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DINE: Dimensional Interpretability
of Node Embeddings

Simone Piaggesi , Megha Khosla , André Panisson, and Avishek Anand

Abstract—Graph representation learning methods, such as node
embeddings, are powerful approaches to map nodes into a latent
vector space, allowing their use for various graph learning tasks.
Despite their success, these techniques are inherently black-boxes
and few studies have focused on investigating local explanations
of node embeddings for specific instances. Moreover, explaining
the overall behavior of unsupervised embedding models remains
an unexplored problem, limiting global interpretability and de-
bugging potentials. We address this gap by developing human-
understandable explanations for latent space dimensions in node
embeddings. Towards that, we first develop new metrics that
measure the global interpretability of embeddings based on the
marginal contribution of the latent dimensions to predicting graph
structure. We say an embedding dimension is more interpretable if
it can faithfully map to an understandable sub-structure in the
input graph - like community structure. Having observed that
standard node embeddings have low interpretability, we then in-
troduce DINE (Dimension-based Interpretable Node Embedding).
This novel approach can retrofit existing node embeddings by
making them more interpretable without sacrificing their task
performance. We conduct extensive experiments on synthetic and
real-world graphs and show that we can simultaneously learn
highly interpretable node embeddings with effective performance
in link prediction and node classification.

Index Terms—Interpretability, node embeddings,
representation learning, link prediction.

I. INTRODUCTION

NODE embeddings are general purpose low-dimensional,
continuous vertex representations in dense vector spaces.

These embeddings are typically learned by trying to optimize
a user-defined or flexible notion of structural similarity be-
tween vertices. Node embeddings have proven to be mature and
popular techniques with widespread applications in web and
social network analysis tasks like link prediction and community
detection to name a few [1] due to their simplicity, and expressive
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power. However, one of their shortcomings is the innate lack of
interpretability of the latent vector spaces they exist in. Specifi-
cally, each of the learned latent dimensions does not have a cor-
responding realizable interpretation in the input graphs [2], [3],
[4]. This paper aims to fill this critical gap by proposing a method
to retrofit “already learned” non-interpretable embeddings into
a new and interpretable vector space without compromising the
task performance.

The meaning of individual embedding dimensions is hard to
define and determine [2], [3], [4]. We operate on a general,
yet powerful notion of grounding the interpretation of each
dimension to understandable sub-structures of the input graphs,
e.g., communities, subgraphs, etc. This design decision has clear
advantages in downstream tasks where sub-graphs or commu-
nities are clear explanations of a predictive task. As a concrete
example, in a link prediction task, the likelihood of a link is
higher for a pair of nodes in the same community [5]. Similarly,
in several bio-medical tasks that use embedding features like [6],
[7], subgraphs refer to a protein or genetic pathways. Therefore,
automatically grounding latent dimensions to sub-graphs and
community structures will improve understanding of the pre-
diction process.

Existing literature investigating the interpretability of node
embeddings is limited to three major aspects. First, feature-
attribution methods like [8], [9], [10] return local explanations
for single node decisions in terms of (a) subset of node features
or (b) nodes/edges in the query node’s local neighborhood. If
embeddings are used as features, subsets of latent features are
still non-interpretable. Explaining a prediction in terms of node’s
neighborhood is a useful first step, but these approaches cannot
be used globally. Specifically, global explanations should de-
scribe the meaning of latent dimensions, that cannot be captured
by local methods. Second, in the presence of external node
labels [4], [11] measure the interpretability of embedding dimen-
sions in terms of their global association with these labels with-
out providing an explicit explanation like our approach. These
approaches pre-suppose a certain interpretable mapping with
existing categories and are not flexible. Finally, [12] searches
for interpretable subspaces related to concepts from knowledge
bases. Our work distinguishes itself from previous research in the
following crucial ways. First, we operate on a more generalized
setting extracting explanations for node embeddings that are
agnostic to ground-truth labels. Second, we are the first work to
explain directly the latent dimensions of the node embeddings
without using any proxy tasks or labels. We are different from
local explainability approaches which only explains the learnt
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Fig. 1. Saliency plots displaying edge marginal utilities (normalized between 0 and 1) for 8-dim node embeddings of graph generated via Stochastic Block
Model [16], with 80 nodes divided into 8 cliques. For each panel, dimensions are arranged from left to right, ordered by increasing alignment with individual
cliques and by increasing sparsity of the per-dimension subgraphs. In picture (a), DEEPWALK dimensions struggle to align with distinct cliques and fail to get
consistently sparse explanatory structures, rendering the embeddings less interpretable. In picture (b), our approach DINE achieves interpretable dimensions that
effectively match communities and exhibit high levels of sparsity.

embeddings for a particular node. Last and more importantly,
we propose methods that retrofit existing node embeddings to
make their dimensions more interpretable.

In this work, the central aim is finding the human-interpretable
meaning of node embedding dimensions and associating latent
directions with understandable structural features of the input
graph. Despite this post-hoc approach, we cannot rely on existing
tools for interpreting prediction models [13], [14], mainly be-
cause they are designed for supervised tasks. Instead, we analyze
unsupervised node embeddings to find evidence for interpretable
latent units associated with individual semantic concepts of the
input data. Since many empirical graphs are characterized by an
underlying community structure [15], we associate communities
as interpretable semantic concepts of the input data. We first
develop a metric for interpreting each dimension of the node
embeddings in terms of its utility in predicting edges in the graph.

Our utility measure -μd(u,v)- is based on feature removal
methods and expresses the individual contribution of dimen-
sion d for predicting edge (u, v) from embeddings. Using this
measure, we can construct saliency maps (refer to Fig. 1), to
recognize groups of edges (salient subgraphs) that are recon-
structed by specific dimensions. We then define quantitative
metrics to estimate the interpretability of latent dimensions:
we assess interpretability as a “degree of association” with
individual graph communities and the sparsity level for these
associations. As an example, in Fig. 1(a), we sort DEEPWALK

dimensions according to our metrics of interpretability, showing
that the majority of units are not immediately interpretable since
they do not match with a single clique of the synthetic graph.

