
types of real-world distribution shifts. Section 8 of Koh et al. [19] focus on non-
temporal distribution shifts in NLP and we refer the reader to it for details and
references. Additional to these are the aforementioned works which use topic
models in static settings, to tackle domain change problems [15,18,28], as well
as those works which report performance drops of LPLM, again under non-
temporal distribution shifts [7,16,27,40].

Koh et al. [19] includes in Appendix F a section about temporal distributions
shift for review data. They report only modest performance drops, a result we
do not find surprising. Review data typically deals with items (e.g. products,
restaurants, etc.) whose basic features change moderately with time (see also
Luu et al. [26] for similar observations). In contrast, several recent works report
significant performance drops when the target and train distribution are tem-
porarily misaligned [1–3,14,17,22,23,25,26,33,35]. For example, Lazaridou et al.
[22] systematically shows that Transformer-XL language models perform worse
when used for predicting future utterances not included in the training period.

Some of these works propose to deal with the temporal distribution shift by
incorporating temporal information directly into the model, either as input [14]
or into the self-attention mechanism itself [34]. Yet none of them model time
explicitly.

On Dynamic Language Models for Supervised Downstream Tasks. Incorporating
temporal information into (neural) models of text is key to capture the constant
state of flux typical of streaming text datasets, the likes of news article collections
or social media content. Very early in the game, Yogatama et al. [39] considered
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using temporal, non-linguistic data to condition n-gram language models and
predict economics-related content at a given time. More recently Delasalles et
al. [12] learned, via recurrent neural models, hidden variables encoding time
information, which are then used both to condition neural language models and
in classification tasks. Similarly, Cvejoski et al. [10] leveraged recurrent neural
point process models to infer dynamic representations that help model both
content and arrival times of Yelp reviews. Other recent work have also used both
temporal and text information, but to predicting review ratings [9,38] instead.
Different from all these works, we use DTM to infer and explicitly model the
dynamic components of our corpora, and attention mechanisms to connect them
with neural language models for regression tasks.

3 Model

Fig. 2. Left: D-TAM-GRU model. The input to the model is the document’s word sequence
Xt,d and BoW representations wt,d and Wt, the output is a continuous label rd.
The model consists of four components: (i) the DTM, (ii) the NLM encoder, (iii)
the attention module and (iv) a regressor module, which takes the output from the
attention module and predicts the label rd. Right: Detailed view of the Attention
Module. This module takes as input the document’s word representations ud

1:N from
the NLM and the topic proportion θt,d from the DTM. See equations in the main text
for the definition of all these variables.

In this section we propose a novel methodology to deal with a class of distri-
bution shift that naturally arises in corpora collected over long periods of time.
Suppose we are given an ordered collection of corpora D = {D1,D2, . . . , DT }, so
that the tth corpus Dt is composed of Nt documents (Reddit posts), all received
within the tth time window. Let the dth document in Dt be defined by the tuple
(wt,d,Xt,d, rt,d), where wt,d denotes the Bag-of-Words (BoW) representation of
the document, Xt,d = (xt,d

1 , . . . ,xt,d
M ) denotes the sequence of words comprising

the document and rt,d labels the document’s rating. Similarly, let Wt denote the
BoW representation for the entire document set within Dt. Given a new docu-
ment d′ at time T + 1—that is, given XT+1,d′ , wT+1,d′—the task is to predict
the rating rt+1,d′ .
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Our approach takes the perspective that latent topics, understood as word
aggregates grouped together by means of word co-occurrence information within
the corpora, can be understood as representing the domains of the dataset. To
allow the distribution of topics within the documents to change with time allows,
at least in principle, to model domain changes within the collection as time
evolves. We shall use such temporal information to weight the importance of the
words composing the new document XT+1,d′ , with respect to the topic (domain)
proportions in that document, at time T + 1, by means of an attention mecha-
nism.

The model thus requires the introduction of two components, namely (i) a
neural variational DTM and (ii) an attention module that leverages the repre-
sentations obtained by both the DTM and a low-level NLM, to create a temporal
Reddit post representation. The resulting representation can then be used by
a neural regressor model to predict rt+1,d′ .

In the following we introduce all the different components of the model in
detail.

Neural Variational Dynamic Topic Model. Let us suppose the corpora
collection D is described by a set of K unknown topics (domains). We then
assume there is a sequence of global hidden variables η1, . . . ,ηT ∈ R

dim(η) which
encodes how the topic proportions change among the corpora as time evolves
(i.e. as one moves from Dt to Dt+1). We also assume there is a local hidden
variable ζt,d ∈ R

dim(ζ), conditioned on ηt, which encodes the content of the dth
document in Dt, in terms of the K topics.

Generative Model. Let us denote with ψ the set of parameters of our gen-
erative model. We generate the dth document in Dt by first sampling the topic
proportions θt,d ∈ [0, 1]K as follows

ηt ∼ N
(
μη

ψ(ηt−1), δ I
)

, (1)

ζt,d ∼ N
(
Wζ

ψ ηt + cζ
ψ, 1

)
, (2)

θt,d = softmax(f ζ
ψ(ζt,d)), (3)

where f ζ
ψ : Rdim(ζ) → R

K is neural network with parameters in ψ and Wζ ∈
R

dim(ζ)×dim(η), cξ ∈ R
dim(ζ) ⊂ ψ are trainable parameters. Furthermore, and

just as in Deep Kalman Filters [20], ηt is Markovian and evolves under a Gaussian
noise with mean μη

ψ : Rdim(η) → R
dim(η), defined via a neural network with

parameters ψ, and variance δ. The latter being a hyperparameter of the model.
Finally, we choose the prior η1 ∼ N (0, 1).

Once we have θt,d we generate the corpora sequence by sampling

zt,d,n ∼ Categorical(θt,d), wt,d,n ∼ Categorical(βzt,d,n
), (4)
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where zt,d,n is the time-dependent topic assignment for wt,d,n, which labels the
nth word in document d ∈ Dt, and β ∈ R

K×V is a learnable topic distribution
over words. We define the latter as

β = softmax(α ⊗ ρ), (5)

with α ∈ R
K×E ,ρ ∈ R

V ×E learnable topic and word embeddings, respectively,
for some embedding dimension E, and ⊗ denoting tensor product.

Neural Topic Attention Model. Given a document d, composed of the
word sequence x1, . . . ,xM , the task is to predict its rating rd. One straight-
forward approach to this problem is to consider a (deep) neural language
model to infer contextualized word representations of the form u1,u2, . . . ,uM =
sρ(x1,x2, . . . ,xM ), where sρ is any neural sequence processing model (as e.g. a
GRU [8] or BERT model) with parameters ρ.

With the representations u1,u2, . . . ,uM at hand one can define a summary
representation sd (by e.g. averaging over the u’s or using the CLS token of
BERT-like models) and use it as input to a neural regressor fr

ρ (also with param-
eters ρ) to predict rd. Yet, if the document d is received at time T + 1, i.e. out
of the observation window on which the parameter ρ was optimised, and if the
dataset in question displays temporal domain changes, we might expect this
simple model to underperform.

Here we use the DTM of Sect. 3, which is assumed to model the domain
changes in the corpora, to define a temporal summary representation sensible to
the natural distribution shifts of the dataset. Indeed, we follow Wang et al. [37]
and use an attention mechanism to construct sd as follows

st,d =
M∑
j

K∑
i

(θi
t,d − δ) × softmax(MLP(uj)T · αi) � uj , (6)

where the softmax function is taken with respect to the word sequence, the αi

label the set of K global topic embeddings and the θt,d denote the time- and
document-dependent topic proportions, as defined in Eq. 3. To make the obtained
attention weight more diverse among topics we substract from the mixture of
topics constant δ, where 0 < δ < 1.

It follows that the proposed document representation is nothing but the sum
of the projections of each of the document’s word representations onto topic
space, weighted by the time-dependent topic proportions of each dimension. It
can also be understood as an attentive representation in which each word is
queried by the weighted topics.

