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Abstract. Recurrent Neural Networks are effective for analyzing temporal
data, such as time series, but they often require costly and time-intensive
training. Echo State Networks simplify the training process by using a fixed
recurrent layer, the reservoir, and a trainable output layer, the readout. In
sequence classification problems, the readout typically receives only the
final state of the reservoir. However, averaging all states can sometimes be
beneficial. In this work, we assess whether a weighted average of hidden
states can enhance the Echo State Network performance. To this end, we
propose a gradient-based, explainable technique to guide the contribution of
each hidden state towards the final prediction. We show that our approach
outperforms the naive average, as well as other baselines, in time series
classification, particularly on noisy data.

1 Introduction

Deep Neural Networks (DNNs) have emerged in various fields like medical
diagnosis and financial forecasting, yet their adoption is limited by their opacity,
which affects the trust in their outputs and understanding of their decision
processes. To address these issues, Explainable Artificial Intelligence (XAI) aims
to make the workings of complex DNNs transparent and understandable [1]. XAI
methods help clarify how DNNs operate, fostering transparency, accountability,
and compliance, which is vital in sensitive applications [2]. While traditionally
focused on improving model transparency and interpretability, recent studies
suggest XAI can also enhance learning processes in these models [3].

This work focuses on Recurrent Neural Networks (RNNs), which are effective
for learning from temporal data, like time series [4]. Unfortunately, the practi-
cal deployment of RNNs often entails significant computational resources and
time investments for training, rendering them less appealing in scenarios where
efficiency is paramount. Echo State Networks (ESNs) are reservoir computing
models that offer a more sustainable alternative for processing temporal data [5],
with a simplified training, characterized by a fixed recurrent component called
reservoir and a trained output layer called readout. Typically, in time-series clas-
sification applications, the ESN’s readout layer exploits only the reservoir’s final
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state to generate predictions, or uses information from the entire reservoir state
trajectory in the state space, e.g., by averaging all its states. Both approaches
have limitations and can result in performance degradation, particularly in noisy
scenarios, where the relevant information is neither at the end of the time-series
nor distributed uniformly across the entire signal.

In this paper, we investigate the usage of gradient-based, post-hoc explainabil-
ity methods for enhancing the performance of ESNs in time-series classification
tasks. Typically, gradient-based XAI methods are employed to determine the
relevance of each point in the time series for the classification outcome [6]. We
adopt them in this work to produce a weighted average of the hidden states of the
ESN, so that the readout receives more relevant information about the driving
input signal. We benchmark our proposal on 30 binary classification datasets
from the time series UCR repository, employing various XAI techniques to weigh
the hidden states. We assess the performance on the original datasets and also
in the presence of increasingly noisier data.

2 Setting The Stage

Given a time series dataset X ∈ RN×T , containing N univariate time series,
x = [x1, . . . , xT ], of length T , and respective labels, y ∈ {0, 1}N , we tackle the
problem of binary classification. The objective is to train a model f that maps
the input time series to a predicted class label, ŷ = f(x).

In our case, f is an ESN. The ESN updates its hidden state according to
ht = σ(Wht−1 + V xt + b), where σ is a nonlinear activation function (e.g.,
hyperbolic tangent), xt is the input at time t, W and V are the recurrent and
input matrixes, respectively, and b is the bias. Following the reservoir computing
paradigm, the ESN initializes W randomly and then scales its spectral radius by
dividing all elements by a constant ρ (treated as a hyper-parameter). Similarly,
the matrix V is scaled using a scalar ν (the input scaling). Usually, the last
hidden state output, hT , is forwarded to the readout component of the ESN,
which is the only trained part of the network. The readout typically involves a
linear transformation followed by a nonlinear activation function, depending on
the task. For binary classification ŷ = σ(Wouth

′ + bout), where Wout represents
the weights of the readout layer, bout is the bias, and σ is a sigmoid activation
function. Since the recurrent transformation processed by the reservoir is fixed,
the readout can be trained in closed form (e.g., Ridge regression).

In this work, we use gradient-based XAI methods to infer the importance
of points in the time series. These techniques essentially perform sensitivity
analysis, i.e., they can highlight the importance of each observation in the time
series. The foundation of these approaches is the analysis of the gradient of the
network’s output w.r.t. an input instance, as it informs about the sensitivity of
the output to the input features. XAI approaches differ in how they exploit this
gradient, and in other information they use [6]. However, their output is always
a vector ϕ, containing the importance of observations in the input.

