Resources

All the publications, thesis and the Algorithms of the XAI Project

Publications

1.

[GMR2018]
A Survey of Methods for Explaining Black Box Models
Guidotti Riccardo, Monreale Anna, Ruggieri Salvatore, Turini Franco, Giannotti Fosca, Pedreschi Dino (2022) - ACM Computing Surveys. In ACM computing surveys (CSUR), 51(5), 1-42.

Abstract

In recent years, many accurate decision support systems have been constructed as black boxes, that is as systems that hide their internal logic to the user. This lack of explanation constitutes both a practical and an ethical issue. The literature reports many approaches aimed at overcoming this crucial weakness, sometimes at the cost of sacrificing accuracy for interpretability. The applications in which black box decision systems can be used are various, and each approach is typically developed to provide a solution for a specific problem and, as a consequence, it explicitly or implicitly delineates its own definition of interpretability and explanation. The aim of this article is to provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box system. Given a problem definition, a black box type, and a desired explanation, this survey should help the researcher to find the proposals more useful for his own work. The proposed classification of approaches to open black box models should also be useful for putting the many research open questions in perspective.

More information

External Link

Research Line 1▪3

2.

[GMG2019]
immagine
Factual and Counterfactual Explanations for Black Box Decision Making
Guidotti Riccardo, Monreale Anna, Giannotti Fosca, Pedreschi Dino, Ruggieri Salvatore, Turini Franco (2021) - IEEE Intelligent Systems. In IEEE Intelligent Systems

Abstract

The rise of sophisticated machine learning models has brought accurate but obscure decision systems, which hide their logic, thus undermining transparency, trust, and the adoption of artificial intelligence (AI) in socially sensitive and safety-critical contexts. We introduce a local rule-based explanation method, providing faithful explanations of the decision made by a black box classifier on a specific instance. The proposed method first learns an interpretable, local classifier on a synthetic neighborhood of the instance under investigation, generated by a genetic algorithm. Then, it derives from the interpretable classifier an explanation consisting of a decision rule, explaining the factual reasons of the decision, and a set of counterfactuals, suggesting the changes in the instance features that would lead to a different outcome. Experimental results show that the proposed method outperforms existing approaches in terms of the quality of the explanations and of the accuracy in mimicking the black box.

More information

External Link

Research Line 1▪4

3.

[SGM2021]
immagine
GLocalX - From Local to Global Explanations of Black Box AI Models
Setzu Mattia, Guidotti Riccardo, Monreale Anna, Turini Franco, Pedreschi Dino, Giannotti Fosca (2021) - Artificial Intelligence. In Artificial Intelligence

Abstract

Artificial Intelligence (AI) has come to prominence as one of the major components of our society, with applications in most aspects of our lives. In this field, complex and highly nonlinear machine learning models such as ensemble models, deep neural networks, and Support Vector Machines have consistently shown remarkable accuracy in solving complex tasks. Although accurate, AI models often are “black boxes” which we are not able to understand. Relying on these models has a multifaceted impact and raises significant concerns about their transparency. Applications in sensitive and critical domains are a strong motivational factor in trying to understand the behavior of black boxes. We propose to address this issue by providing an interpretable layer on top of black box models by aggregating “local” explanations. We present GLocalX, a “local-first” model agnostic explanation method. Starting from local explanations expressed in form of local decision rules, GLocalX iteratively generalizes them into global explanations by hierarchically aggregating them. Our goal is to learn accurate yet simple interpretable models to emulate the given black box, and, if possible, replace it entirely. We validate GLocalX in a set of experiments in standard and constrained settings with limited or no access to either data or local explanations. Experiments show that GLocalX is able to accurately emulate several models with simple and small models, reaching state-of-the-art performance against natively global solutions. Our findings show how it is often possible to achieve a high level of both accuracy and comprehensibility of classification models, even in complex domains with high-dimensional data, without necessarily trading one property for the other. This is a key requirement for a trustworthy AI, necessary for adoption in high-stakes decision making applications.

More information

External Link

Research Line 1▪4

4.

[GMR2018a]
Local Rule-Based Explanations of Black Box Decision Systems
Guidotti Riccardo, Monreale Anna, Ruggieri Salvatore , Pedreschi Dino, Turini Franco , Giannotti Fosca (2018) - Arxive preprint

Abstract

The recent years have witnessed the rise of accurate but obscure decision systems which hide the logic of their internal decision processes to the users. The lack of explanations for the decisions of black box systems is a key ethical issue, and a limitation to the adoption of achine learning components in socially sensitive and safety-critical contexts. Therefore, we need explanations that reveals the reasons why a predictor takes a certain decision. In this paper we focus on the problem of black box outcome explanation, i.e., explaining the reasons of the decision taken on a specific instance. We propose LORE, an agnostic method able to provide interpretable and faithful explanations. LORE first leans a local interpretable predictor on a synthetic neighborhood generated by a genetic algorithm. Then it derives from the logic of the local interpretable predictor a meaningful explanation consisting of: a decision rule, which explains the reasons of the decision; and a set of counterfactual rules, suggesting the changes in the instance's features that lead to a different outcome. Wide experiments show that LORE outperforms existing methods and baselines both in the quality of explanations and in the accuracy in mimicking the black box.

5.

[CGG2023]
Handling Missing Values in Local Post-hoc Explainability
Martina Cinquini, Fosca Giannotti, Riccardo Guidotti, Andrea Mattei (2023) - Explainable Artificial Intelligence. First World Conference, xAI 2023

Abstract

Missing data are quite common in real scenarios when using Artificial Intelligence (AI) systems for decision-making with tabular data and effectively handling them poses a significant challenge for such systems. While some machine learning models used by AI systems can tackle this problem, the existing literature lacks post-hoc explainability approaches able to deal with predictors that encounter missing data. In this paper, we extend a widely used local model-agnostic post-hoc explanation approach that enables explainability in the presence of missing values by incorporating state-of-the-art imputation methods within the explanation process. Since our proposal returns explanations in the form of feature importance, the user will be aware also of the importance of a missing value in a given record for a particular prediction. Extensive experiments show the effectiveness of the proposed method with respect to some baseline solutions relying on traditional data imputation.

6.

[SGM2023]
Understanding Any Time Series Classifier with a Subsequence-based Explainer
Francesco Spinnato, Riccardo Guidotti, Anna Monreale, Mirco Nanni, Dino Pedreschi, Fosca Giannotti (2023) - ACM Transactions on Knowledge Discovery from Data

Abstract

The growing availability of time series data has increased the usage of classifiers for this data type. Unfortunately, state-of-the-art time series classifiers are black-box models and, therefore, not usable in critical domains such as healthcare or finance, where explainability can be a crucial requirement. This paper presents a framework to explain the predictions of any black-box classifier for univariate and multivariate time series. The provided explanation is composed of three parts. First, a saliency map highlighting the most important parts of the time series for the classification. Second, an instance-based explanation exemplifies the black-box’s decision by providing a set of prototypical and counterfactual time series. Third, a factual and counterfactual rule-based explanation, revealing the reasons for the classification through logical conditions based on subsequences that must, or must not, be contained in the time series. Experiments and benchmarks show that the proposed method provides faithful, meaningful, stable, and interpretable explanations.

7.

[PSG2023]
Text to Time Series Representations: Towards Interpretable Predictive Models
Mattia Poggioli, Francesco Spinnato, Riccardo Guidotti (2023) - Proceedings of the 25th international conference on Discovery Science (DS), 2022, Montpellier. In Lecture Notes in Computer Science()

Abstract

Time Series Analysis (TSA) and Natural Language Processing (NLP) are two domains of research that have seen a surge of interest in recent years. NLP focuses mainly on enabling computers to manipulate and generate human language, whereas TSA identifies patterns or components in time-dependent data. Given their different purposes, there has been limited exploration of combining them. In this study, we present an approach to convert text into time series to exploit TSA for exploring text properties and to make NLP approaches interpretable for humans. We formalize our Text to Time Series framework as a feature extraction and aggregation process, proposing a set of different conversion alternatives for each step. We experiment with our approach on several textual datasets, showing the conversion approach’s performance and applying it to the field of interpretable time series classification.