In what follows we let sρ be modeled by a GRU network [8] and name the
model thus defined D-TAM-GRU. Our proposed framework is shown in Fig. 2.
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Inference Model. We approximate the true posterior distribution of the hidden
variables with a variational (and structured) posterior of the form

qϕ(ηt, ζt,d|wt,d,W1:T ) =
T∏
t

qϕ(ηt|η1:t−1,W1:T ) ×
Nt∏
d

qϕ(ζt,d|wt,d,ηt) (7)

where W1:T = (W1, . . . ,WT ) is the ordered sequence of BoW represen-
tations for the corpus collection and ϕ labels the variational parameters. The
posterior distribution over the local variables is chosen to be Gaussian

qϕ(ζt,d|wt,d,ηt) = N (μζ
ϕ[wt,d,ηt],σζ

ϕ[wt,d,ηt]), (8)

with μζ
ϕ and σζ

ϕ neural networks with parameter ϕ. Likewise, the posterior
distribution over the global variables is also Gaussian, but now depends not
only on the latent variables at time t − 1, but also on the entire sequence of
BoW representations W1:T . Explicitly we write

qϕ(ηt|ηt−1,W1:T ) = N (μη
ϕ[ηt−1,h

η
T ],σ

η
ϕ[ηt−1,h

η
T ]), (9)

where μη
ϕ,ση

ϕ are too given by neural networks and hη
t is a recurrent repre-

sentation encoding the sequence W1:T . Indeed,

hη
t = gη

ϕ(Wt,h
η
t−1), (10)

with gϕ a neural model for sequence processing (like e.g. a GRU [8]). Figure 2
illustrates the architecture of the complete model.

Training Objective DTM. To optimize the DTM parameters {ψ,ϕ} we min-
imize the variational lower bound on the logarithm of the marginal likelihood
pψ(wt,d,n|β). Following standard methods [4], the latter can readily be shown
to be

L[β, ψ, ϕ] =
T∑

t=1

Nt∑
d=1

(
E{ζt,d,ηt}

{
log pψ(wt,d|β, ζt,d,ηt)

−KL [qϕ(ζt,d|wt,d,ηt); pψ(ζt,d|ηt)]
})

−KL [qϕ(η1|W1:T ); p(η1)] −
T∑

t=2
KL [qϕ(ηt|η1:t−1,W1:T ); pψ(ηt|ηt−1)] ,

(11)

where KL labels the Kullback-Leibler divergence and β is given in (5).

Training Objective. To optimize the complete set of model parameters {ψ,ϕ
ρ} we minimize the objective

L = LTM [β, ψ, ϕ] + αyLr[ρ], (12)
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where LTM denotes the DTM loss (defined in Eq. 11) and Lr denotes the regres-
sion loss. The latter is defined as the root-mean-squared error between the target
rating rd and the prediction of a regressor model, that is

Lr[ρ] = RMSE(rd, fr
ρ (sd)), (13)

with fr : Rdim(s) → R a neural network and sd defined by Eq. 6.

Prediction. In order to predict the rating rT+N,d of a new document, N steps
into the future, given its word sequence XT+N,d, we rely on the generative process
of our model albeit conditioned on the past. Essentially one must generate Monte
Carlo samples from the posterior distribution and propagate the global latent
representations into the future with the help of the prior transition function
Eq,. 1. This procedure is depicted on the conditional predictive distribution (for
a single step) of our model

p(rT+1,d|D,XT+1,d) =
∫

p(rT+1,d|ηT+1, ζT+1,d,XT+1,d)
×p(ζT+1,d|ηT+1)p(ηT+1|ηT )

×p(η1:T |D)dη1:T+1dζT+1,d,
(14)

where p(η1:t|D) is the exact posterior over the dynamical global variables, which
we approximate with our variational expression Eq. 9, and where

p(rT+1,d|ηT+1, ζT+1,d,XT+1,d)
= δ(rT+1,d − fr

ρ (sT+1,d[ηT+1, ζT+1,d,XT+1,d])),
(15)

with fr
ρ the neural regresor, sT+1,d defined in Eq. (6) and δ the Dirac delta

function.

4 Task, Dataset and Experimental Setup

In this sections we first introduce our popularity prediction task. Next, we
present detailed information about our proposed Reddit dataset for temporal
distribution shifts analysis. Finally, we describe the experimental setup that we
use to train and evaluate the models and introduce the baselines we compare
against.

Task. We define the popularity of a given Reddit post as the number of com-
ments the submission receives. This quantity measures the impact of the post’s
content on the Reddit community at a given moment of time. Table 1 in the
Appendix contains the histograms of the number of comments per submission.
We infer such distributions with a continuous variable (rd in our notation), and
frame the prediction task as regression. We thus quantify the performance of our
models with the coefficient of determination (R2), the root-mean-square error
(RMSE) and the mean-absolute error (MAE). We report all results wrt. the last
two metrics in the Appendix due to lack of space. Finally, we also evaluate the
performance of the topic models, whenever these are used. See also Appendix.
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Table 1. Regression results (wrt R2 metric): We report our results for three
different topic models, each with 25, 50 and 100 hidden topics. MLP, BERT and RoBERTa
have no topic model associated to them. Gray columns show the Prediction (out-of-
distribution) results for all models. White columns show the results for the up-to-date
dataset. For each sub-column, we underline the best model. We highlight with boldface
the best model overall, separately for Prediction and up-to-date datasets.

Model R2↑ (Prediction) R2↑ (up-to-date)
25 50 100 25 50 100

A
sk

sc
ie
n
ce

MLP 0.011± 0.012 0.0007

BERT −1.029 ± 0.756 0.0712

RoBERTa 0.052± 0.158 0.0484

TAM-GRU 0.075± 0.096 0.150± 0.118 0.164± 0.141 0.0053 0.0555 0.0449

TAM-BERT 0.054± 0.103 0.134± 0.171 0.154± 0.170 0.0103 0.0967 0.0867

TAM-RoBERTa −0.019 ± 0.008−0.019 ± 0.008 0.092± 0.099−0.0175−0.0169 0.0295

D-ST 0.008± 0.030−0.010 ± 0.010−0.006 ± 0.008−0.0175−0.0138−0.0175

D-TAM-GRU 0.152± 0.105 0.196 ± 0.175 0.173± 0.161 0.0387 0.0386 0.0397

P
o
li
ti
cs

MLP −5.27 ± 13.577 0.6278

BERT −8.89 ± 21.951 0.6820

RoBERTa −0.028 ± 0.239 0.7306

TAM-GRU −0.448 ± 1.101−0.050 ± 0.053−0.078 ± 0.042 0.6993 0.7106 0.7251

TAM-BERT −0.051 ± 0.024−0.041 ± 0.121−0.022 ± 0.010 0.6577 0.6608 0.5576

TAM-RoBERTa −0.091 ± 0.047 0.014± 0.227 0.008± 0.408−0.0191 0.6329 0.6305

D-ST −0.072 ± 0.216−0.191 ± 0.127−0.178 ± 0.291 0.3370 0.3631 0.2372

D-TAM-GRU 0.133 ± 0.163−0.078 ± 0.042−0.038 ± 0.012 0.7118 0.7515 0.7028

T
h
e

D
o
n
a
ld

MLP −0.006 ± 0.004 0.4162

BERT −0.032 ± 0.018 0.6674

RoBERTa 0.110± 0.258 0.5290

TAM-GRU 0.176± 0.334 0.153± 0.224 0.133± 0.225 0.5821 0.5561 0.5813

TAM-BERT −0.009 ± 0.005 0.169± 0.345 0.026± 0.164 0.0288 0.4523 0.4157

TAM-RoBERTa −0.116 ± 0.072−0.036 ± 0.024−0.032 ± 0.203 0.5992 0.4878 0.5906

D-ST −0.011 ± 0.011−0.012 ± 0.011−0.011 ± 0.010−0.0014−0.0015−0.0012

D-TAM-GRU 0.203± 0.278 0.179± 0.314 0.228 ± 0.369 0.6553 0.7322 0.7071

W
a
ll

st
r
ee

tb
et

s

MLP 0.324± 0.662 0.5862

BERT −4.632 ± 12.553 0.6850

RoBERTa −0.003 ± 0.012 0.5484

TAM-GRU 0.218± 0.530 0.274± 0.577 0.293± 0.565 0.6345 0.5645 0.5865

TAM-BERT 0.353± 0.188−0.015 ± 0.017 0.153± 0.705 0.5652 0.5717 0.8117

TAM-RoBERTa −0.014 ± 0.025−0.008 ± 0.005−0.280 ± 1.139−0.0084 0.5994 0.0218

D-ST 0.540± 0.296−0.008 ± 0.006 0.376± 0.165−0.0038−0.0022 0.1823

D-TAM-GRU 0.640 ± 0.249 0.101± 0.417 0.160± 0.103 0.6577 0.8085 0.6047
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Dataset. In this work we propose a new Reddit2 dataset for temporal distribu-
tion shifts analysis. Reddit is a news aggregator, content rating and discussion
website. Users can post content on the site, like images, text links and videos,
which are rated and commented by other users. The posts which are called sub-
missions are organized by subject in groups or subreddits. We crawled the posts
for the AskScience, Politics, The Donald and the Wallstreetbets sub-
reddits. The AskScience is a subreddit in which science questions are posted
and answered. Politics is a subreddit where news and politics in the U.S. are
discussed. The Donald was a subreddit where supporters of former U.S. pres-
ident Donald Trump were initiating discussions. Lastly, the Wallstreetbets
is a subreddit where stock trading is discussed. This subreddit played a major
role in the GameStop short squeeze that caused losses3 for some U.S. firms in
early 2021.