We focus on three approaches: (i) Gradient, (ii) Gradient*Input, and (iii)
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GradientSHAP. The simplest approach, Gradient, computes the gradient of the
output w.r.t. each observation of the input time series, i.e., ϕ = [ ∂ŷ

∂x1
, . . . , ∂ŷ

∂xT
].

Second, Gradient*Input [7] multiplies the gradient with the input, i.e., ϕ =
[ ∂ŷ
∂x1

x1, . . . ,
∂ŷ
∂xT

xT ]. Geometrically, Gradient*Input is the directional derivative
computed along the direction pointed by the input. For multivariate inputs,
Gradient*Input can vanish whenever the current input points towards a direction
orthogonal to the direction pointed by the gradient, even if the input itself has a
large magnitude. Finally, we also use GradientSHAP [8], a faster, approximated
version of Integrated Gradients [9], which introduces a baseline, i.e., a point of
reference from which the contribution of each feature to the prediction can be
measured. By comparing the model’s predictions on actual input data to its
predictions on baseline data, GradientSHAP can infer the impact of each feature.
In this case, ϕ = [ ∂ŷ

∂x1
(x1 − z1), . . . ,

∂ŷ
∂xT

(xT − zT )], where z is the baseline vector,
which can be user-defined or obtained through random sampling.

3 Enhancing Echo State Networks

To enhance the performance of ESNs, we propose weighting the reservoir output,
based on the importance of each observation in x. For this purpose, we introduce
a generalized method for aggregating hidden states, formally:

h′ =
T∑

t=1

ϕtht, with
T∑

t=1

ϕt = 1, (1)

where ht is the hidden state at time t, ϕt is a scalar weight assigned to each
hidden state, and h′ is the aggregated output. Equation (1) generalizes the
standard cases. Consider, for example, a weight vector ϕ consisting solely of
zeros except for the final element, which is one, i.e., ϕ = [0, 0, . . . , 0, 1]. In this
scenario, the aggregation process ignores all hidden states except for the last,
hT . Alternatively, if ϕ =

[
1
T ,

1
T , . . . ,

1
T

]
, i.e., if we assign an equal weight of 1

T to
each hidden state, the aggregation method transitions to computing the average
of all hidden states. Beyond these specific scenarios, any other configuration of
the weights produces a weighted average.

Our intuition is that selecting only the hidden states corresponding to the
most relevant parts of the time series can yield better performance than simpler
methods such as averaging or using only the last hidden state. Consider, for
example, Fig. 1. On the top left, we have a time series, x, with some noise at the
beginning and the end. Right below (bottom left), we have the respective hidden
states, 100, for each time series point, colored based on their value (low values in
yellow, high values in violet). Intuitively, taking only the last hidden state would
not be the best choice, as it contains information from approximately 300 noisy
points. At the same time, taking the average of the hidden states would dilute
the information contained in the hidden states, given that approximately half of
this time series is composed of Gaussian noise.

The issue, therefore, is how to find the weights ϕi without an iterative
optimization, as that would negate the primary advantages of ESNs, i.e., that
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Fig. 1: Top left: a time series from the WormsTwoClass dataset with some
Gaussian noise. Bottom left: the raw hidden states for each timestep. Top right:
the importance of each timestep of the input time series from Gradient*Input.
Bottom right: the hidden states weighted by their importance.

only the readout necessitates training. We propose inferring these weights using
XAI methods in a one-shot fashion, i.e., train a base model, get the weights, ϕ,
using an XAI technique from Section 2, and retrain the readout only once. Given
that we are interested in the magnitude of the importance vector and not its
sign, we take its absolute value and normalize it so that it sums to one, formally:

ϕ =
[|ϕ1|, . . . , |ϕT |]∑T

i=1 |ϕi|
. (2)

Fig. 1 on the top right shows the importance vector extracted by Gradient*Input
(the more intense the color, the more important the observation), and on the
bottom right, the hidden states weighted by the importance vector.

