Andrea Beretta

Andrea Beretta

Research Line 4 - leader


Involved in the research line 1 ▪ 4 ▪ 5

Role: Researcher

Affiliation: ISTI - CNR Pisa


8.

[PBF2022]
Co-design of human-centered, explainable AI for clinical decision support
Panigutti Cecilia, Beretta Andrea, Fadda Daniele , Giannotti Fosca, Pedreschi Dino, Perotti Alan, Rinzivillo Salvatore (2022). In ACM Transactions on Interactive Intelligent Systems

Abstract

eXplainable AI (XAI) involves two intertwined but separate challenges: the development of techniques to extract explanations from black-box AI models, and the way such explanations are presented to users, i.e., the explanation user interface. Despite its importance, the second aspect has received limited attention so far in the literature. Effective AI explanation interfaces are fundamental for allowing human decision-makers to take advantage and oversee high-risk AI systems effectively. Following an iterative design approach, we present the first cycle of prototyping-testing-redesigning of an explainable AI technique, and its explanation user interface for clinical Decision Support Systems (DSS). We first present an XAI technique that meets the technical requirements of the healthcare domain: sequential, ontology-linked patient data, and multi-label classification tasks. We demonstrate its applicability to explain a clinical DSS, and we design a first prototype of an explanation user interface. Next, we test such a prototype with healthcare providers and collect their feedback, with a two-fold outcome: first, we obtain evidence that explanations increase users' trust in the XAI system, and second, we obtain useful insights on the perceived deficiencies of their interaction with the system, so that we can re-design a better, more human-centered explanation interface.

More information

Research Line 1▪3▪4

9.

[PBP2022]
Understanding the impact of explanations on advice-taking: a user study for AI-based clinical Decision Support Systems
Panigutti Cecilia, Beretta Andrea, Pedreschi Dino, Giannotti Fosca (2022) - 2022 Conference on Human Factors in Computing Systems. In Proceedings of the 2022 Conference on Human Factors in Computing Systems

Abstract

The field of eXplainable Artificial Intelligence (XAI) focuses on providing explanations for AI systems' decisions. XAI applications to AI-based Clinical Decision Support Systems (DSS) should increase trust in the DSS by allowing clinicians to investigate the reasons behind its suggestions. In this paper, we present the results of a user study on the impact of advice from a clinical DSS on healthcare providers' judgment in two different cases: the case where the clinical DSS explains its suggestion and the case it does not. We examined the weight of advice, the behavioral intention to use the system, and the perceptions with quantitative and qualitative measures. Our results indicate a more significant impact of advice when an explanation for the DSS decision is provided. Additionally, through the open-ended questions, we provide some insights on how to improve the explanations in the diagnosis forecasts for healthcare assistants, nurses, and doctors.

More information

Research Line 4

22.

[MBG2021]
Explainable Deep Image Classifiers for Skin Lesion Diagnosis
Metta Carlo, Beretta Andrea, Guidotti Riccardo, Yin Yuan, Gallinari Patrick, Rinzivillo Salvatore, Giannotti Fosca (2021) - Arxive preprint. In International Journal of Data Science and Analytics

Abstract

A key issue in critical contexts such as medical diagnosis is the interpretability of the deep learning models adopted in decision-making systems. Research in eXplainable Artificial Intelligence (XAI) is trying to solve this issue. However, often XAI approaches are only tested on generalist classifier and do not represent realistic problems such as those of medical diagnosis. In this paper, we analyze a case study on skin lesion images where we customize an existing XAI approach for explaining a deep learning model able to recognize different types of skin lesions. The explanation is formed by synthetic exemplar and counter-exemplar images of skin lesion and offers the practitioner a way to highlight the crucial traits responsible for the classification decision. A survey conducted with domain experts, beginners and unskilled people proof that the usage of explanations increases the trust and confidence in the automatic decision system. Also, an analysis of the latent space adopted by the explainer unveils that some of the most frequent skin lesion classes are distinctly separated. This phenomenon could derive from the intrinsic characteristics of each class and, hopefully, can provide support in the resolution of the most frequent misclassifications by human experts.

More information

External Link

Research Line 1▪3▪4