Time Window and Out-of-Distribution Selection. After pre-processing, we first
split each of the datasets into the up-to-date and prediction (out-of-
distribution) datasets. We create such a distinction to study temporal distri-
bution shifts in the dataset. Specifically, we take the last 20 time points as
prediction (out-of-distribution data) and the rest for the up-to-date posts (in-
distribution data). In this way we ensure that we do not train on documents
that come from the future, which is what we actually want to model. That is, we
do not violate causality. Likewise we ensure there is a clear distinction between
past and future, which will allow us to uncover temporal distribution shifts, if
present.

Next, we split the up-to-date submissions randomly into train, validation
and test sets (80%, 10%, 10%, respectively). Additionally, to evaluate the DTM
on the document completion (i.e. generalization) task, we split the documents
of the test set into two halves. The first half is used as input to the topic model;
the second half is used to measure the document completion perplexity.

Baseline Models. The baseline models are introduced in order of increasing
complexity. These models are generally composed of two modules, namely (i)
an encoder module, which takes as input either the word sequence Xt,d or the
BoW wt,d of the document and outputs a summary representation sd,t; (ii) a
regressor module, which takes as input the representation sd,t and predicts the
rating rt,d of the document.

The simplest baseline model we consider defines both encoder and regressor
as MLPs, and takes as input the BoW representation wt,d of the document. We
name it MLP. Next we introduce baselines with attention-based models [36] as
encoder and MLPs as regressor. We use two attention-based encoder architec-
tures: BERT [13] and RoBERTa [24]. The input to these models is the word sequence
Xt,d and we use their CLS embedding as input to the regressor module. The
third baseline is TAM, the neural topic attention model for supervised learning
2 https://www.reddit.com.
3 https://www.bloomberg.com/news/articles/2021-01-25/gamestop-short-sellers-reload-

bearish-bets-after-6-billion-loss.

https://www.reddit.com
https://www.bloomberg.com/news/articles/2021-01-25/gamestop-short-sellers-reload-bearish-bets-after-6-billion-loss
https://www.bloomberg.com/news/articles/2021-01-25/gamestop-short-sellers-reload-bearish-bets-after-6-billion-loss
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proposed by Wang et al. [37]. TAM combines topic models and NLM to produce
the representation sd,t, just as in Eq. 6 above, but with static topic proportions.
The original TAM version uses a GRU as NLM. We call this version TAM-GRU.
We also extend this model by replacing the GRU with either BERT or RoBERTa.
Accordingly we name these baselines TAM-BERT and TAM-RoBERTa, respectively.
Finally, we use our DTM from Sect. 3 as encoder module, and input the inferred
local hidden variable ζt,d to the regressor, which here too is defined by an MLP.
We name this last baseline D-ST.

Fig. 3. Cumulative average R2 score for each time step into the future obtained by
using the predictions of the best transformer, the best static TAM and the best dynamic
TAM models. Our models perform in all the datasets better than the static ones, and
comparably well in the The Donald dataset which exhibits more stationary behavior,
and in this case our model is not suitable.

Training and Evaluation Metrics. We use grid search during training to
find the best hyper-parameters of each model type. All models are trained on
the training subset of the up-to-date submissions, and the validation subset
is used for choosing the best hyper-parameters. For all models that rely on a
DTM module we use 25, 50 and 100 topics. Details regarding the values of other
hyper-parameters can be found in the Appendix (section Model Training Setup).

5 Results and Discussion

In this section we discuss our results on the task of predicting the popularity of
future submissions (posts) on the Reddit platform, by predicting the number of
comments the submissions will receive. As explained above, this task is defined
by training all models on the up-to-date submission set and evaluating them
on the prediction set, which consists of submissions received in the future.

One of the key takeaways of the present work is to highlight that LPLM, fine-
tuned on the up-to-date submissions, fails at predicting the popularity of future
posts. To see this let us first examine the up-to-date results in the second col-
umn of Table 1, which show the performance of all models, evaluated on the test
subset. Note how LPLM provides the best results in two out of four subreddits,
yielding R2 scores higher than the dynamic models, including our D-TAM-GRU.
In contrast, Table 1 first column shows the Prediction (out-of-distribution)
results. Comparing the performance of LPLM on the in-distribution set against
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Fig. 4. Time evolution of topics’ proportion. The time series are obtained by taking
the mean and two standard deviations of the activity θk of topic k in all the documents
for a given time step t. We present three randomly picked topics for each dataset.
One could immediately notice that there is almost no dynamics for the The Donald
dataset.

their performance on the out-of-distribution set, we observe performance drops
of about 79% (in the best cases!). LPLM thus fail at predicting the popularity of
future posts, and we understand these findings as being consequence of temporal
distributions shifts between the up-to-date and prediction sets.

The second important observation we can make from Table 1 is that,
D-TAM-GRU not only outperforms all LPLM on the Prediction dataset, but
also displays performance drops of only about 33% (in the best cases) when pre-
dicting the popularity of future posts. Thus, our methodology does in fact help
dealing with the temporal distributions shifts of the Reddit dataset.

Our ablation study also shows that (static) topic attention models expand
the capabilities of LPLM. See Table 1 and Fig. 3. These findings comply with
results in the literature, which indicate that topic models largely improve model
performance under distribution shifts [15,18,22,28]. In fact, TAM-GRU (the best
static model for prediction) displays performance drops of 40% in the best cases.
Comparing this value with the performance drop of its dynamic counterpart,
we can conclude that explicitly modelling the dynamic components of the data
makes language models more robust against temporal distribution shifts.

Finally, Fig. 4 displays the time series for the topic proportions of three ran-
domly selected topics from each dataset. Note how the topics exhibit a different
range of dynamic behavior, accounting for seasonality, trendiness and bursty
as well as simply random behavior. As a whole, the ability of D-TAM-GRU to
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leverage such dynamic information in the prediction task strongly depends on
the nature of these dynamical patterns, as well as the overall weight obtained
by the topic attention mechanism. Indeed, one requires enough relevant topics
with dynamical information. In what can be thought of as a kind of distributed
signal-to-noise ratio, we speculate that in order for the prediction capabilities of
NLMs to be improved by our approach, the dataset at hand must be such that
there are enough topics with non-stationary behavior, i.e. topics that exhibit a
distribution change over time, and that such topics are important for the predic-
tion task, above other topics with stationary dynamical behavior (i.e. no change
in time). The Donald dataset shows qualitative behavior that is overall sta-
tionary, as the topic proportions present strong noisy behavior, which explains
why D-TAM-GRU performs comparably to Roberta in Fig. 3.

Fig. 5. Evolution of topic proportion in the Wallstreetbets dataset. Topics showing
community culture (profane jargon) and the behavior of the population during to the
“GameStop” short squeeze event.

Interpretability and WALLSTREETBETS. An added advantage of our model
is the interpretable character of the representations inferred by our DTM, as
we have seen in Fig. 4. Let us now take a look at Fig. 5. The Wallstreetbets
subreddit has become a success story when it comes to the power the Web has to
impact society, as retail investors organized themselves in the platform to create
major shifts in the stock market, thereby playing a major role in short squeeze
of the “GameStop” stock (an American video game retailer). This event can be
directly observed in Fig. 5-right, where the model inferred a rapid increase in
the importance of a topic about “gme" (ticker value of the “GameStop" stock),
previous to the sudden increase of the stock price by January 28, 2021. Now,
due to the rapid increase of the stock price, some brokerages such as “Robin-
hood" halted trading. The reaction of the community to this decision can also be
observed in the rise of the topic shown in Fig. 5-middle, in which“Robinhood" is
paired with derogatory jargon. New insights into the behavior of the population
are uncovered by our model too. Figure 5-left shows how profane-related topic
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decays in importance with time, which means that the language used by the
Wallstreetbets subreddit community is shifting. Beyond these qualitative
results, the ability of our model to predict the popularity of posts, allows us to
quantify the impact of several topics in the platform, as well as to predict popu-
larity shifts within the user population. As Wallstreetbets continues to gain
ground with retail investors, our methodology opens a window to quantitatively
study possible future rises in the popularity of futures stocks in the Reddit
platform.