4 Experiments

We benchmark our approach on 30 datasets from the UCR time series classification
repository1. As baselines, we test ESN using the last hidden states (last),
taking the average (avg), randomly selecting weights (rnd), and calculating the
weighted average using 3 XAI approaches: Gradient (grad), Gradient*Input [7]
(grad*inp), and GradientSHAP (gradshap) [8]. As absolute performance
is not the focus of this work, and to have a fair comparison between models,
we leave the parameters of the ESN fixed at standard values, i.e., 100 units, a
spectral radius of 0.99, and an input scaling of 1, with a leak rate of 0.01 [10].
To determine the importance of the points in the time series, we need a base
model to retrieve them. For this purpose, we use avg, given that it is the most
stable baseline against noise, as shown in the following experiments. Once ϕ is
retrieved, we use it to retrain the readout on the weighted average of hidden
states. We use LBFGS as the readout optimizer and set the maximum number
of iterations to 1000.

1Code and datasets are available at https://github.com/fspinna/xai_enhanced_esn.
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Fig. 2: Left: average F1 of the benchmarked models for all 30 UCR datasets,
starting from no added noise (r = 1.0), to 10x noise (r = 0.1). Right: boxplot
for the two extreme cases, r = 1.0 and r = 0.1.

In Table 1 and Fig. 2, we report the performance in terms of the F1-score for
all approaches, first on the original datasets and then by adding random Gaussian
noise to each time series. The amount of noise is controlled by the noise ratio
0 ≤ r ≤ 1, and the total amount of added noise is computed as Tnoise = T

r − T .
In our tests, we varied r from 0.1 (noise that is 10x the length of the original time
series) to 1 (no noise) in 0.1 increments. Time series are standardized through
Z-score normalization. Each run is repeated 3 times, and the average on all the
datasets with the standard deviation is reported2.

In general, the best approach is grad*inp, both on the original datasets
without noise, i.e., r = 1.0, and on noisy datasets. On the original datasets, avg,
last, and grad are comparable or slightly worse than grad*inp. However,
last’s performance drops quickly as the noise increases, while avg and grad
follow a less steep trend. Interestingly, their performances become comparable
to random weighting as r approaches 0.1 (10x noise). Although gradshap is
a more sophisticated approach, it performs worse than avg and grad. This is
likely due to its random baseline extraction, which could be subpar on time series
data. In summary, grad*inp is more robust, both on the original data, and in
the presence of noise, while its computational overhead is minimal.

Given the results of these experiments, an interesting insight is that the
machine learning model seems to benefit from a form of self-awareness, i.e., using
its own explanation in its learning process. In other words, the ESN can correct
itself without human supervision but using a tool originally meant to be used
by human users. In a way, the ESN exploits insights into its decision-making,
enabling better adaptation to noisy data and improving its overall performance.

2System: Lenovo SD650 nodes, with Intel Xeon Platinum 8268 CPUs, 64GB Memory.
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r rnd avg last grad grad*inp gradshap

1.0 .71 ± .14 .75 ± .16 .75 ± .16 .76 ± .16 .76 ± .16 .72 ± .15
0.5 .67 ± .14 .71 ± .15 .58 ± .12 .70 ± .14 .72 ± .14 .67 ± .13
0.1 .63 ± .16 .63 ± .17 .47 ± .05 .63 ± .16 .69 ± .17 .65 ± .15

Table 1: Mean F1 and standard deviation of each method on all the UCR datasets,
with no noise (r = 1.0), 2x noise (r = 0.5), and 10x noise (r = 0.1). Higher is
better, best values in bold.

5 Conclusion

In this work, we have proposed weighting the hidden state of an ESN with
post-hoc gradient-based XAI methods to enhance accuracy and noise robustness.
We have pursued a paradigm shift in the role of XAI from being purely inter-
pretative to actively contributing to the learning process of a model. This is
promising for advancing the capabilities of AI systems as it connects the model
and the explanations it generates, leading to enhanced learning, adaptability,
and, ultimately, better performance in real-world applications. A limitation of
this approach is that, for now, it works only for binary classification. For future
work, we plan on tackling the multiclass problem. This is not a naive endeavor,
as it requires considering the gradient of multiple output nodes with respect to
the time series input. Finally, we plan on exploring different tasks, such as time
series regression, to assess if this approach extends across other problems.
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