8.

[BGG2023]
Benchmarking and survey of explanation methods for black box models
Francesco Bodria, Fosca Giannotti, Riccardo Guidotti, Francesca Naretto, Dino Pedreschi, Salvatore Rinzivillo (2023) - Springer Science+Business Media, LLC, part of Springer Nature. In Data Mining and Knowledge Discovery

Abstract

The rise of sophisticated black-box machine learning models in Artificial Intelligence systems has prompted the need for explanation methods that reveal how these models work in an understandable way to users and decision makers. Unsurprisingly, the state-of-the-art exhibits currently a plethora of explainers providing many different types of explanations. With the aim of providing a compass for researchers and practitioners, this paper proposes a categorization of explanation methods from the perspective of the type of explanation they return, also considering the different input data formats. The paper accounts for the most representative explainers to date, also discussing similarities and discrepancies of returned explanations through their visual appearance. A companion website to the paper is provided as a continuous update to new explainers as they appear. Moreover, a subset of the most robust and widely adopted explainers, are benchmarked with respect to a repertoire of quantitative metrics.

More information

External Link

Research Line 1▪3

9.

[MBG2023]
Improving trust and confidence in medical skin lesion diagnosis through explainable deep learning
Carlo Metta, Andrea Beretta, Riccardo Guidotti, Yuan Yin, Patrick Gallinari, Salvatore Rinzivillo, Fosca Giannotti (2023) - Springer Nature. In International Journal of Data Science and Analytics

Abstract

A key issue in critical contexts such as medical diagnosis is the interpretability of the deep learning models adopted in decision-making systems. Research in eXplainable Artificial Intelligence (XAI) is trying to solve this issue. However, often XAI approaches are only tested on generalist classifier and do not represent realistic problems such as those of medical diagnosis. In this paper, we aim at improving the trust and confidence of users towards automatic AI decision systems in the field of medical skin lesion diagnosis by customizing an existing XAI approach for explaining an AI model able to recognize different types of skin lesions. The explanation is generated through the use of synthetic exemplar and counter-exemplar images of skin lesions and our contribution offers the practitioner a way to highlight the crucial traits responsible for the classification decision. A validation survey with domain experts, beginners, and unskilled people shows that the use of explanations improves trust and confidence in the automatic decision system. Also, an analysis of the latent space adopted by the explainer unveils that some of the most frequent skin lesion classes are distinctly separated. This phenomenon may stem from the intrinsic characteristics of each class and may help resolve common misclassifications made by human experts.

More information

External Link

Research Line 1▪3

10.

[MM2023]
Investigating Debiasing Effects on Classification and Explainability
Marchiori Manerba Marta, Morini Virginia (2023) - Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol 1752. In Machine Learning and Principles and Practice of Knowledge Discovery in Databases

Abstract

Biases can arise and be introduced during each phase of a supervised learning pipeline, eventually leading to harm. Within the task of automatic abusive language detection, this matter becomes particularly severe since unintended bias towards sensitive topics such as gender, sexual orientation, or ethnicity can harm underrepresented groups. The role of the datasets used to train these models is crucial to address these challenges. In this contribution, we investigate whether explainability methods can expose racial dialect bias attested within a popular dataset for abusive language detection. Through preliminary experiments, we found that pure explainability techniques cannot effectively uncover biases within the dataset under analysis: the rooted stereotypes are often more implicit and complex to retrieve.

11.

[PR2023]
AUC-based Selective Classification
Pugnana Andrea, Ruggieri Salvatore (2023) - Proceedings of Machine Learning Research. In Proceedings of The 26th International Conference on Artificial Intelligence and Statistics

Abstract

Selective classification (or classification with a reject option) pairs a classifier with a selection function to determine whether or not a prediction should be accepted. This framework trades off coverage (probability of accepting a prediction) with predictive performance, typically measured by distributive loss functions. In many application scenarios, such as credit scoring, performance is instead measured by ranking metrics, such as the Area Under the ROC Curve (AUC). We propose a model-agnostic approach to associate a selection function to a given probabilistic binary classifier. The approach is specifically targeted at optimizing the AUC. We provide both theoretical justifications and a novel algorithm, called AUCROSS, to achieve such a goal. Experiments show that our method succeeds in trading-off coverage for AUC, improving over existing selective classification methods targeted at optimizing accuracy.

12.

[LSG2023]
Geolet: An Interpretable Model for Trajectory Classification
Landi Cristiano,Spinnato Francesco, Guidotti Riccardo, Monreale Anna, Nanni Mirco (2023) - International Symposium on Intelligent Data Analysis. In Proceedings of the 2023 conference Advances in Intelligent Data Analysis XXI

Abstract

The large and diverse availability of mobility data enables the development of predictive models capable of recognizing various types of movements. Through a variety of GPS devices, any moving entity, animal, person, or vehicle can generate spatio-temporal trajectories. This data is used to infer migration patterns, manage traffic in large cities, and monitor the spread and impact of diseases, all critical situations that necessitate a thorough understanding of the underlying problem. Researchers, businesses, and governments use mobility data to make decisions that affect people’s lives in many ways, employing accurate but opaque deep learning models that are difficult to interpret from a human standpoint. To address these limitations, we propose Geolet, a human-interpretable machine-learning model for trajectory classification. We use discriminative sub-trajectories extracted from mobility data to turn trajectories into a simplified representation that can be used as input by any machine learning classifier. We test our approach against state-of-the-art competitors on real-world datasets. Geolet outperforms black-box models in terms of accuracy while being orders of magnitude faster than its interpretable competitors.

13.

[LCM2023]
Modeling Events and Interactions through Temporal Processes -- A Survey
Liguori Angelica, Caroprese Luciano, Minici Marco, Veloso Bruno, Spinnato Francesco, Nanni Mirco, Manco Giuseppe, Gama Joao (2023) - Arxive preprint

Abstract

In real-world scenario, many phenomena produce a collection of events that occur in continuous time. Point Processes provide a natural mathematical framework for modeling these sequences of events. In this survey, we investigate probabilistic models for modeling event sequences through temporal processes. We revise the notion of event modeling and provide the mathematical foundations that characterize the literature on the topic. We define an ontology to categorize the existing approaches in terms of three families: simple, marked, and spatio-temporal point processes. For each family, we systematically review the existing approaches based based on deep learning. Finally, we analyze the scenarios where the proposed techniques can be used for addressing prediction and modeling aspects.

15.

[BGG2023c]
Interpretable Latent Space to Enable Counterfactual Explanations
Francesco Bodria, Riccardo Guidotti, Fosca Giannotti & Dino Pedreschi (2022) - Proceedings of the 25th international conference on Discovery Science (DS), 2022, Montpellier. In Lecture Notes in Computer Science()

Abstract

Many dimensionality reduction methods have been introduced to map a data space into one with fewer features and enhance machine learning models’ capabilities. This reduced space, called latent space, holds properties that allow researchers to understand the data better and produce better models. This work proposes an interpretable latent space that preserves the similarity of data points and supports a new way of learning a classification model that allows prediction and explanation through counterfactual examples. We demonstrate with extensive experiments the effectiveness of the latent space with respect to different metrics in comparison with several competitors, as well as the quality of the achieved counterfactual explanations.

16.