6 Conclusion

We studied the prediction capabilities of LPLM and showed that, for a newly
introduced dataset with rich dynamic behavior, temporal distribution shifts
cause a sharp drop in their performance. We introduced a neural variational
DTM with attention that outperforms LPLM and overcomes (some of) the dif-
ficulties created by the temporal distribution shifts. Remarkably, our models
use only about 7% of the total number of parameters of LPLM and provide
interpretable representations that offer insight into real-world events.
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Abstract. A visual question answering (VQA) system for electrical cir-
cuit images could be useful as a quiz generator, design and verification
assistant or an electrical diagnosis tool. Although there exists a vast liter-
ature on VQA, to the best of our knowledge, there is no existing work on
VQA for electrical circuit images. To this end, we curate a new dataset,
CircuitVQA, of 115K+ questions on 5725 electrical images with ∼70
circuit symbols. The dataset contains schematic as well as hand-drawn
images. The questions span various categories like counting, value, junc-
tion and position based questions. To be effective, models must demon-
strate skills like object detection, text recognition, spatial understanding,
question intent understanding and answer generation. We experiment
with multiple foundational visio-linguistic models for this task and find
that a finetuned BLIP model with component descriptions as additional
input provides best results. We make the code and dataset publicly avail-
able (https://github.com/rahcode7/Circuit-VQA).

Keywords: Visual Question Answering · Vision and Language ·
Multimodal Large Language Models · VQA for circuits ·
electricalVQA · circuitVQA

1 Introduction

A visual question answering (VQA) system for electrical circuit images could be
useful in several scenarios. It can be used as a teaching tool or a quiz generator
for students who are learning about electrical circuits. It can also provide feed-
back and hints to help students solve circuit problems. It can be used as a design
assistant or a verification tool for engineers who are creating or modifying elec-
trical circuits. It can also suggest improvements or optimizations for the circuit
design. It can be used as a debugging or a diagnosis tool for technicians who
are repairing or testing electrical circuits. It can also identify faults or errors in
the circuit functionality or performance. Such a system can also be used as an
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A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14941, pp. 440–460, 2024.
https://doi.org/10.1007/978-3-031-70341-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70341-6_26&domain=pdf
http://orcid.org/0000-0002-2843-3110
https://github.com/rahcode7/Circuit-VQA
https://doi.org/10.1007/978-3-031-70341-6_26


CircuitVQA: VQA for Electrical Circuit Images 441

AnswerQuestionQuestion 
Type

5What is the total resistor count within the circuit?Simple 
Counting

1How many voltage-dc are connected directly to the 
left of inductor?

Spatial
Counting

12VWhat is the value associated with the voltmeter?Value

YesCan we observe a transistor.bjt between junction 7 
and junction 9?

Junction

Cross-
over

Can you tell me which circuit component is at 
the leftmost position?

Position

Fig. 1. Sample circuit image from CircuitVQA, and question-answer pairs per ques-
tion type

accessibility tool for visually impaired users who want to interact with or learn
about electrical circuits. Finally, it can serve as an analysis tool for researchers
who want to study or compare electrical circuits.

VQA aims at answering a text question in the context of an image [3]. Several
VQA datasets have been proposed in the literature [3,12,21,37]. Most methods
for VQA use basic multimodal fusion of language and image embeddings [20],
attention-based multimodal fusion [42] or neural module networks [2,14]. More
recently, newer problem settings have been proposed as extensions of the basic
VQA framework like Text VQA [36], Visual Dialog [8], Video QA [44], retrieval-
based VQA [32] and knowledge-based VQA for videos [11,13]. Extending on
this rich literature, we propose a novel problem setting: VQA in the context of
electrical circuit images.

With the advent of Transformers, multiple vision language models
(VLMs) [22,23,40], have been proposed and they have showcased remarkable
capabilities for VQA datasets. However, such models do not directly general-
ize to out-of-domain samples especially when there is large variety. Electrical
circuit images can be very complex and diverse, with different layouts, compo-
nents, symbols, labels, and connections. Hence, we first curate a novel dataset,
CircuitVQA, to finetune these models. CircuitVQA has 115K+ questions
across 5725 circuit images with ∼71 popular circuit symbols. Questions in Cir-
cuitVQA have been designed such that, to be able to handle different types of
questions in the dataset, a model should possess skills like object recognition,
attribute classification, counting, spatial reasoning, common sense reasoning,
and circuit analysis. CircuitVQA comprises a mix of hand-drawn as well as
schematic images. Figure 1 shows a few examples of such questions for a sample
image.

We systematically evaluate performance of popular vision-language mod-
els for various types of questions: counting, value-based, junction-based and
position-based. We also investigate the effectiveness of various kinds of input
image representations to be passed as input to these models: just the raw image
itself, optical character recognition (OCR) and object detection outputs. We
also explore if augmenting the text question with description of relevant electri-
cal components helps improve the performance.
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Overall, we make the following contributions in this paper. (1) We construct a
novel and diverse circuit-based VQA dataset, CircuitVQA, with 115K+ ques-
tions. The dataset contains carefully designed questions across 5 types which
test multiple visio-linguistic skills of multimodal models. (2) We conduct a
holistic evaluation of state-of-the-art vision language models: (a) fine-tuning
based evaluation of BLIP [23], GIT [40] and Pix2Struct [22] on train part of
CircuitVQA, and (b) zero-shot evaluation of instruction-tuned models like
LLaVA [26], InstructBLIP [7] and GPT4V [31]. (3) We conduct extensive exper-
imentation by combining external modules like Optical Character Recognition
(OCR), Object detection and supplying detailed description of electrical com-
ponents to improve and understand the capabilities of these vision-language
models for the CircuitVQA task. (4) We propose a novel hallucination score
based metric that can be widely applied to any VQA task.

2 Related Work

VQA for Science: Unlike general VQA [3] which focuses on natural images,
VQA for Science is a subfield of VQA that focuses on answering questions about
scientific images, such as diagrams, graphs, charts, and illustrations. Popular
datasets include ScienceQA [27] (on science lectures), AI2D [19] (on diagrams),
ChartQA [28] (on chart summaries), FigureQA [18] (on scientific-style figures
from five classes: line plots, dot-line plots, vertical and horizontal bar graphs,
and pie charts), DVQA [17] (on bar-charts), PlotQA [29] (on plots), LeafQA [5]
(on figures/charts), and BizGraphQA [4] (on graph-structured diagrams from
business domains). Although these datasets contain diverse range of diagrams,
they do not particularly contain any questions related to electrical circuits.

ML for Electrical Circuits: The increasing complexity of electronic design
automation (EDA) tasks has aroused large interest in incorporating ML to solve
EDA tasks [15] and electronic circuit design. Tasks include recognition of hand-
drawn electrical and electronic circuit components, and fault diagnosis of analog
circuits. In this work, we extend this line of work by introducing the task of
VQA for circuit images.

Hallucinations for VLMs: For VLMs, hallucination [16] refers to contra-
dictions between the visual input (taken as ‘fact’) and the text output of a
VLM [24,35]. CHAIR [35] evaluates object hallucinations in image captioning
by quantifying differences of objects between model generation and ground-truth
captions. POPE [24] formulates a binary - yes or no questions about the object
presence in the images such as “Is there a person in the image?”. Since no specific
hallucination evaluation metrics have been proposed for the VQA task specifi-
cally, we fill that gap by proposing a new metric, HVQA, in this paper.
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Table 1. Details of source datasets for CircuitVQA

Type # Images Description Frequent Object Classes

D1 Schematic 1284 Electrical circuits with 7141
annotations for object
detection across 7 classes.

resistor, current-source,
inductor, capacitor, voltage-ac,
voltage-dc, arrow

D2 Hand-drawn 2304 Hand-drawn electrical circuit
diagram images as well as
212K bounding box
annotations across 59 object
classes, and segmentation
ground-truth files. Also has
junction, cross-over and text
annotations.

resistor, terminal input, diode,
transistor, GND, LED,
voltage, thyristor, switch,
inductor, VSS, speaker, AND,
NOT, varistor

D3 Hand-drawn 487 Electrical circuits with 8353
annotations for object
detection across 14 classes.

junction, text, resistor,
current-source, inductor,
capacitor-unpolarized,
voltage-dc, voltage-dc_ac,
multi-cell-battery, gnd, diode,
terminal, single-cell-battery,
crossover

D4 Schematic 1273 Digital circuit images with
2398 annotations for object
detection across 7 classes.

and, nand, not, or, xor, nor,
xnor

D5 Hand-drawn 1679 Electrical circuits with 58K
annotations for object
detection across 45 classes.

junction, text, resistor,
terminal, diode,
capacitor-unpolarized,
crossover, transistor, gnd,
inductor, voltage-dc, thyristor,
switch

3 CIRCUITVQA Dataset Curation and Analysis

In this section, we discuss two aspects of the CircuitVQA dataset construction:
(a) collecting circuit images from various sources, (b) generating question answer
pairs using either human annotations or automatically using available metadata.