Second, we propose a novel and modular approach, called
DINE, to post-process existing node representations and enhance
their interpretability. DINE embeds input embeddings into a new
sparse, interpretable, and low-entropy vector space. Fig. 1(b)
shows the result of this post-processing step on DEEPWALK

vectors. DINE also preserves the topological graph informa-
tion to be employed in usual downstream tasks with minimal
performance loss.

In our extensive experimental evaluations, we compare our
approach with other embedding methods in terms of inter-
pretability, downstream tasks performance, and scalability over
multiple real-world graph datasets. Our results show that DINE,
under most experimental conditions, convincingly outperforms
existing baselines in terms of dimensional interpretability with
negligible to no performance losses. To summarize, our main
contributions are as follows:
� We formalize the desirable properties for global expla-

nations of node embeddings, namely Decomposability,
Comprehensibility, and Sparsity.

� We introduce a new utility measure that allows the extrac-
tion of explanatory subgraphs, one for each dimension (ad-
dressing the property of Decomposability). Our measure is
grounded in feature attribution techniques like the Shapley
value, which are widely used for importance-based ex-
planations. Moreover, we propose two metrics to measure
Comprehensibility and Sparsity of explanatory subgraphs.

� We propose a novel, modular, and theoretically sound
method DINE that intends to retrofit existing node embed-
dings to improve their global interpretability.

� We run extensive experimental analyses to establish clear
gains in the interpretability-performance trade-offs using
DINE.

Our code and artefacts are made available at https://www.
github.com/simonepiaggesi/dine.

II. PRELIMINARIES AND RELATED WORK

A. Preliminaries and Notation

Given an undirected, unattributed and unweighted graph G =
(V, E), node embeddings are the output of an encoder function

enc : v ∈ V �→ enc(v) = v ∈ R
D (1)

which map nodes into geometric points of the D−dimensional
vector space R

D (usually D << |V|). We will refer to both
enc(v) and v as the embedding vectors of node v ∈ V mapped
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through the encoder enc, and with vd as entries of these vectors
corresponding to dimension d. Node embeddings are collected
as column vectors of the embedding matrixX(G) ∈ R

D×|V|, i.e.,
X:,v = v. Later we will refer to D as the cardinality of the set
D = {1 . . . D} containing the enumerated dimensions. In Table
A1 of the Appendix, available online, we provide a summary of
the notation used for this paper.

In the case of DEEPWALK [17] and NODE2VEC [18], the
encoder is a lookup function where node representations are
learned through the optimization of a neighborhood recon-
struction loss. Specifically, the output of a decoder dec : RD ×
R

D → R is optimized to predict node pairs (u, v) ∈ V × V gen-
erated from co-occurrences in unbiased or biased random walks.
Many other embedding methods fit this encoder-decoder frame-
work [19]: for example, factorization-based embeddings [20],
[21] and even deep neural networks methods like [22], where the
encoder function is given by a graph convolutional network [23].

B. Related Work

Interpretability for Node Embeddings: From the node em-
beddings perspective, interpretability is a multi-faceted concept
that has been studied from different angles. In [3], [24] authors
investigate, using prediction tasks, whether specific topological
graph features (e.g., degree centrality, clustering coefficient,
etc.) are encoded into node representations. These works sig-
nificantly differ from our approach, where the aim is to find the
comprehensible meaning of embedding dimensions, associating
single dimensions with interpretable graph structures (e.g., com-
munities). Other methods focus on measuring the interpretability
of node embeddings with respect to node labels [4] and node
centralities [25]. In [2] global interpretations are given as a
hierarchy of graph partitions, but they do not focus on interpret-
ing single dimensions. In [26] the authors study the impact on
learned node embeddings when removing edges from the input
graph. Instead, [27] estimates the importance of candidate nodes
in each node representation. Another line of research focuses
on producing interpretable-by-design representations based on
graph clustering [28], [29], which are conceptually analogous
to community-preserving node embeddings [30].

Interpretability for Link Prediction: Our approach focuses on
the interpretation of embedding dimensions according to the
graph structural reconstruction task, and it is related to methods
for the interpretability of embedding-based link prediction. For
instance, ExplaiNE [31] quantifies the variation in the proba-
bility of a link when adding or removing neighboring edges.
PaGE-Link [32] generates explanations as paths connecting
a node pair, while ConPI [33] provides the most influential
interactions computed with an attention mechanism over the
contextual neighborhoods. Other relevant methods study the
problem of explaining link prediction in knowledge graphs [34],
[35]. We, on the other hand, aim to explain the node embedding
itself by associating explanations with each of its dimensions.

Interpretability for Word Embeddings: Since many methods
for graph representation learning are based on language models,
techniques for interpreting the dimensions of word embeddings
are also relevant for node embeddings. Previous literature in

this area focuses on interpreting the dimensions of word embed-
dings based on semantic information [36], [37], or analyzing
geometric properties of the embedding space [38], [39]. Several
other studies also propose approaches to learn interpretable
representations by design, where the goal is achieving spar-
sity [40], [41], [42]. However, due to the high popularity of
some embedding approaches, post-processing techniques that
are built upon these approaches have been often preferred rather
than interpretable-by-design methods [43], [44], [45].

III. EXPLAINING NODE EMBEDDINGS

We start by formalizing the desired fundamental properties of
a global explanation for node embeddings. Intuitively, as graph
structure serves as the input for generating unsupervised node
embeddings, we seek reliable explanations in terms of asso-
ciations between model parameters and human-understandable
units of the input graph.

Decomposability: A global explanation should be able to refer
to single parts of the model, and then explain these parts
individually [46]. This is different from local instance-based
explanation, where the focus is to interpret the result on
single node predictions. In particular, a global explanation for
node embeddings should be able to explain separately each
dimension of the embedding space. To do so, in this work
we extract interpretations in the form of important subgraphs
Gd that we identify as the “meaning”, or “explanation”, of a
dimension d.