[BGG2023b]
Transparent Latent Space Counterfactual Explanations for Tabular Data
Bodria Francesco, Riccardo Guidotti, Fosca Giannotti, Dino Pedreschi (2022) - Proceedings of Data Science and Advanced Analytics (DSAA), 2022 IEEE 9th International Conference. In Proceedings of the 9th IEEE International Conference on Data Science and Advanced, Analytics (DSAA)

Abstract

Artificial Intelligence decision-making systems have dramatically increased their predictive performance in recent years, beating humans in many different specific tasks. However, with increased performance has come an increase in the complexity of the black-box models adopted by the AI systems, making them entirely obscure for the decision process adopted. Explainable AI is a field that seeks to make AI decisions more transparent by producing explanations. In this paper, we propose T-LACE, an approach able to retrieve post-hoc counterfactual explanations for a given pre-trained black-box model. T-LACE exploits the similarity and linearity proprieties of a custom-created transparent latent space to build reliable counterfactual explanations. We tested T-LACE on several tabular datasets and provided qualitative evaluations of the generated explanations in terms of similarity, robustness, and diversity. Comparative analysis against various state-of-the-art counterfactual explanation methods shows the higher effectiveness of our approach.

17.

[NMG2022]
Evaluating the Privacy Exposure of Interpretable Global Explainers
Naretto Francesca, Monreale Anna, Giannotti Fosca (2022) - 2022 IEEE 4th International Conference on Cognitive Machine Intelligence (CogMI). In IEEE International Conference on Cognitive Machine Intelligence (CogMI)

Abstract

In recent years we are witnessing the diffusion of AI systems based on powerful Machine Learning models which find application in many critical contexts such as medicine, financial market and credit scoring. In such a context it is particularly important to design Trustworthy AI systems while guaranteeing transparency, with respect to their decision reasoning and privacy protection. Although many works in the literature addressed the lack of transparency and the risk of privacy exposure of Machine Learning models, the privacy risks of explainers have not been appropriately studied. This paper presents a methodology for evaluating the privacy exposure raised by interpretable global explainers able to imitate the original black-box classifier. Our methodology exploits the well-known Membership Inference Attack. The experimental results highlight that global explainers based on interpretable trees lead to an increase in privacy exposure.

18.

[FGP2022]
Explaining Siamese Networks in Few-Shot Learning for Audio Data
Fedele Andrea, Guidotti Riccardo, Pedreschi Dino (2022) - International Conference on Discovery Science. In Discovery Science

Abstract

Machine learning models are not able to generalize correctly when queried on samples belonging to class distributions that were never seen during training. This is a critical issue, since real world applications might need to quickly adapt without the necessity of re-training. To overcome these limitations, few-shot learning frameworks have been proposed and their applicability has been studied widely for computer vision tasks. Siamese Networks learn pairs similarity in form of a metric that can be easily extended on new unseen classes. Unfortunately, the downside of such systems is the lack of explainability. We propose a method to explain the outcomes of Siamese Networks in the context of few-shot learning for audio data. This objective is pursued through a local perturbation-based approach that evaluates segments-weighted-average contributions to the final outcome considering the interplay between different areas of the audio spectrogram. Qualitative and quantitative results demonstrate that our method is able to show common intra-class characteristics and erroneous reliance on silent sections.

19.

[SGN2022]
Explaining Crash Predictions on~Multivariate Time Series Data
Spinnato Francesco, Guidotti Riccardo, Nanni Mirco, Maccagnola Daniele, Paciello Giulia, Bencini Farina Antonio (2022) - International Conference on Discovery Science. In Discovery Science

Abstract

In Assicurazioni Generali, an automatic decision-making model is used to check real-time multivariate time series and alert if a car crash happened. In such a way, a Generali operator can call the customer to provide first assistance. The high sensitivity of the model used, combined with the fact that the model is not interpretable, might cause the operator to call customers even though a car crash did not happen but only due to a harsh deviation or the fact that the road is bumpy. Our goal is to tackle the problem of interpretability for car crash prediction and propose an eXplainable Artificial Intelligence (XAI) workflow that allows gaining insights regarding the logic behind the deep learning predictive model adopted by Generali. We reach our goal by building an interpretable alternative to the current obscure model that also reduces the training data usage and the prediction time.

20.

[NMG2022]
Privacy Risk of Global Explainers
Francesca Naretto, Anna Monreale, Fosca Giannotti (2022) - Proceedings of the First International Conference on Hybrid Human-Artificial Intelligence. In Frontiers in Artificial Intelligence and Applications

Abstract

ABSTRACT NOT FOUND

21.

[NPR2022]
Methods and tools for causal discovery and causal inference
Ana Rita Nogueira, Andrea Pugnana, Salvatore Ruggieri, Dino Pedreschi, João Gama (2022) - Wires Data Mining and Knowledge Discovery. In Wires Data Mining and Knowledge Discovery

Abstract

Causality is a complex concept, which roots its developments across several fields, such as statistics, economics, epidemiology, computer science, and philosophy. In recent years, the study of causal relationships has become a crucial part of the Artificial Intelligence community, as causality can be a key tool for overcoming some limitations of correlation-based Machine Learning systems. Causality research can generally be divided into two main branches, that is, causal discovery and causal inference. The former focuses on obtaining causal knowledge directly from observational data. The latter aims to estimate the impact deriving from a change of a certain variable over an outcome of interest. This article aims at covering several methodologies that have been developed for both tasks. This survey does not only focus on theoretical aspects. But also provides a practical toolkit for interested researchers and practitioners, including software, datasets, and running examples.

23.

[TSS2022]
Explainable AI for Time Series Classification: A Review, Taxonomy and Research Directions
Andreas Theissler, Francesco Spinnato, Udo Schlegel, Riccardo Guidotti (2022) - IEEE Access. In IEEE Access ( Volume: 10)

Abstract

Time series data is increasingly used in a wide range of fields, and it is often relied on in crucial applications and high-stakes decision-making. For instance, sensors generate time series data to recognize different types of anomalies through automatic decision-making systems. Typically, these systems are realized with machine learning models that achieve top-tier performance on time series classification tasks. Unfortunately, the logic behind their prediction is opaque and hard to understand from a human standpoint. Recently, we observed a consistent increase in the development of explanation methods for time series classification justifying the need to structure and review the field. In this work, we (a) present the first extensive literature review on Explainable AI (XAI) for time series classification, (b) categorize the research field through a taxonomy subdividing the methods into time points-based, subsequences-based and instance-based, and (c) identify open research directions regarding the type of explanations and the evaluation of explanations and interpretability.

24.

[G2022]
Counterfactual explanations and how to find them: literature review and benchmarking
Riccardo Guidotti (2022) - Data Mining and Knowledge Discovery. In Data Mining and Knowledge Discovery

Abstract

Interpretable machine learning aims at unveiling the reasons behind predictions returned by uninterpretable classifiers. One of the most valuable types of explanation consists of counterfactuals. A counterfactual explanation reveals what should have been different in an instance to observe a diverse outcome. For instance, a bank customer asks for a loan that is rejected. The counterfactual explanation consists of what should have been different for the customer in order to have the loan accepted. Recently, there has been an explosion of proposals for counterfactual explainers. The aim of this work is to survey the most recent explainers returning counterfactual explanations. We categorize explainers based on the approach adopted to return the counterfactuals, and we label them according to characteristics of the method and properties of the counterfactuals returned. In addition, we visually compare the explanations, and we report quantitative benchmarking assessing minimality, actionability, stability, diversity, discriminative power, and running time. The results make evident that the current state of the art does not provide a counterfactual explainer able to guarantee all these properties simultaneously.

25.