3.1 Collection of Circuit Images

We gather the images in CircuitVQA from five datasets available on pub-
lic platforms like Roboflow and Kaggle. The original source of many of these
datasets can be traced back to the Handwritten Circuit Diagram Images
(CGHD) [38]. These images are of two types: schematic and hand-drawn. Besides
the images, the dataset contains metadata like human annotated bounding boxes
and the corresponding component classes like resistor, ammeter etc. Table 1
shows details of the five source datasets: Roboflow Circuit recognition (D1)1,
Kaggle CGHD (D2)2, Roboflow CGHD-Supplement (D3)3, Roboflow Circuit
Recognition Electronics (D4)4 and Roboflow CGHD-Full Supplement (D5)5. D1
1 https://universe.roboflow.com/rp-project/circuit-recognition.
2 https://www.kaggle.com/datasets/johannesbayer/cghd1152.
3 https://universe.roboflow.com/development-tohnm/cghd-supplement-g34fl.
4 https://universe.roboflow.com/rp-project/circuit-recognition-electronics/.
5 https://universe.roboflow.com/development-tohnm/cghd-full-supplemented.

https://universe.roboflow.com/rp-project/circuit-recognition
https://www.kaggle.com/datasets/johannesbayer/cghd1152
https://universe.roboflow.com/development-tohnm/cghd-supplement-g34fl
https://universe.roboflow.com/rp-project/circuit-recognition-electronics/
https://universe.roboflow.com/development-tohnm/cghd-full-supplemented
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and D4 are schematic while others are hand-drawn. The datasets also differ in
terms of the kind of electrical components. While D1 has just 7 object classes,
D2 has 59. We aggregate data across these five datasets leading to a collection
of 7027 images. Next, we identify potential duplicate images using perceptual
hashing [43]. We then keep only one copy of these images by deleting similar
ones with a Hamming distance >3. This leads to our final unified dataset of
5725 images of which 3175 are hand-drawn and 2550 are schematic. We make
the dataset publicly available1.

3.2 Generation of Question Answer Pairs

We generate five categories of questions: Simple Counting, Spatial counting, Posi-
tion based, Value Based and Junction based. Figure 1 shows example question-
answer pairs for each question type for a sample circuit image. To generate these
questions, we utilize the metadata associated with the images like the associated
components and their bounding boxes. For each type, we obtain question tem-
plates using ChatGPT [30] and then instantiate questions using these templates.
A full list of generated question templates is mentioned in Table 2. In the fol-
lowing we discuss the question-answer generation process for each question type.
Table 3 summarizes the answer type for every type of question.

1. Simple Counting Questions. Given an image, in a simple counting ques-
tion, we ask for the count of each component type in the image. We prompt Chat-
GPT with this prompt: “Paraphrase the following text in 20 ways - How many
X does the circuit have?” This leads to 20 different paraphrases which are used
as question templates to generate simple counting questions in CircuitVQA.
For every image, we randomly sample a question template and replace the place-
holder X with the actual component name to get an instantiated question. This
can be done because each image has the component names and their counts as
associated metadata. The metadata is also used to obtain the actual answer.
Answering such questions requires a model to possess object recognition and
counting skills.

2. Spatial Counting Questions. Given an image, in a spatial counting ques-
tion, we ask how many components of a certain type are connected directly to
the left, right, top or bottom of the given component. Thus, for datasets D1, D2,
D3 and D5, we use this question template “How many Y are connected directly
to the 〈direction〉 of X?” where direction can be any of left, right, top or bottom.
For dataset D4 which is based on digital gates, we use the following question
templates: “How many gates are providing an input to X?”, “How many gates
are connected to the right of X?”, “How many Y gates are connected to the
right of X?”, and “How many Y gates are connected to the left of X?” For every
image in these datasets, we randomly sample a question template and replace
the placeholders X and Y (from the set of components mentioned in metadata)
with the actual component name to get an instantiated question. Since there
is no automated way of generating an answer using associated metadata, we
perform human annotation to annotate answers. The first author performed
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Table 2. Question Templates for various question types

Question
Type

Question Templates

Simple
Counting

How many Xs are there in the specified circuit? What
number of X are included in the given circuit? What is
the total count of Xs in the circuit? Can you determine
the number of Xs in the circuit? How numerous are the
Xs in the circuit? What is the quantity of Xs present in
the circuit? Are there multiple Xs in the circuit? What is
the total X count within the circuit? Could you provide
the number of Xs in the circuit? How many components
are there in the circuit that function as Xs? What is the
X tally in the circuit? Can you ascertain the number of
Xs in the circuit? Could you indicate the quantity of Xs
present in the circuit? How many X devices are there in
the circuit? What is the total X count in the given
circuit? Do you know how many Xs are present in the
circuit? Can you determine the number of X components
in the circuit? Could you specify the quantity of Xs in
the circuit? Could you provide the count of Xs included
in the circuit? What is the tally of components offering
X in the circuit?

Spatial
Counting

How many Y are connected directly to the left of X?
How many Y are connected directly to the right of X?
How many Y are connected directly to the top of X?
How many Y are connected directly to the bottom of X?
How many gates are providing an input to X? How many
gates are connected to the right of X? How many Y
gates are connected to the right of X? How many Y
gates are connected to the left of X?

Value Based What are the current reading displayed by the XX?
Please provide the values displayed on the XX. What
does the XX show in terms of reading? What numerical
value is being shown on the XX? What reading does the
XX display? What are the value depicted on the XX?
Can you provide the current measurement given by the
XX? What are the current value indicated on the XX?
What does the XX read at the moment? What are the
present reading on the XX? Could you share the current
reading that the XX shows?

(continued)
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Table 2. (continued)

Question
Type

Question Templates

Junction
based

Does a X exist between junction Y and junction Z? Is
there a X present from junction Y to junction Z? Does a
X occupy the space between junction Y and junction Z?
Is there a X connecting junction Y to junction Z? Can a
X be found between junction Y and junction Z? Does
junction Y have a X leading to junction Z? Is there a X
in the path from junction Y to junction Z? Can we
observe a X between junction Y and junction Z? Does
the circuit between junction Y and junction Z contain a
X? Is a X situated between junction Y and junction Z?
Is there impedance in the connection between junction Y
and junction Z? Can you confirm the presence of a X
between junction Y and junction Z? Is there any
resistance between junction Y and junction Z? Does the
circuit at junction Y involve a X leading to junction Z? Is
a X located along the path from junction Y to junction
Z? Can you verify if there is a X between junction Y and
junction Z? Is a X part of the circuit between junction Y
and junction Z? Is there a X linking junction Y to
junction Z? Is there a X bridging the gap between
junction Y and junction Z? Does junction Y connect to
junction Z through a X? Is there any resistance
encountered from junction Y to junction Z? Is a X
placed in the line connecting junction Y and junction Z?

Position
based

Which circuit symbol is on the far X? Identify the circuit
symbol that is at the extreme X. What is the circuit
symbol located on the Xmost side? Tell me the circuit
symbol positioned at the Xmost end. Point out the
circuit symbol that is furthest to the X. Which circuit
symbol is on the very X-hand side? Please indicate the
circuit symbol situated all the way to the X. What is the
name of the circuit symbol at the Xmost position?
Which circuit symbol is on the extreme X? Find the
circuit symbol that is farthest to the X. Determine the
circuit symbol on the Xmost side. Locate the circuit
symbol positioned at the very X. Can you tell me which
circuit symbol is at the Xmost position? Which circuit
symbol is placed at the extreme X end? Point me to the
circuit symbol on the Xmost side. What is the circuit
symbol’s name that appears on the Xmost? Show me the
circuit symbol that is on the Xmost edge. Tell me the
circuit symbol positioned to the far X. Among the circuit
symbols which one is at the Xmost position?
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manual annotations for this objective and well-defined labeling task. Answering
these questions requires the model to have an understanding of the way compo-
nents are connected to each other spatially, i.e., object detection and localization
skills.