Comprehensibility: An explanation should be human-
understandable, in the sense that it relates to meaningful
graph features [3] or discernible concepts [12]. With
subgraph-based explanations, such features can be seen as
structural components that we identify with the communities
of the graph. For instance in biological networks like
protein-protein interaction networks, these subgraphs could
be important pathways responsible for biological mechanisms
associated with for example a protein function or disease
progression. In other graphs such as social networks these
subgraphs can be seen as communities. Communities are
typically considered as one of the fundamental organizing
principles in these graphs [15] justifying their choice to
identify the meaning of representation dimensions.

Sparsity: Explanations should be associated only with a minimal
set of graph elements that sufficiently explain the learned
parameters, ignoring the irrelevant ones [40], [41]. In our case,
sparsity quantifies the spatial localization of an explanation
subgraph.

Having defined the desired properties, we next describe how to
obtain such decomposable explanations for node embeddings.
In Section III-B we propose new metrics to quantify both the
comprehensibility and the sparsity of these explanations.

A. Decomposable Explanations

Here we describe how we obtain global and decompos-
able explanations of node embeddings by extracting one
explanation for every dimension of the latent space. Intuitively,
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Algorithm 1: EXPLANATIONSUBGRAPH (G, X(G), d).

given that embeddings are typically optimized for graph struc-
ture prediction, we aim to uncover the importance of individual
dimensions in reconstructing the sub-structures of the graph.
These substructures, consequently, will serve as explanations for
individual dimensions. To extract the substructure explanations,
we develop a utility function μd(u,v) which quantifies the
dimension’s contribution in reconstructing a single graph edge
with an embedding decoder. In fact, the score returned by the
decoder dec(u,v) can be used to perform edge reconstruction,
i.e., assessing the existence of edges (u, v): the higher the score,
the higher the likelihood of observing the link on the input graph.

Here we adopt a simple yet effective approach for attributing
dimension importance based on feature removal [47], [48].
Specifically, we define the attribution score of a single dimension
d ∈ D in the reconstruction of an edge (u, v) as:

μd(u,v) = ΔD(u,v)−ΔD\{d}(u,v), (2)

where ΔS : R|D| × R
|D| → R quantifies the average edge scor-

ing of dimensions in the subset S ⊆ D

ΔS(u,v) =
1

|S|
∑
d∈S

udvd. (3)

Notably, we consider a product-based scoring function that is
appropriate to work with popular methods such as DEEPWALK

and NODE2VEC. For an individual edge, the function in (2)
measures how much the average likelihood increases or de-
creases when removing dimension d from the whole set D.
From a game-theoretic point of view, the importance scores
μd(u,v) defined above is an example of marginal utility, which
expresses the contribution of dimension d when it is added to
the coalitional setS = D \ {d}. A more exhaustive computation
takes into account the average marginal contribution according
to any possible coalitional set S ⊂ D and it is given by the
Shapley value [14], [49], [50]:

φd(u,v) =
∑

S⊆D\{d}

(|D|−1
|S|
)−1

|D|
[
ΔS∪{d}(u,v)−ΔS(u,v)

]
,

(4)
where the difference ΔS∪{d}(u,v)−ΔS(u,v) corresponds to
the marginal utility of adding d to the dimensions’ coalition
S ⊂ D. A detailed description of (4) is reported in Appendix VI,

Fig. 2. Utility-induced subgraphs for 2-dimensional DEEPWALK embeddings
trained on KARATE-CLUB.

available online. Therefore, the importance score μd(u,v) cor-
responds to the marginal utility given by (4) with respect to the
maximal coalitions (|S| = |D| − 1).

Since the exact computation of (4) has exponential time
complexity, several approximation methods have been proposed
in the literature to address scalability issues [49], [50]. Ad-
ditionally, most of the approximations assume independence
among features [14], [51] and suffer from considering feature
correlations [52]. Rather than introducing an approximation, the
marginal utility adopted here helps to derive computationally
feasible formulas: in fact, the computation of μd reduces the
time complexity from the order of 2|D|−1|D||E| to |D||E| when
computed over all edges of the graph. Moreover, since mutual
independence of features is not usually guaranteed for node
embeddings, the simplification is due to express the effect of
isolated dimensions disregarding possible feature correlations.

We use the importance scores defined in (2) to determine the
explanation subgraphs formed by the edges that benefit most
from the presence of a dimension d. Specifically, we identify
the subgraph Gd ≡ G[Ed] induced by links Ed = {(u, v) ∈ E :
μd(u,v) > 0} with positive marginal utility as the explanation
of dimension d. We restrict ourselves to positive payoffs because
the main interest is to find those dimensions which are more
effective in predicting a given edge, leaving for future work
the analysis of the negative effects. In Algorithm 1 we provide
the pseudo-code for extracting explanation subgraphs starting
from a pre-trained graph embedding. In Fig. 2 we highlight
the explanation subgraphs in the KARATE-CLUB dataset for
2-dimensional DEEPWALK embeddings. We say that subgraphs
depicted in Fig. 2 are global explanations of DEEPWALK because
they allow associating any model dimension with pieces of the
data, and provide a global interpretation that is decomposed into
per-dimension views.

B. Measuring Comprehensibility and Sparsity

Here we define metrics to quantify the quality of the ex-
tracted subgraph explanations. Specifically, we introduce two
interpretability metrics to measure the comprehensibility and
sparsity of the per-dimension induced subgraphs.

Community-Aware Metric: Let Ed denote the set of edges
in the explanation subgraph for dimension d. Given the
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information on important subgraphs for example pathways in
case of biological networks or communities in social networks,
we measure the relevance of explanation subgraphs to these
communities/subgraphs using precision and recall scores. Let
P(G) = {P1, . . . ,Pn} denote the set of ground-truth link par-
titions/communities/subgraphs of the input graph. Later in the
experiment section, we will also describe how to obtain such
ground-truth subgraphs when these are not given. We first com-
pute precision and recall metrics, which measure the associa-
tion strength of extracted explanation subgraphs with the given
ground-truth important subgraphs/communities.

precision (Ed,Pi) =
|Ed ∩ Pi|

|Ed| , recall(Ed,Pi) =
|Ed ∩ Pi|

|Pi|
(5)

We then compute interpretability score Id as the maximum
F1-score over all given ground-truth communities:

I
(com)
d = max

Pi∈P(G)
F1(Ed,Pi) (6)

where F1-score is the harmonic mean between precision(Ed,Pi)
and recall(Ed,Pi). Higher values of Id indicate the dimen-
sion d is strongly associated with a single community. Global
community-aware interpretability can be quantified with the
average I(com) = 1

|D|
∑

d∈D I
(com)
d .