[MG2022]
Investigating Debiasing Effects on Classification and Explainability
Marta Marchiori Manerba, Guidotti Riccardo (2022) - Conference on AI, Ethics, and Society (AIES 2022). In Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society (AIES'22)

Abstract

During each stage of a dataset creation and development process, harmful biases can be accidentally introduced, leading to models that perpetuates marginalization and discrimination of minorities, as the role of the data used during the training is critical. We propose an evaluation framework that investigates the impact on classification and explainability of bias mitigation preprocessing techniques used to assess data imbalances concerning minorities' representativeness and mitigate the skewed distributions discovered. Our evaluation focuses on assessing fairness, explainability and performance metrics. We analyze the behavior of local model-agnostic explainers on the original and mitigated datasets to examine whether the proxy models learned by the explainability techniques to mimic the black-boxes disproportionately rely on sensitive attributes, demonstrating biases rooted in the explainers. We conduct several experiments about known biased datasets to demonstrate our proposal’s novelty and effectiveness for evaluation and bias detection purposes.

More information

Research Line 1▪5

26.

[BRF2022]
immagine
Explaining Black Box with visual exploration of Latent Space
Bodria Francesco, Rinzivillo Salvatore, Fadda Daniele, Guidotti Riccardo, Fosca Giannotti, Pedreschi Dino (2022) - EUROVIS 2022. In Proceedings of the 2022 Conference Eurovis 2022

Abstract

Autoencoders are a powerful yet opaque feature reduction technique, on top of which we propose a novel way for the joint visual exploration of both latent and real space. By interactively exploiting the mapping between latent and real features, it is possible to unveil the meaning of latent features while providing deeper insight into the original variables. To achieve this goal, we exploit and re-adapt existing approaches from eXplainable Artificial Intelligence (XAI) to understand the relationships between the input and latent features. The uncovered relationships between input features and latent ones allow the user to understand the data structure concerning external variables such as the predictions of a classification model. We developed an interactive framework that visually explores the latent space and allows the user to understand the relationships of the input features with model prediction.

27.

[PBF2022]
Co-design of human-centered, explainable AI for clinical decision support
Panigutti Cecilia, Beretta Andrea, Fadda Daniele , Giannotti Fosca, Pedreschi Dino, Perotti Alan, Rinzivillo Salvatore (2022). In ACM Transactions on Interactive Intelligent Systems

Abstract

eXplainable AI (XAI) involves two intertwined but separate challenges: the development of techniques to extract explanations from black-box AI models, and the way such explanations are presented to users, i.e., the explanation user interface. Despite its importance, the second aspect has received limited attention so far in the literature. Effective AI explanation interfaces are fundamental for allowing human decision-makers to take advantage and oversee high-risk AI systems effectively. Following an iterative design approach, we present the first cycle of prototyping-testing-redesigning of an explainable AI technique, and its explanation user interface for clinical Decision Support Systems (DSS). We first present an XAI technique that meets the technical requirements of the healthcare domain: sequential, ontology-linked patient data, and multi-label classification tasks. We demonstrate its applicability to explain a clinical DSS, and we design a first prototype of an explanation user interface. Next, we test such a prototype with healthcare providers and collect their feedback, with a two-fold outcome: first, we obtain evidence that explanations increase users' trust in the XAI system, and second, we obtain useful insights on the perceived deficiencies of their interaction with the system, so that we can re-design a better, more human-centered explanation interface.

More information

Research Line 1▪3▪4

28.

[PBP2022]
Understanding the impact of explanations on advice-taking: a user study for AI-based clinical Decision Support Systems
Panigutti Cecilia, Beretta Andrea, Pedreschi Dino, Giannotti Fosca (2022) - 2022 Conference on Human Factors in Computing Systems. In Proceedings of the 2022 Conference on Human Factors in Computing Systems

Abstract

The field of eXplainable Artificial Intelligence (XAI) focuses on providing explanations for AI systems' decisions. XAI applications to AI-based Clinical Decision Support Systems (DSS) should increase trust in the DSS by allowing clinicians to investigate the reasons behind its suggestions. In this paper, we present the results of a user study on the impact of advice from a clinical DSS on healthcare providers' judgment in two different cases: the case where the clinical DSS explains its suggestion and the case it does not. We examined the weight of advice, the behavioral intention to use the system, and the perceptions with quantitative and qualitative measures. Our results indicate a more significant impact of advice when an explanation for the DSS decision is provided. Additionally, through the open-ended questions, we provide some insights on how to improve the explanations in the diagnosis forecasts for healthcare assistants, nurses, and doctors.

More information

Research Line 4

29.

[SMM2022]
TriplEx: Triple Extraction for Explanation
Setzu Mattia, Monreale Anna, Minervini Pasquale (2022) - Third Conference on Cognitive Machine Intelligence (COGMI) 2021

Abstract

ABSTRACT NOT FOUND

More information

External Link

Research Line 1▪2

30.

[VMG2022]
immagine
Understanding peace through the world news
Voukelatou Vasiliki, Miliou Ioanna, Giannotti Fosca, Pappalardo Luca (2022) - EPJ Data Science. In EPJ Data Science

Abstract

Peace is a principal dimension of well-being and is the way out of inequity and violence. Thus, its measurement has drawn the attention of researchers, policymakers, and peacekeepers. During the last years, novel digital data streams have drastically changed the research in this field. The current study exploits information extracted from a new digital database called Global Data on Events, Location, and Tone (GDELT) to capture peace through the Global Peace Index (GPI). Applying predictive machine learning models, we demonstrate that news media attention from GDELT can be used as a proxy for measuring GPI at a monthly level. Additionally, we use explainable AI techniques to obtain the most important variables that drive the predictions. This analysis highlights each country’s profile and provides explanations for the predictions, and particularly for the errors and the events that drive these errors. We believe that digital data exploited by researchers, policymakers, and peacekeepers, with data science tools as powerful as machine learning, could contribute to maximizing the societal benefits and minimizing the risks to peace.

31.

[CDF2021]
Trustworthy AI
Chatila Raja, Dignum Virginia, Fisher Michael, Giannotti Fosca, Morik Katharina, Russell Stuart, Yeung Karen (2022) - Reflections on Artificial Intelligence for Humanity. In Lecture Notes in Computer Science,

Abstract

Modern AI systems have become of widespread use in almost all sectors with a strong impact on our society. However, the very methods on which they rely, based on Machine Learning techniques for processing data to predict outcomes and to make decisions, are opaque, prone to bias and may produce wrong answers. Objective functions optimized in learning systems are not guaranteed to align with the values that motivated their definition. Properties such as transparency, verifiability, explainability, security, technical robustness and safety, are key to build operational governance frameworks, so that to make AI systems justifiably trustworthy and to align their development and use with human rights and values.

32.

[PMC2022]
immagine
Ethical, societal and legal issues in deep learning for healthcare
Panigutti Cecilia, Monreale Anna, Comandè Giovanni, Pedreschi Dino (2022) - Deep Learning in Biology and Medicine. In Deep Learning in Biology and Medicine

Abstract

Biology, medicine and biochemistry have become data-centric fields for which Deep Learning methods are delivering groundbreaking results. Addressing high impact challenges, Deep Learning in Biology and Medicine provides an accessible and organic collection of Deep Learning essays on bioinformatics and medicine. It caters for a wide readership, ranging from machine learning practitioners and data scientists seeking methodological knowledge to address biomedical applications, to life science specialists in search of a gentle reference for advanced data analytics.With contributions from internationally renowned experts, the book covers foundational methodologies in a wide spectrum of life sciences applications, including electronic health record processing, diagnostic imaging, text processing, as well as omics-data processing. This survey of consolidated problems is complemented by a selection of advanced applications, including cheminformatics and biomedical interaction network analysis. A modern and mindful approach to the use of data-driven methodologies in the life sciences also requires careful consideration of the associated societal, ethical, legal and transparency challenges, which are covered in the concluding chapters of this book.

33.