3. Value Based Questions. Given an image, in a value based question, we ask
what is the value associated with a particular electrical component. We prompt
ChatGPT with this prompt: “Paraphrase the following sentence in 20 ways.
What is the reading on X?” This leads to 20 different paraphrases6 which are
used as question templates to generate value based questions in CircuitVQA.
Again, we instantiate these templates to generate questions. If there are multiple
components of type X in the image, the system is expected to provide a list of
all of their values as the answer. Answering such questions requires a model to
possess the optical character recognition skills, object recognition skills, and also
the capability to link text labels with components.

Image metadata does not contain values associated with components. But
the values are mentioned in the image. To generate answers automatically we
used Google Vision APIs to perform OCR. The value text label is then linked
with the closest bounding box (from associated metadata), and hence to a rele-
vant component. However, on manual inspection, we found that this led to poor
results because (i) OCR quality is bad especially for hand-drawn images, and (ii)
closest bounding box heuristic often fails. Hence, finally we resorted to manual
answer labeling done by the first author.

4. Junction Based Questions. Given an image, in a junction based question,
we would like to know whether a component exists between two junctions. Thus,
these are binary questions. Datasets D2, D3 and D5 also have labeled bounding
boxes for junctions. We prompt ChatGPT with this prompt: “Paraphrase the
following text in 20 ways - Does a X exist between junction Y and junction
Z?” The generated paraphrases are used as question templates to generate junc-
tion based questions. To instantiate these templates for a positive answer (i.e.,
answer=“yes”), we need valid triples of component X, junction Y and junction
Z. First, we randomly choose a junction Y. Next, based on its Euclidean dis-
tance with other junctions (computed using centers of their bounding boxes),
we choose a junction Z which is closest to Y. Lastly for every component in
the image, we find its distance to every junction, and choose a component X
such that its sum of distances to junctions Y and Z is minimum compared to
any other pair of junctions. Such a 〈X, Y, Z〉 triple helps generate a question
with answer=“yes”. Next, we randomly sample a component X’ from the image
metadata, of a different type from X. Such a 〈X’, Y, Z〉 triple helps generate a
question with answer=“no”. Answering junction-based questions requires a model
to possess object detection and localization, as well as spatial reasoning skills.

5. Position Based Questions. Given an image, in a position based ques-
tion, we want to know the component at the left-most, right-most, top-most or
bottom-most of the image. We prompt ChatGPT with this prompt: “Paraphrase
6 On manual inspection, we removed a few templates which did not make sense.
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the following in 20 ways - Which is the Xmost circuit symbol?” The resultant
paraphrases are used as question templates to generate position based questions.
For every image, we randomly sample a question template and replace the place-
holder X with one of left, right, top or bottom to get an instantiated question.
To get the answer, we utilize the bounding boxes of the components present
in the image and find their minimum and maximum X and Y coordinates to
decide the left-most, right-most, top-most or bottom-most components in the
image. If there is no unique answer, we eliminate those questions. Answering
such questions requires the model to possess object detection and localization
skills.
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Fig. 2. Frequency distribution of value-based questions across component names.
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Fig. 3. Frequency distribution of count-based questions across number of components
of a particular type in images in CircuitVQA. Left: Simple Counting, Right: Spatial
Counting.

3.3 CIRCUITVQA Dataset Analysis

We split the images into 70%, 20% and 10% split for training, testing and val-
idation sets. Table 4 provides the count of questions by question type for train,
test and validation splits. Figure 2 shows the frequency distribution of value-
based questions across component names in CircuitVQA. Components like
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Table 3. Answer types for every question type

Question Type Answer Type

Simple Counting Count (number)
Spatial Counting Count (number)
Junction based Binary
Position based Component Name
Value based List of values with units

Table 4. # question-answer pairs per question type

Question Type Training Test Val Total

Simple Counting 16249 4776 2332 23357
Spatial Counting 624 170 236 1030
Junction based 45948 13998 6640 66586
Position based 14904 4232 2151 21287
Value based 2823 137 362 3322
Total 80548 23313 11721 115582

“resistor”, “gnd”, “and gate”, “nand gate”, and “inductor” are the most frequent in
value-based questions. Figure 3 shows the frequency distribution of count-based
questions across number of components of a particular type in images in Cir-
cuitVQA. The left plot is for simple counting questions while the right plot is
for spatial counting. For simple counting questions, although several questions
have count as 1, ∼52% questions have the answer count greater than 1. similarly,
there is good variety in answers for spatial counting questions.

4 Methods for CIRCUITVQA

To solve the CircuitVQA problem, we leverage two kinds of multimodal large
language models as discussed in the following and detailed in Table 5.

4.1 Generative Models

BLIP [23]. BLIP (Bootstrapping language-image pre-training) is a multimodal
mixture of encoder-decoder which operates with unimodal encoders for image
and text. The model comprises of an image-grounded text encoder, image-
grounded text decoder based on BERT [9] and image encoder based on vision
transformers (ViT) [10]. In Visual Question Answering setting, we follow the
same methodology described in the paper for finetuning on train part of Cir-
cuitVQA. Specifically, we provide a circuit image-question pair to the image
and text encoders separately, then compute the multimodal embeddings and pro-
vide it to the final text decoder (along with shifted outputs). The VQA model
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is fine tuned with Language modelling loss which utilizes ground-truth answer
as the target labels.

GIT [40]. GIT (Generative Image-to-text Transformer) is a decoder-only trans-
former that leverages CLIP [33] as a vision backbone. We fine-tune GIT on our
task. Specifically, we concatenate the question and ground-truth answer as a
special caption and apply the language modelling loss to the answer and [EOS]
token.
Pix2Struct [22]. Pix2Struct is a generative model for visual understanding that
converts image to text. It has an image encoder and a text decoder. We provide
the images and the questions to the input image encoder. The model renders the
questions on top of the image. It scales images up or down to extract maximal
patches that fit within the sequence length parameter. For fair comparison with
other models, we evaluate its performance using input images that have been
resized to 384×384 dimensions.

Table 5. Details of generative and instruction-tuned models that we experiment with
for the CircuitVQA task.

Architecture Initialization Pretraining Size
Model Text Encoder Image Encoder Text Decoder Objective (Parameters)
BLIP-Base BERT-base ViT-B/16 BERT-base Image captioning,

image-text contrastive
(ITC), image-text matching
(ITM)

129M

GIT-Base No text encoder ViT-B/16 BERT Image captioning 129M
Pix2Struct-Base No text encoder ViT BERT Screenshot parsing 282M
LLaVA No text encoder ViT-L/14 LLaMA Auto-regressive loss for

Conversation, detailed
description, complex
reasoning

6.76B

InstructBLIP No text encoder ViT + QFormer Vicuna-7B Language modeling on 26
datasets

7.91B

4.2 Instruction Tuned Models

LLaVA [26]. LLaVA (Large Language and Vision Assistant) is an end-to-end
trained large multimodal model trained to follow human intent to complete
visual tasks. It connects a vision encoder (ViT) with massive LLM based on
LLaMA [39] or Vicuna [6]. At finetune time, the visual encoder weights are
frozen but both the pre-trained weights of the projection layer and LLM are
updated.

InstructBLIP [7]. InstructBLIP is the instruction fine-tuned version of BLIP2.
Just like BLIP2, it is pretrained in two stages. Instruction-aware Q-former mod-
ule takes in the instruction text tokens as additional input. While performing
instruction tuning, the image encoder and the LLM are frozen. Tuning is done
using 26 publicly available diverse datasets.

GPT4V [31]. GPT-4 with vision (GPT-4V) enables users to instruct GPT-4 to
analyze image inputs provided by the user. GPT-4V shows unprecedented ability
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in understanding and processing an arbitrary mix of input images, sub-images,
texts, scene texts, and visual pointers. Its capabilities include open-world visual
understanding, visual description, multimodal knowledge, commonsense, scene
text understanding, document reasoning, coding, temporal reasoning, abstract
reasoning, emotion understanding, and many more [41].

4.3 Language Modeling Loss

We used cross entropy loss for finetuning. The loss is computed only over answer
tokens. We also experiment with a class-weighted version of cross entropy loss.
Here each class is represented as a group of tokens. Specifically, we calculate
weight of a class at the token level as a inverse count of that token in the
dataset.

4.4 Input Representations

In the base variant of our experiments, we pass the original image and text as
input to various models discussed in the previous subsection. Further, we also
experiment with passing other forms of input representations as input. These
include OCR text, bounding box information from object detection, and visual
description of components. Table 6 shows how such information is included as
part of the input prompt to instruction-tuned models.