Sparsity-Aware Metric: In the absence of ground-truth com-
munity information, we can anyhow quantify in an unsupervised
manner whether dimensions can highlight structure-relevant
subgraphs. In particular, without any cognition on community
structure, it is highly preferable that interpretable directions
of the embedding space are associated with a minimal set of
significant edges. Inspired by explanation masks in graph neu-
ral networks [53], we formulate its calculation using Shannon
entropy [9]:

I
(sp)
d = − 1

log |E|
∑

(u,v)∈E

(
[(u, v) ∈ Ed]

zd

)
log

(
[(u, v) ∈ Ed]

zd

)
(7)

where the function [∗] returns 1 if the proposition inside is
true (and 0 otherwise), and zd =

∑
(u,v)∈E [(u, v) ∈ Ed] is a

normalization for the correct computation of the Shannon en-
tropy. Lower values indicate that embedding dimensions are
associated with smaller-sized subgraphs. Global sparsity-aware
interpretability can be quantified with the average I(sp) =
1
|D|
∑

d∈D I
(sp)
d .

IV. OUR APPROACH: DIMENSION-BASED INTERPRETABLE

NODE EMBEDDING

In previous sections, we proposed the utility-induced sub-
graphs as explanations to interpret node embedding dimen-
sions. Unsurprisingly, as we show in Fig. 1(a) for DEEPWALK,
typically it is difficult to map utility-induced subgraphs to
interpretable graph units, mainly because these methods are
trained with the unique goal of maximizing reconstruction per-
formance. Filling this gap, we introduce Dimension-based Inter-
pretable Node Embedding (DINE), a novel method to improve the
interpretability of already trained node embeddings by

retrofitting the induced subgraphs which affect interpretation
metrics (Section III-B).

We design such retrofit task with an autoencoder architecture,
trained to reconstruct embedding vectors in the input [54]. By
encoding the input node representations into a hidden feature
space, the autoencoder can be regularized in order to promote the
learning of interpretable dimensions. Despite the many existing
regularizations already used to obtain interpretable embeddings,
such as non-negativity [42], [55] or sparsity [41], [43], in this
work we employ orthogonality regularizers [56], [57], [58]
to achieve the purpose. Orthogonality is closely related with
disentaglement [59], [60], which is a key concept implemented
in several methods for decoupling correlations between latent
dimensions [61], [62], with the results of learning more compact
representations whose feature dimensions are associated with
independent facets of data.

We argue improving dimension-based orthogonality is more
effective for several reasons:
� Distinct features: If two dimensions are orthogonal, it

means that they are independent of each other and do
not share any latent factor. Therefore, each dimension
provides unique information which can be interpreted as
representing a distinct characteristic of the data.

� Separation of concepts: Orthogonal dimensions in the
embedding space can represent independent concepts. For
example, in the context of word embeddings, the concept
of “gender” might be captured along one dimension, while
the concept of “age” might be captured along another. This
helps us to easily separate and understand these different
features of the data.

� Removing redundancy: Orthogonality implies no redun-
dancy. If two dimensions are not orthogonal, then they
project onto each other to some extent, meaning there’s
some shared information. This shared information could
be interpreted as redundancy. By ensuring orthogonality,
we ensure that each latent direction provides new, unique
information.

� Clear interpretation of distances: In an orthogonal space,
distances directly correlate with dissimilarity. For instance,
two orthogonal word embeddings would likely represent
words with very different meanings or features, while vec-
tors closer together would represent more similar words.

Contrary to previous works [58] that enforce orthogonality
of neural weights, here we employ orthogonalization of the
edge reconstruction patterns that directly affect per-dimension
utility subgraphs. In this way, we obtain node embeddings whose
interpretability is optimized according to the metrics introduced
in the previous section. In the next, we first show how we can
rephrase the utility optimization in an effective way to be easily
handled, how the method is implemented and the motivations
behind its functioning.

A. Optimization of Marginal Utilities

Starting with a graph G = (V, E) and an embedding en-
coder enc : V → R

D, DINE aims to learn an opportune mapping
h : RD → R

K (both D,K << |V|) in such a way the output
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per-dimension subgraphs are highly interpretable in terms of de-
composability, comprehensibility and sparsity of explanations.
We use h(v) = (h ◦ enc)(v) to indicate the embedding vectors
of node v ∈ V mapped with a standard encoding function and
equipped with the interpretable layer h. Resulting embedding
vectors are collected into the matrix H ∈ R

K×|V|, such that
H:,v = h(v). We also refer to K as the cardinality of the
set containing the enumerated dimensions of the new space
K = {1 . . .K}.

Since subgraphs are the results of positive marginal util-
ities, we are interested in optimizing the utility measures
μd(h(u), h(v)) as a function of the new embedding parame-
ters defined by h. In the following paragraphs we show that,
assuming the new embedding space to be the unit-size hyper-
cube [0, 1]K ⊂ R

K , together with sufficiently high embedding
dimensionality, we can simplify the optimization of the utility
measure. In fact in the following theorem we show that for a
given edge, the interpretability (utility) measure for a dimen-
sion can be approximated using a single dot product over the
embedding pair.

Theorem 1: Let be H ∈ [0, 1]K×|V| a node embedding ma-
trix of graph G = (V, E) in the K-dimensional hypercube. For
high dimensionality K, the per-dimension utility score for edge
(u, v) ∈ E , μd(h(u), h(v)), can be expressed as:

μd (h(u), h(v)) =
Hd,uHd,v

K
+O

(
1

K2

)
(8)

The proof is given in Section I of the Appendix, available online.
We define Hd,uHd,v/K as the entries Md(u, v) of K

continuous-valued graph masks {Md ∈ R
|V|×|V|}d∈K, formally

derived from the outer products of the rows of H, i.e., Md =
Hd,: ⊗Hd,:. The (8) tells that Md(u, v) and μd(h(u), h(v))
differ by a negligible term O( 1

K2 ). Consequently, we can opti-
mize the quantities Md(u, v) that are computed from individ-
ual products. Graph masks have the role of highlighting the
structure-relevant edges for any direction in the K-dimensional
learned space.