[MGY2021]
Exemplars and Counterexemplars Explanations for Skin Lesion Classifiers
Carlo Metta, Riccardo Guidotti, Yuan Yin, Patrick Gallinari, Salvatore Rinzivillo (2021) - IOS Press. In HHAI2022: Augmenting Human Intellect, S. Schlobach et al. (Eds.)

Abstract

Explainable AI consists in developing models allowing interaction between decision systems and humans by making the decisions understandable. We propose a case study for skin lesion diagnosis showing how it is possible to provide explanations of the decisions of deep neural network trained to label skin lesions.

34.

[MG2021]
FairShades: Fairness Auditing via Explainability in Abusive Language Detection Systems
Marchiori Manerba Marta, Guidotti Riccardo (2021) - Third Conference on Cognitive Machine Intelligence (COGMI) 2021. In 2021 IEEE Third International Conference on Cognitive Machine Intelligence (CogMI)

Abstract

At every stage of a supervised learning process, harmful biases can arise and be inadvertently introduced, ultimately leading to marginalization, discrimination, and abuse towards minorities. This phenomenon becomes particularly impactful in the sensitive real-world context of abusive language detection systems, where non-discrimination is difficult to assess. In addition, given the opaqueness of their internal behavior, the dynamics leading a model to a certain decision are often not clear nor accountable, and significant problems of trust could emerge. A robust value-oriented evaluation of models' fairness is therefore necessary. In this paper, we present FairShades, a model-agnostic approach for auditing the outcomes of abusive language detection systems. Combining explainability and fairness evaluation, FairShades can identify unintended biases and sensitive categories towards which models are most discriminative. This objective is pursued through the auditing of meaningful counterfactuals generated within CheckList framework. We conduct several experiments on BERT-based models to demonstrate our proposal's novelty and effectiveness for unmasking biases.

More information

External Link

Research Line 1▪5

35.

[GMP2021]
immagine
Explainable AI Within the Digital Transformation and Cyber Physical Systems: XAI Methods and Applications
Guidotti Riccardo, Monreale Anna, Pedreschi Dino, Giannotti Fosca (2021) - Explainable AI Within the Digital Transformation and Cyber Physical Systems (pp. 9-31)

Abstract

This book presents Explainable Artificial Intelligence (XAI), which aims at producing explainable models that enable human users to understand and appropriately trust the obtained results. The authors discuss the challenges involved in making machine learning-based AI explainable. Firstly, that the explanations must be adapted to different stakeholders (end-users, policy makers, industries, utilities etc.) with different levels of technical knowledge (managers, engineers, technicians, etc.) in different application domains. Secondly, that it is important to develop an evaluation framework and standards in order to measure the effectiveness of the provided explanations at the human and the technical levels. This book gathers research contributions aiming at the development and/or the use of XAI techniques in order to address the aforementioned challenges in different applications such as healthcare, finance, cybersecurity, and document summarization. It allows highlighting the benefits and requirements of using explainable models in different application domains in order to provide guidance to readers to select the most adapted models to their specified problem and conditions. Includes recent developments of the use of Explainable Artificial Intelligence (XAI) in order to address the challenges of digital transition and cyber-physical systems; Provides a textual scientific description of the use of XAI in order to address the challenges of digital transition and cyber-physical systems; Presents examples and case studies in order to increase transparency and understanding of the methodological concepts.

More information

External Link

Research Line 1▪5

36.

[GD2021]
Matrix Profile-Based Interpretable Time Series Classifier
Guidotti Riccardo, D’Onofrio Matteo (2021) - Frontiers in Artificial Intelligence

Abstract

Time series classification (TSC) is a pervasive and transversal problem in various fields ranging from disease diagnosis to anomaly detection in finance. Unfortunately, the most effective models used by Artificial Intelligence (AI) systems for TSC are not interpretable and hide the logic of the decision process, making them unusable in sensitive domains. Recent research is focusing on explanation methods to pair with the obscure classifier to recover this weakness. However, a TSC approach that is transparent by design and is simultaneously efficient and effective is even more preferable. To this aim, we propose an interpretable TSC method based on the patterns, which is possible to extract from the Matrix Profile (MP) of the time series in the training set. A smart design of the classification procedure allows obtaining an efficient and effective transparent classifier modeled as a decision tree that expresses the reasons for the classification as the presence of discriminative subsequences. Quantitative and qualitative experimentation shows that the proposed method overcomes the state-of-the-art interpretable approaches.

38.

[GM2021]
Designing Shapelets for Interpretable Data-Agnostic Classification
Guidotti Riccardo, Monreale Anna (2021) - Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society

Abstract

Time series shapelets are discriminatory subsequences which are representative of a class, and their similarity to a time series can be used for successfully tackling the time series classification problem. The literature shows that Artificial Intelligence (AI) systems adopting classification models based on time series shapelets can be interpretable, more accurate, and significantly fast. Thus, in order to design a data-agnostic and interpretable classification approach, in this paper we first extend the notion of shapelets to different types of data, i.e., images, tabular and textual data. Then, based on this extended notion of shapelets we propose an interpretable data-agnostic classification method. Since the shapelets discovery can be time consuming, especially for data types more complex than time series, we exploit a notion of prototypes for finding candidate shapelets, and reducing both the time required to find a solution and the variance of shapelets. A wide experimentation on datasets of different types shows that the data-agnostic prototype-based shapelets returned by the proposed method empower an interpretable classification which is also fast, accurate, and stable. In addition, we show and we prove that shapelets can be at the basis of explainable AI methods.

39.

[MGY2021]
Exemplars and Counterexemplars Explanations for Image Classifiers, Targeting Skin Lesion Labeling
Metta Carlo, Guidotti Riccardo, Yin Yuan, Gallinari Patrick, Rinzivillo Salvatore (2021) - 2021 IEEE Symposium on Computers and Communications (ISCC). In 2021 IEEE Symposium on Computers and Communications (ISCC)

Abstract

Explainable AI consists in developing mechanisms allowing for an interaction between decision systems and humans by making the decisions of the formers understandable. This is particularly important in sensitive contexts like in the medical domain. We propose a use case study, for skin lesion diagnosis, illustrating how it is possible to provide the practitioner with explanations on the decisions of a state of the art deep neural network classifier trained to characterize skin lesions from examples. Our framework consists of a trained classifier onto which an explanation module operates. The latter is able to offer the practitioner exemplars and counterexemplars for the classification diagnosis thus allowing the physician to interact with the automatic diagnosis system. The exemplars are generated via an adversarial autoencoder. We illustrate the behavior of the system on representative examples.

40.

[GR2021]
Ensemble of Counterfactual Explainers
Guidotti Riccardo, Ruggieri Salvatore (2021)

Abstract

In eXplainable Artificial Intelligence (XAI), several counterfactual explainers have been proposed, each focusing on some desirable properties of counterfactual instances: minimality, actionability, stability, diversity, plausibility, discriminative power. We propose an ensemble of counterfactual explainers that boosts weak explainers, which provide only a subset of such properties, to a powerful method covering all of them. The ensemble runs weak explainers on a sample of instances and of features, and it combines their results by exploiting a diversity-driven selection function. The method is model-agnostic and, through a wrapping approach based on autoencoders, it is also data-agnostic

41.

[MBG2021]
Explainable Deep Image Classifiers for Skin Lesion Diagnosis
Metta Carlo, Beretta Andrea, Guidotti Riccardo, Yin Yuan, Gallinari Patrick, Rinzivillo Salvatore, Giannotti Fosca (2021) - Arxive preprint. In International Journal of Data Science and Analytics

Abstract

A key issue in critical contexts such as medical diagnosis is the interpretability of the deep learning models adopted in decision-making systems. Research in eXplainable Artificial Intelligence (XAI) is trying to solve this issue. However, often XAI approaches are only tested on generalist classifier and do not represent realistic problems such as those of medical diagnosis. In this paper, we analyze a case study on skin lesion images where we customize an existing XAI approach for explaining a deep learning model able to recognize different types of skin lesions. The explanation is formed by synthetic exemplar and counter-exemplar images of skin lesion and offers the practitioner a way to highlight the crucial traits responsible for the classification decision. A survey conducted with domain experts, beginners and unskilled people proof that the usage of explanations increases the trust and confidence in the automatic decision system. Also, an analysis of the latent space adopted by the explainer unveils that some of the most frequent skin lesion classes are distinctly separated. This phenomenon could derive from the intrinsic characteristics of each class and, hopefully, can provide support in the resolution of the most frequent misclassifications by human experts.