Table 6. Input Prompt Templates for Instruction-based Models

Variant Prompt
LLaVA Base Given the image, answer the following question: Q

Desc The question is about the circuit component 〈Component-Name〉. Its definition is as follows: 〈ChatGPT-
description〉. Now, given the image, answer the following question: Q

OCR Here is the OCR information 〈OCR〉. You can use it to answer the following question. Now, given the
image, answer the following question: Q

BBox Here are the bounding box coordinates of each component in the given image in the format of a pair
of component name and coordinates. 〈Bounding-box-coordinates〉. Now, given the image, answer the
following question: Q

BBox +Segments Here are the bounding box coordinates and segment of each component in the given image in the format
of a triple of component name, coordinates, and segment name. 〈Bounding-box-segments〉. Now, given
the image, answer the following question: Q

Instruct BLIP Base Q

Desc The question is about the circuit component 〈Component-Name〉. Its definition is as follows: 〈ChatGPT-
description〉. Q

OCR Here is the OCR information 〈OCR〉. Q
BBox Here are the bounding box coordinates of each component in the given image in the format of a pair of

component name and coordinates. 〈Bounding-box-coordinates〉. Q
BBox +Segments Here are the bounding box coordinates and segment of each component in the given image in the format

of a triple of component name, coordinates, and segment name. 〈Bounding-box-segments〉. Q
GPT4V Base Q

Desc Use the following description of the electrical component to answer the question: 〈ChatGPT-description〉.
Now, respond to this question: Q

OCR Use the following OCR output to answer the question: 〈OCR〉. Now, respond to this question: Q
BBox Use the following bounding box output comprising of the components and their coordinates in the image:

〈Bounding-box-coordinates〉. Now, respond to this question: Q
BBox +Segments Use the following bounding box output comprising of the components and their corresponding positions

in the image : 〈Bounding-box-segments〉. Now, respond to this question: Q

OCR Text: Since some questions relate to actual text labels in the image, the
models may benefit from outputs of an external OCR module. Therefore, we
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conduct an experiment to provide the OCR extracted tokens as an input to
the vision-language models. We utilize Google Vision API7 to collect the OCR
outputs from the circuit image. Then, we append the OCR output as a prefix to
the question separated by an [OCR] token for fine-tuning the generative models.
We also experiment with passing filtered OCR text as input by keeping only the
numbers and units typically expected by electrical measurements. In this setting,
we retain any OCR output tokens that contain any of the symbols in [‘Ω’, ‘H’,
‘A’, ‘F’, ‘V’, ‘W’, ‘k’, ‘K’, ‘.’, ‘κ’, ‘M’] or a combination of these symbols with a
digit or only digits.

Bounding Box Information: Bounding boxes identified using object detection
methods help in attending to the relevant local parts of the image [25], and their
usage has been shown to improve the performance in transformers [1]. Therefore
to increase the spatial awareness of the components in images, we utilize an
object detection module.

Metadata in CircuitVQA contains human annotated bounding boxes for
various components in electrical circuit images. We use this dataset to (a) fine-
tune the YOLOv8 [34] object detection model, and (b) use them in our fine
tuning experiments of vision-language models.

We fine-tune the pretrained YOLOv8 model for 300 epochs on image size
of 384. The batch size was kept at 16 and patience (early stopping criterion)
was set at 50 epochs. The learning rate was determined automatically and set
at 0.01 and SGD optimizer was used with momentum 0.9. On validation set,
YOLOv8 finetuned Objection detection leads to precision of 78.1, recall of 63.9,
mAP50 of 69.8 and mAP(50–95) of 51.3. Figure 4 shows a few object detection
examples. The figure shows that our fine-tuned model is able to identify elec-
trical components from circuit images effectively. We fine-tuned YOLOv8 for
these classes: __background__, acv, ammeter, and, antenna, arr, block, capac-
itor, capacitor-unpolarized, capacitor.adjustable, capacitor-polarized, crossover,
crystal, current-source, diac, diode, diode.light_emitting, diode.thyrector, fuse,
gnd, diode.zener, inductor, inductor.coupled, inductor.ferrite, inductor2, inte-
grated_circuit, integrated_circuit.ne555, integrated_circuit.voltage_regulator,
junction, lamp, magnetic, mechanical, microphone, motor, multi-cell-battery,
nand, nor, not, operational_amplifier, operational_amplifier.schmitt_trigger,
optical, optocoupler, or, probe, probe.current, relay, resistor, probe.voltage, resis-
tor.adjustable, resistor.photo, single-cell-battery, socket, speaker, switch, termi-
nal, text, thyristor, transformer, transistor, transistor-photo, transistor.bjt, tran-
sistor.fet, triac, unknown, varistor, voltage-ac, voltage-dc, voltage-dc_ac, volt-
age.battery, voltmeter, vss, xnor, and xor.

We experiment with two ways of providing the bounding box information
as input to our vision-language models. In the BBox method, for each detected
component, along with the component name, we pass bounding boxes in the
〈x, y, w, h〉 format where x, y are box center, w and h indicate width and height.
The model may not be able to process the numerical information; hence we

7 https://cloud.google.com/vision.

https://cloud.google.com/vision
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Fig. 4. Examples of Object detection results using our finetuned YOLOv8.

abstract out this information by assigning each bounding box to one of the 9 seg-
ments depending on its position in the image “upper left”, “upper middle”, “upper
right”, “left”, “middle”, “right”, “lower left”, “lower middle”, “lower right”. Based
on this segment assignment, in the BBox+Segment method, for each detected
component, along with the component name, we pass bounding boxes in the
〈x, y, w, h〉 format as well as the segment name.
Visual Description of Components: For every electrical component in our
CircuitVQA dataset, we first obtain a short description using ChatGPT [30]
with the following prompt “Describe the electrical component 〈component〉 in 50
words”. In the Desc method, we pass the component description of relevant circuit
component as a prefix to the question with a special token [DESC] separator.
For example, description for capacitor is “Capacitor: Symbolized by two parallel
lines with a gap, it stores and releases electrical energy, acting as a temporary
energy reservoir in a circuit.”

5 Experiments and Results

5.1 Experimental Setup

Generative Models: For GIT, the learning rates are set to 1e−5 and 2e−5
for the image encoder and the text decoder respectively. Rest of the hyper-
parameters are set to default values. For BLIP and Pix2Struct, learning rate
for the text decoder is set to 2e−5. For all models, we use cosine learning rate
scheduler. We use AdamW optimizer with a weight decay of 0.05. For Pix2Struct,
we use default patch size of 16 × 16 and sequence length of 4096. For the text
decoder of all models, we used hidden size of 768.

All models are trained for 10 epochs. The batch size is set to 4 for all the
experiments. For fine-tuning and inference, we used a machine with 8 NVIDIA
32GB V100s. The computation time was 20–40 h for various models. All models
are trained to optimize for cross-entropy loss (with label smoothing of 0.1) except
for Pix2Struct where we found weighted cross-entropy loss to perform better.
Also, we perform all experiments using an input image size of 384 × 384.

Instruction-Based Models: To utilize InstructBLIP in zero shot settings, we
set the number of beams to 5 and min length of the sequence to be generated to
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1 and max length to 256. We keep the probability value for top p sampling to
0.9.Also, we set the temperature to 1 after trying out few different temperature
settings. For LLaVA, we set the number of beams for beam search to 1. And
provide the max length of the tokens to be generated to 512. Finally, we set the
temperature to 0. For GPT4V, we set temperature to 0.15, max tokens as 350,
top-p as 0.8, frequency penalty as 1 and presence penalty as 1.

5.2 Metrics

For every model, we measure exact-match accuracy and hallucination score as
the two metrics. A good model should not just generate accurate answers but
also not hallucinate. Hallucinations for visual question answering deserve specific
definitions. Hence, we discuss these definitions and propose a new metric HVQA
in the following.

Hallucination in VQA systems could be in terms of predictions of non-existing
in-domain objects, over-counting of existing objects, or predictions with out-of-
domain objects. Accordingly, we define Hallucination Score for Visual Question
Answering (HVQA) as average of three scores: (a) HVQAcount (captures over-
counting of existing objects), (b) HVQAin-domain (captures predictions of non-
existing in-domain objects), and (c) HVQAout-domain (captures predictions with
out-of-domain objects). Each of these are fractions with total number of pre-
dicted objects as the denominator. Since we perform object detection on the
input image as part of generating the answer, we can directly use the object
detection outputs to compute the above scores. HVQAcount is applicable for
simple counting, spatial counting and value based questions. HVQAin-domain
and HVQAout-domain are both applicable for position-based questions. HVQA
is a general metric applicable to any VQA task.