B. Method Implementation

We now describe the retro-fitting optimization task and iden-
tify the key design choices which allow obtaining more inter-
pretable induced subgraphs, and whose effectiveness is shown
in the experiments section. We provide an in-depth discussion
on the motivations behind the algorithm design in Section IV-C.
Please refer to Fig. 3 for a schematic diagram of our approach.

We implemented h as the latent projection of a single-layer
autoencoder, namely H = σ(W(0)X+ b(0)), which returns
X̃ = W(1)H+ b(1) as output. The hidden layer matrix of the
autoencoder, H ∈ R

K×|V|, collects the interpretable embedding
vectors that we aim to learn. We add regularization constraints on
the hidden embedding matrix H while training the autoencoder,
in order to learn optimal graph masks. Specifically, we minimize
the following loss:

L = Lac

(
X, X̃

)
+
∑

Lreg(H) (9)

Fig. 3. Schematic view of our methodology. Starting from a graph embedding
representation (a), we apply the method DINE (b). Explanations are given in the
form of per-dimension subgraphs, both for the starting embedding (c) and the
DINE embedding (d).

where Lac(X, X̃) = ||X− X̃||F is the reconstruction error be-
tween the input and output embedding matricesX, X̃ ∈ R

D×|V|.
We jointly optimise masks matrices {Md ∈ R

|V|×|V|}d∈K, com-
puted in function of hidden layer weights matrix H, and the au-
toencoder parameters {W(0) ∈ R

K×D,W(1) ∈ R
D×K ,b(0) ∈

R
K ,b(1) ∈ R

D}. We determined the following regularization
terms as optimal for promoting interpretable dimensions:
� Induced subgraphs might have minimal overlaps between

each other in order to be interpreted as communities.
Inspired by graph clustering [63], we squeeze embed-
ding mask matrices into one partition matrix P ∈ R

K×|V|,
with entries Pd,v =

∑
u Md(u, v) computed by aggregat-

ing edge reconstruction scores with the same target node.1

To encourage relevant subgraphs to be incorporated into
different embedding axes, we optimize the following Or-
thogonality Loss:

Lorth(P) =

∣∣∣∣
∣∣∣∣ PPT

||PPT||F − 1K

||1K ||F

∣∣∣∣
∣∣∣∣
F

(10)

� To avoid degenerate solutions due to the orthogonality
constraint, e.g., all relevant subgraphs reconstructed in
the same dimension, we enforce the size of every mask
sd =

∑
u,v Md(u, v) to be non-zero. This constraint is

accomplished by maximizing the entropy of the vector
containing size variables s, or equivalently minimizing the
Size Loss:

Lsize(s) = logK +
∑
d∈K

(
sd∑
q∈K sq

)
log

(
sd∑
q∈K sq

)

(11)
The use of node-based partitions is due to scalability rea-

sons: the entries of the partition matrix Pd,v =
∑

u Md(u, v) ∝
Hd,v[

∑
u Hd,u] can be computed just by multiplying the hidden

matrix elements Hd,v by the quantities fd =
∑

u Hd,u collected

1Aggregating over the source node would give the same result since we work
with undirected graphs and Md(u, v) = Md(v, u).
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in vector f , avoiding the explicit calculation of graph masks with
outer products, then reducing the complexity fromO(K × |V|2)
to O(K × |V|). The full objective loss is given by2:

L = Lac

(
X, X̃

)
+ Lorth(P) + Lsize(s) (12)

In Section III of the Appendix, available online, we include
the pseudo-code for DINE and related time complexity analysis
in comparison with other embedding methods also used in the
experiments.

C. Discussion on the Regularization Losses

For simplicity we consider binary edge masks M̃d(u, v) ∈
{0, 1}. Nevertheless, when training our model with gradient-
based optimizers, we recast the problem into a continuous
formulation by learning the aforementioned real-valued masks3

Md(u, v) ∈ R. The mask optimization consists of clustering
the input graph by discovering per-dimension subgraphs, i.e.,
selecting edges (u, v) based on their importance (or irrelevance)
for the explanation of dimension d:

M̃d(u, v) = [(u, v) ∈ Ed]
Toward that, we have defined a node-level partition matrix

P̃ ∈ R
K×|V| which, in the binary masks case, takes the form:

P̃d,v =
∑
u∈V

M̃d(u, v) = degGd
(v) (13)

where degGd
(v) is the degree of node v restricted to the subgraph

Gd. Inspired by spectral graph clustering [63], in (10) we have
proposed Lorth to learn explanation subgraphs by constraining
the rows of the assignment matrix to be orthogonal. In fact, by
observing the off-diagonal entries of the matrix P̃P̃T ∈ R

K×K :

P̃ P̃T
d,q =

∑
v∈V

degGd
(v) · degGq

(v)

it can be noticed that pushing them to zero will force nodes
to have connections with other vertices only in a specific di-
mensional subgraph (and zero-degree elsewhere), discouraging
overlaps between subgraphs.

Constraining diagonal entries of the orthogonalizer P̃ P̃T
d,d =∑

v[degGd
(v)]2 to be greater than zero, while ensuring the

discovery of densely connected subgraphs, does not prevent
gradient-based optimization to find degenerate clustering so-
lutions. As pointed out in [63], [65], passing to a continuous
relaxation of node assignments conceivably leads to trivial or
sub-optimal clusters.4 In (11) we have proposed an additional
regularization term to avoid this issue. With Lsize we require
the subgraph sizes s̃d =

∑
v degGd

(v) to be stable across di-
mensions, with a maximum entropy formulation.

2There is no discrepancy between the following definition and (9), because
both P and s are functions of hidden matrix H.

3Also, the binary mask constraint would result in learning sparse and bi-
nary vectors, with beneficial results only by hugely increasing the embedding
size [43], [64], which is not the purpose of this work.