More information

External Link

Research Line 1▪3▪4

42.

[BGM2021]
Deriving a Single Interpretable Model by Merging Tree-Based Classifiers
Bonsignori Valerio, Guidotti Riccardo, Monreale Anna (2021) - Discovery Science

Abstract

Decision tree classifiers have been proved to be among the most interpretable models due to their intuitive structure that illustrates decision processes in form of logical rules. Unfortunately, more complex tree-based classifiers such as oblique trees and random forests overcome the accuracy of decision trees at the cost of becoming non interpretable. In this paper, we propose a method that takes as input any tree-based classifier and returns a single decision tree able to approximate its behavior. Our proposal merges tree-based classifiers by an intensional and extensional approach and applies a post-hoc explanation strategy. Our experiments shows that the retrieved single decision tree is at least as accurate as the original tree-based model, faithful, and more interpretable.

More information

External Link

Research Line 1▪2

43.

[RAB2021]
Occlusion-Based Explanations in Deep Recurrent Models for Biomedical Signals
Resta Michele, Monreale Anna, Bacciu Davide (2021) - Entropy. In Entropy

Abstract

The biomedical field is characterized by an ever-increasing production of sequential data, which often come in the form of biosignals capturing the time-evolution of physiological processes, such as blood pressure and brain activity. This has motivated a large body of research dealing with the development of machine learning techniques for the predictive analysis of such biosignals. Unfortunately, in high-stakes decision making, such as clinical diagnosis, the opacity of machine learning models becomes a crucial aspect to be addressed in order to increase the trust and adoption of AI technology. In this paper, we propose a model agnostic explanation method, based on occlusion, that enables the learning of the input’s influence on the model predictions. We specifically target problems involving the predictive analysis of time-series data and the models that are typically used to deal with data of such nature, i.e., recurrent neural networks. Our approach is able to provide two different kinds of explanations: one suitable for technical experts, who need to verify the quality and correctness of machine learning models, and one suited to physicians, who need to understand the rationale underlying the prediction to make aware decisions. A wide experimentation on different physiological data demonstrates the effectiveness of our approach both in classification and regression tasks.

45.

[PPB2021]
immagine
FairLens: Auditing black-box clinical decision support systems
Panigutti Cecilia, Perotti Alan, Panisson André, Bajardi Paolo, Pedreschi Dino (2021) - Information Processing & Management. In Journal of Information Processing and Management

Abstract

Highlights: We present a pipeline to detect and explain potential fairness issues in Clinical DSS. We study and compare different multi-label classification disparity measures. We explore ICD9 bias in MIMIC-IV, an openly available ICU benchmark dataset

More information

External Link

Research Line 1▪4

46.

[NPN2020]
Prediction and Explanation of Privacy Risk on Mobility Data with Neural Networks
Naretto Francesca, Pellungrini Roberto, Nardini Franco Maria, Giannotti Fosca (2021) - ECML PKDD 2020 Workshops. In ECML PKDD 2020 Workshops

Abstract

The analysis of privacy risk for mobility data is a fundamental part of any privacy-aware process based on such data. Mobility data are highly sensitive. Therefore, the correct identification of the privacy risk before releasing the data to the public is of utmost importance. However, existing privacy risk assessment frameworks have high computational complexity. To tackle these issues, some recent work proposed a solution based on classification approaches to predict privacy risk using mobility features extracted from the data. In this paper, we propose an improvement of this approach by applying long short-term memory (LSTM) neural networks to predict the privacy risk directly from original mobility data. We empirically evaluate privacy risk on real data by applying our LSTM-based approach. Results show that our proposed method based on a LSTM network is effective in predicting the privacy risk with results in terms of F1 of up to 0.91. Moreover, to explain the predictions of our model, we employ a state-of-the-art explanation algorithm, Shap. We explore the resulting explanation, showing how it is possible to provide effective predictions while explaining them to the end-user.

More information

External Link

Research Line 4▪5

47.

[NPM2020]
Predicting and Explaining Privacy Risk Exposure in Mobility Data
Naretto Francesca, Pellungrini Roberto, Monreale Anna, Nardini Franco Maria, Musolesi Mirco (2021) - Discovery Science. In Discovery Science Conference

Abstract

Mobility data is a proxy of different social dynamics and its analysis enables a wide range of user services. Unfortunately, mobility data are very sensitive because the sharing of people’s whereabouts may arise serious privacy concerns. Existing frameworks for privacy risk assessment provide tools to identify and measure privacy risks, but they often (i) have high computational complexity; and (ii) are not able to provide users with a justification of the reported risks. In this paper, we propose expert, a new framework for the prediction and explanation of privacy risk on mobility data. We empirically evaluate privacy risk on real data, simulating a privacy attack with a state-of-the-art privacy risk assessment framework. We then extract individual mobility profiles from the data for predicting their risk. We compare the performance of several machine learning algorithms in order to identify the best approach for our task. Finally, we show how it is possible to explain privacy risk prediction on real data, using two algorithms: Shap, a feature importance-based method and Lore, a rule-based method. Overall, expert is able to provide a user with the privacy risk and an explanation of the risk itself. The experiments show excellent performance for the prediction task.

More information

External Link

Research Line 4▪5

48.

[SGM2019]
Global Explanations with Local Scoring
Setzu Mattia, Guidotti Riccardo, Monreale Anna, Turini Franco (2021) - Machine Learning and Knowledge Discovery in Databases. In ECML PKDD 2019: Machine Learning and Knowledge Discovery in Databases

Abstract

Artificial Intelligence systems often adopt machine learning models encoding complex algorithms with potentially unknown behavior. As the application of these “black box” models grows, it is our responsibility to understand their inner working and formulate them in human-understandable explanations. To this end, we propose a rule-based model-agnostic explanation method that follows a local-to-global schema: it generalizes a global explanation summarizing the decision logic of a black box starting from the local explanations of single predicted instances. We define a scoring system based on a rule relevance score to extract global explanations from a set of local explanations in the form of decision rules. Experiments on several datasets and black boxes show the stability, and low complexity of the global explanations provided by the proposed solution in comparison with baselines and state-of-the-art global explainers.

51.

[PGG2019]
Meaningful Explanations of Black Box AI Decision Systems
Pedreschi Dino, Giannotti Fosca, Guidotti Riccardo, Monreale Anna, Ruggieri Salvatore, Turini Franco (2021) - Proceedings of the AAAI Conference on Artificial Intelligence. In Proceedings of the AAAI Conference on Artificial Intelligence

Abstract

Black box AI systems for automated decision making, often based on machine learning over (big) data, map a user’s features into a class or a score without exposing the reasons why. This is problematic not only for lack of transparency, but also for possible biases inherited by the algorithms from human prejudices and collection artifacts hidden in the training data, which may lead to unfair or wrong decisions. We focus on the urgent open challenge of how to construct meaningful explanations of opaque AI/ML systems, introducing the local-toglobal framework for black box explanation, articulated along three lines: (i) the language for expressing explanations in terms of logic rules, with statistical and causal interpretation; (ii) the inference of local explanations for revealing the decision rationale for a specific case, by auditing the black box in the vicinity of the target instance; (iii), the bottom-up generalization of many local explanations into simple global ones, with algorithms that optimize for quality and comprehensibility. We argue that the local-first approach opens the door to a wide variety of alternative solutions along different dimensions: a variety of data sources (relational, text, images, etc.), a variety of learning problems (multi-label classification, regression, scoring, ranking), a variety of languages for expressing meaningful explanations, a variety of means to audit a black box.