5.3 Results

Main Results: Table 7 shows our main results where we compare various meth-
ods under different input representations on the CircuitVQA test set with
respect to Accuracy (Acc) and hallucination score (HVQA).

BLIP provides the best accuracy while LLaVa and GPT4V provide the low-
est hallucination scores. Our best model is a fine-tuned BLIP model with an
accuracy of 91.7, when it is paired with prompts of visual description of the
component (we call it as BLIP-Desc). It also maintains one of the lowest HVQA
scores among all models. When an external OCR output is provided to these
models, we observe a drop in their respective performances. This could be due
to a lot of noise in the output of the OCR module. However, after postprocess-
ing of the OCR output, there was a significant improvement in GIT (accuracy
71.2 vs 68.4) and InstructBLIP (accuracy 13.2 vs 12.5) when compared to the
OCR output used directly. Also, when bounding boxes with their coordinates
for each component were provided, we observe a drop in performance of the fine-
tuned smaller models. However, the larger LLAVA zero-shot model can utilize
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that information and shows significant accuracy gains (42.9 vs 35.6 for the base
model). Notably, the accuracy further increases to 44.6 with BBox+Seg.

Table 7. Main Results on CircuitVQA test set. Acc (↑), HVQA (↓).

Model Base OCR OCR-Post Desc BBox BBox+Seg
Acc HVQA Acc HVQA Acc HVQA Acc HVQA Acc HVQA Acc HVQA

Fine- Tuned BLIP 84.4 5.9 81.8 5.8 80.8 5.9 91.7 5.5 75.6 6.4 74.0 6.2
GIT 72.5 6.3 68.4 6.2 71.2 5.9 55.3 6.7 40.2 7.6 48.7 6.1
Pix2Struct 71.2 6.3 69.1 6.2 41.9 6.7 70.3 6.1 44.2 4.1 36.6 4.5

Zero-Shot LLaVA 35.6 3.8 35.4 5.2 35.4 5.4 35.6 3.8 42.9 2.8 44.6 3.8
InstructBLIP 6.8 19.2 12.5 14.3 13.2 13.7 35.0 5.5 6.8 19.2 6.8 19.2
GPT4V 34.5 4.8 41.2 2.2 34.1 4.0 33.7 5.9 32.1 3.0 32.3 3.7

Table 8. Accuracy results per question type for the Desc variants of the models on
CircuitVQA test set.

Model Simple Counting Spatial Counting Junction based Position based Value based
BLIP 83.5 57.6 97.9 84.1 18.2
GIT 46.5 34.7 66.9 29.4 0.7
Pix2Struct 48.2 44.7 90.1 32.6 11.7
LLaVA 18.8 0.6 7.8 50.6 0.7
InstructBLIP 35.8 14.1 0.0 0.9 0.0
GPT4V 12.5 10.0 50.6 6.4 0.7

Table 9. Hallucination scores. A = count, B = in-domain, C = out-domain.

Model A B C

BLIP 0.9 15.6 0
GIT 0.6 19.6 0
Pix2Struct 0.3 18.2 0
LLaVA 5.8 0 5.5
InstructBLIP 16.6 0 0
GPT4V 0.07 12.3 5.4

Results per Question Type: For our best model (model that uses descrip-
tion), we analyze the accuracy results per question type in Table 8. Table 9 shows
hallucination scores across various models on the CircuitVQA test set, where
A = HVQAcount, B = HVQAin-domain, C = HVQAout-domain. We observe that
BLIP-Desc outperforms all other models for each question type. It also hallu-
cinates less on in-domain objects compared to its fine-tuned counterparts GIT
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Fig. 5. Examples of images from CircuitVQA dataset

and Pix2Struct. Also, fine tuning broadly ensures that the models (BLIP, GIT
and Pix2Struct) do not hallucinate out-of-domain objects. On the other hand,
instruction-tuned models like LLaVA and GPT4V have a significantly higher
HVQAout-domain. LLaVA predicts out-of-domain objects like ‘circle’, ‘square’,
‘A’, ‘B’, ‘D’, ‘F’, ‘triangle’, ‘carlin’, ‘nano’, ‘peizo-keeper’, ‘trigger’, ‘Snake Snake
Detector’. InstructBLIP is very cautious and has neither out-of-domain nor in-
domain hallucinations, possibly because of its failure to understand position-
based or value-based questions.

For counting of objects, Pix2Struct hallucinates the least (HVQAcount of
0.3), while our best model BLIP-Desc hallucinates a little more, but is twice
accurate compared to Pix2Struct. Among all visual description based models,
InstructBLIP hallucinates the most on counting (HVQAcount of 16.6).

Case Studies: Table 10 show examples of questions and predicted answers asso-
ciated with a few circuit images from the test set as shown in Fig. 5. For value
based question, we can see that the model is able to accurately extract various
values associated with the respective component. For junction question types,
the model can correctly answer the respective question about two junctions even
when there are more than 40 junctions in the image. We also observe that the
model can correctly answer spatial counting questions by understanding the id
associated with each component and then reasoning over the image to answer
the question. Similarly the model can easily count values between 1 to 5, as
shown in the examples.
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Table 10. Examples of Predictions from our best model for questions related to images
shown in Fig. 5.

Image Question Type Question Prediction
(A) Simple Counting Could you indicate the quantity of resistors present in the circuit? 5

Position-based What is the circuit symbol’s name that appears on the rightmost? resistor
Value-based What is the value depicted on the ammeter? [‘3a’]
Position-based Which circuit symbol is on the extreme bottom? resistor
Value-based What do the resistors read at the moment? [‘1ohm’, ‘1ohm’, ‘1ohm’, ‘1ohm’, ‘3ohm’]
Simple Counting How many components are there in the circuit that function as ammeters? 1

(B) Spatial Counting How many gates are providing an input to Gate4 2
Spatial Counting How many or gates are connected to the right of Gate3 ? 1
Simple Counting Could you indicate the quantity of ors present in the circuit? 2
Spatial Counting How many and gates are connected to the left of Gate1 ? 1
Position-based Can you tell me which circuit symbol is at the leftmost position? not
Position-based Which circuit symbol is placed at the extreme bottom end? or

(C) Junction-based Is a integrated_circuit placed in the line connecting junction 4 and junction 12 ? yes
Simple Counting How numerous are the capacitor-unpolarized in the circuit? 1
Simple Counting What number of transformer are included in the given circuit 1
Simple Counting How many components are there in the circuit that function as integrated_circuits? 2
Junction-based Is there a transformer interposed between junction 37 and junction 36 ? yes

Table 11. Examples of error cases from our best model for questions related to images
shown in Fig. 5.

Image Question Type Question Answer Prediction Error Category
(C) Value-based What does the resistor.adjustable read at the moment? [‘220kohm’] [‘100kohm’] Wrong values

Junction-based Is there a capacitor between junction 18 and junction 16? no yes –
(D) Spatial Counting How many voltmeter are connected directly to the right of C4? 0 1 Over-counting

Position-based Which circuit symbol is placed at the extreme left end? voltage.battery resistor Near miss
(E) Simple Counting Could you provide the count of resistors included in the circuit? 4 2 Under-counting

Error Analysis: We manually analyzed 100 test cases where our system leads to
an error, 20 for each question type. Among the 20 value-based questions, 4 errors
can be attributed to incorrect units, 5 were a result of both units and values being
wrong, and the majority (11 errors), were due to incorrect values. For 20 junction-
based questions, 12 errors were for images with ≥40 junctions and 8 for images
with <40 junctions. Broadly, we observe that accuracy drops with increase in
number of junctions in input image. For position-based questions, for 9 samples,
the predicted component was physically the second closest to the correct answer
component; remaining 11 predictions were far from the actual answer. In simple
counting questions, we identified 11 over-counting errors, all within a range of 1
to 5, while there were 9 instances of under-counting. Spatial counting questions
had 4 cases of over-counting and 16 examples of under-counting. Table 11 shows
a few error examples from our best model for questions related to a few circuit
images from the test set as shown in Fig. 5.

6 Conclusion

In this paper, we proposed the problem of visual question answering for elec-
trical circuit images. We curated a dataset, CircuitVQA, for the task with
five question types. We hope that this dataset will help the VQA community to
focus on the critical problem of VQA for circuit images. We performed extensive
evaluation of several state-of-the-art vision language models. We also experi-
mented with different forms of input representation including OCR text, bound-
ing boxes based on object detection and detailed description of relevant circuit
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components. Our experiments reveal that the BLIP model with description of
components provide the highest VQA accuracy across most question types, and
the lowest hallucination score.
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