4The work [63] focuses on the continuous relaxation of a binary assignment
matrix C̃ ∈ {0, 1}K×|V|, but we found similar issues in our case with ”degree-
based“ partition matrix P̃.

TABLE I
SUMMARY STATISTICS ABOUT REAL-WORLD GRAPH DATA

V. EXPERIMENTS

In this section, we present the results of our study on the
DINE model from different perspectives. The main objective is
to address the following research questions:

(RQ1) How does the interpretability of DINE compare to those
of standard embedding techniques?

(RQ2) How well does DINE perform over graph downstream
tasks, such as link prediction and node classification?

(RQ3) Is DINE suitable for practical use, particularly in scenarios
requiring scalability?

In the following sections, we describe the data, models, and
tasks used in the comparison to address our research questions.

A. Data and Models

We present our results on a variety of benchmark datasets
used in prior work [66]: three citation networks (CORA, CITE-
SEER and PUBMED), two social networks (BLOG and FLICKR),
and a web pages network (WIKI). Despite their original format,
we restrict our analysis to the largest connected component of
any graph, considered unweighted and undirected. As described
in Section III-B, we rely on ground-truth link partitions for in-
terpretability metrics based on community structure. Many em-
pirical graphs have node metadata that can be used for node-to-
community mapping. However, the use of metadata as structure-
aware labels has recently been criticized by previous works [67],
[68]. Instead, we use community detection to discover partition
labels. We avoid computationally expensive and overlapping
community detection methods [69], [70], [71], [72] and use the
arguably intuitive and simpler Louvain detection method [73]
to derive edge labels based on node-level graph communities.
Specifically, we run Louvain detection method [73] to extract the
node-level communities C(G) = {C1, . . . , Cm} and we assign
partition label for a given edge (u, v) the set {c(u), c(v)}, where
c : V → C(G) is the node-level community membership func-
tion. We report dataset statistics in Table I, where we also show
that Louvain labels and node classes are highly uncorrelated,
justifying the choice of using community detection to extract
structure-aware labels.

We consider as baseline methods different dense and
sparse embedding approaches: DEEPWALK [17], INFWALK [74],
GAE [22], Modularity-aware GAE (MODGAE) [75], GEM-
SEC [29], and SPINE [43]. Details about hyper-parameters and
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training settings used in each method can be found in Section II
of the Appendix, available online.

B. Tasks Description

For answering RQ1, we measure the interpretability of DINE

in comparison to our baseline methods. To do so, we compute
for any embedding dimension interpretability scores that we
have defined in Section III-B. Instead of averaging over all
dimensions for comparing the models, we focus on a subset
of effective dimensions Deff that encode the majority of edge
information, to avoid potential noise from the less important
dimensions. Specifically, after computing I

(com)
d or I

(sp)
d , we

select the top-ranked dimensions that cumulatively contribute
to the reconstruction of at least 90% of the graph edges, i.e.,
|⋃d∈Deff

Ed| = 90%|E|. Thus we compute global scores as

I
(com|sp)
eff = 1

|Deff |
∑

d∈Deff
I
(com|sp)
d .

For answering RQ2, we measure link prediction and node
classification performances of DINE in comparison to baseline
methods. For link prediction, before training every method, we
randomly remove 10% of the edges that are used as positive
examples for the task. We also sample the same number of
node pairs from the set of non-existing links as negative ex-
amples. The task consists in ranking the collected node pairs
with the product-based edge decoder function and evaluating the
classification performance with the ROC-AUC score. For node
classification, we train a multi-label logistic regression over a
random split of 80% of the nodes, and we evaluate the F1 scores
of the classification performance by predicting the class labels
attached to nodes of the remaining 20%.

For answering RQ3, we measure the training time of DINE in
comparison to baseline methods.

C. Results

In our experiments, all methods, with the exception of SPINE,
are trained to produce embedding vectors with sizes K in the
set {2, 4, 8, 16, 32, 64, 128}, referred to as output dimensions.
On the other hand, the dimensionalities D of vectors used for
training DINE and SPINE, referred to as input dimensions, are
taken from the set {8, 16, 32, 64, 128, 256, 512}. For SPINE, due
to the presence of the overcomplete layer, we chose output di-
mensions to be multiples of the input dimensions, i.e., K = τD
with τ between ×1 and ×8.

In our comparison, we evaluated DINE against both dense and
sparse methods. For the comparison with dense methods, DINE

was trained using DEEPWALK and GAE vectors, with perfor-
mance reported in the figures across different output dimensions,
choosing the best score among the input dimensions. To com-
pare with sparse methods, both SPINE and DINE were trained
using DEEPWALK vectors, with their performance reported in
the figures across different input DEEPWALK, choosing the best
score among the output dimensions. The overall best results for
dense and sparse embeddings are reported respectively at the top
and at the bottom of each table, with average evaluation score
and standard deviation computed over 5 separate training runs.

TABLE II
COMMUNITY-AWARE SCORES FOR DIFFERENT EMBEDDING METHODS

TABLE III
SPARSITY-AWARE SCORES FOR DIFFERENT EMBEDDING METHODS

Fig. 4. Community-aware scores for CORA (higher is better). On the left we
compare DINE with dense embedding methods; on the right, we compare DINE

with sparse embedding SPINE.

In the Appendix, available online, additional figures are re-
ported in Section IV with all the results not shown in the main
paper. Moreover, in Section V we report supplementary exper-
iments on the interpretability performances, such as ablation
studies for the removal of individual regularization terms in
DINE, and robustness of the metrics w.r.t. noise and random
walk hyperparameters of the input embeddings.

Interpretability (RQ1): Best scores for interpretability metrics
I
(com)
eff and I

(sp)
eff are reported in Tables II and III respectively

for all the datasets, with detailed plots in Figs. 4 and 5 for CORA.
On the top of each table, showing the comparison with dense
embeddings, we notice that the combination DEEPWALK+DINE

performs well in almost every dataset. Moreover, we observe
that GAE+DINE is less interpretable than DEEPWALK+DINE,
but still more interpretable than the other dense baselines.
From the comparison with sparse embeddings, on the bottom



7994 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

Fig. 5. Sparsity-aware scores for CORA (lower is better). On the left we
compare DINE with dense embedding methods; on the right, we compare DINE

with sparse embedding SPINE.