52.

[G2021]
Evaluating local explanation methods on ground truth
Guidotti Riccardo (2021) - Artificial Intelligence. In Artificial Intelligence, 103428

Abstract

Evaluating local explanation methods is a difficult task due to the lack of a shared and universally accepted definition of explanation. In the literature, one of the most common ways to assess the performance of an explanation method is to measure the fidelity of the explanation with respect to the classification of a black box model adopted by an Artificial Intelligent system for making a decision. However, this kind of evaluation only measures the degree of adherence of the local explainer in reproducing the behavior of the black box classifier with respect to the final decision. Therefore, the explanation provided by the local explainer could be different in the content even though it leads to the same decision of the AI system. In this paper, we propose an approach that allows to measure to which extent the explanations returned by local explanation methods are correct with respect to a synthetic ground truth explanation. Indeed, the proposed methodology enables the generation of synthetic transparent classifiers for which the reason for the decision taken, i.e., a synthetic ground truth explanation, is available by design. Experimental results show how the proposed approach allows to easily evaluate local explanations on the ground truth and to characterize the quality of local explanation methods.

53.

[LGR2020]
Explaining Sentiment Classification with Synthetic Exemplars and Counter-Exemplars
Lampridis Orestis, Guidotti Riccardo, Ruggieri Salvatore (2021) - Discovery Science. In In International Conference on Discovery Science (pp. 357-373). Springer, Cham.

Abstract

We present xspells, a model-agnostic local approach for explaining the decisions of a black box model for sentiment classification of short texts. The explanations provided consist of a set of exemplar sentences and a set of counter-exemplar sentences. The former are examples classified by the black box with the same label as the text to explain. The latter are examples classified with a different label (a form of counter-factuals). Both are close in meaning to the text to explain, and both are meaningful sentences – albeit they are synthetically generated. xspells generates neighbors of the text to explain in a latent space using Variational Autoencoders for encoding text and decoding latent instances. A decision tree is learned from randomly generated neighbors, and used to drive the selection of the exemplars and counter-exemplars. We report experiments on two datasets showing that xspells outperforms the well-known lime method in terms of quality of explanations, fidelity, and usefulness, and that is comparable to it in terms of stability.

54.

[PGM2019]
immagine
Explaining Multi-label Black-Box Classifiers for Health Applications
Panigutti Cecilia, Guidotti Riccardo, Monreale Anna, Pedreschi Dino (2021) - Precision Health and Medicine. In International Workshop on Health Intelligence (pp. 97-110). Springer, Cham.

Abstract

Today the state-of-the-art performance in classification is achieved by the so-called “black boxes”, i.e. decision-making systems whose internal logic is obscure. Such models could revolutionize the health-care system, however their deployment in real-world diagnosis decision support systems is subject to several risks and limitations due to the lack of transparency. The typical classification problem in health-care requires a multi-label approach since the possible labels are not mutually exclusive, e.g. diagnoses. We propose MARLENA, a model-agnostic method which explains multi-label black box decisions. MARLENA explains an individual decision in three steps. First, it generates a synthetic neighborhood around the instance to be explained using a strategy suitable for multi-label decisions. It then learns a decision tree on such neighborhood and finally derives from it a decision rule that explains the black box decision. Our experiments show that MARLENA performs well in terms of mimicking the black box behavior while gaining at the same time a notable amount of interpretability through compact decision rules, i.e. rules with limited length.

More information

External Link

Research Line 1▪4

55.

[GMC2019]
Investigating Neighborhood Generation Methods for Explanations of Obscure Image Classifiers
Guidotti Riccardo, Monreale Anna, Cariaggi Leonardo (2021) - Advances in Knowledge Discovery and Data Mining. In In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 55-68). Springer, Cham.

Abstract

Given the wide use of machine learning approaches based on opaque prediction models, understanding the reasons behind decisions of black box decision systems is nowadays a crucial topic. We address the problem of providing meaningful explanations in the widely-applied image classification tasks. In particular, we explore the impact of changing the neighborhood generation function for a local interpretable model-agnostic explanator by proposing four different variants. All the proposed methods are based on a grid-based segmentation of the images, but each of them proposes a different strategy for generating the neighborhood of the image for which an explanation is required. A deep experimentation shows both improvements and weakness of each proposed approach.

56.

[GMS2020]
immagine
Explaining Any Time Series Classifier
Guidotti Riccardo, Monreale Anna, Spinnato Francesco, Pedreschi Dino, Giannotti Fosca (2020) - 2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)

Abstract

We present a method to explain the decisions of black box models for time series classification. The explanation consists of factual and counterfactual shapelet-based rules revealing the reasons for the classification, and of a set of exemplars and counter-exemplars highlighting similarities and differences with the time series under analysis. The proposed method first generates exemplar and counter-exemplar time series in the latent feature space and learns a local latent decision tree classifier. Then, it selects and decodes those respecting the decision rules explaining the decision. Finally, it learns on them a shapelet-tree that reveals the parts of the time series that must, and must not, be contained for getting the returned outcome from the black box. A wide experimentation shows that the proposed method provides faithful, meaningful and interpretable explanations.

57.

[PPP2020]
immagine
Doctor XAI: an ontology-based approach to black-box sequential data classification explanations
Panigutti Cecilia, Perotti Alan, Pedreschi Dino (2020) - FAT* '20: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. In FAT* '20: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency

Abstract

Several recent advancements in Machine Learning involve blackbox models: algorithms that do not provide human-understandable explanations in support of their decisions. This limitation hampers the fairness, accountability and transparency of these models; the field of eXplainable Artificial Intelligence (XAI) tries to solve this problem providing human-understandable explanations for black-box models. However, healthcare datasets (and the related learning tasks) often present peculiar features, such as sequential data, multi-label predictions, and links to structured background knowledge. In this paper, we introduce Doctor XAI, a model-agnostic explainability technique able to deal with multi-labeled, sequential, ontology-linked data. We focus on explaining Doctor AI, a multilabel classifier which takes as input the clinical history of a patient in order to predict the next visit. Furthermore, we show how exploiting the temporal dimension in the data and the domain knowledge encoded in the medical ontology improves the quality of the mined explanations.

More information

External Link

Research Line 1▪3▪4

58.

[RGG2020]
Opening the black box: a primer for anti-discrimination
Ruggieri Salvatore, Giannotti Fosca, Guidotti Riccardo, Monreale Anna, Pedreschi Dino, Turini Franco (2020). In ANNUARIO DI DIRITTO COMPARATO E DI STUDI LEGISLATIVI

Abstract

The pervasive adoption of Artificial Intelligence (AI) models in the modern information society, requires counterbalancing the growing decision power demanded to AI models with risk assessment methodologies. In this paper, we consider the risk of discriminatory decisions and review approaches for discovering discrimination and for designing fair AI models. We highlight the tight relations between discrimination discovery and explainable AI, with the latter being a more general approach for understanding the behavior of black boxes.

59.

[GM2020]
Data-Agnostic Local Neighborhood Generation
Guidotti Riccardo, Monreale Anna (2020) - 2020 IEEE International Conference on Data Mining (ICDM). In 2020 IEEE International Conference on Data Mining (ICDM)

Abstract

Synthetic data generation has been widely adopted in software testing, data privacy, imbalanced learning, machine learning explanation, etc. In such contexts, it is important to generate data samples located within “local” areas surrounding specific instances. Local synthetic data can help the learning phase of predictive models, and it is fundamental for methods explaining the local behavior of obscure classifiers. The contribution of this paper is twofold. First, we introduce a method based on generative operators allowing the synthetic neighborhood generation by applying specific perturbations on a given input instance. The key factor consists in performing a data transformation that makes applicable to any type of data, i.e., data-agnostic. Second, we design a framework for evaluating the goodness of local synthetic neighborhoods exploiting both supervised and unsupervised methodologies. A deep experimentation shows the effectiveness of the proposed method.