TABLE IV
ROC-AUC SCORES FOR DIFFERENT EMBEDDING METHODS

TABLE V
MICRO-F1 SCORES FOR DIFFERENT EMBEDDING METHODS

of each table, both DINE and SPINE trained on DEEPWALK

demonstrate good interpretability, obtaining the best scores in
half of the datasets each. Our results confirm the well-known
property of vector sparsity improving the interpretability of
representations [76]. On Figs. 4 and 5, we observe that both
interpretability metrics improve as the embedding dimensions
increase in CORA. This is true also in the other datasets shown
in Section IV of the Appendix, available online, providing
important guidance for choosing the appropriate embedding
size in real-world applications.

Downstream Tasks (RQ2): ROC-AUC and Micro-F1 scores
are documented in Tables IV and V, with a detailed illustration
for CORA in Figs. 6 and 7. From the comparison of dense
methods in downstream tasks, on the top of each table, results
show that in citation networks DINE retrofitted embeddings

Fig. 6. ROC-AUC scores for link prediction in CORA. On the left we compare
DINE with dense embedding methods; on the right, we compare DINE with sparse
embedding SPINE.

Fig. 7. Micro-F1 scores for node classification in CORA. On the left we
compare DINE with dense embedding methods; on the right, we compare DINE

with sparse embedding SPINE.

perform similarly to the best dense models. This result implies
that we do not have to trade task performance with increased
interpretability. In other datasets, the best link prediction scores
are obtained by MODGAE and GAE+DINE; while for node clas-
sification the most successful models are MODGAE, INFWALK

and GAE. Differently from link prediction, where the maximum
score drop is 6% in GAE+DINE, our model has a performance
drop greater than 10% in node classification outside citation
networks: we suppose this is due to the misalignment between
community structure and node classes, with DINE that fails to fit
the second ones. In addition, when input models already have
weak performances (e.g., DEEPWALK, or GAE in FLICKR), it is
unlikely that DINE could obtain further improvements.

When comparing sparse embeddings in link prediction, DINE

consistently outperforms SPINE, with comparable or even supe-
rior results (in the case of FLICKR and WIKI) to DEEPWALK.
When comparing sparse embeddings in node classification,
DINE is still superior to SPINE, but without reaching DEEPWALK

scores. Interestingly, our results in Figs. 6 and 7 also demon-
strate that SPINE’s performance decreases with increasing input
dimensions, unlike the other methods.

Scalability (RQ3): The training times for various methods are
presented in Fig. 8, with the intervals normalized relative to the
number of iterations/epochs. For DEEPWALK, the intervals are
further divided with respect to the num_walks parameter to
remove the dependence on the number of walks per node. The
left panel shows that the runtimes for DEEPWALK, SPINE, and
DINE increase with the number of nodes, while the center panel
demonstrates that the execution time for GAE increases with the
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Fig. 8. Normalized run times for different embedding methods when trained on multiple datasets: in the left, run times for 128-dim output embeddings while
varying the number of nodes; in the center, run times with 128-dim output embeddings while varying the number of edges; in the right, run times varying the
number of embedding dimensions in FLICKR dataset.

number of edges. Additionally, DINE has slightly longer training
times compared to SPINE, but both are faster than DEEPWALK.
The right panel indicates that the training time for SPINE and
DINE has a weak dependence on the number of embedding
dimensions, while this dependence is more pronounced in GAE
and DEEPWALK. Experimental results on the scalability suggest
that it is possible to increase the interpretability of node rep-
resentations without requiring significant computational costs.
Additionally, the analysis of runtime complexities included in
Section III of the Appendix, available online, confirms the
empirical findings.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented a framework for constructing
global explanations for node embeddings. We explain each
embedding dimension using the important substructures of the
input graph. To construct these explanations we developed a
new model-agnostic utility measure which computes the con-
tributions of each dimension to predict the graph structure. Our
explanations follow the desired properties of Decomposability,
Comprehensibility and Sparsity.

With the goal of maximizing these properties, we proposed
and developed DINE, an auto-encoder framework to enhance
the interpretability of existing node embeddings. In short, DINE

captures the structural properties encoded in an input embed-
ding and optimizes a set of graph masks in order to pro-
mote orthogonality and sparsity of predicted sub-structures.
Our comprehensive experimental study supports our claims
that DINE improves embedding comprehensibility over standard
node embedding techniques, without compromising the task
performance. In particular, combining DEEPWALK with DINE

allows obtaining interpretable node embeddings with effective
performances in downstream tasks. DINE is also preferable to
the sparse method SPINE due to its better achievements in link
prediction and node classification. DINE scales well with respect
to the input graph size, being suitable to be used in graphs with
high edge density. Since the computation of the exact utility
measure has exponential complexity as is usually the case for
Shapley-based measures, the presented utility measure shares
limitations common to other approximation strategies suggested
in the literature. In particular, the approximation deteriorates
under high interdependence among embedding features [52].

Nevertheless, the encouraging results from our experiments
support the effectiveness of this approach.

These contributions open multiple avenues for future work.
Specifically, our approach can be extended to constructing in-
terpretable node embeddings whose dimensions are aware of
multi-scale subgraph structures [77] inherent in many real-world
graphs [78]. DINE can also be used as a plug-in architecture to
facilitate interpretable learning in various graph neural network
encoders [22]. Furthermore, future investigations could explore
the impact on representations learned in supervised or semi-
supervised settings [79].

REFERENCES

[1] W. L. Hamilton, Graph Representation Learning, vol. 14. San Rafael, CA,
USA: Morgan & Claypool, 2020, pp. 1–159.

[2] N. Liu, X. Huang, J. Li, and X. Hu, “On interpretation of network
embedding via taxonomy induction,” in Proc. 24th ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2018, pp. 1812–1820.

[3] A. Dalmia, G. J, and M. Gupta, “Towards interpretation of node embed-
dings,” in Proc. Web Conf., Lyon, France, 2018, pp. 945–952.

[4] A. Gogoglou, C. B. Bruss, and K. E. Hines, “On the interpretability and
evaluation of graph representation learning,” 2019, arXiv:1910.03081.

[5] C. V. Cannistraci, G. Alanis-Lobato, and T. Ravasi, “From link-prediction
in brain connectomes and protein interactomes to the local-community-
paradigm in complex networks,” Sci. Rep., vol. 3, no. 1, 2013, Art. no. 1613.

[6] X. Yue et al., “Graph embedding on biomedical networks: Methods,
applications and evaluations,” Bioinformatics, vol. 36, pp. 1241–1251,
Oct. 2019.

[7] T. N. Dong, J. Schrader, S. Mücke, and M. Khosla, “A message passing
framework with multiple data integration for miRNA-disease association
prediction,” Sci. Rep., vol. 12, 2022, Art. no. 16259.

[8] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “GNNExplainer:
Generating explanations for graph neural networks,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2019, pp. 9240–9251.

[9] T. Funke, M. Khosla, M. Rathee, and A. Anand, “Zorro: Valid, sparse, and
stable explanations in graph neural networks,” IEEE Trans. Knowl. Data
Eng., vol. 35, no. 8, pp. 8687–8698, Aug. 2023.

[10] M. Vu and M. T. Thai, “PGM-explainer: Probabilistic graphical model
explanations for graph neural networks,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2020, pp. 12225–12235.

[11] C. T. Duong, Q. V. H. Nguyen, and K. Aberer, “Interpretable node
embeddings with mincut loss,” in Proc. Learn. Reasoning Graph-Struct.
Representations Workshop, 2019.

[12] M. Idahl, M. Khosla, and A. Anand, “Finding interpretable concept spaces
in node embeddings using knowledge bases,” in Proc. Int. Workshops
ECML PKDD Mach. Learn. Knowl. Discov. Databases, Springer, 2020,
pp. 229–240.

[13] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?’
Explaining the predictions of any classifier,” in Proc. 22nd ACM SIGKDD
Int. Conf. Knowl. Discov. Data Mining, 2016, pp. 1135–1144.

[14] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 4765–4774.



7996 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

[15] M. Girvan and M. E. Newman, “Community structure in social and biologi-
cal networks,” in Proc. Nat. Acad. Sci. USA, vol. 99, no. 12, pp. 7821–7826,
2002.

[16] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels:
First steps,” Social Netw., vol. 5, no. 2, pp. 109–137, 1983.

[17] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2014, pp. 701–710.

[18] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2016, pp. 855–864.

[19] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” IEEE Data Eng. Bull., vol. 40, no. 3,
pp. 52–74, Mar. 2017.

[20] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity
preserving graph embedding,” in Proc. 22nd ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2016, pp. 1105–1114.

[21] S. Cao, W. Lu, and Q. Xu, “GraRep: Learning graph representations with
global structural information,” in Proc. 24th ACM Int. Conf. Inf. Knowl.
Manage., 2015, pp. 891–900.

[22] T. N. Kipf and M. Welling, “Variational graph auto-encoders,”
2016, arXiv:1611.07308.

[23] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional
networks: A comprehensive review,” Comput. Social Netw., vol. 6, no. 1,
pp. 1–23, 2019.

[24] S. Bonner, I. Kureshi, J. Brennan, G. Theodoropoulos, A. S. McGough,
and B. Obara, “Exploring the semantic content of unsupervised graph
embeddings: An empirical study,” Data Sci. Eng., vol. 4, pp. 269–289,
Sep. 2019.

[25] S. Khoshraftar, S. Mahdavi, and A. An, “Centrality-based interpretability
measures for graph embeddings,” in Proc. IEEE 8th Int. Conf. Data Sci.
Adv. Analytics, 2021, pp. 1–10.

[26] Y. Wang, Y. Yao, H. Tong, F. Xu, and J. Lu, “Discerning edge influence for
network embedding,” in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage.,
2019, pp. 429–438.

[27] H. Park and J. Neville, “Generating post-hoc explanations for skip-gram-
based node embeddings by identifying important nodes with bridgeness,”
Neural Netw., vol. 164, pp. 546–561, 2023.

[28] C. T. Duong, T. T. Nguyen, T.-D. Hoang, H. Yin, M. Weidlich, and
Q. V. H. Nguyen, “Deep MinCut: Learning node embeddings by detecting
communities,” Pattern Recognit., vol. 134, 2023, Art. no. 109126.

[29] B. Rozemberczki, R. Davies, R. Sarkar, and C. Sutton, “GEMSEC: Graph
embedding with self clustering,” in Proc. IEEE/ACM Int. Conf. Adv. Social
Netw. Anal. Mining, 2019, pp. 65–72.

[30] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding,” in Proc. AAAI Conf. Artif. Intell., 2017,
pp. 203–209.

[31] B. Kang, J. Lijffijt, and T. De Bie, “ExplaiNE: An approach for explaining
network embedding-based link predictions,” 2019, arXiv: 1904.12694.

[32] S. Zhang et al., “PaGE-Link: Path-based graph neural network explana-
tion for heterogeneous link prediction,” in Proc. ACM Web Conf., 2023,
pp. 3784–3793.

[33] Z. Wang, B. Zong, and H. Sun, “Modeling context pair interaction for
pairwise tasks on graphs,” in Proc. 14th ACM Int. Conf. Web Search Data
Mining, 2021, pp. 851–859.

[34] A. Rossi, D. Firmani, P. Merialdo, and T. Teofili, “Explaining link predic-
tion systems based on knowledge graph embeddings,” in Proc. Int. Conf.
Manage. Data, 2022, pp. 2062–2075.

[35] W. Zhang, B. Paudel, W. Zhang, A. Bernstein, and H. Chen,
“Interaction embeddings for prediction and explanation in knowledge
graphs,” in Proc. 12th ACM Int. Conf. Web Search Data Mining, 2019,
pp. 96–104.

[36] T. Prouteau, N. Dugué, N. Camelin, and S. Meignier, “Are embedding
spaces interpretable? Results of an intrusion detection evaluation on a
large french corpus,” in Proc. 13th Lang. Resour. Eval. Conf., 2022,
pp. 4414–4419.
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