60.

[BPP2020]
Explainability Methods for Natural Language Processing: Applications to Sentiment Analysis
Bodria Francesco, Panisson André , Perotti Alan, Piaggesi Simone (2020) - Discussion Paper

Abstract

nan

External Link

Research Line 1

61.

[M2020]
Rischi etico-legali dell’Intelligenza Artificiale
Monreale Anna (2020) - DPCE Online, [S.l.], v. 44, n. 3. In DPCE Online, [S.l.], v. 44, n. 3, oct. 2020. ISSN 2037-6677

Abstract

nan

External Link

Research Line 5

62.

[GPP2019]
immagine
I.A. comprensibile per il supporto alle decisioni: doctor XAI
Giannotti Fosca, Pedreschi Dino, Panigutti Cecilia (2019) - Biopolitica, Pandemia e democrazia. Rule of law nella società digitale. In BIOPOLITICA, PANDEMIA E DEMOCRAZIA Rule of law nella società digitale

Abstract

La crisi sanitaria ha trasformato le relazioni tra Stato e cittadini, conducendo a limitazioni temporanee dei diritti fondamentali e facendo emergere conflitti tra le due dimensioni della salute, come diritto della persona e come diritto della comunità, e tra il diritto alla salute e le esigenze del sistema economico. Per far fronte all’emergenza, si è modificato il tradizionale equilibrio tra i poteri dello Stato, in una prospettiva in cui il tempo dell’emergenza sembra proiettarsi ancora a lungo sul futuro. La pandemia ha inoltre potenziato la centralità del digitale, dall’utilizzo di software di intelligenza artificiale per il tracciamento del contagio alla nuova connettività del lavoro remoto, passando per la telemedicina. Le nuove tecnologie svolgono un ruolo di prevenzione e controllo, ma pongono anche delicate questioni costituzionali: come tutelare la privacy individuale di fronte al Panopticon digitale? Come inquadrare lo statuto delle piattaforme digitali, veri e propri poteri tecnologici privati, all’interno dei nostri ordinamenti? La ricerca presentata in questo volume e nei due volumi collegati propone le riflessioni su questi temi di studiosi afferenti a una moltitudine di aree disciplinari: medici, giuristi, ingegneri, esperti di robotica e di IA analizzano gli effetti dell’emergenza sanitaria sulla tenuta del modello democratico occidentale, con l’obiettivo di aprire una riflessione sulle linee guida per la ricostruzione del Paese, oltre la pandemia. In particolare, questo terzo volume affronta gli aspetti legati all’impatto della tecnologia digitale e dell’IA sui processi, sulla scuola e sulla medicina, con una riflessione su temi quali l’organizzazione della giustizia, le responsabilità, le carenze organizzative degli enti.

63.

[GMP2019]
The AI black box explanation problem
Guidotti Riccardo, Monreale Anna, Pedreschi Dino (2019) - ERCIM News, 116, 12-13. In ERCIM News, 116, 12-13

Abstract

nan

External Link

Research Line 1▪2▪3

64.

[PGG2018]
Open the Black Box Data-Driven Explanation of Black Box Decision Systems
Pedreschi Dino, Giannotti Fosca, Guidotti Riccardo, Monreale Anna , Pappalardo Luca , Ruggieri Salvatore , Turini Franco (2018) - Arxive preprint

Abstract

Black box systems for automated decision making, often based on machine learning over (big) data, map a user's features into a class or a score without exposing the reasons why. This is problematic not only for lack of transparency, but also for possible biases hidden in the algorithms, due to human prejudices and collection artifacts hidden in the training data, which may lead to unfair or wrong decisions. We introduce the local-to-global framework for black box explanation, a novel approach with promising early results, which paves the road for a wide spectrum of future developments along three dimensions: (i) the language for expressing explanations in terms of highly expressive logic-based rules, with a statistical and causal interpretation; (ii) the inference of local explanations aimed at revealing the logic of the decision adopted for a specific instance by querying and auditing the black box in the vicinity of the target instance; (iii), the bottom-up generalization of the many local explanations into simple global ones, with algorithms that optimize the quality and comprehensibility of explanations.

Thesis

  1. Panigutti Cecilia - eXplainable AI for trustworthy healthcare applications. [Phd Thesis - 2017 - Completed]
  2. Francesca Naretto - The relationship between privacy and explanations. [Phd Thesis - 2019 - Completed]
  3. Bodria Francesco - Understanding and Exploiting the Latent Space of Machine Learning Models. [Phd Thesis - 2019 - On Going]
  4. Francesco Spinnato - A Model Agnostic Local Explainer for Time Series Black-Box Classifiers. [Master Thesis - 2020 - Completed]
  5. Michele Resta - Increasing the Interpretability of Deep Recurrent Models for Biomedical Signals Analysis. [Master Thesis - 2020 - Completed]
  6. Francesco Sabiu - Privacy risk analysis of LIME explanations. [Master Thesis - 2020 - Completed]
  7. Alessandra Galassi - Explanation of Cardiovascular Risk Model Estimator. [Master Thesis - 2020 - Completed]
  8. Mattia Setzu - Opening the Black Box: Empowering Machine Learning Models with Explanations. [Phd Thesis - 2021 - Completed]
  9. Luca Corbucci - Semantic enrichment of XAI explanations for healthcare. [Master Thesis - 2021 - Completed]
  10. Reza Puarrim - X-Bot: Development of a Model and Data Agnostic Chatbot for Explaining the Decisions of Black Box Classifiers. [Master Thesis - 2021 - Completed]
  11. Matteo D'Onofrio - Matrix Profile-based Interpretable Time Series Classifier. [Bachelor Thesis - 2021 - Completed]
  12. Francesco Spinnato - Explanation Methods for Sequential Data Models. [Phd Thesis - 2021 - On Going]
  13. Isacco Beretta - Causal Explainable Artificial Intelligence. [Phd Thesis - 2021 - On Going]
  14. Robin Thierrault - Mechanicistic Explanation of NN based prediction. [PhD Thesis - 2021 - On Going]
  15. Michele Fontana - Fairness assessment in decentralized ML. [PhD Thesis - 2021 - On Going]
  16. Eleonora Cappuccio - A framework for Explanation User Interfaces. [PhD Thesis - 2021 - On Going]
  17. Martina Cinquini - Causal Analysis for Fairness and Explanation of AI models. [PhD Thesis - 2021 - On Going]
  18. Andrea Fedele - Explaining Siamese Networks in Few-Shot Learning for Audio Data. [Master Thesis - 2022 - Completed]
  19. Andrea dell'Abate - Design and Application of ProtopNET for Audio Data. [Master Thesis - 2022 - On Going]
  20. Valeria Messina - An explainability framework for fiscal fraud detection classifier. [Master Thesis - 2022 - On Going]
  21. Andrea Fedele - Explaining Few-Shot Learning. [PhD Thesis - 2023 - On Going]
  22. Cristiano Landi - Mobility Data Representations Design for Artificial Intelligence Applications. [PhD Thesis - 2023 - On Going]
  23. Federico Mazzoni - Co-design of Human-Machine Trust and Interaction for Hybrid Decision-Making. [PhD Thesis - 2023 - On Going]
  24. Simone Rizzo - Attacking machine learning models and their global explainers. [PhD Thesis - 2023 - On Going]

Algorithms